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Abstract

Crowds are generalizations of groups, and bands are generalizations of commutative rings. In this thesis, we continue
the study of these crowds, with a focus on some linear algebraic crowds, namely the special linear group and general
linear group over bands. We start the thesis by introducing bands and crowds and giving some general results. We
then study the special and general linear groups over a band B, SLn(B) and GLn(B), and their comparison, with case
studies for the Krasner hyperfield and the sign hyperfield. We follow this by defining the semidirect product of crowds,
and the crowd version of the short exact sequence, which we use to learn more about SLn(B) and GLn(B).
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Introduction

A linear algebraic group is a structure that, using the elements of a ring, forms a subgroup of the
special linear group of dimension n. An example is the general linear group over the real numbers,
GLn(R). These groups have already been widely studied. However, when they are taken over weaker
structures, the group law may fail. Then the algebraic group is not a group anymore, but it can still
be a crowd.
Crowds were introduced by Lorscheid and Thas in 2023 in their paper [7], to study algebraic groups
over the field of one element F1. They are generalizations of groups, and therefore can be used to
study objects that are not groups, but do seem to have some structure to them. In his bachelor thesis
[9], Maxson continued the study of crowds, in particular the special linear group over the Krasner
hyperfield. This thesis aims to build on his research, by defining the general linear group and the
symplectic group over bands, and studying their relation with the previously defined special linear
group ([7, Chapter 5.4]). We include case studies where the band is the Krasner hyperfield, the sign
hyperfield and the regular partial field. We also do further research on general crowds.

As mentioned, crowds are generalizations of groups. Their precise definition is:

Definition 0.1. A crowd is a triple (G, 1, R), where G is a set, 1 ∈ G is the unit element and R ⊂ G3

is the crowd law, that satisfies the following:

1. (1, 1, 1) ∈ R;

2. If (a, 1, 1) ∈ R for some a ∈ G, then a = 1;

3. If (a, b, 1) ∈ R for some a, b ∈ G, then (b, a, 1) ∈ R;

4. If (a, b, c) ∈ R for some a, b, c ∈ G, then (c, a, b) ∈ R.

For all a, b ∈ G, the inverse of a is the set a−1 = {b ∈ G | (a, b, 1) ∈ R}, and the product of a and b is
given by a · b =

{
c ∈ G | ∃d ∈ G such that c ∈ d−1 and (a, b, d) ∈ R

}
([7, Chapter 5.1]) (see Definition

1.10).

This definition allows for a lot of variation, for example, both

({1, a}, 1, {(1, 1, 1)}) and ({1, a}, 1, {(1, 1, 1), (a, a, 1), (1, a, a), (a, 1, a)})

are crowds. Given a crowd (G, 1G, RG), we can construct a subcrowd by taking subsets of G and RG
(see Definition 1.17), and a crowd morphism from G to another crowd by preserving the unit element
and the triples in the crowd law (see Definition 1.13).
In this thesis, we use crowds to study linear algebraic groups over bands. Bands B are generalizations
of commutative rings, where the addition operator is replaced by a set NB , called the null set, that
contains all sums we want to treat as ’zero’ (see Definition 1.2). For example, the Krasner hyperfield
K = {0, 1} forms a band with normal multiplication and null set NK =

{
n · 1|n ∈ N≥0, n ̸= 1

}
(see Def-

inition 1.5). Other bands are the sign hyperfield S = {0, 1,−1}, with normal multiplication and null
set NS =

{
p · 1 +m · (−1)|p = m = 0 or p,m ∈ N≥0

}
(see Definition 1.6) and the regular partial field

F±
1 = {0, 1,−1}, also with normal mutliplication, but with null set NF = {m · 1 +m · (−1)|m ∈ N}

(see Definition 1.7).
The special linear group over a band, SLn(B), is not a group, but it is still a crowd. Because the null
set of the band contains all sums we want to treat as zero, we can define the set as all n by n matrices
A such that det(A) − 1 ∈ NB . The crowd law is given by the set of triples (A,C,D), such that the
coefficients of A · C · D − In are in NB (see Definition 2.2). The crowd of the general linear group
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over B, GLn(B), has a similar definition, except it contains all n + 1 by n + 1 matrices A such that
A =

[
A11 0
0 δ

]
and det(A)− 1 ∈ NB (see Definition 2.5).

In this thesis, we develop the following new results about linear algebraic crowds, and crowds in
general.
We define the general linear group and the symplectic group over a band, Sp2n(B), and find that
Sp2(B) = SL2(B) for all bands B (see Definition 2.5, 2.16 and Theorem 2.18). Furthermore, we find
that crowd isomorphisms map inverses to inverses and products to products (see Theorem 1.16). This
is useful, because of the following theorem.

Theorem 0.2. Let B be a band. Then the map φ : SLn(B) → GLn(B), A 7→
[
A 0
0 1

]
is an injective,

full crowd morphism (see Theorem 3.1).

This implies, as stated in Theorem 3.3, that SLn(B) is isomorphic to the image of φ, which is a full
subcrowd of GLn(B). When we apply this morphism to the linear groups over the Krasner hyperfield,
we find that SLn(K) ∼= GLn(K) (see Theorem 3.4). Therefore, everything that was already proven for
SLn(K) by Maxson in his thesis ([9]), also holds for GLn(K) (see Proposition 3.4.1 and 3.4.2). While
there is no such isomorphism between SLn(S) and GLn(S), it is possible to construct all elements in
GLn(S) and its crowd law, using only the elements in SLn(K) and its crowd law (see Theorems 3.5,
3.6, 3.7 and Corollaries 3.6.1 and 3.7.1).
We also compare the special and general linear groups taken over F±

1 , S and K with each other, and
find injective crowd morphisms fSn , f

G
n , surjective crowd morphism gSn , g

G
n and crowd isomorphisms

θ, ψ, φ such that the following diagram commutes:

SLn(F±
1 ) SLn(S) SLn(K)

GLn(F±
1 ) GLn(S) GLn(K)

fS
n

θ

gSn

ψ φ

fG
n gGn

Returning to general crowds, we find that, where groups always correspond to a crowd ([7, Chapter
5.2]), hypergroups always correspond to a specific type of crowd, namely a saturated crowd (see
Theorem 5.7). Additionally, we define the semidirect product for crowds (see Definition 4.1):

Definition 0.3. Given crowds (H, 1H , RH) and (Q, 1Q, RQ) and crowd morphism θ : Q → Aut(H),
the semi-direct product H ⋊θ Q is the crowd (H ×Q, (1H , 1Q), RH⋊θQ), with crowd law

RH⋊θQ =
{
((h1, q1), (h2, q2), (h3, q3)) ∈ (H ×Q)3 | (q1, q2, q3) ∈ RQ and (h1, θq1(h2), θq1(θq2(h3))) ∈ RH

}
.

Another notion from group theory that can be applied to crowds is that of the split short exact
sequence. We define 2 types of sequences, a weakly split short exact sequence (see Definition 4.4) and
a strongly split short exact sequence (see Definition 4.6).

Theorem 0.4. Suppose the sequence

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1,

where H,G and Q are crowds and α, β are crowd morphisms, is a weakly split short exact sequence.
Then there is a bijection between the sets H × Q → G, and if G is finite, then so are H and Q and
#G = #H ·#Q (see Theorem 4.5).
If it is a strongly split short exact sequence, then there is an additional bijection between the crow laws
RQ×RH → RG, and if RG is finite, then so are RH and RQ and #RG = #RQ ·#RH . Furthermore,
there is a crowd morphism θ : Q → Aut(H) such that the crowd G ∼= H ⋊θ Q(see Theorems 4.7 and
4.8).
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For example, there are crowd morphisms φ and ψ such that

1 −→ SLn(K)
φ−→ GLn(K)

ψ−→ K× −→ 1

is a strongly split short exact sequence (see Example 4.9). For general bands B, we find that if n ∈ N
such that an+1,n+1 ∈ B× for all A ∈ GLn(B), then there are crowd morphisms φ and ψ such that

1 −→ SLn(B)
φ−→ GLn(B)

ψ−→ B× −→ 1

is a strongly split short exact sequence (see Proposition 4.10). For example, this assumption holds for
the bands S and F±

1 for all n ∈ N. Since S× = {−1, 1} and (F±
1 )× = {1,−1}, it follows that, if the

sets are finite,

#GLn(S) = 2 ·#SLn(S) and #RGLn(S) = 4 ·#RSLn(S) and

#GLn(F±
1 ) = 2 ·#SLn(F±

1 ) and #RGLn(F±
1 ) = 4 ·#RSLn(F±

1 ).

(see Example 4.11).

In section 1, we give an introduction into bands and crowds, and some preliminary results. This
includes the definition of bands, the Krasner hyperfield, the sign hyperfield, the regular partial field,
crowds and subcrowds, and band and crowd morphisms and Theorem 1.16.
Section 2 introduces the special linear group, the general linear group and the symplectic group taken
over bands. It contains Theorem 2.18, and these crowds when they are taken over K, S and F±

1 (Ex-
ample 2.7, 2.8 and 2.14).
In section 3, we study crowd morphisms between linear algebraic crowds. We look at the map
φ : SLn(B) → GLn(B), give the Theorems 3.1 and 3.3, and study the situations when B = K
and B = S. This includes Theorems 3.4, 3.5, 3.6, 3.7 and Corollaries 3.6.1 and 3.7.1. We also compare
the special linear groups and general linear groups over F±

1 , S and K with each other, leading to The-
orem 3.9 and more.
In section 4 we return to general crowds, and define the semidirect product of crowds, weakly split
short exact sequence and strongly split short exact sequence. This section includes Theorems 4.5, 4.7,
4.8 and Proposition 4.10.1.
In the final section, we give the definition of saturated crowds, as defined by Maxson in [9], and show
that GLn(K) and hypergroups are saturated crowds.

1 Bands and Crowds

In this section, we introduce bands and crowds. These structures are generalizations of commutative
rings ([1]) and groups ([7, Introduction]), respectively, and can therefore be used to study objects with
a weaker structure. We also introduce the Krasner hyperfield, the sign hyperfield and the regular
partial fields as bands.

1.1 Bands

To define a band, we need the definitions of a pointed monoid, an ambient semiring and the ideal of
an ambient semiring, as given by Baker, Jin and Lorscheid in [1, Chapter 1.1] and Lorscheid and Thas
in [7, Introduction].

Definition 1.1. A pointed monoid is a set B, together with a commutative and associative operator
· : B×B → B, such that there is a unit element 1 ∈ B and absorbing element 0 ∈ B such that a ·1 = a
and a · 0 = 0 for all a ∈ B.
Its ambient semiring B+ is the semiring B+ = N[B]/ ∼, where ∼ is the equivalence relation

0 +
∑

na · a ∼
∑

na · a.
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In other words:

B+ = {
∑

a∈B−{0}
na · a | na ∈ N, na = 0 for all but finitely many na}.

An ideal of B+ is a subset I such that

• 0 ∈ I,

• For all a, b ∈ I, we have that a+ b ∈ I and

• For all a ∈ I, b ∈ B, we have that b · a ∈ I.

Definition 1.2. A band is a pointed monoid (B, 1, 0, ·) together with a set NB , called the null set,
such that NB is an ideal of the ambient semiring B+ and for every a ∈ B, there exists a unique b ∈ B
such that a+ b ∈ NB . We call this the additive inverse of a and write −a = b ([1, Chapter 1.1]).

Example 1.3. As Maxson shows in [9, Chapter 2], every commutative ring (R,+, ·, 0, 1) gives way to
a band (R, , ·, 1) with null set NR = {

∑
a̸=0 na · a = 0|na ∈ N, na = 0 for all but finitely many na}.

Therefore bands are indeed a generalization of commutative rings.

So a band generalizes a commutative ring by replacing the addition operator with the null set. This
null set can be seen as the set of sums we want to treat as ’zero’.

Lemma 1.4. Let B be a band with zero element 0 and unit element 1. Then B ∩NB = {0}. Further-
more (−1)2 = 1 and for all a ∈ B, −a = (−1) · a.

Proof: This is proven in [1, Lemma 1.2]

Example 1.5. The Krasner hyperfield K is the band (K, 1, 0, ·), with the set K = {0, 1} and normal
multiplication · : K → K, together with the null set NK =

{
m · 1 | m ∈ N≥0,m ̸= 1

}
. Note that

−1 = 1 and −0 = 0.

Example 1.6. The sign hyperfield S is the band (S, 1, 0, ·), where S = {0, 1,−1} and · : S → S is normal
mutliplication, together with the null set NS =

{
p · 1 +m · (−1)|p = m = 0 or p,m ∈ N≥0

}
. In this

band, 1 and −1 are each others additive inverse, and the inverse of 0 is itself.

Example 1.7. The regular partial field F±
1 is similar to the sign hyperfield. It is the band (F±

1 , 1, 0, ·),
where F±

1 = {0, 1,−1} and · : F±
1 → F±

1 is again normal multiplication, but the null set is given by
NF = {m · 1 +m · (−1)|m ∈ N}. Similarly to S, the inverse of 1 is −1 and the inverse of 0 is 0.

These examples are from [1, Chapter 1.2].

One can travel between bands by using band morphisms:

Definition 1.8. Given the bands (B, 1B , NB) and (C, 1C , NC), a band morphism f : B → C is a
multiplicative map such that f(1B) = 1C and

∑
a∈B−{0} naf(a) ∈ NC whenever

∑
a∈B−{0} naa ∈ NB

([1, Definition 1.3]).

Example 1.9. The maps f : F±
1 → S, b 7→ b and g : S → K, 0 7→ 0,±1 7→ 1 are band morphisms. We

prove this in Theorem 3.8

1.2 Crowds

A crowd generalizes a group by replacing the group law with a crowd law. For a group G with group
law · : G×G→ G, all elements of G have a unique inverse ([11, Chapter III.1]). Thus for all a, b, d ∈ G,
we can describe a · b = d as a · b · c = 1, where c ∈ G such that d · c ·1 = 1. Therefore we can replace the
operator with the set of all triples a, b, c such that abc = 1. This set is the crowd law ([7, Chapter 5]).

Definition 1.10. A crowd is a triple (G, 1, R), where G is a set, 1 ∈ G is the unit element and R ⊂ G3

is the crowd law, that satisfies the following:
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1. (1, 1, 1) ∈ R;

2. If (a, 1, 1) ∈ R for some a ∈ G, then a = 1;

3. If (a, b, 1) ∈ R for some a, b ∈ G, then (b, a, 1) ∈ R;

4. If (a, b, c) ∈ R for some a, b, c ∈ G, then (c, a, b) ∈ R.

For all a, b ∈ G, the inverse of a is the set a−1 = {b ∈ G | (a, b, 1) ∈ R}, and the product of a and b is
given by a · b =

{
c ∈ G | ∃d ∈ G such that c ∈ d−1 and (a, b, d) ∈ R

}
([7, Chapter 5.1]).

This definition also works when it is difficult to find a good group law, by making the crowd law from
the triples of elements whose product we would like to be equivalent to 1. However, it is possible in
a crowd that some inverses or products are empty sets, or contain more then 1 element. Therefore,
what holds for groups does not have to hold for crowds.

Example 1.11. Let (G, ·, 1) be a group. We can construct the crowd (G, 1, R) by setting the crowd
law as R =

{
(a, b, c) ∈ G3 | abc = 1

}
. This is indeed a crowd, since: 1 · 1 · 1 = 1, so (1, 1, 1) ∈ R; if

(a, 1, 1) ∈ R, then a · 1 · 1 = a = 1; if (a, b, 1) ∈ R for some a, b,∈ G, then a · b = 1 and since G is
a group, this implies b · a = 1, so (b, a, 1) ∈ R; if (a, b, c) ∈ R for some a, b, c ∈ G, then abc = 1, so
ab = c−1, which implies cab = 1 and thus (c, a, b) ∈ R. Therefore all of the crowd axioms are satisfied,
so (G, 1, R) is indeed a crowd ([7, Chapter 5.2]). In this text, we say that G is both a group and a
crowd. It is also possible to say that G is a crowd that comes from a group.

It is not necessary for crowd laws to be based on group operators. They can be quite arbitrary, and
sets usually have multiple possible crowd laws.

Example 1.12. Let G = {1G, a, b} with unit element 1G. Then possible crowd laws are

R1 = {(1G, 1G, 1G), (a, b, 1G), (1G, a, b), (b, 1G, a), (b, a, 1G), (1G, b, a), (a, 1G, b)} and

R2 = {(1G, 1G, 1G), (a, a, b), (b, a, a), (a, b, a)}.

Similar to band and group morphisms, Lorscheid and Thas have defined crowd morphisms in [7,
Chapter 5.1].

Definition 1.13. A crowd morphism φ : G → H is a map from the crowd (G, 1G, RG) to the crowd
(H, 1H , RH) such that φ(1G) = 1H and for all (a, b, c) ∈ RG, it holds that (φ(a), φ(b), φ(c)) ∈ RH .
If there exist a crowd morphism ψ : H → G such that φ ◦ψ = idH and ψ ◦φ = idG, then φ is a crowd
isomorphism.
If for all a, b, c ∈ G, ((φ(a), φ(b), φ(c)) ∈ RH implies (a, b, c) ∈ RG, then φ is a full crowd morphism.
The kernel of a crowd morphism φ is ker(φ) = {a ∈ G|φ(a) = 1H}.

Example 1.14. Let (G,⊙G, 1G) and (H,⊙H , 1H) be groups and (G, 1G, RG) and (H, 1H , RH) be the
corresponding crowds. Suppose f : G→ H is a group homomorphism, and let f ′ be the map from the
crowd G to the crowd H such that f ′(g) = f(g). Then we can check that f ′ is a crowd morphism.
Since f ′(1G) = f(1G) = 1H , the first condition is satisfied. Additionally, suppose that a, b, c ∈ G such
that (a, b, c) ∈ RG. Then a⊙G ⊙Gb⊙ c = 1G, so

f(a)⊙H f(b)⊙H f(c) = f(a⊙G b⊙G c) = f(1G) = 1H ,

which implies (f(a), f(b), f(c)) = (f ′(a), f ′(b), f ′(c)) ∈ RH . Therefore the second condition is satis-
fied as well, so f ′ is indeed a crowd morphism ([7, Proposition 5.7]). In fact, if f ′ is injective and
(f ′(a), f ′(b), f ′(c)) ∈ RH for some a, b, c ∈ G, then

f ′(a)⊙H f ′(b)⊙H f ′(c) = f(a)⊙H f(b)⊙H f(c)

= f(a⊙G b⊙ c) = 1H .

Since f ′ is injective we must have that a⊙G b⊙G c = 1G, which means (a, b, c) ∈ RG. Therefore if f ′

is injective, then f ′ is a full crowd morphism.
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In general, a crowd morphism is not full if and only if it is injective. This does not mean we cannot
infer anything results from a full crowd morphism.

Lemma 1.15. Let (G, 1G, RG) and (H, 1H , RH) be crowds, and φ : G→ H be a full crowd morphism.
Then ker(φ) = {1G}.

Proof: To proof the first statement, let a ∈ ker(φ) be arbitrary. Then

(φ(a), φ(1G), φ(1G)) = (1H , 1H , 1H) ∈ RH .

Since φ is full, this means (a, 1G, 1G) ∈ RH , which implies that a = 1G. Since a was chosen arbitrarily,
this holds for all elements of ker(φ). Therefore ker(φ) = {1G}. □

Corollary 1.15.1. Let G and H be both crowds and groups and f ′ : G → H a crowd morphism that
corresponds to a group homomorphism f : G→ H. Then f ′ is a full crowd morphism if and only if it
is injective.

Proof: (⇒) : Suppose that f ′ is a full crowd morphism. Since it corresponds to a group homomorphism
f , we know that ker(f ′) = ker(f). Therefore it follows from Lemma 1.15 that ker(f) = ker(f ′) = {1G}.
This implies that the group homomorphism f , and therefore also the crowd morphism f ′, is injective.
(⇐) : This direction is proven in Example 1.14.
Therefore f ′ is a full crowd morphism if and only if it is injective. □

Similar to groups, crowd isomorphisms map inverses to inverses and products to products.

Theorem 1.16. Let (G, 1G, RG) and (H, 1H , RH) be crowds such that there exists a crowd isomor-
phism φ : G→ H. Then for all a, b, c ∈ G, the following holds:

1. b ∈ a−1 if and only if φ(b) ∈ φ(a)−1;

2. c ∈ a · b if and only if φ(c) ∈ φ(a) · φ(b).

Proof of 1: (⇒) : Suppose a, b ∈ G such that b ∈ a−1. Then (a, b, 1G) ∈ RG, which implies
(φ(a), φ(b), φ(1G)) = (φ(a), φ(b), 1H) ∈ RH , and thus φ(b) ∈ φ(a)−1.
(⇐) : Suppose a, b ∈ G such that φ(b) ∈ φ(a)−1. Then (φ(a), φ(b), 1H) ∈ RH , which implies
(φ−1(φ(a)), φ−1(φ(b)), φ−1(1H)) = (a, b, 1G) ∈ RG, so b ∈ a−1. Therefore, for all a, b ∈ G, b ∈ a−1 if
and only if φ(b) ∈ φ(a)−1.
Proof of 2.: (⇒) : Suppose a, b, c ∈ G such that c ∈ a · b. Then there is a d ∈ G such that
c ∈ d−1 and (a, b, d) ∈ RG. It follows from (1) that φ(c) ∈ φ(d)−1. Furthermore, it follows that
(φ(a), φ(b), φ(d)) ∈ RH . Therefore φ(c) ∈ φ(a) · φ(b).
(⇐) : Suppose a, b, c ∈ G such that φ(c) ∈ φ(a) ·φ(b). Then there is an e ∈ H such that φ(c) ∈ e−1 and
(φ(a), φ(b), e) ∈ RH . Since φ is a crowd isomorphism, there is a d ∈ G such that φ(d) = e, and there-
fore it follows from (1) that c ∈ d−1. Furthermore, (φ−1(φ(a)), φ−1(φ(b)), φ−1(e)) = (a, b, d) ∈ RG.
Therefore c ∈ a · b, and so for all a, b, c ∈ G, c ∈ a · b if and only if φ(c) ∈ φ(a) · φ(b). □

Another similarity to groups is that, where groups can have subgroups, crowds can have subcrowds:

Definition 1.17. Let (G, 1G, RG) and (H, 1H , RH) be a crowds. Then H is a subcrowd of G if
1H = 1G ∈ H ⊂ G and RH ⊂ RG∩H3. If RH = RG∩H3, then H is a full subcrowd of G ([9, Chapter
1.4]).

Lemma 1.18. Let (G, 1, RG) be a crowd and suppose H ⊂ G such that 1 ∈ H. Then (H, 1, RH),
where RH = RG ∩H3, is a full subcrowd of G.

Proof: We simply need to check that H satisfies the 4 crowd axioms:

1. (1, 1, 1) ∈ H3 and (1, 1, 1) ∈ RG, so (1, 1, 1) ∈ RH ;

2. If (a, 1, 1) ∈ RH , then (a, 1, 1) ∈ RG, which implies a = 1, since G is a crowd;
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3. If (a, b, 1) ∈ RH , then (a, b, 1) ∈ RG. It follows that (b, a, 1) ∈ RG, and since (b, a, 1) ∈ H3 as
well, which implies (b, a, 1) ∈ RH ;

4. If (a, b, c) ∈ RH , then (a, b, c) ∈ RG, which implies (c, a, b) ∈ RG. Since (c, a, b) ∈ H3 as well,
this means (c, a, b) ∈ RH .

Therefore the axioms are satisfied, and H is indeed a crowd. Since 1 ∈ H ⊂ G and RH = RG ∩H3, it
is a full subcrowd of G. □

Example 1.19. Let (G, ·, 1) be a group with subgroup (H, ·, 1). Then the corresponding crowd of H is a
full subcrowd of G: By definition of subgroups, 1 ∈ H ⊂ G, so the first axiom is satisfied. Furthermore,
(a, b, c) ∈ RH if and only if (a, b, c) ∈ H3 and a · b · c = 1, which holds if and only if (a, b, c) ∈ RG.
Therefore RH = RG ∩H3, so H is indeed a full subcrowd.

2 Matrix crowds

In this section, we study the special linear group, the general linear group and the symplectic group
when they are taken over bands. We find that these groups become crowds, and give some preliminary
results. We specifically study the cases when the band is the Krasner hyperfield, the sign hyperfield
and the regular partial field

2.1 Linear groups

Notation. Mn×n(B) refers to the set of n by n matrices with coefficients in B. In particular, the
coefficients of the n by n identity matrix In are written as δi,j .

Definition 2.1. Let B be a band. Then for all A ∈ Mn×n(B), the determinant of A is given by
det(A) =

∑
σ∈Sn

sign(σ)
∏n
i=1 ai,σ(i) ([7, Chapter 5.2]).

The special linear group over a band was defined by Lorscheid and Thas in their paper ([7, Chapter
5.4]) as follows.

Definition 2.2. LetB be a band. Then the special linear group overB is the crowd (SLn(B), In, RSLn(B)),
where the set is given by

SLn(B) = {A ∈Mn×n(B)| det(A)− 1 ∈ NB} ,

and crowd law is given by

RSLn(B) =

(
A(1), A(2), A(3)

)
∈ SLn(B)3

∣∣∣∣ ∀σ ∈ A3,∀i, j = 1, ..., n,
∑

k,l=1,...,n

a
(σ(1))
i,k a

(σ(2))
k,l a

(σ(3))
l,j − δi,j ∈ NB

 .

Note that for all A,C ∈ SLn(B), the coefficients of A · C will be sums, and therefore not necessarily
in B. Therefore the group structure fails, which is why the special linear group is defined as a crowd

instead. The crowd law is taken as the set of all triples
(
A(1), A(2), A(3)

)
∈ SLn(B)3 such that

A(σ(1)) ·A(σ(2)) ·A(σ(3))−In is coefficient wise in the null set. Thus, if B is a band that was constructed
from a field F , then the crowd SLn(B) corresponds to the crowd constructed from the group SLn(F ),
as explained in Example 1.11.
The following result is given in Maxson’s thesis [9, Chapter 3.1]. For completeness, we include a proof.

Theorem 2.3. Let B be a band. Then the triple (SLn(B), In, RSLn(B)) is indeed a crowd.

Proof: Since In ∈ SLn(B) is a unit element, we simply need to check that all 4 crowd axioms are
satisfied:
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1. (In, In, In) ∈ RSLn(B), since for all σ ∈ A3 and for all i, j = 1, ..., n,∑
k,l=1,...,n

δ
(σ(1))
i,k δ

(σ(2))
k,l δ

(σ(3))
l,j − δi,j =

∑
k,l=1,...,n

δi,kδk,lδl,j − δi,j

=
∑

k=1,...,n

δi,kδk,j − δi,j = δi,j − δi,j ∈ NB .

Therefore (In, In, In) satisfies the conditions to be in RSLn(B), so the first axiom holds.

2. Suppose that there is an A ∈ SLn(B) such that (A, In, In) ∈ RSLn(B). Then for all
i, j = 1, ..., n, we have that∑

k,l=1,....,n

ai,kδk,lδl,j − δi,j ∈ NB ⇒
∑

k=1,...,n

ai,kδk,j − δi,j ∈ NB

⇒ ai,j − δi,j ∈ NB .

Since additive inverses in bands are unique, it follows that for all i, j = 1, ..., n, ai,j = δi,j .
Therefore (A, In, In) ∈ RSLn(B) implies that A = In, so the second axiom is satisfied.

3. Suppose (A,B, In) ∈ RSLn(B) for some A,B ∈ SLn(B). Then for all i, j = 1, ..., n,∑
k,l=1,...,n

ai,kbk,lδl,j − δi,j ∈ NB ⇒
∑

k=1,...,n

ai,kbk,j − δi,j ∈ NB and

∑
k,l=1,...,n

bi,kδk,lal,j − δi,j ∈ NB ⇒
∑

k=1,...,n

bi,kak,j − δi,j ∈ NB .

This implies that for all i, j = 1, ..., n,∑
k=1,...,n

ai,kbk,j − δi,j =
∑

k,l=1,...,n

ai,kδk,lbl,j − δi,j ∈ NB ,∑
k=1,...,n

bi,kak,j − δi,j =
∑

k,l=1,...,n

δi,kbk,lal,j − δi,j ∈ NB and

∑
k=1,...,n

bi,kak,j − δi,j =
∑

k,l=1,...,n

bi,kak,lδl,j − δi,j ∈ NB .

Therefore (B,A, In) ∈ RSLn(B) as well, so the third axiom is satisfied.

4. Suppose that (A,B,C) ∈ RSLn(B) for some A,B,C ∈ SLn(B). Then for all i, j = 1, ..., n,∑
k,l=1,...,n

ai,kbk,lcl,j − δi,j ∈ NB ,∑
k,l=1,...,n

bi,kck,lal,j − δi,j ∈ NB and

∑
k,l=1,...,n

ci,kak,lbl,j − δi,j ∈ NB .

These sums also imply that (C,A,B) ∈ RSLn(B). Therefore the final axiom holds.

Since all axioms are satisfied, (SLn(B), In, R) is indeed a crowd. □

For fields F , the general linear group GLn(F ) contains all n by n matrices whose determinant is
invertible. An equivalent definition is stated in [2, Example I.1.6]:
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Definition 2.4. The general linear group over a field F of dimension n is

GLn(F ) =
{
A ∈Mn+1×n+1(F ) | A = [a11, a12, ..., ann, D

−1], where D = det(A)
}

= {A ∈ SLn+1(F ) | ∀i = 1, ...., n, ai,n+1 = an+1,i = 0} .

This definition allows us to define the general linear group over bands.

Definition 2.5. LetB be a band. Then the general linear group overB is the crowd (GLn(B), In+1, RGLn(B)),
where the set is given by

GLn(B) = {A ∈ SLn+1(B)|∀i = 1, ...., n, ai,n+1 = an+1,i = 0} ,

and crowd law is given by

RGLn(B) =

{(
A(1), A(2), A(3)

)
∈ GLn(B)3

∣∣∣∣∣ ∀σ ∈ A3,∀i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1 a

(σ(1))
i,k a

(σ(2))
k,l a

(σ(3))
l,j − δi,j ∈ NB

}
.

Theorem 2.6. Let B be a band. Then the triple (GLn(B), In+1, RGLn(B)) is a crowd. Furthermore,
it is a full subcrowd of the crowd SLn+1(B).

Proof: It follows from Definition 2.5 that In+1 ∈ GLn(B) and that GLn(B) ⊂ SLn+1(B). Fur-
thermore, for all A,C,D ∈ M(n+1)×(n+1)(B), we have that (A,C,D) ∈ RGLn(B) if and only if

(A,C,D) ∈ GLn(B)3 and for all i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

ai,kck,ldl,j − δi,j ∈ NB ,∑
k,l=1,...,n+1

ci,kdk,lal,j − δi,j ∈ NB and

∑
k,l=1,...,n+1

di,kak,lcl,j − δi,j ∈ NB .

Since (A,C,D) ∈ GLn(B)3 ⊂ SLn+1(B)3, these sums hold if and only if (A,C,D) ∈ RSLn+1(B).

Therefore RGLn(B) = RSLn+1(B)∩GLn(B)3, In+1 ∈ GLn(B) and GLn(B) ⊂ SLn+1(B), so it follows
from Lemma 1.18 that GLn(B) is a crowd and a full subcrowd of SLn+1(B). □

In Section 1, the bands of the Krasner hyperfield, sign hyperfield and regular partial field were given.
We can study their special linear and general linear groups:

Example 2.7 (The Krasner hyperfield). Since in K, −1 = 1, the special linear group has the set

SLn(K) = {A ∈Mn×n(B)| det(A) + 1 ∈ NK} .

Since NK = {m · 1 |m ∈ N and m ̸= 1}, it follows that A ∈ SLn(K) if and only if det(A) ̸= 0 · 1.
Therefore, we can rewrite the set as follows:

SLn(K) = {A ∈Mn×n(B)| det(A) ̸= 0 · 1} .

For example, SL1(K) = {[1]} and, as Maxson shows in [9, Chapter 3.3],

SL2(K) =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 1

]
,

[
1 1
1 1

]}
.

To find GLn(K), note that GLn(K) ⊂ SLn+1(K). Therefore, for all A ∈ GLn(K), it follows that
det(A) ̸= 0 · 1. This implies an+1,n+1 ̸= 0, meaning

GLn(K) =
{
A ∈ SLn+1(K) | A =

[
A11 0
0 1

]
for some A11 ∈ SLn(K)

}
.
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In Section 3, we see that this observation leads to a crowd isomorphism between GLn(K) and SLn(K)
(see Theorem 3.4). With this map, we can find all matrices in GLn(K). For example, when n = 1 the
set is given by GL1(K) =

[
1 0
0 1

]
and when n = 2, we find the set

GL2(K) =


1 0 0
0 1 0
0 0 1

 ,
0 1 0
1 0 0
0 0 1

 ,
1 1 0
1 0 0
0 0 1

 ,
1 1 0
0 1 0
0 0 1

 ,
1 0 0
1 1 0
0 0 1

 ,
0 1 0
1 1 0
0 0 1

 ,
1 1 0
1 1 0
0 0 1

 .

Both in SLn(K) and GLn(K), all elements have nonempty inverses. Maxson shows this in [9, Chapter
3.2] for SLn(K), and since SLn(K) ∼= GLn(K) (Theorem 3.4), it follows from Theorem 1.16 that the
same must hold GLn(K). Maxson also shows that, for all A ∈ SL2(K),

A−1 =

{[
a22 a12
a21 a11

]}
.

Similarly, for all A ∈ GL2(K),

A−1 =


a11 a12 0
a21 a22 0
0 0 1

 .

Thus for n = 2, in both linear groups all elements have singeleton inverse sets.

Example 2.8 (The sign hyperfield). For the sign hyperfield, the crowds SLn(S) and GLn(S) are not
isomorphic. When n = 1, the special linear group is a singleton set, SL1(S) = {[1]}, while GL1(S)
contains 2 elements: GL1{S) =

{[
1 0
0 1

]
,
[−1 0

0 −1

]}
. When n = 2, the special linear crowd contains 32

matrices and the general linear crowd 64. We can find these matrices by looking at all the possible
determinants. If A ∈ M2×2(S), then det(A) = ad− bc for some a, b, c, d ∈ S. Thus ad, bc ∈ {0, 1,−1},
which implies

det(A) ∈ {0− 0, 0− 1, 0− (−1), 1− 0, 1− 1, 1− (−1), (−1)− 0, (−1)− 1, (−1)− (−1)}
= {0 · 1 + 0 · (−1), 0 · 1 + 1 · (−1), 1 · 1 + 0 · (−1), 1 · 1 + 1 · (−1), 2 · 1 + 0 · (−1), 0 · 1 + 2 · (−1)}.

Since A ∈ SL2(S) if and only if det(A) − 1 ∈ NS = {p · 1 +m · (−1)|p = m = 0 or p,m ∈ N≥0}, it
follows that A ∈ SL2(S) if and only if

det(A) ∈ {1 · 1 + 0 · (−1), 2 · 1 + 0 · (−1), 1 · 1 + 1 · (−1)}.

Therefore the set of the special linear group for n = 2 is given by

SL2(S) = {A ∈M2×2(S) | det(A) ∈ {1 · 1 + 0 · (−1), 2 · 1 + 0 · (−1), 1 · 1 + 1 · (−1)}}.

To find GL2(S), note that all A ∈ GL2(S) are of the form A =
[
A11 0
0 ±1

]
for some A11 ∈ M2×2(S).

If a33 = 1, then A ∈ GL2(S) if and only if det(A) − 1 = det(A11) · 1 − 1 ∈ NS, so if and only if
A11 ∈ SL2(S). If a33 = −1 however, then det(A) = −det(A11), so det(A) − 1 ∈ NS if and only if
−det(A11) ∈ {1·1+0·(−1), 2·1+0·(−1), 1·1+1·(−1)}. Note that the only if det(A11) = 0·1+0·(−1),
is it impossible for A to be in GL2(K). Therefore

GL2(S) = {A =
[
A11 0
0 ±1

]
∈ SL3(S) |det(A) ̸= 0 · 1 + 0 · (−1)}.

In fact, we can generalize these observations to general n.

Theorem 2.9. Let A ∈Mn×n(S). Then the determinant of A is of the form p · 1+m · (−1) for some
p,m ∈ N. Furthermore, A ∈ SLn(S) if and only if and p > 0.

Proof: Let A ∈ Mn×n(S) be arbitrary. Then det(A) =
∑
σ∈Sn

sign(σ)
∏
k=1,...,n ak,σ(k), where

ak,σ(k) ∈ {0, 1,−1} for all k = 1, ..., n and σ ∈ Sn. Therefore sign(σ)
∏
k=1,..,n ak,σ(k) ∈ {0, 1,−1}
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for all σ ∈ Sn, so the determinant of A is always a linear combination of 0, 1 and −1. It follows that
det(A) = p · 1 +m · (−1), for some p,m ∈ N. Furthermore,

A ∈ SLn(S) ⇐⇒ det(A)− 1 ∈ NS ⇐⇒ p · 1 +m · (−1)− 1 = p · 1 + (m+ 1) · (−1) ∈ NS.

Since m ∈ N, m + 1 > 0. Therefore p · 1 + (m + 1) · (−1) ∈ NS if and only if p > 0. Since A was
chosen arbitrarily, we have that for all A ∈Mn×n(S), det(A) = p · 1 +m · (−1) for some p,m ∈ N and
A ∈ SLn(S) if and only if and p > 0. □.

Theorem 2.10. Suppose A ∈ M(n+1)×(n+1)(S). Then A ∈ GLn(S) if and only if A is of the form[
A11 0
0 δ

]
, where δ = 1 or δ = −1 and A11 ∈ Mn×n(S) such that det(A11) = p · 1 +m · (−1) for some

p,m ∈ N such that p > 0 or m > 0.

Proof: Take an arbitrary A ∈M(n+1)×(n+1)(S). By definition, A ∈ GLn(S) if and only if A is of the

form
[
A11 0
0 δ

]
and det(A)− 1 ∈ NS. If δ = 0, then det(A)− 1 = 0− 1 /∈ NS, so δ must be equal to ±1.

Furthermore, if follows from Theorem 2.9 that det(A11) = p ·1+m · (−1) for some p,m ∈ N. Therefore

det(A)− 1 ∈ NS ⇐⇒ 1 · (p · 1 +m · (−1))− 1 ∈ NS or (−1) · (p · 1 +m · (−1))− 1 ∈ NS

⇐⇒ p · 1 + (m+ 1) · (−1) ∈ NS or m · 1 + (p+ 1) · (−1) ∈ NS

⇐⇒ p > 0 or m > 0.

Therefore A ∈ GLn(S) if and only if A is of the form
[
A11 0
0 ±1

]
, where det(A11) = p · 1 +m · (−1) for

some p,m ∈ N such that p > 0 or m > 0. □

Example 2.11 (The sign hyperfield (continued)). Similar to the linear groups taken over K, the elements
of SL2(S) and GL2(S) all have nonempty inverses, since for A ∈ SL2(S) and B ∈ GL2(S), we have
that [

a22 −a12
−a21 a11

]
∈ A−1 and b22 −b12 0

−b21 b11 0
0 0 b33

 ∈ B−1.

However, the inverses are not necessarily singletons. For example, in SL2(S),[
1 1
1 1

]−1

=

{[
1 1
1 1

]
,

[
−1 1
1 −1

]
,

[
1 −1
−1 1

]}
,

and in GL2(S), −1 1 0
1 −1 0
0 0 −1

−1

=


1 1 0
1 1 0
0 0 −1

 ,
−1 −1 0
−1 −1 0
0 0 −1

 .

The band of the regular partial field F±
1 is very similar to S, except the null set is smaller. We see this

reflected in the similar but stricter conditions for the matrices in the sets SLn(F±
1 ) and GLn(F±

1 ).

Theorem 2.12. Let A ∈ Mn×n(F±
1 ). Then there exist p,m ∈ N such that det(A) = p · 1 +m · (−1).

Furthermore, A ∈ SLn(F±
1 ) if and only if p = m+ 1.

Proof: Let A ∈Mn×n(F±
1 ). Since all coefficients of A are in {0, 1,−1}, it follows that the determinant

of A is a linear combination of 0, 1 and −1 (just like in the proof of Theorem 2.9). Thus there exist
p,m ∈ N such that det(A) = p · 1 +m · (−1). Furthermore,

A ∈ SLn(F±
1 ) ⇐⇒ det(A)− 1 ∈ NF±

1

⇐⇒ p · 1 + (m+ 1) · (−1)− 1 ∈ NF±
1
,

which holds if and only if p = m+ 1. □
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Theorem 2.13. Let A ∈ M(n+1)×(n+1)(F±
1 ). Then A ∈ GLn(F±

1 ) if and only if A is of the form[
A11 0
0 δ

]
, where δ = 1 or δ = −1 and A11 ∈Mn×n(F±

1 ) such that det(A11) = p · 1 +m · (−1) for some
p,m ∈ N such that p = m+ 1 or m = p+ 1.

Proof: Let A ∈ M(n+1)×(n+1)(F±
1 ). Then by definition, A ∈ GLn(F±

1 ) if and only if A =
[
A11 0
0 δ

]
for some δ ∈ F±

1 and A11 ∈ Mn×n(F±
1 ) such that det(A) − 1 ∈ NF±

1
. Note that if δ = 0, then

det(A)− 1 = 0− 1 /∈ NF±
1
, so δ = ±1. Suppose, p,m ∈ N such that det(A11) = p · 1 +m · (−1). Then

det(A)− 1 ∈ NF±
1

⇐⇒ 1 · (p · 1 +m · (−1))− 1 ∈ NF±
1
or (−1) · (p · 1 +m · (−1)) ∈ NF±

1

⇐⇒ p · 1 + (m+ 1) · (−1) ∈ NF±
1
or m · 1 + (p+ 1) · (−1) ∈ NF±

1
,

which holds if and only if p = m+ 1 or m = p+ 1. □

Example 2.14 (The regular partial field). Using Theorems 2.12 and 2.13, we can find the crowds
SLn(F±

1 ) and GLn(F±
1 ). In particular, SL1(F±

1 ) = {[1]} and GL1(F±
1 ) =

{[
1 0
0 1

]
,
[−1 0

0 −1

]}
. Further-

more,

SL2(F±
1 ) = {A ∈M2×2(F±

1 ) | det(A) ∈ 1 · 1 + 0 · (−1)}

GL2(F±
1 ) = {A ∈ SL3(F±

1 ) | A =
[
A11 0
0 ±1

]
and det(A11) ∈ {1 · 1 + 0 · (−1), 0 · 1 + 1 · (−1)}},

where SL2(F±
1 ) contains 20 matrices and GL2(F±

1 ) contains 40. Unlike in SL2(S) and GL2(S), inverse
sets in SL2(F±

1 ) and GL2(F±
1 ) are singleton sets, and for A ∈ SL2(F±

1 ) and B ∈ GL2(F±
1 ) we have

that

A−1 =

{[
a22 −a12
−a21 a11

]}
and

B−1 =


 b22 −b12 0
−b21 b11 0
0 0 b33

 .

For a general band B, it can be difficult to find the entire crowd law of its special or general lin-
ear group. However, for some triples we can easily show that they cannot be in RGLn(B). If([

A11 0
0 δA

]
,
[
C11 0
0 δC

]
,
[
D11 0
0 δD

])
∈ RGLn(B), then δA · δC · δD − 1 ∈ NB , δD · δA · δC − 1 ∈ NB

and δC · δD · δA− 1 ∈ NB . Because in bands all additive inverses are unique, this implies the products

are equal to 1. In particular, if
[
A11 0
0 δA

]
∈
[
C11 0
0 δC

]−1
, then δA is the multiplicative inverse of δC .

Example 2.15. In GLn(S) and GLn(F±
1 ),

([
A11 0
0 δA

]
,
[
B11 0
0 δB

]
,
[
C11 0
0 δC

])
is in the crowd law if and

only if δA = δB = δC = 1, δA = 1 and δB = δC = −1 , δB = 1 and δA = δC = −1 or δC = 1 and

δA = δB = −1. Furthermore,
[
A11 0
0 δA

]
∈
[
B11 0
0 δB

]−1
if and only if δA = δB .

2.2 Symplectic crowd

Suppose F is a field and let Ω =
[

0 In
−In 0

]
. Then the group of symplectic group over F , denoted as

Sp2n(F ), is defined to be the group of all matrices in M ∈ M2n×2n(F ) such that MTΩM = Ω. It
can be proven that this is a subgroup of SL2n(F ) ([5, Definition 1.1]). When we take this group over
a band B, the group structure fails again, similarly to how it did for the special and general linear
group. Therefore we define it to be a crowd instead, with the same crowd law as for the linear groups.
It is uncertain if this condition implies Sp2n(B) ⊂ SL2n(B), as it does when these groups are taken
over fields. Since we want the definition to correspond nicely to the symplectic group over a field, we
immediately define Sp2n(B) to be a subset of SL2n(B).
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Definition 2.16. The symplectic group of a band B is the crowd (Sp2n(B), I2n, RSp2n(B)), where the
set is given by

Sp2n(B) =

M ∈ SL2n(B) | ∀i, j = 1, ..., 2n,
∑

k,l=1,...,2n

mk,iωk,lml,j − ωi,j ∈ NB

 ,

for

Ω = (ωi,j) =

[
0 In

−In 0

]
,

and the crowd law is given by

R =

(
M (1),M (2),M (3)

)
∈ Sp2n(B)3 | ∀σ ∈ An,∀i, j = 1, ..., 2n,

∑
k,l=1,..,2n

m
(σ(1))
i,k m

(σ(2))
k,l m

(σ(3))
l,j − δij ∈ NB

 .

Theorem 2.17. The triple (Sp2n(B), I2n, RSp2n(B)) is a full subcrowd of SL2n(B).

Proof: Per definition, I2n ∈ Sp2n(B) ⊂ SL2n(B). Furthermore, (A,C,D) ∈ RSp2n(B) if and only if

(A,C,D) ∈ Sp2n(B)3 and for all i, j = 1, ...., 2n,∑
k,l=1,....,2n

ai,kck,ldl,j − δi,j ∈ NB ,
∑

k,l=1,....,2n

di,kak,lcl,j − δi,j ∈ NB and
∑

k,l=1,....,2n

ci,kdk,lal,j − δi,j ∈ NB ,

which holds if and only if (A,C,D) ∈ RSL2n(B). It follows that RSp2n(B) = RSL2n(B) ∩Sp2n(B)3 and
since I2n ∈ Sp2n(B) ⊂ SL2n(B), Lemma 1.18 implies that Sp2n(B) is a full subcrowd of SL2n(B). □

Theorem 2.18. Let B be a band. Then Sp2(B) = SL2(B).

Proof: Let B be a band, then Sp2(B) is a full subcrowd of SL2(B), as is proven in Theorem 2.17.
Let M =

[
a b
c d

]
∈ SL2(B) be arbitrary. Then det(M)− 1 = ad− bc− 1 ∈ NB , so∑

k,l=1,2

mk,1ωk,lml,1 − ω1,1 = ac− ca− 0 ∈ NB ,∑
k,l=1,2

mk,2ωk,lml,2 − ωi,j = ad− cb− 1 ∈ NB ,∑
k,l=1,2

mk,2ωk,lml,1 − ωi,j = bc− da+ 1 ∈ NB and

∑
k,l=1,2

mk,2ωk,lml,2 − ωi,j = bd− db− 0 ∈ NB .

Therefore M ∈ Sp2(B) as well, and since M was taken arbitrarily, this implies that the set of Sp2(B)
is equivalent to the set of SL2(B). Since Sp2(B) is a full subcrowd of SL2(B), we can conclude that
the crowds are equivalent. □

Example 2.19. It follows from Theorem 2.17 that Sp2n(K), Sp2n(S), Sp2n(F±
1 ) are crowds. For n = 1,

we can use Theorem 2.18 to find that

Sp2(K) =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 1

]
,

[
1 1
1 1

]}
,

Sp2(S) = {A ∈M2×2(S)|det(A) ∈ {1 · 1 + 0 · (−1), 2 · 1 + 0 · (−1), 1 · 1 + 1 · (−1)}} and

Sp2(F±
1 ) = {A ∈M2×2(F±

1 ) | det(A) ∈ 1 · 1 + 0 · (−1)}.

13



3 Comparison maps

In this section, we study the relationship between the special linear group and the general linear group
over a band B. In particular, we look into this relation for the Krasner hyperfield and the sign hyper-
field, where we find that SLn(K) is in fact isomorphic to GLn(K). Additionally, every element and
triple SLn(S) and its crowd law is connected to an element or triple in GLn(S) and its crowd law. In
the third subsection, we compare the special and general linear groups over F±

1 , K and S with each
other.

Theorem 3.1. Let B be a band. Then the map φ : SLn(B) → GLn(B), A 7→
[
A 0
0 1

]
, is an injective,

full crowd morphism.

Proof: We start the proof by showing φ is well-defined and satisfies the axioms of full crowd morphisms.
We follow this by showing φ is injective as well.
For all A ∈ SLn(B), we have that

det(φ(A))− 1 = det(A) · 1− 1 = det(A)− 1 ∈ NB .

Therefore φ(A) ∈ SLn+1(B). Furthermore, φ(a)i,n+1 = φ(a)n+1,i = 0 for all i = 1, ..., n, so we can
conclude that φ(A) ∈ GLn(B), and therefore that φ is well-defined. Additionally,

φ(In) = In+1,

which means φ satisfies the first crowd morphism axiom.
Thus φ is a full crowd morphism if for all A,C,D ∈ SLn(B), (φ(A), φ(C), φ(D)) ∈ RGLn(B) if and
only if (A,C,D) ∈ RSLn(B). So let A,C,D ∈ SLn(B) be arbitrary. Then
(φ(A), φ(C), φ(D)) ∈ RGLn(B) if and only if for all i, j = 1, ..., n+ 1,∑

k,l=1,...,n

φ(a)i,kφ(c)k,lφ(d)l,j − δi,j ∈ NB , (1)

∑
k,l=1,...,n

φ(c)i,kφ(d)k,lφ(a)l,j − δi,j ∈ NB and (2)

∑
k,l=1,...,n

φ(d)i,kφ(a)k,lφ(c)l,j − δi,j ∈ NB . (3)

When looking at condition (1), note that, for all i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

φ(a)i,kφ(c)k,lφ(d)l,j − δi,j =
∑

k,l=1,..,n

φ(a)i,kφ(c)k,lφ(d)l,j +
∑

k=1,...,n

φ(a)i,kφ(c)k,n+1φ(d)n+1,j

+
∑

l=1,...,n

φ(a)i,n+1φ(c)n+1,lφ(d)l,j + φ(a)i,n+1φ(c)n+1,n+1φ(d)n+1,j − δi,j

=
∑

k,l=1,..,n

ai,kck,ldl,j + φ(a)i,n+1φ(c)n+1,n+1φ(d)n+1,j − δi,j .

Therefore, if i = n+ 1, j = 1, ..., n or i = 1, ..., n, j = n+ 1, then∑
k,l=1,...,n+1

φ(a)i,kφ(c)k,lφ(d)l,j − δi,j = 0 + 0− 0 ∈ NB ,

and if i = j = n+ 1, then∑
k,l=1,...,n+1

φ(a)i,kφ(c)k,lφ(d)l,j − δi,j = 0 + 1 · 1 · 1− 1 ∈ NB ,
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so condition (1) is satisfied whenever i = n + 1 or j = n + 1, independent on the choice for A,C and
D. However, if i, j = 1, ..., n, then∑

k,l=1,...,n+1

φ(a)i,kφ(c)k,lφ(d)l,j − δi,j =
∑

k,l=1,..,n

ai,kck,ldl,j + 0− δi,j .

So, the condition is satisfied if and only if for all i, j = 1, ..., n,∑
k,l=1,..,n

ai,kck,ldl,j − δi,j ∈ NB .

Similarly, condition (2) and (3) are satisfied if and only if, for all i, j = 1, ..., n,∑
k,l=1,..,n

ci,kdk,lal,j − δi,j ∈ NB∑
k,l=1,..,n

di,kak,lcl,j − δi,j ∈ NB

Therefore (φ(A), φ(C), φ(D)) ∈ RGLn(B) if and only if (A,C,D) ∈ RSLn(B), which implies φ is a full

crowd morphism. Finally, note that for all A,C ∈ SLn(B), φ(A) = φ(C) if and only if
[
A 0
0 1

]
=

[
C 0
0 1

]
,

which holds if and only if A = C. Therefore φ : SLn(B) → GLn(B) is an injective, full crowd
morphism. □

Notation. In the rest of this thesis, φ will always denote the map φ : SLn(B) → GLn(B), A 7→
[
A 0
0 1

]
,

either for a general band B or for a particular band if specified.

The existence of an injective, full crowd morphism from SLn(B) to GLn(B) implies that SLn(B) is
isomorphic to a full subcrowd of GLn(B).

Definition 3.2. Let B be a band. Then we define the subcrowd GL∗
n(B) of GLn(B) as

GL∗
n(B) =

{
A ∈ GLn(B) | A =

[
A11 0
0 1

]
for some A11 ∈Mn×n(B)

}
,

with unit element In+1 and crowd law

RGL∗
n(B) =

{(
A(1), A(2), A(3)

)
∈ GL∗

n(B)3

∣∣∣∣∣ ∀σ ∈ A3,∀i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1 a

(σ(1))
i,k a

(σ(2))
k,l a

(σ(3))
l,j − δi,j ∈ NB

}
.

Theorem 3.3. Let B be a band. Then GL∗
n(B) is a crowd. Furthermore, it is a full subcrowd of

GLn(B), and GL∗
n(B) ∼= SLn(B).

Proof: It follows from the definition of GL∗
n(B) that In+1 ∈ GL∗

n(B), GL∗
n(B) ⊂ GLn(B). Further-

more, it follows from the similarity of the crowd laws that RGL∗
n(B) = RGLn(B)∩GL∗

n(B)3. Therefore
Lemma 1.18 implies that GL∗

n(B) is not only a crowd, but a full subcrowd of GLn(B).
To proof that GL∗

n(B) ∼= SLn(B), note that im(φ) ⊂ GL∗
n(B) and φ(RSLn(B)) ⊂ RGL∗

n(B). This
implies the map φ∗ : SLn(B) → GL∗

n(B), A 7→ φ(A) is well-defined and an injective, full crowd mor-
phism as well. let A ∈ GL∗

n(B) be arbitrary. Then A is of the form
[
A11 0
0 1

]
, where A11 is a n by n

matrix. This implies

det(A)− 1 ∈ NB ⇐⇒ det(A11) · 1− 1 = det(A11)− 1 ∈ NB .

Therefore A11 ∈ SLn(B) and φ∗(A11) = A, so A ∈ im(φ). Since A was taken arbitrarily, it fol-
lows that φ∗ is bijective, full crowd morphism. Therefore the inverse of φ∗ is well defined, and
((φ∗)−1(A), (φ∗)−1(C), (φ∗)−1(D)) ∈ RSLn(B) whenever (A,C,D) ∈ RGL∗

n(B), which means (φ∗)−1

is a crowd morphism. Therefore φ∗ is a crowd isomorphism, so SLn(B) ∼= GL∗
n(B). □

The crowd morphism φ leads to interesting results. For example, it follows from Theorem 3.3 and
Theorem 2.18, which states Sp2(B) = SL2(B), that Sp2(B) ∼= GL∗

2(B). In the following subsections,
we study this morphism for the bands K and S.
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3.1 The Krasner Hyperfield

When B is the Krasner hyperfield, the crowd morphism φ becomes a crowd isomorphism.

Theorem 3.4. The crowd SLn(K) is isomorphic to the crowd GLn(K)

Proof: As was noted in Example 2.7, if A ∈ GLn(K), then A is of the form
[
A11 0
0 1

]
, where

A11 ∈ SLn(K). ThereforeGLn(K) = GL∗
n(K), so it follows from Theorem 3.3 thatGLn(K) ∼= SLn(K).

□

Maxson found in his thesis ([9, Chapter 3]) many results for SLn(K). Using Theorem 1.16 and the
crowd isomorphism φ : SLn(K) → GLn(K), one can proof these also hold for GLn(K). For example,
take proposition 3.5:

Proposition 3.4.1. Let A,B ∈ SLn(K) , then the following are equivalent.

1. B ∈ A−1.

2. A ∈ B−1.

3. δi,j ∈
∑⊞
k=1,...,n ai,kbk,j and δi,j ∈

∑⊞
k=1,...,n bi,kak,j .

Here ⊞ stands for the Krasner hyperaddition, where 0⊞ 0 = {0}, 0 ⊞ 1 = 1⊞ 0 = {1}, 1⊞ 1 = {0, 1}
and if A ⊂ K, b ∈ K, then A ⊞ b =

⋃
a∈A a ⊞ b ([3, Definition 2.2]). This proposition also holds for

GLn(K):

Proposition 3.4.2. Let A,B ∈ GLn(K), then following statements are equivalent:

1. B ∈ A−1.

2. A ∈ B−1.

3. δi,j ∈
∑⊞
k=1,...,n+1 ai,kbk,j and δi,j ∈

∑⊞
k=1,...,n+1 bi,kak,j for all i, j = 1, ..., n+ 1.

Proof: We proof that (1) is equivalent to (2), and (2) is equivalent to (3).
(1 ⇐⇒ 2) : For all A,B ∈ GLn(K), we have that

B ∈ A−1 ⇐⇒ φ−1(B) ∈ (φ−1(A))−1

⇐⇒ φ−1(A) ∈ (φ−1(B))−1 ⇐⇒ A ∈ B−1,

where the first and third equivalence follow from Theorem 1.16 and the second equivalence follows
from Proposition 3.4.1. Therefore B ∈ A−1 if and only if A ∈ B−1.
(2 ⇐⇒ 3) : Let A,B ∈ GLn(K) be arbitrary and take C,D ∈ SLn(K) such that φ(C) = A and
φ(D) = B. Then it follows from Proposition 3.4.1 that

A ∈ B−1 ⇐⇒ C ∈ D−1

⇐⇒ ∀i, j = 1, ...., n, δi,j ∈
⊞∑

k=1,...,n

ci,kdk,j and δi,j ∈
⊞∑

l=1,...,n

di,lcl,j

⇐⇒ ∀i, j = 1, ...., n, δi,j ∈
⊞∑

k=1,...,n

ai,kbk,j and δi,j ∈
⊞∑

l=1,...,n

bi,lal,j ,

where the third equivalence holds because φ(C) = A and φ(D) = B, so it must hold that ci,j = ai,j
and di,j = bi,j for all i, j = 1, ..., n. Furthermore, adding 0 does not change the outcome of a hypersum,
which implies

A ∈ B−1 ⇐⇒ ∀i, j = 1, ...., n, δi,j ∈
⊞∑

k=1,...,n+1

ai,kbk,j and δi,j ∈
⊞∑

l=1,...,n+1

bi,lal,j .
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Additionally, note that for i = n+ 1, j = 1, ..., n and i = 1, .., n, j = n+ 1 we have that

⊞∑
k=1,..,n+1

ai,kbk,j =

⊞∑
k=1,..,n+1

bi,kak,j =

⊞∑
k=1,...,n+1

0 = {0},

and when i = j = n+ 1,

⊞∑
k=1,..,n+1

ai,kbk,j =

⊞∑
k=1,..,n+1

bi,kak,j =

 ⊞∑
k=1,...,n

0

⊞ (1 · 1) = {1}.

Therefore, if i = n+ 1 or j = n+ 1, it always holds that

δi,j ∈
⊞∑

k=1,...,n+1

ai,kbk,j and δi,j ∈
⊞∑

k=1,...,n+1

bi,kak,j .

It follows that

A ∈ B−1 ⇐⇒ ∀i, j = 1, ...., n+ 1, δi,j ∈
⊞∑

k=1,...,n+1

ai,kbk,j and δi,j ∈
⊞∑

l=1,...,n

bi,lal,j .

Therefore (2) is equivalent to (3). □

Statement (3) can be rewritten such that the Krasner hyperaddition is replaced by the null set NK.

Corollary 3.4.1. Let ai ∈ K, where i = 1, .., n for some n ∈ N. Then

1. 0 ∈
∑⊞
i=1,...,n ai if and only if

∑
i=1,...,n ai − 0 ∈ NK and

2. 1 ∈
∑⊞
i=1,...,n ai if and only if

∑
i=1,...,n ai − 1 ∈ NK.

Proof of 1: Note that∑
i=1,...,n

ai − 0 ∈ NK ⇐⇒
∑

i=1,...,n

ai = 0 or
∑

i=1,...,n

ai ≥ 2,

which holds if and only if ai = 0 for all i = 1, ..., n or there are at least two distinct i, j ∈ {1, ..., n}
such that ai = aj = 1. If the latter is true, then

∑⊞
i=1,...,n ai = {0, 1}. Therefore, it follows that

∑
i=1,...,n

ai − 0 ∈ NK ⇐⇒
⊞∑

i=1,...,n

ai = {0} or

⊞∑
i=1,...,n

ai = {0, 1}

⇐⇒ 0 ∈
⊞∑

i=1,...,n

ai,

where the second equivalence holds because a hypersum is equal to {0}, {1} or {0, 1}. Therefore

0 ∈
∑⊞
i=1,...,n ai if and only if

∑
i=1,...,n ai − 0 ∈ NK.

Proof of 2: Similarly, ∑
i=1,...,n

ai − 1 ∈ NK ⇐⇒
∑

i=1,...,n

ai ≥ 1,

which holds if and only if there is at least one i ∈ {1, .., n} such that ai = 1. This holds if and

only if
∑⊞
i=1,...,n ai = {1} or

∑⊞
i=1,...,n ai = {0, 1}, so if and only if 1 ∈

∑⊞
i=1,...,n ai. Therefore

1 ∈
∑⊞
i=1,...,n ai if and only if

∑
i=1,...,n ai − 1 ∈ NK. □
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3.2 The sign hyperfield

The special linear group over the sign hyperfield is not isomorphic to the general linear group. However,
we can describe all elements in GLn(S) and its crowd law, using the crowd SLn(S). To do this, we
need the following notation.

Notation. Suppose A ∈Mn×n(B) for some band B. Then:

• A−(i,0) is obtained by multiplying the ith row in A by −1;

• A−(0,j) is obtained by multiplying the jth column in A by −1;

• Âi,j is obtained by exchanging the ith row in A with the jth row. So âi,jj,k = ai,k and âi,ji,l = aj,l;

• Ȧi,j is obtained by exchanging the ith column in A with the jth column. So ȧi,jk,j = ak,i and

ȧi,jl,i = al,j .

Furthermore, in this subsection, φ : SLn(S) → GLn(S).

Theorem 3.5. Let A ∈Mn×n(S), then the following statements are equivalent:

1. A ∈ SLn(S);

2. For all i = 1, ..., n
[
A−(i,0) 0

0 −1

]
∈ GLn(S);

3. For all j = 1, ..., n
[
A−(0,j) 0

0 −1

]
∈ GLn(S);

4. For all i, j = 1, ..., n,
[
Âij 0
0 −1

]
∈ GLn(S);

5. For all i, j = 1, ..., n,
[
Ȧij 0
0 −1

]
∈ GLn(S);

Proof: Let A ∈ Mn×n(S) be arbitrary. Note that
[
A−(i,0) 0

0 −1

]
,
[
A−(0,j) 0

0 −1

]
,
[
Âij 0
0 −1

]
,
[
Ȧij 0
0 −1

]
have the right form to be in GLn(S). Therefore we can proof the theorem by showing that they are
in SLn+1(S) if and only if A ∈ SLn(S). When looking at their determinant, we find that, for all
i, j = 1, ..., n,

det(Âi,j) =
∑
σ∈Sn

sign(σ)
∏

k=1,...,n

âi,j
k,σ(k)

=
∑
σ∈Sn

sign(σ) · âi,j
j,σ(j)

· âi,j
i,σ(i)

·
∏

k∈{1,...,n}−{i,j}
âi,j
k,σ(k)

=
∑
σ∈Sn

sign(σ) · ai,σ(j) · aj,σ(i) ·
∏

k∈{1,...,n}−{i,j}
ak,σ(k).

Let σ′ be the permutation such that σ′(i) = σ(j), σ′(j) = σ(i) and σ′(k) = σ(k) for all k ̸= i, j. Since
σ′ is σ with one extra permutation, sign(σ) = −sign(σ′). Therefore, for all i, j = 1, ..., n,

det(Âi,j) =
∑
σ′∈Sn

(−1) · sign(σ′) · ai,σ′(i) · aj,σ′(j) ·
∏

k∈{1,...,n}−{i,j}
ak,σ′(k)

= (−1) ·
∑
σ′∈Sn

sign(σ′)
∏

k∈{1,...,n}
ak,σ′(k)

= −det(A).

Using a similar argument, we find that for all i, j = 1, ..., n,

det(Ȧi,j) = −det(A).
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Similarly, for all i, j = 1, ..., n,

det(A−(i,0)) =
∑
σ∈Sn

sign(σ)(−ai,σ(i)) ·
∏

k=1,..,̂i,..n

(ak,σ(k)) = (−1) ·
∑
σ∈Sn

sign(σ)
∏

k=1,...,n

ak,σ(k) = −det(A),

det(A−(0,j)) =
∑
σ∈Sn

sign(σ)(−al,σ(l)) ·
∏

k=1,..,l̂,..n

(ak,σ(k)), where l ∈ {1, ..., n} such that σ(l) = j,

= (−1) ·
∑
σ∈Sn

sign(σ)
∏

k=1,...,n

ak,σ(k) = −det(A).

Therefore, for all i, j = 1, ..., n

A ∈ SLn(S) ⇐⇒ det(A)− 1 ∈ NS

⇐⇒ − det(A) · (−1)− 1 ∈ NS

⇐⇒ det
([

A(i,0) 0
0 −1

])
− 1 ∈ NS, det

([
A(0,j) 0

0 −1

])
− 1 ∈ NS, det

([
Âij 0
0 −1

])
− 1 ∈ NS and

det
([

Ȧij 0
0 −1

])
− 1 ∈ NS

⇐⇒
[
A(i,0) 0

0 −1

]
,
[
A(i,0) 0

0 −1

]
,
[
Âij 0
0 −1

]
,
[
Ȧij 0
0 −1

]
∈ GLn(S).

Therefore statement (1) is equivalent to statement (2), (3), and (4). □

This theorem allows us to find the set GLn(S) using the set SLn(S), and the other way around.
The same result holds for their crowd laws.

Theorem 3.6. Let A,B,C ∈ Mn×n(S), then (A,B,C) ∈ RSLn(S) if and only if, for all s = 1, ..., n,([
A−(0,s) 0

0 −1

]
,
[
B−(s,0) 0

0 −1

]
,
[
C 0
0 1

])
∈ RGLn(S).

Proof: Let A,B,C ∈Mn×n(S) be arbitrary. Then it follows from Theorem 3.5 that A,B,C ∈ SLn(S)
if and only if, for all s = 1, ..., n,

[
A−(0,s) 0

0 −1

]
,
[
B−(s,0) 0

0 −1

]
,
[
C 0
0 a1

]
∈ GLn(S). Furthermore, since

φ is a full crowd isomorphism, (A,B,C) ∈ RGLn(S) if and only if (φ(A), φ(B), φ(C)) ∈ RGLn(S).
Let φ(A) = D,φ(B) = E and φ(C) = F . Then (D,E, F ) ∈ RGLn(S) so if and only if, for all
i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

di,kek,lfl,j−δi,j ∈ NS,
∑

k,l=1,...,n+1

ei,kfk,ldl,j−δi,j ∈ NS and
∑

k,l=1,...,n+1

fi,kdk,lel,j−δi,j ∈ NS.

However, for all i, j = 1, ..., n+ 1 and s = 1, ..., n,∑
k,l=1,...,n+1

di,kek,lfl,j − δi,j =
∑

k,l=1,...,n+1,k ̸=s
di,kek,lfl,j +

∑
l=1,...,n+1

di,ses,lfl,j − δi,j

=
∑

k,l=1,...,n+1,k ̸=s
di,kek,lfl,j +

∑
l=1,...,n+1

(−di,s)(−es,l)fl,j − δi,j ,∑
k,l=1,...,n+1

fi,kdk,lel,j − δi,j =
∑

k,l=1,...,n+1,l ̸=s
fi,kdk,lel,j +

∑
k=1,...,n+1

fi,kdk,ses,j − δi,j

=
∑

k,l=1,...,n+1,l ̸=s
fi,kdk,lel,j +

∑
k=1,...,n+1

fi,k(−dk,s)(−es,j)− δi,j and

∑
k,l=1,...,n+1

ei,kfk,ldl,j − δi,j =


(−1) ·

∑
k,l=1,...,n+1(−es,k)fk,ldl,j if i = s ̸= j

(−1) ·
∑
k,l=1,...,n+1 ei,kfk,l(−dl,s) if i ̸= s = j∑

k,l=1,...,n+1 ei,kfk,ldl,j − δi,j if i, j ̸= s∑
k,l=1,...,n+1(−ei,k)fk,l(−dl,j)− δi,j if i = j = s
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Recall that if x ∈ NS, then (−1) · x ∈ NS as well. Therefore, it follows that for all i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

di,kek,lfl,j − δi,j ∈ NS ⇐⇒
∑

k,l=1,...,n+1,k ̸=s
di,kek,lfl,j +

∑
l=1,...,n+1

(−di,s)(−es,l)fl,j − δi,j ∈ NS,∑
k,l=1,...,n+1

fi,kdk,lel,j − δi,j ⇐⇒
∑

k,l=1,...,n+1,l ̸=s
fi,kdk,lel,j +

∑
k=1,...,n+1

fi,k(−dk,s)(−es,j)− δi,j ∈ NS and

∑
k,l=1,...,n+1

ei,kfk,ldl,j − δi,j ∈ NS ⇐⇒


if i = s ̸= j then

∑
k,l=1,...,n+1(−es,k)fk,ldl,j ∈ NS

if i ̸= s = j then
∑
k,l=1,...,n+1 ei,kfk,l(−dl,s) ∈ NS

if i, j ̸= s then
∑
k,l=1,...,n+1 ei,kfk,ldl,j − δi,j ∈ NS

if i = j = s then
∑
k,l=1,...,n+1(−ei,k)fk,l(−dl,j) ∈ NS

Therefore (D,E, F ) ∈ RGLn(S) if and only if, for all s = 1, ..., n, (D−(0,s), E−(s,0), F ) ∈ RGLn(S). Since

D−(0,s) =
[
A−(0,s) 0

0 −1

]
and E−(s,0) =

[
B−(s,0) 0

0 −1

]
, and (A,B,C) were chosen arbitrarily, it follows

that (A,B,C) ∈ RSLn(S) if and only if
([

A−(0,s) 0
0 −1

]
,
[
B−(s,0) 0

0 −1

]
,
[
C 0
0 1

])
∈ RGLn(S). □

Corollary 3.6.1. Let A,B,C ∈Mn×n(S), then the following are equivalent:

1. (A,B,C) ∈ RSLn(S);

2. For all s = 1, ..., n,

([
A−(0,s) 0

0 −1

]
,

[
B−(s,0) 0

0 −1

]
,

[
C 0
0 1

])
∈ RGLn(S);

3. For all s = 1, ..., n,

([
A 0
0 1

]
,

[
B−(0,s) 0

0 −1

]
,

[
C−(s,0) 0

0 −1

])
∈ RGLn(S);

4. For all s = 1, ..., n,

([
A−(s,0) 0

0 −1

]
,

[
B 0
0 1

]
,

[
C−(0,s) 0

0 −1

])
∈ RGLn(S).

Proof: It follows from Theorem 3.6 that (1) is equivalent to (2). Furthermore, for all s = 1, ..., n,

(A,B,C) ∈ RSLn(S) ⇐⇒ (B,C,A) ∈ RSLn(S)

⇐⇒
([
B−(0,s) 0

0 −1

]
,

[
C−(s,0) 0

0 −1

]
,

[
A 0
0 1

])
∈ RGLn(S)

⇐⇒
([
A 0
0 1

]
,

[
B−(0,s) 0

0 −1

]
,

[
C−(s,0) 0

0 −1

])
∈ RGLn(S),

where the second equivalence follows from Theorem 3.6. Therefore (1) is equivalent to (3). One can
similarly proof that (1) is equivalent to (4), so the theorem holds. □

We know from Example 2.15 that in every triple in RGLn(S), zero or two matrices have a −1 in the
right bottom corner. It follows that we can use RSLn(S) and Corollary 3.6.1 to describe every triple in
RGLn(S). Similar results hold when we exchange rows and columns.

Theorem 3.7. Let A,B,C ∈ Mn×n(S). Then for all r, s = 1, ..., n, (A,B,C) ∈ RSLn(S) if and only

if
([

Ȧr,s 0
0 −1

]
,
[
B̂r,s 0
0 −1

]
,
[
C 0
0 1

])
∈ RGLn(S).

Proof: Suppose A,B,C ∈Mn×n(S) and fix some r, s ∈ {1, ..., n}. Then A,B ∈ SLn(S) if and only if[
Ȧr,s 0
0 −1

]
,
[
B̂r,s 0
0 −1

]
∈ GLn(S). For ease of notation, let ȧi,j be the coefficients of

[
Ȧr,s 0
0 −1

]
and b̂i,j

be the coefficients of
[
B̂r,s 0
0 −1

]
. Then

([
Ȧr,s 0
0 −1

]
,
[
B̂r,s 0
0 −1

]
,
[
C 0
0 1

])
∈ RGLn(S) if and only if, for all

i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

ȧi,k b̂k,lcl,j − δi,j ∈ NS,
∑

k,l=1,...,n+1

b̂i,kck,lȧl,j − δi,j ∈ NS and
∑

k,l=1,...,n+1

ci,kȧk,lb̂l,j − δi,j ∈ NS.
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When i = n+ 1 and j = 1, .., n or j = n+ 1 and i = 1, ..., n,∑
k,l=1,...,n+1

ȧi,k b̂k,lcl,j − δi,j =
∑

k,l=1,...,n+1

b̂i,kck,lȧl,j − δi,j =
∑

k,l=1,...,n+1

ci,kȧk,lb̂l,j − δi,j = 0− 0 ∈ NS,

and when i = j = n+ 1,∑
k,l=1,...,n+1

ȧi,k b̂k,lcl,j − δi,j =
∑

k,l=1,...,n+1

b̂i,kck,lȧl,j − δi,j =
∑

k,l=1,...,n+1

ci,kȧk,lb̂l,j − δi,j = 1− 1 ∈ NS,

so the conditions always hold when i = n+ 1 or j = n+ 1. Additionally, for all i, j = 1, ..., n,∑
k,l=1,...,n+1

ȧi,k b̂k,lcl,j − δi,j =
∑

k,l=1,...,n

ȧi,k b̂k,lcl,j − δi,j

=
∑

k,l=1,...,n,k ̸=r,s
ȧi,k b̂k,lcl,j +

∑
l=1,...,n

ȧi,sb̂s,lcl,j +
∑

l=1,...,n

ȧi,r b̂r,lcl,j − δi,j

=
∑

k,l=1,...,n,k ̸=r,s
ai,kbk,lcl,j +

∑
l=1,...,n

ai,rbr,lcl,j +
∑

l=1,...,n

ai,sbs,lcl,j − δi,j

=
∑

k,l=1,...,n

ai,kbk,lcl,j − δi,j

Similarly, for all i, j = 1, ..., n,∑
k,l=1,...,n+1

ci,kȧk,lb̂l,j − δi,j =
∑

k,l=1,...,n

ci,kak,lbl,j − δi,j

Finally, note that the sum
∑
k,l=1,...,n+1 b̂i,kck,lȧl,j − δi,j is in the null set of S for all i, j = 1, ..., n if

and only if
∑
k,l=1,...,n bi,kck,lal,j − δi,j is in NS for all i, j = 1, ..., n. Therefore, we can conclude that([

Ȧr,s 0
0 −1

]
,
[
B̂r,s 0
0 −1

]
,
[
C 0
0 1

])
∈ RGLn(S) if and only if, for all i, j = 1, ..., n,∑

k,l=1,...,n

ai,kbk,lcl,j − δi,j ∈ NS,
∑

k,l=1,...,n

bi,kck,lal,j − δi,j ∈ NS and
∑

k,l=1,...,n

ci,kak,lbl,j − δi,j ∈ NS,

so if and only if (A,B,C) ∈ RSLn(S). □

Corollary 3.7.1. Let A,B,C ∈Mn×n(S). Then the following are equivalent:

1. (A,B,C) ∈ RSLn(S);

2. For all r, s = 1, ..., n,

([
Ȧr,s 0
0 −1

]
,

[
B̂r,s 0
0 −1

]
,

[
C 0
0 1

])
∈ RGLn(S);

3. For all r, s = 1, ..., n,

([
A 0
0 1

]
,

[
Ḃr,s 0
0 −1

]
,

[
Ĉr,s 0
0 −1

])
∈ RGLn(S);

4. For all r, s = 1, ..., n,

([
Âr,s 0
0 −1

]
,

[
B 0
0 1

]
,

[
Ċr,s 0
0 −1

])
∈ RGLn(S).

Proof: It follows from Theorem 3.7 that (1) is equivalent to (2). Furthermore, for all r, s = 1, ..., n,
we have that

(A,B,C) ∈ RSLn(S) ⇐⇒ (B,C,A) ∈ RSLn(S)

⇐⇒
([
Ḃr,s 0
0 −1

]
,

[
Ĉr,s 0
0 −1

]
,

[
A 0
0 1

])
∈ RGLn(S)

⇐⇒
([
A 0
0 1

]
,

[
Ḃr,s 0
0 −1

]
,

[
Ĉr,s 0
0 −1

])
∈ RGLn(S),
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where the second equivalence follows from Theorem 3.7. Therefore (1) is equivalent to (3). A similar
argument shows that (1) is equivalent to (4), which implies that the theorem holds. □

3.3 Change of coefficients

We can also study the morphisms between bands and their linear groups. For example, for every band
B, there is a unique band morphism f : F±

1 → B ([1, Chapter 1.2.2/Lemma 1.39]). In the following,
we study the sequence F±

1 → S → K, and how it can be used to compare their special and general
linear groups.

Theorem 3.8. The maps f : F±
1 → S, 0 7→ 0,±1 7→ ±1 and g : S → K, 0 7→ 0,±1 7→ 1 are

band morphisms. Furthermore, they induce the following crowd morphisms fSn : Sln(F±
1 ) → SLn(S),

fGn : GLn(F±
1 ) → GLn(S), gSn : SLn(S) → Sln(K) and gGn : GLn(S) → GLn(K).

Proof: Recall from Definition 1.8, that a map h : B → C, for some bands B and C, is a band
morphism if it is multiplicative map such that h(1B) = 1C and

∑
a∈B−{0} nah(a) ∈ NC whenever∑

a∈B−{0} naa ∈ NB . It follows from the definitions of f and g that f(1) = 1 and f(a · b) = f(a) ·f(b)
for all a, b ∈ F±

1 , and similarly g(1) = 1 and g(c · d) = g(c) · g(d) for all c, d ∈ S. So they satisfy
the first 2 conditions. To check the third condition, let

∑
a∈F±

1 −{0} naa ∈ NF±
1

be arbitrary. Then∑
a∈F±

1 −{0} naa = m · 1 +m · (−1) for some m ∈ N, so∑
a∈F±

1 −{0}

naf(a) = m · f(1) +m · f(−1) = m · 1 +m · (−1) ∈ NS.

Therefore f satisfies the third condition. For all
∑
a∈S−{0} naa ∈ NS, we have that∑

a∈S−{0}
nag(a) = p · g(1) +m · g(−1) = (p+m) · 1,

for some p,m ∈ N such that p = m = 0 or m, p > 0. Then (p + m) · 1 ̸= 1 · 1, which implies∑
a∈S−{0} nag(a) ∈ NS, so g satisfies the third condition as well. Therefore, both f and g are band

morphisms.
These band morphisms induce the maps on the special and general linear groups over F±

1 and S, that
map the coefficients ai,j of a matrix A to f(ai,j) or g(ai,j). Let fSn be the map on SLn(F±

1 ) that is
induced by f . Then for all A ∈ SLn(F±

1 ), we have that

det(A)− 1 =
∑
σ∈Sn

sign(σ)
∏

i=1,...,n

ai,σ(i) − 1 ∈ NF±
1
⇒

det(fSn (A))− f(1) =
∑
σ∈Sn

sign(σ)
∏

i=1,...,n

f(ai,σ(i))− 1 ∈ NS.

This implies fSn (A) ∈ SLn(S), so fSn : Sln(F±
1 ) → SLn(S) is well-defined. Furthermore, fSn (In) = In

and for all A,B,C ∈ SLn(F±
1 ) such that (A,B,C) ∈ RSLn(F±

1 ), we have that for all i, j = 1, ..., n,∑
k,l=1,...,n

ai,kbk,lcl,j − δi,j ∈ NF±
1
⇒

∑
k,l=1,...,n

f(a)i,kf(b)k,lf(c)l,j − f(δi,j) ∈ NS,∑
k,l=1,...,n

bi,kck,lal,j − δi,j ∈ NS ⇒
∑

k,l=1,...,n

f(b)i,kf(c)k,lf(a)l,j − f(δi,j) ∈ NS and

∑
k,l=1,...,n

ci,kak,lbl,j − δi,j ∈ NS ⇒
∑

k,l=1,...,n

f(c)i,kf(a)k,lf(b)l,j − f(δi,j) ∈ NS,

which implies (fSn (A), f
S
n (B), fSn (C)) ∈ RSLn(S). Therefore fSn is a crowd morphism. It follows

from symmetry that the induced maps fGn : GLn(F±
1 ) → GLn(S), gSn : SLn(S) → Sln(K) and

gGn : GLn(S) → GLn(K) are well-defined crowd morphisms as well. □
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Theorem 3.9. There exist crowd morphisms

θ : SLn(F±
1 ) → GLn(F±

1 ), fSn : Sln(F±
1 ) → SLn(S), gSn : SLn(S) → Sln(K),

ψ : SLn(S) → GLn(S), fGn : GLn(F±
1 ) → GLn(S), gGn : GLn(S) → GLn(K),

φ : SLn(K) → GLn(K),

such that ψ ◦ fSn = fGn ◦ θ and φ ◦ gSn = gGn ◦ ψ. In other words, such that the following diagram
commutes:

SLn(F±
1 ) SLn(S) SLn(K)

GLn(F±
1 ) GLn(S) GLn(K)

fS
n

θ

gSn

ψ φ

fG
n gGn

Proof: Let fSn , g
S
n , f

G
n , g

G
n be the crowd morphisms defined in Theorem 3.8, and θ, ψ, φ the crowd

morphisms defined in Theorem 3.1, where the general band B is taken to be F±
1 ,S and K, respectively.

Then, for all A ∈ SLn(F±
1 ), we have that

(ψ ◦ fSn )(A) = ψ(fSn (A)) = ψ(A)

=

[
A 0
0 1

]
= fGn

([
A 0
0 1

])
= fGn (θ(A)) = (fGn ◦ θ)(A).

Therefore ψ ◦ fSn = fGn ◦ θ. To proof φ ◦ gSn = gGn ◦ ψ, let C ∈ Sln(S) be arbitrary. Then

(φ ◦ gSn (C)) = φ(gSn (C)) = φ ((g(ci,j)))

=

[
(g(ci,j)) 0

0 1

]
= gGn

([
C 0
0 1

])
= gGn (ψ(C)) = (gGn ◦ ψ)(C).

Since C was taken arbitrarily, this holds for all matrices in SLn(S). Therefore φ ◦ gSn = gGn ◦ ψ, and
the diagram commutes. □

Remark. The special and general linear group are also called algebraic crowds, which means they are
functors, a type of map, from the category of Bands to the category of Crowds. Theorem 3.9 implies
that the maps fSn , g

S
n , f

G
n , g

G
n are natural transformations (also known as morphisms of functors). For

more information, algebraic crowds are defined and studied by Lorscheid and Thas in their paper [7].
An explanation of categories and functors can be found in Lorscheid’s lecture notes [6].

Notation. In the rest of this section, f, fSn , f
G
n , g

S
n and gGn are the band and crowd morphisms as defined

in Theorem 3.8.

With the diagram of Theorem 3.9, we can compare the different special and general linear groups.

Corollary 3.9.1. f, fSn , f
G
n are injective maps and g, gSn , g

G
n are surjective maps.

Proof: It follows from how f was defined in Theorem 3.8, that the map is injective. Furthermore, for
all A,B,∈ SLn(F±

1 ) such that fSn (A) = fSn (B), it follows that f(ai,j) = f(bi,j) for all i, j = 1, ..., n,
which implies A = B. Similarly, for all C,D ∈ GLn(F±

1 ) such that fGn (C) = fGn (D), it holds that
f(ci,j) = f(di,j) for all i, j = 1, ..., n + 1, which implies C = D. Therefore the crowd morphisms fSn
and fGn are injective as well.
It also follows from its definition in Theorem 3.8 that g is surjective. To proof that gSn is surjective as
well, let A ∈ SLn(K) be arbitrary and take A′ ∈Mn×n(S) such that, for all i, j = 1, ..., n,

a′i,j =

{
0 if ai,j = 0
1 if ai,j = 1.
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Since A ∈ SLn(K) and −1 = 1, it follows that det(A)− 1 ̸= 1 · 1, so det(A) ̸= 0 · 1. This and Theorem
2.9 imply that det(A′) = p · 1 + m · (−1) for some p > 0 or m > 0. If p > 0, then it follows from
the same theorem that A′ ∈ SLn(S), which would imply A ∈ im(gSn ). If m > 0, then we multiply
the first row of A′ by −1 to obtain the matrix A′′ ∈ Mn×n(S). As shown in the proof of Theorem
3.5, det(A′′) = −det(A′) = m · 1 + p · (−1), which means A′′ ∈ SLn(S). Furthermore, g(A′′) = A,
so we again have that A ∈ im(gSn ). Therefore A must be in the image of gSn , and since A was chosen
arbitrarily, this holds for all A ∈ SLn(K), which means gSn is surjective.
To show gGn is surjective, let A =

[
A11 0
0 1

]
∈ GLn(K) be arbitrary and take A′

11 ∈Mn×n(S) such that,
for all i, j = 1, ..., n,

a′i,j =

{
0 if ai,j = 0
1 if ai,j = 1.

Then we again have that det(A) = det(A11) ̸= 0 · 1, which implies det(A′
11) = p · 1+m · (−1), for some

p > 0 or m > 0. It follows from Theorem 2.10 that A′ =
[
A′

11 0

0 δ

]
∈ GLn(S), where δ = 1 or δ = −1.

Furthermore, gGn (A
′) = A, and since A was chosen arbitrarily, we can conclude that gGn is surjective

as well.
Therefore f, fSn , f

G
n are injective maps and g, gSn , g

G
n are surjective maps. □

Corollary 3.9.2. Let A ∈ SLn(K) and B ∈ GLn(K). If A ∈ gSn (im(fGn )), then there is an odd
x ∈ N such that det(A) = x · 1. Similarly, if B ∈ gGn (im(fSn )), then there is an odd y ∈ N such that
det(B) = y · 1.

Proof: Suppose A ∈ SLn(K) such that A ∈ gSn (im(fSn )), then there is a C ∈ im(fSn ) such that
gSn (C) = A. It follows from the definition of fSn , and Theorem 2.12, that det(C) = (m+1) ·1+m · (−1)
for some m ∈ N. Therefore

det(A) = (m+ 1 +m) · 1 = (2m+ 1) · 1 = x · 1 for some odd x ∈ N.

So the first half of the statement holds.
To proof the second half, let B ∈ GLn(K) and suppose B ∈ gGn (im(fSn )). Then there is a matrix
D =

[
D11 0
0 δ

]
∈ im(fGn ) such that gGn (D) = B. It follows from the definition of fGn and Theorem 2.13

that det(D11) = p · 1 +m · (−1), where p = m+ 1 or m = p+ 1. Therefore

det(B) = 1 · det(B11) = (p+m) · 1 =

{
(2m+ 1) · 1 if p = m+ 1
(2p+ 1) · 1 if m = p+ 1,

which implies det(B) = y · 1 for some odd y ∈ N. Therefore the second half of the theorem holds as
well. □

When we study these maps for n = 2, we find that

im(gS2 ◦ fS2 ) = SL2(K)−
{[

1 1
1 1

]}
and

im(gG2 ◦ fG2 ) = GL2(K)−
{[

1 1 0
1 1 0
0 0 1

]}
.

Furthermore, we can observe that if A ∈ gS2 (im(fS2 )), then A has at least 1 zero coefficient and
#(gS2 )

−1(A) = 2x−1, where x is the number of ones in A. Similarly, if B =
[
B11 0
0 1

]
∈ gG2 (im(fG2 )),

then B11 has at least 1 zero coefficient and #(gG2 )−1(B) = 2y, where y is the number of ones in B11.
Another interesting comparison is between the inverse sets in these crowds. We state in the Examples
2.7, 2.11 and 2.14 that all the inverse sets in the special linear group and general linear groups over K
and F±

1 are singleton sets, but that this does not hold for SL2(S) and GL2(S). In fact, the matrices
whose inverse sets are not singletons, are those that not in the image of fS2 or fG2 , and are therefore

the ones that are mapped to
[
1 1
1 1

]
or

[
1 1 0
1 1 0
0 0 1

]
by gS2 and gG2 , respectively .
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4 Semidirect products and short exact sequences

In this section, we define the semidirect product and weakly split and strongly split short exact sequence
for crowds, and find that these sequences imply the existence of certain bijective maps. We follow this
by finding conditions under which there is a strongly split short exact sequence that contains the special
and general linear group over a band.

4.1 Semidirect product

Let (H, 1H ,⊙H) and (Q, 1Q,⊙Q) be groups and θ : Q → Aut(H) be a group homomorphism. Then
the semidirect product H⋊θQ is the group (H×Q, (1H , 1Q), ·), where · : (H×Q)× (H×Q) → H×Q
is the group law such that (g, p) · (h, q) = (g ⊙H θp(h), p ⊙Q q). To generalize this to crowds, recall
that crowd laws are supposed to contain all triples whose product is equal to the unit element, if such
a product is defined. In the semidirect product of 2 groups, the product of three arbitrary elements
(h1, q1), (h2, q2), (h3, q3) ∈ H ×Q is given by

(h1, q1) · (h2, q2) · (h3, q3) = (h1, q1) · (h2 ⊙H θq2(h3), q2 ⊙Q q3)
= (h1 ⊙H θq1(h2 ⊙H θq2(h3)), q1 ⊙Q q2 ⊙Q q3)
= (h1 ⊙H θq1(h2)⊙H θq1(θq2(h3)), q1 ⊙Q q2 ⊙Q q3),

where the last equality holds because θq1 is a automorphism. This pair is equal to (1H , 1Q) if and only
if h1 ⊙H θq1(h2)⊙H θq1(θq2(h3) = 1H and q1 ⊙Q q2 ⊙Q q3 = 1Q. This gives us a logical definition for
the semidirect product of crowds.

Definition 4.1. Given crowds (H, 1H , RH) and (Q, 1Q, RQ) and crowd morphism θ : Q → Aut(H),
the semi-direct product H ⋊θ Q is the crowd (H ×Q, (1H , 1Q), RH⋊θQ), with crowd law

RH⋊θQ =
{
((h1, q1), (h2, q2), (h3, q3)) ∈ (H ×Q)3 | (q1, q2, q3) ∈ RQ and (h1, θq1(h2), θq1(θq2(h3))) ∈ RH

}
.

Theorem 4.2. Given crowds (H, 1H , RH) and (Q, 1Q, RQ) and crowd morphism θ : Q → Aut(H),
the semi-direct product H ⋊θ Q is indeed a crowd.

Proof: Let (H, 1H , RH) and (Q, 1Q, RQ) be crowds and θ : Q→ Aut(H) be a crowd morphism. Note
that it is possible for θ to be a crowd morphism, since Aut(H) is a group. To show that the semi-direct
product (H ×Q, (1H , 1Q), RH⋊θQ) is a crowd, we need to check the 4 crowd axioms:

1. We know that (1Q, 1Q, 1Q) ∈ RQ and θ(1Q) = θ1Q
= idH . Therefore,

(1H , θ1Q
(1H), θ1Q

(θ1Q
(1H))) = (1H , 1H , 1H) ∈ RH ,

which implies ((1H , 1Q), (1H , 1Q), (1H , 1Q)) ∈ RH⋊θQ and the first axiom is satisfied.

2. Suppose ((h, q), (1H , 1Q), (1H , 1Q)) ∈ RH⋊θQ for some h ∈ H and q ∈ Q. Then (q, 1Q, 1Q) ∈ RQ,
which implies q = 1Q, and (h, θ1Q

(1H), θ1Q
(θ1Q

(1H))) ∈ RH . It follows that

(h, θ1Q
(1H), θ1Q

(θ1Q
(1H))) = (h, 1H , 1H) ∈ RH ,

which means h = 1H . Therefore ((h, q), (1H , 1Q), (1H , 1Q)) ∈ RH⋊θQ implies that the pair
(h, q) = (1H , 1Q), so the second axiom is satisfied as well.

3. Let h, i ∈ H and p, q ∈ Q be arbitrary and suppose that ((h, p), (i, q), (1H , 1Q)) ∈ RH⋊θQ. Then
(h, θp(i), θp(θq(1H)) ∈ RH and (p, q, 1Q) ∈ RQ, which implies (q, p, 1Q) ∈ RQ. It follows that
(θq, θp, idH) ∈ RAut(H), which means θq ◦ θp = idH , since Aut(H) is a group. Therefore,

(h, θp(i), θp(θq(1H)) ∈ RH ⇒ (h, θp(i), 1H) ∈ RH

⇒ (θp(i), h, 1H) ∈ RH

⇒ (θq(θp(i)), θq(h), 1H) = (i, θq(h), θq(θp(1H))) ∈ RH .

So ((h, p), (i, q), (1H , 1Q)) ∈ RH⋊θQ implies (q, p, 1Q) ∈ RQ and (i, θq(h), θq(θp(1H))) ∈ RH ,
which implies ((i, q), (h, p), (1H , 1Q)) ∈ RH⋊θQ. Therefore the third axiom is satisfied.
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4. Suppose ((h, p), (i, q), (j, r)) ∈ RH⋊θQ for some h, i, j ∈ H and p, q, r ∈ Q. Then, per definition,
(h, θp(i), θp(θq(j))) ∈ RH and (p, q, r) ∈ RQ, which implies (r, p, q) ∈ RQ. It follows that
θr ◦ θp ◦ θq = idH , which means,

(h, θp(i), θp(θq(j))) ∈ RH ⇒ (θp(θq(j)), h, θp(i)) ∈ RH

⇒ (θr(θp(θq(j))), θr(h), θr(θp(i))) = (j, θr(h), θr(θp(i))) ∈ RH .

Since (j, θr(h), θr(θp(i))) ∈ RH and (r, p, q) ∈ RQ, we have that ((j, r), (h, p), (i, q)) ∈ RH .
Therefore the fourth axiom is satisfied.

Since all axioms are satisfied, (H ×Q, (1H , 1Q), RH⋊θQ) is indeed a crowd. □

Example 4.3. Suppose (H, 1H ,⊙H) and (Q, 1Q,⊙Q) are groups, and θ : Q → Aut(H), q 7→ θq is
a group homomorphism. Then their semidirect product is a group, which means the corresponding
crowd is given by (H ×Q, (1H , 1Q), R), with crowd law

R = {((a, p), (b, q), (c, r)) ∈ (H ×Q)3 | (a, p) · (b, q) · (c, r) = (1H , 1Q)}

We can also find the crowds corresponding do H and Q, and the crowd morphism corresponding to θ,
to construct the semidirect product (H ×Q, (1H , 1Q), RH⋊θQ). Then

RH⋊θQ =
{
((h1, q1), (h2, q2), (h3, q3)) ∈ (H ×Q)3 | (q1, q2, q3) ∈ RQ and (h1, θq1(h2), θq1(θq2(h3))) ∈ RH

}
= {((a, p), (b, q), (c, r)) ∈ (H ×Q)3 | p⊙Q q ⊙Q r = 1Q and a⊙H θp(b)⊙H θp(θq(c)) = 1H}
= {((a, p), (b, q), (c, r)) ∈ (H ×Q)3 | (a⊙H θp(b)⊙H θp(θq(c)), p⊙Q q ⊙Q r) = (1H , 1Q)}
= {((a, p), (b, q), (c, r)) ∈ (H ×Q)3 | (a, p) · (b, q) · (c, r) = (1H , 1Q)}
= R.

Therefore the semidirect product of the groups H and Q is equivalent as to the semidirect product of
the crowds H and Q.

4.2 Short exact sequences

Another useful concept from group theory is the short exact sequence. When ’translating’ this to
crowds, we see that, in order to get similar results, we have to base the definition on split short exact
sequences instead. Furthermore, we define 2 types of short exact sequences of crowds: a weakly split
short exact sequence, which focuses on the sets of the crowds, and a strongly split short exact sequence,
which also includes the crowd laws.

Definition 4.4. A weakly split short exact sequence of crowds is a sequence of crowd morphisms

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1,

where Q is also a group, together with a left group action λ : Q × G → G or a right group action
ρ : G×Q→ G such that

• α is injective,

• im(α) = ker(β) and

• β ◦ λ = σ or β ◦ ρ = τ , where σ is the map σ : Q × G → Q, (q, g) 7→ q · β(g) and τ is the map
τ : G×Q→ Q, (g, q) 7→ β(g) · q.

Remark. Since Q is both a crowd and a group, it is possible to have a group action of Q on a set, for
example the set of a crowd.
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Theorem 4.5. Suppose the sequence

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1,

together with a left group action λ : Q × G → G or a right group action ρ : G × Q → G, is a weakly
split short exact sequence. Then β is surjective and there exists a bijection Q×H → G. In particular,
if G is finite, then so are H and Q and #G = #Q ·#H.

Proof: We only proof the theorem for a sequence with a left group action λ : Q×G→ G, as the proof
for a sequence with a right group action follows by symmetry, and the notation λ(q, g) = q.g. So let

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1,

together with the group action λ : Q × G → G, (q, g) 7→ q.g, be a weakly split short exact sequence.
To show that β is surjective, note that for all q ∈ Q, λ(q, 1G) ∈ G and

β(λ(q, 1G)) = σ(q, 1G) = q · β(1G) = q · 1Q = q.

Therefore, the image of β is Q, which implies that β is surjective.
To proof the second half of the theorem, we show that the map s : Q ×H → G, (q, a) 7→ q.α(a) is a
bijection. Suppose a, b ∈ H and p, q ∈ Q such that s(p, a) = s(q, b), so p.α(a) = q.α(b). Since Q is a
group, there is a p−1 ∈ Q, which means

p.α(a) = q.α(b) ⇒ p−1.(p.α(a)) = p.(q.α(b))

⇒ (p−1 · p).α(a) = α(a) = (p · q).α(b).

Therefore

β(α(a)) = β((p−1 · q).α(b)) ⇒ 1Q = (p−1 · q) · β(α(b)) = p−1 · q,

where β((p−1 · q).α(b)) = (p−1 · q) · β(α(b)) because of the third axiom of weakly split short exact
sequences. This implies that p = q, which means

α(a) = (p−1 · q).α(b) = 1Q.α(b) = α(b).

Since α is injective, if follows that a = b. Therefore s(p, a) = s(q, b) implies p = q and a = b, so s is
injective.
To show s is surjective, let g ∈ G be arbitrary. Take q ∈ Q such that β(g) = q. Then q−1.g ∈ G and
β(q−1.g)) = q−1 · β(g) = q−1 · q = 1Q, which implies q−1.g ∈ ker(β). Since the kernel of β is equal to
the image of α, it follows that there exists an a ∈ H such that α(a) = q−1.g, which implies

g = 1Q.g = (q · q−1).g = q.(q−1.g) = q.α(a) ∈ im(s).

Since g was taken arbitrarily, this holds for all elements in G, so im(s) = G and s is surjective.
Since s : Q×H → G is both injective and surjective, there exists a bijection Q×H → G. Furthermore,
since G,H,Q are crowds, their sets are nonempty. It follows that if G is finite, so are Q and H and
#G = #Q ·#H. □

A weakly split short exact sequence tells us about the sets of its crowds. To gain similar informa-
tion on their crowd laws, we need a few extra conditions.

Definition 4.6. A strongly split short exact sequence of crowds is a sequence of crowd morphisms

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1,

where Q is also a group, together with a left group action λ : Q × G → G and a right group action
ρ : G×Q→ G such that:
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• the sequence is a weakly split short exact sequence when taken together with λ or ρ,

• α is a full crowd morphism,

• λ and ρ commute and

• the map l : RQ × RG → RG, ((p, q, r), (a, b, c)) 7→ (ρ(a, p), λ(p−1, ρ(b, r−1)), λ(r, c)) is well-
defined.

Theorem 4.7. Suppose the sequence

1 −→ (H, 1H , RH)
α−→ (G, 1G, RG)

β−→ (Q, 1Q, RQ) −→ 1

together with a left group action λ : Q × G → G and a right group action ρ : G × Q → G is a
strongly split short exact sequence. Then the set {(β(a), β(b), β(c)) | (a, b, c) ∈ RG} = RQ and there
exists a bijection RQ × RH → RG. In particular, if RG is finite, then so are RH and RQ and
#RG = #RQ ·#RH .

Proof: In this proof, we use the following notation:

p.g.q = λ(p, ρ(g, q)),

so the map l can be rewritten as l : RQ × RG → RG, ((p, q, r), (a, b, c)) 7→ (1Q.a.p, p
−1.b.r−1, r.c.1Q).

Note that because λ and ρ commute, the equalities

r.(p.g.q).s = r.(λ(p, ρ(g, q))).s

= λ(r, ρ(λ(p, ρ(g, q)), s))

= λ(r, λ(p, ρ(ρ(g, q), s)))

= λ(r, λ(p, ρ(g, q · s)))
= λ(r · p, ρ(g, q · s))
= (r · p).g.(q · s)

hold. Additionally, we let σ and τ be the maps defined in Definition 4.4. To show the first half of the
statement, note that for all p, q ∈ Q and g ∈ G,

β(p.g.q) = β(λ(p, ρ(g, q))) = σ(p, ρ(g, q))

= p · β(ρ(g, q)) = p · τ(g, q)
= p · β(g) · q.

Therefore, for all (p, q, r) ∈ RQ, we have that

l((p, q, r), (1G, 1G, 1G)) = (1Q.1G.p, p
−1.1G.r

−1, r.1G.1Q) ∈ RG and

(β(1Q.1G.p), β(p
−1.1G.r

−1), β(r.1G.1Q)) = (1Q · β(1G) · p, p−1 · β(1G) · r−1, r · β(1G) · 1Q)
= (p, p−1 · r−1, r) = (p, q, r),

where the fourth equality follows from the equation p · q · r = 1Q. It follows that RQ is a sub-
set of {(β(a), β(b), β(c)) | (a, b, c) ∈ RG}, and since β is a crowd morphism, we can conclude that
{(β(a), β(b), β(c)) | (a, b, c) ∈ RG} = RQ.
To proof that there is a bijection RQ × RH → RH , let l′ : RQ × RH → RG be the map induced by
l, so l′((p, q, r), (a, b, c)) = (1Qα(a).p, p

−1.α(b).r−1, r.α(c)1Q) for all (p, q, r) ∈ RQ and (a, b, c) ∈ RG.
We want to show that this is a bijection. Let pi, qi ∈ Q and ai, bi ∈ H, for i = 1, 2, 3, and suppose
that (p1, p2, p3), (q1, q2, q3) ∈ RQ, (a1, a2, a3), (b1, b2, b3) ∈ RH and

l′((p1, p2, p3), (a1, a2, a3)) = l′((q1, q2, q3), (b1, b2, b3)).

This implies

1Q.α(a1).p1 = 1Q.α(b1).q1, p
−1
1 .α(a2).p

−1
3 = q−1

1 .α(b2).q
−1
3 and p3.α(a3).1Q = q3.α(b3).1Q.
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Recall from the proof of Theorem 4.5 that the map s : Q ×H → G, (p, a) 7→ λ(p, α(a)) and the map
s′ : H ×Q→ G, (b, q) 7→ ρ(α(b), q) are injective. Furthermore,

1Q.α(a1).p1 = 1Q.α(b1).q1 ⇒ ρ(α(a1), p1) = ρ(α(b1), q1)

⇒ s′(a1, p1) = s′(b1, q1) and

p3.α(a3).1Q = q3.α(b3).1Q ⇒ ρ(α(a3), 1Q) = ρ(α(b3), 1Q)

⇒ s(p3, a3) = s(q3, b3),

which implies a1 = b1, p1 = q1, a3 = b3 and p3 = q3. It follows that

p−1
1 .α(a2).p

−1
3 = q−1

1 .α(b2).q
−1
3 ⇒ p−1

1 .α(a2).p
−1
3 = p−1

1 .α(b2).p
−1
3

⇒ (p1 · p−1
1 ).α(a2).(p

−1
3 · p3) = (p1 · p−1

1 ).α(b2).(p
−1
3 · p3)

⇒ α(a2) = α(b2) ⇒ a2 = b2,

where the last implication holds because α is injective. Additionally, since p1 ·p2 ·p3 = 1Q = q1 · q2 · q3,
we can infer that

p2 = p−1
1 · p−1

3 = q−1
1 · q−1

3 = q2.

Therefore l′((p1, p2, p3), (a1, a2, a3)) = l′((q1, q2, q3), (b1, b2, b3)) implies that pi = qi and ai = bi for
i = 1, 2, 3, so l′ is injective.
To show that l′ is surjective, let (d, e, f) ∈ RG be arbitrary and let p, q, r be the elements in Q such
that β(d) = p, β(e) = q and β(f) = r. Since β is a crowd morphism, this implies that (p, q, r) ∈ RQ.
Recall that Q is also a group, so its crowd law consists of all triples whose product is equal to 1Q. It
follows that q = p−1 · r−1 and

l((p−1, p · r, r−1), (d, e, f)) = (1Q.d.p
−1, p.e.r, r−1.f.1Q) ∈ RG.

But

β(1Q.d.p
−1) = 1Q · β(d) · p−1 = p · p−1 = 1Q

β(p.e.r) = p · β(e) · r = p · q · r = 1Q and

β(r−1.f.1Q) = r−1 · β(f) · 1Q = r−1 · r = 1Q.

Since ker(β) = im(α), it follows that there exist a, b, c ∈ H such that 1Q.d.p
−1 = α(a), p.e.r = α(b)

and r−1.f.1Q = α(c). Therefore (α(a), α(b), α(c)) ∈ RG, which implies (a, b, c) ∈ RH , since α is a full
crowd morphism, and

l′((p, p−1 · r−1, r), (a, b, c)) = ((1Q · 1Q).d.(p−1 · p), (p−1 · p).e.(r · r−1), (r · r−1).f.(1Q · 1Q))
= (1Q.d.1Q, 1Q.e.1Q, 1Q.f.1Q) = (d, e, f),

So (d, e, f) is in the image of l′. Since the triple was chosen arbitrarily, it follows that l′ is surjective.
Therefore l′ is bijective, which means there exists a bijection RQ × RH → RG. Since crowd laws are
always nonempty, it holds that if RG is finite, then so are RQ and RH and #RG = #RQ ·#RH . □

Given a split short exact sequence of groups, we can find a semidirect product that is isomorphic
to 1 of the groups in the sequence, as explained in the notes of Conrad ([4, Definition 3.4]). An
analogous theorem holds for crowds.

Theorem 4.8. Suppose the sequence

1 → H →α G→β Q→ 1,

together with a left group action λ : Q ×G → G and right group action ρ : G ×Q → Q, is a strongly
split short exact sequence of crowds. Then there is a crowd morphism θ : Q → Aut(H) such that
G ∼= H ⋊θ Q.
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Proof: This proof consists of 2 steps, the first is to find a crowd morphism θ such that H ⋊θ Q is a
semidirect product, and the second is to find a crowd isomorphism ψ : H ⋊θ Q → G. Just as in the
proof of Theorem 4.7, we use the notation p.g.q = λ(p, ρ(g, q)).
Inspired by the proof of theorem 3.3 in [4], we let θ : Q → Aut(H), q → θq be the map such that
θq(h) = h′, where h′ ∈ H such that α(h′) = q.α(h).q−1 (so α(θq(h)) = q.α(h).q−1). To proof that this
map is well-defined, let q ∈ Q be arbitrary. Then we need to show that θq : H → H is a well-defined
crowd isomorphism:

1. For all h ∈ H, we have that

β(q.α(h).q−1) = q · β(α(h)) · q−1 = q · 1Q · q−1 = 1Q,

so q.α(h).q−1 ∈ ker(β) = im(α). Therefore there is a h′ ∈ H such that α(h′) = q.α(h).q−1 and,
since α is injective, this h′ is unique. Therefore θq(h) ∈ H exists and θq : H → H is well-defined.

2. Suppose θq(1H) = h for some h ∈ H. Then α(h) = q.α(1H).q−1 = q.1G.q
−1. Furthermore,

l((q, q−1, 1Q), (1G, 1G, 1G) = (1Q.1G.q, q
−1.1G.1Q, 1Q.1G.1Q) = (1Q.1G.q, q

−1.1G.1Q, 1G) ∈ RG,

⇒ (q−1.1G.1Q, 1Q.1G.q, 1G) ∈ RG

⇒ (1Q.1G.q, 1G, q
−1.1G.1Q) ∈ RG

⇒ l((q−1, q · q−1, q), (1Q.1G.q, 1G, q
−1.1G.1Q)) ∈ RG

⇒ (1Q.1G.1Q, q.1G.q
−1, 1Q.1G.1Q) ∈ RG

⇒ (q.1G.q
−1, 1Q.1G.1Q, 1Q.1G.1Q) = (q.1G.q

−1, 1G, 1G) ∈ RG,

where (q, q−1, 1Q), (q
−1, q · q−1, q) ∈ RQ because their triple products are equal to 1Q. This

implies q.1Q.q
−1 = 1G, which means α(h′) = q.1G.q

−1 = 1G. Therefore θq(1H) = h = 1H , so
the first crowd morphism axiom is satisfied.

3. To proof the second crowd morphism axiom, note that (q−1, q · q−1, q), (q−1, q, 1Q) ∈ RQ.
Therefore, whenever h1, h2, h3 ∈ H such that (h1, h2, h3) ∈ RH , it follows that

(α(h1), α(h2), α(h3)) ∈ RG ⇒ l((q−1, q · q−1, q), (α(h1), α(h2), α(h3))) ∈ RG

⇒ (1Q.α(h1).q
−1, q.α(h2).q

−1, q.α(h3).1Q) ∈ RG

⇒ (q.α(h3).1Q, 1Q.α(h1).q
−1, q.α(h2).q

−1) ∈ RG

⇒ l((q−1, q, 1Q), (q.α(h3).1Q, 1Q.α(h1).q
−1, q.α(h2).q

−1)) ∈ RG

⇒ (q.α(h3).q
−1, q.α(h1).q

−1, q.α(h2).q
−1) ∈ RG

⇒ (q.α(h1).q
−1, q.α(h2).q

−1, q.α(h3).q
−1) ∈ RG

⇒ (α(θq(h1)), α(θq(h2)), α(θq(h3))) ∈ RG

⇒ (θq(h1), θq(h2), θq(h3)) ∈ RH ,

where the last implication holds because α is a full crowd morphism. Therefore, if
(h1, h2, h3) ∈ RH , then (θq(h1), θq(h2), θq(h3)) ∈ RH as well, so θq is indeed a crowd morphism.

4. To show that θq is an isomorphism, note that, since q ∈ Q was chosen arbitrarily, θq−1 is a crowd
morphism as well. Furthermore, for all h ∈ H,

α((θq ◦ θq−1)(h)) = α(θq(θq−1(h))) = q.α(θq−1(h)).q−1

= q.(q−1.α(h).q).q−1 = (q · q−1).α(h).(q · q−1) = 1Q.α(h).1Q

= α(h).

Since α is injective, it follows that θq ◦ θq−1 = idH and since q was chosen arbitrarily, we can
conclude that θq−1 ◦ θq = idH as well. Therefore θq must be a crowd isomorphism.
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Therefore θq ∈ Aut(H) for all q ∈ Q, which means the map θ : Q → Aut(H) is well-defined. Addi-
tionally, for all h ∈ H, we have that α(θ1Q

(h)) = 1Q.α(h).1Q = α(h), which implies θ(1Q) = idH .
Furthermore, for all p, q ∈ Q and h ∈ H, we have that

α((θp ◦ θq)(h)) = p.α(θq(h)).p
−1 = p.(q.α(h).q−1).p−1

= (p · q).α(h).(q−1 · p−1) = (p · q).α(h).(p · q)−1 = α(θp·q(h)).

This implies θ(p) ◦ θ(q) = θ(p · q), which means θ is a group homomorphism. As shown in Example
1.14, this implies that θ is a crowd morphism as well. Furthermore, it follows from Definition 4.1 that
H ⋊θ Q is a semidirect product.
To find the isomorphism ψ, recall from the proof of Theorem 4.7 that the map s′ : H ×Q→ G, where
the pair (h, q) is mapped to ρ(α(h), q), is a bijection. So let ψ : H ⋊θ Q → G be the map such that
ψ(h, q) = s′(h, q). Then

ψ(1H , 1Q) = ρ(α(1H), 1Q) = α(1H) = 1G.

To show that ψ is a crowd isomorphism, we need to proof that for all (h, p), (i, q), (j, r) ∈ H ⋊θ Q, it
holds that (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG if and only if ((h, p), (i, q), (j, r)) ∈ RH⋊θQ. We will prove
this by using the bijection

l′ : RQ ×RH → RG, ((p, q, r), (a, b, c)) 7→ (1Q.a.p, p
−1.b.r−1, r.c.1Q)

from the proof of Theorem 4.7.
Note that, if (p, q, r) ∈ RQ, then p · q · r = 1Q and the following equivalences hold:

(1Q.α(h).p, p
−1.α(θp(i)).r

−1, r.α(θp(θq(j))).1Q) ∈ RG ⇐⇒
(1Q.α(h).p, 1Q.α(i).(p

−1 · r−1), (r · p · q).α(j).(q−1 · p−1)) ∈ RG ⇐⇒
(1Q.α(h).p, 1Q.α(i).q, 1Q.α(j).(q

−1 · p−1)) ∈ RG ⇐⇒
(1Q.α(h).p, 1Q.α(i).q, 1Q.α(j).r) ∈ RG ⇐⇒

(ρ(α(h), p), ρ(α(i), q), ρ(α(j), r)) = (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG.

Let (h, p), (i, q), (j, r) ∈ H ⋊ψ Q be arbitrary, and suppose that ((h, p), (i, q), (j, r)) ∈ RH⋊θQ. Then,
by definition, (p, q, r) ∈ RQ and (h, θp(i), θp(θq(j))) ∈ RH , which implies

l′((p, q, r), (h, θp(i), θp(θq(j)))) = (1Q.α(h).p, p
−1.α(θp(i)).r

−1, r.α(θp(θq(j))).1Q) ∈ RG.

It follows that (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG. Since (h, p), (i, q), (j, r) ∈ H ⋊ψ Q were chosen ar-
bitrarily, it holds for all (h, p), (i, q), (j, r) ∈ H ⋊ψ Q that if ((h, p), (i, q), (j, r)) ∈ RH⋊θQ, then
(ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG.
Suppose (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG for some (h, p), (i, q), (j, r) ∈ H ⋊ψ Q. Then

(β(ψ(h, p)), β(ψ(i, q)), β(ψ(j, r))) = (β(ρ(α(h), p)), β(ρ(α(i), q)), β(ρ(α(j), r)))

= (β(α(h)) · p, β(α(i)) · q, β(α(j) · r) = (p, q, r) ∈ RQ.

Since (p, q, r) ∈ RQ and (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG, it follows that (1Q.α(h).p, p
−1.α(θp(i)).r

−1, r.α(θp(θq(j))).1Q)
is in RG. Therefore, we can take this triple together with (p−1, p · r, r−1) ∈ RQ and apply l′ to find
that

(1Q.α(h).1Q, 1Q.α(θp(i)).1Q, 1Q.α(θp(θq(j))).1Q) ∈ RG.

Since α is a full crowd morphism, this implies (h, θp(i), θp(θq(j))) ∈ RH . Therefore, it holds that
if (ψ(h, p), ψ(i, q), ψ(j, r)) ∈ RG, then (h, θp(i), θp(θq(j))) ∈ RH and (p, q, r) ∈ RQ, which means
((h, p), (i, q), (j, r)) ∈ RH⋊θQ. Therefore ψ is indeed a crowd isomorphism.
Therefore there exists a crowd morphism θ : Q→ Aut(H) such that G ∼= H ⋊θ Q. □

Example 4.9 (The Krasner hyperfield). Take the sequence

1 −→ SLn(K)
φ−→ GLn(K)

ψ−→ K× −→ 1,
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where K× = {1} is the unit group of K, φ : SLn(K) → GLn(K), A 7→
[
A 0
0 1

]
is the crowd morphism

from Theorem 3.1, and ψ : GLn(K) → K×, A 7→ 1. It follows from Theorem 3.4 that SLn(K) is
isomorphic to GLn(K) and since K× only contains 1 element, it makes sense that there is a bijection
of sets from SLn(K) × K× → GLn(K) and from RSLn(K) × RK× → RGLn(K). However, we can also

proof this with Theorem 4.7. Let λ : K× × GLn(K) → GLn(K) and ρ : GLn(K) × K× → GLn(K)
be the unique left and right group actions. Then we can show that the sequence together with these
group actions is a strongly split short exact sequence:

• It follows from Theorem 3.1 that φ is both injective and full. Furthermore, is follows from
Theorem 3.3 that im(φ) = GLn(B) = ker(ψ);

• for all A ∈ GLn(K), it holds that

ψ(λ(1, A)) = ψ(A) = 1 · ψ(A) and ψ(ρ(A, 1)) = ψ(A) = ψ(A) · 1,

so ψ ◦ λ = σ and ψ ◦ ρ = τ , where σ and τ are as in Definition 4.4;

• For all A ∈ GLn(K),

λ(1, ρ(A, 1)) = λ(1, A) = A = ρ(A, 1) = ρ(λ(1, A), 1),

which implies λ and ρ commute;

• For all (A,B,C) ∈ RGLn(K),

(ρ(A, 1), λ(1−1, ρ(B, 1−1), λ(1, C))) = (A,B,C) ∈ RGLn(K),

and since (1, 1, 1) is the only triple in RK× , it follows that the map

l : RK× ×RGLn(K) → RGLn(K), ((p, q, r), (A,B,C)) 7→ (ρ(A, p), λ(p−1, ρ(B, r−1)), λ(r, C))

is well-defined.

Therefore it is indeed a strongly split short exact sequence, which proof the bijections do indeed exist.
This also implies that GLn(K) ∼= SLn(K)⋊θK×, where θ : K× → Aut(SLn(K)) is the crowd morphism
that sends 1 to the identity map on SLn(K). Note that

RSLn(K)⋊θK× =
{
((A, p), (B, q), (C, r)) ∈ (SLn(K)×K×)3 | (p, q, r) ∈ RK× and (A, θp(B), θp(θq(C))) ∈ RSLn(K)

}
=

{
((A, 1), (B, 1), (C, 1)) ∈ (SLn(K)×K×)3 | (A,B,C) ∈ RSLn(K)

}
.

It is still uncertain if this sequence exists and is a strongly split short exact sequence for all bands B
and n ∈ N. However, we do know the following.

Theorem 4.10. Suppose B is a band and n ∈ N such that an+1,n+1 ∈ B× for all A ∈ GLn(B),
where B× is the unit group of B. Then the map φ : SLn(B) → GLn(B), A 7→

[
A 0
0 1

]
and the

map ψ : GLn(K) → K×, A 7→ an+1,n+1 are crowd morphisms, and there exists a left group action
λ : B× × GLn(B) → GLn(B) and a right group action ρ : GLn(B) × B× → GLn(B) such that the
sequence

1 −→ SLn(B)
φ−→ GLn(B)

ψ−→ B× −→ 1,

together with λ and ρ is a strongly split short exact sequence.

Proof: It follows from Theorem 3.1 that φ is a crowd morphism. Furthermore, ψ(1) = 1 and, if
(A,C,D) ∈ RGLn(B), then an+1,n+1cn+1,n+1dn+1,n+1 − 1 ∈ NB . It follows from the definition of
a band that an+1,n+1cn+1,n+1dn+1,n+1 = 1, which implies (an+1,n+1, cn+1,n+1, dn+1,n+1) ∈ RB× ,
since B× is both a group and a crowd. Therefore (ψ(A), ψ(B), ψ(C)) ∈ RB× whenever (A,B,C) ∈
RGLn(B), which means ψ is a crowd morphism as well.

Suppose λ : B××GLn(B) → GLn(B) is the map that takes a p ∈ B× and A ∈ GLn(B), and constructs
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the matrix A′ ∈ GLn(B) by multiplying the first row of A by p−1 and multiplying an+1,n+1 by p.
Similarly, suppose ρ : GLn(B) × B× → GLn(B) is the map that takes an A ∈ GLn(B) and p ∈ B×,
and multiplies the first column of A with p−1 and an+1,n+1 with p to obtain the matrix A′′ ∈ GLn(B).
We want to proof that these maps are well-defined group actions, and that the sequence with these
group actions is a strongly split short exact sequence.
We show that λ is a well-defined left group action, as it follows by symmetry that ρ is a well-defined
right group action. Let p ∈ B× and A ∈ GLn(B) be arbitrary. Note that p ∈ B×, so p−1 exists and
λ(p,A) = A′ ∈M(n+1)×(n+1)(B). Furthermore,

det(A′) =
∑

σ∈Sn+1

sign(σ)
∏

k=1,...,n+1

a′k,σ(k)

= p · an+1,n+1 ·
∑
σ∈Sn

sign(σ) · p−1 · ai,σ(i)
∏

k=1,..,̂i,..,n

ak,σ(k), where i is such that σ(i) = 1

= p · p−1 · an+1,n+1 ·
∑
σ∈Sn

sign(σ)
∏

k=1,...,n+1

ak,σ(k)

= det(A),

Therefore im(λ) ⊂ GLn(B), so λ is well-defined. It is a left group action, since for all A ∈ GLn(B),
λ(1, A) = A, and for all p, q ∈ B×, A ∈ GLn(B), we have that

λ(p, λ(q, A)) = ρ(A′, p)

=


p−1q−1a11 p−1q−1a12 ... 0

a21 a22 ... ...
... ... ... ...
0 0 ... bcan+1,n+1



=


(pq)−1a11 (pq)−1a12 ... 0

a21 a22 ... ...
... ... ... ...
0 0 ... (pq)an+1,n+1


= λ(pq,A).

Therefore λ is indeed a left group action and, by symmetry, ρ is a right group action.
To proof that the sequence together with the group actions is a strongly split short exact sequence, we
need to check that it satisfies all the axioms. We know that B× is a group. Additionally, φ is injective
and, as shown in the proof of Theorem 3.3,

im(φ) = GL∗
n(B) = {A ∈ GLn(B)|ψ(A) = 1} = ker(ψ).

Let σ : B× × GLn(B) → B×, (p,A) 7→ p · ψ(A) and τ : GLn(B) × B× → B×, (A, p) 7→ ψ(A) · p be
maps. Then, for all p ∈ B× and A ∈ GLn(B), we have that

ψ(λ(p,A)) = p · an+1,n+1 = p · ψ(A) and
ψ(ρ(A, p)) = p · an+1,n+1 = an+1,n+1 · a = ψ(A) · p,

so ψ ◦λ = σ and ψ ◦ ρ = τ . Therefore the axioms of weakly split short exact sequences are satisfied, so
the sequence together with λ and the sequence together with ρ is a weakly split short exact sequence.
This means the first axiom of stronly split short exact sequences is satisfied. The second axiom is
satisfied as well, since φ is a full crowd morphism. To show that λ and ρ commute, let p, q ∈ B× and
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A ∈ GLn(B) be arbitrary. Then

λ(p, ρ(A, q)) = λ(p,A′′)

=


p−1q−1a11 p−1a12 ... 0
q−1a21 a22 ... ...
... ... ... ...
0 0 ... pqan+1,n+1


= ρ(A′, q)

= ρ(λ(p,A), q),

so the group actions commute, and therefore the third axiom is satisfied.
The fourth axiom states the map l : RB× ×RGLn(B) → RGLn(B), where the pair ((p, q, r), (A,C,D))

is mapped to (ρ(A, p), λ(p−1, ρ(C, r−1)), λ(r, C)), must be well-defined. So let (p, q, r) ∈ RB× and
(A,B,C) ∈ RGLn(B) be arbitrary, and define X = ρ(A, p), Y = λ(p−1, ρ(C, r−1)) and Z = λ(r, C).
Then we want to check that (X,Y, Z) satisfy the three conditions to be in RGLn(B). Note that
xi,n+1 = pai,n+1 for all i = 1, ..., n+ 1, because if i ̸= n+ 1, then ai,n+1 = 0. This also holds for the
n+ 1th row, and similar equalities hold the n+ 1th rows and columns of Y and Z.

1. For i, j = 1, ..., n+ 1, we have that∑
k,l=1,...,n+1

xi,kyk,lzl,j − δi,j = p−1ai,1prb1,1r
−1c1,j +

∑
l=2,...,n+1

p−1ai,1pb1,lcl,j +
∑

k=2,...,n+1

ai,krbk,1r
−1cl,j

+
∑

k,l=2,...,n

ai,kbk,lcl,j + pai,n+1p
−1r−1bn+1,n+1rcn+1,j − δi,j

=
∑

k,l=1,....,n+1

ai,kbk,lcl,j − δi,j ∈ NB ,

since (A,B,C) ∈ RGLn(B).

2. We know that, for all i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

bi,kck,lal,j − δi,j ∈ NB .

This implies that, whenever i ̸= j,∑
k,l=1,...,n+1

bi,kck,lal,j ∈ NB ⇒ s ·
∑

k,l=1,...,n+1

bi,kck,lal,j ∈ NB for all s ∈ B×.

Therefore, for all i, j = 1, ..., n+ 1, we have that∑
k,l=1,...,n+1

yi,kzk,lxl,j − δi,j =
∑

l=1,...,n+1

yi,1r
−1c1,lxl,j +

∑
l=1,...,n

yi,n+1cn+1,lxl,j

+
∑

k,l=1,...,n+1,k ̸=1,n+1

yi,kck,lxl,j + p−1r−1bi,n+1rcn+1,n+1pan+1,j − δi,j

=


∑
k,l=1,...,n+1 bi,kck,lal,j − δi,j ∈ NB if i = j = 1

p ·
∑
k,l=1,...,n+1 bi,kck,lal,j ∈ NB if i = 1 ̸= j

p−1 ·
∑
k,l=1,...,n+1 bi,kck,lal,j ∈ NB if i ̸= 1 = j∑

k,l=1,...,n+1 bi,kck,lal,j − δi,j ∈ NB if i, j ̸= 1

3. Similarly, for all i, j = 1, ..., n+ 1 such that i ̸= j, we have that∑
k,l=1,...,n+1

ci,kak,lbl,j ∈ NB ⇒ s ·
∑

k,l=1,...,n+1

ci,kak,lbl,j ∈ NB for all s ∈ B×.
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Therefore, for all i, j = 1, ..., n+ 1,∑
k,l=1,...,n+1

zi,kxk,lyl,j − δi,j =
∑

k=1,...,n+1

zi,kp
−1ak,1y1,j +

∑
l=1,...,n

zi,n+1an+1,lyl,j

+
∑

k,l=1,...,n+1,l ̸=1,n+1

zi,kak,lyl,j + rci,n+1pan+1,n+1p
−1r−1bn+1,j − δi,j

=


∑
k,l=1,...,n+1 ci,kak,lbl,j − δi,j ∈ NB if i = j = 1

r−1 ·
∑
k,l=1,...,n+1 ci,kak,lbl,j ∈ NB if i = 1 ̸= j

r ·
∑
k,l=1,...,n+1 ci,kak,lbl,j ∈ NB if i ̸= 1 = j∑

k,l=1,...,n+1 ci,kak,lbl,j − δi,j ∈ NB if i, j ̸= 1

This implies (X,Y, Z) = (ρ(A, p), λ(p−1, ρ(C, r−1)), λ(r, C)) ∈ RGLn(B), so l is well-defined. Therefore,
the last axiom is satisfied, so there exist group action λ and ρ such that the sequence

1 −→ SLn(B)
φ−→ GLn(B)

ψ−→ B× −→ 1,

is a strongly split short exact sequence. □

Corollary 4.10.1. Let B be a band. If, for all A ∈ GLn(B), it holds that an+1,n+1 ∈ B×, then
there is a bijection between the sets GLn(B) → SLn(B) × B× and RGLn(B) → RSLn(B) × RB× .

Furthermore, if GLn(B) is finite, then so are SLn(B) and B× and #GLn(B) = #SLn(B) ·#B×. If
RGLn(B) is finite, then so are RSLn(B) and RB× and #RGLn(B) = #RSLn(B) ·RB× . There is also a

crowd morphism θ : B× → Aut(SLn(B)) such that GLn(B) ∼= SLn(B) ∼= B×.

Proof: This follows directly from Theorems 4.10, 4.5, 4.7 and 4.10. □

Example 4.11 (The sign hyperfield and the regular partial field). Theorem 2.10 states that, for all
A ∈ GLn(S), an+1,n+1 = ±1 ∈ S×. Therefore, it follows from Proposition 4.10 that there exist crowd
morphisms φ and ψ, and a left group action λ and a right group action ρ such that

1 −→ SLn(S)
φ−→ GLn(S)

ψ−→ S× −→ 1,

together with these group actions, is a strongly split short exact sequence. The proof shows that
possible group actions are λ : S× × GLn(S), that takes a matrix A and mutliplies the first row and
an+1,n+1 by ±1, and ρ : GLn(S) × S×, that takes a matrix A and multiplies the first column and
an+1,n+1 by ±1. Recall that it followed from Theorems 3.5 and 3.6, that we can find all elements of
GLn(S) and RGLn(S) from the crowd SLn(S), by multiplying a row or column by −1. This is very
similar to these group actions. It turns out other possible groups actions λ and ρ to make the sequence
strongly split short exact sequence, are those that multiply another row or column and an+1,n+1 by
−1, or that exchange 2 rows or columns and multiply an+1,n+1 by −1. Note that they should affect
the same rows or columns, so if λ affects the fifth row, then ρ should affect the fifth column.
Since the sequence is strongly split, there exist bijective maps on the sets GLn(S) → SLn(S)×S× and
RGLn(S) → RSLn(S) ×RS× . Since S× = {1,−1}, and

RS× = {(1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1, 1,−1)},

it follows that GLn(S) is finite if and only if SLn(S) is finite, in which case #GLn(S) = 2 · SLn(S),
and RGLn(S) is finite if and only if RSLn(S) is finite, in which would imply #RGLn(S) = 4 ·RSLn(S).

Similarly, for all A ∈ GLn(F±
1 ), we have that an+1,n+1 = ±1 ∈ (F±

1 )× (see Theorem 2.13). Ad-
ditionally, (F±

1 )× = {1,−1} and R(F±
1 )× = {(1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1, 1,−1)}. Therefore

there is a bijection GLn(F±
1 ) → SLn(F±

1 ) × (F±
1 )×, and GLn(F±

1 ) is finite if and only if SLn(F±
1 )

is finite, in which case #GLn(F±
1 ) = 2 · #SLn(F±

1 ). There is also a bijection for the crowd laws,
RGLn(F±

1 ) → RSLn(F±
1 ) ×R(F±

1 )× , which implies RGLn(F±
1 ) is finite if and only if RSLn(F±

1 ) is finite, in

which case #RGLn(F±
1 ) = 4 ·#RSLn(F±

1 ).
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However, not every weakly split short exact sequence gives way to a strongly split short exact sequence.
An example of this is a weakly split short exact sequence, where the first crowd morphism is injective,
but not full.

5 Saturated crowds

In this section, we discuss some additional findings regarding a special type of crowd, namely saturated
crowds. These were introduced by Maxson in his thesis ([9, Chapter 1.3]), and are defined as follows.

Definition 5.1. A saturated crowd is a crowd G, where a−1 ⊂ b ·c, b−1 ⊂ c ·a and c−1 ⊂ a ·b, implies
(a, b, c) ∈ RG for all a, b, c ∈ G.

Maxson follows this by showing that SLn(K) is in fact a saturated crowd ([9, Theorem 3.8]). Using
Theorem 1.16 and the crowd isomorphism φ : SLn(K) → GLn(K), A 7→

[
A 0
0 1

]
from Section 3.1, we

can proof GLn(K) is saturated as well.

Theorem 5.2. GLn(K) is a saturated crowd.

Proof: Suppose A,B,C ∈ GLn(K) such that A−1 ⊂ B · C, B−1 ⊂ C · A and C−1 ⊂ A · B.
Then, for all D ∈ A−1, it follows that φ−1(D) ∈ (φ−1(A))−1 and φ−1(D) ∈ φ−1(B) · φ−1(C).
We can conclude that (φ−1(A))−1 ⊂ φ−1(B) · φ−1(C), and therefore it follows from symmetry that
(φ−1(B))−1 ⊂ φ−1(C) · φ−1(A) and (φ−1(C))−1 ⊂ φ−1(A) · φ−1(B). Since SLn(K) is a saturated
crowd, this implies (φ−1(A), φ−1(B), φ−1(C)) ∈ RSLn(K), which means (A,B,C) ∈ RGLn(K). There-

fore, for all A,B,C ∈ GLn(K), it holds that if A−1 ⊂ B · C,B−1 ⊂ C · A and C−1 ⊂ A · B, then
(A,B,C) ∈ RGLn(K), so GLn(K) is a saturated crowd. □

Other saturated crowds are hypergroups. These structures were originally introduced by Marty in
1934 ([8]). We use a slightly altered definition, which was given by Nakamura and Reyes ([10, Chapter
2]), that includes the existence of a unit element.

Definition 5.3. Let G be a set. A hyperoperation on G is a map ⊙ : G×G→ P(G), where the P(G)
is the set of all subsets of G. If A,B ⊂ G, then A⊙B =

⋃
a∈A,b∈B a⊙ b

Notation. Given an element a ∈ G and a subset B ⊂ G, we write a⊙B and B ⊙ a instead of {a} ⊙B
and B ⊙ {a}. So a⊙B =

⋃
b∈B a⊙ b and B ⊙ a =

⋃
b∈B b⊙ a.

Definition 5.4. A hypergroup is a triple (G,⊙, 1G), where G is a set, 1G ∈ G is the unit element and
⊙ : G×G→ P(G) is a hyperoperation, such that

1. for all x, y, z ∈ G, (x⊙ y)⊙ z = x⊙ (y ⊙ z) (associativity);

2. for all x, y ∈ G, x⊙ y ̸= ∅;

3. for all x ∈ G, {x} = x⊙ e = e⊙ x (unit element);

4. for all x, y, z ∈ G, x ∈ y ⊙ z ⇒ y ∈ x⊙ z−1 and z ∈ y−1 ⊙ x (reversibility).

Lemma 5.5. If (G,⊙, 1G) is a hypergroup, then

1. for all x, y, z ∈ G, x ∈ y ⊙ z ⇐⇒ y ∈ x⊙ z−1 ⇐⇒ z ∈ y−1 ⊙ x and

2. for all x ∈ G there is a unique y ∈ G such that e ∈ x⊙ y ∩ y ⊙ x. We write y = x−1.

Proof: This follows from the reversibility axiom, and the existence of a unit element. For a more
detailed explanation, see [10, page 415]. □

A hypergroup has a corresponding crowd. Recall that the crowd law is supposed to be the set of
all triples (a, b, c) such that abc is equal to the unit element. Therefore, for a hypergroup G, it makes
sense to use the crowd law R = {(a, b, c) ∈ G | 1G ∈ a ⊙ b ⊙ c}. Note that a ⊙ (b ⊙ c) = (a ⊙ b) ⊙ c,
and since inverses are unique, 1G ∈ (a ⊙ b) ⊙ c if and only if c−1 ∈ a ⊙ b. Therefore, the crowd of a
hypergroup is defined as follows.
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Definition 5.6. Let (G,⊙, 1G) be a hypergroup. Then the corresponding crowd is (G, 1G, RG), with
the crowd law

RG = {(a, b, c) ∈ G3 | c−1 ∈ a⊙ b}.

However, Lemma 5.5 implies the following corollary.

Corollary 5.6.1. Let G by a hypergroup. Then, for all a, b, c ∈ G, we have that

c−1 ∈ a⊙ b ⇐⇒ b−1 ∈ c⊙ a ⇐⇒ a−1 ∈ b⊙ c.

Proof: Let G be a hypergroup and a, b, c ∈ G be arbitrary. Then

c−1 ∈ a⊙ b ⇐⇒ b ∈ a−1 ⊙ c−1 ⇐⇒ a−1 ∈ b⊙ c

⇐⇒ c ∈ b−1 ⊙ a−1 ⇐⇒ b−1 ∈ c⊙ a.

Since a, b, c ∈ G were chosen arbitrary, this holds for all a, b, c ∈ G. □

Therefore, equivalent definitions of the crowd law of a hypergroup G are

RG = {(a, b, c) ∈ G3 | b−1 ∈ c⊙ a} and

RG = {(a, b, c) ∈ G3 | a−1 ∈ b⊙ c}.

Theorem 5.7. Let (G,⊙, 1G) by a hypergroup. Then the corresponding crowd (G, 1G, RG) is a satu-
rated crowd.

Proof: We need to check that G satisfies the 4 crowd axioms, and that it is saturated.

1. Since 1G is the unit element, we know that 1G⊙1G = {1G}. Therefore 1G ∈ (1G⊙1G)∩(1G⊙1G),
which means 1−1

G = 1G. This implies 1−1
G ∈ 1G ⊙ 1G, so (1G, 1G, 1G) ∈ RG and the first axiom

is satisfied.

2. Suppose (a, 1G, 1G) ∈ RG for some a ∈ G. Then 1−1
G = 1G ∈ a⊙1G = {a}, so a = 1G. Therefore

the second axiom is satisfied.

3. Suppose (a, b, 1G) ∈ RG for some a, b,∈ G. Then 1−1
G ∈ a⊙ b, so it follows from Corollary 5.6.1

that b−1 ∈ 1G ⊙ a = a ⊙ 1G. By applying the corollary again, we find that 1−1
G ∈ b ⊙ a, which

means (b, a, 1G) ∈ RG. Therefore (a, b, 1G) ∈ RG implies (b, a, 1G) ∈ RG, so the third axiom is
satisfied.

4. Suppose (a, b, c) ∈ RG for some a, b, c ∈ G. Then c−1 ∈ a⊙ b, so it follows from Corollary 5.6.1
that b−1 ∈ c⊙ a, which implies (c, a, b) ∈ RG. Therefore the fourth axiom is satisfied.

So (G, 1G, RG) is indeed a crowd. To proof that it is saturated, let a, b, c ∈ G and suppose that
a−1 ⊂ b · c, b−1 ⊂ c · a and c−1 ⊂ a · b. Then, for all f ∈ c−1, there is an e ∈ G such that
(e, f, 1G) ∈ RG and (a, b, e) ∈ RG. This implies

1G ∈ c⊙ f ⇒ f ∈ c−1 ⊙ 1G = {c−1} ⇒ f = c−1 and

1G ∈ e⊙ f ⇒ f ∈ e−1 ⊙ 1G = {e−1} ⇒ f = e−1.

It follows that e−1 = c−1, so

(a, b, e) ∈ RG ⇒ e−1 ∈ a⊙ b

⇒ c−1 ∈ a⊙ b

⇒ (a, b, c) ∈ RG.

Therefore, if a−1 ⊂ b · c, b−1 ⊂ c · a and c−1 ⊂ a · b, then (a, b, c) ∈ RG, which means G is a saturated
crowd. □

Note that, in the proof above, the condition c−1 ⊂ a ⊙ b was enough to proof that (a, b, c) ∈ RG.
Similarly, one can show that if b−1 ⊂ c · a or c−1 ⊂ a · b, then (a, b, c) ∈ RG.
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6 Conclusion

With crowds, we can study linear algebraic groups, such as the special and general linear group, over
bands. This leads to interesting results, including the theorem that the special linear group over a
band is always isomorphic to a subcrowd of the general linear group over that band (Theorem 3.3). It
turns out that there can be an even stronger connection between the linear groups. By defining and
applying a crowd version of the split short exact sequence, we see that if B is a band and n ∈ N such
that for all A ∈ GLn(B), the coefficient an+1,n+1 ∈ B×, then there is a bijection between the sets
SLn(B)×B× → GLn(B) and the crowd laws RSLn(B) ×RB× → RGLn(B) (Corollary 4.10.1).

An open question left by this thesis is whether this condition on the matrices in the general linear
group holds for all bands and dimensions. If it does not, are there other sequences for these bands,
that include SLn(B) and GLn(B), and for which there exist group actions such that it is a strongly
split short exact sequence? Another unanswered question is whether it is necessary to define Sp2n(B)
as a subset of SL2n(B), or if this follows from the rest of the definition (as it does for groups).
Further research could also include other (linear) algebraic crowds, such as the projective linear group
PGLn(B) over a band B.
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