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Abstract: In this report, the transformation of coherent states under the group SU(1, 1) is investigated.
The algebraic, geometric, and topological properties of SU(1, 1) are analyzed. These properties are used
to construct the unitary irreducible representations of the group. For the discrete representations, the
generalized coherent states are defined and examined. Finally, two methods are suggested to answer the
question of the transformation of canonical coherent states of the quantum harmonic oscillator in 1 + 1
dimensions.
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1 Introduction

The canonical coherent states (CCS) of the quantum harmonic oscillator are the most classical states of
the system. Their dynamics and time evolution resemble those of a classical harmonic oscillator. They are
also the minimal uncertainty states, meaning that the position and momentum uncertainties of these states
assume the equality of Heisenberg’s uncertainty principle. As such, they have many interesting properties
and a wide range of applications, both in theoretical and experimental physics.

One of the most fruitful ways to investigate a physical system is to look at its symmetries. The symmetry
of a system can tell us what is allowed and what is not allowed, what the conservation laws that govern
the system are, and so on. Therefore, determining the symmetries of a physical system is a useful tool for
gaining more knowledge about the system.

Once we determine the symmetry of a system, we can also ask how objects that are part of the system
transform under the symmetry of the system. To make this point a little clearer, let us give some well-known
examples from physics. For instance, in quantum field theory, we want our theory to be Lorentz invariant.
Therefore, a natural symmetry of the system that we are working with (the Minkowski spacetime) is the
Lorentz symmetry, which is denoted by the Lorentz group.

Consider a set of four-vectors that live in Minkowski space. In one inertial reference frame, they may
look in a certain way, and in a different inertial reference frame, they may look different. Therefore, they
transform between one inertial reference frame and the other, and since Lorentz transformations are the
elements of the Lorentz group, we say that the four-vectors transform under a certain element of the group.
This is what we mean when we say that x transforms as y under the group G.

Since the way certain objects transform under a group is a quite common and important theme in
physics, we want to do the same thing for the coherent states. We want to investigate the transformation
of the canonical coherent states under the symmetry group of the harmonic oscillator system in one space
dimension. After introducing the coherent states and establishing that the symmetry group of the system is
SU(1, 1), we have three goals in this report. Firstly, to examine the transformations of the coherent states,
we need to come up with the unitary irreducible representations of the group SU(1, 1). We will classify the
possible representations of this group and then realize them explicitly. Our second goal is to find a suitable
generalization of the canonical coherent states of the harmonic oscillator for more general systems that share
the same symmetry and apply it to our case for the discrete representations of SU(1, 1). Finally, by using the
results of the first two goals, we want to find explicit descriptions of the transformation of the canonical co-
herent states under the discrete representations. The first two goals are achieved in this report. For the third
goal, we also came up with an answer, but more work needs to be done in order to obtain more direct results.

Our plan for this report is as follows. After introducing the canonical coherent states in Chapter 2, we
will first establish the symmetry group of our system and show that this is isomorphic to another group
called SU(1, 1). Hence, we shall work towards the representations of the group. But some properties of
the group directly affect the possible representations of the group, so in Chapter 3 we will look at the
algebraic, geometric, and topological properties of the group SU(1, 1). Then, we want to find the irreducible
representations of the group to see how the coherent states transform under the group. Moreover, we want to
apply this to quantum systems, so we want a normalized vector to stay normalized under the transformation.
Hence, we are interested in the unitary irreducible representations of the group. In Chapter 4, we will classify
and realize all the unitary irreducible representations (irreps) of our group. In Chapter 5, we will introduce
a generalization of the CCS called generalized coherent states (GCS) and investigate the GCS of our group
SU(1, 1) under a certain unitary irrep of the group. In doing so, we will develop the necessary tools to
answer the question of how the generalized coherent states transform under the representations of the group.
Finally, in Chapter 6, we will return to the original question and ask how CCS transform under the group
SU(1, 1). We will answer this question by establishing a correspondence between generalized and canonical
coherent states. We will conclude the report by suggesting a different representation of the group that would
be helpful to investigate the transformation of canonical coherent states in a more direct way.
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Before starting the technical discussions, we would like to give some motivation for studying the subjects
in this report, both from a mathematical and a physical point of view.

1.1 Motivation for Physics

In experimental and theoretical physics, canonical coherent states play an important role in quantum optics
and laser physics [2, p. 107]. They bridge the gap between the quantum theory of light and the classical
theory of light [10, p. 47]. Because they resemble the classical states, they have many nice properties that
one can exploit.

In theoretical and mathematical physics, coherent states were used in the investigation of the following
problems: condensation phenomena in a system of interacting bosons, the existence of a classical limit for
quantum mechanical correlation functions in a class of field theories, proof of the virial theorem for liquid
helium, obtaining a quasiclassical description of solitons in nonlinear field theories, and many other examples
[14, p. 714].

As their name suggests, generalized coherent states are generalizations of the canonical coherent states of
the harmonic oscillator. They naturally arise in physics problems with dynamical symmetries. Generalized
coherent states allow for the simplification of the solution of a quantum problem by reducing it to a simpler,
classical problem [14, p. 703]. For example, the generalized coherent states for the discrete series representa-
tion of the group SU(1, 1) have applications in the problems of parametric excitation of a quantum oscillator
and the superfluidity of an almost-ideal Bose gas [14, pp. 717, 718].

The numerous examples above clearly demonstrate that both canonical and generalized coherent states
have many applications in diverse areas of physics. Therefore, a better understanding of these states may
lead to new insights in a variety of theoretical and experimental research areas. Transformation of coherent
states is a very fundamental property that one can investigate to gain a better understanding of these states.
However, their transformations are far from trivial, so it is quite desirable to obtain explicit results about
their transformations.

1.2 Motivation for Mathematics

We introduce and extensively use Lie groups and Lie algebras. Lie groups have direct applications in a num-
ber of areas in mathematics, including but not limited to analysis, algebraic topology, algebraic geometry,
differential geometry, number theory, and general topology. Another important application of Lie groups is
mathematical physics, in particular topics like gauge theory, particle phenomenology, and general relativity.
They act like a bridge between differential geometry and group theory, which is evident even from the defi-
nitions.

Due to their importance in modern mathematics, we wanted to study a subject that includes a significant
amount of Lie theory. It is one of the best topics that one can study that is mathematically deep and rigorous
with plenty of applications in physics.

Another topic on which this thesis is heavily based is representation theory. Representation theory has
applications in algebra, number theory, topology, discrete mathematics, physics, and computer science. Es-
pecially the representation theory of non-compact Lie groups uses a lot of methods from different branches of
mathematics and brings them together, which is also visible in this thesis: we use algebra, geometry, topol-
ogy, complex analysis, and functional analysis to come up with certain representations of a non-compact Lie
group.

One of the simplest non-compact, simple Lie groups is SL(2,R). Due to this, any set of lecture notes
written about the representation theory of Lie groups includes some discussion on the representations of
SL(2,R); for instance, see [9] in which there is an entire chapter on the unitary representations of SL(2,R).
This is essentially what we are doing in this report for the unitary irreducible representations of the group,
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after we identify its isomorphism with the group SU(1, 1). Because the group is non-compact, the unitary
representations of the group except the trivial representations are all infinite dimensional, which makes the
task of finding such representations highly nontrivial.

As a result, classifying unitary irreducible representations of the group SU(1, 1) is very applicable to a
wide range of problems in representation theory.

2 Background Material

2.1 Prerequisites

In this thesis, we assume some background knowledge that is acquired by the physics and mathematics
courses that are taught at the Bachelor’s degree of the University of Groningen. Especially some famil-
iarity with nonrelativistic quantum mechanics and basics of group theory (definition of groups, group ho-
momorphisms, definition of representations, reducible/irreducible representations) is essential, and relevant
definitions/theorems are used with very little or no explanation. Additional topics that are needed for the
thesis include Hamiltonian mechanics, complex analysis, geometry, functional analysis, general topology, and
theory of smooth manifolds. However, the later topics are used at a basic level and most of the report should
still be accessible if some of the background knowledge is missing.

2.2 Quantum Harmonic Oscillator and Canonical Coherent States

Recall that the stationary states |n⟩ of the quantum harmonic oscillator in 1+1 dimensions have the position
representations [11, p. 57]

|n⟩ = ⟨x|n⟩ = ψn(x) = (
mω

πℏ
)1/4

1√
2nn!

Hn(ξ)e
−ξ2/2 (2.1)

where m is the mass, ω is the angular frequency, ℏ is Planck’s constant, ξ =
√

mω
ℏ x and Hn(ξ) are the

Hermite polynomials. Throughout this chapter, we will use |n⟩ and ψn interchangeably to denote the nth

energy eigenstate of the harmonic oscillator.

When we calculate the position and momentum uncertainty of the stationary states, we find that their
product depends on the state n: σxσp = (2n + 1)ℏ/2. Hence, among the energy eigenstates of the system,
only the ground state of n = 0 hits the uncertainty limit. One can ask if there are solutions to the harmonic
oscillator system, other than the vacuum state, that also minimize the uncertainty product. In this section,
we will define canonical coherent states (CCS) of the harmonic oscillator and show that they indeed minimize
the uncertainty product. We will also investigate some of their properties.

Recall the raising and lowering operators of the harmonic oscillator: a± = 1√
2ℏmω (∓ip+mωx) where x

and p are the position and momentum operators, respectively. They have the property

a−|n⟩ =
√
n|n− 1⟩, a+|n⟩ =

√
n+ 1|n+ 1⟩ (2.2)

Furthermore, they are the Hermitian conjugates of each other: (a+)
∗ = a−. With these simple reminders,

we are ready to give the definition of canonical coherent states.

Definition 2.1. The canonical coherent states of the quantum harmonic oscillator are the normalized
eigenfunctions of the lowering operator: a−|α⟩ = α|α⟩ with the eigenvalue α any complex number.

We now prove the most important property of CCS: they are minimum uncertainty states.

Theorem 2.2. Let |α⟩ be a canonical coherent state. Then, σxσp = ℏ/2, where σo is the standard deviation
of the operator o.
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Proof. We begin by calculating the expectation value of x, ⟨x⟩ = ⟨α|x|α⟩. In terms of the raising and

lowering operators, x is given by x =
√

ℏ
2mω (a+ + a−) := c(a+ + a−). Then, we get

⟨x⟩ = ⟨α|x|α⟩ = ⟨α|ca+ + ca−|α⟩ = c⟨a−α|α⟩+ c⟨α|α|α⟩ = c(α+ α) =

√
ℏ

2mω
2Re(α) (2.3)

where z denotes the complex conjugate of z. With similar algebraic manipulations, we obtain

⟨x2⟩ = ℏ
2mω

(1 + 4Re2(α)), ⟨p⟩ = −i
√

ℏmω
2

2Im(α), ⟨p2⟩ = ℏmω
2

(1− 4Im2(α)). (2.4)

Using the expressions above, we get σ2
x = ℏ

2mω and σ2
p = ℏmω

2 , so that σxσp = ℏ/2.

We would like to express the coherent states in the basis of the energy eigenstates. The next theorem
provides an expression for this.

Theorem 2.3. The canonical coherent state |α⟩ is given by |α⟩ = e−|α|2/2 ∑∞
n=0

αn
√
n!
|n⟩ in terms of the

stationary states |n⟩ of the harmonic oscillator.

Proof. Because the energy eigenstates form a basis of the Hilbert space, we can write |α⟩ =
∑∞
n=0 cn|n⟩ for

some coefficients cn. For a fixed value of n, we can find this coefficient by calculating

cn = ⟨n|α⟩ = 1√
n!
⟨(a+)nψ0|α⟩ =

1√
n!
⟨ψ0|(a−)nα⟩ =

a√
n!
αn⟨ψ0|α⟩ =

αn√
n!
c0. (2.5)

We can determine c0 by normalizing the coherent state. Observe that

⟨α|α⟩ =
∑
n=0

|cn|2 =
∑
n=0

|α|2n

n!
|c0|2 = e|α|

2

|c0|2 = 1. (2.6)

Hence, we have |c0|2 = e−|α|2 , so we can choose c0 = e−|α|2/2. Putting everything together, we get

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩. (2.7)

The canonical coherent states of the harmonic oscillator are usually said to be the most classical states,
meaning that their dynamics resemble the oscillatory behavior of the classical harmonic oscillator the most.
This is especially true in the field of quantum optics, where the canonical states play a crucial role because
of their similarities to the classical states. For a great discussion of the similarities of the coherent states of
light with the classical states of light, see Chapter 3 of [10]. On top of minimizing the uncertainty product,
coherent states also stay coherent over time with their eigenvalues evolving in an oscillatory fashion, which is
another reason why they resemble a set of classical states. The following theorem formalizes this [11, p. 129].

Theorem 2.4. Adding the time dependence |n⟩ → e−iEnt/ℏ|n⟩, the time-dependent quantum state of the
canonical coherent state |α⟩, denoted by |α(t)⟩, remains an eigenstate of a− and the eigenvalue evolves as
α(t) = e−iωtα over time.

Proof. Recall that the energies of the stationary states are given by En = (n+ 1
2 )ℏω. Hence, we obtain

|α(t)⟩ =
∑
n=0

αn√
n!
e−|α|2/2e−iEnt/ℏ|n⟩ =

∑
n=0

αn√
n!
e−|α|2/2e−i(n+1/2)ωt|n⟩ = e−iωt/2

∑
n=0

(αe−iωt)n√
n!

e−|α|2/2|n⟩.

(2.8)
Apart from the global phase factor, which is physically irrelevant, |α(t)⟩ is the same as |α⟩ with the

eigenvalue α(t) = e−iωtα.
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Because their eigenvalues evolve over time, canonical coherent states are not energy eigenstates. However,

their time evolution looks like one: id|α(t)⟩dt = ω|α(t)⟩. This is one of the reasons why the time evolution of
the canonical coherent states resembles the evolution of the classical harmonic states.

There is an alternative definition of the canonical coherent states of the harmonic oscillator in terms of
the displacement operator. We start by defining this operator.

Definition 2.5. The displacement operator D is defined as the unitary operator D(α) = eαa+−αa− with
α ∈ C.

The displacement operator can also be expressed as follows.

Proposition 2.6. D(α) = e−|α|2/2eαa+e−αa−

Proof. Let A = αa+, B = −αa−. Then [A,B] = |α|2, which is a real number. Because real numbers commute
with operators, we have [A, [A,B]] = [B, [B,A]] = 0. Using the Baker–Campbell–Hausdorff formula, we get

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [B,[B,A]]+··· = eA+B+ 1

2 |α|
2

(2.9)

so that eA+B = eAeBe−|α|2/2. This shows that D(α) = e−|α|2/2eαa+e−αa− .

With this proposition at hand, we are ready to state the following theorem.

Theorem 2.7. The coherent state |α⟩ is generated by the action of the displacement operator on the vacuum
state: |α⟩ = D(α)|0⟩.

Proof. First, observe that we have e−αa− |0⟩ =
∑
l=0

(−αa−)l

l! |0⟩ = |0⟩ since al−|0⟩ = 0 for all l except l = 0.
We similarly compute

eαa+ |0⟩ =
∑
n=0

αn

n!
(a+)

n|0⟩ =
∑
n=0

αn√
n!
|n⟩ (2.10)

where we use the identity that |n⟩ = 1√
n!
(a+)

n|0⟩. Combining the equalities above, we obtain |α⟩ =

D(α)|0⟩ = e−|α|2/2 ∑∞
n=0

αn
√
n!
|n⟩.

This theorem allows us to give an alternative definition: coherent states are generated by the action of
D(α) on the vacuum state.

This theorem also shows why this operator is called the displacement operator. Eq. 2.4 shows that the
expectation values for the operators x and p of the ground state |0⟩ are both 0. Therefore, we can represent
the ground state as the origin of a 2−dimensional phase space where the real axis represents the expectation
value of x and the imaginary axis represents the expectation value of p with appropriate scaling factors.
Again, the expressions in Eq. 2.4 show that the expectation values for x and p of the canonical coherent
states with the eigenvalue α are also proportional to the real and imaginary parts of the complex number α.
As a result, the displacement operator D(α) displaces the vacuum state from the origin of the phase space
to the point α of the phase space, which corresponds to the canonical coherent state of |α⟩. For more details
on the geometric interpretation of the canonical coherent states in phase space, see [10, Section 3.6].

Another interesting property of the coherent states is that they are not mutually orthogonal. In other
words, if one takes two different coherent states, their inner product will be nonzero. We demonstrate this
in the next proposition, where we see the value of the alternative definition in terms of the displacement
operators [2, p. 114].

Proposition 2.8. Coherent states do not form an orthogonal set. In particular, the inner product of two

coherent states is given by ⟨β|α⟩ = e−
1
2 (|α|

2+|β|2)+αβ.
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Proof. Using Theorem 2.7 and Proposition 2.6, we calculate

⟨β|α⟩ = ⟨0|D†(β)D(α)|0⟩ = ⟨0|e−βa+e−βa−eαa+e−αa− |0⟩e− 1
2 (|α|

2+|β|2). (2.11)

Expanding the Taylor series for the exponential function, we can use our results from the proof of
Theorem. 2.7 to get

⟨0|(1 + βa− + · · · )(1 + αa+ + · · · )|0⟩ = (· · ·+ ⟨1|β + ⟨0|)(|0⟩+ α|1⟩+ · · · ). (2.12)

Finally, using the orthogonality of the stationary states, we get

⟨β|α⟩ = e−
1
2 (|α|

2+|β|2)(1 + αβ +
1

2!
(αβ)2 + · · · ) = e−

1
2 (|α|

2+|β|2)+αβ . (2.13)

Although coherent states are not orthogonal, they still have the following completeness relation, which
is also called a resolution of the identity [2, p. 115].

Theorem 2.9. The completeness relation of the coherent states are given by 1
π

∫
d2α|α⟩⟨α| = I, where d2α

represents the area element dxdy with z = x + ip, and the integration is evaluated over the entire complex
plane C.

Proof. Using the expression of coherent states in terms of the energy eigenstates, we obtain

1

π

∫
d2α|α⟩⟨α| = 1

π

∑
n,m≥0

1√
n!m!

|n⟩⟨m|
∫
d2αe−|α|2αn(α)m. (2.14)

Let α = reiφ. The integral on the right-hand side can be evaluated as∫
d2αe−|α|2αn(α)m =

∫ ∞

0

rdre−r
2

rn+m
∫ 2π

0

dφei(n−m)φ = 2π

∫ ∞

0

rdre−r
2

rn+mδnm (2.15)

where δnm is the Kronecker delta. Moreover, with the change of variables of r2 = t, 2rdr = dt, we can
evaluate

2

∫ ∞

0

rdre−r
2

r2n =

∫ ∞

0

e−ttndt = Γ(n+ 1) = n! (2.16)

to recover the definition of the gamma function. Combining everything, we obtain

1

π

∫
d2α|α⟩⟨α| = 1

π

∑
n

1

n!
|n⟩⟨n|πn! =

∑
n

|n⟩⟨n| = I. (2.17)

Using the last two statements, we see that the coherent states form an overcomplete set. This means that
any coherent state can be expanded in terms of the other coherent states, and hence they are not linearly
independent. Combining Theorem 2.9 and Proposition 2.8, we get the following expression of a coherent
state as a continuous linear combination of other coherent states:

|β⟩ = 1

π

∫
d2α|α⟩⟨α|β⟩ = 1

π

∫
d2α|α⟩e− 1

2 (|α|
2+|β|2)+αβ . (2.18)
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2.3 Description of the Problem

In the last section, we defined the canonical coherent states of the harmonic oscillator and looked at some
of their properties. A very fundamental question that one can ask is the following: How do the canonical
coherent states transform under the symmetry of the harmonic oscillator system?

But to ask this question meaningfully, we should first answer a simpler yet crucial question: What is the
symmetry of the harmonic oscillator system? In this section, we will answer this question, and once we find
the answer, we will tackle the more challenging question about the transformation of the coherent states
under this symmetry of the system.

The mechanical system of the quantum harmonic oscillator can be analyzed using Hamiltonian mechanics.
Indeed, when we analyze the harmonic oscillator, we start with the Hamiltonian of the system and solve the
Schrödinger equation using this Hamiltonian. Although the idea of generalized coordinates that is familiar
in Hamiltonian mechanics does not seem to appear when we are working in quantum mechanics, this is not
the fault of quantum mechanics but rather the picture that we usually work with. Indeed, in the Schrödinger
picture of quantum mechanics, the wavefunctions are usually expressed in the position basis, and one can take
the Fourier transform to move to the momentum basis. This hints at the interconnectedness of position and
momentum while describing the system. In fact, there are alternative formulations of quantum mechanics
where the quantum states depend both on position and momentum in a much more explicit way. An
example of this formalism is called the Wigner functions, introduced by Eugene Wigner. For an introduction
to Wigner functions, see [12] and [4]. As a simple example, the Wigner function of the ground state of the
harmonic oscillator is given by

W0(x, p) =
1

πℏ
exp(−a2p2/ℏ2 − x2a2) (2.19)

where a2 = ℏ
mω .

In this view, the harmonic oscillator is also a Hamiltonian system, and we will look for the symmetry
of the phase space. Although the following arguments are based on the Hamiltonian formalism of classical
mechanics, for dynamical systems with quadratic potentials such as the quantum harmonic oscillator, the
obtained results also correspond to the symmetries of quantum systems.

Recall the Hamilton’s equations of motion in two-dimensional phase space:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
(2.20)

where H is the Hamiltonian of the system, and q and p are the generalized position and momentum,
respectively. Defining η = (q, p), we can rewrite Eq. 2.20 as

η̇ = J∇ηH (2.21)

where η̇ is the time derivative of η, J is the matrix
(

0 1
−1 0

)
, and ∇η =

( ∂
∂q
∂
∂p

)
is the derivative with respect

to η coordinates.

Consider now a differentiable function F (η) = F
( q
p

)
=

( f(q,p)
g(q,p)

)
=

( q′
p′

)
= ε that preserves the form

of Hamilton’s equations. Such a coordinate transformation is called a canonical transformation. Denote

the Jacobian of this function as M := DF (η) =
( ∂f

∂q
∂f
∂p

∂g
∂q

∂g
∂p

)
. Under this change of coordinates, the partial

derivatives transform as ∂
∂q = ∂f

∂q
∂
∂q′ +

∂g
∂q

∂
∂p′ ,

∂
∂q = ∂f

∂q
∂
∂q′ +

∂g
∂q

∂
∂p′ . Observe that this can be written

compactly as ∇ηH =MT∇εH where we act on the Hamiltonian, so that

η̇ = J∇ηH = JMT∇εH. (2.22)

It also follows by the chain rule that ε̇ =Mη̇. Hence, we have the equation
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ε̇ = J∇εH =Mη̇ =MJMT∇εH (2.23)

which shows thatMJMT = J . As a result, the Jacobian matrices of all the canonical transformations satisfy
the condition above, called the symplectic condition. These matrices form a group, called the symplectic
group in dimension 2, denoted by Sp(2,R). Of course, it is trivial to extend this to higher-dimensional phase
spaces to obtain the symplectic group of Sp(2N,R) where N is the dimension of the physical system.

Let us denote M =
(
a b
c d

)
, then the symplectic condition gives

MJMT =
(
a b
c d

)(
0 1
−1 0

)(
a c
b d

)
=

(
0 −bc+ad

−ad+bc 0

)
=

(
0 1
−1 0

)
= J. (2.24)

Hence, the group Sp(2,R) is given by

Sp(2,R) = {M =
(
a c
b d

)
: detM = 1, a, b, c, d ∈ R}. (2.25)

We can observe that this is also the definition of the group SL(2,R), so that we automatically get
Sp(2,R) ∼= SL(2,R) as groups. In Chapter 3 we will define another group called SU(1, 1) that is also iso-
morphic to Sp(2,R), and use this group for the rest of the report.

We are ready to define the problem that we will investigate in this report. Given the coherent states of
the quantum harmonic oscillator, how do these states transform under the group SU(1, 1) which is a natural
symmetry of the system? Is it possible to generalize the idea of coherent states and see how they transform
under the group SU(1, 1)? In the remainder of the report, we will develop tools to answer these questions.

In order to answer the question ”How does x transform under the group G?” we need to use representation
theory. Therefore, we need to find representations of the group SU(1, 1) that will act on the coherent states.
Furthermore, the representations of finite or semi-simple Lie groups (see Definition 3.4) can be written as a
direct sum of irreducible representations. Hence, to investigate the representations of the group, we should
find the irreducible representations of SU(1, 1). Moreover, we want to act on the coherent states of the
harmonic oscillator with these irreducible representations, which are special quantum states. In quantum
mechanics, physical systems have a norm of one because of their statistical interpretation. Hence, after we
transform a coherent state, we would like the transformed state to be also normalized. As a result, we would
like to have a unitary representation that would preserve the inner product of the underlying Hilbert space.
Putting everything together, we are after the unitary irreducible representations of the group SU(1, 1) to
investigate the transformation of coherent states. Although this seems like a rather technical request, it
naturally follows from all the conditions that we want to satisfy.

2.4 Lie Groups, Lie Algebras, Representations

In order to answer the questions we discussed above, we need tools from the branch of mathematics called
Lie theory. It is a vast topic with many applications in mathematics and theoretical physics. In this section,
we will very briefly introduce most of the notions that we need for the rest of the report related to Lie groups
and Lie algebras. Some definitions will be introduced later when they are needed.

We start with the definition of a Lie group [16, p. 151].

Definition 2.10. A real Lie group G is a smooth manifold that is also an algebraic group, with the property
that the multiplication map µ : G ×G → G,µ : (g, h) 7→ gh, and the inversion map ι : G → G, ι : g 7→ g−1

are smooth.

In both physics and mathematics, Lie groups are analyzed mostly from an algebraic perspective. This
motivates us to give an alternative working definition of a Lie group, which is not perfectly rigorous but
works for most cases reasonably well: ”A Lie group is a group whose elements depend on a set of parameters
analytically, i.e. g = g(x1, · · · , xn) with the number of parameters denoting the dimension of the Lie group.”
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Next, we give the definition of a Lie algebra. Initially, it looks completely unrelated to the definition of
a Lie group, but as we will see, they are intimately related to one another.

Definition 2.11. A real Lie algebra L of dimension n is a real n-dimensional vector space endowed with a
product [a, b] called the Lie product, with the properties

1. [a, b] ∈ L, ∀a, b ∈ L

2. [αa+ βb, c] = α[a, c] + β[b, c], ∀a, b, c ∈ L, ∀α, β ∈ R

3. [a, b] = −[b, a]

4. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, ∀a, b, c ∈ L

where the last property is known as the Jacobi identity.

For the remainder of the report, we will be working with the commutator [A,B] = AB −BA as the Lie
product.

How is the Lie algebra related to the Lie group? The following theorem answers this question.

Theorem 2.12. Let G be a Lie group. The tangent space to G at the identity element e is a Lie algebra
in the sense of Definition 2.11. It is usually denoted by TeG := g (name of the group written in italic and
lowercase letters, e.g. the group is SU(1, 1) and its Lie algebra is su(1,1)).

We will not prove this theorem, but the interested reader can see a proof, for instance, in Appendix A
of [16]. Since the Lie algebra of a Lie group is the tangent space at the identity, we can find the elements of
the Lie algebra by defining smooth curves on the Lie group and looking at the vector space spanned by the
derivatives of these smooth curves. Because we can see the Lie group as a group whose elements analytically
depend on a set of parameters, we can generate the elements of the Lie algebra by differentiating the group
with respect to different parameters at t = 0. Hence, one should choose a parameterization g = g(x1, · · · , xn)
such that g(x1(t), · · · , xn(t))|t=0 = e. Some examples will be given in the following chapter.

Because the Lie algebra L is a vector space of dimension n, we can fix a basis {a1, · · · , an}. Consider
the Lie products [ap, aq]. Since they are also elements of the Lie algebra, they can be written as linear
combinations of basis elements:

[ap, aq] =

n∑
r=1

frpqar. (2.26)

The terms frpq are called the structure constants, and they fully specify the Lie algebra.

We saw that one can go from the Lie group to the Lie algebra by differentiating the curves that param-
eterize the group at the identity. To go from the Lie algebra to the Lie group, we use the exponential map
exp, which is defined as the usual exponential map for matrices:

eA =

∞∑
n=0

An

n!
. (2.27)

The following theorem justifies this [3, p. 26].

Theorem 2.13. For all a ∈ L there exists a one-parameter subgroup of G that can be defined by T (t) =
exp(ta), t ∈ R.

We now introduce a representation of the Lie algebra that will be useful for some of the upcoming
theorems, called the adjoint representation [3, p. 31].
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Definition 2.14. Let L be an n-dimensional Lie algebra with a basis {a1, · · · , an}. The adjoint represen-
tation ad is defined by

[a, aj ] =

n∑
k=1

ak(ad(a))kj . (2.28)

One can check that the matrix elements of ad(a) relate to the structure constants as follows:

(ad(ap))kj = fkpj . (2.29)

We now introduce a definition that will be used a lot in the following chapters.

Definition 2.15. A Casimir operator is a quadratic operator that commutes with all elements of the Lie
algebra.

Even though these terms may be new to physics students, we have been using them a lot without realizing
it. Take, for instance, angular momentum, which is related to the rotations in space. The group of rotations
in three dimensions is a Lie group called the special orthogonal group, denoted by SO(3). In quantum
mechanics, we define the angular momentum operators Lx, Ly, Lz, which are nothing but the basis elements
of the Lie algebra so(3). We say that they generate rotations about the x, y, z− axes, respectively. We then
define the operator L2 = L2

x + L2
y + L2

z and note that it commutes with the operators Lx, Ly, Lz. L2 is
nothing but the Casimir operator, since it commutes with any vector of the form axLx + ayLy + azLz, so it
commutes with every element of the Lie algebra. This example shows that Lie groups and Lie algebras show
up everywhere in physics very naturally, and physics students are already using these concepts implicitly.

We continue with another definition.

Definition 2.16. The Killing form B(a, b) of the two elements a, b of a Lie algebra L is defined by

B(a, b) = Tr[ad(a)ad(b)] (2.30)

where Tr is the trace function and ad is the adjoint representation.

If ap is a basis element of L, then the adjoint representation of ap is the matrix given by ad(ap)kj = fkpj ,

where fkpj are the structure constants of the Lie algebra. Now, take two arbitrary elements a, b in L and
write them as

a =
∑
p

αpap, b =
∑
q

βqaq. (2.31)

Their matrix product in the adjoint representation is given by

(ad(a)ad(b))ij =
∑
p

∑
q

∑
k

αp(ad(ap))ikβq(ad(aq))kj =
∑
p

∑
q

αpβq
∑
k

f ipkf
k
qj . (2.32)

We need to take the trace of this matrix:

Tr[ad(a)ad(b)] =
∑
p,q

(
∑
k,j

f ipkf
k
qj)αpβq =

∑
p,q

gpqαpβq (2.33)

where we defined

gmn = gnm =
∑
k,l

fkmlf
l
nk. (2.34)

We note that for a semi-simple Lie algebra (see Definition 3.7) one can view gmn as a metric tensor where
the inner product is given by the Killing form. Then gmn is called the Cartan metric tensor.

There is much more to be said about Lie groups and Lie algebras, but we conclude this chapter with the
following theorem [3, p. 100].
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Theorem 2.17. Let {a1, · · · , an} be a basis of a semi-simple Lie algebra and V be the carrier space of some
representation of L whose linear operators are denoted by Φ(a), a ∈ L. Then the Casimir operator C2 is
given by

C2 =

n∑
p,q=1

gpqΦ(ap)Φ(aq) (2.35)

where gpq is the inverse of the Cartan metric tensor.

3 Basics of SU(1, 1)

As discussed in the previous chapter, we want to find the unitary irreducible representations of the group
SU(1, 1). To achieve this, we need to take a closer look at the group itself. In both Chapter 4 and Chapter 5,
we will make use of the geometric, algebraic, and topological properties of the group that we will investigate
in this chapter.

3.1 Why SU(1, 1)? The relation between SU(1, 1) and the Symplectic Group

In this section, we will define the group SU(1, 1) and show that it is isomorphic to Sp(2,R) as a group. This
makes it possible to work with SU(1, 1) as a symmetry group of the quantum harmonic oscillator.

Let U be a 2 × 2 matrix with complex entries, and define the matrix g =
(
1 0
0 −1

)
. The special unitary

group of signature (1, 1), denoted by SU(1, 1) is the group of all matrices of unit determinant that satisfies
the equation

U†gU = g (3.1)

where U† is the conjugate transpose of U . Noting that g−1 = g, this equation can equivalently be written as

U† = gU−1g−1. (3.2)

Let U =
( α β
γ δ

)
. Then, we have

gU−1g−1 =

(
δ β
γ α

)
= U† =

(
α γ

β δ.

)
(3.3)

This gives the relations δ = α and γ = β. As a result, we have the following definition:

SU(1, 1) = {U ∈M2(C) : U =

(
α β

β α

)
, |α|2 − |β|2 = 1}. (3.4)

As discussed before, the reason we are interested in the group SU(1, 1) is because it is isomorphic to
the symmetry group of the 1-dimensional quantum harmonic oscillator, Sp(2,R). We now establish this
isomorphism [1, p. 591]. Define the map

f : SU(1, 1) → Sp(2,R), W 7→ W̃ = TWT−1 (3.5)

where T is the unitary matrix T = 1√
2

(
1 −i
−i 1

)
. We first check that the map is well-defined. Note that

the matrix W̃ is given by W̃ =

(
α1 − β2 −α2 + β1
α2 + β1 α1 − β2

)
where α = α1 + iα2, β = β1 + iβ2 and W =(

α β

β α

)
, |α|2−|β|2 = 1. Clearly, the entries of W̃ are real. Furthermore, det W̃ = (α2

1+α
2
2)−(β2

1+β
2
2) = 1.

As a result, W̃ ∈ Sp(2,R), so the map is well-defined.

We check that the map is a group homomorphism. This follows from
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f(W1W2) = TW1W2T
−1 = TW1T

−1TW2T
−1 = f(W1)f(W2). (3.6)

Finally, the map is bijective because the inverse of f is given by

f−1 : Sp(2,R) → SU(1, 1), W̃ 7→= T−1W̃T. (3.7)

Therefore, we conclude that f is a group isomorphism and we have SU(1, 1) ∼= Sp(2,R) ∼= SL(2,R).
Establishing these isomorphisms is useful because we can go back and forth between the groups to determine
their algebraic properties, based on convenience.

3.2 Parameterization, Lie Algebra, and Generators

Now that we have the definition of SU(1, 1), let us look at some of the algebraic properties of the group. We
start with a simple parameterization of the group, from which we compute the corresponding Lie algebra of
su(1,1).

If U ∈ SU(1, 1), then we have U =

(
α β

β α

)
=

(
a− bi c− di
c+ di a+ bi

)
with a2 + b2 − c2 − d2 = 1. If we pick

a > 0, then we can treat b, c, d as continuous parameters of the group and write U(b, c, d) with U(0, 0, 0) = I.
From this, one can compute the derivatives of the parameters at the identity to compute the generators of
the Lie algebra. We thus get

∂U

∂b

∣∣∣∣
I
=

(
−i 0
0 i

)
,

∂U

∂c

∣∣∣∣
I
=

(
0 1
1 0

)
,

∂U

∂d

∣∣∣∣
I
=

(
0 −i
i 0

)
. (3.8)

We define the basis elements of the Lie algebra, in other words, the generators of su(1,1) as

b0 =
i

2

∂U

∂b

∣∣∣∣
I
=

1

2

(
1 0
0 −1

)
=

1

2
σ3, b1 =

i

2

∂U

∂c

∣∣∣∣
I
=
i

2

(
0 1
1 0

)
=
i

2
σ1, b2 =

i

2

∂U

∂d

∣∣∣∣
I
=
i

2

(
0 1
1 0

)
=
i

2
σ2

(3.9)
where σj are the Pauli matrices. They obey the commutation relations

[b1, b2] = −ib0, [b2, b0] = ib1, [b0, b1] = ib2. (3.10)

Therefore, the structure constants are given by

f012 = −i, f120 = i, f201 = i, 0 otherwise. (3.11)

In Section 3.3.4 we will show that SU(1, 1) is simple, so we can construct the Cartan metric tensor with

g00 =
∑
k,m

fk0mf
m
0k = 2, g11 = −2, g22 = −2, 0 otherwise. (3.12)

This gives the Cartan metric tensor as

g =

2 0 0
0 −2 0
0 0 −2

 (3.13)

with the inverse

g−1 =

1/2 0 0
0 −1/2 0
0 0 −1/2

 . (3.14)

From this, we construct the second order Casimir operator by

C2 =

2∑
p,q=0

gpqΦ(bp)Φ(bq) =
1

2
Φ2(b0)−

1

2
Φ2(b1)−

1

2
Φ2(b2) =

1

2
B2

0 − 1

2
B2

1 − 1

2
B2

2 (3.15)
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where gpq is the inverse of the Cartan metric tensor, and ϕ(bj) = Bj are the operators in the carrier space
of the Lie algebra. Of course, one can scale the structure constants without changing the structure of the
Lie algebra, so that we can scale the Cartan metric tensor and the Casimir operator as well. It makes sense
that if C2 commutes with all elements of the Lie algebra, then λC2 will commute with all elements as well,
where λ is some scalar. Using this freedom, we define the Casimir operator of our group as

Cas = B2
0 −B2

1 −B2
2 . (3.16)

3.3 Algebra and Topology

In this section, we will show some of the algebraic and topological properties of the group SU(1, 1).

3.3.1 Dimension

When we computed the generators of the Lie algebra in Eq. 3.9, we already found 3 linearly independent
vectors in su(1,1) which span the whole space, so we know already that the dimension of the Lie algebra is
3. This was trivial to obtain because we had an explicit parameterization of the entire group, where we had
4 real parameters and 1 equation, giving us 3 free real parameters. Here, we present an alternative, more
general way of determining the dimension of a Lie group from its Lie algebra.

To achieve this, we first state the following theorem [16, p. 39].

Theorem 3.1. Let M be a smooth manifold of dimension n and p ∈ M . Then TpM is a vector space of
dimension n.

A direct corollary of the above theorem is that we can find the dimension of a (connected) smooth man-
ifold (i.e. the Lie group) by looking at the dimension of its tangent space at a point, which is precisely the
Lie algebra if the point is the identity element of the group.

Let us use the group SL(2,R) for this. Recall that U ∈ SL(2,R) if U =

(
a b
c d

)
: ad−bc = 1. Suppose U

is close to the identity so that U = exp(ta) for some a ∈ sl(2,R) and for some sufficiently small t ∈ R. Then,
det(eta) = eTr(ta) = 1, so that Tr(a) = 0. Therefore, sl(2,R) consists of traceless 2× 2 matrices. Therefore,
sl(2,R) has dimension 3. Since SU(1, 1) is isomorphic to SL(2,R) as a group, su(1,1) is isomorphic to
sl(2,R) as a Lie algebra, and hence the dimension of su(1,1) is 3 as well. Using Theorem 3.1, we conclude
that SU(1, 1) is three dimensional, verifying our initial finding.

3.3.2 Connectedness

In this section, we introduce another parameterization for SU(1, 1), which is used to show the connectedness
of the group. Moreover, the subgroups generated by this parameterization will be used in the following
chapter as well.

Let g ∈ SU(1, 1) such that g =

(
α β

β α

)
, |α|2 − |β|2 = 1. Without loss of generality, we can as-

sume that α = cosh t2e
i(φ+ψ)/2, β = sinh t2e

i(φ−ψ)/2 where (φ, t, ψ) runs through 0 ≤ φ < 2π, 0 ≤ t < ∞,

−2π ≤ ψ < 2π. This follows from the identity cosh2 x− sinh2 x = 1 and the fact that any phase can be ob-
tained with combinations of φ+ψ2 , φ−ψ

2 in the given range of parameters. Essentially, we are parameterizing
two complex numbers with magnitude squares differing by one, which is all we need to parameterize SU(1, 1).

Note, however, that this provides a very nice factorization of our group:

g(φ, t, ψ) =

(
cosh t2e

i(φ+ψ)/2 sinh t2e
i(φ−ψ)/2

sinh t2e
i(ψ−φ)/2 cosh t2e

−i(φ+ψ)/2

)
= g(φ, 0, 0)g(0, t, 0)g(0, 0, ψ) (3.17)

Based on the factorization in Eq. 3.17, we define the following one-parameter subgroups of SU(1, 1):
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ω1(t) = g(0, t, 0) =

(
cosh t2 sinh t2
sinh t2 cosh t2

)
, ω2(t) =

(
cosh t2 isinh t2

−isinh t2 cosh t2

)
, ω0(t) = g(t, 0, 0) =

(
eit/2 0
0 e−it/2

)
.

(3.18)
Take an arbitrary matrix in SU(1, 1) and write it as above so that g′ = g(φ′, t′, ψ′). Fix the parameters

t′, ψ′ and continuously change the φ parameter to 0. Crucially observe that for any 0 ≤ φ ≤ φ′, g(φ, t′, ψ′)
is still in SU(1, 1) as all the parameters are still in the given range. One can repeat the same argument with
t′ and ψ′ to conclude that there is a path from any g ∈ SU(1, 1) to g0(0, 0, 0) = I. This shows that the group
is path-connected. Furthermore, for a topological space, path-connectedness implies connectedness (we note
that the converse also holds for a differentiable manifold, in particular for a Lie group). As a result, we find
that SU(1, 1) is connected.

3.3.3 Non-compactness

Non-compactness of SU(1, 1) is the most straightforward topological property to verify. It is a fundamental
result of the general topology that subsets of Rn are compact if and only if they are closed and bounded.

In this view, take U ∈ SU(1, 1) and denote U =

(
a− bi c− di
c+ di a+ bi

)
with a2 + b2 − c2 − d2 = 1. Clearly,

the parameter space of our Lie group, which is also a smooth manifold, can be viewed as a subset of R4.
Therefore, it suffices to show that SU(1, 1) is not bounded to conclude that SU(1, 1) is not compact.

Theorem 3.2. SU(1, 1) is not bounded.

Proof. We can show that SU(1, 1) is not bounded by equivalently showing that for any k > 0 ∈ R, there
exists a point p = (a, b, c, d) ∈ SU(1, 1) ⊆ R4 with a2+b2−c2−d2 = 1 such that ||p|| > k. For any k > 0, take
P = (k, 1, k, 0). Clearly, a2 + b2 − c2 − d2 = 1 so that p ∈ SU(1, 1). Moreover, ||p|| =

√
a2 + b2 + c2 + d2 =√

2k2 + 1 > k. This shows that SU(1, 1) is not bounded.

Of course, boundedness is not a topological property; it is not preserved under homeomorphism. However,
compactness is, so showing that SU(1, 1) is not bounded for any parameterization is sufficient to conclude
that it is not compact.

3.3.4 SU(1, 1) is Simple

In this section, we show a group-theoretic property of SU(1, 1), namely that it is a simple Lie group. We
start with two definitions.

Definition 3.3. A Lie group is simple if it is a connected, non-Abelian Lie group which does not posses a
proper normal Lie subgroup.

Definition 3.4. A Lie group is semi-simple if it is a connected, non-Abelian Lie group which does not posses
an Abelian normal Lie subgroup.

As a common theme in Lie theory, we will look at the Lie algebra to investigate the group. More
definitions are needed to achieve this, where the definitions are adapted from [3].

Definition 3.5. The vector subspace L′ ⊆ L is said to be a subalgebra of the Lie algebra L if it satisfies
the following conditions:

1. L′ is endowed with the same Lie product as L is a Lie algebra;

2. If a′, b′ ∈ L′, then [a′, b′] ∈ L′.

Furthermore, if [a′, b] ∈ L′ for all a′ ∈ L′ and for all b ∈ L, then L′ is an invariant subalgebra of L.

With this definition at hand, we are ready to define simple and semi-simple Lie algebras.
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Definition 3.6. A Lie algebra is said to be simple if it is not Abelian and does not possess a proper invariant
Lie subalgebra.

Definition 3.7. A Lie algebra is said to be semi-simple if it does not possess an Abelian invariant Lie
subalgebra.

It is not clear how one can determine if a Lie algebra is simple or semi-simple from the above definitions.
Instead, we use a criterion developed by the French mathematician Élie Cartan, using the the Killing form.

Theorem 3.8 (Cartan’s criterion). The Lie algebra L is semi-simple if and only if its Killing form is
nondegenerate, or equivalently, if and only if det g ̸= 0.

Let us apply this theorem for the Lie algebra sl(2,R). We can check that the following three matrices
form a basis for sl(2,R):

b1 =
1

2

(
0 −1
−1 0

)
, b2 =

1

2

(
0 1
−1 0

)
, b3 =

1

2

(
1 0
0 −1

)
. (3.19)

The commutation relations are given by

[b1, b2] = b3, [b1, b3] = b2, [b2, b3] = b1. (3.20)

Using this, we obtain the structure constants

f312 = 1, f213 = 1, f123 = 1, 0 otherwise. (3.21)

It is now possible to calculate the metric tensor g using Eq. 2.34. From the structure constants, it is
clear that non-diagonal entries of the matrix are zero. The diagonal entries are calculated as

g11 =
∑
k,m

fk1mf
m
1k = 2, g33 = 2, g22 = −2. (3.22)

Therefore, we get

g =

2 0 0
0 −2 0
0 0 2

 (3.23)

and hence det g = −8 ̸= 0. By Cartan’s criterion, we conclude that sl(2,R) is semi-simple. In fact, we can
do more by exploiting the following theorem.

Theorem 3.9. Consider a semi-simple Lie algebra L with an invariant subalgebra L′, and define its orthog-
onal complement with respect to the Killing form B as L′⊥ := {a ∈ L : B(a, c) = 0 ∀c ∈ L′}. Then L′⊥ is
also an invariant subalgebra.

Proof. For all a, b, c ∈ L, we have

B([a, b], c) = Tr(ad[a, b]ad(c)) = Tr([ad(a), ad(b)]ad(c)) = Tr([ad(b), ad(c)]ad(a)) = B([b, c], a) (3.24)

where the third equality follows from the linearity and the cyclic property of trace. In particular, for c ∈ L′,
a ∈ L′⊥, and b ∈ L, we have [b, c] ∈ L′, and hence

B([b, c], a) = 0 ⇒ B([a, b], c) = 0 ⇒ [a, b] ∈ L′⊥ (3.25)

which shows that L′⊥ is an invariant subalgebra of L.

Theorem 3.10. sl(2,R) is a simple Lie algebra.

15



Proof. In Section 3.3.1 we showed that the dimension of sl(2,R) is 3. Now, suppose that sl(2,R) possesses
a proper invariant Lie subalgebra L′. Because it is a proper subalgebra, it is either one-dimensional, or
its complement is. By Theorem 3.9, either way, there is a one-dimensional invariant subalgebra of sl(2,R).
But one-dimensional algebras are Abelian, so sl(2,R) possesses an Abelian invariant Lie subalgebra. This
contradicts the semi-simplicity of sl(2,R), which shows that sl(2,R) does not possess a proper invariant Lie
subalgebra. Hence, by definition, sl(2,R) is a simple Lie algebra.

Because they are isomorphic as Lie algebras, the above theorem shows that su(1,1) is a simple Lie algebra.
We complete our argument with the following theorem:

Theorem 3.11. A simple Lie group is a connected Lie group whose Lie algebra is simple.

Using this theorem, as well as the fact that SU(1, 1) is connected and its Lie algebra is simple, we con-
clude that SU(1, 1) is a simple Lie group.

We use the fact that SU(1, 1) is a connected, non-compact simple Lie group in the following theorem [8,
p. 566].

Theorem 3.12 (Nontrivial Unitary Reps of Noncompact Simple Groups). If G is a connected, non-compact,
simple Lie group, then G possesses no finite-dimensional unitary representations apart from the trivial rep-
resentation in which ρ(g) = I for all g ∈ G.

This theorem has serious consequences for us. Namely, when we classify the nontrivial unitary irreps of
SU(1, 1) in Chapter 4, they will all be infinite-dimensional.

3.4 Geometry of the Parameter Space

In this section, we will introduce some models of hyperbolic geometry. These constructions are taken from
[5, Chapter 8.1]. There are two motivations for this. Firstly, the parameterization discussed in Section 3.3.2
is hyperbolic in nature, and we will take a closer look at this, which will lead to other geometric models
that are useful for studying the group SU(1, 1). Secondly, in Chapter 5, we will introduce the notion of a
generalized coherent state, and parameterizing the generalized coherent states will be possible thanks to the
geometric models that we will consider in this section.

3.4.1 Pseudo-Sphere Model

We start with the vector space R3 and consider the Minkowski metric on this space defined by the symmetric
bilinear form ⟨x, y⟩ = −x0y0 + x1y1 + x2y2. We are interested in the surface defined by the equation
{x ∈ R3 : ⟨x, x⟩ = −1}. This gives a hyperboloid with two sheets. We choose the upper sheet to define the
pseudo-sphere PS2:

PS2 = {x = (x0, x1, x2) ∈ R3 : −x20 + x11 + x22 = −1, x0 > 0}. (3.26)

One possible parameterization for this surface is given by the so-called pseudopolar coordinates:

x0 = cosh τ, x1 = sinh τ cosφ, x2 = sinh τ sinφ (3.27)

where the parameters satisfy 0 ≤ τ <∞, 0 ≤ φ < 2π.

The first fundamental form can be used to derive the line and area elements of the surface PS2 induced
by the Minkowski metric. The following example illustrates this process. First, write a generic point on

PS2 as X(τ, φ) =

 cosh τ
sinh τ cosφ
sinh τ sinφ

, and take the partial derivatives respectively as Xτ =

 sinh τ
cosh τ cosφ
cosh τ sinφ

;
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Xφ =

 0
− sinh τ sinφ
sinh τ cosφ

. Then, define E = ⟨Xτ , Xτ ⟩;F = ⟨Xτ , Xφ⟩;G = ⟨Xφ, Xφ⟩ where the inner prod-

uct is the one derived by the metric. Finally, we obtain the formulas ds2 = Edτ2 + 2Fdτdφ + Gdφ2

for the line element and dA =
√
EG− F 2dτdφ for the area element. In our examples, we calculate

E = 1, F = 0, G = sinh2 τ to get ds2 = dτ2 + sinh2 τdφ2 and d2n = sinh τdτdφ where n is an arbi-
trary point on PS2. One can use the line and area elements to define lengths and areas on the surface that
are derived from the underlying metric.

The invariance group of the symmetric bilinear form introduced at the beginning of this section is the
Lorentz group O(2, 1) in three dimensions. This means A ∈ O(2, 1) if and only if ⟨Ax,Ax⟩ = ⟨x, x⟩.
Equivalently, ATLA = L where L is the Minkowski metric in three dimensions L =

(−1 0 0
0 1 0
0 0 1

)
. The subgroup

of O(2, 1) consisting of matrices with unit determinant is denoted by SO(2, 1). This group has two connected
components, so we introduce the connected component that contains I as SO0(2, 1), which is also a group.
We note that, by construction, the pseudo-sphere PS2 is invariant under SO0(2, 1). One can check that the
Lie algebra so(2,1) of the group SO0(2, 1) is isomorphic with su(1,1) [5, p. 228]. This shows that the two
Lie groups are locally isomorphic. Precisely because of this reason, studying hyperbolic geometry provides
us more insight about the group SU(1, 1).

3.4.2 Poincare Disk Model

We will present an alternative way to parameterize PS2 on the unit disk D without the boundary. Pick
a point (x0, x1, x2) on PS2, and project it onto the plane x0 = 0 by intersecting this point with the line
drawn through (−1, 0, 0). This gives a stereographic projection of PS2 onto the unit disk D. The Cartesian
coordinates (x0, x1, x2) on the pseudo-sphere and (y0, y1) on the disk are given by the formulas

yi =
xi

1 + x0
, (x0, xi) =

(1 + y21 + y22 , 2yi)

1− y21 − y22
. (3.28)

Defining r =
√
y21 + y22 , tanφ = y2/y1 gives the parameterization

X(r, φ) =

(1 + r2)/(1− r2)
2r cosφ/(1− r2)
2r sinφ/(1− r2)

 . (3.29)

From this, one can compute the elements of the first fundamental form as E = 4
(1−r2)2 , F = 0, G = 4r2

(1−r2)2
to obtain

ds2 =
4(dr2 + r2dφ2)

(1− r2)2
, ζ =

4rdrdφ

(1− r2)2
(3.30)

for the line and area elements, respectively, where ζ = re−iφ is a complex representation of D.

The metric obtained is conformal, which means that the angles for the metric coincide with the angles in
the Euclidean geometry [5, p. 230]. Therefore, the isometries of D are conformal transformations of D. Such
transformations f of the unit disk D are given by [5, p. 230]:

f(ζ) =
αζ + β

βζ + α
, where |α|2 − |β|2 = 1. (3.31)

Therefore, the isometries of D are given by Möbius transformations where the coefficients of the transfor-
mations come from the group SU(1, 1). In other words, the symmetry group of D is given by the following

representation of SU(1, 1): g 7→ Hg, where Hg(ζ) = f(ζ), g =
( α β

β α

)
. The following proposition makes this

statement more precise.

Proposition 3.13. Hg = ID if and only if g = ±I.
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Proof. (⇐) Suppose g = ±I. Then, g =
(±1 0

0 ±1

)
. For any ζ ∈ D, f(ζ) = αζ+β

βζ+α
= ζ+0

0+1 = ζ, and hence

Hg = ID.
(⇒) Suppose f(ζ) = αζ+β

βζ+α
= ζ for any ζ ∈ D. This holds in particular for ζ = 0, so f(0) = β

α = 0, which

holds only if β = 0. We then have |α|2 = 1, and hence α = eiθ. This gives f(ζ) = e2iθζ = ζ. Therefore,
θ = 0 or θ = π, which gives α = ±1 and g = ±I.

Identifying the isometries of the disk with the group SO0(2, 1), this shows that SO0(2, 1) ∼= SU(1, 1)/{±I}.
Of course, this does not come as a surprise, as we have already established that the groups were locally iso-
morphic. As a result, one group is expected to be a covering space of the other one; in this case, SU(1, 1)
is the double cover of SO0(2, 1). It is also nice that, whereas we previously used algebra to deduce local
isomorphism, we recovered the same fact geometrically as well.

3.4.3 Alternative Model for PS2

We will present yet another way of looking at the pseudo-sphere PS2. It turns out, PS2 can be seen as a
quotient of SU(1, 1) by its U(1) subgroup [5, p. 230]. This model is important because it will be used to
parameterize the generalized coherent states when we define them in Chapter 5.

Lemma 3.14. For any n = (cosh τ, sinh τ sinφ, sinh τ cosφ), define the matrix

gn =

(
cosh τ2 sinh τ2 e

−iφ

sinh τ2 e
iφ cosh τ2

)
. (3.32)

Then the map n 7→ {gnω0(t), t ∈ [−2π, 2π)} is a bijection of PS2 onto the right cosets of SU(1, 1) modulo

U(1), where U(1) is identified with the matrices

(
eit/2 0
0 e−it/2

)
, t ∈ [0, 4π) and ω0(t) is the one-parameter

subgroup defined in Eq. 3.18.

Proof. Denote g(α, β) =
( α β

β α

)
∈ SU(1, 1). Observe the following decomposition: there exist α′ > 0, β′ ∈

C, 0 ≤ t < 4π unique such that
g(α, β) = g(α′, β′)ω0(t) (3.33)

with α′ = |α|, t = argα, β′ = eit/2β. The uniqueness of the decomposition implies that the right cosets of
SU(1, 1) modulo U(1) are in bijection with the points on the pseudo-sphere.

We conclude this chapter with a summary of the spaces that we introduced in this chapter, their symmetry
groups, and how they relate to each other.

2−dimensional phase space → SU(1, 1)

PS2 → SO0(2, 1)

Open unit disk D → SO0(2, 1)

SO0(2, 1) ∼= SU(1, 1)/Z2 as groups

PS2 ⇐⇒ SU(1, 1)/U(1) as sets

4 Unitary Irreducible Representations of SU(1, 1)

Throughout this chapter, we closely follow the treatment in [5, Chapter 8], with minor adjustments and
slightly different explanations and derivations.
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4.1 Classification of Possible Representations

In order to find the unitary irreducible representations of the group SU(1, 1), we will first look at some of
the properties that they satisfy. This will naturally give us a way to classify different families of unitary
irreps. In this regard, let ρ be a unitary irreducible representation of SU(1, 1) in some Hilbert space H.

Recall Theorem 3.12 that for all nontrivial unitary irreps of SU(1, 1), our Hilbert space H will be infinite
dimensional. We will define the operators on this space as follows:

Bj := i
d

dt
ρ(wj(t))

∣∣∣∣
t=0

(4.1)

where j = 0, 1, 2, bj are the generators of the Lie algebra, and ωj(t) are the one-parameter subgroups
introduced in Eq. 3.18. They satisfy the familiar commutation relations

[B1, B2] = −iB0, [B2, B0] = iB1, [B0, B1] = iB2. (4.2)

In order to obtain ladder operators, we can form complex linear combinations of B± = B2 ± iB1. We
then obtain the following:

[B−, B+] = 2B0 [B0, B±] = ±B±. (4.3)

One can observe that ρ(ω0(t)) = e−itB0 due to the following computation:

i
d

dt
ρ(w0(t))

∣∣∣∣
t=0

= i
d

dt
e−itB0

∣∣∣∣
t=0

= i(−iB0)e
−itB0

∣∣∣∣
t=0

= B0 · I = B0. (4.4)

Because ω0(4π) = I, by the properties of a group homomorphism, the representation ρ should map the
identity element of the group to the identity operator, which gives us e−i4πB0 = I. Using this equality, we
obtain the following.

Proposition 4.1. The eigenvalues of the operator B0 are a subset of {k2 , k ∈ Z}.

Proof. Suppose λ is an eigenvalue of the operator B0 with the eigenvector ψ. Since e−i4πB0 = I, we have

e−i4πB0ψ = Iψ − 4iπB0ψ +
(−4iπ)2B2

0

2
ψ + · · · = Iψ − 4iπλψ +

(−4iπ)2λ2

2
ψ + · · · = e−i4πλψ = ψ. (4.5)

Therefore, λ must be a half-integer. But λ was an arbitrary eigenvalue of B0, so any eigenvalue of B0

must be a half-integer. Therefore, the set of eigenvalues of B0 is a subset of {k2 , k ∈ Z}.

Take a vector ψ0 in H such that ||ψ0|| = 1 and B0ψ0 = λψ0, λ = k0
2 , k0 ∈ Z. Because [B0, B+] =

B0B+ −B+B0 = B+, we get that

B0B+ψ0 = B+B0ψ0 +B+ψ0 = B+λψ0 +B0ψ0 = (λ+ 1)B+ψ0. (4.6)

With a similar reasoning, one can obtain the following equality:

B0B−ψ0 = (λ− 1)B−ψ0. (4.7)

In fact, by the property of a commutator bracket, one has

[B0, (B+)
k] = [B0, B+](B+)

k−1 +B+[B0, B+](B+)
k−2 + · · · = k(B+)

k. (4.8)

This immediately gives B0(B+)
k = (B+)

kB0 + k(B+)
k, so that

B0(B+)
kψ0 = (λ+ k)(B+)

kψ0 (4.9)

B0(B−)
kψ0 = (λ− k)(B−)

kψ0. (4.10)
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We now introduce the Casimir operator Cas of the representation. Due to Schur’s lemma, because our
representation is irreducible, the Casimir operator is proportional to the identity, Cas = casI, where

Cas = B2
0 −B2

1 −B2
2 = B2

0 − 1

2
(B−B+ +B+B−). (4.11)

Using this, we get

(B−B+ +B+B−)ψ0 = (2B0 − 2Cas)ψ0 = 2(λ2 − cas)ψ0 (4.12)

(B−B+ −B+B−)ψ0 = 2λψ0. (4.13)

Adding and subtracting the two equations above give the following equalities:

(B−B+)ψ0 = (λ(λ+ 1)− cas)ψ0 (4.14)

(B+B−)ψ0 = (λ(λ− 1)− cas)ψ0. (4.15)

Our goal now is to produce an expression similar to Eq. 4.14, where we want to replace B+ψ0 with
(B+)

kψ0. We start with rewriting Eq. 4.11 as B−B+ + B+B− = 2B2
0 − 2Cas. Multiplying from right by

Bk−1
+ , we get

B−B
k
+ +B+B−B

k−1
+ − = 2B2

0B
k−1
+ − 2CasB

k−1
+ . (4.16)

We also have the following equality:

B−B
k
+ −B+B−B

k−1
+ = [B−, B+]B

k−1
+ = 2B0B

k−1
+ . (4.17)

By adding these two equations, using Eq. 4.9, and letting the operators act on ψ0, we obtain the equation
that we were after:

B−B
k
+ψ0 = B0B0B

k−1
+ ψ0 +B0B

k−1
+ ψ0 − CasB

k−1
+ ψ0 = ((λ+ k − 1)(λ+ k)− cas)B

k−1
+ ψ0. (4.18)

The corresponding equation for the lowering operator, which can be derived similarly, reads

B+B
k
−ψ0 = ((λ− k + 1)(λ− k)− cas)B

k−1
+ ψ0. (4.19)

For ease of notation, let us denote ((λ+ k − 1)(λ+ k)− cas) = ν+k and ((λ− k + 1)(λ− k)− cas) = ν−k .

We are one step away from our goal of classifying unitary irreps. We need to establish that the rais-
ing and lowering operators that we defined above are Hermitian conjugates of each other. This becomes
straightforward to show if we can establish that B1 and B2 are Hermitian operators. The following theorem
precisely states this fact [7, p. 50].

Theorem 4.2. Every unitary operator U on a Hilbert space can be written as U = exp(iA) for some
Hermitian operator A.

Let f, g be two elements in H. Using the Hermicity of B1 and B2, we get

⟨f |B±g⟩ = ⟨f |(B2 ± iB1)g⟩ = ⟨f |B2g⟩ ± i⟨f |B1g⟩ = ⟨B2f |g⟩ ± i⟨B1f |g⟩ = ⟨(B2 ∓ iB1)f |g⟩ = ⟨B∓f |g⟩.
(4.20)

This indeed shows that the raising and lowering operators are conjugates of each other. We can combine
this fact with Eq. 4.18 and Eq. 4.19 to obtain the relation between the norms of different states that we
reach by acting with the ladder operators:
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||Bk+1
+ ψ0||2 = ν+k+1||B

k
+ψ0||2 (4.21)

||Bk+1
− ψ0||2 = ν−k+1||B

k
−ψ0||2. (4.22)

Using Eq. 4.21, we can start the classification [5, p. 234].

1. Suppose that for all k ∈ N, Bk+ψ0 ̸= 0 and Bk−ψ0 ̸= 0. In other words, there is not a top or bottom
rung; the ladder goes on forever in each direction. Then, for each k ∈ N, λ± k is an eigenvalue of the
operator B0.

(a) If 0 is in this family, then the set of eigenvalues is the integers. Without loss of generality, we can
assume B0ψ0 = 0, so that λ = 0. Eq. 4.21 now implies that cas < 0.

(b) If 0 is not in this family, then we can take λ = 1/2 and the set of eigenvalues is given by
{ 1
2 + k, k ∈ Z}. Again using Eq. 4.21, we conclude that cas < − 1

4 .

2. Suppose now instead that the chains terminate.

(a) Assume there exists k0 ∈ N such that Bk0+1
+ ψ0 = 0 and Bk0+ ψ0 ̸= 0. In other words, there is a top

rung of the ladder. By scaling the eigenvector accordingly, we can assume that B0ψ0 = λψ0, and
B+ψ0 = 0. This gives ν+1 = 0, which in turn gives cas = λ(λ+ 1). Now, if λ = 0, one can check
that ν−1 = 0 as well, which shows B−ψ0 = 0. Hence, the Hilbert space is one-dimensional. This
case corresponds to the trivial representation. Of course, when we do things in full generality, it
is nice to verify that the trivial representation also belongs to one of these families, as it should
be. On the other hand, we are interested in the nontrivial representations, so we can take λ ̸= 0.
The set of eigenvalues of B0 is given by {λ− k : k ∈ N}.

(b) If there is a bottom rung instead, we obtain analogous results with the set of eigenvalues {λ+ k :
k ∈ N}.

For the first two infinite families of representations, the eigenvalues of the Casimir operator cas change
continuously and hence they are called continuous series. For the last two infinite families, the Casimir
parameters vary discretely, and the representations belong to discrete series.

This is a good point to take a step back from all the calculations and see what we have done. Only
using the Lie algebra, by fixing a nontrivial unitary irreducible representation ρ, we managed to classify the
possible families of different irreps of the group. These derivations do not prove that such representations
exist. What is said instead is, if we find some nontrivial unitary irrep of our group, it will belong to one
of these four families. In fact, in the rest of this chapter, we will explicitly realize each of these families of
unitary irreps, thereby classifying all of the unitary irreducible representations of our group SU(1, 1).

4.2 Discrete Series Representation

For the rest of this report, we will mainly focus on the discrete series representation. In this section, we will
define a Hilbert space and define the discrete unitary irreps of SU(1, 1).

4.2.1 Hilbert Space Hn(D)

Let n be an integer such that n ≥ 2. Define the Hilbert space Hn(D) as the space of holomorphic functions
f on the open unit disk D of the complex plane C. We require that the norm of f be finite, where the norm
is derived by the following inner product: if f, g ∈ Hn(D), then

⟨f, g⟩ := n− 1

π

∫
D
g(z)f(z)(1− |z|2)n−2dxdy (4.23)

where f(z) denotes the complex conjugate, and z = x+ iy.
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Without going into the details of measure theory, we can state that the function

dνn(z) =
n− 1

π
(1− |z|2)n−2dxdy (4.24)

is a probability measure on D. The fact that this is a measure follows from the standard theory of integration.
One can observe that it is a probability measure, i.e. its integral over the unit disk is one, from the following
computation, where we use the polar coordinates z = reiθ, and the change of variables u = (1− r2):∫

D
dνn(z) =

n− 1

π

∫
D
(1− r2)n−2rdrdθ = 2(n− 1)

∫ 0

1

un−2 · −1

2
du = 1. (4.25)

It is a celebrated theorem in complex analysis that holomorphic functions are analytic, so we can represent
f as f(z) =

∑
k≥0 ck(f)z

k, where ck(f) are the Taylor coefficients of f . Using the Taylor series expression,
we can compute the norm of a function in the Hilbert space as

||f || = 2(n− 1)
∑
k≥0

|ck(f)|2
∫ 1

0

r2k+1(1− r2)n−2dr. (4.26)

An explicit expression for this integral is provided in terms of gamma functions in [5, p. 235]:

||f || =
∑
k≥0

|ck(f)|2
Γ(n)Γ(k + 1)

Γ(n+ k)
. (4.27)

Therefore, after defining γn,l :=
Γ(n)Γ(l+1)

Γ(n+l) = 1

(n+l−1
l )

, the inner product between any two functions in

Hn(D) can be expressed as

⟨f1, f2⟩ =
∑
k≥0

ck(f1)ck(f2)γn,k. (4.28)

Using Eq. 4.27 and Eq. 4.28, we get that el(z) := { zl√
γn,l

}l≥0 forms an orthonormal set. In addition,

one can show that the span of this set is dense in Hn(D). Hence, {el(z)} forms an orthonormal basis for
Hn(D), and the Hilbert space is separable [17, p. 55]. This orthonormal basis will be useful in the upcoming
sections.

4.2.2 Defining Discrete Representations

After we have defined the appropriate carrier space in the preceding section, we are ready to construct a
unitary representation of our group, as is done in [5, Chapter 8.2.2.2]. The irreducibility of the representation
will be discussed in Section 4.2.4.

Recall from Section 3.4 that the isometries of the Poincaré disk were given by Möbius transformations
with the coefficients coming from the parameterization of SU(1, 1). This observation leads to the question
of whether it is possible to define group actions of SU(1, 1) on the unit disk D, which would be useful to
construct representations. The answer is positive and, after reminding the reader of the definition of group
actions, this is exactly what we will do.

Definition 4.3. Let G be a group with the identity element e and X a nonempty set. A (left) group action
of G on X is a map G×X → X which can be denoted by (g, x) 7→ gx, satisfying

1. ex = x for every x ∈ X;

2. (gh)x = g(hx) for all g, h ∈ G and all x ∈ X.

Let g be an arbitrary element of SU(1, 1), given by g =

(
α β

β α

)
. We want to establish that the map

defined by
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M−(g)(z) =
β + αz

α+ βz
(4.29)

is a left group action of SU(1, 1) on D.

Lemma 4.4. The map 4.29 is well-defined.

Proof. We need to check that the denominator is never zero. First, note that |βz| < |β| since z is in the
open unit disk. This shows that |α| − |βz| > |α| − |β|. Furthermore, |α|2 − |β|2 = 1 implies that |α|2 > |β|2,
and since |α|, |β| are nonnegative, we have |α| > |β|, so that |α| − |β| > 0.

Combining these inequalities, we get ||α|−|βz|| > ||α|−|β|| > 0. Now using the reverse triangle inequality
shows that |α+ βz| ≥ ||α| − |βz|| > ||α| − |β|| > 0. Thus, α+ βz is not zero, so the map is well defined for
any g ∈ SU(1, 1).

Lemma 4.5. Eq. 4.29 maps the open unit disk to the open unit disk.

Proof. We should check that β+αz
α+βz is in the open unit disk. First, note that if |z| = 1, then |M−(g)(z)| =

1. Recall from complex analysis that the maximum modulus principle states that |M−(g)(z)| assumes its
maximum on the boundary of D, that is, on the unit circle. Therefore, |M−(g)(z)| < 1 if |z| < 1. As a result,
the image of M−(g)(z) is in D.

Using Lemma 4.4 and Lemma 4.5, we are ready to prove the group action property.

Theorem 4.6. The map M− : SU(1, 1)× D → D given by M−(g)(z) =
β+αz
α+βz is a left group action.

Proof. The map is well defined due to the previous two lemmas. We thus check the two criteria in the
definition.

1. The identity element e is given by e =

(
α = 1 β = 0

β = 0 α = 1

)
, so that M−(e)(z) =

0+1z
1+0z = z.

2. Let g1 =

(
α1 β1
β1 α1

)
, g2 =

(
α2 β2
β2 α2

)
. Then, we have M−(g2)(z) = β2+α2z

α2+β2z
. Hence, we obtain

M−(g1)(M−(g2)(z)) =
(β1α2+α1β2)+(β1β2+α1α2)z

(α1α2+β1β2)+(α1β2+β1α2)z
=M−(g1g2)(z).

In the same spirit, we can also define M+(g)(z) =
−β+αz
α−βz and show that this is also a group action.

We are now ready to define the unitary representation of the group acting on Hn(D). The way we do
this is as follows. For f ∈ Hn(D), z ∈ D and g ∈ SU(1, 1), we define

D−
n (g)f(z) = c−g (z)(f(M−(g

−1)(z))) (4.30)

where the scaling factor c−g is chosen to ensure unitarity. The following theorem realizes this explicitly.

Theorem 4.7. For every integer n ≥ 2, the following are unitary representations of SU(1, 1) in Hn(D):

D−
n (g)f(z) = (α− βz)−nf(

−β + αz

α− βz
) (4.31)

D+
n (g)f(z) = (α+ βz)−nf(

β + αz

α+ βz
) (4.32)
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Proof. It follows from 4.6 that the maps D±
n are group homomorphisms, so indeed they are group represen-

tations. For D−
n , we can prove that this representation is unitary. The proof for D+

n follows analogously.

Introduce the holomorphic change of variables Z = −β+αz
α−βz , Z = X + iY , z = x + iy. We get z = β+αZ

α+βZ

and dz
dZ = (α + βZ)−2 by the quotient rule. In order to apply the change of variables, we observe that

|det ∂(x,y)∂(X,Y ) | = | dzdZ |
2 = |α+ βZ|−4, so that dxdy = |α+ βZ|−4dXdY .

Moreover, we have |α−βz|−2n = |α+βZ|2n, as well as (1−|z|2)n−2 = (1−|β+αZα+βZ |
2)n−2 = (|α+βz|2−|β+αZ|2)n−2

|α+βZ|2n−4 .

Putting everything together, we obtain

|α− βz|−2n(1− |z|2)n−2dxdy = (|α+ βz|2 − |β + αZ|2)n−2dXdY = (1− |Z|2)n−2dXdY. (4.33)

As a result, we get

⟨D−
n (g)f(z)|D−

n (g)f(z)⟩ =
n− 1

π

∫
D
|α− βz|−2n|f(−β + αz

α− βz
)|2(1− |z|2)n−2dxdy

=
n− 1

π

∫
D
|f(Z)|2(1− |Z|2)n−2dXdY = ⟨f(z)|f(z)⟩. (4.34)

This proves that Dn is unitary.

4.2.3 Casimir Operator and Labeling Irreps

This is once again a good place to take a break from the derivations and focus on the big picture. In this
chapter, we are trying to obtain all unitary irreducible representations of SU(1, 1). First, we established
that there are four different possible families of unitary irreps of the group. Then, we defined the Hilbert
spaces Hn(D) indexed by integers greater than 1, and constructed two families of unitary representations of
our group that act on these Hilbert spaces. We still need to do two things. Firstly, we should prove that
these unitary representations are irreducible. Secondly, we need to find to which infinite families of unitary
irreps these representations belong to. We will start with the second task, and as the title suggests, we will
conclude that these representations are the discrete irreps.

Now that we have explicit unitary representations, we can construct the corresponding Lie algebra rep-
resentations. First, we calculate the derivatives of the representations at the identity. Using the chain rule
gives [5, p. 237]

d

dt
D−
n (ω0(t))f(z)

∣∣∣∣
t=0

=
−i
2
(n+ 2z

d

dz
)f(z) (4.35)

d

dt
D−
n (ω1(t))f(z)

∣∣∣∣
t=0

=
1

2
(nz + (z2 − 1)

d

dz
)f(z) (4.36)

d

dt
D−
n (ω2(t))f(z)

∣∣∣∣
t=0

=
−i
2
(nz + (z2 + 1)

d

dz
)f(z). (4.37)

From these computations, we get three Hermitian operators Bj = idD−
n (bj) where d denotes the differ-

ential of the group at the identity, and bj are the generators of the Lie algebra:

B0 =
n

2
+ z

d

dz
(4.38)

B1 =
i

2
(nz + (z2 − 1)

d

dz
) (4.39)

24



B2 =
1

2
(nz + (z2 + 1)

d

dz
). (4.40)

As expected, they satisfy the familiar commutation relations

[B1, B2] = −iB0, [B2, B0] = iB1, [B0, B1] = iB2. (4.41)

By acting on an arbitrary function f(z) in Hn(D), one can check the above commutation relations. Using
the notation B± = B2 ∓ iB1, we get

B− =
d

dz
(4.42)

B+ = nz + z2
d

dz
(4.43)

as well as

[B−, B+] = 2B0 [B0, B±] = ±B±. (4.44)

We are ready to compute the Casimir operator Cnas for the representation D−
n . From Eq. 4.11 we get:

Cnas = B2
0 −B2

1 −B2
2 = B2

0 − 1

2
(B−B+ +B+B−). (4.45)

By Schur’s lemma, if the representation is irreducible, we can write the Casimir operator Cnas as Cnas =
cnasI. Hence, for now, let us assume D−

n is irreducible and calculate the number cas. We do this as follows:
Take an arbitrary f(z) in the Hilbert space and write f =

∑
k≥0 ckz

k. This gives

B+B−f = nz(
∑
k≥1

kckz
k−1) + z2

d

dz
(
∑
k≥1

kckz
k−1) =

∑
k≥0

(nk + k(k − 1))ckz
k. (4.46)

We similarly compute

B−B+f =
∑
k≥0

((n+ k)(k + 1))ckz
k (4.47)

B2
0f =

∑
k≥0

(k +
n

2
)2ckz

k. (4.48)

Plugging these expressions into Eq. 4.45 gives

Cnasf = (B2
0 − 1

2
(B−B+ +B+B−))f = (

n2

4
− n

2
)
∑
k≥0

ckz
k =

n

2
(
n

2
− 1)f (4.49)

which shows that cas =
n
2 (

n
2 − 1), n ≥ 2.

We indeed obtained a discrete representation of the group: the Casimir parameter changes discretely.

Let us compare our results with the classifications of the unitary irreps that we obtained at the beginning
of the chapter. Take f(z) ∈ Hn(D) the eigenstate of the operator B0 with the eigenvector n

2 + k. In other
words, we have B0f = (n2 + k)f . Denote f by f = |n, k⟩. Then, we have the eigenvector equations

Cnas|n, k⟩ =
n

2
(
n

2
− 1)|n, k⟩, B0|n, k⟩ = (

n

2
+ k)|n, k⟩. (4.50)

They are analogous equations for the theory of angular momentum in quantum mechanics: the L2 oper-
ator is the Casimir operator, and the Lz operator does what the B0 operator does in this case.

25



Comparing with the initial classification, we found that cas = λ(λ − 1). Hence, we obtained λ := n
2 .

Then, the set of eigenvalues of B0 is given by {λ+ k : k ∈ N} = {n2 + k : k ∈ N} = {n2 ,
n
2 + 1, n2 + 2, · · · }.

To make things more concrete, let us take a simple example and apply our results. Take n = 3.
Then, λ = 3

2 and c3as = 3
2 (

3
2 − 1) = 3

4 . We have the eigenstates of B0 |3, 0⟩, |3, 1⟩, |3, 2⟩, · · · , |3, k⟩ with
C3
as|3, k⟩ = 3

4 |3, k⟩ and B0|3, k⟩ = ( 32 + k)|3, k⟩, e.g. B0|3, 1⟩ = 5
2 |3, 1⟩.

We can do even more than this. Let n = 2 and observe that the constant function ψ0(z) = 1 has the
property

B0ψ0 = (
2

2
+ z

d

dz
)ψ0 = 1 · ψ0 (4.51)

where we used Eq. 4.38 for the computation. This shows that it is an eigenvector of the operator B0 with
the eigenvalue 1 = 1 + 0 = 2

2 + 0 = n
2 + 0. Furthermore, we can compute its magnitude:

||ψ0||2 =
1

π

∫
D
(1− |z|2)2−2dxdy = 1 (4.52)

which follows from the fact that dνn(z) =
n−1
π (1−|z|2)n−2dxdy is a probability measure as we demonstrated

in Eq. 4.25. Therefore, we have a normalized eigenvector of B0 with the eigenvalue 2
2 + 0, so we can label

|2, 0⟩ = ψ0(z) = 1. For the next step, we can act on this state with the raising operator:

B+|2, 0⟩ = (2z + z2
d

dz
)1 = 2z. (4.53)

Acting with B0 gives B0B+|2, 0⟩ = (1 + z d
dz )2z = 4z = 2 · 2z = ( 22 + 1)2z = ( 22 + 1)|2, 0⟩, which is

expected due to Eq. 4.6. Hence, we want to label |2, 1⟩ as f(z) = 2z. In principle, we can do this, but we
would prefer to have the states |2, k⟩ normalized. One can compute

||2z||2 =
1

π

∫
D
4|z|2dxdy =

1

π
2π

∫ 1

0

4r2rdr = 2. (4.54)

In fact we did not even need to make this computation explicitly, since Eq. 4.21 automatically gives the
square of the norm of this state as 2. Hence, we define

|2, 1⟩ =
√
2z. (4.55)

Hence, recursively, one can produce the normalized eigenstates of the operator B0 using the relations that
we developed throughout this chapter. Therefore, in principle, we can do all the calculations very explicitly
on the functions that live in the Hilbert space Hn(D). This demonstrates the power of the method of finding
the Casimir operator and labeling the irreps of our group.

As a result, we see that our discrete unitary irreps satisfy the necessary conditions that we figured out
at the beginning of this chapter. This shows that we explicitly realized two of the four infinite families of
the unitary irreps of SU(1, 1), namely the two discrete irreps of D−

n and D+
n for integers n ≥ 2. The only

detail missing from this derivation is that we still did not prove these unitary representations are indeed
irreducible. At various points, we assumed this and proceeded with our calculations. We are now ready to
prove the irreducibility of the representations and complete the classification of the discrete unitary irreps
of SU(1, 1).

4.2.4 Irreducibility of the Series

The argument we present here is adapted from [5, p. 238].

Theorem 4.8. D−
n is an irreducible representation.
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Proof. In order to prove that the representation is irreducible, we need to show that there are no nontrivial
invariant subspaces of Hn(D). Suppose E is a closed invariant subspace of Hn(D). We need to show that E
is the entire Hilbert space of Hn(D) if E is not the subspace with only the zero vector.

Note that the subgroup g(θ, 0, 0) is compact and commutative, so the restriction of D−
n to this subgroup

is a sum of one-dimensional unitary representations. Therefore, there exists u ∈ E, ν ∈ R such that

D−
n (g(θ, 0, 0))u = eiνθu, ∀θ ∈ R. (4.56)

Writing u(z) =
∑
ajz

j , we calculate

D−
n (g)(

∑
ajz

j) =
∑

aj(D−
n (g)z

j) =
∑

aje
iθn/2eiθjzj = eiνθu =

∑
aje

iνθzj (4.57)

and by comparing the coefficients, we get that aje
iνθ = aje

iθ(n/2+j). If u is not the zero vector, there exists

some j0 such that aj0 ̸= 0, which implies that eiθ(n/2+j0)=e
iνθ

. But this equality holds for all θ ∈ R if and
only if ν = n

2 + j0. This implies that for j ̸= j0, aje
iνθ = aje

iθ(n/2+j0) holds for all θ ∈ R, which is possible
only if aj = 0 for j ̸= j0. This shows that u = zj0 is in E.

Now, playing around with the operators B±, it can be shown that E contains all the monomials zj with
j ∈ N. Therefore, the monomials are a total system in Hn(D), so that E = Hn(D). This proves that the
representation D−

n is irreducible.

4.3 Principal and Complementary Series

In this thesis, we will mostly be working with discrete series. However, for completeness, we also present
the principal and complementary series unitary irreducible representations of the group SU(1, 1), mostly
without proofs. For this section, we closely follow the treatment in [5, Chapter 8.2].

The representations for the principal series can be realized in the Hilbert space of functions on the unit
circle, denoted by L2(S1), with the inner product

⟨f1, f2⟩ =
1

2π

∫ 2π

0

f1(θ)f2(θ)dθ. (4.58)

First, note that the map z 7→ αz+β
βz+α maps the unit circle into itself. Using this, take a nonnegative number

λ and a point z on the unit circle and define the map

Piλ(g)f(z) = |βz + α|−1+2iλf(
αz + β

βz + α
). (4.59)

We are ready to state the main theorem.

Theorem 4.9. For any λ ∈ R, Piλ is a unitary irreducible representation of SU(1, 1) in the Hilbert space
L2(S1).

The generators of the Lie algebra are given by

L0 =
d

dθ
, L1 = (−1

2
+ iλ) cos θ − sin θ

d

dθ
, L2 = −(−1

2
+ iλ) sin θ − cos θ

d

dθ
. (4.60)

Forming the linear combinations of B± = ±L1 + iL2, one obtains

B+ = (−1

2
+ iλ)e−iθ − ie−iθ

d

dθ
, B− = −(−1

2
+ iλ)eiθ − ieiθ

d

dθ
. (4.61)

Upon defining B0 = iL0 = i ddθ , one can calculate the Casimir operator

C := B0 −
1

2
(B−B+ +B+B−) = (

1

4
− λ2)I. (4.62)
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For the complementary series, we present the following theorem.

Theorem 4.10. For all 0 < σ < 1/2, Cσ is a unitary irreducible representation of SU(1, 1) in the Hilbert
space Hσ where

Cσ = |βz + α|−1+2σf(
αz + β

βz + α
). (4.63)

Furthermore, its Casimir operator is given by Cσ = (σ2 − 1
4 )I.

For the construction of the Hilbert space Hσ, see [5, p. 241].

5 Generalized Coherent States for the Discrete Series

We defined canonical coherent states in Section 2.2 and looked at some of their properties. Most importantly,
they were the ”closest states to the classical harmonic oscillator.” Of course, this construction only works
for the quantum harmonic oscillator. Therefore, one can ask the following question: can we similarly define
coherent states for more general systems where these states somehow represent the closest states to a classical
system?

5.1 Defining Generalized Coherent States

The answer is yes, and there are different ways of constructing such generalized coherent states. In this report,
we will use the Gilmore–Perelomov generalized coherent states (GCS). The following explanations and defi-
nitions are adapted from Perelomov’s book titled ”Generalized Coherent States and Their Applications” [15].

Consider an arbitrary Lie group G with a unitary irreducible representation T (g), acting in the Hilbert
space H. Take a fixed vector |ψ0⟩ in H and consider the set {|ψg⟩} where |ψg⟩ = T (g)|ψ0⟩ and g ∈ G.
In this construction, we declare two vectors |ψa⟩ and |ψb⟩ equivalent (corresponding to the same state) if
they differ only by a global phase factor, i.e., if |ψa⟩ = eiα|ψb⟩ where 0 ≤ ϕ < 2π. Hence, |ψg1⟩ and |ψg2⟩
correspond to the same state if

|ψg1⟩ = eiα|ψb⟩ ⇒ T (g1)|ψ0⟩ = eiαT (g2)|ψ0⟩ ⇒ T (g−1
2 g1)|ψ0⟩ = eiα|ψ0⟩. (5.1)

Suppose H ≤ G is a subgroup with the property h ∈ H if T (h)|ψ0⟩ = eiα|ψ0⟩. When the subgroup H is
maximal, it is called the isotropy subgroup of the state |ψ0⟩.

This construction shows that if g1, g2 are two group elements belonging to the same left coset of G
modulo the subgroup H, then |ψa⟩ and |ψb⟩ will only differ by a phase factor and determine the same state.
Hence, by choosing a representative g(x) in any equivalence class x, one gets a set of states {|ψg(x)⟩}, where
x ∈ G/H. With this construction in mind, we are ready to define generalized coherent states [15, p. 41].

Definition 5.1 (Generalized coherent states). Consider an arbitrary Lie group G with a unitary irreducible
representation T (g), acting in the Hilbert space H. The system of states {|ψg⟩}, |ψg⟩ = T (g)|ψ0⟩, where g
are elements of the group G and |ψ0⟩ is a fixed vector in H, is called the coherent state system {T, |ψ0⟩}.
Let H be the isotropy subgroup for the state |ψ0⟩}, i.e. H = {h ∈ G : T (h)ψ0 = eiαψ0}. Then a
coherent state |ψg⟩ is determined by a point x = x(g) in the coset space G/H, corresponding to the element
g : |ψg⟩ = exp(iα)|x⟩, |ψ0⟩ = |0⟩.

We shall not go into detail here, but the reason we can generalize the coherent states this way is because
we can obtain the CCS as a set of generalized coherent states with the above definition, where the Lie group
G is taken to be the Heisenberg-Weyl group. We refer the reader to [15] for further details.
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5.2 Choosing the Fixed State

(For the rest of the report, when we say GCS, we mean GCS with the group SU(1, 1) and the representation
D−
n (g).)

The definition above clearly depends on the chosen fixed state |ψ0⟩, where there is no restriction on how
to choose this state. At the same time, we want our coherent states to be the most classical states in some
way. This procedure depends on the nature of the group G and on the type of representation T .

Perelomov gives the recipe for a discrete series representation T k(g) of a real semi-simple group G [15,
p. 47]. We already established that G = SU(1, 1) is a real, simple Lie group with a discrete unitary irre-
ducible representation D−

n (g), so we can adapt this construction for our group.

Let su(1,1) be the Lie algebra of G with the basis vectors B0, B1, B2. The representation D−
n is char-

acterized by an integer n ≥ 2, and the basis vectors |ψm⟩ are the eigenvectors of the operator B0 with the
eigenvalue m, i.e. B0|ψm⟩ = m|ψm⟩. Comparing this with Eq. 4.50, we see that m = n

2 + k. Denote the
Casimir operator by Cnas = C2 = B2

0 −B2
1 −B2

2 and recall that C2|ψ⟩ = n
2 (

n
2 − 1)|ψ⟩.

We define the dispersion of the operator C2 as

∆C2 = ⟨B2
0 −B2

1 −B2
2⟩ − ⟨B0⟩2 + ⟨B1⟩2 + ⟨B2⟩2 (5.2)

where ⟨O⟩ denotes the expectation value of the operator O. According to Perelomov, the coherent state
system constructed based on the vector |ψk⟩ that maximizes the dispersion of C2 is the closest to the
classical system [15, p. 47] (note that in the original source, the author minimizes this equation because the
Casimir operator defined there is the negative of the Casimir operator that we use in this report. When one
does everything consistently, one reaches the same conclusion as expected). Hence, we try to maximize

∆C2 = ⟨B2
0 −B2

1 −B2
2⟩ − ⟨B0⟩2 + ⟨B1⟩2 + ⟨B2⟩2 = (

n2

4
− n

2
)− (

n

2
+ k)2 = −(

n

2
+ nk + k2) (5.3)

where we evaluate the expectation values based on the state |ψk⟩. Hence, we maximize this by taking k = 0,
which shows that we should choose our fixed state as the eigenvector of B0 with the lowest eigenvalue, which
is n

2 . Note that choosing ψ0(z) = 1 suffices, since

B0ψ0 =
n

2
=
n

2
ψ0 (5.4)

so that ψ0 is the eigenvector of B0 with the eigenvalue n/2.

We introduced many definitions in the previous paragraphs, so it is a good idea to take a step back and
see what we have done. Firstly, we had the canonical coherent states of the quantum harmonic oscillator at
the very beginning of this report with very nice properties and a lot of applications. The most important
feature of these states was that they resembled a system of classical states. However, they were only defined
for the harmonic oscillator system. Therefore, secondly, we asked the question of whether it is possible to
generalize this idea of finding a system of most classical states in a broader context. The answer was positive,
and we defined the generalized coherent states to achieve this task. However, the definition of the coherent
states that we presented depends on an initial fixed state to generate the system. There seems to be no
reason to choose one state over the other one a priori. Therefore, thirdly, we asked the question of how we
should choose this initial state. Perelomov answered this question by defining the dispersion of the Casimir
operator and stating that the initial state should maximize the dispersion. Hence, we calculated this to
determine the fixed initial state ψ0. After all of this work, we managed to generalize the idea of coherent
states for the discrete unitary irreps of the Lie group SU(1, 1).
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5.3 Parameterizing Generalized Coherent States

Now that we have chosen our fixed state, Definition 5.1 tells us that we need to determine the isotropy
subgroup H for the state ψ0 to parametrize the generalized coherent states.

The isotropy subgroup for our system is given by

H = {h ∈ SU(1, 1) : D−
n (h)ψ0 = eiϕψ0, 0 ≤ ψ < 2π} (5.5)

where D−
n (g)f(z) = (α− βz)−nf(−β+αzα−βz ) and ψ0(z) = 1. Therefore, we need

D−
n (h)ψ0(z) = (α− βz)−nψ0(

−β + αz

α− βz
) = (α− βz)−nψ0(z). (5.6)

Therefore, we need all h ∈ SU(1, 1) such that (α − βz)−n = eiϕ. Furthermore, this should hold for all

z ∈ D, so that β = 0. Therefore, for any h =

(
eiϕ 0
0 e−iϕ

)
we have that h ∈ H. Therefore, H ∼= U(1)

through the exact identification that we used in Lemma 3.14.

As a result, using Lemma 3.14, we can parametrize the coherent states for the representation D−
n using

the pseudo-sphere PS2, since PS2 is in bijection with the right cosets of SU(1, 1) modulo U(1). In the
following computation, we will give an explicit parameterization.

Take an arbitrary point n = (cosh τ, sinh τ sinφ, sinh τ cosφ) ∈ PS2 and denote gn =

(
cosh τ2 sinh τ2 e

−iφ

sinh τ2 e
iφ cosh τ2

)
.

Recall that, by Lemma 3.14, gn is a representative for the right cosets of SU(1, 1) for each n. Therefore, we
should look at the orbits of the fixed state ψ0 under the representation for each n ∈ PS2. Hence, we define

ψn = D−
n (gn)ψ0. (5.7)

Because PS2 is in bijection with D, we can equivalently parametrize the coherent states using the unit
disk as follows. Simply plugging in gives

ψn = D−
n (gn)ψ0 = (cosh

τ

2
− sinh

τ

2
e−iφz)−n. (5.8)

Let ζ = tanh τ
2 e
iφ. Clearly, for each n, there is a unique ζ and vice versa. Then, note that (1−|ζ|2)n/2 =

(sech2 τ2 )
n/2 = (cosh τ

2 )
−n. At the same time, (1 − ζz)−n = (1 − tanh( τ2 )e

−iφz)−n. Combining the two, we
get

(1− |ζ|2)n/2(1− ζz)−n = (cosh
τ

2
)−n(1− tanh(

τ

2
)e−iφz)−n = (cosh

τ

2
− sinh

τ

2
e−iφz)−n = ψn. (5.9)

Therefore, we can parameterize the generalized coherent states using the unit disk ζ ∈ D:

ψζ(z) = (1− |ζ|2)n/2(1− ζz)−n. (5.10)

5.4 Basic Properties of the Generalized Coherent States

In this section, we will take a look at some of the properties of the generalized coherent states. We will
show that they form an overcomplete set in the underlying Hilbert space and demonstrate the resolution of
the identity, which are some of the properties that they share with the canonical coherent states. We will
also rewrite Eq. 5.10 in terms of the basis vectors of Hn(D), which will be useful for the discussions in the
following chapter.

We start by rewriting the coherent states in terms of the canonical basis elements of Hn(D) [5, p. 247].
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Proposition 5.2. The coherent state ψζ can be written as ψζ = (1−|ζ|2)k
∑
l∈N(

Γ(2k+l)
Γ(l+1)Γ(2k) )

1/2(ζ)lel where

n := 2k.

Proof. We start by using the expansion (1 − az)−2k =
∑∞
n=0 a

n(−z)n
(−2k
n

)
. Then, by using the identity(−m

k

)
= (−1)k

(
m+k−1

k

)
, we get

(−2k
n

)
= (−1)n

(
2k+n−1

n

)
. As a result, we have the equality

(1− ζz)−2k =

∞∑
l=0

(ζ)l(−z)l
(
−2k

l

)
=

∞∑
l=0

(ζ)l(−z)l(−1)l
(
2k + l − 1

l

)
=

∞∑
l=0

(ζz)l
(2k + l − 1)!

(2k − 1)!l!
. (5.11)

This proves that

ψζ = (1− |ζ|2)k
∑
l∈N

(
Γ(2k + l)

Γ(l + 1)Γ(2k)
)1/2(ζ)lel. (5.12)

Next, we show that two distinct coherent states are not orthogonal to each other.

Theorem 5.3. The coherent state family ψn := |n⟩ is not an orthogonal system in Hn(D).

Proof. We can prove this claim by explicitly computing the inner product of two coherent states |n⟩ and
|n′⟩. We start by computing the Fourier coefficient of the state |ζ⟩ in the basis el, which is obtained by

using Eq. 5.12: ⟨el|ζ⟩ = (1 − |ζ|2)k( Γ(2k+l)
Γ(l+1)Γ(2k) )

1/2(ζ)l. Using the Parseval identity, we calculate the inner

product:

⟨n′|n⟩ =
∑
l≥0

(
Γ(2k + l)

Γ(l + 1)Γ(2k)
)1/2(1− |ζ|2)kζl( Γ(2k + l)

Γ(l + 1)Γ(2k)
)1/2(1− |ζ ′|2)k(ζ ′)l. (5.13)

Note that (1− ζ ′ζ)−2k =
∑∞
l=0(ζ

′ζ)l (2k+l−1)!
(2k−1)!l! , which gives

⟨n′|n⟩ = (1− |ζ|2)k(1− |ζ ′|2)k(1− ζ ′ζ)−2k. (5.14)

Alternatively, introducing ζ = tanh( τ2 )e
−iφ for returning to pseudopolar coordinates, this expression can

also be expressed as

⟨n′|n⟩ = (cosh
τ ′

2
cosh

τ

2
− sinh

τ ′

2
sinh

τ

2
e−i(φ

′−φ))−2k. (5.15)

Finally, we state the following two equivalent resolutions of the identity [5, p. 249].

Proposition 5.4. We have the formulas

2k − 1

4

∫
PS2

dn|n⟩⟨n| = I (5.16)

∫
D
dν2k(ζ)|ζ⟩⟨ζ| = I (5.17)

with the measure dνn(ζ) =
n−1
π

d2ζ
(1−|ζ|2)2 , d

2ζ = |dζ∧dζ|
2 .

Proof. Recall ψζ(z) = |ζ⟩ = (1− |ζ|2)k
∑
l∈N γ

−1/2
2k,l ζ

lel(z). Then, we have

|ζ⟩⟨ζ| = (1− |ζ|2)2k
∑
k,l∈N

γ
−1/2
2k,l γ

−1/2
2k,m |el⟩⟨em|ζlζm. (5.18)

Therefore, we have
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∫
D
dν2k|ζ⟩⟨ζ| =

∑
k,l∈N

γ
−1/2
2k,l γ

−1/2
2k,m |el⟩⟨em|

∫
D
dν2k(1− |ζ|2)2kζlζm. (5.19)

Let ζ = reiφ. Then, the integral on the right-hand side is given by

∫ 2π

0

∫ 1

0

rm+l+1 (2k − 1)

π
(1− r2)2k−2ei(m−l)φdrdφ =

∫ 1

0

rm+l+12(2k − 1)(1− r2)2k−2δmldr (5.20)

where we used the integral expression for the Dirac delta function. Therefore, the initial integral is given by

∫
D
dν2k|ζ⟩⟨ζ| =

∑
l∈N

γ−1
2k,l|el⟩⟨el|

∫ 1

0

r2l+12(2k − 1)(1− r2)2k−2dr =
∑
l∈N

γ−1
2k,lγ

1
2k,l|el⟩⟨el| =

∑
l∈N

|el⟩⟨el| = I

(5.21)
where we made use of Eq. 4.27 to solve the integral.

Because the coherent state family is not an orthogonal system and because we have the resolution of the
identity, generalized coherent states are not linearly independent and they form an overcomplete set, just
like the canonical coherent states:

|n⟩ = n− 1

4

∫
PS2

dn′|n′⟩⟨n′|n⟩ = n− 1

4

∫
PS2

dn′|n′⟩(cosh τ
′

2
cosh

τ

2
− sinh

τ ′

2
sinh

τ

2
e−i(φ

′−φ))−2n. (5.22)

6 Transformation of the Canonical Coherent States

We started the thesis with the following question: How do the canonical coherent states of the quantum
harmonic oscillator transform under the group SU(1, 1)? In order to answer this question, we presented the
unitary irreducible representation of the group SU(1, 1).

For the discrete series, these representations act on the Hilbert space Hn(D). The problem is that we do
not know what the canonical coherent states look like in Hn(D). However, we know the expressions for the
generalized coherent states that we derived in the previous chapter. Therefore, to answer the question of
”how do generalized coherent states transform under SU(1, 1),” we have all the tools that we need: we have
the unitary irreducible representation D−

n acting on Hn(D), and we have the coherent states ψζ(z) living in
Hn(D). We can take certain elements or certain subgroups of SU(1, 1) and check the transformation of the
coherent states under these elements/subgroups. In principle, we can answer all the questions related to the
transformation of these states.

This was a success, but we still want to investigate the transformation of the canonical coherent states. In
this chapter, we will do two things. First, we will attempt to find a correspondence between the generalized
and canonical coherent states. Since we know the transformation of generalized coherent states, if we can
link these states to the canonical coherent states, we can also investigate the transformation of the canonical
coherent states. Secondly, we will present an idea to construct a unitary representation of the group SL(2,R)
acting on the space L2(R). This is very desirable because we know the expressions for the canonical coherent
states in L2(R). Using these expressions, we can act on them with the group representation to answer the
question of how canonical coherent states transform.

6.1 Identifying Canonical and Generalized Coherent States

To examine the transformation of canonical coherent states, the first idea is to try to identify the generalized
and canonical coherent states with each other. If we know how generalized coherent states transform, and if
we can find a bijective correspondence onto canonical coherent states, or at least some correspondence, then
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we could also identify how canonical coherent states transform.

We know the expressions for canonical coherent states in L2(R), whereas generalized coherent states live
in Hn(D). Therefore, we can try to match the vector spaces with each other. This is possible due to the
following result from functional analysis [17, p. 55]:

Theorem 6.1. All separable Hilbert spaces are isometrically isomorphic.

We already established that Hn(D) is separable at the end of Section 4.2.1. It is also true that L2(R) is
separable, which can be seen by the fact that the energy eigenstates of the quantum harmonic oscillator |n⟩
form an orthonormal basis for the space. Therefore, we can find an isomorphism between the two Hilbert
spaces. This is done in [13, p. 15] as follows.

Take a normalized vector |ψ⟩ in L2(R) and write it as |ψ⟩ =
∑
cn|n⟩ where |n⟩ are the energy eigenstates

of the quantum harmonic oscillator in 1 space dimension. Then, define the function

ψ(ζ) =

∞∑
n=0

√
Γ(2k + n)

Γ(n+ 1)Γ(2k)
cnζ

n. (6.1)

Clearly, ψ(ζ) is holomorphic on the unit disk, and ||ψ||2 =
∫
D |ψ(ζ)2|dνn(z)dxdy < ∞. Therefore,

ψ(ζ) ∈ Hn(D), and Eq. 6.1 establishes the isomorphism between Hn(D) and L2(R).

We can make this isomorphism more explicit. Note that an energy eigenstate |l⟩ is mapped under this

isomorphism to the function |l⟩ 7→
√(

l+2k−1
l

)
ζl. But recall that

el(ζ) =
ζl

√
γ2k,l

=
ζl√

Γ(2k)Γ(l+1)
Γ(2k+l)

=

√(
l + 2k − 1

l

)
ζl. (6.2)

As a result, the isomorphism established in Eq. 6.1 maps nothing but orthonormal basis elements to or-
thonormal basis elements. Hence, we can define it by extending the following map linearly:

Y : L2(R) → Hn(D), |l⟩ 7→ el. (6.3)

Now that we established the isomorphism between the Hilbert spaces, we can see how GCS look like in

L2(R). Recall that, in the basis el, a coherent state is given by ψζ(z) = (1−|ζ|2)k
∑
l∈N γ

−1/2
2k,l ζ

lel(z). Denote

by ψ̃kζ ∈ L2(R) as the image of ψζ(z) under the isomorphism Y . Then, we have

ψ̃kζ = (1− |ζ|2)k
∑
l∈N

γ
−1/2
2k,l ζ

l|l⟩. (6.4)

We can rewrite this by noting that

γ
−1/2
2k,l =

√
(l + 2k − 1)!

l!(2k − 1)!
=

1√
l!

√
(l + 2k − 1)l (6.5)

where (x)n is the falling factorial. As a result, we get

ψ̃kζ = (1− |ζ|2)k
∑
l∈N

√
(l + 2k − 1)l

ζl√
l!
|l⟩. (6.6)

This expression is not in the form of a CCS that we derived in Eq. 2.7, so we cannot work with it.
However, there is a limiting behavior between the generalized and canonical coherent states that relates the
two systems, which is expressed in [5, p. 250].

Theorem 6.2 (Large k limit). limk→∞ ψ̃k
ζ/

√
2k

= |ζ⟩
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Proof. We have the first limit

lim
k→∞

(1− | ζ√
2k

|2)k = exp(−|ζ|2/2) (6.7)

and the second limit

lim
k→∞

∑
l∈N

√
(l + 2k − 1)l

(ζl)/(
√
2k)l√

l!
|l⟩ = lim

k→∞

∑
l∈N

√
(l + 2k − 1)!

l!(2k − 1)!

ζl

(
√
2k)l

|l⟩ =
∑
l∈N

1√
l!
ζl|l⟩. (6.8)

Combining the two, we obtain

lim
k→∞

ψ̃k
ζ/

√
2k

= exp(−|ζ|2/2)
∑
l∈N

ζl√
l!
|l⟩ = |ζ⟩. (6.9)

This is an interesting result, for which we are not sure of the correct interpretation. When we take a
generalized coherent state and map it to L2(R), we obtain the state ψ̃kζ , and when the number k goes to
infinity as the parameter value of ζ goes to zero at a certain rate, we recover a canonical coherent state. This
theorem suggests that there is a deeper connection between the generalized and canonical coherent states
that the author of this report is not aware of, which may be helpful to better understand the transformation
of canonical coherent states.

6.2 Changing the Carrier Space

Another approach we can take is as follows. When we constructed the irreducible representations of SU(1, 1)
in Chapter 4, the Hilbert space on which the representations acted on was Hn(D). Since Hn(D) and L2(R)
are isomorphic as Hilbert spaces, can we construct unitary irreps of SU(1, 1) that act on L2(R) instead?
This would be very useful, as the representations could act directly on the canonical coherent states.

The first approach we can try is to realize the operator D−
n (g) as an operator acting on L2(R). Since D−

n

is a linear operator, we should find out how it acts on the basis elements of L2(R), because if we can find
this, then we know how it acts on any vector in L2(R) due to linearity.

Let us take an element from the orthonormal basis of Hn(D) and see how D−
n acts on it. We simply

compute

D−
n (g)el(z) = (α− βz)−nel(

−β + αz

α− βz
) = (α− βz)−(n+l)(−β + αz)l · 1

√
γn,l

. (6.10)

This is a complex rational function, so we can write it as a Taylor series: D−
n (g)el(z) = c0 + c1z

1 + · · · .
Unfortunately, after some algebraic manipulations and some literature search, we are not aware of simple,
closed-form expressions for the Taylor coefficients cj of the above function.

For a moment, suppose that we can find explicit expressions for the Taylor coefficients, so that we write
D−
n (g)el(z) = c0 + c1z

1 + · · · . By scaling zl terms, we would get an expression in terms of the orthonormal
basis {el}l≥0. Because Y maps |l⟩ to el, this would give an expression for the action of D−

n (g) on |l⟩ in terms
of other energy eigenstates, where D−

n now acts on L2(R). From this, using linearity, it would be possible to
construct a unitary irrep of SU(1, 1) acting on the relevant Hilbert space.

As a matter of fact, the matrix elements of the form ⟨el|D−
n (g)|em⟩ are derived by Bargmann in terms

of hypergeometric functions in [1, Chapter 10]. Once again, in principle, this is all we need to define the
representation in an alternative Hilbert space, as the matrix elements determine the action of the operator
on any vector in L2(R).
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6.3 Directions for Further Research

Although one can investigate the transformation of canonical coherent states as a limiting case of generalized
coherent states, this approach has limitations. For instance, it is not clear how we can start with a canonical
coherent state in L2(R) and see how it transforms under an element g of the group SU(1, 1). With our cur-
rent approach, we necessarily start from a generalized coherent state and obtain a canonical coherent state
as a limiting case, where we lose some information about the initial generalized coherent state. Therefore,
although certain properties of the transformation of canonical coherent states can be obtained this way, we
ideally would like to come up with an alternative approach to investigate their transformation that is more
direct.

To overcome these limitations, we would like to come up with unitary irreducible representations in
L2(R). If this can be realized, then these representations can directly act on the canonical coherent states,
as we have the expressions for canonical coherent states in the space L2(R). This would provide a more
direct way of investigating the transformation of canonical coherent states under arbitrary elements of the
group SU(1, 1).

We end the report by suggesting a possible way to come up with such a representation. Without proofs,
we will construct a group action of SL(2,R) and conjecture a unitary irreducible representation of SL(2,R)
acting on L2(R). Since SL(2,R) is isomorphic to SU(1, 1) as a group, the following constructions can also
be adapted for SU(1, 1).

First, we define the 2 × 2 projective special linear group PSL(2,R) over real numbers as PSL(2,R) =
SL(2,R)/{±I}, which is nothing but the quotient of SL(2,R) by its center. Earlier in the report, we used
Eq. 3.31 and Proposition 3.13 to show that SU(1, 1) quotient out by its center, or equivalently SL(2,R)
quotient out by its center, is isomorphic to the group of conformal automorphisms of the unit disk. With our
new definition, we can say that the group PSL(2,R) is isomorphic to the group of conformal automorphisms
of the unit disk. Using this automorphism, we defined a group action in Theorem 4.6, which was used to
construct a unitary representation of SU(1, 1) in Theorem 4.7. Our goal is to follow a similar path to come
up with a different representation.

Similarly to their relation with the open unit disk, the elements of PSL(2,R) are also homographies on
the real projective line RP 1, where RP 1 = R ∪ {∞}. Using this, we have the following proposition.

Theorem 6.3. M− : SL(2,R)× RP 1 → RP 1, M−(g)(r) = ar+b
cr+d where g =

(
a b
c d

)
: ad − bc = 1 and

r ∈ RP 1 is a left group action.

Proof. The proof is identical to the proof of Theorem 4.6.

Next, we would like to use this group action to construct a representation. We can do this with an
equation of the form D̃−(g)f(x) = c−g (x)(f(M−(g

−1)(x)) where g ∈ SL(2,R), f ∈ L2(R), and c−g (x) is

chosen so that the representation is unitary. The expression f(M−(g
−1)(x)) is given by f( dx−b

−cx+a ). One
should be careful here, as for certain values of x, c, and a the argument of f may be infinite, whereas the
domain of f is the real numbers. We propose to overcome this technicality as follows. In general, it is not
true that an arbitrary function f ∈ L2(R) will go to 0 as x → ±∞. However, for the wavefunctions f that
we consider in quantum mechanics, this is the case (for instance, if a function f is in the domain of the
momentum operator p̂, then f indeed goes to 0 as x → ±∞). Therefore, we define f(∞) = 0 so that the
function on the right-hand side should be well-defined for any wavefunction. Using this, we state the main
conjecture of this report.

Conjecture 6.4. D̃−(g)f(x) = (xc+ d)f( dx−b
−cx+a ) is a unitary representation of SL(2,R) in L2(R).

We note that the factor (xc + d) makes the representation unitary, and since
∫
R |f(x)|dx < ∞, the ex-

pression on the right-hand side also has finite L2 norm, which makes it square integrable. If the way we tried
to overcome the technical details explained above is mathematically justified, we believe that this is indeed
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a unitary representation of SL(2,R) acting in L2(R). We underline two important questions for further re-
search. The first is related to the well-definedness of this representation and modifying the arguments above
to make this statement completely rigorous. Secondly, one can investigate whether the representation is
irreducible or not. If this is a valid irreducible representation of SL(2,R) in L2(R) and if all such representa-
tions can be found, one would have all the tools to investigate the transformation of canonical coherent states.

Assuming Conjecture 6.4 is a valid unitary representation of SL(2,R) in L2(R), we can investigate the
transformation of canonical coherent states under this representation. The canonical coherent states in the
position basis are given by [12, p. 2]

|α⟩ = ψα(x) = (
mω

πℏ
)1/4 exp(−(|α|2 + α2)/2) exp(

√
2mω

ℏ
αx) exp(−mω

2ℏ
x2). (6.11)

Denote s =
√

ℏ
mω . Then, we have

D̃−(g)ψα(x) = (xc+ d)(
mω

πℏ
)1/4 exp(−(|α|2 + α2)/2)e

√
2α
s ( dx−b

a−cx )e
−1

2s2
( dx−b
a−cx )2 := φg,α(x). (6.12)

We calculate

x̂φg,α(x) = xφg,α(x) (6.13)

p̂φg,α(x) = −iℏ ∂

∂x
φg,α(x) = −iℏφg,α(x)[

c

(xc+ d)
+

√
2α

s

1

(a− cx)2
− 1

s2
(dx− b)

(a− cx)3
]. (6.14)

Since a− = 1√
2ℏmω (ip̂+mωx̂), we get

a−φg,α(x) =
φg,α(x)√
2ℏmω

[
ℏc

xc+ d
+

√
2mωℏα

1

(a− cx)2
−mω

(dx− b)

(a− cx)3
+mωx]. (6.15)

We now introduce a special decomposition of SL(2,R) called the Iwasawa decomposition. Define the
following subgroups of SL(2,R):

K = {
(
cos θ − sin θ
sin θ cos θ

)
}, A = {

(
r 0
0 1/r

)
: r > 0}, N = {

(
1 γ
0 1

)
}. (6.16)

Then, we have the following theorem [6, p. 1].

Theorem 6.5. We have a decomposition SL(2,R) = KAN : every g ∈ SL(2,R) has a unique representation
as g = kan where k ∈ K, a ∈ A, and n ∈ N .

We can investigate the transformation of |α⟩ under these subgroups. Let gn be an element of the subgroup
N , also called the parabolic subgroup. We then have

a−φgn,α(x) = φgn,α(x)[α+

√
mω

2ℏ
γ] = |α+

√
mω

2ℏ
γ⟩. (6.17)

This is a new canonical coherent state with eigenvalue α +
√

mω
2ℏ γ, showing that we can add any real

number γ̃ =
√

mω
2ℏ γ to α to obtain a new canonical coherent state. Under the parabolic subgroup, canonical

coherent states transform into other canonical coherent states.

Similarly, under the hyperbolic subgroup A, we obtain a squeezed coherent state with any positive squeez-
ing parameter ζ. For the definition and discussion of squeezed coherent states, see [10, Chapter 7]. Denote
the squeezed coherent state with parameters α, ζ as |α, ζ⟩ = ψα,ζ . Hence, under the subgroup AN , the
canonical coherent states first turn into another canonical coherent state with the real part scaled, and then
they are squeezed to become a squeezed coherent state.
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We could not realize the transformation of the canonial coherent states under the subgroup K as special
states of the harmonic oscillator such as squeezed coherent states, but we have the closed-form expression
of the transformed state due to Conjecture 6.4. Regardless, this is precisely what we are looking for. For a
fixed canonical coherent state |α⟩, we can pick an arbitrary g ∈ SL(2,R), and write it uniquely as g = kan.
Since group representations are group homomorphisms, we have

D̃−(g)ψα(x) = D̃−(kan)ψα(x) = D̃−(k)D̃−(an)ψα(x) = D̃−(k)ψα̃,ζ̃ (6.18)

for some α̃ ∈ C, ζ̃ > 0 that depend on the group element g. Expressions for the squeezed coherent states
in terms of the energy eigenstates are known. Therefore, we get the final expression for the transformed
canonical coherent state as

D̃−(g)ψα(x) = D̃−(k)ψα̃,ζ̃ = (sin θx+ cos θ)ψα̃,ζ̃(
cos θx+ sin θ

− sin θx+ cos θ
). (6.19)

If our approach is correct, under this unitary irreducible representation of SL(2,R), this is how the
canonical coherent states transform.

7 Conclusion

In this thesis, we investigated the transformation of coherent states under the group SU(1, 1).

First, we introduced the canonical coherent states of the quantum harmonic oscillator, which are the
normalized eigenstates of the lowering operator. We demonstrated that they have many nice properties,
including minimizing the uncertainty product. After this, we established the symmetry group of the har-
monic oscillator, called the symplectic group Sp(2,R), which was later shown to be isomorphic to the group
SU(1, 1). Hence, we formulated one of the main questions in this report, which is about the transformations
of the canonical coherent states under SU(1, 1). To answer this question, we needed two related branches
of mathematics, namely Lie theory and representation theory. Lie theory is introduced to analyze the prop-
erties of the group SU(1, 1), and the representation theory is used to come up with the unitary irreducible
representations of SU(1, 1).

Later, we studied the algebraic and topological properties of the group SU(1, 1), including several param-
eterizations, Lie algebra, Casimir operator, dimension, connectedness, compactness, and simplicity. We also
looked at the geometry of the parameter space of SU(1, 1) with different models. Each of these properties
has an influence on the representations of the group. In particular, we concluded that the nontrivial unitary
representations of SU(1, 1) were all infinite-dimensional.

In Chapter 4, we started by classifying the possible unitary irreducible representations of the group
SU(1, 1) based on some conditions that they need to satisfy. Then, our goal was to explicitly realize these
representations. The first family of representations is the discrete series. After defining the carrier space
Hn(D), we constructed a family of representations of the group. We showed that the representations were
unitary, irreducible, and discrete, verifying that they belonged to the discrete series. Without proofs, we
presented analogous results for the other families of representations.

In Chapter 5, we used discrete series to define generalized coherent states for the group SU(1, 1). We
showed that the generalized coherent states are, as their name suggests, a generalization of the canonical
coherent states of the harmonic oscillator. We justified this generalization by comparing some of their prop-
erties with the canonical coherent states. Finally, we parameterized the generalized coherent states and found
explicit equations for them. In doing so, we obtained the necessary tools to investigate the transformation
of generalized coherent states under SU(1, 1).

In the last chapter, we returned to the original question of the transformation of canonical coherent states.
We tried to answer this question with two methods. In the first one, we tried to establish a connection be-
tween the generalized and canonical coherent states. We presented a way of identifying canonical coherent
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states as limiting cases of generalized coherent states, based on a theorem in [5, p. 250]. This makes it pos-
sible to investigate their transformation. Although this approach was successful, it is not the most suitable
way to analyze the transformation of canonical coherent states. Therefore, we took a second approach in
which we tried to construct representations in the space L2(R) since the expressions for the coherent states
in this Hilbert space are better understood. After pointing out in the literature where the matrix elements
of the operator are calculated, which makes it possible to construct representations in L2(R), we conjectured
yet another unitary representation of the group SL(2,R) acting on the space L2(R). If this representation
is well-defined and irreducible, it would provide us with the tools to explicitly answer the question of the
transformation of canonical coherent states.

Overall, we managed to answer some of the questions we asked ourselves at the beginning. In par-
ticular, we found in the literature the classification of the unitary irreducible representations of SU(1, 1)
and presented them in an organized way based on [5, Chapter 8], which are essential for analyzing the
transformation of coherent states. We also presented a method that is adapted from [15] to generalize the
canonical coherent states and obtained the necessary results to investigate their transformation under the
group SU(1, 1). The question of the transformation of the canonical coherent states under the discrete repre-
sentations is also answered, but there is more work to be done to obtain a more direct answer to this question.

There are many open questions to be answered. We still wonder if there are more explicit ways of in-
vestigating the transformations of the canonical coherent states, which was the biggest goal of this report.
Furthermore, there are more properties of the generalized coherent states that can be understood better.
For instance, the Wigner functions of the canonical coherent states preserve an area in the complex plane,
which is related to their minimization of the uncertainty product. Is it possible to find a similar geometric
meaning for generalized coherent states? Do they preserve an area on the unit disk, or do they minimize a
certain operator that is related to their behavior of being the most classical states? What is the physical
interpretation of the large k limit that relates them to canonical coherent states? Clearly, more research can
be done on the generalized coherent states to answer these and other related questions.

Moreover, in this report, we mostly worked with the discrete series. One can also construct the gen-
eralized coherent states for other unitary irreducible representations and ask the same questions that we
examined. It is possible that there is a more clear connection between the generalized coherent states of
different representations and the canonical coherent states.

Finally, one can analyze the transformation of coherent states in higher dimensions. Almost everything
in this report should be done from the beginning. One should first define the canonical coherent states of
the harmonic oscillator in N dimensions. Then, the symmetry group of the oscillator is Sp(2N,R), so one
should find the unitary irreducible representations of the group Sp(2N,R). After this, one can investigate the
transformation of coherent states, both generalized and canonical. It would be nice to generate a systematic
way to obtain these results for an arbitrary dimension N .
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