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Abstract

The classical Lotka-Volterra model describes the population evolution of two interacting species,
one a predator, and the other its prey. The paper investigates the model under parametric
uncertainty using the Stochastic Galerkin method, where the deterministic system is trans-
formed into a set of coupled ordinary differential equations via generalized Polynomial Chaos
Expansion with Legendre polynomials. Analytical and numerical computations are performed
for low-dimensional truncation orders to determine the steady states of the system and their
stability. Results show that steady states under uncertainty can be stable, unstable, or neither
at the same time and additional fixed points emerge with increasing stochastic complexity.
A sensitivity analysis further explores the effects of varying model parameters on equilibrium
behavior and population evolutions.
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1 Introduction

Mathematical modeling plays a crucial role in understanding complex natural phenomena,
particularly in the study of ecological systems [5]. One of the most classical and widely analyzed
models is the Lotka-Volterra system, which captures the nonlinear interaction between a prey
and a predator species [14]. Introduced by Alfred J. Lotka in 1920 [12] and by Vito Volterra
in 1926 [23] independently, the model provides a simple yet powerful tool in analyzing the
oscillatory dynamics and long-term behavior of the prey-predator interaction [3].

Despite its theoretical simplicity and elegance, the standard Lotka-Volterra model makes
strong assumptions about the environment and the interaction of the two species, often consid-
ering all parameters to be known and fixed [13]. In real-world ecosystems, however, biological
interactions are subject to various forms of uncertainty, ranging from fluctuating environmental
conditions to incomplete knowledge or incorrect measurements of key parameters such as repro-
duction rate, hunting rate, or mortality [5]. Therefore, incorporating uncertainty in the model
is essential for making realistic predictions and gaining deeper insights into system dynamics
[5].

In recent years, uncertainty quantification has gained attraction across applied sciences,
especially in fields where models depend on parameters subject to variability, such as fluid dy-
namics and biology [27]. Some of the most common techniques used to quantify uncertainty in-
clude the generalized Polynomial Chaos Expansion (gPCE) [26], Monte Carlo simulations [27],
and the Stochastic Galerkin projection method [6]. While stochastic extensions of the Lotka-
Volterra equations have been investigated, often using the Monte Carlo approach, there is lim-
ited literature applying Stochastic Galerkin methods directly to this problem [5]. The method
converts a stochastic differential system of equations into a deterministic higher-dimension sys-
tem that enables an efficient computation and analytical analysis of how uncertainty affects
the system and its stationary values [6].

The thesis explores the Lotka-Volterra equations under parametric uncertainty using the
Stochastic Galerkin projection method. In this work, we introduce uncertainty in the prey’s
natural growth rate, rather than in other parameters such as the predator mortality or the in-
teraction coefficients. This choice is motivated by both ecological and modeling considerations.
The prey’s growth rate is strongly affected by environmental conditions such as food availabil-
ity and disease, both of which include natural variability [4, 9]. Moreover, since the size of
the prey population directly affects the predator population, uncertainty in this parameter can
have a significant effect on the system’s long-term behavior, making it an appropriate focus
for uncertainty and sensitivity analysis [16]. By introducing uncertainty into the prey’s natu-
ral growth rate and applying generalized Polynomial Chaos Expansion (gPCE), the model is
reformulated into a system of ordinary differential equations (ODEs) of higher dimensionality.
Using gPCE, a variable is rewritten as an infinite sum of a deterministic part multiplied by a
known polynomial [8]. Since infinite sums are not used in practice, the expansion is approxi-
mated by truncating it at a finite order k, known as the truncation order [8]. This allows for
both qualitative and quantitative analyses of the model’s dynamics under uncertainty [5, 6].

While the steady states and their stability are well understood for the standard Lotka-
Volterra model [3], it remains unclear how these properties are affected when uncertainty is
introduced into the system [5]. This work aims to address this gap by studying the behavior of
the Stochastic Galerkin system for truncation orders k = 0, 1, 2. A numerical implementation is
used to solve the truncated system and identify unique stationary points, followed by analytical
stability assessments based on the eigenvalues of the Jacobian matrix. Finally, a sensitivity
analysis is performed by varying the fixed parameters of the model. First, the predator’s
hunting rate β, the predator’s mortality rate γ and the effect δ that the prey population
has on the predator’s are varied individually to assess their effect on the system dynamics at
equilibrium. Furthermore, a similar analysis is performed for the stochastic components of the
prey’s growth rate, investigating the impact of uncertainty on equilibrium behavior.
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2 The Lotka-Volterra model

The Lotka-Voterra model is a mathematical model used to describe the dynamics of two in-
teracting populations, one a predator and the other its prey. The equations that model the
interaction of the two species bear the names of two scientists: Lotka and Volterra. Alfred
James Lotka (1880-1949) was a Polish-American chemist and statistician and Vito Volterra
(1860-1940) an Italian mathematician [3].

2.1 Short bibliographies of Lotka and Volterra

Alfred J. Lotka is considered as one of the founders of mathematical demography. He was
born in Lwów, Austria-Hungary, then part of Poland, and died in New York, USA. Despite
not pursuing a career in academia, his work was profoundly influential to the academic world,
with all authors investigating his field of work regularly referencing him and his discoveries.
Lotka’s advanced studies in physics and chemistry began at the University of Birmingham,
where he also obtained his B. Sc. in 1901, and later a D. Sc. in 1912. Between the two, he
worked at Leipzig University and Cornell University, where in 1909 he also received his M. Sc.
in Physics [3, 22].

Figure 1: Alfred J. Lotka

Lotka wrote six books and published almost one hundred papers on various topics in chem-
istry, physics, epidemiology and biology. Between 1907 and 1939, he worked in mathematical
demography, time in which he also derived a model proving that undamped, permanent os-
cillations arise in biological systems in 1920 [12]. He further had publications in the field of
bibliometrics and contributions in scientometrics – the scientific study of scientific publications.
Around half of his publications were on population issues, specifically on the concepts of stable
age-distribution of a population and of natural rate of increase of a population. Furthermore,
towards the end of his professional career, he was a statistician for the Metropolitan Life In-
surance Company, New York [3, 22].

Figure 2: Vito Volterra
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Vito Volterra was born in Ancona, then part of the Papal States, and died in Rome,
Italy. His work was focused around integral equations and calculus. In fact, in 1896 he
published papers on what are known today as integral equations of Volterra type, and had
later contributions in integral and integro-differential equations [3]. Moreover, several papers
published by Volterra initiated the modern theory of functional analysis. After being a professor
of rational mechanics at the University of Pisa, where he also performed his studies, in 1892,
he became professor of mechanics at the University of Turin and then, in 1900, professor of
mathematical physics at the University of Rome La Sapienza [3]. After World War I, Volterra
started studying the ecological problem of a predator population interacting with the prey one
[3].

His work progressed in the following years, publishing more papers, with the aim of obtain-
ing a mathematical theory of the struggle for existence of interacting species. This led to him
being a plenary speaker at the First Congress of Romanian Mathematicians in Cluj, Romania
in 1929, presenting On the mathematical theory of the struggle for existence. In fact, Volterra
had a lot of Romanian mathematician friends [3]. This is where his work overlapped with
Lotka’s work. Lotka published his paper in 1920 [12] and Volterra in 1926 [23], both reaching
the same conclusion, that the interaction of two species would give rise to an intriguing oscil-
lation of their populations [3]. Volterra published his first paper in 1881, just before turning
twenty-one, and his last in 1939-1940, when he was almost eighty years old.

Although the two were in different fields of studies and lived in different countries, their
mutual interest in mathematical modeling resulted in their professional partnership. The
authors even exchanged a few letters during their work on the model [3]. While Lotka firmly
established his goal of deriving equations modeling two animal species, Volterra generalized the
equations for n species, including their past interactions [3, 24]. A comprehensive derivation of
the generalized Lotka-Volterra equations can be found in Chapter 3 of [17] or Volterra’s paper
[24].

3 Simple population models

The equations of the standard Lotka-Volterra model derived by the two authors are

dy

dt
= αy − βyz,

dz

dt
= δyz − γz,

(1)

where y(t) is the population density of the prey at time t, and z(t) the population density of
the predator at time t. The prey’s parameters, α and β, describe, respectively, the maximum
prey per capita growth rate, and the effect of the presence of predators on the prey death
rate. The predator’s parameters, γ and δ, respectively describe the predator’s per capita death
rate, and the effect of the presence of prey on the predator’s growth rate. Physically, β is the
hunting rate of the predator on the prey and γ is the predator’s mortality rate. Note that all
four parameters are positive.

Building up to model (1), we begin by analyzing a simplified case involving only one of the
two species, namely the prey. Starting with the basic ODE describing exponential population
growth, we then incorporate a quadratic term of the population y to represent limiting factors
such as food scarcity or habitat limitations. With this foundation, we extend the analysis to
the two-species Lotka–Volterra model (1).

3.1 Single-Species Exponential Growth

The simplest mathematical model that describes the population growth of an animal species
assumes that the rate of increase of population is proportional to the size of the population at
any time. In mathematical terms, this describes a basic Ordinary Differential Equation (ODE)
of the form

dy

dt
= αy(t), (2)
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where α is the population growth rate, defined as the difference between the birth and death
rates. Here, the birth rate is defined as the number of individuals born in a population per unit
time, while the death rate represents the average number of individuals that die per unit time
[10]. Both rates are measured per unit time, so α has units of inverse time t. The function
y(t) denotes the population density at time t, represented by a scalar since only one species is
considered.

Since the end goal involves analyzing the Lotka-Volterra model (1), the parameter α is often
more chaotic rather than constant. Furthermore, the biological measurements are subject to
error, as there is no way of accurately determining the birth rate of a species, or similarly,
the spontaneous death rate. Thus, we want to add uncertainty to the model to overtake the
possible miscalculations.

Assume that α is a uniformly distributed variable. We assume uniform distribution due to
simplicity and the fact that it is bounded, meaning that we can assume α is positive and can
be written as

α := a+ bω, (3)

where a, b ∈ R, and ω is uniformly distributed ω ∼ U([−1, 1]). To ensure that the exponential
growth rate α remains strictly positive for all values of ω ∼ U([−1, 1]), we impose the condition
a − |b| > 0. Note that ω is a scalar, thus it is dimensionless. Substitution with (3) in (2),
results in the following uncertain ordinary differential equation with parametric uncertainty:

dy

dt
(t, ω) = (a+ bω)y(t, ω), a− |b| > 0, ω ∼ U([−1, 1]). (4)

Note that since ω can take different values, function y(t) in (2) is now dependent on both time
and ω, so it becomes y(t, ω), as given in (4).

To perform uncertainty quantification, we make use of the stochastic Galerkin projection
method. This is an intrusive method, meaning that new equations are derived, ones that take
into account the uncertainty. Stochastic Galerkin projection relies on generalized Polynomial
Chaos Expansion (gPCE) of the involved variables, which in this case is y(t). As stated above,
this affects y in the sense that it is now not only depending on time t, but also on the random
variable ω. Using the gPCE a variable can be written as an infinite sum of a deterministic
part multiplied by a known polynomial, which depends on the random parameter ω. Since in
practice we cannot work with infinite sums, we truncate it in the following way:

y(t, ω) ≈
k∑

i=0

ŷi(t)ϕi(ω), (5)

where k ∈ N is the truncation order, taken to be finite. Using (5) and the known definitions
for mean and variance given in [18], we derive the following expressions for the mean µy and
standard deviation σy for the population y:

µy = E[y] = ŷ0, σy =
√

V ar[y] =

k∑
i=1

ŷ2i , (6)

which are used in Section 5.
The goal now is to derive an ODE-system for the unknown stochastic Fourier coefficients

ŷ0, . . . , ŷk. Since the random parameter ω is uniformly distributed on [−1, 1], the corresponding
family of orthogonal polynomials with respect to the uniform probability density function
1[−1,1] is the Legendre polynomials. For other types of distributions, different polynomial
families are used. For example, Hermite polynomials are used when the random variable
follows a standard normal distribution, due to their orthogonality with respect to the Gaussian
probability density function. Similarly, Jacobi polynomials are used for β-distributions and
Laguerre for exponential or γ-distributions [15].

Legendre polynomials are a known family of orthogonal polynomials first introduced in 1782
by Adrien-Marie Legendre and are obtained through well-known linear algebra methods based
on Sturm-Liouville theory [2]. They are most commonly obtained as a result of the solution
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of Legendre differential equation by power series [2]. This paper denotes the polynomials as
{ϕi}∞i=0, and as an example, we have that the first three standard (unnormalized) Legendre
polynomials are ϕ0(ω) = 1, ϕ1(ω) = ω, ϕ2(ω) =

1
2 (3ω

2 − 1). Substituting equation (5) into the
uncertain ODE (4) yields

d

dt

k∑
i=0

ŷi(t)ϕi(ω) = (a+ bω)

k∑
i=0

ŷi(t)ϕi(ω)

⇐⇒
k∑

i=0

dŷi
dt

ϕi(ω) =

k∑
i=0

aŷi(t)ϕi(ω) +

k∑
i=0

bŷi(t)ωϕi(ω). (7)

Next, project (7) onto a test function ϕs(ω), for s = 0, . . . , k, by multiplying (7) by ϕs(ω)
and integrating over ω ∈ [−1, 1]. Note that the test function is also taken to be a Legendre
polynomial. The projection of (7) onto the test function ϕs yields the following expression:∫ 1

−1

k∑
i=0

dŷi
dt

ϕi(ω)ϕs(ω)dω︸ ︷︷ ︸
P( dŷ

dt )

= a

∫ 1

−1

k∑
i=0

ŷi(t)ϕi(ω)ϕs(ω)dω︸ ︷︷ ︸
P (aŷ)

+ b

∫ 1

−1

k∑
i=0

ŷi(t)ωϕi(ω)ϕs(ω)dω︸ ︷︷ ︸
P (bωŷ)

, (8)

where P (·) denotes the projection operator onto the Legendre polynomial basis.
It is a known fact that Legendre polynomials are orthogonal, giving∫ 1

−1

ϕi(ω)ϕs(ω)dω = hsδis, (9)

where hs = 2
2s+1 is the normalization factor (we assume ϕi(1) = 1), and δis is the Kronecker-

delta function,

δis =

{
1, if i = s,

0, if i ̸= s.
(10)

A straightforward computation for P
(

dŷ
dt

)
and P (aŷ) in (8) gives

P

(
dŷ

dt

)
:

k∑
i=0

dŷi
dt

∫ 1

−1

ϕi(ω)ϕs(ω)dω = hs
dŷs
dt

, (11)

P (aŷ) :

k∑
i=0

aŷi

∫ 1

−1

ϕi(ω)ϕs(ω)dω = ahsŷs. (12)

Next, for P (bωŷ) =
∑k

i=0 ŷi
∫ 1

−1
ωϕi(ω)ϕs(ω)dω, we make use of the three-term recurrence

relation of orthogonal polynomials. This is an appropriate tool since the Legendre polynomials
are orthogonal by definition. The formal recurrence relation states as follows.

ϕi+1(ω) = (Aiω +Bi)ϕi(ω)− Ciϕi−1(ω)

⇐⇒ ωϕi(ω) =
1

Ai
(ϕi+1(ω) + Ciϕi−1(ω)−Biϕi(ω)). (13)

The coefficients A,B and C dependent on index i that correspond to the choice of Legendre
polynomials are

Ai :=
2i+ 1

i+ 1
, Bi := 0, Ci :=

i

i+ 1
. (14)

Thus, using (14), the expression (13) translates to our problem as

ωϕi(ω) =
i+ 1

2i+ 1
ϕi+1(ω) +

i

2i+ 1
ϕi−1(ω). (15)
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Using (15), we obtain∫ 1

−1

ωϕi(ω)ϕs(ω)dω =

∫ 1

−1

i+ 1

2i+ 1
ϕi+1(ω)ϕsdω +

∫ 1

−1

i

2i+ 1
ϕi−1(ω)ϕs(ω)dω

=

(
s

2s− 1
δi,s−1 +

s+ 1

2s+ 3
δi,s+1

)
hs, (16)

where δ is the Kronecker-delta function (10).
With the result (16) and the orthogonality property of Legendre polynomials (9), one

obtains

P (bωŷ) : b

k∑
i=0

ŷi

∫ 1

−1

ωϕi(ω)ϕs(ω)dω = bhs
s

2s− 1
ŷs−1 + bhs

s+ 1

2s+ 3
ŷs+1. (17)

Note that since all three expressions (11), (12) and (17) involve the factor hs, we divide all
three equations by hs and summing them we obtain the following ODE-system describing the
evolution of ŷ(t) over time t, as required:

dŷs
dt

= ays +
bs

2s− 1
ŷs−1 + b

s+ 1

2s+ 3
ŷi+1, s = 0, . . . , k. (18)

In what follows, a quadratic term of the animal population y is added to the basic ODE,
representing the limiting factors of the model. This term is incorporated to approach the
Lotka-Volterra model (1) which involves a nonlinear relationship between the two species. The
added term increases the complexity of the system and hence applying the same method as in
this section requires further computations to obtain a similar system to (18).

3.2 Single-Species Logistic Growth

As an intermediate step towards the Lotka-Volterra model with uncertainty, we are interested
in the role of adding a quadratic component of the animal population to the ODE. Consider
then

dy

dt
= αy(t) + y(t)2, (19)

where α is the exponential growth of the population y(t) and α and y are defined as in Section
3.1. Again, suppose α is uniformly distributed, so it is positive and bounded and let α = a+bω,
where ω ∈ U [−1, 1] uniformly distributed. As given in Section 3.1, we impose the condition
a− |b| > 0 and give that ω is dimensionless. The uncertain ODE is then

dy

dt
(t, ω) = (a+ bω)y(t, ω) + y2(t, ω), a− |b| > 0, ω ∈ U [−1, 1]. (20)

Note that as in (4), function y(t) is now dependent on both time t and random variable ω, so
it becomes y(t, ω), as given in (20).

Using the truncated gPCE (5), we have

d

dt

(
k∑

i=0

ŷi(t)ϕi(ω)

)
︸ ︷︷ ︸

Tk( dŷ
dt )

= (a+ bω)

k∑
i=0

ŷi(t)ϕi(ω)︸ ︷︷ ︸
Tk(αy)

+

(
k∑

i=0

ŷi(t)ϕi(ω)

)2

︸ ︷︷ ︸
Tk(y2)

, (21)

where Tk(·) denotes the truncation operator of the generalized Polynomial Chaos Expansion
to finite order k.

The term Tk(αy) in (21) is discussed in Section 3.1, hence the focus is on the term Tk(y2).
Note that this term involves the product of two sums, leading to a double sum, for which we
have two indices. Denote the second index as j. Then, we have

Tk(y2) :
( k∑

i=0

ŷi(t)ϕi(ω)
)2

=

k∑
i=0

k∑
j=0

ŷi(t)ŷj(t)ϕi(ω)ϕj(ω). (22)
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As in Section 3.1, the sum is projected using test function ϕs(ω) for s = 0, . . . , k. The
projection is performed by multiplying (22) by ϕs(ω) and then integrating over the random
variable ω ∈ [−1, 1], obtaining∫ 1

−1

k∑
i=0

k∑
j=0

ŷi(t)ŷj(t)ϕi(ω)ϕj(ω)ϕs(ω)dω =

k∑
i=0

k∑
j=0

ŷi(t)ŷj(t)

∫ 1

−1

ϕi(ω)ϕj(ω)ϕs(ω)dω︸ ︷︷ ︸
=:Csij

, (23)

where Csij is known as the triple product integral of the Legendre polynomials. As given
in Section 3.1, the first three standard (unnormalized) Legendre polynomials are ϕ0(ω) =
1, ϕ1(ω) = ω, ϕ2(ω) = 1

2 (3ω
2 − 1), orthogonal by definition. The computation of Csij for

s, i, j = 0, 1, 2 is then as follows. Note that the triple product integral is symmetric, i.e.,
C100 = C010 = C001 and similar.

C000 =

∫ 1

−1

ϕ0(ω)ϕ0(ω)ϕ0(ω)dω =

∫ 1

−1

1 · 1 · 1dω = ω
∣∣∣1
−1

= 2,

C001 = C010 = C100 =

∫ 1

−1

ϕ0(ω)ϕ0(ω)ϕ1(ω)dω =

∫ 1

−1

1 · 1 · ω dω =
ω2

2

∣∣∣1
−1

= 0,

C011 = C101 = C110 =

∫ 1

−1

ϕ0(ω)ϕ1(ω)ϕ1(ω)dω =

∫ 1

−1

1 · ω · ω dω =
ω3

3

∣∣∣1
−1

=
2

3
,

C111 =

∫ 1

−1

ϕ1(ω)ϕ1(ω)ϕ1(ω)dω =

∫ 1

−1

ω3dω =
ω4

4

∣∣∣1
−1

= 0,

C002 = C020 = C200 =

∫ 1

−1

ϕ0(ω)ϕ0(ω)ϕ2(ω)dω =

∫ 1

−1

3

2
ω2 − 1

2
dω =

ω3

2
− ω

2

∣∣∣1
−1

= 0,

C012 = C021 = C102 = C120 = C201 = C210 =

∫ 1

−1

ϕ0(ω)ϕ1(ω)ϕ2(ω)dω =

=

∫ 1

−1

3

2
ω3 − 1

2
ωdω =

3

8
ω4 − 1

4
ω2
∣∣∣1
−1

= 0,

C022 = C202 = C220 =

∫ 1

−1

9

4
ω4 − 3

2
ω2 +

1

4
dω =

9

20
ω5 − 1

2
ω3 +

1

4
ω
∣∣∣1
−1

=
2

5
,

C112 = C121 = C211 =

∫ 1

−1

3

2
ω4 − 1

2
ω2dω =

3

10
ω5 − 1

6
ω3
∣∣∣1
−1

=
4

15
,

C122 = C212 = C221 =

∫ 1

−1

9

4
ω5 − 3

2
ω3 +

1

4
ωdω =

3

8
ω6 − 3

8
ω4 +

1

8
ω2
∣∣∣1
−1

= 0,

C222 =

∫ 1

−1

27

8
ω6 − 27

8
ω4 +

9

8
ω2 − 1

8
dω =

27

56
ω6 − 27

40
ω4 +

9

24
ω2 − 1

8
ω
∣∣∣1
−1

=
4

35
.

Observe that the triple product integral vanishes whenever s+ i+ j is odd. This is because, in
such cases, the integrand becomes an odd function, and the integral of an odd function over a
symmetric interval around zero is zero. Since we integrate over [−1, 1], the interval is indeed
symmetric around zero. The formal proof is found in [19].

The triple product integral Csij of the form∫ 1

−1

ϕi(ω)ϕj(ω)ϕs(ω)dω, 0 ≤ s, i, j ≤ k, (24)

where k is the truncation order of the gPCE can be computed by hand for low orders s, i, j =
0, 1, 2 as presented above, since computations are quite fast. For higher orders, however, it
becomes cost ineffective to compute analytically, thus it is usually computed numerically.

However, if one wishes to evaluate (24) analytically for all 0 ≤ s, i, j ≤ k, for a finite k,
another approach is constructing a suitable Gaussian quadrature rule tailored to the Legendre
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polynomial basis. Since each basis function ϕn(ω) is a polynomial of degree n = 0, . . . , k, the
product ϕs(ω)ϕi(ω)ϕj(ω) is a polynomial of degree s+ i+ j ≤ 3k. Therefore, to integrate all
such triple products, one requires a quadrature rule that integrates the polynomials of degree
up to 3k. Note however, that this method provides an approximation and not the exact integral
[11].

Gaussian quadrature with N nodes integrates polynomials of degree up to 2N − 1. Choose
N = 3k+1

2 , ensuring integration of all triple products. Next, let {ωn}Nn=1 be the quadrature
nodes with corresponding weights {wn}Nn=1, associated with the Legendre polynomials. The
method using Legendre polynomials is known as the Gauss-Legendre quadrature [11]. With
this rule, each triple product integral Csij can be approximated as∫ 1

−1

ϕs(ω)ϕi(ω)ϕj(ω)dω ≈
N∑

n=1

wnϕs(ωn)ϕi(ωn)ϕj(ωn).

This quadrature construction enables an efficient computation of all necessary integrals for
the stochastic Galerkin system.

Turning back to obtaining an ODE-system for the unknown ŷ0, . . . , ŷk, combining (23) with
the result (18) obtained in Section 3.1, gives the following system of equations for the truncated
ŷ(t, ω):

dŷs
dt

= ahsys +

k∑
i=0

k∑
j=0

Csij ŷiŷj + bhs
s

2s− 1
ŷs−1 + bhs

s+ 1

2s+ 3
ŷi+1, s = 0, . . . , k. (25)

Dividing (25) by hs for simplification gives

dŷs
dt

= ays +
1

hs

k∑
i=0

k∑
j=0

Csij ŷiŷj + b
s

2s− 1
ŷs−1 + b

s+ 1

2s+ 3
ŷi+1, s = 0, . . . , k. (26)

Hence, the required ODE-system (26) is obtained, and we observe that the quadratic com-
ponent of y(t, ω) only adds the term involving the triple product integral Csij to the system
(18).

Note that the system (26) is the first equation of the Lotka-Volterra model (1) with uncer-
tainty, for only one species y. Thus, we are one step closer to obtaining the full two-species
Lotka-Volterra model with uncertainty. Before expanding the second equation of (1), we first
make some assumptions on the model.

4 Lotka-Volterra equations

The simplest Lotka-Volterra model (1) derived by Alfred Lotka and Vito Volterra involves two
animal species, namely a predator and its prey. A standard example of such an interaction is
foxes and rabbits in a flatland. Note the following assumptions about the environment and
interaction that are made for simplicity [3]:

– The predator only feeds on the prey and nothing else.

– The prey has an unlimited third food supply at all times.

– In the absence of predators, the prey population y would follow the basic ODE dy
dt = αy(t)

explored in the previous sections. The coefficient α was named by Volterra the “coefficient
of auto-increase” [3].

– In the absence of prey, the predator population z would decrease proportionally in a form
given by dz

dt = −γz(t).

– When both the prey and predator are present, a decrease in prey population y and
increase in predator population z occur at respectively proportional rates with coefficients
β for prey and δ for predators.
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Thus, with the above assumptions, the Lotka-Volterra model for two species is represented
by the following pair of prey-predator equations [12, 23]:

dy

dt
= αy − βyz,

dz

dt
= δyz − γz,

as given by (1). Remember that y(t) is the population density of the prey at time t, and
z(t) the population density of the predator at time t. Parameters α and γ denote the natural
evolution of the prey and predator populations, respectively and β and γ denote the effect of
the predator on the prey population, and respectively the effect of the prey on the predator
population. All four parameters are assumed to be strictly positive.

As given in (3), we include uncertainty in parameter α := a + bω, where a, b ∈ R, and ω
uniformly distributed ω ∼ U(−1, 1). Again, we impose the condition a − |b| > 0, so that α is
strictly positive, and take all other parameters a, b, β, δ and γ to be fixed. Thus, the uncertain
Lotka-Volterra model is of the form

dy

dt
= (a+ bω)y − βyz,

dz

dt
= δyz − γz,

(27)

for a − |b| > 0, ω ∈ U [−1, 1]. Using the gPCE as in (5), obtain the following approximations
of y(t, ω) and z(t, ω):

y(t, ω) ≈
k∑

i=0

ŷi(t)ϕi(ω),

z(t, ω) ≈
k∑

j=0

ẑj(t)ϕj(ω).

(28)

Similar to 6, we use the definition for the truncated gPCE (28) and the standard definitions
for mean and variance given in [18] to obtain the following expressions for the mean µ and
standard deviation σ for the prey and predator populations y and z, respectively, that are used
in Section 5 for the numerical imlementation of the steady states:

µy = E[y] = ŷ0, σy =
√

V ar[y] =

k∑
i=1

ŷ2i ,

µz = E[z] = ẑ0, σz =
√

V ar[z] =

k∑
i=1

ẑ2i .

(29)

The goal is to obtain an ODE system of equations similar to (18) and (26) for both dŷi

dt and
dẑi
dt . Let us first look at the first equation of the uncertain Lotka-Volterra system (27). Using
the above substitution (28), the first equation of (27) becomes

k∑
i=0

d

dt
ŷi(t)ϕi(ω) = (a+ bω)

k∑
i=0

ŷi(t)ϕi(ω)− β

k∑
i=0

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω). (30)
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Using the three-term recurrence (13), the expression (30) becomes

k∑
i=0

d

dt
ŷi(t)ϕi(ω) = a

k∑
i=0

ŷi(t)ϕi(ω) + b

[
k∑

i=0

1

Ai
ŷi(t)(ϕi+1(ω) + Ciϕi−1(ω)−Biϕi(ω))

]

− β

k∑
i=0

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω)

⇐⇒
k∑

i=0

d

dt
ŷi(t)ϕi(ω) =

k∑
i=0

(a− b
Bi

Ai

)
ŷi(t)ϕi(ω)− β

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω)


+ b

k∑
i=0

ŷi(t)

[
Ci

Ai
ϕi−1(ω) +

1

Ai
ϕi+1(ω)

]
.

(31)

Project (31) using test function ϕs(ω). Using the orthogonality property (9), we obtain

hs
d

dt
ŷs(t) = hs(a− b

Bi

Ai
)ŷs(t)− β

∫ 1

−1

k∑
i=0

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω)ϕs(ω)dω

+ bhs
Cs+1

As+1
ŷs+1(t) + bhs

1

As−1
ŷs−1(t).

(32)

Substitute in (32) the coefficients A,B,C for Legendre polynomials given in (14) and divide
(32) by hs:

dŷs
dt

= aŷs(t)−
β

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t) + b
s

2s− 1
ŷs−1(t) + b

s+ 1

2s+ 3
ŷs+1(t), (33)

where Csij :=
∫ 1

−1
ϕi(ω)ϕj(ω)ϕs(ω)dω is the triple product integral for Legendre polynomials

given in (24).
Next, let us look at the second equation of the uncertain Lotka-Volterra model (27). Sub-

stitution with the truncated gPCE (28) gives

k∑
j=0

d

dt
ẑj(t)ϕj(ω) = δ

k∑
i=0

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω)− γ

k∑
j=0

ẑj(t)ϕj(ω).

Using the same method as above and in the previous section, project using test function ϕs(ω):

hs
d

dt
ẑs(t) = δ

∫ 1

−1

k∑
i=0

k∑
j=0

ŷi(t)ẑj(t)ϕi(ω)ϕj(ω)ϕs(ω)dω − hsγẑs(t)

⇐⇒ dẑs
dt

=
δ

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t)− γŷi(t), s=0, . . . , k.. (34)

Combining (33) and (34), the ODE-system used to find a solution for the uncertain Lotka-
Volterra model is

dŷs
dt

= aŷs(t)−
β

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t) + b
s

2s− 1
ŷs−1(t) + b

s+ 1

2s+ 3
ŷs+1(t)

dẑs
dt

=
δ

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t)− γŷi(t), for s=0, . . . , k.

(35)

Since the uncertain Lotka-Volterra equations cannot be solved analytically partly due to the
infinite sums, the truncated gPCE is used with k < ∞, which helps tremendously. However,
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for each value of k, the system involves 2(k + 1) equations, since we are working with a prey-
predator system involving two species. This means that for k ≥ 2, the system becomes too
technical to solve analytically, so we use numerical tools such as Python and Mathematica to
derive the steady states for the cases k = 0, 1, 2.

For example, the equations for k = 2 are

dŷ0
dt

= aŷ0 +
b

3
ŷ1 − β(ŷ0ẑ0 +

1

3
ŷ1ẑ1 +

1

5
ŷ2ẑ2),

dŷ1
dt

= aŷ1 + bŷ0 +
2

5
bŷ2 − β(ŷ0ẑ1 + ŷ1ẑ0 +

2

5
ŷ1ẑ2 +

2

5
ŷ2ẑ1),

dŷ2
dt

= aŷ2 +
2

3
bŷ1 − β(ŷ0ẑ2 +

2

3
ŷ1ẑ1 + ŷ2ẑ0 +

2

7
ŷ2ẑ2),

dẑ0
dt

= δ(ŷ0ẑ0 +
1

3
ŷ1ẑ1 +

1

5
ŷ2ẑ2)− γẑ0,

dẑ1
dt

= δ(ŷ0ẑ1 + ŷ1ẑ0 +
2

3
ŷ1ẑ2 +

2

5
ŷ2ẑ1)− γẑ1,

dẑ2
dt

= δ(ŷ0ẑ2 +
2

3
ŷ1ẑ1 + ŷ2ẑ0 +

2

7
ŷ2ẑ2)− γẑ2.

(36)

For the cases k = 0, 1, terms of higher order than k in system (36) are set to zero. In what
follows, we take exact values for the parameters in order to solve the equations numerically
and find explicit stationary points for the cases k = 0, 1, 2, for the chosen values of parameters.
Moreover, an analytical stability analysis is performed on some of the stationary points, using
linearization techniques.

5 Numerical and Analytical Methods for the Uncertain
Lotka–Volterra Model

The previously derived stochastic Galerkin-projected Lotka-Volterra system (35) incorporating
uncertainty in the prey’s growth parameter (3) is

dŷs
dt

= aŷs(t)−
β

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t) + b
s

2s− 1
ŷs−1(t) + b

s+ 1

2s+ 3
ŷs+1(t)

dẑs
dt

=
δ

hs

k∑
i=0

k∑
j=0

Csij ŷi(t)ẑj(t)− γŷi(t), for s=0, . . . , k.

5.1 Stability Analysis of Stationary Points for k = 0, 1, 2

In [8], a similar approach for uncertainty quantification using polynomial chaos expansion
is used, and it even provides an example using the Lotka-Volterra equations. However, the
article’s goal is slightly different than of this report’s, where the focus is on stationary points.
Nevertheless, we use the same parameters as in [8]:

− a, b = 0.95, 0.05,

− β, δ, γ = 0.1, 0.75, 1.5,

− y0(t) = 10 (initial value of prey population),

− z0(t) = 5 (initial values of predator population),

− t = 25 (time of simulation), discretized in 512 points .

(37)

Note that in [8], uncertainty is assumed in both α and β parameters, while this report
focuses on only α−uncertainty. Including uncertainty in the γ−parameter would provide sim-
ilar results for the other animal species, namely the prey. Remember that γ is the predator’s
mortality rate. Including uncertainty in either β or δ would affect the long-term behavior of
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both animal species more than uncertainty in α and γ since β, δ are the effects that the animal
species have on each other.

In the following sections, the cases with k = 0, 1, 2 are investigated. While for k = 0 the
computations for determining the exact stationary points depending on the parameters might
be straightforward and do not require extensive work since the system (35) for k = 0 is the
standard model (1), that is not the case for k = 1 and above. For example, for k = 1, the
equations involve 4 coupled variables and the solution is more intricate. Similarly, complexity
increases for higher truncation orders k > 1 that capture more detailed effects of uncertainty.

Thus, we use numerical tools to solve the system and find its stationary points. The
programming languages used in this paper are Python and Mathematica. Python is used to
find the values of the steady states and produce figures showing the evolution of the animal
populations. It provides more than enough pre-existing functions and module extensions to
solve the uncertain Lotka-Volterra equations and approximate the values of the stationary
points for a given truncation order k. For example, Python’s SciPy module includes the
extension special.legendre, which directly provides the Legendre polynomials. This is helpful to
compute the exact triple integral values Csij (24) using scipy.integrate with the quad extension.
Mathematica is used to verify that the steady states indeed result in the zero right hand side
of (35), and to obtain the eigenvalues of the Jacobian matrices explored in this section, using
the specific set of parameters (37).

Before emerging into the analysis, note that for a given truncation order k of the gPCE
(28), the Stochastic Galerkin formulation (35) of the Lotka-Volterra model (1) consists of
2(k+1) coupled ODEs. This is because ŷ0, . . . , ŷk and ẑ0, . . . , ẑk in (28) give rise to k+1 and
k + 1 equations, respectively, for a finite k. The system (35) is nonlinear due to the bilinear
interactions of the form ŷiẑj arising from the projections (28) onto the polynomial chaos basis
[26].

In general, a nonlinear system of degree d with n variables can have up to dn unique
stationary points [20]. When evaluating the stationary points, all derivatives are set to zero,
i.e.,

dŷs
dt

= 0,
dẑs
dt

= 0, ∀s = 0, . . . , k.

Thus, for the quadratic system (35), we expect to have at most 22(k+1) unique stationary points.
However, due to system symmetries, mode coupling structure and physical constraints such as
non-negative populations, many of these equilibria are either non-physical or degenerate [20].
By degenerate we mean that the steady states might lack uniqueness or do not correspond
to a meaningful or independent solution. By non-physical, we refer to the fact that we are
considering animal populations, which cannot have negative values. While the system (35) has
2(k+ 1) variables and is quadratic, suggesting a theoretical upper bound of 22(k+1) equilibria,
it is empirically observed that each Galerkin mode pair ŷiẑj tends to contribute a binary-like
state at equilibrium, leading to a total of 2k+1 meaningful solutions [25].

In what follows, an analytical and numerical analysis is performed to determine the steady
states and their stability of the uncertain Lotka-Volterra model (35) for truncation orders
k = 0, 1, 2. Thus, in this paper’s analysis we work with 2, 4, and 8 unique stationary points for
the cases with k = 0, 1, and 2, respectively.

Case study: k=0

For k = 0, the uncertain Lotka-Volterra system (35) is

dŷ0
dt

= aŷ0 − βŷ0ẑ0,

dẑ0
dt

= δŷ0ẑ0 − γẑ0.

(38)

A stationary point or steady state of (38), or similarly, for any value of k is a point (ŷ∗, ẑ∗)
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such that dŷ
dt (ŷ

∗, ẑ∗) = dẑ
dt (ŷ

∗, ẑ∗) = 0. Thus, set dŷ0

dt = dẑ0
dt = 0 and solve for ŷ0 and ẑ0:

ŷ0(a− βẑ0) = 0 ⇐⇒ ŷ0 = 0 or ẑ0 =
a

β
,

ẑ0(δŷ0 − γ) = 0 ⇐⇒ ẑ0 = 0 or ŷ0 =
γ

δ
.

Hence, the case with k = 0 has two steady states (ŷ∗, ẑ∗):

trivial point: (0, 0), non-trivial point:

(
γ

δ
,
a

β

)
. (39)

To perform the stability analysis of (39), we look at the Taylor expansion of (38) around
each stationary point and ignore higher order terms as explained in [21]. First define f as{

dŷ0

dt = aŷ0 − βŷ0ẑ0 = f1(ŷ, ẑ)
dẑ0
dt = δŷ0ẑ0 − γẑ0 = f2(ŷ, ẑ)

⇒ f(ŷ, ẑ) =

[
aŷ0 − βŷ0ẑ0
δŷ0ẑ0 − γẑ0

]
. (40)

Next, compute the Jacobian of f (40) with respect to ŷ and ẑ and evaluate it at the
stationary points,

J(ŷ, ẑ) =

[
a− βẑ0 −βŷ0
δẑ0 δŷ0 − γ

]
,

J(0, 0) =

[
a 0
0 −γ

]
, J

(
γ

δ
,
a

β

)
=

[
0 −βγ

δ
aδ
β 0

]
.

The linearization of the system is:[
˙̂y
˙̂z

]
= J(ŷ∗, ẑ∗)︸ ︷︷ ︸

=:A

[
ŷ
ẑ

]
.

To determine the stability of a stationary point (ŷ∗, ẑ∗), we examine the eigenvalues λ ∈
σ(A), where A is the Jacobian evaluated at a stationary point and σ(A) is the spectrum of A,
i.e., the set of all eigenvalues of matrix A. The change of notation is only for simplicity.

A stationary point, also called a steady state is said to be stable if a small perturbation of
the solution from the fixed point decays in time; it is said to be unstable if a small perturbation
grows in time [7, 21]. The steady state is stable if all the eigenvalues of the Jacobian matrix have
a negative real part, and unstable if at least one eigenvalue has a positive real part. If Re(λ) = 0,
then the stationary point might be either stable or unstable, or neither simultaneously, in which
case it is called semi-stable. A comprehensive explanation of the method and derivation is found
in [21].

For the first case in (39), we investigate the eigenvalues λ of J(0, 0) and obtain λ1 = a > 0
and λ2 = −γ < 0, for a, γ > 0. As per the definition of stability given above, we conclude that
the trivial stationary point (0, 0) is unstable due to the positivity of one of the eigenvalues.

Similarly, we investigate the eigenvalues of J(γδ ,
a
β ) and obtain λ2 = −aγ, so λ1,2 = ±ι

√
aγ,

where ι =
√
−1. This results in a semi-stable or neutral stable stationary point at (γδ ,

a
β ).

Note that these results correspond to the stationary points and their stability for the stan-
dard Lotka-Volterra model (1) without uncertainty, given in [3].

With the parameter values (37), we plot the evolution of the prey and predator populations
for k = 0. Figure 3 depicts this evolution.
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Figure 3: Prey & predator populations for a period of t=25, k=0.

Note that using the expressions (29) for k = 0, the standard deviation is zero for both the
prey and the predator populations, therefore Figure 3 only depicts the mean of the two species’
populations.

Moreover, the stationary points are indeed (0, 0) and (γδ ,
a
β ) = (2, 9.5) with the chosen

values for parameters (37). As per the expressions (29), we have that µy = 2 and µz = 9.5
for the non-trivial case, and since there are no y1 and z1, standard deviation is indeed zero for
both the trivial and non-trivial cases (39).

To properly analyze the behavior of the two species’ populations and detect possible pat-
terns, we further study the cases of the uncertain system (35) for k = 1 and k = 2 respectively.

Case study: k=1

The uncertain Lotka-Volterra system (35) evaluated for k = 1 is

dŷ0
dt

= aŷ0 +
b

3
ŷ1 − β(ŷ0ẑ0 +

1

3
ŷ1ẑ1),

dŷ1
dt

= aŷ1 + bŷ0 − β(ŷ0ẑ1 + ŷ1ẑ0),

dẑ0
dt

= δ(ŷ0ẑ0 +
1

3
ŷ1ẑ1)− γẑ0,

dẑ1
dt

= δ(ŷ0ẑ1 + ŷ1ẑ0)− γẑ1.

(41)

The equations yield 2k+1 = 4 unique stationary points. To find all steady states (ŷ∗, ẑ∗) of
(41), we implement a numerical method that solves for the zeros of equations (41). That is,
we set all equations (41) to zero and solve for ŷ0, ŷ1, ẑ0 and ẑ1. Using Mathematica, we obtain
that the four steady states (ŷ∗, ẑ∗) of the uncertain model (41) are

(ŷ∗1 , ẑ
∗
1) = ([0, 0], [0, 0]), (42)

(ŷ∗2 , ẑ
∗
2) =

([γ
δ
, 0
]
,

[
a

β
,
b

β

])
, (43)

(ŷ∗3 , ẑ
∗
3) =

([
γ

2δ
,−

√
3γ

2δ

]
,

[
3a−

√
3b

6β
,
−
√
3a+ b

2β

])
, (44)

(ŷ∗4 , ẑ
∗
4) =

([
γ

2δ
,

√
3γ

2δ

]
,

[
3a+

√
3b

6β
,

√
3a+ b

2β

])
. (45)

The numerical implementation showed that, as expected, one of the steady states of (41)
is the trivial point (42), and what should be expected is that setting ŷ1 = ẑ1 = 0 combined
with the non-trivial point given in (39) should also result in a stationary point. However, it
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was found that (43) is actually a steady state for (41). Therefore, to analyze the stability of
(42) and (43) analytically, we define function f in the following way:

dŷ0

dt = aŷ0 +
b
3 ŷ1 − β(ŷ0ẑ0 +

1
3 ŷ1ẑ1) =: f1(ŷ, ẑ),

dŷ1

dt = aŷ1 + bŷ0 − β(ŷ0ẑ1 + ŷ1ẑ0) =: f2(ŷ, ẑ),
dẑ0
dt = δ(ŷ0ẑ0 +

1
3 ŷ1ẑ1)− γẑ0 =: f3(ŷ, ẑ),

dẑ1
dt = δ(ŷ0ẑ1 + ŷ1ẑ0)− γẑ1 =: f4(ŷ, ẑ)

⇒ f(ŷ, ẑ) :=


aŷ0 +

b
3 ŷ1 − β(ŷ0ẑ0 +

1
3 ŷ1ẑ1)

aŷ1 + bŷ0 − β(ŷ0ẑ1 + ŷ1ẑ0)
δ(ŷ0ẑ0 +

1
3 ŷ1ẑ1)− γẑ0

δ(ŷ0ẑ1 + ŷ1ẑ0)− γẑ1

 . (46)

The Jacobian of f (46) evaluated at (ŷ∗, ẑ∗) is then

J(ŷ∗, ẑ∗) =


a− βz0

b
3 − β

3 z1 −βy0 −β
3 y1

b− βz1 a− βz0 −βy1 −βy0
δz0

δ
3z1 δy0 − γ δ

3y1
δz1 δz0 δy1 δy0 − γ

 . (47)

Next we evaluate the Jacobian matrix (47) at the trivial steady state (42) and at the
non-trivial point (43):

J([0, 0], [0, 0]) =


a b

3 0 0
b a 0 0
0 0 −γ 0
0 0 0 −γ

 , J

([γ
δ
, 0
]
,

[
a

β
,
b

β

])
=


0 0 −βγ

δ 0

0 0 0 −βγ
δ

δa
β

δb
3β 0 0

δb
β

δa
β 0 0

 . (48)

The linearization of the system is again[
˙̂y
˙̂z

]
= J(ŷ∗, ẑ∗)

[
ŷ
ẑ

]
,

where now both ŷ and ẑ are 2-dimensional, hence the system is 4-dimensional. To determine
the stability of each steady state, we investigate the eigenvalues of the Jacobian matrices given
in (48).

The eigenvalues λ of J([0, 0], [0, 0]) given in (48) are

λ1,2 = −γ < 0, λ3,4 =
1

3

(
3a±

√
3b
)
. (49)

Note that 1
3

(
3a±

√
3b
)
> 0 since 3a > |

√
3b|. Thus, we conclude that the trivial stationary

point (42) is unstable due to the positivity of λ3,4, agreeing with the case k = 0 that the trivial
point is unstable.

For the non-trivial point (43), however, the analysis is more technical. Using Mathematica,

we find that the eigenvalues λ of J
([

γ
δ , 0
]
,
[
a
β ,

b
β

])
are

λ1 = −
√
−3aβ2γδ2 −

√
3bβ2γδ2√

3βδ
,

λ2 =

√
−3aβ2γδ2 −

√
3bβ2γδ2√

3βδ
,

λ3 = −
√
−3aβ2γδ2 +

√
3bβ2γδ2√

3βδ
,

λ4 =

√
−3aβ2γδ2 +

√
3bβ2γδ2√

3βδ
.

(50)
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Substitution with parameters (37) in (50) yields

λ ≈


1.212ι
−1.212ι
1.175ι
−1.175ι

 , ι =
√
−1. (51)

Thus, since the Jacobian at the non-trivial point (43) given in (48) has purely imaginary
eigenvalues with both positive and negative signs, the non-trivial steady state (43) is a center
which is neither stable nor unstable. We conclude that the point (43) is semi-stable, agreeing
with the semi-stable non-trivial stationary point for k = 0 given in (39).

Next, we are interested in the population evolution of the two species for k = 1 with the
chosen parameter values (37). Figure 4 depicts this evolution.

Figure 4: Prey & predator populations for a period of t=25, k=1.

Notice the shaded regions in Figure 4, representing the uncertainty, scaled by the standard
deviation of each population. As seen in Figure 4, the predator population is affected by the
uncertainty more than the prey. This is due to the fact that uncertainty is included in the prey’s
growth rate α, as given in (3). If we were to include uncertainty in the predator’s mortality
rate γ instead, the uncertainty would affect the prey population more than the predator’s.
This is left as further study, since the aim of this paper is to investigate uncertainty added in
the Lotka-Volterra model (1) in the α−parameter.

Table 1 expresses the stable states of (41) along with the mean µ and standard deviation σ
at each stationary point for the prey population y and predator population z. Notice the two
stationary points that were not explored above. All stationary points are found numerically
using Python using five fixed points between 0 and 15 for both y and z and performing all
possible combinations of the initial values and then running the program. This is the case for
all simulations performed for different values of k.

k=1 Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

1 ([0.000, 0.000],[0.000, 0.000]) 0.000 0.000 0.000 0.000
2 ([1.000, 1.7321],[4.8943, 8.4772]) 1.000 1.732 4.894 8.477
3 ([2.000, 0.000],[9.500, 0.500]) 2.000 0.000 9.500 0.500
4 ([1.000, -1.7321],[4.6057, -7.9772]) 1.000 1.732 4.606 7.977

Table 1: Steady states for k = 1.

Using the values of the steady states in Table 1, we can perform the stability analysis of
points 2 (44) and 4 (45), which were not discussed previously. We examine the eigenvalues of
the Jacobian matrix (47) at the steady states.
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For the second stationary point in Table 1, corresponding to (44), using Mathematics, we
obtain that the eigenvalues are approximately

λ ≈


0.921
−1.5
1.212ι
−1.212ι

 , ι =
√
−1. (52)

Note that the real eigenvalues 0.921 and −1.5 are 1
3

(
3a−

√
3b
)
and −γ, respectively, obtaining

a similarity to (49). Similarly, the last two eigenvalues in (52) correspond to the first two
eigenvalues in (51). Due to the positivity of the first eigenvalue, the second steady point (44)
is unstable for the set of parameters (37).

For the fourth and last point in Table 1, corresponding to (45), the eigenvalues of the
Jacobian evaluated at that point are approximately

λ ≈


0.979
−1.5
1.175ι
−1.175ι

 , ι =
√
−1. (53)

Note again that the real eigenvalues in (53) are 1
3

(
3a+

√
3b
)
and −γ respectively as found

for two of the eigenvalues for for the trivial point (42) in (49), and the last two eigenvalues
in (53) correspond to the last two eigenvalues in (51). Thus, with a similar reasoning as for
the second steady state in Table 1, given by (44), we conclude that the steady state (45) is
unstable as well due to the positivity of 1

3

(
3a+

√
3b
)
for the parameters (37). This means

that for k = 1 for the specific set of parameters (37), the system has three unstable and one
semi-stable equilibria.

Case study: k=2

To conclude the fact that there is indeed a pattern in stationary points and their stability,
we compute the steady states of the uncertain Lotka-Volterra equations (35) for k = 2 and
analyze their stability. The pattern we aim to show is that the trivial point is a steady state
of the uncertain Lotka-Volterra model (35) for any truncation order k and moreover, that it
is unstable for all k. Similarly, we aim to show that the Jacobian matrix evaluated at each
steady state has recurring eigenvalues for different truncation orders k. Thus, the uncertain
Lotka-Volterra system (35) for k = 2 as given in (36) is:

dŷ0
dt

= aŷ0 +
1

3
bŷ1 − β(ŷ0ẑ0 +

1

3
ŷ1ẑ1 +

1

5
ŷ2ẑ2),

dŷ1
dt

= aŷ1 + bŷ0 +
2

5
bŷ2 − β(ŷ0ẑ1 + ŷ1ẑ0 +

2

5
ŷ1ẑ2 +

2

5
ŷ2ẑ1),

dŷ2
dt

= aŷ2 +
2

3
bŷ1 − β(ŷ0ẑ2 +

2

3
ŷ1ẑ1 + ŷ2ẑ0 +

2

7
ŷ2ẑ2),

dẑ0
dt

= δ(ŷ0ẑ0 +
1

3
ŷ1ẑ1 +

1

5
ŷ2ẑ2)− γẑ0,

dẑ1
dt

= δ(ŷ0ẑ1 + ŷ1ẑ0 +
2

3
ŷ1ẑ2 +

2

5
ŷ2ẑ1)− γẑ1,

dẑ2
dt

= δ(ŷ0ẑ2 +
2

3
ŷ1ẑ1 + ŷ2ẑ0 +

2

7
ŷ2ẑ2)− γẑ2.

There are 2(k+1) = 8 unique stationary points corresponding to the equations above. The
numerical computation of finding the zeros of system (36) has shown that two of these station-
ary points of the form (ŷ∗, ẑ∗) are

(ŷ∗, ẑ∗) = ([y∗0 , y
∗
1 , y

∗
2 ], [z

∗
0 , z

∗
1 , z

∗
2 ]) = ([0, 0, 0], [0, 0, 0]) (trivial), (54)

=

([γ
δ
, 0, 0

]
,

[
a

β
,
b

β
, 0

])
(non-trivial). (55)
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Thus, to analyze the stability of (54) and (55), we use the same method presented for cases
k = 0 5.1 and k = 1 5.1. That is, using (36), define f in the following way:



dŷ0

dt = aŷ0 +
1
3bŷ1 − β(ŷ0ẑ0 +

1
3 ŷ1ẑ1 +

1
5 ŷ2ẑ2) =: f1(ŷ, ẑ),

dŷ1

dt = aŷ1 + bŷ0 +
2
5bŷ2 − β(ŷ0ẑ1 + ŷ1ẑ0 +

2
5 ŷ1ẑ2 +

2
5 ŷ2ẑ1) =: f2(ŷ, ẑ),

dŷ2

dt = aŷ2 +
2
3bŷ1 − β(ŷ0ẑ2 +

2
3 ŷ1ẑ1 + ŷ2ẑ0 +

2
7 ŷ2ẑ2) =: f3(ŷ, ẑ),

dẑ0
dt = δ(ŷ0ẑ0 +

1
3 ŷ1ẑ1 +

1
5 ŷ2ẑ2)− γẑ0 =: f4(ŷ, ẑ),

dẑ1
dt = δ(ŷ0ẑ1 + ŷ1ẑ0 +

2
3 ŷ1ẑ2 +

2
5 ŷ2ẑ1)− γẑ1 =: f5(ŷ, ẑ),

dẑ2
dt = δ(ŷ0ẑ2 +

2
3 ŷ1ẑ1 + ŷ2ẑ0 +

2
7 ŷ2ẑ2)− γẑ2 =: f6(ŷ, ẑ)

⇒ f(ŷ, ẑ) :=


aŷ0 +

1
3bŷ1 − β(ŷ0ẑ0 +

1
3 ŷ1ẑ1 +

1
5 ŷ2ẑ2)

aŷ1 + bŷ0 +
2
5bŷ2 − β(ŷ0ẑ1 + ŷ1ẑ0 +

2
5 ŷ1ẑ2 +

2
5 ŷ2ẑ1)

aŷ2 +
2
3bŷ1 − β(ŷ0ẑ2 +

2
3 ŷ1ẑ1 + ŷ2ẑ0 +

2
7 ŷ2ẑ2)

δ(ŷ0ẑ0 +
1
3 ŷ1ẑ1 +

1
5 ŷ2ẑ2)− γẑ0

δ(ŷ0ẑ1 + ŷ1ẑ0 +
2
3 ŷ1ẑ2 +

2
5 ŷ2ẑ1)− γẑ1

δ(ŷ0ẑ2 +
2
3 ŷ1ẑ1 + ŷ2ẑ0 +

2
7 ŷ2ẑ2)− γẑ2

 . (56)

The Jacobian matrix of f (56) evaluated at (ŷ, ẑ) is

J(ŷ, ẑ) =


a− βẑ0

b
3 − β

3 ẑ1 −β
5 ẑ2 −βŷ0 −β

3 ŷ1 −β
5 ŷ2

b− βẑ1 a− βẑ0 − 2
5βẑ2

2
5b−

2
5βẑ1 −βŷ1 −βŷ0 − 2

5βŷ2 − 2
5βŷ1

−βẑ2
2
3b−

2
3βẑ1 a− βẑ0 − 2

7βẑ2 −βŷ2 − 2
3βŷ1 −βŷ0 − 2

7βŷ2
δẑ0

δ
3 ẑ1

δ
5 ẑ2 δŷ0 − γ δ

3 ŷ1
δ
5 ŷ2

δẑ1 δẑ0 +
2
3δẑ2

2
5δẑ1 δŷ1 δŷ0 +

2
5δŷ2 − γ 2

3δŷ1
δẑ2

2
3δẑ1 δẑ0 +

2
7δẑ2 δŷ2

2
3δŷ1 δŷ0 +

2
7δŷ2 − γ

 .

(57)
Evaluation the Jacobian (57) at the steady states (54), (55) results in

J([0, 0, 0], [0, 0, 0]) =


a b

3 0 0 0 0
b a 2

3b 0 0 0
0 2

3b a 0 0 0
0 0 0 −γ 0 0
0 0 0 0 −γ 0
0 0 0 0 0 −γ

 , (58)

J

([γ
δ
, 0, 0

]
,

[
a

β
,
b

β
, 0

])
=



0 0 0 −βγ
δ 0 0

0 0 0 0 −βγ
δ 0

0 0 0 0 0 −βγ
δ

δa
β

δb
β 0 0 0 0

δb
β

δa
β

2
5
δb
β 0 0 0

0 2
3
δb
β

δa
β 0 0 0


. (59)

The linearization of the system is[
˙̂y
˙̂z

]
= J(ŷ∗, ẑ∗)

[
ŷ
ẑ

]
,

where ŷ and ẑ are 3-dimensional, hence the system is 6-dimensional.
The eigenvalues λ of J([0, 0, 0], [0, 0, 0]) given in (58) are

λ1,2,3 = −γ > 0, λ4 = a > 0, λ5,6 =
1

5
(5a±

√
15b). (60)

Note that 1
5 (5a ±

√
15b) > 0 since 5a > |

√
15b|. Thus, we conclude that the trivial steady

state (54) is unstable for k = 2 for the chosen set of parameters (37), agreeing with the cases
k = 0, 1.

21



For the non-trivial steady state (55), as for case k = 1, the computation of the eigenvalues

is more technical. Using Mathematica, we find that the eigenvalues λ of J
([

γ
δ , 0, 0

]
,
[
a
β ,

b
β , 0
])

are

λ1 = ι
√
aγ,

λ2 = −ι
√
aγ,

λ3 = −
√
−5aβ2γδ2 −

√
15bβ2γδ2√

5βδ
,

λ4 =

√
−5aβ2γδ2 −

√
15bβ2γδ2√

5βδ
,

λ5 = −
√
−5aβ2γδ2 +

√
15bβ2γδ2√

5βδ
,

λ6 =

√
−5aβ2γδ2 +

√
15bβ2γδ2√

5βδ
.

(61)

Substitution with parameters (37) in (61) yields:

λ ≈


1.212ι
−1.212ι
1.194ι
−1.194ι
1.169ι
−1.169ι

 , ι =
√
−1. (62)

Thus, since the Jacobian at the non-trivial point (55) given in (59) has purely imaginary
values with both positive and negative signs (62), the stable state (55) is a center, which is
semi-stable for the set of parameters (37).

Figure 5 expresses the population evolution of the two species modeled by the uncertain
Lotka-Volterra model (35) for k = 2.

Figure 5: Prey & predator populations for a period of t=25, k=2.

In Figure 5 the shaded uncertainty region corresponds to the standard deviation of each
animal population. Notice that as time increases, the predator population in green becomes
increasingly sensitive to perturbations. Here, by perturbation we refer to the uncertainty
included in the prey’s evolution rate α, as given in (3). Moreover, the analytical stability
analysis was performed for the two steady states (54), (55), but the remaining six stationary
points for k = 2, together with the respective mean and standard deviation at each equilibrium
point are presented in Table 2
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k=2 Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

1 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
2 ([0.695, 0.034, 2.129], [3.305, 0.547, 10.116]) 0.695 2.129 3.305 10.131
3 ([0.491, 1.107, 1.288], [2.425, 5.512, 6.304]) 0.491 1.699 2.424 8.373
4 ([2.000, 0.000, 0.000], [9.500, 0.500, 0.000]) 2.000 0.000 9.500 0.500
5 ([1.509, 1.128, -1.259], [7.262, 5.607, -5.791]) 1.509 1.690 7.262 8.061
6 ([0.491, -1.128, 1.259], [2.238, -5.107, 5.791]) 0.491 1.690 2.238 7.721
7 ([1.509, -1.107, -1.288], [7.076, -5.012, -6.304]) 1.509 1.699 7.076 8.053
8 ([1.305, -0.034, -2.129], [6.195, -0.047, -10.116]) 1.305 2.129 6.195 10.116

Table 2: Steady states for k = 2.

As for the case k = 1 in Section 5.1, a numerical analysis was performed to determine the
stability of the remaining stationary points 2, 3, 5, 6, 7 and 8 in Table 2. Using Mathematica,
it was found that all the mentioned steady states are unstable due to the positivity of at least
one eigenvalue of the Jacobian matrix (57) evaluated at each steady state.

We conclude that for the specific set of parameters (37), the uncertain Lotka-Volterra model
(35) for k = 2 has one semi-stable and seven unstable equilibria.

5.2 Observed results

The uncertain Lotka-Volterra model (35) was analyzed for truncation orders k = 0, 1, 2. For
these cases, steady states of the system have been both analytically and numerically derived,
which presented some patterns in their values and stability for increasing orders k. Moreover,
for a given truncation order k, the system (35) involves 2(k+1) equations having 2k+1 steady
states.

For k = 0, the uncertain Lotka-Volterra system (35) resulted in the two-dimensional ODE-
system (38), which corresponds to the standard model (1) derived by the two authors, given
in [3]. For the standard model, steady states together with their stability are known, and the
model has one semi-stable and one unstable equilibrium derived in (39). Note that these results
correspond to the specific set of parameters (37). Following the definitions (29) for mean and
standard deviation with gPCE, we have that for k = 0, standard deviation is zero for both
the prey and the predator populations. Therefore, Figure 3 depicts the evolution of the two
species’ populations by mean only. This is also consistent with the fact the for k = 0, the
model with uncertainty is the standard Lotka-Volterra model (1), thus uncertainty does not
affect the system for k = 0. Recall that the standard deviation is the effect of the uncertainty.

For k = 1, it is derived in Section 5.1 that the system (35) consists of the four-dimensional
ODE-system (41). The system (41) has four steady states presented in Table 1. An analytical
computation of the Jacobian matrix (47) of the right-hand side of the system (41), followed
by a numerical computation evaluating the Jacobian at each steady state, showed that the
uncertain system for k = 1 has one semi-stable and three unstable equilibria for the chosen
set of parameters (37). The steady states for k = 1 in Table 1 include the trivial point, which
was proven to be unstable, remaining consistent with the case k = 0. Furthermore, it has been
found that some of the eigenvalues of the Jacobian matrix have the same values at different
steady states, as explained in Section 5.1 for k = 1. The eigenvalues are (52), (51) and (53) for
points 2, 3 and 4, respectively, in Table 1. The steady state (43) has values comparable to the
non-trivial steady state (39) in the case k = 0, and both points were found to be semi-stable
due to the purely imaginary eigenvalues of the Jacobian evaluated at those points.

For the case k = 0 in Section 5.1, the system (35) consists of the six-dimensional ODE-
system (36). The six equations result in 8 steady states presented in Table 2. Similar to the
case k = 1, analytical and numerical computations were performed to determine the steady
states and their stability. Consistent to the cases k = 0, 1, the trivial point (54) proved to be
unstable for the parameters (37). Moreover, the non-trivial point (55) with similar values to
the nontrivial point (39) and point (43) is semi-stable for k = 2 as well, for the parameters
(37). We obtained numerically that the other six steady states that have not been explicitly
explored for k = 2 in Table 2 are unstable due to the positivity of at least one eigenvalue of the
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Jacobian (57) evaluated at each steady state. Thus, the uncertain Lotka-Volterra system (35)
for k = 2 has one semi-stable and seven unstable equilibria for the specific set of parameters
(37). Moreover, the eigenvalues (51) and (62) have similar values, showing another similarity
between the steady states for varying truncation orders k.

Although the results are not presented in this paper, a numerical study was performed for
the uncertain Lotka-Volterra system (35) for k = 3, which resulted in a consistent pattern with
the conclusions made above. That is, the trivial point remains unstable, the non-trivial steady
state (55) corresponding to k = 3 remains semi-stable, and all other steady states remain
unstable for the specific set of parameters (37). Therefore, one can assume that the pattern
persists for all truncation orders k ≥ 0 for parameters (37).

Since the results are obtained when using specific values of prey, and respectively predator
parameters (37), it is expected that the choice of these values also affects the stationary points.
Moreover, there may exist direct relations between the parameters and stationary points. This
hypothesis is tested in what follows.

6 Analysis on parameters

The analysis of the steady states of the uncertain Lotka-Volterra model (19) and their stability
is performed for the specific set of parameters (37) given in [8]. We are interested in observing
the effect, if any, that each parameter has on the values or stability of the steady states. Thus,
we vary β, δ, γ, a and b in (37) individually and analyze the values and stability type of the
steady states.

6.1 Varying β

First, let us look at parameter β, originally chosen to be 0.1 in (37). Recall that β is the effect
that the predator population has on the prey’s death rate, thus it is the hunting rate of the
predator on the prey. We vary β in such a way as to be able to detect a pattern in the possible
changes in the results, by increasing or decreasing β by a certain factor. Physically, this means
that the predator is hunting more or less, respectively.

Take β doubled, tripled and halved. This allows for an accurately drawn conclusion of
whether there is a pattern in the change in values of the steady states.

k=0

β Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

0.2 (0.000, 0.000) 0.000 0.000 0.000 0.000
(2.000, 4.750) 2.000 0.000 4.750 0.000

0.3 (0.000, 0.000) 0.000 0.000 0.000 0.000
(2.000, 3.167) 2.000 0.000 3.167 0.000

0.05 (0.000, 0.000) 0.000 0.000 0.000 0.000
(2.000, 19.000) 2.000 0.000 19.000 0.000

Table 3: Steady states for k=0, varying β.

Table 3 presents the steady states for k = 0, varying parameter β. The observed pattern
is that there is no change in the prey population at equilibrium, however the change in the
predator population at equilibrium is inversely proportional to the change in β. That is, for
doubling β we observe that the predator population is halved, while when halving β, the
population is doubled. Similarly, when increasing β by a factor of 3, the stationary points
decrease by the same factor. The pattern follows for any change in β. Therefore, we conclude
that the β−parameter only affects the predator population.

Recall that β is the effect of the predator on the prey. Thus at first, it might seem that
changing the value of β would affect the prey population and not the predator one. However,
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it is previously derived that the non-trivial equilibrium point for k = 0 is (γδ ,
a
β ), derived in

(39). Therefore, at equilibrium, β only affects ẑ∗0 , which explains the pattern seen in Table 3.
Moreover, we wish to determine whether the changes made affect the stability of the fixed

points. Thus, we perform a stability analysis similar to Section 5.1 and observe that the
stability type of the corresponding fixed points that were tested in Section 5.1 for k = 0 does
not change. That is, the trivial point remains unstable, and the non-trivial point (39) explored
is semi-stable, due to it being a center. In what follows, cases for k = 1, 2 are analyzed to
strengthen the conclusions made.

k=1

β Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

0.2 ([0.000, 0.000],[0.000, 0.000]) 0.000 0.000 0.000 0.000
([1.000, 1.7321],[2.4472, 4.2386]) 1.000 1.732 2.447 4.239
([2.000, 0.000],[4.750, 0.250]) 2.000 0.000 4.750 0.250

([1.000, -1.7321],[2.3028 -3.9886]) 1.000 1.732 2.303 3.989
0.3 ([0.000, 0.000],[0.000, 0.000]) 0.000 0.000 0.000 0.000

([1.000, 1.7321],[1.6314, 2.8257]) 1.000 1.732 1.631 2.826
([2.000, 0.000],[3.1667, 0.1667]) 2.000 0.000 3.167 0.167

([1.000, -1.7321],[1.5352, -2.6591]) 1.000 1.732 1.535 2.659
0.05 ([0.000, 0.000],[0.000, 0.000]) 0.000 0.000 0.000 0.000

([1.000, 1.7321],[9.7887 16.9545]) 1.000 1.732 9.789 16.954
([2.000, 0.000],[19.000, 1.000]) 2.000 0.000 19.000 1.000

([1.000, -1.7321],[9.2113 -15.9545]) 1.000 1.732 9.211 15.954

Table 4: Steady states for k=1, varying β.

As seen in Table 4, the observed pattern persists for k = 1, and the values of the prey
population at equilibrium remain constant when β is varied, while the ones of the predator
population change inversely proportional to the parameter change. Moreover, the stability
analysis resulted, as for k = 0, that the change in β does not affect the stability type of the
steady states.

Since for k = 0 the standard deviation is zero, there is no change observed in the standard
deviation when varying β. The uncertain Lotka-Volterra system for k = 1 (41) allows us to
comment on the changes observed in the standard deviation when varying β. As seen in Table
4, the standard deviation for the prey remains constant, similar to the prey’s steady states.
For the predator population however, we observe the same pattern of inverse proportion, when
applying the expression (29). The changes in the mean for both populations are expected due
to the straightforward expression (29).

k=2

Table 5 depicts the evolution of the stationary points of the uncertain Lotka-Volterra model
for k = 2 (36) when varying parameter β. As expected, the predator population at equilibrium
varies inversely proportional to the changes in β, while the prey population is not affected.
Similarly, the mean and standard deviation of both the prey and predator populations behave
as for the case k = 1 when β is varied computed with the expressions (29). Furthermore, there
is no change in the stability of the steady states.
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β Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

0.2 ([0.000, 0.000, 0.000],[0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.6952, 0.0337, 2.1285],[1.6526, 0.2734, 5.0579]) 0.695 2.129 1.653 5.065
([0.491, 1.1074, 1.2882],[1.2122, 2.7558, 3.1518]) 0.491 1.699 1.2122 4.187

([2.000, 0.000, 0.000],[4.750, 0.250, 0.000 ]) 2.000 0.000 4.750 0.250
([1.509, 1.1275, -1.2587],[3.6309, 2.8036, -2.8956]) 1.509 1.690 3.6309 4.030
([0.491, -1.1275, 1.2587],[1.1191, -2.5536, 2.8956]) 0.491 1.690 1.1191 3.861
([1.3048 -0.0337 -2.1285],[3.0974 -0.0234 -5.057]) 1.305 2.129 3.097 5.058
([1.509 -1.1074 -1.2882],[3.5378 -2.5058 -3.1518]) 1.509 1.699 3.538 4.027

0.3 ([0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000]) 0.000 0.000 0.000 0.000
([0.6952, 0.0337, 2.1285],[1.1017, 0.1823, 3.372 ]) 0.695 2.129 1.102 3.377
([0.491, 1.1074, 1.2882],[0.8082, 1.8372, 2.1012]) 0.491 1.699 0.808 2.791
([2.000, 0.000, 0.000],[3.1667, 0.1667, 0.0000]) 2.000 0.000 3.167 0.167

([1.509, 1.1275, -1.2587],[2.4206, 1.8691, -1.9304]) 1.509 1.690 2.421 2.687
([1.3048 -0.0337 -2.1285],[2.065, -0.0156, -3.372]) 1.305 2.129 2.065 3.372
([0.491, -1.1275, 1.2587],[0.746, -1.7024, 1.9304]) 0.491 1.690 0.746 2.574
([1.509 -1.1074 -1.2882],[2.3585 -1.6705, -2.1012]) 1.509 1.699 2.359 2.684

0.05 ([0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000]) 0.000 0.000 0.000 0.000
([0.491, -1.1275, 1.2587],[4.4763, -10.2144 , 11.5822]) 0.491 1.690 4.476 15.443
([0.6952, 0.0337, 2.1285],[6.6102 , 1.0937, 20.2318]) 0.695 2.129 6.610 20.261
([0.491, 1.1074, 1.2882],[4.8489, 11.0231, 12.6073]) 0.491 1.699 4.849 16.747

([2.000, 0.000, 0.000],[19.000, 1.000, 0.000]) 2.000 0.000 19.000 1.000
([1.509, 1.1275, -1.2587],[14.5237, 11.2144, -11.5822]) 1.509 1.690 2.421 16.122
([1.509 -1.1074 -1.2882],[14.1511, -10.0231, -12.6073]) 1.509 1.699 14.151 16.106
([1.3048 -0.0337 -2.1285],[12.3898, -0.0937, -20.2318]) 1.305 2.129 12.390 20.232

Table 5: Steady states for k=2, varying β.

6.2 Varying δ

Next, we are interested in observing the behavior of the stationary points and their stability
when varying parameter δ. Recall that δ is the effect of the presence of prey on the predator’s
growth rate. Since β and δ play symmetric roles in the coupling between the two species in
the system (35) and the behavior of the system when varying β is consistent for all orders
k = 0, 1, 2 and all factors of β, we can assume that the pattern when increasing δ by a factor
of 3 remains consistent to the factors of 2 and 1

2 . Thus, with a similar method as before, we
choose to double and halve δ. Recall that originally, δ is taken to be 0.75, as given in (37).

δ Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

1.5 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.3476, 0.0169, 1.0642], [3.3051, 0.5469, 10.1159]) 0.348 1.064 3.305 10.131
([0.2455, -0.5638, 0.6294], [2.2381, -5.1072, 5.7911]) 0.245 0.845 2.238 7.721
([0.2455, 0.5537, 0.6441], [2.4245, 5.5116, 6.3037]) 0.245 0.849 2.424 8.373

([1.000, 0.000, 0.000], [9.500, 0.500, 0.000]) 1.000 0.000 9.500 0.500
([0.7545, 0.5638, -0.6294], [7.2619, 5.6072, -5.7911]) 0.755 0.845 7.262 8.061

([0.6524, -0.0169, -1.0642], [6.1949, -0.0469, -10.1159]) 1.305 2.129 6.195 10.116
([0.7545, -0.5537, -0.6441], [7.0755, -5.0116, -6.3037]) 0.755 0.849 7.076 8.053

0.375 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([1.3904, 0.0675, 4.257], [3.3051, 0.5469, 10.1159]) 1.390 4.257 3.305 10.131
([0.9819, -2.2551, 2.5175], [2.2381, -5.1072, 5.7911]) 0.982 3.380 2.238 7.721
([0.9820, 2.2147, 2.5765], [2.4245, 5.5116, 6.3037]) 0.982 3.398 2.424 8.373

([4.000, 0.000, 0.000], [9.500, 0.500, 0.000]) 4.000 0.000 9.500 0.500
([3.0181, 2.2551, -2.5175], [7.2619, 5.6072, -5.7911]) 3.018 3.380 7.262 8.061
([2.6096, -0.0675, -4.257], [6.1949, -0.0469, -10.1159]) 2.610 4.257 6.195 10.116
([3.018, -2.2147, -2.5765], [7.0755, -5.0116, -6.3037]) 3.018 3.398 7.076 8.053

Table 6: Steady states for k=2, varying δ.

Looking at the first column in Table 6, we observe that in this case, the predator population
at equilibrium remains constant for all values of δ. Contrary to this, the prey population at
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equilibrium behaves inversely proportional to the change in δ. That is, for δ doubled, the
values are halved, and for δ halved, the values are doubled. The pattern is consistent for any
change performed to the parameter. Therefore, we conclude that the δ−parameter only affects
the stationary points of the prey population.

Recall that δ is the effect of the prey on the predator. Therefore, intuitively one would
expect that changing the value of δ would affect the values of the predator population and not
the prey. However, as previously mentioned, the non-trivial point involves (γδ ,

a
β ) for (ŷ

∗
0 , ẑ

∗
0),

explaining the behavior of both the fact that it only affects the population of the prey species,
and that the relationship is inversely proportional due to δ appearing in the denominator.

Moreover, the mean and standard deviation obtained with the formulae (29) result in the
expected values. The stability analysis performed on the stationary points proved that the
stability type of the points remains consistent to the results obtained in Section 5.1 for any
change in δ.

6.3 Varying γ

Although the two cases above for varying β and δ provide enough insight to make an educated
guess of the effect that varying parameter γ has on the stationary points and their stability, let
us look at the case k = 2 of system (35) derived in (36), when γ is doubled and halved. Recall
that γ is the predator’s mortality rate. Therefore, physically this means that the predator
population dies at a faster or respectively slower rate. Initially, it is taken to be 1.5, as given
in (37).

γ Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

3.0 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([1.3904, 0.0675, 4.2570], [3.3051, 0.5469, 10.1159]) 1.390 4.257 3.305 10.131
([0.9819, -2.2551, 2.5175], [2.2381, -5.1072, 5.7911]) 0.982 3.380 2.238 7.721
([0.9820, 2.2147, 2.5765], [2.4245, 5.5116, 6.3037]) 0.982 3.398 2.424 8.373

([4.000, 0.000, 0.000], [9.500, 0.500, 0.000]) 4.000 0.000 9.500 0.500
([3.0181, 2.2551, -2.5175], [7.2619, 5.6072, -5.7911]) 3.018 3.380 7.262 8.061
([2.6096, -0.0675, -4.257], [6.1949, -0.0469, -10.1159]) 2.610 4.257 6.195 10.116
([3.018, -2.2147, -2.5765], [7.0755, -5.0116, -6.3037]) 3.018 3.398 7.076 8.053

0.75 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.3476, 0.0169, 1.0642], [3.3051, 0.5469, 10.1159]) 0.348 1.064 3.305 10.131
([0.2455, -0.5638, 0.6294], [2.2381, -5.1072, 5.7911]) 0.245 0.845 2.238 7.721
([0.2455, 0.5537, 0.6441], [2.4245, 5.5116, 6.3037]) 0.245 0.849 2.424 8.373

([1.000, 0.000, 0.000], [9.500, 0.500, 0.000]) 1.000 0.000 9.500 0.500
([0.7545, 0.5638, -0.6294], [7.2619, 5.6072, -5.7911]) 0.755 0.845 7.262 8.061

([0.6524, -0.0169, -1.0642], [6.1949, -0.0469, -10.1159]) 1.305 2.129 6.195 10.116
([0.7545, -0.5537, -0.6441], [7.0755, -5.0116, -6.3037]) 0.755 0.849 7.076 8.053

Table 7: Steady states for k=2, varying γ.

Notice that the predator population at equilibrium remains constant for all values of γ, while
the prey population has a proportional relationship to the changes in γ. This is explained by
the stationary value γ

δ of ŷ∗0 . With the same reasoning as for the cases when β and δ are
varied, using expressions (29), one obtains the values of the mean and the standard deviation
at equilibrium as seen in Table 7. Moreover, the stability type of all steady states is consistent
for any change in the γ−parameter.

Three out of the four parameters involved in the Lotka-Volterra model have been analyzed.
This leaves parameter α, through which uncertainty has been added to the system. In what
follows, an analysis of how the remaining parameter affects the values of the stationary points
and their stability is explored.

6.4 Varying a and b

As given in (3), uncertainty is added to the Lotka-Volterra system (1) in the α−parameter in
the form α := a + bω, with ω ∈ U([−1, 1]). Since a and b are assumed to be constants with
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the condition a− |b| > 0, they can be varied to observe the system’s behavior at equilibrium,
given that they satisfy the condition.

First, let us examine parameter a. Take a to be doubled and halved, with the original value
of 0.95, as given in (37).

a Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

1.9 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.4909, -1.1229, 1.2657], [4.5696, -10.4184, 11.8371]) 0.491 1.692 4.570 15.769
([0.6956, 0.0168, 2.1296], [6.6095, 0.5467, 20.2344]) 0.696 2.130 6.609 20.242
([0.4909, 1.1129, 1.2804], [4.7559, 10.8229, 12.3496]) 0.491 1.696 4.756 16.421

([2.000, 0.000, 0.000], [19.000, 0.500, 0.000]) 2.000 0.000 19.000 0.500
([1.5091, 1.1229, -1.2657], [14.4304, 10.9184, -11.8371]) 1.509 1.692 14.430 16.104
([1.5091, -1.1129, -1.2804], [14.2441, -10.3229, -12.3496]) 1.509 1.696 14.244 16.096
([1.3044, -0.0168, -2.1296], [12.3905, -0.0467, -20.2344]) 1.304 2.130 12.391 20.234

0.475 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.4914, -1.1361, 1.2455], [1.0723, -2.4508, 2.7687]) 0.491 1.686 1.072 3.698
([0.6937, 0.0680, 2.1238], [1.6533, 0.5474, 5.0553]) 0.694 2.125 1.653 5.085
([0.4915, 1.0953, 1.3048], [1.2586, 2.8547, 3.2816]) 0.492 1.704 1.259 4.349

([2.000, 0.000, 0.000], [4.750, 0.500, 0.000]) 2.000 0.000 4.750 0.500
([1.5086, 1.1361, -1.2455], [3.6777, 2.9508, -2.7687]) 1.509 1.686 3.678 4.046
([1.5085, -1.0953, -1.3048], [3.4914, -2.3547, -3.2816]) 1.508 1.704 3.491 4.039
([1.3063, -0.068, -2.1238], [3.0967, -0.0474, -5.0553]) 1.306 2.125 3.097 5.055

Table 8: Steady states for k=2, varying a.

As seen in Table 8, contrary to other parameters, there is no overall pattern in the changes
in equilibrium values when varying a. Some of the predator values change proportionally to a,
however this is not the case for all steady states. The stability type of the points however, is
not affected by variations in parameter a. That is, most points, including the trivial equilib-
rium (54), are unstable, and one of the non-trivial steady states, namely (55) is semi-stable.
Looking at the last column of the table, we observe that the standard deviation of the predator
population is highly affected by the changes in a. Since a is one of the parameters of the added
uncertainty, this means that uncertainty highly affects the predator population at equilibrium.
As further study, one could examine the effect of varying a2. That is double or halve a2 and
analyze the results. However, this goes beyond of the scope of this paper.

We further study the effect that parameter b has on the steady states of the system (36)
and their stability. Similar to variations of the previous parameters, we choose to double and
halve b. Recall that b is originally 0.05, as given in (37).

b Steady state (ŷ∗, ẑ∗) mean µy s.d. σy mean µz s.d. σz

0.1 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.4914, -1.1361, 1.2455], [2.1446, -4.9015, 5.5373]) 0.491 1.686 2.145 7.395
([0.6937, 0.0680, 2.1238], [3.3066, 1.0947, 10.1105]) 0.694 2.125 3.307 10.170
([0.4915, 1.0953, 1.3048], [2.5173, 5.7093, 6.5631]) 0.492 1.704 2.517 8.699

([2.000, 0.000, 0.000], [9.500, 1.000, 0.000]) 2.000 0.000 9.500 1.000
([1.5086, 1.1361, -1.2455], [7.3554, 5.9015, -5.5373]) 1.509 1.686 7.355 8.093
([1.5085, -1.0953, -1.3048], [6.9827, -4.7093, -6.5631]) 1.508 1.704 6.983 8.078
([1.3063, -0.0680, -2.1238], [6.1934, -0.0947, -10.1105]) 1.306 2.125 6.193 10.111

0.025 ([0.000, 0.000, 0.000], [0.000, 0.000, 0.000]) 0.000 0.000 0.000 0.000
([0.4909, -1.1229, 1.2657], [2.2848, -5.2092, 5.9186]) 0.491 1.692 2.285 7.885
([0.6956, 0.0168, 2.1296], [3.3047, 0.2734, 10.1172]) 0.696 2.130 3.305 10.121
([0.4909, 1.1129, 1.2804], [2.378, 5.4115, 6.1748]) 0.491 1.696 2.378 8.210

([2.000, 0.000, 0.000], [9.500, 0.250, 0.000]) 2.000 0.000 9.500 0.250
([1.5091, 1.1229, -1.2657], [7.2152, 5.4592, -5.9186]) 1.509 1.692 7.215 8.052
([1.5091, -1.1129, -1.2804], [7.1220, -5.1615, -6.1748]) 1.509 1.696 7.122 8.048
([1.3044, -0.0168, -2.1296], [6.1953, -0.0234, -10.1172]) 1.304 2.130 6.195 10.117

Table 9: Steady states for k=2, varying b.

We observe in Table 9 that similar to varying a, varying parameter b affects the values
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of the steady states, but there is no clear pattern between the changes applied to b and the
changes seen in the values of the steady states. This applies to both the prey and predator
populations. Furthermore, as observed for all parameters, the stability of the steady states is
not affected by any change in b.

Further work could involve varying a linear combination of parameters a and b. For example,
one could investigate how changing a + b2 by a given factor affects the steady states of the
uncertain Lotka-Volterra system (35). However, as mentioned previously, this goes beyond the
analysis in this paper.

7 Conclusion

The thesis investigated the classical Lotka-Volterra prey-predator model under parameter un-
certainty, using the Stochastic Galerkin projection method based on generalized Polynomial
Chaos Expansion (gPCE). Focusing on uncertainty in the prey’s natural growth rate, the model
was reformulated into a deterministic system of coupled ODEs, where solutions were derived
for low truncation orders k = 0, 1, 2. This approach allows for an accurate prediction of how
a biological model behaves in a real-world scenario and how equilibrium points behave in the
overall system dynamics.

The results confirmed that introducing uncertainty increases the complexity of the system,
not only in dimensionality but also in behavior. For all cases studied, the trivial point remains
unstable, along with additional non-trivial steady states, aligning with existing deterministic
analyses of the Lotka-Volterra model involving uncertainty [5, 13]. More interestingly, one
recurring non-trivial point (γδ ,

a
β ) was found to remain consistently semi-stable, due to purely

imaginary eigenvalues with flipped signs. This result is consistent with the oscillatory behavior
of the classic Lotka-Volterra model and supports the hypothesis that uncertainty does not
affect the stability of the stationary points.

The analysis for the higher truncation order cases showed that increased stochastic com-
plexity leads to additional equilibrium points, most of which were found to be unstable. Fur-
thermore, it was observed that for a given truncation order k, the uncertain ODE-system has
dimension 2(k + 1), resulting in 2k+1 unique steady states [25]. These points arise from the
nonlinear coupling introduced by the gPCE truncation and are a direct result of projecting
nonlinear dynamics onto polynomial chaos bases, as also observed in other applications of the
gPCE method [6, 26].

Moreover, a parameter sensitivity analysis proved that varying fixed population parameters
β, δ, γ intuitively affects the population dynamics at equilibrium. However, the effects are only
on one animal species at a time. That is, due to the known point (γδ ,

a
β ), the β−parameter only

affects the predator population, while the δ, γ−parameters only affect the prey population at
equilibrium. Furthermore, it was seen that adding uncertainty to the system affects the devi-
ation of the predator population significantly more that of the prey’s. If, instead, uncertainty
were added to the predator equation in (1) rather than the prey’s, the observed variability
would be expected to shift toward the prey population. These findings highlight the utility
of the Stochastic Galerkin projection method for both quantifying parametric uncertainty and
providing qualitative insight into nonlinear biological systems [5, 6].

In contrast to the fixed parameters study, the sensitivity analysis performed on the stochas-
tic components a and b concluded in no clear patterns between changing the parameters and
the population sizes at equilibrium. However, the increase in standard deviation, especially in
the predator population, at equilibrium, proves that adding uncertainty to the model affects
the predictability of animal populations at a given time. That is, introducing uncertainty into
the prey equation of the Lotka–Volterra model significantly influences the long-term dynamics
of the predator population.

While the analysis was limited to low truncation orders k = 0, 1, 2 due to high complexity,
the observed patterns suggest a consistent behavior of the stochastic Lotka-Volterra model
under uncertainty. This hypothesis is strengthened by the case study performed for k = 3.

Further work on the subject could explore the effect of having more than one uncertain
parameter. This could be included either in parameter β, which would leave both parameters
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of the predator equation with fixed parameters δ and γ, or one of the two could include
uncertainty, which would make both equations of the coupled system uncertain. Moreover,
since there were no visible patterns in the steady states when varying the stochastic components
a and b, one could investigate the effect of varying a linear combination of the two. For example,
a factor of ab or a + b2 could result in a clear pattern in the variations of the steady states.
Additionally, Volterra generalized the standard model to n species [24]. One could further
investigate the generalized model with or without uncertainty.
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A Python Code

import numpy as np

from math import sqrt

from math import factorial as f

import matplotlib.pyplot as plt

from scipy.integrate import quad, solve_ivp

from scipy.optimize import root

from scipy.special import legendre

from itertools import product

from tqdm import tqdm

# SETTINGS

k = 2 # gPCE truncation order

a, b = 0.95, 0.05 # alpha(omega) = a + b*omega

beta, delta, gamma = 0.1, 0.75, 1.5 #constant parameters

n = k + 1 # number of coefficients

# Compute C using integration quad from scipy

def compute_C_tensor(k):

C = np.zeros((k+1, k+1, k+1))

for s in range(k+1):

for i in range(k+1):

for j in range(k+1):

C[s,i,j] = quad(legendre(s)*legendre(i)*legendre(j), -1, 1)[0]

return C

C = compute_C_tensor(k)

def h(s):

return 2 / (2*s+1)

# ODE system

def ode_system(t, U):

Y = U[:n]

Z = U[n:]

dYdt = np.zeros_like(Y)

dZdt = np.zeros_like(Z)

for s in range(n):

sum_C = sum(Y[i] * Z[j] * C[s, i, j] for i in range(n) for j in range(n))

Y_splus1 = Y[s+1] if s + 1 <= k else 0

Y_sminus1 = Y[s-1] if s - 1 >= 0 else 0

dYdt[s] = a * Y[s] + b * (((s+1)/(2*s+3)) * Y_splus1 + (s / (2*s-1))

* Y_sminus1) - beta / h(s) * sum_C

dZdt[s] = delta / h(s) * sum_C - gamma * Z[s]

return np.concatenate([dYdt, dZdt])

# Initial conditions

Y0 = np.zeros(k+1)

Z0 = np.zeros(k+1)

Y0[0] = 10

Z0[0] = 5
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U0 = np.concatenate([Y0, Z0])

# Time integration

t_span = (0, 25)

t_eval = np.linspace(*t_span, 512)

#Integrate and solve equations

sol = solve_ivp(ode_system, t_span, U0, t_eval=t_eval)

t = sol.t

Y_sol = sol.y[:n]

Z_sol = sol.y[n:]

# Compute mean and standard deviation

mean_y = Y_sol[0]

std_y = np.sqrt(np.sum(Y_sol[1:]**2, axis=0))

mean_z = Z_sol[0]

std_z = np.sqrt(np.sum(Z_sol[1:]**2, axis=0))

# Plot

plt.figure(figsize=(10, 4))

plt.plot(t, mean_y, label='Prey mean', color='blue')

plt.fill_between(t, mean_y - std_y, mean_y + std_y, color='blue', alpha=0.3,

label='±1 std')

plt.plot(t, mean_z, label='Predator mean', color='green')

plt.fill_between(t, mean_z - std_z, mean_z + std_z, color='green', alpha=0.3,

label='±1 std')

plt.xlabel("Time")

plt.ylabel("Population")

plt.title(f"Prey & Predator population with gPCE (k={k})")

plt.grid(True)

plt.legend()

plt.tight_layout()

plt.show()

# ----------- FIND ALL UNIQUE STATIONARY POINTS -----------

def stationary_system(U):

return ode_system(0, U)

print(f"Values of a, b, beta, delta, gamma: {a,b,beta,delta,gamma}.")

print(f"k={k}.")

print("\n Searching for stationary points...")

num_guesses = 5 # control grid density (higher = more expensive)

Y_ranges = [np.linspace(0, 15, num_guesses) for _ in range(n)]

Z_ranges = [np.linspace(0, 15, num_guesses) for _ in range(n)]

found_points = []

tol = 1e-5 # tolerance for uniqueness

for y0 in tqdm(product(*Y_ranges)): #product:all combinations of guesses

#(ex: for k=2, 5^3 combinations); tqdm: shows progress (time & no of iterations)

for z0 in product(*Z_ranges):

U0 = np.concatenate([y0, z0])

sol = root(stationary_system, U0, method='hybr')
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if sol.success:

U_stat = sol.x

# Check uniqueness

if all(np.linalg.norm(U_stat - p) > tol for p in found_points):

found_points.append(U_stat)

print(f"\n Found {len(found_points)} unique stationary point(s):")

for i, U_stat in enumerate(found_points):

Y_stat = U_stat[:n]

Z_stat = U_stat[n:]

mean_y = Y_stat[0]

std_y = np.sqrt(np.sum(Y_stat[1:]**2))

mean_z = Z_stat[0]

std_z = np.sqrt(np.sum(Z_stat[1:]**2))

print(f"\n Stationary Point {i+1}")

print("Y:", np.round(Y_stat, 4))

print("Z:", np.round(Z_stat, 4))

print(f"Prey: mean = {mean_y:.3f}, std = {std_y:.3f}")

print(f"Predator: mean = {mean_z:.3f}, std = {std_z:.3f}")
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