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Chapter 1: Abstract

This project addresses the critical need for accurate short-term photovoltaic (PV) forecasting
to support FIRN Energy’s operational decision-making. Building on a prior ARIMAX-based
approach, the work introduces enhanced forecasting pipelines for both minute-ahead and
day-ahead horizons. A re-implemented ARIMAX(1,0,1) model was tuned for minute-ahead
predictions, capturing rapid fluctuations in PV output using an autoregressive structure and
exogenous environmental data. A Random Forest model was trained across data from over 20
FIRN sites for day-ahead forecasting, demonstrating superior generalisation and predictive
accuracy compared to site-specific or previous statistical models. All models were developed
in Python, enabling seamless integration with FIRN’s infrastructure. Results show significant
accuracy gains across evaluation metrics (MAE, RMSE, MAPE, R?), with the day-ahead
Random Forest achieving up to 68% MAPE reduction over the original ARIMAX baseline in
worst-case sites. The final deliverable includes all forecasting code, input data templates, and
API connectivity scripts, offering FIRN a scalable, ready-to-deploy solution.



Chapter 2: Introduction

2.1 Context and Problem Setting

As solar photovoltaics (PV) become increasingly prevalent in power systems, they present
significant operational challenges. Solar generation’s variable and non-dispatchable nature
introduces uncertainty into grid operations and electricity markets. Grid operators and market
participants rely on accurate forecasts to ensure system balance, making short-term PV
forecasting essential. Short-term forecasting refers to predicting solar energy output over the
next few minutes to hours, typically up to one day ahead. Forecasts are used to mitigate
imbalances in real time and enable informed bidding, optimisation, and reduce operational
penalties [Cormode et al., 2014].

For example, the 28 April 2025 Iberian blackout, triggered by frequency instability during
approximately 60% renewable penetration, left Spain and Portugal in darkness for nearly ten
hours. The event exposed the limitations of inverter-based sources, like PV, which do not
naturally provide rotational inertia. Unlike traditional generators that stabilise frequency with
their spinning mass, PV systems rely on inverters that lack this stabilising effect, making the
grid more susceptible to sudden imbalances [Bousso, 2025].

FIRN Energy, a Belgian company managing a distributed portfolio of PV systems, is directly
affected by these dynamics. Its operations span multiple sites with varying characteristics,
making accurate forecasting operationally valuable and technically challenging. Two forecasting
horizons are especially relevant for FIRN: the minute-ahead timeframe, which supports internal
steering to avoid imbalance costs (financial penalties incurred when actual production deviates
from what was scheduled in the energy market), and the day-ahead horizon, which informs
market participation and curtailment strategies.

While many studies have focused on one-day-ahead PV forecasting, significantly less attention
has been paid to minute-ahead predictions in operational environments, where most studies
have focused on specific time horizons such as an hour ahead, a day ahead, and a month
ahead [Asiedu et al., 2024]. The ability to forecast production just a few minutes in advance
allows companies like FIRN to fine-tune their internal systems, reduce imbalance penalties,
and improve overall system responsiveness. This use case presents new engineering challenges:
the model must operate at high frequency, respond to abrupt changes, and perform under
limited future weather visibility [Pelland et al., 2013].

2.2 Problem Statement

FIRN Energy relies on short-term photovoltaic (PV) forecasting to support both real-time
operations and longer-term planning. Until now, its forecasting framework has focused on a
day-ahead AutoRegressive Integrated Moving Average with eXogenous (ARIMAX) model



developed for a single location [Clua, 2025]. While this model provided a helpful starting
point, it was constructed with limited weather variables and lacked flexibility. Its performance
beyond the original training site was never validated, which restricted its reliability for wider
deployment across FIRN’s portfolio of solar systems.

Acknowledging these limitations, FIRN identified two clear areas for improvement:

e The company needed an improved day-ahead forecasting solution that could scale across
multiple sites while maintaining accuracy.

o FIRN sought to develop a new minute-ahead model to support real-time imbalance
steering; an increasingly vital task as solar penetration increases and system dynamics
become more volatile over short intervals.

These two requirements, scalability in day-ahead forecasts and the introduction of a responsive
minute-ahead model, constitute the core motivation for this project. The aim is to extend and
enhance FIRN’s existing forecasting capabilities to improve their robustness, responsiveness,
and applicability to their operational context.

Inaccurate short-term forecasts can lead to real-time imbalance penalties, inefficient curtailment
strategies, and missed market opportunities. Grid operators rely on stable injections, while
FIRN’s commercial operations benefit from accurate predictions to optimising and revenue.
As FIRN expands, scalable forecasting tools become a key operational requirement.

2.3 Research Objective

This project aims to enhance short-term PV forecasting for FIRN Energy by developing and
validating two application-specific models tailored for operational use:

e Minute-ahead forecasting model: Adapted to predict PV output on a minute-level
basis. It utilises production values and short-lag weather variables to support real-time
imbalance management at the grid level.

e Day-ahead forecasting model: Trained on historical data from FIRN’s sites. It is
designed to replace the previous forecasting approach with a more accurate and scalable
alternative, capable of generalising diverse locations and operational conditions.

Both models are developed using real production and weather data and are intended for
seamless integration into FIRN’s operations. Their performance will be evaluated using industry-
standard metrics, ensuring that the proposed solutions meet the company’s requirements for
accuracy, robustness, and practical deployability.

2.4 Research Questions

The main research question for this project is:

What forecasting setup provides accurate and scalable short-term photovoltaic (PV)
predictions across multiple FIRN Energy sites, utilising production and weather
data?



Sub-questions:

o What modelling approach is the most effective for generating reliable minute-ahead
forecasts to facilitate real-time imbalance mitigation?

e What design framework ensures accurate day-ahead forecasts that maintain robustness
across various sites?

e [s it more advantageous to create individual forecasting models for each site or to develop
a unified model leveraging data from multiple sites?

2.5 Scope and Limitations

This project focuses exclusively on short-term forecasting of PV production for FIRN Energy
sites. Two distinct forecasting horizons are addressed: minute-ahead predictions to support real-
time grid balancing, and day-ahead forecasts for curtailment planning and market operations.
All models are developed using historical PV production data provided by FIRN and historical
weather forecasts obtained via Open-Meteo. Forecasts are limited to the resolution of the input
data: one-minute resolution for minute-ahead models and hourly resolution for day-ahead
forecasts.

Seasonal limitations apply. The models were trained and validated on data collected outside of
the summer months, which may impact overall performance under higher irradiance conditions.
Higher irradiance levels in summer may result in increased PV production and steeper ramps,
possibly putting the models into untested operating regimes and increasing prediction errors
if they are not retrained using summer data. Additionally, real-time system integration is
beyond the current project scope.

Model performance is assessed using standard evaluation metrics, with testing performed
on held-out periods for each use case. The emphasis is on accuracy, maintainability, and
operational readiness.



Chapter 3: Literature Review

Short-term PV output forecasting has been approached using statistical and machine learning
models. Among the statistical methods, AutoRegressive Integrated Moving Average (ARIMA)
and ARIMAX are commonly applied due to their simplicity and effectiveness for short horizons.
These models combine autoregressive terms with external inputs such as solar irradiance or
cloud cover, enabling them to track temporal dependencies while accounting for external drivers
of PV production. As demonstrated by a study, ARIMAX can deliver strong performance for
very short-term horizons (5 minutes to 2 hours), particularly when utilising updates to model
parameters and lagged PV observations as primary predictors [Bacher et al., 2009]. However,
they struggle with rapid weather changes and nonlinear relationships.

ARIMAX models are a practical choice for minute-ahead forecasting due to its rapid computa-
tion, interpretability, and the significance of temporal correlations in ultra-short-term horizons.
Its effectiveness in controlled conditions and minimal data requirements render it suitable for
real-time operational use.

Machine learning models have gained attention for day-ahead forecasting due to their capacity
to capture complex, nonlinear relationships between weather variables and PV output. Tree-
based models such as Random Forest (RF) and Gradient Boosted Trees (GBT) effectively
manage multivariate input data and are less susceptible to overfitting. A study by UPM demon-
strated that RF significantly outperformed traditional models, achieving a normalised Root
Mean Square Error (nRMSE) of 4.2% compared to 6.5% for ARIMA [Cantén Sénchez, 2020].

Direct comparisons between machine learning and statistical approaches confirm these findings.
In a mini-review of forecasting methods, RF and Extreme Gradient Boosting (XGBoost)
achieved RMSE reductions of 40-60% over ARIMA, alongside higher R? scores, showcasing
superior adaptability under diverse weather conditions [Dou et al., 2023].

Deep learning models such as Long-Short Term Memory (LSTM) and Convolutional Neural
Networks (CNN) are also being investigated; however, they require extensive high-resolution
data, rendering them less suitable for use cases with limited historical records. The SolNet study
found that in contexts with fewer than six months of data, RF and XGBoost outperformed
LSTM by 20-30% in RMSE while being faster and more interpretable [Depoortere et al., 2024]

Finally, hybrid models that combine statistical and machine learning techniques, such as
the wavelet-ARMA-NARX model, have demonstrated promising performance. These models
separate noise (wavelet), model linear structures (ARMA), and capture nonlinear patterns
(NARX). However, their complexity and deployment requirements make them difficult to justify
in practical settings with time constraints and limited resources [Nazaripouya et al., 2016]



3.1 Forecasting Horizons

Forecasting requirements vary by time horizon. Minute-ahead forecasting (under 5 minutes)
demands high temporal resolution and fast response. ARX models, which use recent power
output and short-term weather data, perform well at this scale. A study reported a 35% RMSE
reduction over persistence models for horizons under 2 hours [Bacher et al., 2009

In contrast, day-ahead forecasting must capture full-day variability. Machine learning models
like Random Forest and Gradient Boosting consistently outperform statistical models like
ARIMA, particularly when using rich weather data [Fara et al., 2021]

3.2 Site-Specific vs Generalised Training

Most forecasting approaches in the literature have focused on developing models tailored to
specific photovoltaic installations. These site-specific models are often optimised for conditions,
employing historical production and weather data from a single location. While this method
can yield accurate results, it lacks scalability, since each new site necessitates dedicated data
collection, preprocessing, and model training.

An alternative approach involves training a single, generalised dataset from multiple PV
sites. In theory, this enables the model to capture broader patterns and weather-production
relationships that can be transferred across locations. However, there is limited practical
validation of whether such generalisation enhances performance in operational settings.

This project contributes to this question by testing a model trained on more than 20 real
commercial sites. The results assist in assessing whether a single model can replace individual
models without compromising accuracy and whether such a setup is viable for scalable
deployment.

While multi-site models have been studied in academic contexts, few works have tested
generalisation across commercial PV systems with operational variability and real deployment
constraints. This project tests such a setup across more than 20 real FIRN sites.

3.3 Model Choice Justification

The ARIMAX model was selected for minute-ahead forecasting due to its proven success
in short-term solar power predictions. Integrating autoregressive elements with external
weather factors makes ARIMAX ideal for high-frequency time series data. In past research,
this model demonstrated a 35% reduction in RMSE compared to persistence baselines
for forecasts less than two hours, particularly when using power and irradiance values as
predictors[Bacher et al., 2009]. Its simplicity, interpretability, and low computational burden
make it well-suited for minute-level operational tasks.

Random Forest and Gradient Boosting were initially selected for day-ahead forecasting due
to their proven ability to capture nonlinear relationships in weather and production data.
RF has shown firm performance in various studies. A comparative study of RF and GBT in
solar power predictive analytics found that RF achieved the highest R? (0.809), the lowest



Root Mean Square Error (RMSE) (1280.797), and the lowest Mean Absolute Error (MAE)
(727.005), outperforming GBT on all key metrics [Aquino, 2025

Both RF and GBT were implemented and evaluated under controlled conditions to identify the
model that best meets FIRN’s operational requirements. This comparison aimed to determine
which model to use. The findings are presented in Section 4.4.2.
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Chapter 4: Methodology

This chapter outlines the study’s methodological framework, including the complete forecasting
pipeline, data sources, preprocessing, model development approaches, and validation strategies.

4.1 End-to-End Forecasting Pipeline

The forecasting approach follows a structured pipeline to process raw operational data into
accurate PV power predictions. It begins with retrieving PV production data from FIRN’s
internal systems and historical Open-Meteo API weather forecasts. These datasets are then
aligned temporally and filtered to ensure consistency, with missing or corrupted entries.

The preprocessing stage enriches the datasets with engineered features, including lagged
power values and selected weather indicators. These features are chosen based on established
forecasting literature and tailored to each model’s requirements (ARIMAX vs. RF).

Once prepared, the data feeds into model-specific training pipelines: ARIMAX for minute-
ahead and Random Forest for day-ahead forecasting. Each model is trained using historical
data and validated using a holdout test set.

The final stage involves evaluation using standardised performance metrics (RMSE, MAE,
MAPE, R?), with comparisons between forecasted and actual outputs performed under condi-
tions that simulate real-world implementation. Figure 4.1 visually represents this structured
pipeline.

. . Model De- o .
Data Retrieval Preprocessing Validation Evaluation
velopment

Figure 4.1: Overview of the forecasting pipeline.

4.2 Data Sources

Two primary datasets were utilised for this project. FIRN’s internal PV production data,
available at a 1-minute temporal resolution, provided the foundation for all forecasting activities.
This data was accessed directly from FIRN’s internal systems.

Weather data was sourced from Open-Meteo via historical weather API calls, offering hourly
historical data and forecasts. Operational deployment will utilise Open-Meteo’s forecast API,
while evaluations in this project were conducted using Open-Meteo’s historical forecast API
to simulate real-world forecasting performance.
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4.3 Data Preprocessing

Data preprocessing involved precise alignment of PV and weather data to identical timestamps
and investigations into integrity and consistency across the input datasets. Historical PV
output data were transformed into lagged variables based on prior work for the ARIMAX
model [Clua, 2025]. The selection of weather variables employed a differentiated approach.
We selected shortwave and diffuse radiation for the ARIMAX minute-ahead model, consistent
with previous successful investigation and implementations [Clua, 2025]. In contrast, a more
extensive set of variables, including cloud cover, precipitation, wind speed, humidity, and
atmospheric pressure, was used for the RF-based day-ahead forecasting. This choice was
based on existing literature, suggesting that more variables benefit longer horizon predictions
[AlSkaif et al., 2020]

4.4 Model Development

4.4.1 Minute-Ahead Forecasting

The minute-ahead forecasting model modifies the ARIMAX structure used in previous research
[Clua, 2025], shifting from day-ahead predictions to real-time minute-level forecasts. Unlike
the original model, which depended on a single 24-hour lag, this revised version includes
multiple recent lag features (1 to 5 minutes) and a 15-minute power slope to capture local
dynamics better.

The model retains the exogenous weather inputs (shortwave and diffuse radiation) and is
implemented in Python using FIRN’s high-resolution data, including quantitative accuracy
metrics.

The ARIMAX structure was chosen due to its low-latency nature and ability to leverage recent
production history. Despite its statistical simplicity, it remains competitive for ultra-short-term
applications. Minor adjustments, as stated in Section 5.2, were made to improve robustness
and integration within FIRN’s Python-based environment.

4.4.2 Day-Ahead Forecasting

Following the literature review and initial exploratory testing between Random Forest and
Gradient Boosting Trees(presented in the appendix), Random Forest was selected as the
optimal modelling approach for day-ahead forecasting. Due to its greater robustness and
generalisability, Random Forest outperformed Gradient Boosting Trees. This choice aligns
with comparative studies, as stated in Section 3.3 and confirmed through the following:

The Random Forest (RF) model achieved superior forecasting accuracy across all key metrics
compared to the Gradient Boosting Trees (GBT) model. Specifically, RF yielded a Mean
Absolute Error (MAE) of 0.153, Root Mean Square Error (RMSE) of 0.301, Mean Absolute
Percentage Error (MAPE) of 10.96%, and an R? score of 0.983. In contrast, GBT recorded an
MAE of 0.211, RMSE of 0.365, MAPE of 13.28%, and R? of 0.975. These results reinforce the
selection of Random Forest for its higher Accuracy.
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Figure 4.2: Random Forest Forecast vs Actuals
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Figure 4.3: Gradient Boosting Trees Forecast vs Actuals

After selecting Random Forest as the model to be used, three distinct training strategies

were subsequently evaluated for the RF model to determine the best operational approach for
FIRN:

1. Site-specific model training, validated on the same site.
2. General model training on 19 sites, tested on an unseen site.

3. General model training on all 20 available sites.

4.5 Validation Strategy

The validation approach was carefully tailored to the two forecast horizons’ specific requirements
and intended operational contexts.

For minute-ahead forecasting (ARIMAX), validation was carried out using standard train-test
splits with dedicated 5-minute holdout periods. Given the ultra-short-term nature of these
predictions, forecasts were validated using historical PV data withheld from model training.
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Two validation procedures were employed for day-ahead forecasting (RF). First, a holdout
validation approach with a holdout 72-hour period was used to compare site-specific and
general model performance. Additionally, to realistically simulate operational conditions,
forecasts generated by the generalised RF model were evaluated against actual PV outputs
and ARIMAX forecasts, using historical weather forecasts from Open-Meteo’s API conducted
on randomly selected dates. Using historical weather forecasts simulates real-world scenarios.

Performance metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and R-squared (R?) were employed to assess
forecast accuracy thoroughly. According to existing comparative studies on forecast evaluation,
RMSE is particularly valuable in short-term scenarios due to its sensitivity to prediction spikes.
At the same time, MAE and MAPE offer useful indicators for evaluating longer-term planning
forecasts. Normalised metrics such as R? allow for meaningful comparisons between models
across different datasets [Nguyen and Miisgens, 2022].
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Chapter 5: Minute-Ahead Forecasting

5.1 Purpose

Minute-ahead photovoltaic (PV) forecasting is vital in maintaining real-time grid stability.
For FIRN Energy, anticipating production fluctuations on a minute-level scale allows for
timely dispatch adjustments, reducing imbalance costs, and avoiding grid disturbances. The
operational need for rapid, reliable predictions makes this forecast horizon particularly sensitive
to model responsiveness and deployment speed.

5.2 ARIMAX Model

A statistical ARIMAX (AutoRegressive Integrated Moving Average with eXogenous inputs)
model was implemented and explicitly tuned for minute-ahead forecasting to meet this need.
The selected structure, ARIMAX(1,0,1), includes one autoregressive term, no differencing, and
one moving average term, making it both lightweight and effective at capturing short-term
temporal patterns in PV output.

Mathematically, the model is represented as:

Yt =+ Qyi—1 + Brx1 + Paxay + Ocpi—1 + &4 (5.1)

Here, y; denotes PV output at time ¢; y;—1 is the one-minute lag of output; x1; and 2,
represent shortwave and diffuse radiation respectively; c is the intercept; ¢ and 6 are the AR
and MA coefficients; and &; is the residual error term.

The ARIMAX(1,0,1) model consists of three components: an autoregressive (AR) term of order
1, meaning the model uses the previous time step’s PV output to inform the next prediction;
an integration (I) term of 0, which indicates that the data does not need differencing to become
stationary; and a moving average (MA) term of order 1, which helps the model adjust for
recent forecast errors. The exogenous variables act as external inputs, providing real-time
environmental context.

The model was developed and executed entirely within a Python-based environment. This
choice facilitates direct integration with FIRN’s existing data processing infrastructure and
allows for smooth deployment, fast retraining, and automated evaluation as new data becomes
available.

Input Features and Engineering

The model’s input structure was designed to balance simplicity with predictive power. It
integrates the following real-time features:
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e Lagged PV output (1 to 5 minutes): These values capture the short-term autocor-
relation inherent in PV generation. Including multiple lags improves the model’s ability
to recognise trends or ramps over a short time window.

e Shortwave radiation: Used as a direct proxy for solar irradiance, this feature is crucial
for tracking immediate power output fluctuations caused by changing sunlight conditions,
such as sudden cloud coverage [Clua, 2025].

e Diffuse radiation: This complements the shortwave input by accounting for indirect
irradiance effects, which become particularly relevant in partially cloudy conditions
[Clua, 2025].

e Slope of power change over 15 minutes: This engineered feature quantifies how
rapidly power increases or decreases. It is calculated as the difference in PV output
between t and ¢t — 15, divided by the period, and strengthens the model’s responsiveness.

All features were aligned using a time-index merging approach with a backwards “as-of”
strategy to match PV output with the most recent weather data. Additional care was taken to
remove duplicates, address missing values, and ensure no leakage across prediction windows.
Minute-ahead and day-ahead forecasts were separated, utilising future exogenous data solely
for forecasting and not during the training phase.

Differences from Previous Work

The model extends the work of a previous student who used an ARIMAX framework. However,
that model was configured for day-ahead forecasts and relied on coarser lag structures. In
contrast, this implementation is explicitly designed for minute-ahead forecasting, with key
modifications:

e Forecast Horizon: Shifted from daily to 5-minute intervals, demanding higher temporal
resolution in feature engineering and validation.

e Lag Handling: Instead of a fixed one-day lag, this model uses multiple recent lags (up
to 5 minutes), better suited for ultra-short-term forecasting and allowing the model to
pick up on immediate output dynamics.

e Feature Expansion: The addition of the 15-minute slope and careful variable selection.

e Deployment Readiness: Unlike the prior implementation, this version was written
with modularity and portability in mind, allowing direct transfer into FIRN’s operational
workflows without external dependencies.

These changes make the model more responsive, lightweight, and suited to the high-frequency
demands of real-time PV prediction.

5.3 Results

The ARIMAX model was validated using a five-minute holdout window, aligned with FIRN’s
operational use case. The following metrics were computed:
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Metric | Value
MAE 0.013
RMSE 0.015
MAPE | 1.24%
R? 0.716

Table 5.1: Minute-Ahead Forecasting Performance (ARIMAX)

These results confirm that the model accurately tracks minute-level fluctuations and maintains
consistent performance even under short evaluation horizons.

A forecast vs. actual plot was generated and included below to visually illustrate how closely
the model’s predictions track real PV output. The x-axis reflects the five-minute forecast
horizon, covering the next 5 minutes (t+1 to t+5) based on the most recent available data.
The values begin at 5 due to how the final data slice was indexed, though they represent
consecutive forecast steps rather than clock time. The y-axis shows the PV power output
in kilowatt-hours (kWh), allowing for a direct comparison between predicted and observed
production levels over this short window.

Minute-Ahead Forecast (Next 5 Minutes)

—8— Actual
Forecast
1.10 +

1.08 4

1.06 4

PV Power Output [Kwh]

1.04 4

1.02 4

T T T T T T T T T
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
Time [M] +2.399e4

Figure 5.1: Minute-Ahead Forecast (Next 5 Minutes)

This test confirms the model’s readiness for real-time deployment and effectiveness in supporting
FIRN’s imbalance mitigation goals.
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Chapter 6: Day-Ahead Forecasting

6.1 Purpose

Day-ahead PV forecasting is pivotal in FIRN Energy’s operational strategy, primarily support-
ing curtailment decisions and participation in electricity market bidding. Unlike minute-ahead
forecasting, which addresses immediate operational responses, day-ahead predictions enable
longer-term planning, providing FIRN with actionable insights to optimise grid interactions,
mitigate curtailment risks, and strategically manage market activities.

Reliable day-ahead forecasts directly influence FIRN’s ability to accurately schedule production,
maximise revenue, and minimise financial penalties resulting from forecast errors.

6.2 Model Used

Random Forest Overview

Random Forest is an ensemble-based machine learning technique widely used for regression
and classification tasks. During training, it builds multiple decision trees independently, each
of which predicts the target variable based on a subset of randomly selected features and
observations. The final prediction is obtained by aggregating the predictions from all individual
trees.

Each decision tree in the ensemble is trained on a different bootstrap sample of the training
data, and at each split in the tree, only a random subset of the available features is considered.
This combination of bootstrapping and feature randomness introduces diversity among the
trees, which helps prevent overfitting and reduces variance. As a result, the Random Forest
model tends to generalise well, especially when dealing with high-dimensional or noisy datasets.

This ensemble approach significantly reduces overfitting and enhances the model’s ability
to capture complex, nonlinear relationships between input features and the target variable,
making it well-suited for day-ahead PV forecasting [Sal, 2024].

Model Implementation and Features

The RF model developed for FIRN’s day-ahead forecasting utilises an extensive set of input
features to predict daily PV production accurately. The implementation pipeline consists of
several clear steps:

Data Preparation and Feature Engineering The raw input data, comprising historical
PV production and weather observations, was first loaded and processed to ensure consistent
timestamps. Autoregressive (lagged) features of PV power output were created at intervals of
1, 2, 3, 6, 12, and 24 hours, explicitly capturing short-to-medium term dependencies.
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The selected weather inputs included shortwave radiation, temperature, humidity, wind speed,
cloud cover, precipitation, atmospheric pressure, and dew point, chosen based on previous
research indicating their importance in influencing PV output, as stated in Section 4.3.
Additionally, calendar-based features (hour and day of the week) were integrated to capture
daily and weekly cyclical patterns in solar production.

Data Cleaning and Splitting Rows containing missing values in any essential feature
were removed to maintain data quality. The dataset was then split into training and holdout
validation sets. Specifically, the last 72 hours (3 days) of data were reserved for model testing.

Model Training A basic Random Forest regression model was configured and trained
on the processed training dataset. The final RF configuration included 300 decision trees
(n_estimators=300) with a maximum depth of 15 (max_depth=15). These parameters were
selected through iterative testing to achieve the best balance between model complexity and
generalisation capability.

6.3 Model Testing Strategy

To identify the most effective forecasting approach for FIRN’s day-ahead needs, three distinct
Random Forest (RF) model training strategies were implemented and evaluated:

Site-Specific Model: Models were initially trained and tested independently on data from
individual sites. This approach provided a baseline to gauge the predictive capacity achievable
when models are tailored exclusively to local conditions.

Generalised Model (Leave-One-Out): A general model was trained on a group of sites,
excluding a specific test site. The model’s accuracy on this previously unseen site was then
assessed. This strategy tested the robustness of generalised training. Still, it revealed lower
accuracy than the entirely site-specific model, likely due to limited exposure to the site-specific
characteristics of the excluded location.

Generalised Model (All Sites): A comprehensive general model was trained using combined
data from all available sites, including the evaluation site itself. This approach, leveraging a
broader dataset and increased feature variability, achieved superior accuracy and generalisation
across all sites compared to the other two methods.

This testing sequence clarified the benefits of generalised training. It demonstrated that
combining data from multiple PV installations creates a more robust forecasting tool that
leverages patterns common across sites while retaining sensitivity to individual site conditions.

6.4 Final Model Results

Table 6.1 summarises the forecasting accuracy for the three tested sites, comparing the site-
specific models, the general models excluding each site (”Leave-One-Out”), and the general
model including all sites.
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Site Training Strategy | MAE | RMSE | MAPE (%) | R?
EDSS Site-Specific 0.265 0.437 13.82 0.958
5 General (Excl. site) | 0.289 | 0.501 16.62 0.945
KERCKHOVE General (All sites) 0.215 | 0.373 11.20 0.969
Site-Specific 0.299 0.612 16.88 0.929
%%I;\}EEEEM General (Excl. site) | 0.381 | 0.642 26.37 0.922
- General (All sites) 0.232 | 0.430 14.71 0.965
WERVIK_ Site-Specific 5.657 9.754 16.82 0.941
DEDECKER- General (Excl. site) 7.584 | 13.166 20.66 0.893
POWERBLOCK | General (All sites) 2.217 4.077 5.82 0.990

Table 6.1: Day-Ahead Forecasting Accuracy Comparison

The results demonstrate the superior accuracy and generalisation performance of the final
general model trained on data from all available sites. Across all evaluated sites, the General
(All sites) approach consistently outperformed both the single-site and the leave-one-out
generalised approach. Notably, the fully generalised model significantly reduced forecast errors,
substantially improving site-specific and leave-one-out model accuracies.

Visual Evaluation

To illustrate the performance of the selected general model, Figure 6.1, Figure 6.2 and
Figure 6.3 below present a detailed forecast versus actual PV production plot for the
EDSS_KERCKHOVE site as an example. Additional plots for the other sites (GULLEGEM _DEMAN and
WERVIK _DEDECKER_POWERBLOCK) can be found in the Appendix.
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Figure 6.1: Day-Ahead Forecast vs. Actual PV Production (EDSS-KERCKHOVE)
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Figure 6.2: Day-Ahead Forecast vs. Actual PV Production (EDSS_KERCKHOVE)
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Figure 6.3: Day-Ahead Forecast vs. Actual PV Production (EDSS_KERCKHOVE)

6.5 Final Model Recommendation

The generalised Random Forest model, developed using data from all available PV sites,
is recommended for FIRN Energy’s operational day-ahead forecasting based on extensive
comparative analysis. This model balances accuracy and operational simplicity, offering robust
and consistent performance across various installations. It also facilitates model management
and significantly reduces forecasting errors compared to the other evaluated approaches. FIRN

should utilise this General Model for sites whose data contributed to training the model for
best performance.

21



Chapter 7: Comparative Evaluation with Original Model

7.1 Evaluation Methodology

To objectively compare the newly implemented Random Forest model against the previously
developed ARIMAX approach, identical evaluation procedures were applied. Both models
were tested on the same three representative FIRN sites (EDSS_KERCKHOVE, GULLEGEM_DEMAN,
and WERVIK DEDECKER POWERBLOCK). Each site’s historical weather forecasts were retrieved
from the Open-Meteo historical forecast archive to simulate realistic forecasting conditions,
ensuring no data leakage and fair, consistent comparisons.

For each site, a 72-hour (3-day) evaluation period was selected randomly from available dates,
and forecasts from ARIMAX and RF models were generated. Both models utilised lagged
PV output and historical weather forecasts. RF used comprehensive lag structures (1, 2, 3, 6,
12, and 24 hours) and additional calendar-based features, while ARIMAX relied on a single
24-hour lag with shortwave and diffuse radiation inputs.

Performance was evaluated using MAE, Root Mean Square Error RMSE, MAPE, and R?.

7.2 Performance Comparison

Table 7.1 summarises the forecasting accuracy metrics for ARIMAX and Random Forest across
the three evaluated sites.

Site Model MAE | RMSE | MAPE (%) | R2
EDSS. ARIMAX | 0573 | 0.996 40.56 0.793
KERCKHOVE | gp 0.105 | 0.199 9.19 0.992
GULLEGEM. | ARIMAX | 0.312 | 0.595 30.74 0.882
DEMAN RF 0.154 | 0.296 20.83 0.971
WERVIK_ ARIMAX | 10.249 | 16.860 86.66 0.175
DEDECKER.

POWERBLOCK | RF 3.343 7.775 27.55 0.825

Table 7.1: Forecast Accuracy Comparison (ARIMAX vs. Random Forest)

As clearly shown, the Random Forest model consistently outperformed ARIMAX on all metrics
across each site. Notably, the improvement in forecasting accuracy is most substantial at the
WERVIK site, where the ARIMAX model struggled significantly compared to the RF model.
Reducing MAPE from 86.66% to 27.55% represents a percentage decrease of 68% in MAPE.
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7.3 Summary of Model Improvements

The comprehensive comparative evaluation demonstrates several key improvements delivered
by the Random Forest model:

e Increased Accuracy: RF achieved significantly lower MAE, RMSE, and MAPE values,
indicating tighter forecasting accuracy and reduced prediction errors.

¢ Enhanced Generalisation: RF showed consistently strong performance across differ-
ent FIRN sites, demonstrating its superior ability to generalise and adapt to various
operational conditions compared to ARIMAX.

e Python Implementation: The new RF model and pipeline are fully implemented
within a Python environment, facilitating seamless integration into FIRN’s existing data
processing and deployment infrastructure.

e Deployment Readiness: The generalised RF model trained across multiple sites
provides FIRN with a robust, ready-to-deploy forecasting tool, streamlining future site
integrations and significantly reducing operational overhead.

7.4 Visual Comparison

For a visual representation of the comparative performance, Figure 7.1 illustrates the forecast
accuracy for the EDSS_KERCKHOVE site. Additional comparative plots for the other two sites
are included in the Appendix in Figures 7 and 8.

EDSS_KERCKHOVE (72h from 2025-03-02)
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Figure 7.1: Comparative Forecasts for EDSS_KERCKHOVE — ARIMAX vs. RF

This thorough evaluation establishes the Random Forest model as a superior choice for FIRN’s
day-ahead forecasting, offering measurable accuracy improvements and operational advantages
over the previously developed ARIMAX approach.
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Chapter 8: Discussion

The main research question throughout this project was: What forecasting setup provides
accurate and scalable short-term predictions for photovoltaic (PV) energy across multiple
FIRN Energy sites, utilising both production and weather data? The results from this project
demonstrate that this is achievable.

For the first sub-question, which asked which modeling approach is the most effective for gener-
ating reliable minute-ahead forecasts to facilitate real-time imbalance mitigation, the adapted
ARIMAX model proved suitable, offering strong short-term accuracy and responsiveness.

The second sub-question focused on identifying a design framework that ensures accurate
day-ahead forecasts while maintaining robustness across various sites. The Random Forest
model—trained on diverse site data—stood out for its generalisation capabilities and stability.

Finally, the third sub-question inquired whether creating individual forecasting models for
each site is more advantageous than developing a unified model that leverages data from
multiple sites. The comparative results showed that the unified general model consistently
outperformed the site-specific versions, confirming its value for scalable deployment.

8.1 Strengths

The forecasting models developed in this project demonstrate substantial improvements in
accuracy over the previously implemented ARIMAX approach. The significant reduction in
forecasting errors across multiple key metrics (MAE, RMSE, MAPE, and R?) indicates the
effectiveness and robustness of the Random Forest model.

Furthermore, the developed models are immediately deployable by FIRN Energy, having been
built explicitly within FIRN’s existing Python-based infrastructure. The provided codebase’s
transparency and modular structure enhance usability, allowing FIRN to easily adapt and
extend the models for future sites or additional operational requirements.

Comprehensive testing on over 20 real-world PV installations ensures broad applicability and
high generalisation capability. This extensive validation across diverse operational conditions
significantly strengthens confidence in the model’s real-world performance.

8.2 Limitations

Despite these substantial advancements, certain limitations should be acknowledged. The
models have been trained exclusively on data from recent months, predominantly covering
autumn and winter conditions. Thus, they lack exposure to summer weather dynamics
characterised by higher irradiance variability and increased temperature impacts on PV
efficiency. This seasonality gap may temporarily reduce predictive performance until addressed.
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Additionally, the current model relies on hourly-resolution weather forecasts, potentially
missing valuable insights from minute-level granularity. A higher-resolution dataset could
enhance minute-ahead model responsiveness, particularly during rapidly changing conditions
like sudden cloud coverage or solar ramps.

While highly effective across most scenarios, the generalised Random Forest model may
underperform in certain extreme edge cases—such as rare meteorological events, prolonged
periods of unusual weather, or sites with atypical system configurations—due to the limited
historical representation of these scenarios in training datasets.

8.3 Future Work

Several promising avenues of future work are recommended to refine and enhance forecasting
accuracy and operational usability.

Collecting comprehensive summer data will strengthen the model’s robustness across all
seasonal variations. Retraining models on an extended dataset will improve their ability to
generalise effectively throughout the year.

Developing automated workflows for regular retraining will allow the models to adapt con-
tinuously to changing operational conditions and new site-specific data, minimising manual
intervention and sustaining optimal forecast performance.

Exploring real-time retraining approaches using rolling windows could enhance minute-level
predictions by continuously integrating the most recent data, rapidly adapting to transient
operational changes, and improving responsiveness to short-term weather variations.

By pursuing these targeted improvements, FIRN Energy can solidify and expand upon the
forecasting successes demonstrated in this project, achieving sustained operational efficiency
and accuracy in solar production forecasting.

25



Chapter 9: Conclusion and Recommendations

9.1 Conclusion

This project successfully developed robust forecasting models tailored to FIRN Energy’s
operational requirements. An improved ARIMAX model was implemented for minute-ahead
forecasting, specifically adapted to leverage immediate historical data and selected environ-
mental predictors, significantly enhancing short-term prediction accuracy and responsiveness.

For day-ahead forecasting, extensive comparative evaluation demonstrated that a generalised
Random Forest model, trained on data from over 20 different PV installations, provides the
highest overall predictive accuracy and robustness across diverse operational conditions. This
generalised approach proved superior to site-specific models and substantially improved over
the previous ARIMAX-based forecasts.

9.2 Recommendations for FIRN

The following key recommendations are presented for immediate implementation based on
thorough analysis and extensive validation.

FIRN is advised to employ the adapted ARIMAX model for minute-ahead forecasting in
real-time operational contexts. This model supports rapid response to production fluctuations
and improves grid stability by enhancing prediction responsiveness at the minute scale.

FIRN should implement the generalised Random Forest model at all operational sites for
day-ahead forecasting tasks such as curtailment planning and market bidding. Its consistently
high accuracy across varying conditions makes it an effective tool for enhancing operational
planning and strategic market engagement.

An automated retraining pipeline should be established to ensure model performance remains
aligned with evolving conditions. This process will allow seamless new data integration, adaptive
model tuning, and continuous performance optimisation with minimal manual intervention.

Lastly, the modular forecasting engine and codebase developed in this project should be
leveraged as the foundation for future forecasting infrastructure. Its transparency, scalability,
and ease of integration make it an ideal platform for ongoing development and deployment
across expanding operational scopes.

9.3 Final Deliverable for FIRN

The forecasting solution developed in this project is designed for use in a Python environment,
making it user-friendly and ready for operation. It includes well-documented code for minute-
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ahead and day-ahead forecasting models that integrate smoothly with FIRN Energy’s existing
Python infrastructure.

The package also contains standalone scripts and instructions for accessing various Open-Meteo
APIs, allowing for automated retrieval of real-time and historical weather data. Addition-
ally, data folders store FIRN’s proprietary photovoltaic production datasets, simplifying the
integration of site-specific data or updates to the models.

The environment is modular and extensible, which supports easy deployment, retraining, and
scalability. As FIRN expands its portfolio of photovoltaic sites, this forecasting platform serves
as a solid foundation for its operational needs.

An overview of the codes used by FIRN will be included in the Appendix.

9.4 Final Takeaway

Accurate short-term PV forecasting strengthens both grid stability and market performance.
This project delivers scalable, validated forecasting models that FIRN Energy can confidently
deploy immediately to realise measurable operational and strategic advantages.
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Appendix

Additional Forecast Visualisations

The following figures include forecast vs. actual plots for sites not presented in the main report

body but evaluated during testing. These graphs support the findings discussed in Chapters 6
and 7.
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Figure 1: Site-Specific Forecast for GULLEGEM_DEMAN
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Figure 2: General Excluding GULLEGEM_DEMAN
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Figure 3: General Including GULLEGEM_DEMAN
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Figure 4: Site-Specific Forecast for WERVIK_DEDECKER_POWERBLOCK
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Figure 6: General Including WERVIK_DEDECKER_POWERBLOCK
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Figure 7: GULLEGEM_DEMAN — Random Forest vs. ARIMAX (72h from 2025-03-02)
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Codes

Minute-Ahead

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.arima.model import ARIMA

from sklearn.metrics import (mean_absolute_error ,mean_squared_error,

def

def

mean_absolute_percentage_error ,r2_score)

prepare_minute_data(pv_df, weather_df, max_lag=5):

Merge PV and weather minutedata, create lagged PV features and
a slope.

nmnn

pv = pv_df.sort_values("time").set_index("time")

w = weather_df.sort_values("time").set_index("time")

# merge nearestpast weather onto each PV timestamp
merged = pd.merge_asof (pv, w, left_index=True, right_index=True,
direction="backward")

# create lags power_lag_1m power_lag_{max_lagltm
for lag in range (1, max_lag + 1):
merged [f"power_lag_{laglm"] = merged["power"].shift(lag)

# 15 min slope feature
merged ["slope_15m"] = (merged["power"] - merged["power"].shift (15)
) / 15

merged .dropna(inplace=True)
return merged

train_and_forecast (df, exog_vars, endog_var="power", steps=5):
nnn

Train ARIMAX

nnn

df = df .set_index("time")

df = df ["df.index.duplicated(keep="1last")]

# fit

model = ARIMA(
endog = df [endog_var],

exog = df [exog_vars],
order = (1, 0, 1),
trend = "n"

)
res = model.fit ()

¢ rows

# forecast the last ‘steps
exog_fc = df [exog_vars].iloc[-steps:]

fc res.forecast (steps=steps, exog=exog_fc)
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return res, fc

def evaluate_and_plot(df, forecast, steps=5):

nmnn

Compute MAE, RMSE, MAPE, R vs. the true last ‘steps‘ minutes,
then plot Actual vs Forecast.

nnn

actual = df["power"].iloc[-steps:]

forecast.index = actual.index # align

mae = mean_absolute_error (actual, forecast)

rmse = np.sqrt(mean_squared_error (actual, forecast))

mape = mean_absolute_percentage_error (actual.replace(0, np.nan),
forecast) * 100

r2 = r2_score(actual, forecast)

print ("\nForecast Accuracy:")

print (£" MAE : {mae:.3f}")
print(f" BRMSE : {rmse:.3f}")
print (f" MAPE : {mape:.2f}%")
print(f" R : {r2:.3f}")

plt.figure(figsize=(10,4))

plt.plot(actual.index, actual, label="Actual", marker="o"
plt.plot(forecast.index, forecast, label="Forecast", marker="x"
linestyle="--")

plt.title(f" Minut e Ahead Forecast (next {steps} minutes)")
plt.xlabel ("Time")

plt.ylabel ("PV Power [kW]")

plt.legend ()

plt.grid (True)

plt.tight_layout ()

plt.show ()

if __name__ == "__main__":
# 1) load your minut eresolution data for the specific site
pv_df = pd.read_csv("data/pv",parse_dates=["time"])
weather_df = pd.read_csv("data/weather, parse_dates=["time"])

# 2) merge & featur e engineer
df = prepare_minute_data(pv_df, weather_df, max_lag=5)
print ("Prepared data:", df.shape, "rows")

# 3) define exogenous features

exog_vars = ["shortwave_radiation", "diffuse_radiation"] + \
[f"power_lag_{i}m" for i in range(l, 6)] + \
["slope_15m"]

# 4) train & forecast

steps = 5
model_res, forecast = train_and_forecast(df, exog_vars, endog_var=
"power", steps=steps)
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# 5) evaluate & plot
evaluate_and_plot(df, forecast, steps=steps)

Day-Ahead

import os

import pandas as pd

import numpy as np

import requests

from datetime import datetime, timedelta

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestRegressor

def load_merged_site_dataframe (loc):
nnnn
Reads a CSV with PV values and Weather values merged into a
DataFrame indexed by time.
Example path below Data/Weather/merged...
path = f"Data/Weather/merged_{loc}_hourly.csv"
df = pd.read_csv(path, parse_dates=["time"]).set_index("time")
return df

def add_features (df):

nnnn

Adds power lags (1,2,3,6,12,24h) and calendar features C(hour,

Drops any rows with missing values.
df = df.copy()
for lag in (1,2,3,6,12,24):
df [f"power_lag{lag}"] = df ["power"].shift (lag)
df ["hour"] = df.index.hour

df ["dow"] = df.index.dayofweek

weather_cols = [
"sw_radiation","d_radiation","temperature","humidity",
"wind_speed","cloud_cover","precipitation","pressure","

dew_point"

]

lag_cols = [f"power_lag{ll}" for 1 in (1,2,3,6,12,24)]

df = df .dropna(subset=weather_cols + lag_cols + ["power"])
return df

def fetch_hourly_forecast(lat, lon, start_date, end_date):

Calls Open-Meteo to get an hourly forecast for [start_date..
end_date].
Ideally for the next day or 2

nmmn

url = "https://api.open-meteo.com/vl/forecast"
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params = {

"latitude": lat,

"longitude": 1lon,

"start_date": start_date,

"end_date": end_date,

"hourly": ",".join ([
"shortwave_radiation","diffuse_radiation","temperature_2m"

>

"relativehumidity_2m" ,"windspeed_10m","cloudcover",
"precipitation","pressure_msl","dewpoint_2m"

D,

"timezone": "UTC"

}
r = requests.get(url, params=params)
r.raise_for_status ()
H = r.json() ["hourly"]
df = pd.DataFrame ({

"time": pd.to_datetime(H["time"]),

"sw_radiation": np.array(H["shortwave_radiation"], dtype=float
),

"d_radiation": np.array(H["diffuse_radiation"], dtype=float),

"temperature": np.array(H["temperature_2m"], dtype=float),

"humidity": np.array(H["relativehumidity_2m"], dtype=float
),

"wind_speed": np.array (H["windspeed_10m"], dtype=float),

"cloud_cover": np.array(H["cloudcover"], dtype=float),

"precipitation":np.array(H["precipitation"], dtype=float),

"pressure": np.array (H["pressure_msl"], dtype=float),

"dew_point": np.array (H["dewpoint_2m"], dtype=float)

b

return df .set_index("time")

# MAIN: TRAIN AND FORECAST FOR A SINGLE SITE

#
if __name__ == "__main__":
# ----- USER INPUT -----
loc = " # site ID (filename suffix)
latitude = # site latitude
longitude = # site longitude
forecast_days =1 # how many days ahead to forecast, 1 or 2
ideally
output_csv = f"{loc}_dayahead_RF.csv"
# _______________________

# 1) TRAIN: load all sites, build general RF
weather_folder = "Data/Weather"
files = sorted(f for f in os.listdir (weather_folder)
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if f.startswith("merged_") and f.endswith("_hourly.

csv"))
all_frames = []
for £ in files:
site = f.replace("merged_","").replace("_hourly.csv","")
df = load_merged_site_dataframe(site)

all_frames.append(add_features (df))

general_df = pd.concat(all_frames)

features = [
"sw_radiation","d_radiation","temperature","humidity",
"wind_speed","cloud_cover","precipitation","pressure","

dew_point",
"power_lagl","power_lag2","power_lag3","power_lag6",
power_lagl2" ,"power_lag24",
n hour n s n dow n

]

rf = RandomForestRegressor(n_estimators=300, max_depth=15,
random_state=42)

rf.fit(general_df [features], general_df["power"])

print (£"[TRAINED] General RF on {len(general_df)} hours")

# 2) PREP: load the single sites historical data to get last 24
h for lags

df _act = load_merged_site_dataframe(loc).sort_index ()
df _feat = add_features(df_act)
last_time = df_feat.index.max ()

# 3) FORECAST: fetch weather forecast for next ‘forecast_days®

days

start_fc = (last_time + timedelta(hours=1)).strftime("%Y-%m-%d")

end_fc = (last_time + timedelta(days=forecast_days)).strftime ("%
Y-%m-%d")

df _fc = fetch_hourly_forecast(latitude, longitude, start_fc,
end_fc)

df _fc = df _fc.sort_index().iloc[:forecast_daysx*24]

# 4) BUILD feature DataFrame for forecast window
df _fc["power"] = np.nan
for lag in (1,2,3,6,12,24):
# £ill first ‘lag‘ rows from last known actuals, then NalNs
vals = df_act["power"].iloc[-lag:].values.tolist() + [np.nan
I1*(len(df_fc)-lag)
df _fc[f"power_lag{lag}"] = vals

df _fc["hour"]
df _fc["dow"]

df _fc.index.hour
df _fc.index.dayofweek

# drop any rows where lags are still missing
df _fc = df_fc.dropna(subset=features)

# 5) PREDICT & PLOT
df _fc["predicted_power"] = rf.predict(df_fc[features])
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plt.figure(figsize=(10,4))

plt.plot(df_fc.index, df_fc["predicted_power"], label="Forecast",
color="C0")

plt.title(f"{loc} {forecast_days}-Day Ahead RF Forecast")

plt.xlabel ("Time (UTC)"); plt.ylabel ("PV Power (kW)")

plt.legend (); plt.grid(True); plt.tight_layout(); plt.show()

# 6) EXPORT into a CSV for Curtailment Planning
df _fc[["predicted_power"]].rename (columns={"predicted_power": loc
oA
.to_csv(output_csv)
print (£" [EXPORTED] {output_csvl}")
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Disclaimers

Legal

This report has been produced in the framework of an educational program at the University
of Groningen, Netherlands, Faculty of Science and Engineering, Industrial Engineering and
Management (IEM) Curriculum. No rights may be claimed based on this report. Citations
are only allowed with explicit reference to the status of the report as a product of a student
project.

For privacy and data security reasons, the whole Python project environment will not be
publicly released. The codebase includes access credentials, internal data from FIRN Energy,
and sensitive site-specific details such as geographic coordinates and database connection
strings. To protect FIRN’s operational integrity and confidentiality, this information will
remain private and will not be included in any public version of this report or its associated
deliverables.

Use of AI Tools

In accordance with the University of Groningen’s guidelines on the responsible use of Generative
AT (GenAlI) in education, this project used Al tools in a limited and transparent manner to
support the development of the report and associated materials.

Tools Used: ChatGPT (by OpenAl) and Grammarly Pro’s Al-enhanced grammar suggestions
were utilised during the writing and revision process.

Purpose of Usage: ChatGPT was used to assist in refining phrasing and improving paragraph
structure. Grammarly Pro enhanced the document’s grammar, spelling, tone, and clarity.

Prompts and Inputs: Prompts used with ChatGPT included instructions such as: ” Convert
this paragraph into formal academic writing,” ”Summarise this explanation concisely,” and
”Write this section in LaTeX without bullet points.” In all cases, inputs to ChatGPT were
written and designed by the student.

Review and Validation: All Al-generated outputs were critically reviewed, edited, and
cross-checked to ensure academic integrity. No content was accepted without validation.

Data Protection: No proprietary data from FIRN Energy (e.g., site names, geographic
coordinates, or credentials) was submitted to Al platforms. Any sensitive data handling was
performed offline and locally within the secure development environment.
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