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Abstract: This study explores whether pure reinforcement learning (RL), without supervised
fine-tuning (SFT), can improve the mathematical reasoning ability of small language models.
Using Group Relative Policy Optimization (GRPO), four pre-trained Qwen model variants were
post-trained using only RL on a subset of the GSM8K dataset. Models specialized in mathemat-
ical reasoning, such as Qwen2.5-Math-1.5B and Qwen2-Math-1.5B, achieved significant improve-
ments in pass@1 accuracy compared to their baselines. General-purpose models showed modest
improvements, while a smaller 0.5B model suffered a performance drop, revealing capacity lim-
itations when optimizing multiple objectives. Notably, a direct comparison showed that pure
RL outperformed the conventional SFT-to-RL approach in both accuracy and training efficiency
under a fixed maximum output token limit. The experimental results demonstrate that pure
RL can effectively improve reasoning ability when sufficient domain specialization and model
capacity are present, potentially eliminating the need for costly SFT in resource-limited settings.

1 Introduction

Large language models (LLMs) have become part
and parcel of contemporary life, demonstrating ex-
traordinary capabilities in recent years across a va-
riety of tasks (Zhong et al., 2024; Ahn et al., 2022;
Zhao et al., 2023). Training these LLMs can be di-
vided into two main stages: pre-training and post-
training. During pre-training, models are trained
on large amounts of text to learn common patterns.
Post-training refines a pre-trained language model
to better align it with user intent (Tie et al., 2025).
A common post-training method is Reinforce-

ment Learning from Human Feedback (RLHF),
which enhances alignment by using human input.
Typically, RLHF consists of three steps: super-
vised fine-tuning (SFT) using human demonstra-
tions, creating a reward model from human pref-
erences, and optimizing the model using reinforce-
ment learning (RL) (Ouyang et al., 2022). While
effective, RLHF is both computationally expensive
and time-consuming.
DeepSeek-R1-Zero (Guo et al., 2025) has demon-

strated that applying a pure RL approach for post-

training, without SFT, can lead to remarkable rea-
soning abilities. This is achieved by using Group
Relative Policy Optimization (GRPO) (Shao et
al., 2024) to optimize the LLM, and not Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017) as is done in RLHF. However, DeepSeek-R1-
Zero had issues with readability and fluency. To
address these drawbacks, DeepSeek-R1 was intro-
duced, which incorporates a small amount of cold-
start SFT before further RL training. Subsequently,
this model was used to generate reasoning samples
to train smaller models via SFT. In their paper, the
DeepSeek team noted that they did not apply RL
for these distilled models, leaving this for the wider
research community.

The success of DeepSeek’s approach demon-
strates the promise of RL and the importance of
effective reward mechanisms, especially for com-
plex reasoning tasks. Mathematical reasoning has
proven to be an ideal domain for studying process-
based learning approaches because such tasks in-
herently require stepwise solutions. Uesato et al.
(2022) presented two methods for training reward
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models. First, Outcome-supervised Reward Models
(ORMs), which are trained by evaluating only the
final response. And second, Process Reward Models
(PRMs), where the model is trained by providing
feedback for intermediate steps. OpenAI’s research
(Lightman et al., 2023) confirmed that process su-
pervision performs significantly better than out-
come supervision for training models to solve chal-
lenging math problems, establishing mathematical
reasoning as a key benchmark for process-based
paradigms.
Several studies have focused on implementing

PRMs for mathematical problem-solving (Xu et
al., 2025). MATH-SHEPHERD (Wang et al., 2023)
leverages process-reward paradigms using automat-
ically constructed process-wise supervision data,
demonstrating improved performance on bench-
marks like GMSK8 (Cobbe et al., 2021) when
applied to models such as Mistral-7B (Jiang et
al., 2023). Similarly, DeepSeekMath (Shao et al.,
2024) integrates PRM within the GRPO algorithm,
achieving strong results on mathematical bench-
marks by evaluating intermediate steps.
Recent advances in exploring RL-based fine-

tuning inspired by DeepSeek-R1 (Luo et al., 2025;
RUCAIBox STILL Team, 2025) and its GRPO
framework still rely on expansive datasets or re-
quire substantial computational resources. To ad-
dress this, Dang & Ngo (2025) used RL on a model
that had been previously distilled (SFT-trained).
They showed that, with a carefully curated dataset,
RL fine-tuning can yield significant improvements
in smaller lanugage models with few computational
resources. However, their study does not isolate the
specific effect of RL because they applied RL to a
model that had already undergone SFT.
This study addresses a critical gap in the cur-

rent research by applying pure RL using GRPO to
unmodified pre-trained models in resource-limited
settings. The aim of this research is to evaluate
whether RL alone can improve the mathematical
reasoning abilities of such models, without the con-
founding influence of prior SFT.

2 Methods

This section outlines the experimental methodol-
ogy adopted in this study. It details the RL al-
gorithm selected for post-training, describes the

model and dataset configurations, and explains the
reward structure, prompting strategy, evaluation
metric, and experimental setup.

2.1 Algorithm Choice

The same RL algorithm that was used to success-
fully train DeepSeek-R1-Zero (Guo et al., 2025) was
also applied here. This algorithm is GRPO (Shao et
al., 2024), which does not require a separate critic
network. For each question q, GRPO generates G
outputs {o1, o2, . . . , oG} using the old policy πθold ,
where the old policy refers to the model’s parame-
ters from the previous iteration. Here, oi ∈ O repre-
sents the i-th sampled output for a given question,
where O denotes the space of possible model out-
puts, and G is the number of sampled outputs per
question. The new policy πθ is updated by maxi-
mizing the objective:

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

]
1

G

G∑
i=1

(
min

(
riAi, clip(ri, 1− ε, 1 + ε)Ai

)
− β DKL(πθ∥πref)

)
Where P (Q) is the distribution of training ques-

tions, ϵ is a hyperparameter that limits policy up-
dates, β is a hyperparameter that regulates policy
divergence and ri is the probability ratio of the new
and old policies:

ri =
πθ(oi|q)
πold(oi|q)

The term DKL(πθ||πref) acts as a regularization
penalty where πref is the frozen initial reference pol-
icy. It is computed as:

DKL(πθ||πref) =
πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1

The advantage Ai measures how good an output
oi is relative to the group. It is computed by stan-
dardizing the reward Ri (obtained for output oi)
within the set of all G rewards {R1, R2, . . . , RG}
sampled for the given question, as:
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Ai =
Ri −mean({R1, R2, . . . , RG})

std({R1, R2, . . . , RG})

2.2 Model and Dataset

This study examines the impact of GRPO on four
different open-source language models that vary
in version, parameter scale and domain special-
ization. The models investigated include Qwen2.5-
Math-1.5B, Qwen2-Math-1.5B, Qwen2.5-1.5B, and
Qwen2.5-0.5B.

Qwen2.5-Math-1.5B (Yang, Zhang, et al., 2024)
is a math-specific pre-trained large language model
with 1.5 billion parameters. Qwen2-Math-1.5B is
an earlier generation specialized mathematical rea-
soning model (Yang, Yang, Zhang, et al., 2024). In
addition, Qwen2.5-1.5B and Qwen2.5-0.5B are in-
cluded, which are general-purpose language models
with 1.5 billion and 0.5 billion parameters, respec-
tively, without specific optimization for mathemat-
ical reasoning (Yang, Yang, Hui, et al., 2024).

All the GRPO-trained models are compared with
the original pre-trained models without RL. The
only difference between the GRPO-trained and
baseline models is the presence or absence of RL
fine-tuning. This isolates the impact of RL on
mathematical reasoning performance.

To directly address the central research ques-
tion of whether SFT is required prior to RL, a
comparison is included between the Qwen2.5-Math-
1.5B model trained purely with GRPO and the
supervised fine-tuned DeepSeek-R1-Distill-Qwen-
1.5B model (Guo et al., 2025), henceforth referred
to as SFT-DeepSeek. This controlled comparison
isolates the specific contribution of the SFT step in
the post-training pipeline, as the two models differ
only in the presence or absence of SFT prior to RL.

For post-training and evaluation, all models were
trained and tested on the GSM8K dataset (Cobbe
et al., 2021). This is a dataset of 8.5K linguisti-
cally diverse mathematical word problems in pri-
mary schools that require reasoning in multiple
steps, making it ideal for assessing mathemati-
cal problem-solving skills. Hugging Face’s built-
in train/test division is used to split the GSM8K
dataset, with a training set of 7,473 problems and
a test set of 1,319 problems.

2.3 Reward Structure

All models were trained using the same rule-based
reward structure used by Guo et al. (2025) to train
DeepSeek-R1-Zero, consisting of two types of re-
wards. The first kind of reward is a format re-
ward, which ensures that the model structures its
response correctly. The thinking process must be
enclosed within “<reasoning>” tags, and the fi-
nal answer must be enclosed within “<answer>”
tags. If the model manages to do this correctly, the
model is given a reward of 0.4. The second type of
reward is an accuracy reward. All numeric tokens
are extracted from the answer to ensure that the
correct value is not overlooked. If a number from
the answer tags matches the correct answer from
the dataset, a reward of 0.6 is assigned. However,
the answer given by the model is only checked if the
formatting is done properly. In this way, the model
first learns the correct formatting before focusing
on accuracy. The total reward is calculated by the
sum of the format reward and the accuracy reward.
While not novel in itself, this reward structure pro-
vides clear signals suitable for assessing RL’s im-
pact within the comparative experimental setup.

2.4 Prompting Strategy

Each model was prompted using a reasoning-first
template, in a format similar to chain-of-thought
prompting (CoT) (Wei, Wang, et al., 2022). The
template instructs the model to first make its step-
by-step reasoning process clear, respectively within
tags to then provide the final answer, again within
tags.

The template used differs slightly from CoT
prompting in that the latter is used during infer-
ence time, while the template is integrated within
the training process. Instead of a particular reason-
ing style being presented in the prompt itself, this
will be done through RL, which will ensure that
the model’s reasoning process is optimized through
rewards. This approach is the same as the one used
in DeepSeek-R1-Zero.

Importantly, only the GRPO-trained models
were exposed to this instructional format during
training and evaluation. Baseline models were eval-
uated with only the raw questions from the dataset.
This setup reflects the fact that baseline models
were not trained to follow reasoning templates and
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were evaluated purely for comparison.

2.5 Evaluation Metric

To evaluate all GRPO-trained models, the pass@1
metric was used, following Guo et al. (2025). This
metric is derived from the more general pass@k
evaluation framework introduced by Chen et al.
(2021), which provides a robust measure of model
performance when sampling is used. Instead of re-
lying on deterministic greedy decoding, where cor-
rectness is evaluated based solely on the first gener-
ated answer, n outputs per question are now sam-
pled using a temperature of T = 0.6 and top-p sam-
pling with p = 0.95. The pass@1 accuracy is then
calculated as:

pass@1 =
1

n

n∑
i=1

pi

where pi denotes the correctness (0 or 1) of the
i-th response.

2.6 Experimental Setup

All experiments were conducted on a high-
performance computing (HPC) cluster. Jobs were
executed on a single GPU node with 8 CPU cores
and 1 NVIDIA A100 GPU (40GB). The implemen-
tation was built with the Hugging Face libraries:
Datasets, Transformers and TRL. Source code
is available at: https://github.com/Dichotoom/
Bachelor-Project.

A shuffled subset of the GSM8K dataset was
used, consisting of 240 training examples and 60
testing examples. This smaller subset was chosen
to accommodate the multiple experimental runs
within the available computational budget on the
HPC cluster, aiming to demonstrate the core ef-
fects of pure RL in a resource-constrained scenario.
For training, a batch per device of 1 was used, with
gradient accumulation over 8 steps, giving an ef-
fective batch size of 8. The learning rate was set
at 2× 10−5, and models were trained for 2 epochs.
For each training example, 6 generations were pro-
duced, and the maximum completion length was
set to 300 tokens. Full hyperparameter details are
provided in Section B.

During testing, the last two numbers of the base-
line answer were extracted to avoid numerical am-
biguity. For example, models may output both “132
ingredients are needed to make 16 muffins” and
“The number of ingredients to make 16 muffins
is 132.” Extracting the final two numbers ensures
that the correct answers are captured consistently
regardless of phrasing. The answers of the GRPO
post-trained model were extracted in the same
way as during training, that is, all numbers in
the answer tags. A maximum completion length of
2048 tokens was used during testing to align with
the study’s focus on performance under resource-
constrained conditions.

To ensure statistical reliability, all experiments
were repeated in 5 independent runs. During the
training phase, a different random seed was as-
signed for each run, which controlled the compo-
sition of the training subset. After training for one
run, the model was evaluated on a fixed test set.
The “Total Training Time (h)” reported in Ta-
ble 3.2 represents the complete wall-clock duration
for each GRPO job, encompassing both the itera-
tive model training steps and these periodic evalu-
ations on the test set. After the 5 runs were com-
plete, the mean Pass@1 performance was calculated
to obtain a more reliable estimate of the general-
ization ability of the model. Similarly, the baseline
model was independently evaluated 5 times on the
same test set to allow a fair comparison.

3 Results

This study trained several Qwen model variants
with the GRPO algorithm. As shown in Table 3.1,
the application of GRPO provided notable per-
formance improvements for the majority of mod-
els tested. The most significant improvements were
observed in the models specialized in mathemati-
cal domains, with Qwen2.5-Math-1.5B showing a
9.6% improvement and Qwen2-Math-1.5B show-
ing a 13.1% improvement. The general-purpose
Qwen2.5-1.5B model showed a modest improve-
ment of 4.4%. In contrast, the smaller Qwen2.5-
0.5B model experienced a substantial 74.2% de-
crease in performance.

Figure 3.1 shows training progression across
3,000 steps, organized in three comparative anal-
yses. Four key metrics were tracked: Total Reward
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Table 3.1: Pass@1 accuracy before and after
Group Relative Policy Optimization (GRPO)
for four Qwen model variants. Scores are
mean ± standard deviation over five runs; all
evaluations used a 2048-token output limit.
Domain-specific models (Qwen2-Math-1.5B and
Qwen2.5-Math-1.5B) achieve the greatest per-
formance increase after training. In contrast,
the Qwen2.5-0.5B model deteriorates in perfor-
mance, highlighting model capacity as a limiting
problem.

Model Baseline
Pass@1

Post-GRPO
Pass@1

Relative
Improvement

Qwen2.5-Math-1.5B 0.7183± 0.0103 0.7872± 0.0129 9.6%
Qwen2-Math-1.5B 0.6800± 0.0114 0.7689± 0.0275 13.1%
Qwen2.5-1.5B 0.6533± 0.0166 0.6822± 0.0301 4.4%
Qwen2.5-0.5B 0.4472± 0.0114 0.1156± 0.0946 −74.2%

(maximum 1.0), Format Reward (maximum 0.4),
Correct Answer Reward (maximum 0.6), and Com-
pletion Length.

The first row compares two models specialized
in the mathematical domain: Qwen2.5-Math-1.5B
and Qwen2-Math-1.5B. Both models showed simi-
lar performance trajectories in each subplot. For-
mat rewards for both models converged within
the 0.36–0.38 range, approaching the maximum
possible value of 0.4. Qwen2.5-Math-1.5B consis-
tently outperformed Qwen2-Math-1.5B in the Cor-
rect Answer Reward subplot. The length of com-
pletion for both models converged to 90–100 tokens
after an initial drop from the higher initial values.

The second row examines domain specializa-
tion and parameter size effects across Qwen2.5
variants: Qwen2.5-Math-1.5B, Qwen2.5-1.5B, and
Qwen2.5-0.5B. Both the general Qwen2.5-1.5B
and the domain-specialized Qwen2.5-Math-1.5B
showed similar format reward convergence tra-
jectories, stabilizing between 0.35 and 0.38 af-
ter about 800 training steps. However, Qwen2.5-
Math-1.5B consistently outperformed the general-
purpose model in the Correct Answer Reward sub-
plot, with values near 0.44 versus 0.39 for the gen-
eral model.

The smaller Qwen2.5-0.5B model exhibited
markedly different behavior across all metrics. The
correct answer reward remained much lower and
stabilized at about 0.06, although it reached format
reward parity with the larger models. This resulted
in a lower overall reward of about 0.45 compared

to the larger models, which approached 0.8. In ad-
dition, this model generated completions of about
30 tokens after convergence, which is significantly
shorter than the 90–100 tokens generated by the
1.5B parameter models.

The third row of Figure 3.1 illustrates the impact
of SFT training by comparing Qwen2.5-Math-1.5B
with SFT-DeepSeek. The SFT-DeepSeek model
showed similar training dynamics to the non-SFT
Qwen2.5-Math-1.5B model, but with slightly lower
reward convergence across all metrics, particularly
in the Correct Answer Reward where it stabilized
around 0.34 compared to 0.39 for the non-SFT ver-
sion. Notably, the SFT-DeepSeek model also pro-
duced substantially longer completions, converging
at around 170 tokens.

As shown in Table 3.2, the Qwen2.5-Math-1.5B
model without prior SFT achieved a higher final
post-GRPO Pass@1 score compared to the SFT-
DeepSeek model. Moreover, the non-SFT model
completed training in approximately 4.9 hours,
whereas the SFT model completed training in ap-
proximately 14.4 hours. This indicates a remarkable
difference in training efficiency and performance be-
tween the two models.

Table 3.2: Pass@1 accuracy before and after
Group Relative Policy Optimization (GRPO).
Compares the base Qwen2.5-Math-1.5B model
with its SFT-trained counterpart, DeepSeek-
R1-Distill-Qwen-1.5B (SFT-DeepSeek). Scores
are mean ± standard deviation over five runs;
all evaluations used a 2048-token output limit.
The base model trained directly with GRPO
achieved higher final accuracy with significantly
less total training time compared to the SFT
model fine-tuned with GRPO.

Model Baseline
Pass@1

Post-GRPO
Pass@1

Total Training
Time (h)

Qwen2.5-Math-1.5B 0.7183± 0.0103 0.7872± 0.0129 4.9
SFT-DeepSeek 0.4672± 0.0191* 0.5911± 0.0409 14.4

*Increasing the output token limit to 4096 improved the
SFT-DeepSeek model’s Pass@1 accuracy from 0.4672 ±
0.0191 to 0.5489 ± 0.0048, highlighting its sensitivity to
the maximum number of tokens it is allowed to generate.
The 2048-token output limit used in this study reflects a
deliberate focus on resource-constrained performance.
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Figure 3.1: Comparison of training dynamics across different model variants over 3,000 Group
Relative Policy Optimization (GRPO) optimization steps. The figure is organized in three rows
of comparative analyses: (1) version comparison between Qwen2.5-Math-1.5B and Qwen2-Math-
1.5B; (2) domain specialization and parameter scale effects across Qwen2.5 variants (Math-1.5B,
1.5B, and 0.5B); and (3) the impact of SFT comparing Qwen2.5-Math-1.5B with DeepSeek-R1-
Distill-Qwen-1.5B (SFT-DeepSeek). Each column shows a different metric: Total Reward (maxi-
mum 1.0), Format Reward (maximum 0.4), Correct Answer Reward (maximum 0.6), and Com-
pletion Length. The mean of five separate runs, smoothed over 41 steps, is shown by solid lines;
the standard error is shown by shaded areas. Results show that GRPO improves reasoning per-
formance consistently across model versions (row 1), that smaller models face capacity constraints
(row 2), and that prior supervised fine-tuning (SFT) may marginally reduce reward optimization
during GRPO training (row 3).

4 Discussion

The significant improvements in Qwen2.5-Math-
1.5B (9.6% increase) and Qwen2-Math-1.5B (13.1%
increase) show that domain specialization plays a
crucial role in the effectiveness of GRPO post-
training. The slight improvement in the general
model Qwen2.5-1.5B (a 4.4% increase) further sup-
ports this interpretation. Although this model is
capable of general reasoning, it lacks the specific
mathematical structures needed to maximize the
effectiveness of GRPO post-training.

Despite the specific architectural differences be-
tween the model versions, the similar performance
trajectories of Qwen2.5-Math-1.5B and Qwen2-
Math-1.5B imply that GRPO improves mathemat-
ical reasoning ability. This result suggests that the
method improves domain-specific knowledge rep-
resentations rather than general problem-solving
skills.

The performance drop of the Qwen2.5-0.5B
model (74.2% decrease) highlights how crucial
model capacity is when using GRPO for post-
training. This smaller model faced competing de-
mands of mathematical accuracy and format re-
wards, which created competing pressures that ex-
ceeded the model’s representational capabilities.
Such limitations are consistent with research show-
ing that complex reasoning abilities often emerge at
larger model scales (Wei, Tay, et al., 2022), mak-
ing smaller models more susceptible to interference
when multiple objectives are pursued simultane-
ously during fine-tuning (Touvron et al., 2023). The
model preferred the simpler task of format follow-
ing to mathematical reasoning, as evidenced by the
successful convergence of format and poor mathe-
matical accuracy.

The capacity limitation was also evident in the
completion length metric. The 0.5B model gener-
ated answers that were roughly one-third as long
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as those of its larger counterparts. Although the
shorter answers followed the format, they lacked
the necessary intermediate steps in reasoning to
solve the mathematical problems.
The most significant finding of this study chal-

lenges the conventional SFT-to-RL pipeline. In
small-resource settings, pure RL outperformed SFT
models that are followed by RL fine-tuning. Specif-
ically, the base model, Qwen2.5-Math-1.5B, which
was directly trained with GRPO achieved higher
accuracy while also requiring less total training
time by producing shorter responses compared to
the SFT-DeepSeek model.
The efficiency gap is mainly due to the verbosity

of SFT models. The SFT-DeepSeek model consis-
tently produces longer and more repetitive outputs.
This is consistent with Zhang et al. (2025), who
demonstrated that SFT models fail to find the op-
timal stopping point. Further tests with a higher
maximum completion length confirmed the lack of
an optimal stopping point, with Pass@1 accuracy
increasing from 0.4672 ± 0.0191 to 0.5489 ± 0.0048
when the output token limit was increased from
2048 to 4096 tokens. This suggests that SFT models
require larger output budgets to reach peak perfor-
mance, which compounds their inefficiency in con-
strained environments.
Beyond just output length, empirical evidence

from this study further highlights the baseline SFT-
DeepSeek’s strong prompt sensitivity. To charac-
terize the inherent behavior of the SFT model be-
fore GRPO, this study evaluated this particular
baseline variant with different prompt styles. The
model achieved 0.6706 ± 0.0170 accuracy when
prompted using the structured format described
in Section 2.4, but dropped to 0.4672 ± 0.0191
accuracy when given only the raw question. This
prompt dependence reveals another limitation of
SFT models in achieving consistent reasoning per-
formance, offering additional support for the find-
ings on SFT inefficiencies.
When GRPO was applied to the SFT-DeepSeek

model, performance improved to 0.5911 ± 0.0409
compared to its SFT baseline, but remained sub-
stantially below the performance of the base
Qwen2.5-Math-1.5B model trained directly with
GRPO. This counterintuitive limitation is consis-
tent with Zhang et al. (2025), who found that
GRPO without length-aware reward functions in-
herits the verbosity and inefficiencies of SFT mod-

els, and can reinforce them without actually reduc-
ing them.

Unlike previous work (Dang & Ngo, 2025), which
applied RL to models that had already under-
gone SFT through distillation and therefore could
not isolate the effects of RL alone, the findings of
the current study demonstrate that GRPO can ef-
fectively optimize reasoning directly from a pre-
trained checkpoint. This validates a more stream-
lined and cost-effective training pipeline, that elim-
inates the SFT bottleneck.

5 Limitations and Future
Work

During the experiments, several hyperparameters
were left unchanged. For instance, the format re-
ward was always set to 0.4, although this may not
be the optimal value. Similarly, all model varia-
tions used the same learning rate and other op-
timization parameters derived from previous re-
search. Further performance improvements might
be achievable through more hyperparameter tun-
ing, especially for the smaller model, where com-
peting optimization objectives presented significant
challenges.

Since training was conducted on a HPC cluster,
where only a few GPUs were available, resource
constraints further limited the research. These con-
straints also necessitated the use of a smaller subset
of the GSM8K dataset to manage the experimen-
tal load. Consequently, these computational limita-
tions made it infeasible to extend the approach to
larger models (7B+ parameters) or the full dataset
at this stage, and occasionally caused long queu-
ing times, reducing the number of experiments that
could be performed.

Despite these limitations, several promising di-
rections for future research have been identified:

Research on larger models. Applying similar
GRPO post-training approaches to larger models
(7B, 72B parameters) to determine whether per-
formance improvements scale with model capacity.

Cross-domain applicability. Applying the
GRPO framework to non-mathematical reasoning
tasks to determine its generalizability to other
specialized domains. One such domain is coding,
which, like mathematics, provides structured prob-
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lems with verifiable rewards.

Managing objective conflicts in smaller
models. Exploring techniques for balancing com-
peting optimization objectives in smaller models
without performance degradation.

6 Conclusion

This research has shown that GRPO post-training
can significantly improve mathematical reasoning
capacity in domain-specific models, with improve-
ments ranging from 9.6 to 13.1%. Two critical el-
ements have been identified that must be present
for GRPO post-training to be effective. First, suf-
ficient model capacity is essential, as evidenced by
the poor performance of the 0.5B parameter model.
Second, domain specialization plays a crucial role,
as evidenced by the finding that mathematically
oriented models perform more than twice as well
as general models.

A key finding of this study challenges conven-
tional training pipelines: pure RL training outper-
forms the standard SFT-to-RL approach in small-
resource settings. Results showed that a purely RL-
trained model performed better in accuracy while
requiring less total training time due to generating
more efficient responses. In contrast, a model dis-
tilled with SFT, inherently produced verbose and
often repetitive outputs, which led to greater com-
putational overhead.

Overall, these results indicate that pure RL can
be an efficient approach for improving mathemat-
ical reasoning ability when applied to pre-trained
models with appropriate capacity and specializa-
tion, potentially without the need for costly SFT
in resource-limited settings.
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A Comparative Analysis of Response Quality

The following example from GSM8K compares the output of the GRPO-trained Qwen2.5-Math-1.5B
model to its baseline variant. The GRPO model shows a well-structured way of reasoning, clearly ad-
dressing each part of the problem. In contrast, the base model frames its answer as a Python code
fragment, which is unnecessarily complex for the given task and less easy to interpret in a reasoning
context. Moreover, the base model introduces several computational errors, including misinterpreting
the number of carrot bags and incorrectly applying multipliers to both carrot and sugar cube weights.
These errors offset each other, resulting in an accidentally correct final answer.

A.1 GSM8K Problem:

A farmer is buying feed for his horses. He buys a variety of hay, oats, carrots and sugar cubes.
Since sugar cubes are a rare treat, he only buys two 1-pound boxes of them for the whole stable.
He only wants enough carrots to feed the horses while the vegetables are fresh, so he buys four
12-pound bags. Hay is the main diet of his horses, so he buys forty-two 75-pound bales. Oats
are a staple to supplement the hay, so he buys twenty 65-pound sacks. If his farm truck can
carry 2250 pounds at a time, how many trips does the farmer need to transport all the feed?

A.2 Qwen2.5-Math-1.5B (GRPO-trained):

<reasoning>

1. The farmer buys 2 bags of sugar cubes, so that’s 2 x 1 pound = 2 pounds.
2. He buys 4 bags of carrots, so that’s 4 x 12 pounds = 48 pounds.
3. He buys 42 bales of hay, so that’s 42 x 75 pounds = 3150 pounds.
4. He buys 20 sacks of oats, so that’s 20 x 65 pounds = 1300 pounds.
5. The total weight of the feed is 2 + 48 + 3150 + 1300 = 4500 pounds.
6. The truck can carry 2250 pounds at a time, so the farmer needs to make 4500 / 2250 = 2
trips. </reasoning>
<answer>2 trips</answer>

A.3 Qwen2.5-Math-1.5B (Baseline):

To determine the number of trips the farmer needs to transport all the feed, we need to calculate
the total weight of the feed and then divide this by the capacity of the truck. Here’s the step-
by-step approach:

1. Calculate the total weight of the carrots.
2. Calculate the total weight of the hay.
3. Calculate the total weight of the oats.
4. Calculate the total weight of the sugar cubes.
5. Sum up the weights from steps 1 to 4 to get the total weight of the feed.
6. Divide the total weight of the feed by the truck’s capacity and round up to the nearest whole
number to get the number of trips needed.

Let’s do this step-by-step in Python.

import math

# Given data
c a r r o t s boxe s = 2
ca r r o t s p e r box = 12 ∗ 12 # 12 pounds per box
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hay ba l e s = 42
hay pe r ba l e = 75 ∗ 1 # 75 pounds per ba l e
oa t s s a ck s = 20
oa t s p e r s a ck = 65 ∗ 1 # 65 pounds per sack
sugar cubes = 2
sugar cubes pe r box = 1 ∗ 12 # 12 pounds per box

# Ca l cu l a t e t o t a l we igh t o f each type o f f e ed
t o t a l c a r r o t s = ca r r o t s boxe s ∗ c a r r o t s p e r box
to t a l hay = hay ba l e s ∗ hay pe r ba l e
t o t a l o a t s = oa t s s a ck s ∗ oa t s p e r s a ck
t o t a l s u g a r cub e s = sugar cubes ∗ sugar cubes pe r box

# Ca lcu l a t e the t o t a l we igh t o f the f e ed
t o t a l we i gh t = t o t a l c a r r o t s + to ta l hay + t o t a l o a t s + t o t a l s u g a r cub e s

# Truck capac i t y
t ru ck capac i t y = 2250

# Ca lcu l a t e the number o f t r i p s needed
t r i p s n e eded = math . c e i l ( t o t a l we i gh t / t ru ck capac i t y )

print ( ( t o ta l we i gh t , t r i p s n e eded ) )

(3398 , 2)

Therefore, the number of trips the farmer needs to transport all the feed is 2 .
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B Hyperparameter Setup

Table B.1 shows the parameters that where used in the training phase.

Table B.1: GRPO Training Hyperparameters

Hyperparameter Value

output dir "./grpo math finetune"

logging steps 1
per device train batch size 1
gradient accumulation steps 8
bf16 True
num generations 6
max grad norm 0.1
learning rate 2 × 10−5

num train epochs 2
max prompt length 256
max completion length 300
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