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Abstract: Theory of Mind (ToM) is the ability to attribute mental states to others. This ability
is fundamental to human social cognition, but its presence in animals remains an open ques-
tion, as observed signs of ToM might instead be explained by associative learning. This study
investigates whether ToM reasoning provides a performance advantage over purely associative
strategies in unpredictable environments. Using a negotiation game in the Coloured Trails en-
vironment, we compare Deep-Q Network (DQN) agents (zero-order ToM) with first-order ToM
agents that simulate their opponent’s decisions using an internal DQN model. Despite limited
success in accurately inferring opponent goals, ToM agents generally achieve higher cumulative
rewards than DQN agents across varied conditions. While the advantage is not consistent across
all scenarios, these results indicate that predictive ToM reasoning can provide a meaningful ad-
vantage in certain contexts. This supports the idea that ToM-like strategies may have emerged
gradually from associative learning, which would make it easier to believe that animals have

ToM.

1 Introduction

Human interactions rest on the foundational as-
sumption that others are like ourselves: they think,
hold beliefs and act with intentions. This assump-
tion is the basis of theory of mind (ToM) (Premack
& Woodruff, [1978)), the ability to reason about the
mental states of others, even though those states
are not directly observable. The sophistication of
ToM reasoning can be measured in orders. An en-
tity with zero-order ToM is unable to infer mental
states at all and responds only to the directly ob-
servable actions of others. For example, a zero-order
ToM agent may play chess by only observing the
current board state and evaluating the best move
purely based on the current board state and the
objective consequences of moves, without consider-
ing what the opponent knows, believes, or intends.
First-order ToM refers to the ability to attribute
mental processes to other entities, which it then
bases its own actions on. A first-order ToM agent
would recognize that its chess opponent wants to
win. Therefore, this ToM agent might employ tac-
tics like leaving an important piece undefended,
where taking this piece would analytically lead to

a worse position for the opponent. This could bait
the opponent into taking this piece and gain a more
advantageous position, successfully predicting the
opponent’s desires and using this to its advantage.
Employing a second-order ToM would entail rea-
soning about how other agents attribute mental
states to others, and how these attributions influ-
ence their actions. Such an agent might recognize
that the undefended piece could be “too good to
be true”, prompting a reassessment based on the
possibility that the move is intended to exploit a
false sense of security. This understanding would
necessitate thinking about how another may think
of you.

While closed analytical games make it easier
to paint a picture of how ToM operates, research
demonstrates that it plays a very broad role in ev-
eryday human cognition. ToM has been shown to
be integral to social understanding (Baron-Cohen
et al.l [1985; |Decety & Jacksonl 2004), cooperative
behaviour (Sally & Hill, 2006]), empathy (Decety
& Jackson, [2004), and even deception (Sodian &
Frith, |1992). These skills are essential for interper-
sonal human life. ToM appears to be necessary for



many of the fundamental human behaviours that
define us as social creatures, so it is unsurprising
that scholars have argued for ToM being an evolu-
tionary adaptation central to the success of the hu-
man species (Byrne, [1996} [Tomasello et al., [2005]).
ToM has been found to be useful in counterfactual
reasoning (CFR) settings (Perner & Rafetseder,
, which deals with reasoning about realistic
hypothetical situations that have not actually hap-
pened, such as: if I would have studied, I would
have passed the exam. Both ToM and CFR require
the ability to keep in mind multiple different mental
models of reality.

Although there is strong evidence that ToM is
fundamental to human cognition, its presence in
non-human animals remains less clear. Some stud-
ies suggest that certain animals, such as great apes
and birds, may exhibit rudimentary ToM-like abil-
ities (Kano et al., 2019} |Ostoji¢ et al.,|2013). How-
ever, there is ongoing debate about whether these
behaviours truly reflect mental state attribution or
are better explained by associative learning mech-
anisms (Penn & Povinelli, 2007; van der Vaart &|
Hemelrijk, 2014). To help clarify this distinction, I
examine the behaviour of artificial agents: Deep-Q
Network (DQN) agents that learn through associ-
ation, and first-order ToM agents capable of rea-
soning about others’ goals. Importantly, the ToM
agent is not trained from scratch but builds on an
underlying DQN model, allowing it to simulate the
opponent’s decisions using the same learning mech-
anism. By comparing their performance, I aim to
evaluate whether ToM provides distinct advantages
over purely associative strategies in unpredictable
environments.

[De Weerd et al.| (2022)) demonstrated that ToM
offers particular advantages in unpredictable envi-
ronments. Building on this insight, I use the same
coloured-trails environment, but with a key differ-
ence: rather than hand-designed reasoning heuris-
tics, I explore how agents that learn their behaviour
from a more fundamental level, both with and with-
out ToM capabilities, perform. This approach is a
more reasonable reflection of associative learning,
which allows me to assess whether the benefits of
ToM in an unpredictable environment persist when
strategies are acquired through experience rather
than pre-programmed knowledge.

This thesis is structured as follows. Chapter two
describes the experimental setup, including the ne-

gotiation environment, agent designs, and imple-
mentation details of both the Deep Q-Network
(DQN) and Theory of Mind (ToM) models. Chap-
ter three presents the results of the experiments,
comparing performance across different conditions
and strategies. Chapter four discusses the implica-
tions of these findings in the context of associative
learning and ToM.

2 Methods

In this section, I will specify what environment,
associative learning (zero-order ToM) model, first-
order ToM model and exprimental setup I used
and how they operate. For the full implementa-
tion of these methods, see: https://github.com/
PotatoPulse/coloured._trails.

Environment

Figure 2.1: A 5x5 Coloured Trails board. Each
tile is a distinct colour (white, black, gray, pur-
ple), and the two agents (red and green) are
positioned on the central tile. Tiles with dotted
borders indicate possible goal locations.

The environment consists of a 5x5 board filled
with coloured tiles. There are four different colours
used: white, black, gray and purple. This board is
implemented as a 5x5 list of strings, where each
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string represents a colour. At the start of each
game, a new board is generated by randomly shuf-
fling its rows. This results in 5! = 120 possible
board configurations, introducing variability across
games, which provides a balance between maintain-
ing a small, manageable state space and encourag-
ing generalisation.

For each possible tile colour, there are two cor-
responding chips with the same colour, creating
a fixed chip set: (white, white, black, black, gray,
gray, purple, purple). Each game begins with both
players being randomly assigned four chips from
the fixed chip set, as well as a goal location, follow-
ing De Weerd et al.| (2017)). The players know what
their own goal location is, but the goal location of
their opponent is hidden information. Only corner
tiles and tiles adjacent to the corners are valid goal
locations (tiles with dotted borders in Figure ,
ensuring that any path towards a goal will have a
minimum length of three. Players can move to any
of the horizontally and vertically adjacent tiles, as
long as they own a chip with the same colour as
that tile. After a move, the coloured chip is handed
in.

Players take turns proposing offers, which the op-
ponent can either accept or reject. This process fol-
lows a fixed order: the “initiator” always makes the
first offer, and the “responder” always replies first.
This decision is based on prior research indicat-
ing that the initial offer can significantly influence
the rest of the negotiation process (Engler & Page,
2022). The game ends as soon as a player accepts
an offer or decides to terminate negotiations.

Player scores are calculated using the following
formula:

steps_to_goal x 100 + chips * 50 + win * 500
Where:

steps_to_goal is the number of steps the agent
took toward its goal location.

chips is the number of chips not used to move on
the board

win has a value of one if the goal was reached, and
zero otherwise.

2.1 Zero-order model - DQN

A zero-order ToM agent is incapable of attribut-
ing mental states such as goal states to others. In

this thesis, I used a Deep Q-Network (DQN) (Mnih
et all [2013) implemented with torch. The Neural
Network (NN) I used has an input size of 148, a
hidden layer of size 128 and an output size of 81.
This hidden layer size was selected to reflect the
reduced complexity of the state space relative to
the original DQN paper (Mnih et al., 2013), which
contained high-dimensional visual input from Atari
games using two hidden layers of 256 units each.

The input of the NN represents the state of the
player. The first 12 neurons encode the goal loca-
tion using one-hot encoding over 12 possible goals.
The following eight neurons encode the current chip
distribution. If one of these neurons has a value of
one, the chip is assigned to the player; if it is zero,
the opponent owns the chip. The next eight neurons
encode the previous offer in the same way, where
the chip distribution is seen as if the previous of-
fer had been accepted. Following [De Weerd et al.
(2017)), the agent only considers the most recent of-
fer that the opponent has made and has no explicit
memory about offers made further in the past. For
the very first turn, this previous offer will be the
initial chip distribution. The last 120 neurons en-
code the current board using one-hot encoding.

The 81 output neurons of the NN represents the
Q-values of the actions the player can take. In this
case, there are 3* = 81 different offers possible, be-
cause there are four unique chip variants with a
duplicate, so each player can get either no, one, or
two of each of the four chips.

An offer is accepted when the agent outputs the
exact same offer as the previous one, which it re-
ceives as the previous offer in its input. Withdraw-
ing from negotiations is indicated by proposing the
initial chip distribution. Any other output is inter-
preted as a rejection of the incoming offer.

At the start of each game, if a new board config-
uration is encountered, a reward table is generated
for every possible chip distribution using a recursive
pathfinding algorithm. The reward corresponding
to the initial chip distribution is stored as a prop-
erty for future reference.

When the agent needs to make an offer, it calcu-
lates the current state by encoding the goal loca-
tion, current chip distribution, previous offer, and
board configuration into a single input vector for
the neural network. The agent then applies an
epsilon-greedy strategy (Sutton et al.l [1998]), where
it computes a value for epsilon based on the current



step count, decay rate, and epsilon bounds. If a ran-
domly sampled float is less than epsilon, a random
action (i.e., offer) is selected. Otherwise, the action
with the highest Q-value (action associated with
the output neuron with the highest activation) is
chosen. The selected action, along with the state,
is stored in the agent’s transition memory, and the
corresponding offer is raised.

When the agent receives an offer and must decide
whether to accept or reject it, the NN input state
is recalculated using the incoming offer as the new
“previous offer”. An action is again selected using
the network. If this action matches the incoming of-
fer, the offer is accepted. Otherwise, it is rejected.
The agent must learn this behaviour through ex-
perience. The resulting input state is stored as the
next_state in the transition memory, finalising the
transition containing: [s, a, r, ] (i.e., [state, action,
reward, next_state]).

After each negotiation outcome, the agent eval-
uates the reward. If the opponent accepted the
agent’s offer, the reward is computed as the differ-
ence between Rierminal, the reward when the game
has ended, and Rggart, the reward of the initial
state. If the offer was rejected, the reward is zero.
This is unlike [De Weerd et al.|(2017)), where agents
have explicit time pressure. Instead, it’s expected
that this time pressure is eventually implicitly en-
coded in the network weights.

If the agent’s memory buffer contains more than
30 transitions, an optimisation step is performed. A
batch of transitions is randomly sampled, and their
associated state, action, reward, and next state
tensors are extracted from the stored transitions
for further calculations. The policy network esti-
mates Q-values for the current state-action pairs,
while the target network computes the maximum
Q-value for the next states. Terminal states, in
which negotiations are ended, are excluded from
this computation. Expected Q-values are calculated
using the Bellman equation, incorporating immedi-
ate rewards and discounted future values (Sutton et
al., [1998)). The network is updated by minimising
the Huber loss between predicted and expected Q-
values. Gradient clipping (Pascanu et al.; 2013]) is
applied to improve stability, and a single step of
gradient descent is used to update the model pa-
rameters.

2.2 Theory of Mind model

The Theory of Mind (ToM) model is built around
an internal DQN agent that operates exactly as
the DQN agent that was previously described. This
model is inspired by prior work on recursive ToM
in negotiation scenarios (De Weerd et al., 2017)).
De Weerd et al.| (2017) notes that the ToM model
may perform particularly poorly when it functions
as the initiator. For this reason, the ToM model
is only assigned the responder role in this thesis.
Transitions that it encounters are stored during the
game and passed to this internal DQN so its net-
work keeps up to date.

When the ToM agent is asked to respond to the
initiator’s offer by raising a new offer, it first ob-
tains the current states from its DQN puppet. This
state is passed to its action selection, which fol-
lows a sort of epsilon greedy-algorithm. An epsilon
is calculated just like before. If a randomly gen-
erated float is larger than this epsilon, an action
is predicted using ToM, otherwise, a random ac-
tion is selected. This way the ToM agent can still
explore unseen actions. The ToM algorithm loops
over each possible action (i.e. all 81 possible offers)
that it could take and constructs the opponent’s
state for that offer, the current board, its guessed
goal and the current chip distribution. This state
is given to the DQN puppet to simulate what the
opponent would do in response to the potential of-
fer. Now, the value of the offer is calculated for all
different cases. If the offer already withdraws from
negotiations to begin with, it has a value of 0. For
the values that take into account the simulated re-
sponse from the opponent, I incorporated a term v
for the possibility that the opponent may behave
differently. The base values are calculated follows if
we predict the opponent withdraws or accepts:

Qofter (Withdraw) = 0
Qoffer(accept) = Raccept - Rstart
where:

® Raccept is the reward after the offer is accepted
and chips have been traded,

® Rgiart is the reward in the initial state of the
game.

Whenever the opponent denies the offer of the
agent, the agent must be able to evaluate the re-
sulting state. In this thesis, I consider three ways



of evaluating this state resulting from the predicted
offer of the trading partner (s’).

offer deny) = max Qnext s'a
Qofrer(deny) = ma ;

Qoffer (den}’) = maX(O, Qresponse,offer (accept))

Qresponse,oﬁrer(accept), if we aCCept

0, otherwise

Qoﬁer(dGHY) = {

Which I have respectively given the following
names:

e Raw: The raw Q-value from the action we will
be able to take after the action of the oppo-
nent.

e Max: The maximum of zero and the reward we
would receive if we accept the response offer.
This basically assumes that we will not accept
an offer in the future that leads to a negative
score

e 1l-lookahead: If we accept the predicted re-
sponse, we use the value we obtain from this.
Else, the reward is zero.

For Raw and 1-lookahead, we use the ToM
agent’s own zero-order predicted response (ob-
tained from a forward pass of the internal DQN)
to the opponent’s predicted response. From these
values, the final values for the possible offers are
calculated as follows:

Value(end) = v - Qoffer (accept) + v - Qoffer (deny)

Value(accept) = (1—20)-Qofter (accept)+v-Qofrer (deny)

Value(deny) = v-Qofter (accept )+ (1—20) - Qoster (deny)

where v € [0,1] models uncertainty in the oppo-
nent’s behaviour. Over all possible offers, the offer
with the highest resulting value will be raised by
the ToM agent.

When the ToM agent has to decide whether to
accept or deny an incoming offer, it does so just
like the DQN agent, sampling an action with the
updated previous offer. If this offer matches the in-
coming offer, the agent accepts, otherwise it rejects
the offer. With this incoming offer, a prediction is
made about the goal location of the opponent. To
do this, the agent contains a goal guess distribu-
tion, which starts out as a 1/12 for each goal. At

each incoming offer, the agent loops over all pos-
sible goal locations and constructs the opponent’s
state for each goal location. An action over each
possible goal is sampled from the DQN puppet. If
this action aligns with the perceived action the op-
ponent actually took, the probability of the oppo-
nent having that goal location increases, otherwise
it decreases. The used goal prediction is the goal
with the maximum probability in this distribution
and will be used to predict future actions of the
opponent.

2.3 Model parameters

epsilon_start The initial value of epsilon

epsilon_end The value epsilon decays toward over
time

epsilon_decay The rate at which epsilon decays

prediction_epsilon* The chance that the oppo-
nent may behave differently in ToM action se-
lection (v in this paper)

gamma The discount factor in the Bellman equa-
tion, which controls how much future rewards
are worth relative to immediate rewards.

Ir The learning rate controls how much the net-
work weights change in response to the loss.

goal_Ir* The learning rate for goal estimation con-
trols how much the assigned likelihood of a
possible opponent’s goal changes based of ob-
servations.

batch_size The number of transitions sampled per
optimisation step

board The board object currently in use
name A string identifier for the agent

DQN_agent* An instance of a DQN agent that
will serve as a puppet. If this is not passed, a
new DQN agent will be made from the other
given parameters.

* This parameter is unique to the ToM model

epsilon_start  (estart), epsilon.end (eenq) and
epsilon_decay (€decay) are used to regulate the
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Figure 2.2: Side-by-side display of the three randomly selected 5X5 game boards.

epsilon decay for each agent. The chance to take a
random action € is calculated as follows:

— —1-steps/eqec:
€ = €end + (Estart - 6end) - e ps/€decay

Where steps is the amount of actions sampled up
until this point.

Experimental setup

For experiments, I will use a randomly generated
parent board that is saved. Chips and goals are se-
lected for agents as described above. At the start of
each game, the rows of the parent board will be ran-
domly shuffled. On this board setup, a DQN agent
trains against an agent that always accepts an in-
coming offer to initialise parameters for 500 games,
which will initialise the weights of the DQN with
more appropriate values for making offers. This
DQN agent will be saved and loaded as two new
agents for the next round of training. These DQN
clones will play against each other for 30,000 games
on the same parent board, again with shuffled
rows, as the initialisation run. Within these 30,000
games, the DQN will learn strategies to effectively
play against one another. These 30,000 DQN wvs.
DQN games will serve as pre-training for the follow-
ing DQN vs. ToM runs. The responder DQN agent
is saved and then loaded twice. One of these loaded
agents will serve as an internal DQN for the ToM
model. The ToM model and the other loaded DQN
agent will play against each other for 250 games
on the same parent board, with row-shuffling, the
underlying DQN pre-trained on to preserve learned
behaviour. During these games, the agents’ cumula-
tive scores are stored as well as the predicted prob-
ability that the ToM agent ascribed to the actual
goal of its opponent. These metrics are recorded
for 20 different runs of the 250 games for the same
initial agents with stochastic strategies. These 250
games are performed for three different variations

of calculating Qofter(deny), which tries to value of-
fers according to how good they will be in the fu-
ture, after the current turn. This whole process is
repeated for three different random boards.

3 Results

The three randomly generated boards can be seen
in Figure 2.2]

Two DQNs played against each other on these
three boards for 30,000 games as pre-training.
These training results can be seen in Figure (3.1
On Board one (see Figure , the responder beat
the initiator throughout the games, ending with a
more than 2,000,000 point advantage. The initiator
obtained a negative score in this simulation, which
means that this agent has not learned to withdraw
from negotiations, which would give it a score of
zero. On Board two, the initiator started off on
the winning hand for the first 10,000 games, after
which the responder overtook the initiator, ending
in another win for the responder. The point differ-
ence in the end is around 1,000,000 this time. On
the third board, the agents start out equally well
for the first 10,000 games. Eventually, the initia-
tor ends up winning this game, again with a more
than 2,000,000 point difference. It’s important to
notice that these results are tied to the stochastic-
ity within the agents’ strategies, so running a new
experiment on these same boards may lead to com-
pletely different results.

Negotiation can be understood as if the agents
are trying to divide a pie between themselves
(Raiffa, [1982)). An agent can try taking a bigger
portion of this pie for themselves, or the agents
can cooperate to increase the size of the pie itself.
Changes in the cumulative score graph that happen
symmetrically for both the initiator and responder
are a consequence of redistributing the pie, because
one agent loses points so the other can gain points.
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Figure 3.1: Cumulative score of DQN vs DQN across board configurations over 30,000 games.
The blue graphs represent the initiator and the orange graphs represent the responder.

An example of this is on Board two at around game
20,000. Asymmetric changes in the graphs point to
a change in the size of the pie. For example, in
Board one around game 27,500, the initiator gains
points without the cumulative score of the respon-
der decreasing. In this instance, they have likely
found a cooperative strategy from which they both
gain points. In the pre-training, we can see that
competition and cooperation both show up in this
environment with learned agents.

All in all, we see a variety of behaviours and out-
comes across these three boards, which will make
conclusions about the final experiments more ro-
bust, because they have been obtained using differ-
ing DQN agents.

In Figure we can see the performance of the
DQN agent against the ToM agents across boards
and Qoffer(deny) strategies. There is a visible
spread across the 20 runs, which is caused by
stochasticity inherent to the agents’ e-greedy strat-
egy together with randomness in the environment:
random row shuffling, random goal locations and
random initial chip distributions. It is noticeable
that ToM outperforms DQN on average in every
circumstance, ending up with a higher cumulative
score than the DQN agent. Even though the ToM
agents outperforms DQN on average, there were
still turns in which the DQN overtook the ToM
agent in score at some point during the run. This
is signified by the overlap in standard deviation.

Looking at the different Qoger(deny) strategies.
To evaluate the strategies, I will look at both
cumulative score value and the spread as standard
deviation. A lower standard deviation points to
a more robust strategy, because it gained a more
consistent outcome across different situations.
On Board one, the Max strategy outperformed

the others, achieving a higher average cumulative
score with low spread at the first half of the runs
(see Figure . For Board two, the 1-lookahead
strategy had a similar average score to the other
strategies, but with less spread and minimal
overlapping spread, meaning the strategy is more
robust against its opponent. For the final board,
the 1-lookahead strategy ended up with a higher
average cumulative score and had a lower spread.
The spread in the first 25 games was minimal,
which is probably due to the fact that the used
DQN network had a big vulnerability (see results
for Board three in Figure . The 1-lookahead
strategy may have taken advantage of this vulner-
ability immediately, because it only looks at how
good the next state will be for itself, while the
other strategies’ Qofrer(deny) calculation may have
been mislead by this exploit themselves, leading to
a smaller advantage.

Finally, I recorded the predicted probability the
ToM assigned to the DQN’s actual goal (see Figure
. Comparing the goal location predictions to the
prior probability of 1/12, T can conclude that the
ToM did not meaningfully predict the opponents’
goal location. The lack of spread observed for the 1-
lookahead strategy on Board three can be explained
by the previously described strategy of exploiting
a vulnerability in the DQN network immediately,
such that the ToM did not have enough information
to base any prediction on.
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4 Discussion

This thesis set out to investigate whether agents
equipped with Theory of Mind (ToM) capabilities
achieve a strategic advantage over agents that rely
solely on associative learning, specifically in un-
predictable environments. By comparing the per-
formance of Deep Q-Network (DQN) agents and
ToM agents built on top of DQN across multiple
game configurations, the goal was to assess whether
reasoning about others’ goals and decision making
leads to more effective negotiation behaviour.

The results demonstrate that ToM agents
achieved higher cumulative scores than DQN
agents across all board configurations and offer
evaluation strategies. While performance varied
across the 20 runs due to the agents’ stochas-
tic decision-making processes, ToM consistently
outperformed DQN on average. Among the three
Qofier(deny) strategies tested (Raw, Max, and 1-
lookahead), the 1-lookahead strategy generally re-
sulted in the highest average scores and the lowest
variance, particularly on the third board. The cu-
mulative score plots showed that in some runs the
DQN agent temporarily outscored the ToM agent,
but the overall trend favoured ToM. Goal inference
by the ToM agent remained close to chance level,
which raises questions about how the ToM agent
achieved its performance advantage.

The ToM agent failed to meaningfully predict the
opponent’s goal. There are several possible expla-
nations for this. It could mean that the underlying
neural network changes significantly during play-
ing, making predictions based on the ToM’s own
neural network useless. However, you would expect
to see some meaningful predictions at the start of
the runs, because the neural networks would not
have had time to diverge yet. A more likely pos-
sibility is that the DQN agents do not explicitly
look at their goal location while calculating their
next move. This may mean that the DQN agents
do not encode their goal location in their raised of-
fers, making it impossible for the ToM to predict
the opponent’s goal successfully. It is likely that
the DQN agents found more generalised strategies,
looking more so at offers that may be better in gen-
eral on this board instead of looking explicitly at
its assigned goal location. As such, ToM also would
not need to guess the opponent’s goal to gain an ad-
vantage, because private information is not relevant

when the opponent does not use this information
in its decision making, which is why we still see a
better performance from the ToM agent. So all of
the advantage of the ToM model hinges on the pre-
dictive part of ToM, since the interpretative part
fails to make meaningful conclusions about the op-
ponent’s state. It could be interesting to look into
agents that do successfully encode private informa-
tion in their actions to see how the predictive com-
ponent of ToM plays into these results.

From the overlap in the standard deviation of cu-
mulative scores (Figure , it is evident that the
DQN agent could occasionally outperform the ToM
agent. Throughout this project, I observed that
the exploitability of the internal DQN model works
both ways. Since both agent types at least start
with the exact same underlying DQN network and
evaluate incoming offers in the same way, they are
susceptible to similar weaknesses. This highlights
how tightly coupled the current implementation is
to the DQN architecture. Applying other reinforce-
ment learning algorithms to represent associative
learning or implementing a more generalized ToM
framework could lead to different behavioural dy-
namics and potentially more robust outcomes.

The score results show that associative learning
can find strategies in this unpredictable environ-
ment that both exploit others or cooperate with
others. Importantly, ToM provides a clear advan-
tage over associative learning in this setting. This
advantage supports the theory that ToM gradu-
ally arose through evolution. Since we already as-
sume that the animals in question employ associa-
tive learning (Pearce & Boutonl, 2001)), a clear grad-
ual evolutionary path from associative learning to-
wards predictive ToM capabilities can be painted
by these results. The fact that a simpler version
of ToM, which did not directly take into account
any raw learned Q-values to guess future utility,
performed the best may further reinforce this ar-
gument.
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