
Exploring One-Step Fixed Horizon Q Learning in

Tabular Stochastic Environments

Bachelor’s Project Thesis

Stan Ferguson, s4674367, s.k.ferguson@student.rug.nl
Supervisors: Prof. R.F. Cunha

Abstract: In this study, we test Fixed Horizon Q-learning (FHQ) in tabular stochastic envi-
ronments. FHQ was proposed as an alternative to regular (infinite horizon) Q learning by Asis
et al. [2020] to break the deadly triad of reinforcement learning by countering bootstrapping to
unreliable estimates. Instead of updating the value function with the entire episode return, a
specific horizon length is set. We reproduce- and build on the previous research to better pinpoint
what the (dis-)advantages of this method are, particularly on the performance of different horizon
lengths and their computational cost over longer periods of time. We showed that, contrary to
our initial assumption based on the previous research, the shorter horizons do not necessarily
perform better in highly stochastic environments. We identify a trade-off between horizon length
and computational cost, and find that α-decay is necessary for successful empirical convergence,
which is not generally the case for most RL algorithms.

1 Introduction

Reinforcement learning (RL) is a framework in
which an agent learns to make sequential decisions
through interaction with an environment (Sutton
and Barto [2018]). At each step, the agent selects
an action, receives a reward, and transitions to
a new state. Over time, it learns a policy that
maximizes the expected cumulative reward, often
by estimating value functions that predict long-
term returns.

One of the key challenges in reinforcement learn-
ing is dealing with stochasticity : randomness in
the environment’s transitions or rewards. In highly
stochastic settings, an action might not always re-
sult in the intended outcome. This unpredictability
complicates learning, as the agent may struggle to
distinguish between good and bad actions when
outcomes are inconsistent.
Traditional Q-learning (Watkins and Dayan

[1992]), a popular reinforcement learning algorithm
(Hasselt [2010]), estimates the return from each
state-action pair over the entire episode. Although
this works well in deterministic environments, it can
lead to instability and overestimation in stochastic
environments (Thrun and Schwartz [1993], Has-
selt [2010]). This is in part due to the use of
bootstrapping—a technique where the value of a
state-action pair is updated using estimates of fu-
ture returns, rather than only observed rewards.
While bootstrapping enables efficient learning by
propagating value information backward through
the state space, it can amplify estimation errors

in stochastic environments. Thus, long-horizon
methods (like regular Q-learning) that rely heavily
on bootstrapped values are more likely to cause
inaccurate value estimates.

To address this, Asis et al. [2020] introduced
Fixed-Horizon Q-learning (FHQ), where the agent
learns multiple action-value functions, each corre-
sponding to a fixed number of steps (the horizon).
Instead of estimating the return to the end of the
episode, FHQ estimates returns up to a fixed hori-
zon h. The intuition is that short-horizon targets
are more stable in stochastic environments because
they rely less on unpredictable future outcomes and
reduce the reliance on bootstrapped estimates over
many steps. In a sense, regular Q-learning does this
with the discount factor γ, which can also scale the
amount of weight that is attributed to future steps.
However, FHQ provides a more direct control over
the planning horizon and the extent of bootstrap-
ping, making it a promising approach for learning
in environments where long-term predictions are
unreliable.

Initial experiments in Asis et al. [2020] with
FHQ showed promising results: in highly stochastic
environments, shorter horizons sometimes outper-
formed longer ones and they seemed to outperform
regular discounted Q-learning. However, these find-
ings were limited to early learning behavior and
lacked broader analysis of convergence and compu-
tational cost.

1



1.1 Aim of This Project

In this thesis, we build on the work by Asis et al.
[2020] and investigate FHQ-learning further. More
specifically, we focus on the one-step FHQ-learning
algorithm in a tabular stochastic environment; Tab-
ular meaning that it is a simple environment with
discrete, small, finite state and action spaces.
The primary goal is to extend knowledge on

learning and (speed of) convergence of the different
horizons in a stochastic environment. We hypothe-
size that short horizons are preferable in the highly
stochastic setting (in line with Asis et al. [2020]),
and that longer horizons would be preferable in a
low-stochastic one. Therefore, we also want to in-
vestigate whether or not it can be beneficial to make
this horizon adaptable to the amount of stochas-
ticity in the state. So, if the local stochasticity
between states varies, we can adapt the horizon
length accordingly.

2 Background

2.1 Reinforcement Learning

As briefly discussed in the introduction, the goal in
reinforcement learning (RL) is to develop successful
behavior by interacting with an environment.

2.1.1 Markov Decision Process

This can mathematically be formulated as a so-
called Markov Decision Process (MDP) (Sutton
and Barto [2018]):

M = (S,A,P,R, γ) (2.1)

Where S is the set of all states, A is the set of all
actions, P = p(s′, r|s, a) is the transition function.
This is the probability of transitioning to next state
s′ with reward r when taking action a from state
s. R = r(s, a, s′) is the reward function. This
is the reward for moving from state s to state s′

with action a. Lastly, γ (where γ ∈ [0, 1]) is the
discount factor, with which we tune how much
future rewards are weighted.

So, from the agent’s perspective, at each timestep
t it finds itself in a state st ∈ S from which it
can choose an action at ∈ A. After taking said
action, the agent will transition into a next state
st+1 ∼ (p(·|st, at) which will give some reward
rt = r(st, at, st+1). After an episode ends, when
the agent reaches the goal or terminates for some
other reason, the agent can reflect on the taken
actions. The goal is to learn a behavior pattern
that leads to the optimal sequence of actions and
obtain the maximum cumulative reward over an
entire episode. Such a behavior pattern is called a
policy π.

To achieve this, we try to maximize the expected
total reward for each timestep, called the return.
It is given as:

Gt =

T−t−1∑
k=0

γkRt+k+1 (2.2)

Where T is the final time step of the episode, t is
the current timestep, Rt is the reward received at
time t, γ is the discount factor and k is the index.

2.1.2 Value Functions

Within reinforcement learning, a key distinction ex-
ists between value-based and policy-based methods.
Policy-based methods attempt to learn the opti-
mal policy directly by optimizing parameters that
define the policy. In contrast, value-based methods
approach the problem by estimating so-called value
functions, which represent the expected return from
a given state or state-action pair under a particular
policy. In this project, we are working with value
functions, of which there are two commonly used
types:

• State-value function:

Vπ(s) = Eπ[Gt | St = s] (2.3)

Where Vπ(s) is the value function of state s
under policy π, Eπ[Gt | St = s] is the expected
returnGt under policy π for state s at timestep
t.

• Action-value function:

Qπ(s, a) = Eπ[Gt | St = s,At = a] (2.4)

Where Qπ(s, a) is the state-action value func-
tion, Eπ[Gt | St = s,At = a] is the expected
return Gt under policy π for taking action a
from state s at timestep t.

This state-action value is also called the Q-
value.

We can approximate these value functions using
the Bellman equations, which form the foundation
for many reinforcement learning algorithms (Sutton
and Barto [2018]), including temporal difference
(TD) learning.

2.1.3 Temporal Difference (TD) learning

In one-step TD learning, a value estimate is up-
dated using the observed reward and the estimated
value of the next state known as the TD target,
which is used by a subsequent update function for
V (s):

Ĝt = Rt+1 + γV (St+1) (2.5)

V (St)← V (St) + α
[
Ĝt − V (St)

]
︸ ︷︷ ︸

TD error

(2.6)

2



Where Ĝt is the TD target that consists of the
reward Rt+1 and the discounted (γ) state-value
of the next state V (St+1). The update equation
2.6 updates the current state-value V (St) with this
target Ĝt and the existing value, which together
form the TD-error. This is then factored by the
learning rate α, where for higher values of α, more
existing information is replaced by the TD-error
estimate.
In action-value methods such as Q-learning

(Watkins and Dayan [1992]), which is arguably one
of the most popular TD learning methods (Hasselt
[2010]), the target is an estimate for a state-action
transition (so for example; moving up, down, left
and right from state s have their own Q-values).
The recursive update rule becomes:

Ĝt = Rt+1 + γmax
a′

Q(St+1, a
′) (2.7)

Q(St, At)← Q(St, At) + α
[
Ĝt −Q(St, At)

]
︸ ︷︷ ︸

TD error

(2.8)

Where again, Ĝt is the target, Rt+1 is the obtained
reward and γ is the discount factor. However now,
the next state-action value is chosen from all the
actions that can be taken from the current state St

by selecting the maximum Q-value of those actions:
maxa′ Q(St+1, a

′).
The current Q-value Q(St, At) is then updated

using this TD target and the existing Q-value (to-
gether the TD-error), and again scaled with the
learning rate α.

In this project, we will work with Fixed-Horizon
Q-learning, which is a version of regular Q-learning
described above.

2.1.4 Tabular Environments

In environments with a small, finite number of
states and actions, these value functions can be
represented using a single table. This approach,
known as the tabular case, stores a separate value
for each state (in the case of V (s)) or each state-
action pair (for Q(s, a)). Tabular methods are con-
ceptually simple and easy to interpret. They allow
for exact updates using temporal-difference learn-
ing rules, as each entry in the table can be updated
independently based on observed transitions.

In this tabular case, convergence is generally easy
to prove both theoretically and empirically under
standard assumptions such as sufficient exploration
and a decaying learning rate (Sutton and Barto
[2018]). This makes tabular environments a use-
ful testing ground for developing and evaluating
reinforcement learning algorithms.
However, the tabular representation becomes

infeasible in large or continuous state spaces, where
the number of states and actions can be (infinitely)

large (Sutton and Barto [2018]). In such cases,
techniques such as function approximation can be
used to estimate these value functions (Thrun and
Schwartz [1993]).

2.1.5 Stochasticity

One of the main challenges in reinforcement learn-
ing is that of stochasticity, which refers to the inher-
ent unpredictability in an environment’s transition
and reward functions (Sutton and Barto [2018],
Hasselt [2010]). Returning to the MDP formula-
tion in Section 2.1.1, this means that taking the
same action a from a given state st does not always
result in the same next state st+1 and subsequent
reward. The transition function is not determinis-
tic, but rather a set of probabilities.

2.2 Fixed-Horizon Q-Learning

Traditional Q-learning aims to estimate the optimal
action-value function Q∗(s, a), which corresponds
to the expected cumulative return from a given
state-action pair over an entire episode. This as-
sumes planning over potentially long or infinite
horizons, which can lead to instability, especially
in stochastic environments (2.1.5).

Fixed-Horizon Q-learning (FHQ), introduced by
De Asis et al. (2020), proposes a modification:
rather than estimating the expected return over
the full episode, the algorithm estimates the return
over a fixed number of future steps, referred to as
the horizon h.

2.2.1 General Idea

In FHQ-learning, we keep track of a set of action-
value functions Qh(s, a), one for each horizon h ∈
{1, 2, . . . ,H}, where H is the fixed furthest horizon.
Each function Qh stores a value for every possible
state-action pair, forming a separate table of size
S × A. These tables are updated independently
using the structure of the fixed-horizon targets.
Recall (from section 2.1.4), that in regular value-
based methods, we only have one such Q-table of
size S ×A.

At each timestep t, the agent observes the current
state st, selects an action at according to an explo-
ration policy (e.g., ϵ-greedy with respect to QH),
and receives a reward rt and next state St+1 from
the environment. Then, for each horizon h > 1,
the agent updates its estimate using the one-step
target from horizon h− 1:

3



Ĝh
t = Rt+1 + γmax

a′
Qh−1(St+1, a

′) (2.9)

Qh(St, At)← Qh(St, At) + α
[
Ĝh

t −Qh(St, At)
]

︸ ︷︷ ︸
TD error

(2.10)

Where Ĝh
t is the fixed-horizon TD target for hori-

zon h — a one-step estimate of the return over h
steps. It consists of the immediate reward Rt+1

and the discounted (γ) maximum Q-value of the
next state St+1 under the shorter horizon h − 1:
maxa′ Qh−1(St+1, a

′). This ensures that longer-
horizon estimates build upon more stable, shorter-
horizon ones.

The update equation modifies the current Q-
value estimate Qh(St, At) using the TD target Ĝh

t

and the existing estimate. Their difference (again)
forms the TD-error, which is scaled by the learning
rate α.

As we proceed through the Q-tables, longer hori-
zons build on the (more stable) predictions of
shorter ones. Over time, each table Qh becomes a
better estimate of the return over those h steps.

This avoids bootstrapping from the same esti-
mate using the expected infinite return which, as
mentioned earlier, can cause instability in regular
Q-learning.

Now, we will describe the algorithmic procedure
in detail and review the empirical findings of Asis
et al. [2020], before diving into the focus of this
project and how we have built on those findings.

2.2.2 Algorithm Description

The tabular, one-step FHQ-learning algorithm is
shown in Algorithm 1. At each timestep, the agent
observes a transition tuple (st, at, rt+1, st+1), and
performs updates for each horizon h ∈ {1, . . . ,H}.

The TD error δ is computed as the difference be-
tween the observed reward (plus the bootstrapped
estimate from horizon h− 1) and the current pre-
diction from horizon h, like explained in the math-
matical notation above. Action selection is done
using an exploration strategy such as ϵ-greedy with
respect to QH , the final horizon. The algorithm
loops until the terminal state is reached.

2.2.3 Proof of Convergence

Asis et al. [2020] prove that FHQ-learning con-
verges in the tabular setting under standard as-
sumptions such as a decaying learning rate and
sufficient exploration. For the formal proof and
detailed assumptions, refer to the original paper.

Algorithm 2.1 Tabular One-step FHQ-Learning
for estimating QH ≈ qH∗

1: Initialize Q[h][s][a] ← 0 for all s ∈ S, a ∈ A,
and h = 0, 1, . . . ,H

2: s ∼ p(s0)
3: a ∼ µ(· | s) (e.g., ϵ-greedy w.r.t. QH(s, ·))
4: t← 0
5: while t ̸= tmax do
6: (s′, r) ∼ p(s′, r | s, a)
7: for h = 1, 2, . . . ,H do
8: δ ← r + γmaxa′ Q[h − 1][s′][a′] −

Q[h][s][a]
9: Q[h][s][a]← Q[h][s][a] + α · δ

10: end for
11: s← s′

12: a ∼ µ(· | s)
13: t← t+ 1
14: end while

2.2.4 Findings

In the research by Asis et al. [2020], fixed horizon
methods were tested in multiple configurations.
Both for state- (Vs) and state-action (Q(s,a)) value
functions, in a one-step and multi-step form and in
tabular, linear and deep learning control problems.
In this project, we are only focusing on the state-
action (Q(s,a)), one-step, tabular case.

For this specific case, tested in a highly stochas-
tic environment, they concluded that:

”In a tabular control problem, we showed
that greedifying with respect to estimates of a
short, fixed horizon could outperform doing so with
respect to longer horizons.”

In the results section below, we will explain
in more detail how they arrived at this conclusion
and what experiment was performed. For now, it
is important to know that this was the starting
point for our research.

2.3 Our Approach

We hypothesized that, if short horizons could in-
deed be preferable in highly stochastic environ-
ments, then there might be motivation for this
horizon to be adaptable to the amount of stochas-
ticity in the environment.
This assumes the inverse to be true as well:

that longer horizons would be beneficial in low-
stochastic or deterministic environments. This
seems like an intuitive, logical consequence as in
those cases, previous experiences can be ”trusted”
by the agent, so there is no misleading information
in the far-away horizons.
Thus, we want to dynamically adjust the plan-

ning horizon as a function of local, state-level

4



stochasticity, rather than using a fixed horizon.
Our hypothesis is that such an adaptive strategy
can perform better than a fixed-horizon strategy
in an environment with changing levels of stochas-
ticity.

3 Methods

3.1 Environments

3.1.1 Slippery Maze

Our baseline environment is a grid-world maze,
identical to- and taken from Asis et al. [2020]. The
agent (a penguin) starts at a fixed location in a 9×9
grid and must reach a goal state (the fish) located
in the bottom-right corner. The agent can move
in four directions (up, down, left, right). However,
the environment is highly stochastic: the intended
action is only executed with probability 0.25, while
with probability 0.75 the actual move is chosen
uniformly at random across all four actions. This
means that even the chosen action only succeeds
with probability 0.25 + 0.75

4 = 0.4375.

Each step leads to a reward of −1, and the
episode ends once the goal is reached. The cu-
mulative reward is therefore the negative of the
episode length, and we use this quantity (mean
episode length) as our main performance metric.

Figure 3.1: The slippery maze environment.
The agent starts in the center; the goal is in the
bottom-right. All actions are stochastic with
slipperiness = 0.75. The agent is rewarded with
-1 for each timestep.

The optimal policy takes about 70 steps on av-
erage to reach the goal state when we account for
stochasticity. We calculated this by manually in-
structing an agent to take the shortest path, and
averaging the return over 1000 identical runs.

Deterministic case We also performed experi-
ments with this maze, but without any slipperiness.
The transition function in that case is determinis-
tic, meaning that each action has the agent end up
in the intended follow-up state. In this case, the
optimal path is exactly 14 steps, which can just be

counted as the number of states between the start
and goal states.

3.1.2 Non-Homogeneous Maze

In addition to the standard environment, we con-
struct a custom variant with changing amounts of
state-level stochasticity. Each tile in the maze has
its own slipperiness probability, either 0 (determin-
istic) or 0.75 (stochastic). This non-homogeneous
environment allows us to test our hypothesis: that
the optimal planning horizon should vary depend-
ing on the local level of stochasticity.

Figure 3.2: Custom non-homogeneous environ-
ment with varying slip probabilities across the
grid. The white squares are slippery and the
gray squares are not.

We designed it this way because, as seen in 3.2,
the maze contains two slippery sections, one on the
left and one on the right. Normally, the right path
is quicker, but due to the slippery section on the
right being longer, the optimal paths for the going
around the maze left and right are: ≈ 31 and ≈ 35
respectively. Therefore, after accounting for the
stochastic sections, the left path is actually quicker
on average.

The motivation was that the short horizons
would not be able to ”look beyond” the initial
obstruction and thus they would not be able to ef-
fectively converge (as quick or at all) to the optimal
solution, following the left path.

3.2 Experimental Setup

All experiments are based on one-step, tabular
FHQ-learning, as described in Section 2.2. We use
ϵ-greedy action selection with ϵ = 0.1, a common
standard in RL that balances exploration and ex-
ploitation. At each timestep, the agent updates
Qh(s, a) for every horizon h ∈ {8, 16, 32, 48}. We
directly took these values for the horizon length
from the original paper by Asis et al. [2020], and
will compare performance between them.

Each configuration is evaluated across 100 inde-
pendent runs to reduce variance. To assess both
learning speed and overall convergence, we run

5



experiments for both 100 and 1000 episodes. Addi-
tionally, we include analyses based on the compu-
tational cost, described in Section 3.4.

3.3 Hyperparameters

In this section, we will walk through all the hyper-
parameters involved.

3.3.1 learning rate α

First of all, the learning rate α is an important con-
trolling parameter in all TD-learning algorithms
(Sutton and Barto [2018]). In the research done
by Asis et al. [2020], multiple values of α were
compared, which seemed to suggest that the higher
values of α (like 0.4-0.6) outperformed lower values
(like 0.1) that are generally a good standard in
reinforcement learning. That is because a learning
rate of 0.5 means that during each update, we are
replacing half of the information in our current es-
timate with the newly gathered reward. Generally,
this leads to instable learning, as it is too reliant
on (the accuracy of) the most recent experiences.

We will test multiple values of α, compare them
in their speed of convergence and overall perfor-
mance, and see if we can verify/reject the claim
made by Asis et al. [2020], as cited in 2.2.4.

α-decay In the theoretical proof of convergence,
α-decay is listed as a necessary requirement to
ensure convergence. It is described as:

αt = α0 · λt

where λ < 1 is the decay factor (we used λ =
0.999) and t is the timestep. Generally, α-decay is
not considered necessary for empirical convergence
results, so we have tested FHQ-learning both with
and without α-decay.

3.3.2 Slipperiness

The slipperiness of the environment refers to the
amount of stochasticity in the transition function.
In the standard slippery maze, this is set to 0.75.
We also test the deterministic case, where the en-
vironment is identical but the slipperiness is set to
0, and we test the non-homogeneous case which
contains both of these for different states.

3.4 Evaluation Metrics

3.4.1 Episode Length

As each step yields a reward of -1, the total re-
turn per episode is equal to the negative of the
episode length. Hence, minimizing episode length
corresponds to maximizing performance. We track
the mean episode length across runs as the main
performance metric.

3.4.2 Computational cost

In the FHQ algorithm, the computational cost in-
creases linearly with the horizon length. For each
step in the environment, the agent performs h Q-
value calculations. Thus, the agent with h = 32
performs four times as many Q-value calculations
as the agent with h = 8 for each step in the en-
vironment. Therefore, the plotting of episodes on
the x-axis can give a slightly distorted image of
the time it has taken each horizon to converge
effectively.

We define this computational cost as:

Computational Cost = h ∗
N∑
i=1

Ti (3.1)

Where h is the horizon length, N are the number
of episodes and Ti is the number of steps within
episode i.
Besides plotting performance over episodes, we

will also evaluate performance over this computa-
tional cost between the horizons.

4 Results

4.1 Preceding Results

The plotted results of this experiment by Asis et al.
[2020] can be seen in figure 4.1.

Figure 4.1: Mean episode lengths over 100
episodes of FHQ-learning with various step-sizes
and horizons of interest. Results are averaged
over 100 runs, and shaded regions represent one
standard error.

Here, it is shown that for different step-sizes (=
learning rate values), the horizons behave differ-
ently. As these results are the average return over
the first 100 episodes, we cannot extract informa-
tion about convergence, but we can say that an
intermediate (shorter) horizon of 16 can outper-
form longer (and even shorter) horizons. Because,

6



for some values of α, the mean episode length of
horizon 16 over the first 100 episodes is lower than
that of the other horizons.

In the paper, two (similar) claims are made based
on these results:

1. In the results section: “For FHQ-learning, it
can be seen that if the final horizon is unreason-
ably short (H = 8), the agent performs poorly.
However, H = 16 does considerably better than
if it were to predict further into the future.”

2. In the discussion: “In a tabular control prob-
lem, we showed that greedifying with respect to
estimates of a short, fixed horizon could outper-
form doing so with respect to longer horizons.”

While the results indeed show a difference in
performance that could suggest better results with
shorter horizons, more tests need to be done to con-
fidently conclude that short horizons are preferable
in this stochastic tabular control problem. Mainly,
information is missing on the (speed of) conver-
gence of the different horizons, and the stability of
their behavior. The current results are averaged
over the first 100 episodes, but that includes the
initial learning phase in which the Q values are
not yet tuned. This learning phase is normally not
included in evaluating performance. Rather, it is
good practice to first train all the different models
(per horizon), and then evaluate their performance
on the fixed Q value estimates.

4.1.1 Reproduction

In Appendix A, we can see our reproduction of
these results. The result for horizons 16, 32 and 48
are similar, but horizon 8 performs different to the
results by Asis et al. [2020]. We will elaborate on
this further in the discussion below.

4.2 Convergence and stability

From the results by Asis et al. [2020] in figure
4.1, one could assume that α values of 0.4-0.6 are
optimal for performance of most horizons. In figure
4.2, we can see a more detailed representation of
these first 100 episodes with α = 0.5. All horizons
show improvement in their performance over time,
but the average episode length is still substantially
above the optimal path of ≈ 70 steps.

In appendix 4.4a, an extended run of this ex-
periment can is added with 1000 episodes for each
horizon. Here, we see that horizon 8 diverges over
time, while the other horizons keep improving the
policy. Still, all horizons seem to approximate a
policy that averages around ≈ 100 steps and not
the optimal path of ≈ 70 steps.

0 20 40 60 80 100
Episode

50
100

200

400

600

800

1000

M
ea

n 
Ep

iso
de

 L
en

gt
h

H=8
H=16
H=32
H=48

Figure 4.2: Mean episode length +- standard
error over 100 identical runs for 100 episodes.
α is set to 0.5 and decayed with 0.999 per step
in the environment.

4.2.1 Lower Learning Rates Improve Sta-
bility and Convergence

To explore whether we could improve (the stability
of) performance, we ran the same experiment with
α = 0.1. For the first 100 episodes, the results
can be seen in 4.3. Learning is indeed lower than
with α = 0.5 (as seen in 4.2), which explain the
difference in initial performance over these 100
episodes in 4.1.

0 20 40 60 80 100
Episode

50
100

200

400

600

800

1000

M
ea

n 
Ep

iso
de

 L
en

gt
h

H=8
H=16
H=32
H=48

Figure 4.3: Mean episode length +- standard
error over 100 identical runs for 100 episodes.
α is set to 0.1 and decayed with 0.999 per step
in the environment.

However, looking at the figures 4.4a and 4.4b, we
can see that with α = 0.1, FHQ-learning converges
to a more successful policy over a longer period
of time, making it preferable to achieve the best
and most stable performance. If we look at the
average episode length over the last 100 of these
1000 episodes, as shown in table 4.1, we can see
a clear difference in performance between the two
values of α.

These results confirm that while higher learning
rates (such as α = 0.5) can enable faster early learn-
ing in the initial phase, they are unstable and do
not converge effectively over time. A lower learn-
ing rate (like α = 0.1) provides more consistent
convergence with less overall variance.

7



0 200 400 600 800 1000
Episode

50
100

200

400

600

800

1000
M

ea
n 

Ep
iso

de
 L

en
gt

h
H=8
H=16
H=32
H=48

(a) α = 0.5

0 200 400 600 800 1000
Episode

50
100

200

400

600

800

1000

M
ea

n 
Ep

iso
de

 L
en

gt
h

H=8
H=16
H=32
H=48

(b) α = 0.1

Figure 4.4: Mean episode length +- standard
error over 100 identical runs for 1000 episodes.
for both α = 0.5 and α = 0.1. α is decayed with
0.999 per step in the environment.

Horizon H α = 0.1 α = 0.5
8 77.26± 0.59 188.48± 1.82
16 72.39± 0.47 97.63± 0.89
32 72.29± 0.51 94.68± 0.88
48 73.26± 0.56 94.66± 1.17

Table 4.1: Mean and standard error episode
length over 100 identical runs, of the final 100
episodes of an experiment with 1000 episodes
for all horizons with α = 0.1 and α = 0.5.

4.2.2 Statistical Analysis of Respective Per-
formance

To find out whether or not the difference in per-
formance between the four horizons with α = 0.1
is statistically significant, we perform a one-way
ANOVA test, which gives an F-statistic of 17.76
with p = 1.49e−9. This tells us there is a significant
difference in performance. To analyze what that
difference is exactly, we perform a Tukey-HSD test,
as depicted in appendix B.

We can conclude that horizon 8 performs signif-
icantly worse than the other horizons. Horizons
16, 32 and 48 show no significant difference in
performance among them. Thus we can conclude
that, contrary to what was suggested in the paper,
the short horizons do not outperform the longer

horizons.

4.2.3 Rejection of Proposed Research Di-
rection

Based on the results above, we have to reject the
assumption that short horizons consistently out-
perform longer horizons in highly stochastic envi-
ronments. As this assumption was the foundation
for our initial idea to adapt the planning horizon
based on state-level stochasticity, we chose not to
pursue this direction further.

4.2.4 Deterministic environment

In the deterministic case, where the environment
is identical but there is no slipperiness, all horizons
perform similarly. They all converge to a policy
with an average episode length of ≈ 30 steps, while
the optimal path is only 14 steps. From these
results, we also have to reject our second assump-
tion: that longer horizons would be preferable in
low-stochastic settings. The results can be seen in
appendix C.

This further strengthens the rejection of our pro-
posed method, in which we wanted to adapt the
length of the horizon to the amount of stochasticity.

4.2.5 Non-homogeneous environment

In the non-homogeneous environment introduced
in section 3.1.2, we ran several exploratory experi-
ments using fixed-horizon lengths. However, as dis-
cussed in sections 4.2.3 and 4.2.4, the foundational
assumptions for adaptive horizon selection could
not be verified. The results for this environment,
as seen in appendix D did not show any meaningful
patterns or differences between the horizons.

4.3 α-decay

An interesting finding we came across was that,
without α-decay, the horizons do not manage to
converge as effectively, and especially the perfor-
mance of the shortest horizon (h = 8) worsens.
While α-decay is given as an assumption in the
proof by Asis et al. [2020], it is generally not con-
sidered necessary when empirically testing conver-
gence of reinforcement learning algorithms (Chen
et al. [2021]). In 4.5, the results can be seen for an
experiment identical to that in 4.4b, but without
decaying α. We can see a slight divergence of h = 8
over time in the plot, which is supported by the
performance table over the last 100 episodes in 4.2.

4.4 Computational cost

In 4.6, we have plotted the mean episode length
against the computational cost of the agent in the

8



0 200 400 600 800 1000
Episode

50
100

200

400

600

800

1000
M

ea
n 

Ep
iso

de
 L

en
gt

h
H=8
H=16
H=32
H=48

Figure 4.5: Mean episode length +- standard
error over 100 identical runs for 1000 episodes
with α = 0.1 and not decayed.

Horizon H α = 0.1 (decayed) α = 0.1
8 77.26± 0.59 98.18± 8.02
16 72.39± 0.47 82.07± 8.23
32 72.29± 0.51 81.04± 7.91
48 73.26± 0.56 82.96± 9.67

Table 4.2: Mean and standard error episode
length over 100 identical runs of the final 100
episodes of an experiment with 1000 episodes
for all horizons with decayed and non-decayed
α.

same environment. As explained above in section
3.4.2, the short horizons perform less calculations
per step in the environment, leading to a lower over-
all computational cost per episode. As all horizons
converge after a similar amount of episodes (seen
in figure 4.4b), that means the shorter horizons are
preferable from a computational viewpoint.

0.0 0.2 0.4 0.6 0.8 1.0
Computational Budget 1e7

50
100

200

400

600

800

1000

M
ea

n 
Ep

iso
de

 L
en

gt
h

H=8
H=16
H=32
H=48

Figure 4.6: Mean episode length +- standard
error over 100 identical runs, plotted against
the computational cost. α = 0.1 and decayed
with 0.999 per step in the environment.

5 Discussion

5.1 Trade-off Between Performance
and Computational Cost

Our results indicate a clear trade-off between the
computational efficiency and the performance of dif-
ferent horizon lengths in Fixed-Horizon Q-learning.
While short horizons like H = 8 learn quickly and
are computationally cheap per episode, they fail
to converge effectively and result in significantly
worse long-term performance compared to longer
horizons. On the other hand, horizons H = 16,
H = 32, and H = 48 all show similar performance,
but at increasing computational costs.

Thus, we conclude that a moderate horizon like
h = 16 shows the best balance in performance and
computational cost.

5.2 Adaptable Horizon Length

A central goal of this project was to explore dy-
namic horizon adjustment based on state-level
stochasticity. However, our experiments showed
that the underlying assumptions for this idea do
not hold: short horizons did not consistently out-
perform longer ones in stochastic environments,
nor did longer horizons outperform shorter ones in
deterministic settings. Thus, reducing the planning
horizon dynamically when state-level stochasticity
is low does not appear to be a feasible research
direction, at least in the tabular, one-step FHQ-
learning case.

5.3 α-Decay

Although α-decay is typically not necessary for
convergence in many RL algorithms, our results
suggest it plays a critical role in stabilizing FHQ-
learning, especially for short horizons. Without
decay, learning became less stable and performance
deteriorates significantly.

5.4 Limitations and Future Work

5.4.1 Investigating the inverse

From these results, one could conclude that investi-
gating the inverse could be an interesting research
direction. We showed that longer horizons perform
better in highly stochastic environments, but in
deterministic ones, all horizons perform similarly.
So, one could argue that it could be beneficial to
dynamically adjust the horizon based on state-level
stochasticity, but instead reduce the horizon when
stochasticity is low to save computational cost.

9



5.4.2 Failure to reproduce exactly

As discussed in the results above, we were not able
to reproduce the experiment by Asis et al. [2020]
exactly. Some of the parameters were not exactly
defined in the initial research, like whether or not
α was decayed, or the value of ϵ in ϵ-decay. Testing
more configurations of these hyperparameters could
get us results that are closer to those by Asis et al.
[2020]

5.4.3 Values of h

While we tested a reasonable range of horizons
(H = 8 to H = 48), further experiments with more
extreme- and intermediate values could be done to
get an even better understanding of this tradeoff.

5.4.4 Complex environments

Additionally, while we focused exclusively on tabu-
lar environments, extending this analysis to linear
or deep function approximation settings could test
whether the findings generalize.

Finally, while adaptive horizon selection may not
be fruitful in this setting, it could still be worth
exploring in more complex domains where the dy-
namics vary more dramatically across the state
space.

6 Conclusion

In this thesis, we investigated the performance
and stability of Fixed-Horizon Q-learning (FHQ)
in tabular stochastic environments. Contrary to
earlier findings by Asis et al. [2020], we found that
short planning horizons do not necessarily lead to
better performance in highly stochastic settings.
Instead, a moderate horizon length such as h = 16
provided the best trade-off between computational
cost and learning performance.

We further showed that α-decay plays a critical
role in stabilizing learning and achieving conver-
gence—especially for shorter horizons. Our empiri-
cal results rejected the initial hypothesis that the
planning horizon should be dynamically adjusted
based on state-level stochasticity, as we found no
consistent relationship between local environment
stochasticity and optimal horizon length.

Overall, our findings suggest that while FHQ-
learning offers an elegant approach to mitigating
instability in value estimation, adaptive horizon se-
lection may not be beneficial in simple tabular envi-
ronments. Future work should investigate whether
these results generalize to more complex settings
involving function approximation or deep learning.

References

Kristopher De Asis, Alan Chan, Silviu Pitis,
Richard S. Sutton, and Daniel Graves. Fixed-
horizon temporal difference methods for sta-
ble reinforcement learning, 2020. URL https:

//arxiv.org/abs/1909.03906.

Yifei Chen, Lambert Schomaker, and Marco Wier-
ing. An investigation into the effect of the learn-
ing rate on overestimation bias of connectionist
q-learning. In Ana Paula Rocha, Luc Steels,
and Jaap van den Herik , editors, Proceedings
of the 13th International Conference on Agents
and Artificial Intelligence, volume 2, pages 107–
118. SciTePress, February 2021. ISBN 978-989-
758-484-8. doi:10.5220/0010227301070118. 13th
International Conference on Agents and Artifi-
cial Intelligence ; Conference date: 04-02-2021
Through 06-02-2021.

Hado Hasselt. Double q-learning. In J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, editors, Advances in Neural Informa-
tion Processing Systems, volume 23. Curran Asso-
ciates, Inc., 2010. URL https://proceedings.

neurips.cc/paper_files/paper/2010/file/

091d584fced301b442654dd8c23b3fc9-Paper.

pdf.

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduc-
tion. The MIT Press, second edition, 2018.
URL http://incompleteideas.net/book/

the-book-2nd.html.

Sebastian Thrun and Anton Schwartz. Issues in
using function approximation for reinforcement
learning. 10 1993.

Christopher J. C. H. Watkins and Peter Dayan. Q-
learning. Machine Learning, 8(3):279–292, 1992.
doi:10.1007/BF00992698. URL https://doi.

org/10.1007/BF00992698.

10

https://arxiv.org/abs/1909.03906
https://arxiv.org/abs/1909.03906
https://doi.org/10.5220/0010227301070118
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698


A Reproduction of results

0.2 0.4 0.6 0.8 1.0
Alpha

180

190

200

210

220

230

240

250

260

M
ea

n 
Ep

iso
de

 L
en

gt
h 

ov
er

 1
00

 e
pi

so
de

s, 
av

er
ag

ed
 o

ve
r 1

00
 ru

ns

FHQ performance for different values of alpha

Horizon Length (H)
H=8
H=16
H=32
H=48

Figure A.1: Our reproduction of the results by Asis et al. [2020]; Mean episode lengths over 100
episodes of FHQ-learning with various step-sizes and horizons of interest. Results are averaged
over 100 runs, and shaded regions represent one standard error.

B Tukey HSD table

Table B.1: Tukey HSD test following the one-way ANOVA test for episode length differences
between horizons [8, 16, 32, 48].

Gr 1 Gr 2 Mean Diff p-adj Low Upp Rej
8 16 4.87 0.000 2.33 7.41 Yes
8 32 4.97 0.000 2.43 7.51 Yes
8 48 4.00 0.000 1.46 6.54 Yes
16 32 0.10 0.998 -2.44 2.64 No
16 48 -0.87 0.684 -3.41 1.67 No
32 48 -0.97 0.615 -3.51 1.57 No

11



C Deterministic environment

0 200 400 600 800 1000
Episode

50
100

200

400

600

800

1000
M

ea
n 

Ep
iso

de
 L

en
gt

h
H=8
H=16
H=32
H=48

Figure C.1: Mean episode length +- standard error over 100 identical runs for 1000 episodes in the
deterministic environment (slipperiness = 0). α is set to 0.1 and decayed with 0.999 at each step.

D Non-homogeneous environment

0 200 400 600 800 1000
Episode

50
100

200

400

600

800

1000

M
ea

n 
Ep

iso
de

 L
en

gt
h

H=8
H=16
H=32
H=48

Figure D.1: Mean episode length +- standard error over 100 identical runs for 1000 episodes in the
non-homogeneous environment (as described in 3.1.2). α is set to 0.1 and decayed with 0.999 at
each step.

12


	Introduction
	Aim of This Project

	Background 
	Reinforcement Learning
	Markov Decision Process
	Value Functions
	Temporal Difference (TD) learning
	Tabular Environments
	Stochasticity

	Fixed-Horizon Q-Learning
	General Idea
	Algorithm Description
	Proof of Convergence
	Findings

	Our Approach

	Methods 
	Environments
	Slippery Maze
	Non-Homogeneous Maze

	Experimental Setup
	Hyperparameters
	learning rate 
	Slipperiness

	Evaluation Metrics
	Episode Length
	Computational cost


	Results
	Preceding Results
	Reproduction

	Convergence and stability
	Lower Learning Rates Improve Stability and Convergence
	Statistical Analysis of Respective Performance
	Rejection of Proposed Research Direction
	Deterministic environment
	Non-homogeneous environment

	-decay
	Computational cost

	Discussion
	Trade-off Between Performance and Computational Cost
	Adaptable Horizon Length
	-Decay
	Limitations and Future Work
	Investigating the inverse
	Failure to reproduce exactly
	Values of h
	Complex environments


	Conclusion
	Reproduction of results
	Tukey HSD table
	Deterministic environment
	Non-homogeneous environment

