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Abstract: This paper addresses the challenge of generating synthetic electroencephalogram
(EEG) covariance matrices for Motor Imagery Brain-Computer Interface data augmentation.
Objective. To develop a generative model capable of producing high-fidelity synthetic covariance
matrices for BCI data augmentation, accounting for the crucial constraint that these matrices are
Symmetric Positive-Definite and reside on a non-Euclidean, Riemannian manifold. Approach. A
novel Riemannian geometry-preserving Variational Autoencoder architecture is proposed. This
model uniquely integrates geometric mappings and employs a composite loss function that com-
bines Riemannian distance for manifold fidelity with objectives promoting Euclidean tangent
space reconstruction accuracy and generative diversity. Results. The model successfully gener-
ates valid and representative EEG covariance matrices. The utility of the synthetic data was
evaluated in a cross-subject, Leave-One-Subject-Out Cross-Validation classification setting and
found to be highly classifier-dependent. While the augmentation significantly hindered the per-
formance of a Support Vector Classifier, it maintained performance using Minimum Distance to
Mean classifier and even provided a statistically significant improvement for the geometry-aware
K-Nearest Neighbors classifier, increasing its balanced accuracy by up to 3.49%. Contribution.
This work validates a new architecture for generating Motor Imagery EEG covariance matrices
and concludes that its effectiveness as an augmentation tool is directly linked to the algorithm

of the classifier it is paired with.

1 Introduction

A Brain-Computer Interface (BCI) is a system
that measures bio-signals, such as electroencephalo-
gram (EEG), and utilizes specialized algorithms
to interpret specific aspects of a user’s cogni-
tive state (Bonci et all |2021). In active sys-
tems such as Motor Imagery Brain-Computer
Interfaces (MI-BCI), users voluntarily modulate
their brain activity to generate specific com-
mands for controlling external devices or environ-
ments (Bonci et al), 2021; [Prapas et al., 2022;
Cariello et al., [2023). The core principle behind
MI-BClIs involves the user imagining a motor ac-
tion (e.g left-hand movement), without any physi-
cal execution. This mental task causes measurable
changes in the sensorimotor rhythms of the brain’s
cortex—a phenomenon known as Event-Related
Desynchronization/Synchronization—which can be

captured using EEG and thus translated into com-
mands (Bonci et all 2021)). While traditionally,
a MI-BCI pipeline often consists of preprocessing
(i.e., bandpass filter), spatial filtering (e.g., Com-
mon Spatial Pattern filters), feature extraction (e.g,
band power) and specialized classification mod-
els such as Linear Discriminant Analysis (LDA)
(Yger et al. [2017)), recent approaches employ-
ing Riemannian geometry have demonstrated su-
perior performance over classical approaches, scor-
ing the highest in multiple brain signal classifica-
tion competitions (Congedo et al., [2017; [Yger et
al., 2017)). These state-of-the-art pipelines often re-
place the traditional feature extraction steps and
it’s corresponding models in favor of EEG covari-
ance matrices paired with Riemannian-based clas-
sification models such as the Minimum Distance to
Mean (MDM) classifier and Support Vector Clas-
sifier (SVC) (Chevallier et all 2024} [Yger et al.|



2017). Even deep learning models, despite their suc-
cess in other domains, have generally not exceeded
the performance of existing Riemannian pipelines,
which may be explained by the limited availabil-
ity of subject-level data within the BCI community
(Chevallier et al., 2024). Limited data along with
long calibration time between subjects prove to be
significant hurdles in the advancement of main-
stream BCI applications (Chevallier et al., 2024}
Yger et al., 2017).

A promising path to tackling these issues may lie
in data augmentation techniques—artificially ex-
panding the training set by generating new, syn-
thetic samples from an original dataset—which has
already been long practiced in the field of machine
learning to undertake data scarcity (Chevallier et
al., [2024; Rommel et al., [2022)). Therefore, this pa-
per focuses on developing and evaluating a novel
method for data augmentation specifically tailored
to the unique geometric properties of EEG covari-
ance matrices.

Previous work has explored data augmentation
directly on the Symmetric Positive Definite (SPD)
manifold on which EEG covariance matrices exist
on. One notable approach generates new artificial
trials by geometrically interpolating between pairs
of existing covariance matrices of the same class
(Kalunga et al., 2015). This is accomplished by cre-
ating points along the geodesic—the shortest path
between two points on the manifold—which ensures
that the newly generated matrices remain on the
manifold (Kalunga et all |2015). This scheme has
been shown to successfully boost steady state vi-
sually evoked potential (SSVEP) and error poten-
tial (ERP) classification accuracies in the scenarios
with few training samples and imbalanced classes
(Kalunga et al., 2015) respectively.

However, this method has a distinct limitation:
geodesic interpolation is restricted to generating
data within the convex hull of the original training
samples (Kalunga et al.| |2015). It can densify the
space between existing data points but cannot pro-
duce novel examples that explore the entire mani-
fold. While the resulting points are new, their cre-
ation is an interpolative process, not a truly gener-
ative one. It cannot produce samples that represent
plausible variations of the task that might exist in
unexplored regions of the data manifold, away from
these direct paths. This constraint further moti-
vates the need for a more powerful, non-linear gen-

erative model. A Variational Autoencoder (VAE),
which can learn a latent distribution of a mani-
fold (Shao et al., |2017)), may offer an alternative
to bypass this convex-hull limitation and generate
diverse yet representative synthetic data.

A VAE is a common generative model first intro-
duced in the paper by [Kingma & Welling| (2013)).
A Variational Autoencoder comprises of two neu-
ral networks: a probabilistic encoder and decoder.
The encoder maps an input data point to the
mean and variance of a probability distribution
typically within a lower-dimensional latent space.
This distribution, g4(z|x), serves as an approxima-
tion of the true intractable posterior distribution.
The decoder network then takes a sample z from
this learned latent distribution and aims to recon-
struct the original input data, defining the likeli-
hood py(x|z) (Kingma & Welling;, 2013).

The model is trained by optimizing a single ob-
jective (i.e., Evidence Lower Bound) which bal-
ances two competing goals. The first is a recon-
struction loss, which ensures the decoded samples
are faithful to the original data. The second is a reg-
ularization term, the Kullback-Leibler (KL) diver-
gence, which encourages the learned latent distri-
butions toward a chosen prior distribution (Kingma,
& Welling, 2013)). This training encourages a con-
tinuous and well-structured latent space, enabling
the VAE to generate novel yet plausible data by
decoding points sampled from this space.

The standard VAE architecture, however, as-
sumes data lies in a Euclidean space, creating a
fundamental conflict when working with SPD co-
variance matrices. A naive application that sim-
ply vectorizes the matrices and feeds them to a
VAE ignores their essential geometric structure on
the Riemannian manifold. This oversight, as will
be empirically confirmed in Section [£:3.1] leads to
an outcome where the model generates a high per-
centage of invalid matrices that are not symmetric
and positive-definite, rendering them unusable for
Riemannian-based classifiers. This establishes the
central technical problem: a framework is required
that can utilize the generative power of a VAE while
explicitly respecting the geometry of the SPD man-
ifold.

This thesis addresses this challenge by propos-
ing and evaluating a modified Variational Autoen-
coder; an architecture specifically designed to pre-
serve the geometric integrity of the data. The core



innovation is in its use of Riemannian geometry
to bridge the Euclidean and Riemannian domains,
rendering it suitable for neural networks while also
enabling the model to create geometrically faith-
ful representations of the original data through the
use of a composite loss function. For an in depth
description of the architecture, refer to Section [3.2

A major obstacle to widespread adoption is the
significant inter-subject variability, which necessi-
tates lengthy and user-specific calibration sessions
to maximize performance (Congedo et al., 2017}
Yger et al., 2017; |Blankertz et al., 2007). While
BCI performance can often be high in within-
subject scenarios, this paper focuses specifically on
the more challenging and practically relevant prob-
lem of cross-subject generalization (Congedo et al.)
2017). The goal is to contribute towards BCI sys-
tems that are more robust and readily deployable,
reducing the need for extensive data collection from
every new user. By demonstrating the efficacy of
a generative model in a cross-subject setting, the
present work aims to validate an approach for learn-
ing subject-invariant features of motor imagery on
the SPD manifold through the use of parallel trans-
port (Yair et al.,[2019) for data alignment. Accord-
ingly, this investigation aims to first establish if a
Riemannian geometry-preserving VAE can gener-
ate valid synthetic EEG covariance matrices, and
second, to evaluate whether the synthetic data im-
proves cross-subject MI-BCI performance.

The remainder of the paper is organized to sys-
tematically justify the proposed methodology. Sec-
tion 2 first lays the essential theoretical concepts
in Riemannian geometry. Building on this, Section
3 details the complete methodology, including the
datasets, the specific preprocessing pipeline, the
proposed architecture, and the training and eval-
uation protocols. Section 4 presents the empirical
results, assessing both the fidelity of the generated
synthetic data and its impact on cross-subject clas-
sification performance. Finally, Section 5 discusses
the interpretation and implications of these find-
ings, and further outlines promising directions for
future research.

2 Theoretical Foundations

To fully understand the mechanisms that enable
the proposed architecture, the following section

provides the necessary theoretical foundation in
Riemannian geometry.

2.1 The Manifold of SPD Matrices

In state-of-the-art BCI pipelines, EEG trials are
represented by their spatial covariance matrices.
These matrices are Symmetric Positive-Definite;
they are symmetric and all their eigenvalues are
strictly positive. Capturing the spatial correlations
between EEG channels, these matrices are treated
as points on a curved mathematical space known
as a Riemannian manifold. Formally, The space of
Symmetric Positive-Definite matrices is defined as:

M={XecRVN|X=X"X>~0} (21

where X > 0 indicates that the matrix is composed
of strictly positive eigenvalues (Yger et al., 2017).
In the context of this work, N is the number of EEG
channels, and each matrix X contains the spatial
covariances measured between their signals.

An SPD matrix can be interpreted as a multi-
dimensional generalization of variance. Due to the
positivity constraint, these matrices do not occupy
a standard Euclidean space; for instance, the space
of 2 x 2 SPD matrices forms an open cone, creat-
ing a smoothly curved space known as a differen-
tiable manifold (Yger et al., |2017; |Congedo et al.)
2017). Although the manifold is curved, its struc-
ture allows for local applications of standard linear
algebra and calculus. Accounting for this inherent
geometry is important to avoid geometric distor-
tions, such as the ”swelling effect,” that can occur
during naive Euclidean operations (Kalunga et al.)
2015).

2.2 The Tangent Space

A Riemannian manifold, on a local level, behaves
like a euclidean space (Yger et al., 2017)). The local
approximation at any point P on the manifold M
is the tangent space Tp. M, defined as the set of all
N x N symmetric matrices at said point (Congedo
et al., 2017). As illustrated in Figure the tan-
gent space can be visualized as a flat plane touching
the curved manifold at a single point. By projecting
SPD matrices onto this tangent space, the curved
data is transformed into a standard symmetric vec-
tor, making it suitable for processing by the encoder
and decoder networks.
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Figure 2.1: Visualization of the relationship
between the Riemannian manifold M and its
Euclidean-like tangent space Tp M, at a point P.
The Logarithmic map (logp) projects a point X
from the manifold to a symmetric matrix Sp in
the tangent space, while the Exponential map
(expp) is the inverse transformation.

2.3 The Exponential and Logarith-
mic Maps

Transporting points between the Riemannian man-
ifold and a tangent space is enabled by two funda-
mental operations:

(1) the logarithmic map logp (X;), which projects
a point X; from the manifold onto the tangent
space at point P, and

(2) the exponential map expp(S;i), which
projects a symmetric matrix S; from the tangent
space at point P back onto the manifold (Yger et
al., [2017; |Congedo et al., [2017)).

The formulas for these maps when using the
Affine-Invariant metric are as follows (Yger et al.|
2017), where P and X; are SPD matrices on the
manifold M and S; is the corresponding symmet-
ric matrix in the tangent space Tp.M at point P:

S, = logp(X;) = PY/2log (P—l/QXiP—l/Q) pl/2
(2.2)

X; = expp(S;) = P'/2exp (P_l/QSiP_l/Q) p'/?
(2.3)

In these formulas, log(-) and exp(-) denote the ma-
trix logarithm and matrix exponential, respectively.

2.4 Distances and Geodesics

In a Euclidean space, the distance between two
points is a straight line while on a curved manifold,
the shortest path between two points, is a curve
known as a geodesic. The length of this geodesic
is the Riemannian distance, which also provides a

way to measure similarity between SPD matrices.
This work utilizes the Affine-Invariant Riemannian
Metric (AIRM), defining the distance between two
SPD matrices, Py and Py, as follows:
d,(P1,Py) = Hlog (Pl_l/ngPl_l/Z) HF (2.4)
where log(-) and exp(:) again denote the matrix
logarithm and exponential (Yger et al., 2017).
The metric is invariant under congruence trans-
formations; the distance between matrices is un-
changed by spatial filtering, contributing to robust
riemannian methods across subjects and sessions,

thus making it very popular for BCI applications
(Congedo et al.| |2017)).

2.5 The Riemannian Mean

Calculating the center of a cluster of points on a
manifold requires a geometric approach, since it is
not guaranteed that the simple arithmetic mean of
SPD matrices will be an SPD matrix itself. There-
fore, the Riemannian mean (often referred to as
the Fréchet Mean) is utilized—a unique point on
the manifold that minimizes the sum of squared
Riemannian distances to all other matrices in a set
{X;}Meer (Fletcher et al., 2004; [Moakher, [2005). Tt
is formally defined as:

]\/Iset

G = argmin d*(P,X;
B 2 X

(2.5)

where P is the candidate SPD matrix over which
the minimization occurs, M is the manifold of
N x N SPD matrices, d.(P,X;) is the Affine-
Invariant Riemannian metric (as defined in Eq.
between P and X;. Unlike the arithmetic mean, the
Riemannian mean for more than two matrices does
not have a closed-form solution and must be found
using iterative optimization algorithms (Yger et al.|
2017)).

For further in-depth overview on Riemannian
Geometry, please refer to the works of [Lee| (2018])
and Lang (1995)).

3 Methodology

This section details the methods employed for gen-
erating synthetic EEG covariance matrices using



the proposed Variational Autoencoder architecture
that incorporates Riemannian geometry for MI-
BCI data augmentation. The pipeline encompasses
dataset description and preprocessing, model ar-
chitecture, training, synthetic data generation, and
evaluation.

3.1 Data and Preprocessing

In this subsection, descriptions of the datasets used
and the preprocessing pipeline applied are pro-
vided. The primary objective of this pipeline is
to transform EEG signals into standardized and
subject-aligned SPD covariance matrices that serve
as input for the proposed architecture, referred
to as the Riemannian Variational Autoencoder
(RVAE) onward.

3.1.1 Datasets

To rigorously evaluate the performance and gen-
erative plausibility of the proposed Riemannian
VAE architecture, two distinct EEG datasets
sourced from the "Mother of All BCI Benchmarks”
(MOABB) framework (Aristimunha et al., 2023)
are utilized. MOABB provides standardized access
to a wide range of publicly available EEG datasets,
facilitating comparisons with established BCI al-
gorithms. The datasets selected are from [Faller et
al| (2012)) and [Leeb et al.| (2008]). These datasets
were deliberately chosen to represent diverse poten-
tial BCI application scenarios based on EEG chan-
nel configurations. Both datasets feature recordings
from multiple subjects performing cue-based, two-
class Motor Imagery (MI) tasks. Specifically, the
3-channel dataset (Leeb et al. 2008)) serves as a
proxy for scenarios where BCI systems might em-
ploy fewer sensors, reflecting potential applications
in the real world (Congedo et al.,[2017)). Conversely,
the 13-channel dataset (Faller et al., [2012) aligns
more closely with typical research settings where
higher channel density provides richer spatial infor-
mation for detailed neurological analysis. The use
of two datasets with differing numbers of subjects,
channels, and trial counts allows for a more com-
prehensive assessment of the model’s capabilities.
The 13-channel dataset contains recordings from
12 subjects. The MI paradigm involved discrimi-
nating between sustained imagination of right-hand
movement versus movement of both feet. EEG

data was acquired from three Laplacian deriva-
tions around the C3, Cz, and C4 electrode positions
(specifically: FC3, FCz, FC4, C5, C3, C1, Cz, C2,
C4, C6, CP3, CPz, CP4), sampled at 512 Hz. The
experimental paradigm presented a cue at second
3, after which subjects performed the designated
motor imagery task until second 8, resulting in a
5-second MI activity period per trial, of which the
last 4 seconds were used. The data loading proce-
dure, using the MOABB framework, resulted in a
total of 5572 trials across the 12 subjects, with in-
dividual participants contributing either 398 or 597
trials.

The 3-channel dataset consists of recordings from
9 right-handed subjects performing an MI task;
left-hand versus right-hand imaginary movements.
Signals were captured using three bipolar EEG
channels (C3, Cz, C4) at a sampling frequency of
250 Hz. Trials consisted of a visual cue followed by
a 4-second MI execution period. By utilizing data
aggregated across all available sessions (including
screening and feedback runs), this dataset provides
up to 360 trials per MI class for each subject.

For both datasets, the original data acquisition
included bandpass filtering between 0.5 Hz and 100
Hz and a 50 Hz notch filter to mitigate power line
noise. However, further preprocessing tailored to
the requirements of the model was applied, as de-
tailed below.

3.1.2 Preprocessing

The raw EEG data, loaded using the MOABB
library, underwent a standardized preprocessing
pipeline designed to enhance signal quality and ex-
tract features leading to a suitable input format for
the geometry-aware VAE model.

The data loading process, facilitated by the
MOABB library, yielded the set of processed EEG
epochs for each trial. During this loading phase, the
relevant signal segments corresponding to individ-
ual trials were bandpass-filtered between 8 Hz and
30 Hz. This frequency band targets the alpha and
beta rhythms most relevant to sensorimotor activ-
ity during motor imagery. Concurrently, these fil-
tered segments were temporally cut to extract the
core MI activity window, resulting in the epochs
used before subject alignment preprocessing. Each
epoch captures multi-channel EEG data from 4 to
8 seconds representing the activity period for the
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Figure 3.1: EEG preprocessing pipeline transformations for a single trial from subject 1 (fold 2).

13-channel dataset, and 3 to 7 seconds for the 3-
channel dataset.

The raw voltage signals were then scaled to
microvolts (uV), a standard unit in EEG analy-
sis, using a multiplication factor of 10°. Follow-
ing scaling, Exponential Moving Standardization
(EMS) was applied independently to the time series
data within each epoch. The preprocessing tech-
nique, adopted from the work of [Schirrmeister et
al. (2017)), adaptively smooths the EEG signal us-
ing exponentially weighted moving statistics (mean
and variance). EMS can be seen applied to data for
training deep learning models as these models tend
to be sensitive to the input scale (Zhu et al.| 2022).

The necessary step for obtaining input compat-
ible with the Riemannian geometry-based meth-
ods involved transforming the standardized EEG
epochs into SPD covariance matrices. Spatio-
temporal covariance matrices were estimated for
each epoch using the Oracle Approximating
Shrinkage (OAS), a method optimized for high-
dimensional data where sample sizes are small
(Chen et al., [2010). In our case, the use of sam-
ple covariance matrix would suffice to convert the
EEG signals to covariance matrices, but the use
of a shrinkage estimator provides a stronger guar-
antee that the resulting input matrices are well-
conditioned (not close to a singular matrix) and
strictly positive definite, which is required for the
mathematical operations that are utilized during
the training phase. The sequential transformations
can be seen in Figure [3.1} This robust estimation
technique yields an N x N SPD matrix for each trial

where N represents the number of EEG channels.

To address the inherent variability between in-
dividuals’ EEG signal characteristics, which mani-
fests as geometric differences in their respective co-
variance matrices and thus their location on the
Riemannian manifold, parallel transport (Yair et
al., [2019) was applied as a final preprocessing
step. This approach aligned the covariance matri-
ces, thereby facilitating the learning of subject-
invariant features and preventing deformation of
distant covariance matrices when using a global ref-
erence point for the tangent space. Parallel trans-
port maps matrices from different subjects (each
potentially having their own geometric ’center’ or
reference) onto a common reference frame on the
SPD manifold, which in turn preserves the intrin-
sic geometric relationships relevant to the MI task.

Data leakage during the alignment procedure was
prevented by fitting the transport exclusively on
the training data for each validation fold (i.e., data
from all subjects except the subject held-out for
testing). The fitting step involved:

(1) Computing a global reference point G, de-
fined as the Affine-Invariant Riemannian Mean (as
defined in Section of a set of SPD matrices
{X;}M=et belonging to the subjects in the train-
ing set. Utilizing the implementation provided by
Barachant et al.| (2025]), this mean is found us-
ing an iterative gradient descent algorithm, which
converges based on a tolerance parameter of 1079
within a maximum of 50 iterations.

(2) Computing subject-specific reference points
S for each subject k within the training set, cal-
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Figure 3.2: UMAP visualization of covariance matrix distributions
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(trained on right hand data). (a) Unaligned covariance matrices show distinct, subject-specific
clusters. (b) Parallel transport aligns matrices, merging clusters and reducing inter-subject vari-
ance. (c¢) Aligned real data with synthetic samples generated using prior sampling, demonstrating

the model’s generative capacity.

culated as the Riemannian mean (Eq. of all the
subject’s matrices irrespective of class label. This
class-agnostic subject reference aims to capture the
average geometric characteristics specific to that in-
dividual, thereby focusing the alignment on reduc-
ing overall subject geometry relative to the global
reference before subsequent class-specific modeling.

(3) Deriving subject-specific transport oper-
ators Eg, ,g. These operators, aligning with
the formulation detailed in |Yair et al| (2019)
(specifically Appendix A), are computed as
Es,.c = S/%S."?Gs;"/?*)1/28 /2 This
method first computes an intermediate matrix
X, = S,'/°GS;'/?, which is itself Symmetric
Positive-Definite if G and S; are. The princi-
pal square root of Xy is then calculated, fol-
lowed by multiplication with S,IC/ % and then mul-

tiplication with S,:l/ % to form the final operator
Eg,,c. This construction ensures that all matrix
square root operations are performed on SPD ma-
trices, making it compatible with numerically sta-
ble eigendecomposition-based methods, which were
used for these matrix operations. The resulting
operator Eg, . maps points from the geometric
vicinity of the subject’s reference Si to that of the
global reference G.

Once fitted on the training data, the transport
was applied to both the training and the held-out
test set for that fold. Each covariance matrix X;
belonging to a subject k was transformed using the
corresponding pre-computed operator Eg, ,g via

the congruence transformation:

Xaligned,i = ESk%GXiEgkeG (31)

Throughout these geometric calculations, a small
epsilon value (e 1 x 107%) was used to en-
sure numerical stability, particularly during ma-
trix square root and inverse computations. The
positive-definiteness of the resulting aligned matri-
ces was explicitly enforced by checking if the mini-
mum eigenvalue \,,;, of a matrix falls below €, and
if so, adding a scaled identity matrix ((€ — Apin)I)
to shift the minimum eigenvalue up to the e thresh-
old. This SPD enforcement method is also used in
the model architecture.

The parallel transport alignment, as seen in Fig-
ure yielded the final set of SPD matrices used
as input for the RVAE model, effectively reduc-
ing inter-subject geometric variability while aiming
to retain task discriminative information embedded
within the manifold structure.

3.2 Model Architecture

Building upon the foundational concepts of Vari-
ational Autoencoders and Riemannian geometry
discussed in Sections [I] and [2] the current section
details the specific architecture of the RVAE de-
veloped for processing SPD matrices. The over-
all architecture, as visualized in Figure [3.3] inte-
grates Riemannian geometric operations with stan-
dard neural network components. At its core, the
RVAE aims to learn a latent representation z; from
input EEG covariance matrices X;. This involves
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Figure 3.3: An overview of the proposed Riemannian Variational Autoencoder, illustrating the
integration of a standard VAE with geometric operations on the SPD manifold. An input SPD
matrix X; is first projected onto the tangent space at a reference point P,.r using the logarithmic
map lOgPref (Eq. @ This tangent representation S, is then vectorized to serve as the encoder
input Hiangent- The encoder maps this input to a latent distribution parameterized by p and
log(o?), from which a latent vector z; is sampled and passed to the decoder to produce the
reconstructed vector Hyecoded- The vector is unvectorized back into a tangent space representation
Si, which is finally mapped back onto the SPD manifold via the exponential map (exppref) (Eq.

D to produce the reconstructed SPD matrix Xl

an initial mapping of the input SPD matrices to
a representation within a tangent space, which is
then vectorized for processing by the neural net-
work components (encoder and decoder) operating
in Euclidean space. From the learned latent space,
the model can generate new SPD matrices by de-
coding sampled latent vectors and mapping them
back onto the SPD manifold, effectively preserving
the inherent geometric properties of the data.

The transformations between the SPD manifold
and the Euclidean tangent space representations,
are critically depend on a global reference point
P.or. This reference point is established once at
the very beginning of the training phase. It is
computed as the Riemannian mean (as defined in
Equation of Section of all SPD matri-
ces present in the training set corresponding to the
specific MI-class for which the particular RVAE
model instance is being trained. Once computed,
P.r is fixed and serves as the constant anchor for

all geometric mapping operations—both project-
ing data onto a tangent space and mapping data
back from the tangent space to the SPD manifold—
throughout the model’s training and the subse-
quent inference/generation phase.

The sequence of operations that constitutes the
model’s forward pass, detailing how a batch of in-
put SPD matrices X is transformed to produce
their reconstructions X’ while simultaneously learn-
ing their latent representations Z, is outlined be-
low:

1. Input: The model processes a batch of in-
put SPD covariance matrices, denoted as X =
{X1,Xa, ..., Xp}, where each X; is an aligned
N x N SPD matrix and B is the batch size.

2. Map to Tangent Representation: The en-
tire batch of input SPD matrices X is trans-
formed into a corresponding batch of tan-
gent space matrices S’. The projection is



achieved by applying a version of the loga-
rithmic map (see Section where the data
is first whitened with respect to the refer-
ence point P before the matrix logarithm
is taken. Each resulting matrix S} € &’ resides
in a vector space (the space of N X N sym-
metric matrices, which is Euclidean) and its
vectorized form (specifically, its upper triangu-
lar part) serves as the input to the subsequent
neural network layers.

The transformation process begins with the
computation of the inverse square root of the
reference point Pr_e%/ % This operator is derived
from the eigendecomposition of Pef. Since P ot
is eigendecomposed as P = VrefArerZ;f,
where V¢ is the matrix of orthonormal eigen-
vectors and Ayer = diag(Aref,1,-- -, Aref,N) 1S
the diagonal matrix of its positive eigenvalues,
its inverse square root is constructed as (Horn:
& Johnsonl, [2013; [Petersen & Pedersen, 2008):

—12yT (3.2)

ref ref

P12 =V, 4A

ref

where A;c%/ % is the diagonal matrix with en-

. —1/2 . : —1/2
tries )\ref’j . This matrix P '~ serves as a

whitening operator.

Subsequently, the batch of input matrices X

is whitened using P;e%/ % via batched matrix
multiplication:
=P @ (33

This whitening transformation congruence
transforms each matrix X; € X by Pr_e%/ > Ge-
ometrically, the transformation maps the ma-
trices from the vicinity of P, on the SPD
manifold to the vicinity of the identity matrix
I. For instance, if an input X; = P,¢, then its
whitened form X} = I. The whitening process
is vital for stabilizing the subsequent matrix
logarithm operation.

The core mapping is then achieved by applying
the matrix logarithm to the whitened batch
X'. The calculation for each symmetric matrix
S’ in the final output batch is defined by the
following equation:

S =1log(X}) = Vi ilog(Aw, )V,  (3.4)

where X! = waiAw_,ngi is the eigendecom-
position of a single sample from the whitened
batch X’ (with the subscript 'w’ denoting
"whitened’), and log(A, ;) is a diagonal ma-
trix of the natural logarithms of its eigenval-
ues. This completes the transformation, where
the final batch S8’ represents the set of sym-
metric matrices in the tangent space at the
identity. The conceptual formula for the en-
tire batch-wise logarithmic mapping is there-
fore &' = log(P_l/QX(P_l/Q)T).

ref ref

. Vectorize Symmetric Matrix: The batch

of symmetric matrices S’ € REXNXN (repre-

senting points in the tangent space), obtained
from the previous step, is then transformed
into a batch of flat vector representations, de-
noted hiangent € RB*Dspa This vectorization
is necessary for processing by standard fully
connected neural network layers.

The operation consists of extracting the
Dgpq = N(N+1)/2 unique elements from each
matrix S/ in the batch. Specifically, for each
matrix, the elements from the main diagonal
and the upper triangular part (i.e., elements
sty where j < k) are selected and arranged
into a vector. This is achieved by systemati-
cally taking these elements in a row-wise order
(e.g., Sh1,8h2s---s 81N, Sha, Shay ..., Syy)- The
extraction process is applied in parallel to ev-
ery matrix in the batch &’ to produce the cor-
responding batch of vectors Hiangent-

. Encoder Network: The batch of vector-

ized tangent space representations Hiangent €
RBXDspa gerves as the input to the encoder
network. The encoder’s primary role is to learn
a non-linear mapping from the input—which
can range in dimensionality (e.g., Dgpq = 6
for 3 channels, Dgpq = 91 for 13 channels)—
to an intermediate representation. This rep-
resentation is then used to parameterize the
D;4t = 64 dimensional latent distribution. The
encoder architecture is a feedforward neural
network designed to transform and extract fea-
tures from the entire batch Hiangent-

The transformation process within the encoder
is composed of five sequential blocks, each fol-
lowing a consistent structure: a Linear layer,
a Batch Normalization layer, and finally a



LeakyReLU activation function. Batch Nor-
malization is applied directly after each lin-
ear transformation to standardize the inputs
to the next stage, which stabilizes training dy-
namics, reduces internal covariate shift, and
aids convergence (loffe & Szegedy, 2015)—a
particularly helpful feature given the complex
nature of the geometrically-derived input data.
Following this normalization, the LeakyReLU
activation (Maas et al.| 2013)) is applied. This
particular activation function is essential be-
cause the tangent space vectors contain both
positive and negative values; standard ReLU
activations would map all negative inputs to
zero, leading to the problem where neurons be-
come permanently inactive (Maas et al.2013]).
By allowing a small, non-zero gradient for neg-
ative inputs, LeakyReLU ensures all neurons
remain adaptive and preserves the network’s
representational capacity.

The model’s encoder, transforms the initial
batch Hiangent into a final batch of encoded
feature vectors Hepcoded € RE*%4. The selec-
tion of hidden layer dimensions, as shown be-
low, aims to balance sufficient representational
capacity with model complexity.

Input logo? Dt
Dgpg— 32 = 64 = 16 = 32 — 64

n
Dlat

For the 13-channel dataset, this initial step re-
duces dimensionality (91 — 32), encouraging
a compact summary, while for the 3-channel
dataset, it acts as an expansion (6 — 32), po-
tentially allowing for richer feature interaction
from a lower-dimensional input. These result-
ing encoded vectors capture the learned char-
acteristics from the tangent space and serve as
the input for parameterizing the latent vari-
ables.

. Latent Variables: The batch of 64-
dimensional feature vectors Hencodeq € RE %64,
produced by the final layer of the encoder
network, serves as the input to two distinct
linear projection layers. These layers map the
entire batch Hepcoqeq to the parameters that

define the approximate posterior distribution
over the latent variables for each sample.

Specifically, one linear layer projects Hepcoded
to a batch of mean vectors M € RBXDuat
and a second, separate linear layer projects
it to a batch of log-variance vectors log $? €
RE*Diat where the latent dimension is set to
D).y = 64. Each component (log EZ)U repre-
sents the log-variance for the j-th latent di-
mension of the i-th sample.

These batches of parameters, M and log X2,
are used to define a corresponding batch of
approximate posterior distributions ¢4(z;|X;),
which are then regularized with a Gaussian
prior distribution p(z) = N (z|0,I).

. Reparameterization: To sample a batch of

latent vectors Z from the learned approximate
posterior distributions in a manner that al-
lows for the backpropagation of gradients, the
reparameterization trick is employed. The con-
struction for each latent vector z; within the
batch is as follows:

z; = p; + €; © exp(0.5 - log o7) (3.5)

In this equation, p; and logo? are the mean
and log-variance vectors for the i-th sample,
taken from the parameter batches M and
log ©%. The term €; is a random noise vec-
tor drawn from a standard Gaussian distri-
bution, which is part of a batch of noise vec-
tors E ~ N(0,I). This method separates the
stochastic part of the sampling (the random
noise E) from the learned parameters, allowing
gradients to flow back through M and log X?
during training.

. Decoder Network: The batch of sampled la-

tent vectors Z € RBXPiat serves as the input to
the decoder network. By learning a non-linear
mapping from the latent space, the decoder
produces a batch of output vectors, Hgecoded €
RE*Pspda The objective is for these outputs
to closely match the original input vectors
Hiangent- The decoder’s feedforward architec-
ture, as shown below, is designed to build the
complexity needed for this reconstruction, by
effectively mirroring the encoder’s structure—
Linear Layer, Batch Normalization layer, fol-
lowed by a LeakyReLU activation function.
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Output
Digs— 32 = 16 = 64 = 32 —Dgpq

The final layer, consisting of a single Linear
layer, projects the 32-dimensional representa-
tion to the target Dg,q-dimensional output
batch, Hgecoded- NO activation or normaliza-
tion is applied to this final output, as the com-
ponents of the tangent space vectors can be
any real value.

. Unvectorize: The batch of decoded vectors
Hiccoded € RBE*Papd ig transformed back into
a batch of symmetric N x N matrices, denoted
S’ , reversing the initial vectorization step. For
each matrix S} € S’ , corresponding vector el-
ements from Hgecoded populate the upper and
lower triangles, ensuring the resulting matrices
in & are symmetric.

. Map to SPD Manifold: To produce the re-
constructed covariance matrices X, the batch
of symmetric matrices & (reconstructed tan-
gent space representations) is mapped back
onto the SPD manifold M. The process is an
application of the exponential map (see Sec-
tion which reverses the initial logging op-
eration.

Beginning with numerical stabilization, the
batch & is explicitly re-symmetrized to ensure
that any potential asymmetries, possibly intro-
duced by floating-point arithmetic, are elimi-
nated. For each matrix é; in the batch, the
operation is:

S/] _ SC + (S;)T

(3.6)
The matrix exponential, exp(-), of this sym-
metrized batch S” is computed using an
eigendecomposition-based method. First, for
each matrix S/ € 8", its eigenvalues \; j are
found. To ensure numerical stability and pre-
vent overflow, these eigenvalues are condition-
ally scaled. Setting a threshold 7" = 20 and
defining A; max = max; |\, ;|, the scaled eigen-
values \] ; are:

/\/ _ /\i,j . (T//\i,max) if /\i,max >T
i Nij otherwise

Next, the matrix exponential for each sample,
E;, is calculated using its eigenvectors (V;)
and the diagonal matrix of its exponentiated
scaled eigenvalues (exp(A})) as follows (Horn
& Johnson, [2013; [Petersen & Pedersen, 2008):

E; = V,exp(A}) V] (3.7)

where exp(A}) = diag(e*i1, ..., e*N). The re-
sulting batch of matrices £, is guaranteed to be
SPD and represents the mapping of the sym-
metric matrices from the tangent space at the
identity.

Finally, to map the batch £ back to the vicin-
ity of the class-specific reference point P ¢, the
matrix square root of Py is required. This
square root Pie/f, is computed via eigende-
composition, where the eigenvalues of P, are
clamped to be non-negative before the square
root is taken to ensure stability. The batch of
SPD matrices & is then transformed using Pie/f
via a congruence transformation to yield an in-
termediate batch X:

X =P em@lHT (3.8)

ref ref

To ensure every reconstructed matrix in the
final batch X is a valid SPD matrix, a final
enforcement step is applied. This procedure
uses the same mathematical principle for en-
suring positive definiteness as detailed in the
preprocessing stage (see Section [3.1.2)), but
is implemented here using PyTorch (Paszke
et al., [2019)) operations for end-to-end differ-
entiability. The procedure first computes the
minimum eigenvalue, Ani,, for each matrix
in the batch X. If Amin 18 less than a small
threshold € = 1 x 1075, a scaled identity ma-
trix, (€ — Amin)I, is added to shift the min-
imum eigenvalue up to €. The resulting ma-
trices are re-symmetrized one last time (as
implemented in Eq. to correct for mi-
nor floating-point errors from the exponential
mapping that break the symmetry constraint,
yielding the final reconstructed batch of SPD
matrices X. The conceptual formula for this
entire mapping is X = P;{fexp(g’)(P:e/fQ)T
supplemented by these steps for numerical sta-
bility and correctness.

)
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10. Output: The final output is the batch of re-
constructed SPD covariance matrices X. Each
individual matrix Xi € X is the reconstruction
corresponding to an input matrix X;.

A separate instance of this architecture is trained
independently for each class of motor imagery data.
Each class-specific model therefore determines its
own reference point P, based on the training
samples belonging exclusively to that class. Conse-
quently, all geometric operations (mapping to/from
tangent space) within a class-specific model are rel-
ative to its own learned class reference.

3.3 Model Training

The class-specific training approach allows each
model to specialize in capturing the unique geo-
metric characteristics of its assigned class across
different individuals. The training procedure for
each model consists of the following components:

Loss Function Formulation: The model’s pa-
rameters are optimized using a composite loss func-
tion Liogal, designed to balance data fidelity, latent
space regularization, and generative diversity. This
function comprises several key components.

Firstly, the reconstruction loss Lyecon targets ac-
curate reconstruction through two distinct, fully
differentiable mechanisms. The primary compo-
nent, the manifold reconstruction loss Lanifold, in-
corporates the Affine-Invariant Riemannian metric
(Equation to ensure geometric fidelity on the
SPD manifold, calculated as:

Lmanifold = mean(dr (Xa ‘)e)) (39)

This entire operation is implemented using batch-
wise PyTorch (Paszke et al.,|2019) functions, allow-
ing the geometric error between the input batch
X and the reconstructed batch X to be back-
propagated through the network.

Additionally, Lyecon includes a component to pro-
mote accurate reconstruction within the Euclidean
tangent space. This measures the error between the
original batch of tangent vectors Hyangent, and the
batch of decoded tangent vectors Hgecoded.- This
is achieved by calculating the squared error be-
tween the decoded tangent vectors (Hgecoded) and
the original tangent vectors (Hgangent), normalized
by the squared magnitude of the original vectors.

This approach may provide the benefit of balancing
the loss contribution from tangent vectors with dif-
ferent magnitudes. The formula for this normalized
reconstruction error, averaged over the batch, is:

I o 1 XB: Zj (hdecoded,i,j - htangent,i,j)2
rangent B i=1 Zj h‘?angent,i,j te
(3.10)
where j indexes the vector dimensions and € is a
stability constant equal to 1 x 107°. These two
reconstruction components are averaged over the
batch and summed together:

Lrecon = Lmanifold + Ltangent (311)

Secondly, the KL Divergence regularizes the la-
tent space. It minimizes the divergence between the
learned approximate posterior distribution for each
sample, ¢4(z;|X;), and a standard Gaussian prior
p(z) = N(2]0,I). This encourages the latent space
to be well-structured. Its analytical form, averaged
over the batch, is:

1 B Diat
Lyt =5 > | =05 (1 +logai,
i=1 k=1

—pi ), —exp(logo?,))]  (3.12)

where B is the number of samples in the batch.
Its influence is controlled by S (as shown in Eq.
, which undergoes annealing during training, a
technique introduced as KL cost annealing by [Bow-
man et al.|(2016). This annealing linearly increases
£ during training from a starting value of 0.0001
to an ending value of 0.2, thereby aiding stability
and ensuring appropriate KL regularization with-
out overwhelming the reconstruction loss early in
training. These specific start and end values were
determined empirically with the goal of achieving
a final KL divergence value of approximately 2.0.
This target represents a balance; a very low KL
value can lead to posterior collapse where the latent
space is not informative for generation (Bowman et
al.,|2016]), while a value too high can overpower the
reconstruction loss, leading to poor data fidelity.
Thirdly, to encourage the generation of diverse
samples, a diversity loss Laiversity is included. This
loss promotes a larger geometric volume within the
tangent space representation. Since the determi-
nant of a covariance matrix is geometrically re-
lated to the volume spanned by the data points,
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it serves as a measure of generalized variance or
data spread. Maximizing this determinant there-
fore encourages the generated vectors to be more
diverse and cover a wider region of the space. Ac-
cordingly, the loss is formulated to maximize the
determinant by minimizing its negative logarithm.
Let Hgecoqea be the matrix where each row is a
decoded tangent vector hgecoded,i from the current
batch. The loss is then calculated as the negative
log-determinant, weighted by an empirically deter-
mined factor v = 0.035 and stabilized with an iden-
tity matrix scaled by ecoy = 1 x 1075:

Liversity = — log det(Cov(HdTecoded) + €covl)
(3.13)
The total loss, incorporating these components
with their respective weights, is calculated as:

Liotal = Lrecon + 6 - Lyr, + v Ldiversity (314)

Optimization Strategy: The AdamW opti-
mizer (Loshchilov & Hutter, |2017)) is employed with
an empirically found learning rate of 1x10~* and a
weight decay parameter of 1 x 107, which applies
L2 regularization directly to the model’s parame-
ters. To ensure stable convergence, the learning rate
was adaptively reduced by a factor of 0.5 if the loss
stagnated for 20 epochs. The training was further
regularized by clipping the gradient’s L2 norm to a
threshold of 1.0.

For the covariance matrix in equation to
be well-conditioned and likely non-singular, the
number of samples in the batch must ideally be
greater than the dimensionality of the tangent vec-
tors (Dgpq). A sufficiently large batch size ensures
a more robust estimation of the data’s covariance
structure. A batch size of 128 is used for the 13-
channel dataset and 32 for the 3-channel dataset,
selected as a balance between computational load
and the requirements for the diversity loss.

This class-specific training procedure yields a set
of specialized RVAE models, optimized for gener-
ating cross-subject SPD matrices characteristic of
each motor imagery class by balancing several im-
portant aspects; accurate geometric reconstruction
on both the SPD manifold and its tangent space,
a well-regularized latent space for meaningful sam-
pling, and generative diversity.

3.4 Synthetic Data Generation

Once the class-specific models are trained, they are
employed to generate synthetic SPD covariance ma-
trices. Two main strategies are considered for gen-
eration:

Posterior-Based Sampling: This approach
leverages the existing training data to generate aug-
mented samples. The process iterates through each
real training matrix X,;. Each matrix is passed in-
dividually through its corresponding class-specific
trained encoder to obtain its latent parameters, p,;
and log o7. The reparameterization trick (Eq.
is then applied. By introducing the random noise
vector €;, this step samples a point z; in the latent
space that is close to the original sample’s represen-
tation but includes stochastic variation. This sin-
gle latent vector z; is then passed through the de-
coder to produce a synthetic SPD matrix X;. This
method effectively creates augmented matrices that
are variations of the original training samples, pre-
serving their core characteristics while introducing
plausible diversity.

Prior-Based Sampling: To generate entirely
novel synthetic data, we begin by drawing a full
batch of latent vectors, Zpyior, directly from the
Gaussian prior distribution Zpyior ~ N(0,I). This
entire batch of randomly sampled latent vectors is
then passed through the trained decoder network
of a specific class model in a single forward pass to
generate a corresponding batch of new SPD matri-
ces. This method explores the latent space to pro-
duce data points that do not directly correspond to
any single original training sample but should still
conform to the learned class distribution.

3.5 Evaluation

The evaluation framework assesses data per-
formance in a cross-subject context using a
Leave-One-Subject-Out Cross-Validation (LOSO-
CV) protocol to test model generalization to un-
seen individuals. This evaluation encompasses clas-
sifier performance under various augmentation con-
ditions and an intrinsic analysis of the generated
synthetic data.

3.5.1 LOSO-CYV Protocol

The Leave-One-Subject-Out Cross-Validation pro-
tocol is executed for each subject s; in the dataset.
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In each fold, subject s; constitutes the test set,
while data from all other subjects form the training
set. The parallel transport alignment, as detailed in
Section [3.1.2] is recomputed and fitted using only
the current fold’s training data. Both this training
data and the test subject’s data are then aligned
using these fold-specific transport operators. Subse-
quently, the class-specific RVAE models are trained
using only the aligned training data of the current
fold. Following training, synthetic data is gener-
ated using these fold-trained models via two dis-
tinct strategies outlined in Section (3.4} a posterior-
based approach creating augmented data at a 1:5
real-to-synthetic ratio, and a prior-based approach
generating 5000 novel samples per class. The ra-
tio for the posterior method was selected to sub-
stantially augment the training data, aiming to im-
prove classifier robustness by densely sampling the
learned local manifold around each real data point
while mitigating the risk of overfitting to the orig-
inal training set’s characteristics. Conversely, the
generation of 5000 novel samples via the prior en-
sures the synthetic-only dataset is sufficiently large
to rigorously test the generative model’s ability to
capture the entire data distribution, allowing for
fair classifier training without data scarcity as a
confounding factor. Finally, classifiers are trained
and tested, as detailed in the next Section [3.5.2
This entire process is iterated, with each subject
serving as the test set once. Performance metrics
are subsequently averaged across all folds.

3.5.2 Classifiers and Metrics

The impact of augmentation is assessed using
three Riemannian geometry-aware classifiers from
the pyriemann library (Barachant et al.l [2025):
Minimum Distance to Mean, K-Nearest Neighbors
(KNN), and Support Vector Classifier. The MDM
classifier utilizes the Affine-Invariant Riemannian
metric (defined in Eq. to assign samples to the
class with the nearest Riemannian mean (defined in
Eq. . The KNN classifier employs the same met-
ric (AIRM) to find the k nearest neighbors, where
k = 5. The SVC is adapted for Riemannian mani-
folds, using parameters including regularization pa-
rameter C' = 1.0 and the Affine-Invariant Rieman-
nian metric.

Within each LOSO-CV fold, these classifiers are
trained and then evaluated on the held-out test

subject’s data under three distinct conditions. The
first condition is the baseline, where training re-
lies solely on the original aligned fold-specific train-
ing data (No Augmentation). The second condition
involves training on the combined set of original
and synthetic data for the fold (Augmented Data).
The third condition uses only the synthetic data
generated for the fold for training (Synthetic-Only
Data), which helps to assess its standalone qual-
ity. Balanced Accuracy serves as the primary per-
formance measure, averaged across all LOSO-CV
folds to yield final scores for each condition. It is
defined as the average of recall obtained on each
class (Brodersen et al.l [2010)). This metric was cho-
sen over conventional accuracy due to its robustness
against potential class imbalances within evalua-
tion folds. While the overall MI datasets are gen-
erally balanced, balanced accuracy was chosen to
account for potential class imbalances that might
arise, for instance, from artifact removal. Stan-
dard deviations are also reported to indicate per-
formance consistency. While confusion matrices are
generated for more detailed per-class analysis, the
main comparisons in this study rely on balanced
accuracy.

3.5.3 Synthetic Data Quality Analysis

In addition to classifier-based evaluation, the in-
trinsic quality of the generated synthetic SPD ma-
trices is examined within each LOSO-CV fold. Gen-
erated matrices are first checked for symmetry and
positive definiteness to verify their SPD properties;
the number of matrices that deviate from these
properties are reported. Secondly, a variance analy-
sis is performed to compare the data spread of the
original and synthetic datasets from two comple-
mentary perspectives: statistical variance and geo-
metric diversity.

To assess statistical variance, each covariance
matrix is first vectorized by flattening it into a
one-dimensional array. On these vectors, the aver-
age variance is computed both globally across all
samples and on a per-class basis. A more granu-
lar element-wise analysis compares the variance at
each corresponding position within the covariance
matrices.

To evaluate the geometric spread directly on the
SPD manifold, the analysis calculates the mean
pair-wise Riemannian distance for samples within
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each class, measuring how dispersed the data is
in its native geometric space. Both variances are
analyzed to ensure the generated data realistically
reflects the overall geometric distribution on the
manifold and the statistical variance of individual
covariance elements.

Lastly, a scrambled label test is implemented as
a diagnostic. Classifiers are trained on data with
deliberately scrambled labels. Performance in this
scenario is expected to be at chance level; consistent
significant deviations might suggest that non-task-
related characteristics are being learned or that the
synthetic data exhibits spurious correlations.

These procedures collectively offer a comprehen-
sive view of the augmentation’s benefits and the
synthetic data’s geometric integrity. Results from
these evaluations are aggregated for comparative
analysis. The source code for the RVAE and the
experiment results presented in this paper are pub-
licly available on GitHub at https://github.com/
641e16/DA_RVAE.

4 Results

This section presents the results of the model(s), fo-
cusing on the evaluation of the synthetic SPD ma-
trices for data augmentation in a cross-subject con-
text for MI-BCIs. The results presented are from
experiments conducted on the 13-channel dataset,
which was chosen as the representative example.
The findings from the 3-channel dataset showed the
practically the same performances as the original
data and are therefore included in Appendix [A]

This chapter presents the results in a logical pro-
gression, designed to first establish the validity of
the generative model before testing its utility. It
begins with the examination of the RVAE’s train-
ing dynamics and the structure of its learned la-
tent space. Following that, the fidelity of the gen-
erated synthetic data is thoroughly assessed, ad-
dressing the fundamental question of whether the
model can produce valid and realistic covariance
matrices. With the quality of the synthetic data
established, the chapter proceeds to its final anal-
ysis: quantifying the impact of this data on cross-
subject classification performance to determine the
practical value of the proposed method. The pro-
posed RVAE is finally compared to a standard VAE
approach to confirm its benefit.

—— Total Loss
i —-=-- Recon Loss
200 e KL Loss

Figure 4.1: Representative training loss curves
for a right-hand class RVAE (fold 1). The
smooth convergence of the total loss demon-
strates stable training.

4.1 VAE Model Training and Latent
Space Characterization

The effectiveness of the generative model hinges on
two key aspects: stable training and the emergence
of a well-structured latent space. This section eval-
uates both.

4.1.1 Training Dynamics

The RVAE models were trained for a fixed 100
epochs. The incorporation of KL annealing shifts
the model’s focus from initial reconstruction fidelity
to eventual latent space regularization. Further-
more, a diversity loss term was active during the en-
tire training. The representative training curves in
Figure [£.1] demonstrate the success of this strategy.
The steady decrease of the total loss indicates sta-
ble convergence. The spike and subsequent decrease
of the KL divergence, paired with a decreasing and
then consistently low reconstruction loss, suggests
the model first prioritized learning the data’s struc-
ture for accurate reconstruction and then estab-
lished a well-regularized latent space suitable for
generative sampling.

4.1.2 Latent Space Structure

To assess the structure learned by the RVAE, the
latent space is visualized using Uniform Manifold
Approximation and Projection (UMAP) (McInnes
et al., 2018).

15


https://github.com/641e16/DA_RVAE
https://github.com/641e16/DA_RVAE

Subject ID
2

DI Y

UMAP Component 2

2 4 6 8 10 12 14 16
UMAP Component 1

Figure 4.2: 2D UMAP visualization of the
learned latent space for right-hand movement
data, generated from the model trained with
Subject 1 held out. The points are colored by
Subject ID, and their significant overlap indi-
cates the model learned a subject-invariant rep-
resentation.

As shown in Figure the latent codes or-
ganize into a distinct, elongated structure. Crit-
ically, when these points are colored by subject
1D, they appear heavily intermingled. There are no
large, isolated clusters that correspond to any single
individual—instead, the data from all subjects are
distributed throughout this shared structure. This
arrangement of the latent space suggests that the
RVAE has successfully achieved a representation
that is largely subject-invariant—a primary objec-
tive for effective cross-subject generalization. This
property, enabled by the parallel transport align-
ment preprocessing step, is highly relevant as it
implies that generated data will reflect generalized
patterns of motor imagery rather than the details of
specific subjects. Such samples could therefore be
more beneficial for augmentation in a LOSO-CV
evaluation.

4.2 Fidelity Assessment of Gener-
ated Covariance Matrices

Before assessing the impact of the synthetic data
on classifier performance in a cross-subject setting,
it is essential to first evaluate its intrinsic quality.
This involves verifying that the generated matrices
adhere to the necessary geometric properties and
that their statistical distributions are faithful to the
original data.

4.2.1 SPD Property Verification

A fundamental requirement for the generated data
is that each sample constitutes a valid SPD matrix.
Across all LOSO-CV folds and for both prior- and
posterior-based generation, 100% of the synthetic
matrices successfully passed verification checks for
symmetry and positive-definiteness. This confirms
that the architectural constraints and numerical
stabilization steps within the RVAE are effective.
This adherence to the required geometric proper-
ties is a necessary prerequisite, establishing that the
generated data is fundamentally valid and compati-
ble with the Riemannian geometry-aware classifiers
used in the subsequent analysis.

4.2.2 Variance Analysis

To quantitatively assess the fidelity of the synthetic
data, its variance and geometric spread were com-
pared against the original training data. The aver-
age variance ratios and geometric distances are pre-
sented in Table [f.1] with a detailed per-fold break-
down available in Appendix [B] Table

The fidelity analysis highlights a key trade-off be-
tween matching the data’s statistical variance and
its geometric diversity. The chosen v hyperparam-
eter value maintained a statistical variance ratio
(synthetic/original) very close to 1.0. While the di-
versity loss term substantially improved the geo-
metric diversity, initial generation still produced
samples that were more concentrated than the orig-
inal data. Increasing the v value further to close
the geometric diversity gap during training came
at the cost of unacceptably inflating the statisti-
cal variance. Therefore, an optimal v was chosen
empirically—maximizing geometric diversity under
the primary constraint of maintaining realistic sta-
tistical properties.

To bridge the remaining geometric diversity gap,
a complementary approach was utilized by setting
the diversity scale parameter to 2.2 during data
generation. The parameter modifies the sampling
process by directly scaling the random noise vec-
tor (e;) within the reparameterization equation [3.5]
This offered a more direct way to modulate geomet-
ric diversity during data generation increasing the
mean paired riemannian distance to 1.946 as seen
in Table allowing for synthetic data that more
closely matches the original data on both metrics
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without altering the trained model’s learned statis-
tical distribution.

4.3 Data Augmentation Impact on
Cross-Subject Classification

Having established the fidelity of the generated
SPD matrices, we now assess their practical util-
ity in a cross-subject classification task. This sec-
tion details the effect of data augmentation on the
balanced accuracy of the MDM, KNN, and SVC
classifiers.

The statistical significance of the observed per-
formance changes was assessed using a Wilcoxon
signed-rank test (Wilcoxon, [1945). Suitable for
comparing paired samples, the test is used on
the baseline accuracy versus the accuracy achieved
with data augmentation for each subject. To ac-
count for multiple comparisons across the different
classifiers and generation methods, Bonferroni cor-
rection (Dunnl |1961) is applied. With six hypothe-
ses being evaluated, the significance threshold for
the p-value is adjusted to 0.0083, and any value
below this corrected threshold is considered statis-
tically significant.

4.3.1 Classification Performance

The main classification results are summarized in
Table[4:2] The baseline performance, using only the
original training data, yielded average accuracies of
59.52% for MDM, 53.19% for KNN, and 60.67% for
SVC.

For the MDM classifier, performance was largely
stable with all conditions showing only minor, non-
significant fluctuations.

In contrast, data augmentation had a consis-
tent and significant negative impact on the SVC
across almost all conditions. Performance dropped
by as much as 4.01% (p = 0.002) when trained on
synthetic-only data from the posterior generator.

However, for the distance-based KNN classifier,
data augmentation provided a clear and consis-
tent benefit in every tested condition. The poste-
rior generator produced the strongest results, with
its synthetic-only data significantly increasing ac-
curacy by 3.49 percentage points to 56.68% (p =
0.002) and its augmented set providing a signifi-
cant gain of 2.45% (p = 0.002). The prior genera-
tor produced a similar positive trend; its synthetic-

only data also achieved a significant improvement
of 3.00% (p < 0.001) and an improvement of 2.19%
(p = 0.003) on the augmented data underscoring
the consistency of this improvement for KNN.

These divergent outcomes strongly suggest that
the benefit of data augmentation depends on the
dynamic between the generated data and the clas-
sifier’s internal logic. With the synthetic data con-
sistently being less diverse, with a lower mean dis-
tance between samples compared to the original
data suggests that the RVAE is creating ’cleaner’,
more prototypical examples of each class, which are
clustered more tightly around the geometric mean
on the manifold. This lower diversity appears to
help the local, distance-based KNN classifier, while
hindering the margin-based SVC, which may ben-
efit from more varied data to define a robust de-
cision boundary. Data from the prior is sampled
from a generalized latent distribution, likely tend-
ing to create centrally-located examples far from
the decision boundary. The posterior, which aug-
ments existing training points, is constrained by
the initial data’s distribution and is less likely to
generate novel samples in the sparsely populated
boundary regions that SVC needs to define an ef-
fective decision boundary.

4.3.2 Generation Strategies Comparison

Both prior- and posterior-based sampling proved
effective for augmenting data for the KNN classi-
fier. The posterior generator led to slightly larger
and more statistically significant improvements
compared to the prior generator. For the SVC
and MDM classifiers, both generation methods re-
sulted in a similar degradation/stagnation of per-
formance. The distribution of accuracy improve-
ments across subjects for each classifier and gen-
erator is shown in Figure |4.3| and Figure For
the KNN classifier, the median improvement is con-
sistently positive, whereas for SVC it is consistently
negative.

4.3.3 Subject-wise Performance Analysis

While the average results are informative, the ef-
fect of augmentation varied across subjects. The
subject-wise performance for each classifier is de-

tailed in Appendix A (Figures B.3)). For

the KNN classifier (the best-performing case), aug-
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Table 4.1: Fidelity analysis of synthetic data, averaged across all 12 LOSO-CYV folds. The table
compares the statistical variance ratio and the mean intra-class Riemannian distance between
original and synthetic datasets for both prior and posterior generators.

Generator Statistical Variance Geometric Diversity
Original Synthetic (Ratio) Original Synthetic

Prior 0.208 0.221 (1.061) 2.032 1.946

Posterior 0.208 0.221 (1.063) 2.032 1.918

Table 4.2: Average balanced accuracy (%) across 12 subjects (LOSO-CV folds). Results are shown
for Baseline (no augmentation), Augmented (Original + Synthetic), and Synthetic-Only training
conditions for both prior and posterior generators and the corresponding p-values.

. Baseline Augmented Scenario Synthetic-Only Scenario
Generator Classifier
Acc. (%) Acc. (%) Improvement p-value Acc. (%) Improvement p-value
MDM 59.52 £5.52 58.92 £ 5.40 -0.59% 0.092 58.36 &+ 5.03 -1.16% 0.043
Prior KNN 53.19 £4.00 55.38 £4.17 +2.19% 0.003  56.19 +4.19 +3.00% < 0.001
SvVC 60.67 +5.33 57.43+6.32 -3.24% 0.016 56.75 + 6.37 -3.92% 0.002
MDM 59.52 £5.52 58.83 £5.29 -0.69% 0.092 58.95 £+ 5.51 -0.57% 0.151
Posterior KNN 53.19 £4.00 55.64 +£4.13 +2.45% 0.002  56.68 + 4.06 +3.49% 0.002
SVC 60.67 +5.33 57.18 +6.57 -3.48% 0.007  56.66 + 6.25 -4.01% 0.002

mentation provided substantial accuracy gains for
some subjects (e.g. subject 1, 2, and 8), while for
others the positive effect was small or slightly neg-
ative in very rare cases.

4.3.4 Scrambled Label Test

A diagnostic scrambled label test was conducted to
ensure that classifiers were learning task-relevant
features rather than artifacts of the data generation
process. In this test, classifiers were trained on both
original and synthetic data with randomly shuffled
class labels. The resulting average balanced accura-
cies were consistently at chance level for all classi-
fiers and conditions (e.g., prior generator synthetic
data: MDM 50.7%, KNN 50.7%, SVC 50.6%). This
confirms that the observed performance improve-
ments are due to the model learning and generating
meaningful, class-conditional data structures.

4.4 Standard VAE Comparison

To validate the necessity of the proposed Rieman-
nian framework, a standard Euclidean VAE was
trained as a comparative baseline. This model used
an identical encoder/decoder architecture but op-
erated directly on the vectorized form of the covari-

ance matrices, without the geometric mappings (log
and exp rnaups)7 geometric loss or constraints.

The standard VAE fundamentally failed to gen-
erate valid data. While all generated matrices were
symmetric by construction, a substantial percent-
age in every fold were not positive-definite (e.g. over
40% in the first fold). This is a critical failure, as the
output is not compatible with Riemannian classi-
fiers, violating the primary requirement of the task.

Augmenting the training set with the portion of
valid SPD data from the standard VAE was detri-
mental to classification. As shown in the results in
Appendix[B] it caused a statistically significant per-
formance degradation for the MDM classifier (up to
-9.49% with p < 0.001) and offered no significant
benefit to the KNN or SVC classifiers. This stands
in contrast to the RVAE, which provided a signifi-
cant boost to KNN performance.

This provides clear evidence that a naive appli-
cation of a VAE in the Euclidean space is insuf-
ficient. The geometric framework of the RVAE is
not just beneficial but essential for both generating
valid SPD matrices and for achieving effective data
augmentation in this cross-subject context.
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Figure 4.3: Distribution of accuracy improvement for each classifier using the prior generator.
The plot shows the percentage point difference between the ’Augmented’ and ’Synthetic-Only’
conditions relative to the 'Baseline’ across all subjects. The red line signifies the mean whilst the

blue line is the median.

5 Conclusions

This thesis set out to investigate whether a novel
Riemannian geometry-preserving Variational Au-
toencoder could generate high-fidelity EEG covari-
ance matrices and if this data can improve cross-
subject classification in MI-BCI. This final section
directly addresses the core research questions, dis-
cusses the implications of the experimental results
in the broader context of BCI research, and pro-
vides directions for future work.

5.1 Key Findings

The empirical results presented in the previous
chapter can be narrowed down into two main areas:
the fidelity of the generative model, and second, its
subsequent impact on classification.

A key success was the generation of valid SPD
matrices, a non-trivial task achieved through the
initial alignment of training data to a common
tangent space allowing for the use of logarithmic
and exponential mapping in order to traverse be-
tween the manifold and the corresponding tangent
space. The addition of the parallel transport align-
ment preprocessing technique enabled the RVAE
to learn a subject-invariant latent space—a desired
property for cross-subject generalization. The re-
sulting synthetic data demonstrated high, although
slightly inflated, statistical variance (a variance ra-

tio of approx. 1.06), while its geometric diversity
was somewhat reduced (a distance ratio of approx.
0.95), indicating that the synthetic samples were
slightly more concentrated and prototypical than
the more varied real-world data.

When this high-fidelity synthetic data was ap-
plied, the classification outcomes were highly di-
vergent, underscoring that the utility of the data
is not universal but is instead classifier-dependent.
For the K-Nearest Neighbors classifier, the utiliza-
tion of the generated data yielded a statistically sig-
nificant improvement in balanced accuracy, boost-
ing it by up to 3.49% (p = 0.002) using posterior
sampling. Conversely, the same data provided no
significant changes in performance for the Mini-
mum Distance to Mean classifier and significantly
hindered the performance of the Support Vector
Classifier with its accuracy decreasing by as much
as 4.01% (p = 0.002).

5.2 Discussion and Interpretation

The results of this study, particularly their depen-
dency on the chosen classifier, offer several impor-
tant insights into the nature of generative data aug-
mentation using the RVAE on the SPD manifold for
EEG covariance matrices.
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Figure 4.4: Distribution of accuracy improvement for each classifier using the posterior generator,
showing similar trends to the prior generator but with more pronounced fluctuations.

5.2.1 Generative model capabilities

A primary contribution of this work is the confir-
mation that the RVAE framework is inherently ca-
pable of generating valid SPD matrices, a funda-
mental requirement that standard VAEs often fail
to meet. This success is directly attributable to the
underlying Riemannian geometry that enforces the
SPD constraint by design. The geometric frame-
work proved to be exceptionally well-suited for this
task.

However, generating matrices that are merely
valid is insufficient—they must also be faithful rep-
resentations of the original data. This requires the
model to learn the underlying geometry of the EEG
covariance matrices to reconstruct them with high
fidelity. Fidelity was assessed by comparing the sta-
tistical and geometric variance of the synthetic data
against the original. The results indicate that by
carefully tuning generation parameters and struc-
turing the loss function, a high degree of fidelity in
variance can be achieved.

The significance of this achievement is under-
scored when contrasted with a standard VAE,
where even the valid portion of its generated output
significantly worsened the MDM classifier. The fact
that the RVAE-generated data led to performance
improvements in some cases—and at least main-
tained baseline performance in others—is a promis-
ing indication of its utility. It demonstrates that
the RVAE is not simply producing random SPD
matrices; it is successfully learning and embedding

meaningful manifold information from the training
data into its generative process.

5.2.2 The Classifier-Dependent Nature of
Augmentation

The divergent impact of augmentation on KNN and
SVC classifiers strongly suggests that there is no
universal solution for RVAE data augmentation in
MI-BCIs. The effectiveness of synthetic data de-
pends on not only the data generation technique
but also the classifiers internal workings.

Given the results, it may be that the KNN clas-
sifier, which relies on local neighborhood density
and geometric distance, benefits from the VAE-
generated data for two reasons: firstly, because the
data is more concentrated and prototypical, and
secondly, because the sheer increase in sample size
creates a much denser and more reliable neighbor-
hood for classification. The synthetic samples may
act as clean, prototypical exemplars that densify
the center of the class manifold. Thus for a new
test sample, this would creates a more well-defined
local neighborhood of a single class, improving clas-
sification.

Conversely, the SVC, which seeks to find a
maximum-margin separating hyperplane, may be
obstructed by this lower diversity. The less varied
synthetic data might cause the SVC to learn a deci-
sion boundary that is too tightly fitted to the center
of the class distributions, making it brittle and less
generalizable to real-world test samples that exhibit
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higher diversity.

The performance of the Minimum Distance to
Mean classifier, which remained largely unchanged,
provides another layer to this interpretation. As
MDM classifies samples based on their Rieman-
nian distance to the geometric mean of each class,
a naive geometric model could easily ”hack” this
benchmark by simply learning to reproduce the
Riemannian class means producing similar results.
The fact that the RVAE maintained MDM perfor-
mance while closely matching the variance charac-
teristics of the original data is therefore significant.
It stands in contrast to the standard VAE, whose
generated data was detrimental, causing a perfor-
mance drop of 9.49% (p < 0.001). Accordingly, the
stable MDM performance is not a neutral result,
but rather a positive confirmation of the genera-
tor’s capabilities.

Due to this classifier-dependence, this work,
therefore, refines the common goal of ”generat-
ing realistic data” in BCI data augmentation to a
more precise objective: generating data that com-
plements the specific learning algorithm being used.

5.3 Future Research

This study provides a foundational proof of concept
that opens avenues for future research. The evalu-
ation was conducted on two datasets and a specific
set of three geometry-aware classifiers. Building on
this work, future research could proceed in several
directions:

e Advanced Latent Space Sampling: The
framework could be extended by incorpo-
rating more advanced sampling techniques.
Rather than sampling from the prior, one
could explore interpolation between latent
codes of different subjects. Implementing a
Riemannian Hamiltonian Variational Autoen-
coder (RHVAE) along with Riemannian ran-
dom walks or Riemannian Hamiltonian Monte
Carlo (RHMC) sampling may further capture
a more faithful latent distribution for data
generation as demonstrated in recent RHVAE
data augmentation research for Magnetic Res-
onance Imaging (MRI) (Chadebec & Allas-
sonniere} 20215 |(Chadebec et al.l [2023).

e Integrating Discriminative Frameworks:
A highly promising direction is to integrate

the proposed geometric framework with ar-
chitectures known for their strong discrimina-
tive power, such as vVEEGNet (Zancanaro et
al. 2024). While the RVAE creates a valid,
subject-invariant space, vEEGNet has shown
potential in learning latent spaces where MI
classes are explicitly pushed apart. By incor-
porating the Riemannian architecture features
(e.g custom Riemannian loss function and ge-
ometric mappings) into a vEEGNet-like archi-
tecture, a hybrid model for EEG covariance
matrices could be created that is optimized to
learn a latent space that is simultaneously ge-
ometrically valid, subject-invariant, and class-
discriminative. This combination could lead to
a significant performance increase beyond the
improvements already achieved, fully leverag-
ing the latent space for classification.

e Classifier-Specific Augmentation: A key
insight from this work is the classifier-
dependency. Future research could therefore
focus on developing loss functions or data gen-
eration techniques for the VAE that are tai-
lored to a specific classifier. For example, a
targeted strategy for the SVC could be devel-
oped to generate class-specific samples along
the boundary where the two classes meet—
which may directly improve it’s performance
specifically.

5.4 Concluding Remarks

The presented work successfully developed and val-
idated a novel Riemannian geometry-preserving
VAE for EEG covariance matrix data augmenta-
tion in the challenging cross-subject MI-BCI con-
text, revealing that the model is not only capable
of consistently generating valid SPD matrices but
also that the synthetic data can be used to maintain
or even significantly improve classification perfor-
mance for specific classifiers. This work shows that
while generative modeling on the SPD manifold is
a powerful and promising approach, its success is
not universal. Its success hinges on the dynamic
between the generation techniques and the learn-
ing mechanisms of the downstream classifier. This
finding underscores the importance of developing
data augmentation techniques in tandem with the
specific classifiers they are intended to support.
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A 3-channel Dataset Additional Results

Table A.1: Average Classification Performance for the 3-Channel (Left/Right Hand) MI Dataset.
The table shows balanced accuracy (mean % =+ std. dev. %) and improvement percentages across
9 LOSO-CYV folds. Due to the small dataset sample size, no p-values were calculated.

. Baseline Augmented Scenario Synthetic-Only Scenario
Generator Classifier
Acc. (%) Acc. (%) Improvement Acc. (%) Improvement

MDM 55.93 £5.02 55.89 £+ 5.37 -0.05% 56.04 +0.11%
Prior KNN 52.95 +£2.60 5291 £3.13 -0.04% 53.45 +0.49%

SVC 56.23 £5.15  56.20 £ 5.00 -0.03% 55.93 -0.30%

MDM 55.93 £5.02  56.04 £ 5.67 +0.11% 55.88 -0.05%
Posterior KNN 52.95 +£2.60 52.43 £3.08 -0.53% 52.45 -0.50%

SVC 56.23 £5.15 56.56 £ 5.16 +0.33% 56.55 +0.32%

Table A.2: Fidelity analysis of 3-channel synthetic data, averaged across all 9 LOSO-CV folds.
The table compares the statistical variance ratio and the mean intra-class Riemannian distance
between original and synthetic datasets for both prior and posterior generators.

Generator Statistical Variance Geometric Diversity
Original Synthetic (Ratio) Original Synthetic

Prior 0.505 0.499 (0.9939) 0.2311 0.2224

Posterior 0.505 0.502 (0.9882) 0.2263 0.1862
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B 13-channel Dataset Additional Results

Table B.1: Detailed Data Fidelity Metrics Per Fold. For each fold of the LOSO-CV, the table
shows statistical variance metrics (Ratio, Original, and Synthetic) and the mean paired intra-class
Riemannian distance for both original (O) and synthetic (S) data.

Statistical Variance

Mean Intra-Class Geo. Dist.

Generator Test Subject
Ratio (S/O)  Original = Synthetic  Original (O) Synthetic (S)

1 1.0637 0.208322  0.221585 2.0627 1.9276
2 1.0663 0.206122  0.219777 2.0448 1.9372
3 1.0677 0.206693  0.220679 2.0397 1.9286
4 1.0685 0.207656  0.221883 2.0470 1.9402
5 1.0620 0.207457  0.220319 2.0038 1.9208
6 1.0525 0.209491 0.220500 2.0528 1.8538

Prior 7 1.0577 0.207586  0.219572 2.0448 1.9201
8 1.0599 0.209262  0.221792 2.0073 1.9786
9 1.0580 0.205711 0.217637 2.0560 1.9855
10 1.0624 0.211294  0.224470 2.0031 1.9806
11 1.0543 0.208945  0.220293 2.0257 2.0313
12 1.0570 0.211065  0.223096 1.9982 1.9442
Average 1.0608 0.208300 0.220967 2.0322 1.9457
1 1.0685 0.208322  0.222599 2.0660 1.9225
2 1.0699 0.206122  0.220527 2.0689 1.8890
3 1.0723 0.206693  0.221636 2.0592 1.8892
4 1.0711 0.207656  0.222428 2.0640 1.9050
5 1.0675 0.207457  0.221459 1.9222 1.7077
6 1.0604 0.209491 0.222151 1.9910 1.8253

Posterior 7 1.0593 0.207586  0.219887 2.0570 1.9384
8 1.0563 0.209262  0.221034 2.1603 2.0985
9 1.0570 0.205711 0.217430 1.9434 1.9370
10 1.0573 0.211294  0.223401 2.0750 2.0235
11 1.0630 0.208945  0.222101 1.9539 1.9224
12 1.0577 0.211065  0.223235 2.0169 1.9617
Average 1.0633 0.208300 0.221491 2.0315 1.9183
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Figure B.1: Per-subject balanced accuracy for the MDM classifier under three conditions: Baseline
(no augmentation), Augmented (original 4+ synthetic), and Synthetic-Only, comparing the Prior
(left) and Posterior (right) generators. Horizontal dashed lines indicate the average performance
for each condition. The plot visually demonstrates the stable performance of the MDM classifier,
with data augmentation resulting in only minor fluctuations in accuracy across most subjects.
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Figure B.2: Per-subject balanced accuracy for the KNN classifier under three conditions: Baseline
(no augmentation), Augmented (original 4+ synthetic), and Synthetic-Only, comparing the Prior
(left) and Posterior (right) generators. Horizontal dashed lines indicate the average performance
for each condition. The plot visually demonstrates the general trend of performance improvement
for the KNN classifier, reaching as high as 7.8% for the third subject.
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Table B.2: Average Classification Performance for the Standard VAE Baseline. The table shows
balanced accuracy (mean % =+ std. dev. %), improvement percentage, and the corresponding p-
values from a Wilcoxon signed-rank test.

Generator Classifier Baseline Augmented Scenario Synthetic-Only Scenario

Acc. (%) Acc. (%) Improvement p-value Acc. (%) Improvement p-value

MDM 59.52 £5.52  51.08 £ 2.09 -8.43% 0.001  50.03 £0.20 -9.49% < 0.001
Prior KNN 53.19 £4.00 54.75£4.32 +1.56% 0.054 52.68 +2.92 -0.51% 0.970
SvVC 60.67 £5.33  59.60 £5.04 -1.07% 0.160 56.30 £ 5.00 -4.37% 0.005
MDM 59.524+5.52  50.97 £ 2.00 -8.55% < 0.001 50.07+£0.24 -9.45% < 0.001
Posterior KNN 53.19 £4.00 54.14+4.16 +0.95% 0.129 52.04 £2.19 -1.16% 0.339
SvVC 60.67 +5.33  59.28 £5.22 -1.39% 0.036 56.50 +4.82 -4.17% 0.009
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Figure B.3: Per-subject balanced accuracy for the SVC classifier under three conditions: Baseline
(no augmentation), Augmented (original 4+ synthetic), and Synthetic-Only. The charts compare
results from the Prior Generator (left) and Posterior Generator (right). Horizontal dashed lines
indicate the average performance across all subjects for each condition. The plot visually demon-
strates the consistent, though variable in magnitude, degradation in SVC performance with data
augmentation across most subjects.
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