. and engineering
groningen

/ university of faculty of science

Hybrid Continuous Mixtures of
Probabilistic Circuits

Student: First supervisor: Second supervisor:
Dewi Batista Prof. M. Grzegorczyk Prof. H. Jaeger

Abstract

We offer a tutorial-like overview of probabilistic circuits (PCs), a class of generative
probabilistic models which offer tractable means of answering evidence and marginal
queries exactly. A motivation of their application to tractable probabilistic inference
with complete or missing data is then presented. An overview of continuous mixtures
of PCs (CMPCs) — appropriately-weighted latent variable mixture models in which
latent variables are continuously distributed and PCs are fit to each component —
is then given and a review of their application to density estimation and sampling is
offered. As of the time of writing, the resources from which one can learn about PCs
consists of a series of independent papers whose notation, style of writing and assumed
prior knowledge differ significantly. As for CMPCs, there is only one such source:
the original paper by Correia et al. [9] in which they were introduced. As such, the
tutorial-like overviews of PCs and CMPCs given in this work are two of its intended
contributions. We follow by introducing hybrid CMPCs which are CMPCs trained in a
manner which encourages both generative and discriminative learning. The extent to
which either learning paradigm is encouraged during training is dictated by a mixing
hyperparameter A € [0, 1]. Typically, deep learning models are trained under a single
paradigm as few model classes facilitate a hybrid learning objective. To investigate the
trade-off of generative and discriminative power as the mixing hyperparmeter varies, we
train hybrid CMPCs for A € {0,0.2,0.4,0.6,0.8,1} on Binary MNIST. We evaluate two
complementary criteria of each hybrid CMPC: its classification accuracy on incomplete
samples of Binary MNIST and the visual quality of samples drawn from the model.
Our experiments demonstrate that hybrid CMPCs trained with intermediate values of
A € [0.4,0.6] yield an effective balance, obtaining high classification accuracies while
maintaining reasonable sample quality.

Master’s Thesis
Applied Mathematics

Contents

(I__Introductionl

2 Prefiminanies
[2.1 Generative Probabilistic Modellingl

[2.2 Tractability]

[2.3 Expressivity and Expressive-Efficiency]o

|3 Probabilistic Circuits (PCs)|

[B.1_Overview of PCd
[3.2 Tractability of PCs| . . .

[3.3 Tutorial-like Example of PCs|

[3.4 Applications of PCg|. . .

{4

Continuous Mixtures of Probabilistic Circuits (CMPCs)|

5

4.1 Motivating Continuous Mixtures|.

4.2 (Variational) Autoencoders|. L.

4.3 Completing the Overview of CMPCs|

[4.4 Results Obtained by CMPCs|.

ybri S

[>.1 Learning Discriminative CMPCs|.

[5.2 Learning Hybrid CMPCs|

[>.3 Benchmarking Hybrid CMPCs on Binary MNIST|

(5.4 Our GitHub Repository|

1 Introduction

In modelling real-world systems, an often-important criterion is the extent to which the
considered model class facilitates uncertainty. A well-known example of such a real-world
system, whose method of handling uncertainty predates modern methods, is MYCIN [41]:
an expert system developed in the 1970s to assist medical practitioners in treating bacterial
infections. A common situation in the setting of treating such infections is that the symp-
toms reported by a patient may be vague, incomplete or entirely missing. Additionally,
distinct infections may be present with overlapping symptoms making it difficult to isolate
a specific cause. To diagnose such a patient, even in the face of said ambiguities, MYCIN
would compute certainty factors: a heuristic rule-of-thumb measure assigning strength to
the hypothesis that the patient had a particular infection. While impressive for its time,
MYCIN was ultimately never deployed commercially for a myriad of reasons. One such
reason was scepticism toward its ad-hoc approach to handling uncertainty. This is in con-
trast to later methods grounded in well-studied frameworks, such as fuzzy logic approaches
based on fuzzy set theory [45] and probabilistic approaches grounded in probability the-
ory. Of these, the approach of particular interest to us is probabilistic modelling, to which
probabilistic circuits (PCs) belong.

An important advent of probabilistic modelling was the development of Bayesian net-
works by Judea Pearl in the mid-1980s. Bayesian networks offer mathematically-grounded
means of dealing with uncertainty and, importantly for comparison in our work, are capable
of encoding complex distributions. While certainly a significant step in the history of prob-
abilistic modelling, Roth [38] showed in 1996 that answering marginal queries exactly using
Bayesian networks is in general #P-hard, demonstrating that their application to proba-
bilistic inference has a clear and unfortunate limit. In line with this, efforts were made to
develop probabilistic models capable of both encoding complex distributions sufficiently-
well and efficiently answering typically-intractable probabilistic queries such as marginals.
A consequence of this effort was the introduction of sum-product networks (SPNs) in 2011
[35] which were renamed to probabilistic circuits (PCs) in 2020 [6].

Since their inception, methods for learning PCs from data have made reasonable progress
but have been overshadowed by many rapidly improving approaches in deep learning for
common tasks such as sampling, density estimation and classification, to name a few. In
attempt to remedy this, many contemporary methods of learning PCs from data involve
the incorporation of ideas from deep learning-based approaches, such as PC architectures
which in some way include convolutions [4], variational autoencoders [9] or transformers
[26]. Of interest to us is work by Correia et al. [9] which details a variational autoencoder-
inspired method of learning PCs from data, purely for generative purposes (sampling and
density estimation), by utilising Monte Carlo-style approximations. In adapting their work,
we seek to learn PCs in a similar manner of Monte Carlo-style approximations but for a
hybrid of purposes, encouraging the learning of PCs with generative capabilities, as in the
original work, and discriminative capabilities for classification. This is done by utilising a

hybrid loss function during training, inspired by [3], in which both generative and discrim-
inative learning is encouraged. The extent to which either is encouraged is determined by
a mixing hyperparameter A € [0, 1] as in

L£(¢) = ACE(¢) + (1 — A)NLL(¢)

where ¢ denotes the parameters of the model, CE(¢) is a measure of discriminative loss
and NLL(¢) is a measure of generative loss.

The intended contributions of this work are three-fold: 1) to offer a tutorial-like
overview of probabilistic circuits (PCs), 2) to offer an overview of continuous mixtures
of probabilistic circuits (CMPCs) and 3) to experiment with the hybrid learning of CM-
PCs. As of now, there exist no beginner-friendly overviews of probabilistic circuits and so
one must piece together their understanding from multiple papers which differ in notation,
writing style and assumed prior knowledge. Similarly, the only source one has available
to learn about continuous mixtures of probabilistic circuits, by Correia et al. [9], assumes
reasonable prior knowledge about probabilistic circuits and areas of deep learning. As such,
contributions 1) and 2) seek to remedy this.

In a series of preliminaries needed to offer an overview of PCs are given,
including the tractability, expressivity and expressive-efficiency of classes of probabilistic
models. Following this, PCs are overviewed in along with a tutorial-like example
of using them to answer standard probabilistic queries. Then, a brief list of the applications
of PCs to well-known tasks, such as anomaly and out-of-distribution (OOD) detection,
sampling, classification and in-painting is given. In we detail the variational
autoencoder-inspired method of learning PCs by Correia et al. [9] which yields continuous
mixtures of probabilistic circuits. Our adaptations to the work of Correia et al. are given
in including benchmarks of their application to Binary MNIST. A discussion
section and concluding remarks follow.

2 Preliminaries

To provide a sufficiently-detailed overview of probabilistic circuits, we first lay out the
relevant preliminary theory. We begin by introducing generative probabilistic modelling
followed by notions of the tractability, expressivity and expressive-efficiency of a class of
probabilistic models.

2.1 Generative Probabilistic Modelling

Probabilistic modelling is a framework for representing and reasoning about uncertainty in
systems involving random variables and their interplay. It allows one to reason meaning-
fully in a probabilistic manner in contexts where uncertainty is inherent, data is incomplete
or noisy, and complex relationships between variables is to be understood and quantified.

For a formal definition of a generative probabilistic model consider

Note: To avoid having to write probability mass/density function in full throughout this
work, we will write probability function.

Definition 2.1 In line with Choi et al. [6, Subsection 2.1], a generative probabilistic model
(X, po) consists of a finite set X = {X1,...,Xp} of random variables and a representation
pe : Ox — Rxq of the joint probability function on the sample space Qx = Qx, X---xx,
of X parameterised by a parameter set ©.

Note that we do not require the parameter set © of a probabilistic model (X, pg) to consist
only of real numbers as it is often helpful to allow for the model’s representation pg of the
underlying joint probability function to correspond to richer structures such as graphs, as
in Bayesian networks, Markov random fields and probabilistic circuits. This definition is
rather broad but such flexibility proves rewarding.

The holy grail of generative probabilistic modelling is to find an exact, efficiently com-
puted and algebraically manipulable representation of the underlying joint probability func-
tion of interest. If obtained, one can reason probabilistically with ease but, as we will see,
the purpose, limitations and learning of generative probabilistic models varies heavily. To
illustrate this, consider probabilistic graphical models (PGMs) which offer a graph struc-
ture in which conditional dependencies between modelled random variables are expressed
in a compact and human-interpretable manner. The most well-known class of PGMs are

Bayesian networks, as defined in [Definition 2.2

Definition 2.2 A Bayesian network (X,p(g,)) is a generative probabilistic model whose
parameter set consists of a directed acyclic graph (DAG) G in which there is a single node
for each random variable in X = {X1,..., X,,} and directed edges represent conditional de-
pendencies between these variables. The parameter set 0 specifies the conditional probability
distributions associated with each variable given its parents in G.

As to how a Bayesian network (X, p(gg)) offers a representation of the underlying joint
probability function over €2x, Bayesian networks satisfy the local Markov property: each
random variable X; € X is independent of its non-descendants in G given its parents. That
is, with informal/relaxed notation for brevity, P(X;|X\{X;};G,0) = P(X;|pa(X,);G,0) for
i =1,...,n where pa(X;) denotes the set of nodes in G with an outgoing edge to Xj;, often
referred to as the parents of X;. With this in mind, a Bayesian network (X,p(gﬁ)) can
be described as a generative probabilistic model in which the parameters are as described
above and the representation of the joint probability function p(gg) : 2x — R>q is given
by

n

pgo)(x) = [[P(zilpa(X.); G,6).

i=1

©
Q)

Figure 1: A Bayesian network pertaining to patients of a medical practitioner in which
modelled variables consist of whether or not the patient is left handed (L), smokes (S), has
heart disease (H) and has lung cancer (C).

How one learns a Bayesian network from data — that is, its DAG G and parameter set 6 —
is detailed in [23], chapter 18]. To demonstrate how a Bayesian network might be employed

in practice, consider [Example 2.1

Example 2.1 Suppose a medical practitioner has amassed a dataset pertaining to her
patients including whether or not they smoke (S), have heart disease (H), have lung cancer
(C) and are left handed (L). She would like to know how these mostly health-related factors
influence one another, if at all, and so she constructs a Bayesian network, whose DAG is
illustrated in[Figure 1|, from her dataset. The medical practitioner sees immediately that left
handedness has no influence on, and is not influenced by, any of the other factors. More
interestingly, the structure would suggest that the medical practitioner’s confidence/belief
that a patient has lung cancer given that they smoke should be unchanged upon knowing
that the patient has heart disease. That is, P(C|S,H) = P(C|S). Further, the medical
practitioner is able to obtain the representation

of the underlying joint probability function over the random variables L, S, H and C.

It should be noted that Bayesian networks are not the only example of a prominent gen-
erative probabilistic model. The reason that we briefly consider Bayesian networks here is
that they serve as a friendly and intuitive introduction to generative probabilistic models.
Additionally, the core makeup of a Bayesian network being a directed acyclic graph and
a parameter set lends nicely to the core makeup of the class of generative probabilistic
models introduced in probabilistic circuits (PCs).

Following this, a natural question arises: when is employing the class of probabilistic
circuits, as opposed to the class of Bayesian networks, or any other class of probabilistic
models, beneficial? In addressing this question, it helps to understand the tractability,
expressivity and expressive-efficiency of classes of probabilistic models, which are considered
in the remainder of this section.

2.2 Tractability

The tractability of a class of probabilistic models is the extent to which it offers computa-
tionally efficient means of performing probabilistic inference. Given a probabilistic model
(X, pe), probabilistic inference is the act of answering probabilistic queries using pg. Ex-
act probabilistic inference is simply probabilistic inference without approximation. A list
of common probabilistic queries, which often arise naturally in performing inference on

real-world systems, are given in Definitions [2.3] [2.4] [2.6] and 27]

Definition 2.3 A full evidence query (evi) is the computation of pe(x) for a realisation
x € Ox.

Definition 2.4 A marginal query (marg) is the computation of pe(x’) for a partial real-
isation x' € Qx/ with X' C X.

Definition 2.5 A conditional query (cond) is the computation of pe(X'|x") for partial
realisations x' € Qx/ and x" € Qx» with X', X" C X such that X’ N X" = (. Note that
if a class of probabilistic models is tractable with respect to evi and marg queries then
it is tractable with respect to cond queries since pe(X'|x") = pe(x/',x")/po(x") requires
answering a single evi query and o single marg query.

Definition 2.6 A mazimum a posteriori query (MAP) is the computation of the par-
tial realisation x' € Qx: which mazimises pe (X' |x") for a partial realisation x" € Qxn
where X', X" C X such that X' N X" = () and X' U X" = X. That is, computing

arg max,cq, pe(x'[x").

Definition 2.7 A marginal mazximum a posteriori query (MMAP) is the computation
of the partial realisation x' € Qx/ which mazimises po(x'|x") for a partial realisation
x" € Qx» where X', X" € X such that X' N X" =0 and X' UX" c X.

With definitions of the probabilistic queries of interest out of the way, we define the
tractability of a class of probabilistic models with respect to a class of probabilistic queries

in Definition 2.§

Definition 2.8 A class of probabilistic models M is tractable with respect to a class of
probabilistic queries Q if all queries ¢ € Q can be answered with complezity O(poly(|m|))
for all models m € M.

Here, |m| denotes the ‘size’ of a model m € M and is dependent on the class M at hand.
For example, the size of a Bayesian network (X, pg) is determined by the size of its factors
[23, Definition 4.1], e.g. the sizes of the conditional probability tables (if over discrete
random variables) it encodes. For a probabilistic circuit, which has a computational graph
structure, its size is determined by the number of edges in its computational graph. As

will be shown later on, the class of probabilistic circuits is tractable with respect to evi,
marg and cond queries but not MAP and MMARP queries.

Put into perspective, it would be only natural for the medical practitioner in [Exam-
[ple 2.1to want to use a probabilistic model to answer marg queries in which left handedness
is not present as it has no influence on, and is not influenced by, any other factors. For the
sake of illustrating a more sophisticated query, she may be interested in finding the partial
realisation which maximises the marginal distribution consisting of S, C' and H alone as
left-handedness is seemingly irrelevant to her interests. While this may be feasible in the
case of due to its small scale, to the medical practitioner’s disappointment, it
is not computationally feasible in general using Bayesian networks: within the framework
of Bayesian networks, evi queries are linear in the size of the network but marg queries
are #P-hard [38]. Similar challenge-inducing computational complexities follow for cond,
MAP and MMAP queries. That is, Bayesian networks are not tractable with respect to
marg, cond, MAP or MMAP queries.

Given these limitations, it is only natural to explore classes of probabilistic models
which are tractable with respect to marg and cond queries, which includes the class of
probabilistic circuits (PCs) [35]. For an overview of which (non-)probabilistic models are
tractable with respect to the probabilistic queries defined earlier, consider

Model \Probabilistic query H sampling ‘ evi ‘ marg ‘ cond ‘ MAP ‘ MMAP

GANs [29] v X X X X X
Bayesian networks (BNs) [38] v v X X X X
Probabilistic circuits [6] v v v v X X
Tree-shaped BNs [23] v v v v v X
Fully-factorised models v v v v v v

Table 1: A variety of generative (non-)probabilistic models and their tractability. ‘GANs’
is an abbreviation of generative adversarial networks, a class of deep generative models.

2.3 Expressivity and Expressive-Efficiency

We see in that the class of probabilistic circuits is tractable with respect to classes
of probabilistic queries which the class of Bayesian networks is not, namely marg and
cond queries. Similarly, the classes of fully-factorised models and tree-structured Bayesian
networks are both tractable with respect to MAP queries while PCs are not. When
shown this, a natural question is why one would not always employ fully-factorised models
in favour of probabilistic circuits or Bayesian networks. To answer this, like all good
things in machine learning, developing an appropriate model is a balancing act. Roughly
put, increased tractability comes with undesirable deficits. In line with this, of interest
to our work are classes of generative probabilistic models which strike a balance between
tractability and the extent to which they can capture underlying distributions from data,

i

@ Tractability
Naive B A
Trees

PCs

Expressivity

Normalising
Flows
Variational
Autoencoders

GANs

\J

Figure 2: The expressivity-tractability spectrum of generative (non-)probabilistic models.
Probabilistic models in light blue. Deep generative models in purple.

further referred to as the expressivity of the probabilistic model class in question. For a
crude illustration of where some well-known generative (non-)probabilistic models lie on
the expressivity-tractability spectrum, consider Note that this illustration is not
an analytic illustration of where these models lie: it is purely empirically-motivated.

To see why balancing expressivity and tractability is crucial to generative probabilistic
modelling, consider fully-factorised models (FFMs), illustrated in the top left of
which assume independence between model variables:

n

po(x) =[] p(:).

=1

Such models are highly tractable — answering evi, marg, cond, MAP and MMAP
queries is straightforward — but their simplifying assumption of independence between
model variables is often far too simplistic. Consequently, fully-factorised models trade off
high tractability for low expressivity. Toward the other end of the spectrum, variational
autoencoders (VAEs), which are not generative probabilistic models in the sense alluded
to by but are generative models nonetheless, typically do an excellent job of
encoding underlying distributions from data given suitably large datasets. That is, they
offer excellent expressivity. Their deficits lie in that they offer only tractable sampling and
so can only be used for the generative task of sampling. A well-trained VAE can offer very

convincing samples.

The significance of PCs is that they hit a sweet spot on the expressivity-tractability
spectrum. They are not quite as expressive as variational autoencoders — and so sam-
pling from them will not yield similarly convincing samples — but they offer far better
tractability. Similarly, PCs do not offer the same level of tractability as fully-factorised
models — and so their application to probabilistic inference is more limited — but they
offer far higher expressivity.

To add to this, tractability and expressivity alone are not enough: the expressive-
efficiency of model classes is also important. The expressive-efficiency of model classes can
be compared in the number of components in their representation pg needed to encode
an underlying distribution to a given level of precision. For example, it is known that
Gaussian mixture models (GMMs) satisfy a universal distribution approximation theorem
[18, Page 67]: any continuous density can be approximated arbitrarily well by a GMM with
sufficiently many components. As such, GMMs offer perfect expressivity. That said, in
practice, they require an infeasible number of components to fit complex distributions to
reasonable degrees of precision. That is, their expressivity is perfect but their expressive-
efficiency is low in the context of complex distributions. To contrast this, PCs offer the
same level of expressivity and tractability but higher expressive-efficiency, making them
an attractive probabilistic model class when fitting complex distributions. Admittedly, the
expressive-efficiency of PCs is not well-studied and conclusions drawn surrounding their
expressive-efficiency are mostly empirically-motivated.

3 Probabilistic Circuits (PCs)

Probabilistic circuits (PCs) [35] belong to the class of generative probabilistic models that
are tractable with respect to sampling, evi, marg and cond queries. Additionally, they
are highly expressive and so, in an informal sense, lie in a sweet spot on the expressivity-
tractability spectrum, as illustrated in In this section, we offer an overview of
PCs, provide a tutorial-like example of their use in answering evi, marg and cond queries
and detail some of their applications.

3.1 Overview of PCs

A PC (X, p(g,wp)) is a generative probabilistic model whose parameter set consists of a
weighted computational graph G, a tuple of weights w pertaining to edges in G and a tuple
of parameters 6 pertaining to the associated functions of the leaf nodes (inputs) of the PC.
The computational graph G of a PC (often referred to as the PC itself for convenience) is a
rooted finite weighted directed acyclic graph with a topological ordering (nodes are ordered
bottom-up) whose weights are non-negative and nodes belong to one of three types: sum,
product and leaf. The computational graph G can be illustrated in a layer-by-layer manner
in which the first layer consists only of leaf nodes and each preceding layer alternates

Sum layer 2 (output)

Product layer 2

Sum layer 1

Product layer 1

pel(xl) p92(x2) pes(xl) p94(x2) p95(:€3) p96($3)

Figure 3: A PC pertaining to model variables X = {X7, X5, X3} with indicated layers
and weights indexed according to the left-right bottom-up enumeration of the nodes. Leaf
nodes are coloured in orange, product nodes in blue and sum nodes in green.

between only product nodes and only sum nodes. While the root node of G (the output
node of the PC) is the only node with no children, the leaf nodes of G (the leaf nodes of
the PC) are precisely those with no parents and each corresponds to a distribution over
the sample space of one random variable in X = {X7,..., X}, illustrated in in
orange.

Before describing the purpose of each node type, we define the restriction of a realisation
x € Qx to a subset of X in[Definition 3.1]as well as the scope of a node in the computational
graph of a PC in which can be thought of as the set of random variables in
X belonging to its ancestry in G. Note that the potential ambiguity of the sample space

Qx of a subset of model variables X’ C X is resolved in

Definition 3.1 The restriction of a realisation x € Qx to a subset of random variables
X' € X is the realisation x' € Qx: such that the individual realisations of x' align with the
corresponding individual realisations of x.

Example 3.1 If X = {X1, Xy, X3} and X' = {Xy, X3} then the restriction of the realisa-
tion (x1, w9, 23) € Qx to X' is (1, 23) € Qx-.

Definition 3.2 Defined recursively, the scope sc(n) of a sum or product node n in the
computational graph of a PC is the union of the scopes of its parents. The scope of a leaf
node is the singleton set containing its associated random variable in X.

Example 3.2 The scopes of both sum nodes in the third layer of the PC in[Figure 3 are
{X1,Xs2}. The scopes of both product nodes in the fourth layer are { X1, X2, X3} since both
have two parents whose scopes are {X1, X2} and {Xs}. The scope of the root, illustrated
in the fifth layer, is {X;, X2, X3} = X.

We are now able to discuss the purpose of each node type (sum, product and leaf) along
with how the computational graph of a PC, as well as its edge weights w and parameter
tuple 0, yield a representation of a joint probability function over X. For ease of notation,
enumerate the nodes of the computational graph of a PC (X, pg we)) as 1,..., N, where
N is the number of nodes in G, according to a topological ordering of G. Let n; denote
the i*® node and let Qgc(n;) denote the sample space of the scope of n;. We define the

associated function pp; : Qg (n,) = Rx>0 of n; as

> wj-pnj (Xn;), if n; is a sum node

njepa(n;)

Pn; (X) := [T pn,(xn,), if n; is a product node (1)
njepa(n;)
Do, (%), if n; is a leaf node

where wj- is the weight associated with the edge pointing from from n; to n;, x,; is the
restriction of x to sc(n;) and py, is the probability density/mass function corresponding to
n; (if it is a leaf node). We additionally require that the weights pertaining to the parents
of a given sum node sum to 1.

At this point, we would like to define the representation p(g gy of the joint probability
function over X of a PC as the associated function of the root node of G but our overview is
missing two key ingredients. These ingredients come in the form of structural constraints
on its computational graph G, smoothness and decomposability, which ensure that the
associated function of any node in G is a probability function over its scope. That is, for
all nodes n in the computational graph G of a PC, we would like p;, : () — R>q to be
non-negative, which is already satisfied by our overview up to now, and integrate (or sum)
to unity.

3.1.1 Smoothness

An important detail in is the presence of the restriction x,; of the realisation
X € Qg(n,) to the scope of each parent node n; € pa(n;) when n; is a sum node. This detail
is necessary as we have not yet imposed the restriction that the associated functions of the
parents of a given sum node share the same domain. In line with this, for a given sum
node, its associated function is not simply the weighted sum of the associated functions of
its parents. For an illustration of this, consider

10

6\5_2/ 6 6% 6
wy wy Wy Ws

po; (1) Do,y (w2) Pos (1) po, (T1) o, (T2) pos(x3)

Figure 4: The PC on the left is smooth as the scopes of the parents of the only sum node
are both {X7, Xo}. The PC on the right is not smooth as the scopes of the parents of the
only sum node are { X1, X2} and {X3, X3}, which are not equal.

Example 3.3 Consider the computational graph on the right of. If w$ and wg are
non-negative and sum to 1, say w§ = 1/4 and w® = 3/4, then it is satisfies all conditions
imposed on the computational graph of a PC up to now. That said, the scopes of the two
product nodes in its second layer are {X1, X2} and {Xa, X3} respectively. As such, the
domains of the associated functions of said product nodes are Qx, x Qx, and Qx, X Qx,
respectively, which are not equal. Since the domains of the parents of the sum node in
the third layer differ, its associated function is not the weighted sum of the associated
functions of its parents. This is not inconsistent with how the associated function of a sum
node is defined in as the inputs of the associated functions of the parents of
said sum node are restricted to their scope. For example, in this case, with a topological
enumeration of the nodes of the computational graph (left-right bottom-up), the associated
function pp, @ Qx, X Qx, x Qx,; — R>q of the root node ng is given by

Png (%1, T2, 23) = 1P (x1,22) + 1P (x2,23)

1 3
i (71)pe, (T2) + 1P (72)po, (73)-

Note that py, is not a probability function over its scope: it is non-negative but does not
integrate (or sum) to unity.

To alleviate what is illustrated in we seek to ensure that all sum nodes in a PC
constitute a mixture over their scope. To ensure this, we impose the structural constraint
of smoothness on the computational graph of a PC as defined in [Definition 3.3

Definition 3.3 A PC is smooth if for any sum node in its computational graph, the scopes
of its parents are equal. That is, for all sum nodes n; we have sc(n;) = sc(ny) for all
nj,ng € pa(n;).

11

pel(xl) p92({,€2) p93(.562) p91('r1) p92(.§62) p93($2) p94(x1)

Figure 5: The PC on the left is smooth and decomposable as the scopes of the parents
of the only product node are {X;} and {X»} which are disjoint. The PC on the right is
smooth but not decomposable as two of the parents of the only product node contain X3
in their scope. That is, the scopes of the parents of the product not are not disjoint.

Example 3.4 Consider the computational graph on the left of and suppose w§
and w¢ are non-negative and sum to 1. The only sum node of the PC is at its root and the
scopes of its parents, the two product nodes in the second layer, are both {X1, X2} and so
the PC' is smooth.

3.1.2 Decomposability

The second structural constraint imposed on the computational graphs of PCs, alongside
smoothness, is decomposability. Before defining decomposability, consider
which illustrates that even with smoothness we are not guaranteed that the associated
function of a given node in a PC integrates (or sums) to unity.

Example 3.5 Consider the computational graph on the right of and suppose wfj
and wg are non-negative and sum to 1, say wi = 1/4 and w3 = 3/4. The only sum node
of the PC is in the second layer and the scopes of its parents are both {Xs}, so the PC is
smooth. The associated function of its root node, pp, : Qx, X Qx, = R>q, is given by

Png(T1,72) = po, (1) (ipez (z2) + zpes ($2)) Po, (1)
1

= 170 000, (20, (1) + 00, (20 (20, (1),

Upon inspection, py, is not a probability function over its scope: it is non-negative but does
not necessarily integrate (or sum) to unity.

To alleviate what is illustrated in we seek to ensure that all product nodes in
a PC constitute a factorisation over their scope. That is, for any product node, we would

12

like for any given random variable in its scope to belong to the scope of just one of its
parents. To ensure this, we impose the structural constraint of decomposability on the
computational graph of a PC as defined in [Definition 3.4

Definition 3.4 A PC is decomposable if for any given product node in its computational
graph, the scopes of its parents are disjoint. That is, for all product nodes n; we have
se(nj) N se(ng) = 0 for all nj,ny, € pa(n;) such that n; # ny.

Example 3.6 Consider the computational graph on the left of and suppose w
and w§ are non-negative and sum to 1. The only product node of the PC is at its root and
the scopes of its parents are { X1} and {Xa} respectively, which are disjoint, and so the PC
is decomposable.

With the imposition of smoothness and decomposability on the computational graphs of
PCs, our overview is complete. That is, smoothness and decomposability ensure that the
associated function of the root node, and in fact any node, of a PC is a probability function
over its scope: it is non-negative and integrates (or sums) to unity, the latter of which is

shown in [Lemma 3.1l

Lemma 3.1 The associated function of a node n; in a PC (X, (G,w,0)) is a probability
function over its scope. That is, p,, is non-negative and integrates (or sums) to 1.

Proof. If n; is a leaf node then its associated function is, by definition, a probability
function over its scope (a single random variable in X). What remains is to show that the
statement is true for all sum and product nodes.

Assume, for ease of notation, that the random variables in X are continuously dis-
tributed. It suffices to show that the integral of the associated function of a sum or
product node with respect to a random variable in its scope can be expressed as the sum
or product of integrals over the associated functions of a subset of its parents. In an in-
formal but visual sense, one can see this as the integral being passed from a node to some
subset of its parents. To see that this is indeed the case, note that for all x € Q. (,,) and
X}, € sc(n;) we have

> w§- /pnj (x)dxy, if n; is a sum node
n;jepa(n;)
/Pm (x)dz), = /pnz (xp,)dxy, - H Pn; (Xn;), if n; is a product node
njepa(ni)\{n-}
1, if n; is a leaf node

where n, is the parent node of n; whose scope contains Xy (when n; is a product node).
Note that precisely one parent of n; contains X}, in its scope, when n; is a product node,

13

due to decomposability. Additionally, smoothness ensures that we do not need to restrict
x to the scopes of the parents of n;, if it is a sum node, as was needed in before
smoothness was imposed.

As all weights are non-negative and the weights of parents of a given sum node sum to
1, it follows that p,, integrates to unity over its scope. |

Example 3.7 Consider the computational gmph on the left of [Figure 3. Upon inspection
it is both smooth and decomposable and so if wy and w3 are non-negative and sum to 1
then it is a PC with X = {X1, Xa}, w = (w3, w3) and 0 = (01, 02,03).

Enumerate the nodes in G according to its left-right bottom-up topological ordering and
let wy = 1/4 and wi = 3/4. The associated function pp, : Qx, X Qx, — Rxq of its root
node is given by

Pns (21, 22) = po, (1) (jlpez (z2) + %Peg (562)>

§p@l (xl)peg (1’2)

1
= — Do, (.Z'l)p92((132) + 4

4

Since pg, is a probability function over Xi and py, and pg, are probability functions over
Xa, it follows that p,, is non-negative. Further, we see that

3
/ / Pns (21, T2)dx1dTo = / / —po, (1), (T2) + 1o (w1)pe, (w2)dw1dry
3
/ml T dwl/p@(xz)dxz + 4/p91($1)d$1/p93(362)d$2
+

[-‘»bh—wh\»—t
N

3.2 Tractability of PCs

With our overview complete, we are now able to show that PCs are tractable with respect
to evi and marg queries. Recall that a PC (X,p(g,wﬂ)) is a generative probabilistic
model for which the representation pg w) of the joint probability function over X is
given by the associated function of the root node of G. As such, answering an evi query
reduces to evaluating the associated function of the root node of our PC for the relevant
realisation x € x. This can be done by evaluating the probability functions of the
univariate distributions at the leaf nodes (in the first layer of the PC) and traversing the
computational graph in a forward-pass (or upward-pass), computing products or sums
where relevant until reaching the root. This corresponds to a series of multiplications
and additions whose number grows linearly in the number of edges in G (as precisely one
operation is executed for each edge). As such, in line with PCs are tractable

14

n1 no ns n4 ns

p91(561) p92(£€2)]093(581) p94(562) p95(£€3]096(583)

Figure 6: Our PC enumerated in red according to its topological ordering.

with respect to evi queries and their complexity is linear in the number of edges of G. This
is often stated as the complexity being linear in the ‘size’ of the PC. A demonstration of
answering an evi query using a PC is given in

To see that PCs are tractable with respect to marg queries, once again consider
which shows that integrating the associated function of a sum or product
node in the computational graph of a PC with respect to a random variable in its scope
reduces to integrating the associated functions of some subset of its parents with respect
to the same random variable. In turn, this act of the integral being ‘passed down’ to the
relevant parents results exclusively in integrals over individual leaf nodes corresponding to
said random variable. Such integrals simply evaluate to 1 as the associated function of leaf
nodes are probability functions over a given random variable in X. This makes answering

marg queries using a PC straightforward and the process is detailed in

Corollary 3.1 Given a PC (X,p(g7w’9)), answering the marg query for the partial reali-
sation x' € Qx/ for X' € X can be done by setting the values of leaf nodes corresponding
to the marginalised variables X\X' to 1 and evaluating an evi query.

A demonstration of the approach alluded to in is given in

15

3.3 Tutorial-like Example of PCs

Consider the PC (X, (G, w,#)), whose computational graph G and enumeration is illus-

trated in for which X = {X1, Xo, X3},
w = (wi', wit, w§?, wid, wiy, wij) = (0.5,0.5,0.25,0.75,0.2,0.8)
and
0 = (01,02,03,04,05,05) = (0.5,0.1,0.9,0.8, (0.4,0.3,0.3), (0.1,0.7,0.2)).

Upon inspection, G is both smooth and decomposable. Suppose the leaf nodes ni,no, ns
and n4 encode Bernoulli distributions, i.e. pyg, : {0,1} — [0, 1] with

po,(x) = 07 (1 — 0;)' ™

fori=1,...,4. The parameters 61, ..., 04 are given above. Further, suppose the leaf nodes
ns and ng, which corresponds to X3, encode categorical distributions pertaining to three
categories, i.e. pp, : {0,1,2} — [0, 1] with

2
po,(x) = 1z = k)b,

k=0
for i = 5 and ¢ = 6 where (65 0,05.1,052) = (0.4,0.3,0.3) and (06 0,66,1,06,2) = (0.1,0.7,0.2).
Note that since n1,...,ng are leaf nodes, we have sc(nq),...,sc(ng) € {X1, Xo, X3}.

3.3.1 Answering evi queries

To answer the evi query p(g w) (71,22, 73) for the realisation (x1,z2,73) = (0,1,2), we
begin by computing the associated values of the leaf nodes, which corresponds to evaluating
univariate probability mass functions for our realisation,

Do, (0)=0.5 p92(1) =0.1 p93(0) =
Po,(1) =0.8 pp,(2) =0.3 pgs(2) =

and follow the structure of the computational graph, computing products and weighted
sums where indicated. This is illustrated entirely in For example, the associated
value of n7 (the leftmost product node in the second layer) is the product of the associated
values of leaf nodes n; and no, as the representation of the computational graph would
suggest, and so

P (0,1) = pr, (0) - pp,y (1) = 0.5-0.1 = 0.05.

Following this process fully yields the evaluation of the associated function of the root node
for our realisation, i.e. the answer to the given evi query according to our model, which is
0.0274.

16

0.5 0.1 0.1 0.8 0.3 0.2

po, (T1) o, (x2) pos(w1) po,(z2) pos(T3) Do (w3)

Figure 7: Our PC in which the associated value of each node is labelled in red for the
realisation (z1,x9,z3) = (0,1,2).

Alternatively, one could express the joint probability function encoded by the PC ex-
plicitly from the PC’s computational graph and compute p(g w) (0,1,2) directly. In our
case, said explicit representation can be obtained through a top-down traversal of G and is

given by

P(G,w,0)(T1, T2, T3) = Py (T1, T2, T3)

1 4
= £Pis (21,22, 23) + =P (21,22, 23)
1

4
= gpnll ($1, xZ)pn5 (33‘3) =+ gpnm (l’1, $2)pn6 (.7,'3)

1/1 1
= 5 (2pn7($1,$2) + 2pn8($1a$2)> Pns (€3)

4 (1 3
+ 5 <4pn9(x1,x2) + zpmo(xl’ :Cg)) Png(23)

L s (1) (£2) P (25) + P (1) (22)ms (3)

T 10 10
2 6
+1gPm (71)Pny (22)Png (23) + ToPns (71)Pny (T2)Png (73)

Directly answering the query by evaluating the explicit representation for our realisation
(z1,22,23) = (0,1, 2) yields 0.0274, matching the value obtained earlier via an upward-pass

17

0.5 1 0.1 1 0.3 0.2

po, (T1) o, (x2) pos(w1) po,(22) pos(T3) Do (3)

Figure 8: Our PC labelled in red according to the output of the associated function of
each node for the realisation (x1,x3) = (0,2), i.e. with Xy marginalised out.

of G. Note that writing out such an explicit representation like this is typically far from
feasible as the computational graphs of PCs learned from data are often very deep.

3.3.2 Answering marg queries

In continuing our example, let us answer the marg query p(g w ¢)(71,73) for the partial
realisation (z1,23) = (0,2). We will do this using an upward-pass of the computational
graph while utilising and then a second time using the explicit representation
of the joint probability function derived in the previous example.

In line with and illustrated in we set the associated values
of the leaf nodes corresponding to X, (the random variable being marginalised out) to
1 and proceed by completing an upward-pass of the computational graph for the partial
realisation (z1,x3) = (0,2). This process yields an associated value of 0.05 for the root
node. Instead using the explicit representation of p(g w) derived in the previous example,
we compute p(g,w,g)(71, Z3) in the usual way of summing p(g w¢) (71, T2, 23) over each state

18

of X5 as in

P(G,w,0) (1, 23) = Z P(Gw,0) (21, T2, T3)

JJQG{O,l}
1 1
- Z Topm(xl)Pnz (w2)pns (x3) + 10pn3(x1)pn2 (€2)pns (23)
126{0,1}

2 Dy (1) D (2)Prg (23) + =Py (1) (22) P (23)

10 10
1 1
ZEQE{O,l} IQG{O,l}
2 6
+ 1P (€1)Png (23) D palw) + 10Pns (1)Png (23) > pai(a2)
IQE{O,l} 126{0,1}
1 1 2 6
10pn1($1)pn5(903) lopng(xl)pn5(x3) mpnl(wl)Pna(Jf?)) mpns(xl)pne(fﬂ?))

and computing p(g w,g)(0,2) = 0.05 directly. We see in this example how integrals/sums
pass down from the root node (or any other node in a PC for that matter) to integrals/sums
over the leaf nodes corresponding to the random variable(s) being marginalised out, effec-

tively illustrating

3.4 Applications of PCs

We briefly detail selected applications of PCs: anomaly and out-of-distribution detection,
sampling, classification and in-painting.

3.4.1 Anomaly and out-of-distribution (OOD) detection

Anomaly detection and out-of-distribution (OOD) detection are related tasks in which one
seeks to flag samples which deviate significantly from the distribution learned by a model.
OOD detection seeks to flag samples which do not at all belong to the distribution learned
during training (e.g. flagging Fashion-MNIST samples when trained on regular MNIST),
whereas anomaly detection seeks to flag sufficiently unlikely in-distribution samples (e.g.
the MNIST samples illustrated in . In both cases, one seeks to distinguish samples
which do not align with the learned distribution sufficiently-well. In its most basic form,
this is done by answering the evi query corresponding to the given sample. That is,
computing its probability. If the answer of the evi query is below some pre-determined
threshold then the sample is flagged.

Since PCs are tractable with respect to evi queries, they can be applied to both anomaly
and OOD detection. Further, since PCs are tractable with respect to marg queries, one

19

Figure 9: MNIST samples whose class labels are 6, 0 and 2 respectively.

can seamlessly perform anomaly and OOD detection for incomplete samples. As for how
PCs perform empirically on these tasks, Peharz et al. [34] developed large-scale PCs (~90M
parameters) which, when trained on MNIST, assign near-zero probabilities to non-MNIST
samples and achieve effectively no overlap between in-distribution and out-of-distribution
probabilities. Pevny & Smidl [28] utilised the tractability of PCs with respect to marg
queries in order to efficiently evaluate the contribution of various feature subsets yielding
a scalable method of subspace-based outlier detection by identifying feature combinations
which minimise the marginal density, i.e. maximising the attributed outlier score, without
having to re-train the model for each subset of features.

3.4.2 Sampling

Sampling from the distribution encoded by a PC corresponds to sampling from the distri-
bution encoded by its root node. This involves a backwards traversal of its computational
graph from the root node to precisely one corresponding leaf node for each random variable
in X. Due to their hierarchical mixture model structure, this backwards traversal process
can be described in a way that is analogous to how one would sample from traditional
mixture models and partially-factorised models.

To sample from a mixture model

K
p(x) =) mp(x|Z = k)
k=1

over X = {Xy,..., Xy} where Z ~ Cat(m,...,7K), one can sample an integer k ~ p(z)
and then sample x from the corresponding mixture component p(x|Z = k). How this
corresponds to sampling from the distribution learned by a PC is due to its sum nodes,
each of which define a mixture over their scope. In line with this, during the backwards
traversal process, when at a sum node, choose a parent node according to the categorical
distribution whose probabilities are the weights of the edges from the parents to said sum

20

Figure 10: Left: sampling from the distribution encoded by a sum node — instead sample
from the distribution encoded by one of its parents. Red edges point to the parent(s) chosen
during the backwards sampling process. Right: sampling from the distribution encoded by
a product node — sample from the distributions encoded by each of its parents.

node. Then, sample from the distribution encoded by said parent node. This is illustrated

on the left of

To sample from a partially-factorised model

K
p(x) = [p(s)
k=1

over X = {Xj,...,X,} where Y, C X with UleYk = X and V;NY; = 0§ for all
i,j € {1,..., K} such that i # j, one simply samples from each component distribution
p(y1),-..,p(yr). How this corresponds to sampling from the distribution learned by a PC
is in its product nodes, each of which define a partially-factorised model over their scope.
In line with this, during the backwards traversal process, when at a product node, simply
sample from each of the distributions encoded by its parent nodes. This is illustrated on
the right of

Once our backwards traversal process reaches a leaf node we simply sample from the
univariate distribution attributed to it, often a Gaussian or a categorical distribution. For
an illustration of the entire backwards traversal process, consider in which we
sample from the distribution encoded by the PC used in our tutorial-like example earlier.
Additionally, for an idea of the sample quality that can be achieved by PCs, consider the
MNIST samples illustrated in

3.4.3 Classification with full or missing data

As with any generative model which is tractable with respect to evi queries, PCs are
capable of classification via maximum a posteriori. That is, by assigning the label y € Qy
which maximises the conditional probability p(y|x) where x € Qx is the sample we would
like to classify. This amounts to answering an evi query for each class label in Qy, i.e.

_ p(xy) _
arg max p(y|x) = arg max = argmax p(x, y).
ey yey P(x) yeQy

21

po, (1) po,(22) pos(z1) po,(T2) Pos(73) Dog(T3)

Figure 11: Sampling from the distribution learned by a PC via a backward-pass. Red
edges indicate the backwards traversal process. At the leaf layer, sample from the uni-
variate distributions z} ~ pg, (z1), 24 ~ pp,(x2) and zf ~ py,(x3) to obtain the sample
(), xh, %) € Qx.

Figure 12: Left: samples drawn from a PC trained on MNIST. Right: incomplete MNIST
samples in-painted using a PC trained on MNIST. Original samples in first row. Incomplete
samples in second and fourth rows. In-painted equivalents in third and fifth rows. Taken
from [44], Figure 3].

22

A well-known paper analysing the application of generative and discriminative models to
classification is one by Andrew Ng and Michael Jordan [30] in which logistic regression
and naive Bayes classifiers were considered. In this work, it was concluded that logistic
regression was unequivocally preferred. In line with this, the application of generative
models to classification is often less common than discriminative models. Regardless,
classification is a task that PCs are often applied to in their benchmarking. An argument
in the case of PCs is that one would ideally have a model that is capable of all common
tasks ‘out of the box’: sampling, classification, anomaly detection, etc. and due to their
tractability with respect to evi and marg queries, they are a suitable candidate for such
a widely-capable class of probabilistic models.

The empirical classification performance of PCs for well-known datasets, such as MNIST,
Fashion-MNIST, CIFAR-10, etc., is mixed as the focus of developments in the learning of
large-scale PCs is mostly generative, i.e. sample quality and density estimation. That
said, there have been cases of impressive classification performance for PCs (for the time of
publication) beginning with an accuracy of 83.96% on CIFAR-10 in 2012 [15]. At the time,
the state-of-the-art CNN-based approach by Dan et al. [§] achieved an accuracy of 88.79%.
From 2012 to 2020, deep learning-based approaches outpaced PC-based approaches with
glimpses of hope for PC-based approaches along the way. For example, in 2020 when
random and tensorised sum-product networks (RAT-SPNs) [34], an approach to learning
large scale PCs (~90M parameters), achieved an accuracy of 98.29% on MNIST. While
RAT-SPN offered a glimpse into how one might learn large-scale PCs, the performance of
deep learning-based approaches to classification have since effectively eclipsed PCs. This is
primarily attributed to the difficulty currently faced in scaling PCs to the extent to which
deep learning models have been successfully scaled, e.g. CNNs and transformer-based
architectures. That said, progress in alleviating this issue of scaling PCs by employing
methods from deep learning is promising [26].

3.4.4 In-painting incomplete samples

In-painting is the task of completing an incomplete sample. For example, if one is given the
bottom half of an MNIST sample, they may want to complete it to obtain a full sample. A
common approach to in-painting, when the used model allows for it, is to treat the problem
as answering an MMAP query, as defined in That is, computing the mode
of the conditional distribution of the missing portion conditioned on the present portion.
An example of this is illustrated on the right of in which the second and fourth
rows show variations of incomplete samples produced by removing a portion of the samples
present in the first row. In the rows below the second and fourth, one can see the PC’s
attempt at in-painting.

It is worth noting that, as illustrated in PCs are not tractable with respect to
MMAP queries in general. In line with this, it is only a particular sub-class of PCs which
are tractable with respect to MMAP (and so in-painting): deterministic PCs. Determin-

23

ism is a structural constraint one can impose on the computational graphs learned during
training (if the graph structure is learned) alongside smoothness and decomposability, to
ensure that at most one of the associated values of the parents of a sum node is non-zero
for any realisation x € Q0x. While far improved tractability is rewarding, determinism is
a heavily restrictive structural constraint and so the class of deterministic PCs is notably
less expressive than the class of PCs.

The intended purpose of including the brief description above is to demonstrate a com-
mon occurrence in literature surrounding PCs: one can trade expressivity for tractability
by imposing stricter-than-usual constraints on the computational graphs of their PCs, and
vice-versa.

4 Continuous Mixtures of Probabilistic Circuits (CMPCs)

Before overviewing continuous mixtures of probabilistic circuits (CMPCs), as introduced by
Correia et al. [9], we first consider their motivation. In doing so, we detail autoencoders and
variational autoencoders (VAEs) [22], the latter of which is a class of deep generative models
that heavily inspired the development of CMPCs. Following this, we complete our overview
of CMPCs and briefly detail the results obtained by Correia et al. in benchmarking them.

4.1 Motivating Continuous Mixtures

At the time of their work (around 2022), Correia et al. noted that methods used to scale
PCs had yet to deliver PCs with per-parameter-performance comparable to deep generative
models. To illustrate this, the most highly parameterised PC at the time consisted of 90
million parameters and attained a mean negative log-likelihood (a principled measure of
a generative model’s capability for which a smaller value is better) of 100 nats on Binary
MNIST [9]. At the same time, a minimally-tweaked variational autoencoder consisting
of around three million parameters had attained a mean negative log-likelihood (NLL) of
90 nats [42]: far better than the PC whose parameter count was around 30 times higher.
Here, the mean negative log-likelihood (NLL) attained by a generative model (X, pg) over
a dataset {x1,...,xy} C Qx is given by

1 N
~ 2 oE(po()

and the corresponding unit of measurement is nats if log denotes the natural logarithm and
bits if it denotes log,. For further reference, illustrates the mean NLLs attained
by various model classes on Binary MNIST.

The poor per-parameter-performance of PCs when compared to VAEs begs a very nat-
ural question: what is it about VAEs, which are detailed in that allows
them to learn so much more effectively than PCs? In trying to answer this, the authors

24

Model | Parameter count | Mean NLL (nats)

Chow-Liu Trees (CLTs) [5] 2K 176
Mixture of Bernoullis [40] 390K 134
Vanilla VAE [42] 3M 90
PixelCNN [21] A6M 78

PCs [] 90M 100

Table 2: Mean negative log-likelihoods achieved by various model classes on Binary
MNIST measured in nats (lower is better). Each is rounded to the nearest integer.

noted an important distinction between PCs and VAEs: the latter (VAEs) are latent vari-
able models in which latent variables (or latents for brevity) are continuously distributed
while the former (PCs) have a latent variable model interpretation in which latents are
discretely distributed. That is, in training a VAE one seeks to model the joint distribution
over model variables X as in

p(x) = / p(x|2)p(z)dz

where Z is continuously distributed and denotes the latent variables pertaining to the
dataset from which the PC is learned. As for PCs, their latent variable interpretation is
analogous to that of regular mixture models. The probability function associated with a
sum node n; in a PC is given by

P (X)) =) wipn(x)

njepa(n;)

which can be interpreted as some latent being marginalised out [32]. That is,

pui(x) = Y p(2)p(x|z)

ZEQZ

in which Z is categorically distributed and is parameterised according to the weights of the
edges pointing to n; from its parents. As such, if n; has m parents then for j € {1,...,m}
one has p(Z = j) = w; and p(x|Z = j) = pn,;(x). In this interpretation, any sum node in a
PC (and the overall PC itself, assuming its root is a sum node) can be seen as a discrete
latent variable mixture model over its scope.

Example 4.1 Suppose a dataset is compiled of samples pertaining to whether or not
weather was good at the location of recording and whether or not an earthquake occurred
at the location of recording. Suppose further that 75% of samples are recorded in Lagos,
Portugal and the remaining 25% in Groningen, The Netherlands. The location in which
each sample was recorded is not made explicit in the dataset. In learning a PC from this
dataset, the PC illustrated in may be realised. In this PC, each parent of the

25

Lagos Groningen

(Z =)) (Z=1)

po.o(x1) pos(z2) po2(x1) po.os(z2)

Figure 13: A PC in which X; pertains to whether the weather is good on a given day
and Xs pertains whether or not an earthquake will occur within the next year. The latent
variable Z, pertaining to the location at the time of recording, is marginalised out.

single sum node at the root pertains to one of the two locations of recording. As such, the
sum node can be seen as marginalising out the latent variable pertaining to the location of
where the data was recorded.

In line with this distinction between VAEs and PCs, the authors sought methods of learning
PCs in which latents are continuously distributed in hope that it would improve per-
parameter-performance. But how might we learn PCs in a way that allows for continuously
distributed latents? In answering this, we begin by noting that the joint distribution over
model variables X can be seen as the marginal joint over X and latent variables Z in which
the latents are marginalised out. That is,

p(x) = / p(x2)p(z)dz = Egpp [p(x|Z)].

In practice, after assigning a prior distribution to Z and fitting p(x|z) in some way, the
evaluation of this integral remains intractable and so the authors proceed by numerical
approximation as in

p() = [pxlmp(ain > wia)plxiz)

=1

where w : 0z — R>(is a weighting function and zi,...,zx ~ p(z) are latent samples ac-
cording to some continuous prior attributed to Z. As N — oo, this approximation becomes
exact as long as z1,...,zy ~ p(z) are i.i.d. and the weights normalise the estimator. An
approximation of p(x) using numerical integration, in which Z is continuously distributed
(e.g. p(z) = N(0,1;), the d—dimensional standard Gaussian), is what the authors refer to
as a continuous mixture.

26

Poe, (X) Po, (X) Pony (X)

Figure 14: The convex sum of N PCs represented as a PC. It is smooth and decomposable.

While a number of well-studied numerical integration methods exist, Correia et al.
chose Monte Carlo (MC) integration in which w(z) = 1/N for all z € Qz. Conveniently,
the law of large numbers ensures that such an estimator converges almost surely

N
;;;Mﬂ%)%ngbm@@@ZNZM@~
The benefits of this numerical integration method lie predominantly in its ease of imple-
mentation, interpretation and the agnosticism of its convergence rate O(N -1/ 2) to the
latent dimension d of Q7. This final point contrasts other methods of numerical integra-
tion which makes MC integration particularly attractive for learning continuous mixtures
with high latent dimensions.

With the notion of a continuous mixture out of the way, we now consider how one
learns a continuous mixture in a way that yields a PC. The key lies in that a convex sum
of PCs, illustrated in is itself a PC. With this in mind, if one has N latent
samples z1,...,zy ~ p(z) and fits a PC to each component p(x|z1),...,p(x|zx) then the
MC approximation of the continuous mixture

1 N
P00 = 5 3 plxlz)
i=1

is itself a PC. In line with this, continuous mixtures of probabilistic circuits (CMPCs) are

defined in Definition 4.1l

Definition 4.1 A continuous mizture of probabilistic circuits (CMPC) is a discrete miz-
ture of probabilistic circuits

1 N
px) = 5+ > po(xlz)
=1

27

in which the parameters of i component PC, ps(x|2;), are given by ¢(z;) where z1, ... 2N
are latent samples drawn from a continuous distribution p(z) and ¢ is a continuous trans-
formation whose domain is Q.

Note: In line with the class of CMPCs is at most as expressive as the
broader class of discrete mixtures of PCs. This is straightforward to see once one notes
that in a regular discrete mixture of PCs, the parameters of each component PC are not
dependent through some shared transformation, and so the class of CMPCs is a sub-class
of the class of discrete mixtures of PCs. Shown this, a natural question is why one would
employ specifically the class of CMPCs over the broader class of discrete mixtures of PCs.

This question is answered in [Subsection 4.4

4.1.1 Fully-factorised models (FFMs) and Chow-Liu trees (CLTSs)

Before detailing CMPCs further, we first consider the subclasses of PCs used in the work of
Correia et al. to fit the N component distributions p(x|z1),...,p(x|zn) of their CMPCs.
Two subclasses of PCs are considered: fully-factorised models (FFMs) and Chow-Liu trees
(CLTs) [7].

FFMs can be seen as Bayesian networks in which there are no edges between nodes.
That is, in fitting an FFM, independence between all model variables Xi,...,X,, € X is
assumed. Thus, the joint probability function pertaining to an FFM over X is of the form

n
p(x) = [[p(=o).

i=1
An FFM is straightforwardly represented by a PC as illustrated in After at-
tributing distributions to X1,...,X,,, to learn an FFM over X we need only fit the indi-
vidual distributions p(z1),...,p(z,). For example, if all model variables are binary then
learning an FFM over X amounts to learning the n parameters of the Bernoulli distribu-
tions attributed to Xi,..., X,.

The second subclass of PCs employed by Correia et al. are Chow-Liu trees (CLTS)
which are Bayesian networks in which each node has at most one parent, i.e. tree-shaped
Bayesian networks. As such, the joint probability function pertaining to a CLT over X,
whose directed acyclic graph (DAG) is denoted by G, is of the form

n

p(x) = [[p(=ilpa(Xi); 6)

i=1

where pa(X;) C X contains at most one element in X. As with FFMs, to learn a CLT we
need only learn the parameters of the distributions attributed to Xi|pa(Xi),..., X, |pa(Xy).
To learn the DAG G of a CLT from data, Chow and Liu [7] proposed computing the empir-
ical mutual information between all pairs of model variables from data and then computing

28

po, (1) po,(72) P, (Tn)

Figure 15: A fully-factorised model (FFM) represented as a PC.

the maximum spanning tree in which weights between nodes correspond to their mutual
information. For further detail regarding CLTs, consider the original formulation by Chow
and Liu [7]. Methods of efficiently compiling CLTs into PCs are known [12), 13] which
makes their application to fitting the N components of CMPCs straightforward. Note that
CMPCs whose component distributions are fit using CLTs are expected to perform notably
better than CMPCs whose components were fit using FFMs. This is due to the fact that
CLTs are far more expressive as they make fewer assumptions about the to-be-fit distri-
butions. That said, the implementation and additional compute needed to learn CMPCs
with CLTs fit to the component distributions is notably higher.

Alternatively, one can consider the PCs fit to the N component distributions of a CMPC
as leaf nodes. This requires an extension of the definition of PCs given earlier to allow for
leaf nodes which correspond to more than one random variable in X but this extension is
not particularly cumbersome. With this in mind, CMPCs with CLTs fit to their leaf nodes
need not be compiled into PCs. As for whether or not more sophisticated subclasses of PCs
should be employed for fitting the N component distributions of a CMPC, Correia et al.
note that future work could consider hidden Chow-Liu trees (HCLTs) [25]. Alternatively,
as Bayesian networks can be compiled to PCs with complexity exponential in their tree-
width [47, Subsection 4.3|, a natural choice is to fit Bayesian networks with sufficiently
small tree-width to the N component distributions. That said, again, the time needed for
implementation and the computational resources needed for training naturally increase.

Example 4.2 Suppose one would like to learn a CMPC consisting of N = 16 components
with Z ~ N(0,14), i.e. Z is distributed according to the j-dimensional standard normal
distribution. Further, suppose we fit a fully-factorised model to each component distribution
of the CMPC. That s, the component distribution corresponding to the sampled latent

z' ~ p(z) is given by
n

p(x|Z') = p(z1,...,2,|2') = Hp(:):j\z’).
j=1

29

pa}(%) po;(@) pe;(wn) po{V(%) peg(f@) pe,{y(iﬁn)

Figure 16: An N—component CMPC in which the component distributions are fit using
FFMs (which are PCs themselves). The notation introduced earlier for each leaf node’s
parameter set (pg, with no superscript) is deviated from here for figure-brevity.

Our CMPC of N =16 components is thus of the form

1 16 1 16 n
p(x) = 16 >_polxlz) = 15 > [poloslz).
i=1

i=1 j=1

The architecture of an N-component CMPC with FFMs fit to the component distributions
is illustrated in[Figure 16, Upon inspection, it is both smooth and decomposable.

As stated earlier, the parameters of each component, in this case each FFM, are given by
a continuous transinformation ¢ whose domain is Qz. We do not specify a transformation

in this example. Further detail on such transformations is given in[Subsection 4.5

Note that the computational graph G of CMPCs with FFMs fit to the N component PCs, as
in are very simple in structure. That said, as arbitrarily complex PC structures
can be used to fit the N component PCs, the computational graphs of CMPCs can become
arbitrarily complex.

To complete our overview of CMPCs, we must consider which continuous distribution
to assign to Z (including what latent dimension d of Q7 is appropriate) and how to fit FFMs
or CLTs to the components py(x|z1), ..., ps(x|zn) given sampled latents z1, ...,zy ~ p(z).
In their work, Correia et al. take Z ~ N(0, I4) with latent dimension d € {2,...,16}. In
fitting a CMPC to more complex distributions, higher latent dimensions are considered.
As for fitting FFMs/CLTs to the N component distributions, Correia et al. compute
each component’s parameters from its sampled latent z; € {0z using a decoder: a learned
transformation from the latent space)z to the parameter space corresponding to either

30

FFMs or CLTs. This decoder-style approach was inspired by variational autoencoders
(VAEs), which we now consider, and their application to CMPCs is detailed further in

4.2 (Variational) Autoencoders

As PCs are generative probabilistic models, methods of learning them are often bench-
marked using generative tasks such as density estimation and sampling. In particular,
such models are often fit to image datasets, such as MNIST, for benchmarking. Four
of the most prominent deep generative model classes for image datasets are variational
autoencoders (VAEs) [22, 2013], generative adversarial networks (GANs) [19, 2014], nor-
malising flows [36, 2015] and diffusion models [20, 2020]. Of particular interest to us, due
to the inspirations drawn from them in developing CMPCs, are VAEs which can be seen
as adaptations of autoencoders.

4.2.1 Autoencoders

An autoencoder (Qx,d,6,¢) consists of a sample space Qx C R", a latent dimension
d € Z>1, an encoder 0 : R" — R? and a decoder ¢ : R — R™. Using a subset of Qx,
one typically learns the encoder 6 and the decoder ¢ with the goal of approximating the
identity on Qx via ¢ o . That is, roughly put, one seeks to obtain an encoder/decoder
pair such that ¢(0(x)) ~ x for all x € OQx.

In intuitive terms, one can see the encoder 6 as a compressor of samples in x to their
compressed (or latent) representation in R¢ and so one might refer to the image of § as
the latent space (1z. Similarly, the decoder ¢ can be seen as a decompressor of compressed
representations z € (lz yielding the original sample x. In line with this notion of an
autoencoder as a compressor/decompressor, the latent dimension d is typically taken to be
far smaller than the dimension of the distribution of interest, i.e. d < n. Of course, when
d < n, learning such mappings 6 and ¢ typically involves some loss of information if Qx is
a manifold whose intrinsic dimension is greater than d. That is, autoencoders are typically
lossy compressors.

Example 4.3 Suppose Qx = {(a,a,b) € R3 :||(a,a,b)|| < 1} and d = 2. One immediately
notices that Qx is a two-dimensional surface embedded in R? as it is the intersection of the
unit ball and the plane {(a,a,b) : a,b € R}. To produce representations of x = (a,a,b) €
Qx in R? (i.e. to compress a sample) one might employ the encoder 03(x,y, z) = (x,z). To
reconstruct samples from their latent representation (i.e. to decompress) one might employ
the decoder ¢2(x,z) = (z,x,2). The autoencoder (2x,2,02, p2) offers lossless compression
on the sample space of interest as (po 0 62)(x) = x for all x € Ox.

If we instead desire latent representations of x = (a,a,b) € Qx in R, i.e. ifd =1, one
might employ the encoder 01(z,y, z) = x and the decoder ¢1(x) = (z,x,x). The autoencoder

31

input layer reconstruction layer
(x € Qx CR") (x € Qx CR")

bottleneck layer
(z € Qz C RY)

Bl

Figure 17: An autoencoder in which 6 and ¢ are fit using multi-layer perceptrons (MLPs).

a@@@
\Qoo
0 0po
ooo
a\@@@

/

=
A
2

@
@

(Qx, 1,601, ¢1) offers lossy compression, i.e. some information pertaining to a sample is lost
in compressing and then decompressing it as (¢1 0 01)(a,a,b) = (a,a,a) for all a,b € R.

One’s tolerance for the loss incurred by a given encoder/decoder pair is task-dependent.
Given a dataset D = {x1,...,x)} C Qx and a latent dimension d, one might compute
the pair (0*,¢*) € © x ® which minimises the empirical risk over D where © and ® are
chosen function classes. That is, computing

(0", ¢%) = argmin ZHXZ (x;))|[2.

(0,0)€0x® {3

If the function classes permit for computing the gradients of # € © and ¢ € ® then this
computation may be done using gradient descent. For example, one could take © and
® to be the classes of multi- layer perceptrons (MLPs) of appropriate input and output

dimensions, as illustrated in [Figure 17| MLPs are briefly summarised in
4.2.2 Variational autoencoders (VAEs)

Leaving aside, for now, how to learn one from data, variational autoencoders (VAEs)
can informally be seen as an extension of autoencoders in which the encoder and de-
coder each output parameters of a distribution belonging to some pre-chosen distribution

32

family. Extending the notation used to define autoencoders, a variational autoencoder
(Qx,d, Qq,Pp, 0, @) consists of the sample space of the distribution of interest Qx C R”, a
latent dimension d € Zx>1, the parameter space Qg of a family of d—dimensional conditional
distributions denoted gy(z|x), the parameter space P,, of a family of n—dimensional condi-
tional distributions denoted py(x|z), an encoder 6 : R — Q4 and a decoder ¢ : R — P,,.

To illustrate the intended meaning of the newly-introduced parameter spaces Qg4 and
Pn, one’s encoder might yield the expectation vector and covariance matrix of a d—dimensional
Gaussian N (u, X), i.e. Qg could be the parameter space of the family of d—dimensional
Gaussian distributions yielding

Qi={(,2): peR, eS8, } =R xS},

where Sff . denotes the set of all positive-definite matrices in Raxd,

As the encoder of a VAE yields a d—dimensional distribution gy(z|x) given the sample
x € Qx, to obtain a latent d—dimensional representation z’ € R? of x, one computes the
parameters 0(x) € Qg of gp(z|x), e.g. a d—dimensional Gaussian, via the encoder and
samples z’ ~ gg(z|x). To reconstruct x from its latent representation z’, one computes the
parameters ¢(z') € P, of the n—dimensional reconstruction distribution pg(x|z’) via the
decoder. Sampling x" ~ py(x|z’) yields (ideally) a sufficiently-accurate reconstruction of
the original sample x. Achieving accurate reconstructions is done in a similar manner to
autoencoders: by including a penalty term pertaining to reconstruction quality in the loss
function used to learn the encoder and decoder.

Note that one’s choice of Q4 and P, should take into account the need to sample
efficiently and so they should correspond to families of distributions which offer efficient
means of sampling, e.g. Gaussians, as in

Example 4.4 Suppose X1 ~ N (1,2) and X3 ~ N(—1,1) are independent. Let Xo = X1+
e where € ~ N(0,1) is independent of X1 and X3. If X = (X1, Xo, X3) then X ~ N (u,X)
with = (1,1, —-1)" and

2 20
YX=12 3 0
0 01

As such, Qx = R3. To obtain two-dimensional representations of samples x € Qx (so
d = 2), one might choose Qs = R? x S?H and P3 = R3 x S§r+. That is, we could fit
a two-dimensional Gaussian to the latent space and a three-dimensional Gaussian to the
reconstruction space. Knowing Xo = X1 + €, where € ~ N(0,1), one might choose the
encoder

ngx—>Q2

(z1,22,73) = ((w1,23),0° 1)

33

input layer input layer
(X € Qx C Rn) (ZI €z C Rd)

params. of params. of

=0 o =0 "u:*iﬂ;@
v \@
()

/Q ie., go(z|x) //,O ie. p¢(xlz)

Figure 18: Left: an encoder which outputs parameters of the latent distribution gg(z|x) =
N (ug,Xg). Right: a decoder which outputs parameters of the reconstruction distribution
Po(x|2") = N (g, Xp) in which z" ~ gp(z|x).

@ ® 6

where o > 0 is small. That is, for a sample (x1,x2,23) € Qx, the encoder’s output would
yield the latent distribution qg(z|x) = N((x1,73),0%L2). As decoder, if all we desire is
accurate reconstructions, we might choose

¢ :R? = P
(21, 29) = ((21, 21, 22), 0 I3).

That is, for the latent sample z' = (2}, 2}), the decoder’s output would yield the reconstruc-
tion distribution py(x|z') = N((21, 21, 25),0%13). Ideally, sampling (z, 2%, 2%) ~ py(x|z’)
would yield a sample sufficiently similar to the original sample x = (x1, 2, x3).

Note that in practice, one does not know the true distribution p(x) and so hand-picking
the encoder and decoder as in this example is infeasible. Typically, the encoder and decoder
are learned from a dataset D C Qx.

At this point, a natural question arises: for which tasks is learning a VAE more appropriate
than learning an autoencoder? The answer lies in the purpose of VAEs which is two-fold: 1)
to perform sufficiently-accurate compression/decompression and 2) to produce a sufficiently
regularised approximation of the latent space Q7. The latter is ensured by how one learns
a VAE from data, which we soon consider. In brief, when learning an autoencoder one
never imposes restrictions on the latent space beyond encouraging the model to yield
sufficiently-accurate reconstructions. As a result, the latent space of an autoencoder is not

34

well-structured. For example, for latent samples z1,z2 € {2z which are ‘close’ in the latent
space, their reconstructions are not necessarily ‘close’ in R™. VAEs seek to remedy this.

To learn a VAE from data, we look to maximise the evidence lower bound (ELBO)
over some dataset D = {x1,...,xp} C Qx. Over a single sample x € Qx, the ELBO
is a tight lower bound of log(p(x)). As such, maximising the ELBO over D can be seen
as performing approximate maximum-likelihood estimation over D (sometimes referred
to as evidence maximisation). To derive the ELBO, first note that given a decoder ¢
(which parameterises the reconstruction distribution pg(x|z)), we may express the marginal
distribution p(x) using py(x|z) as

o) = [px2ida = [piximp(iin = [polxlapla)da)
Using along with the encoder 6 (which parameterises the latent distribution
qo(z|x)) we derive the ELBO over a single sample x € Qx:
Po(x|2)p(2)
—tog ([atal) P g
q6(2|x)

=log (EZqu(ZIX) [W])
> Bzrgo(alx) [log (Wﬂ

= Ezqo alx) 108(06(X|2))] = Ezregy (21) {log <q9(Z|X)>]

= Ezqy(ax) [108(po(x|2))] — Dxr.(a0(Z|x)||p(Z))
—: ELBO

log(p(x)) = log (/ p¢(X!Z)p(Z)dZ)

&

Z|x

in which the inequality arises due to Jensen’s inequality, as in Eflog(f(Z))] < log(E[f(Z)]),
and Dkr,(Q||P) denotes the KL-divergence between distributions ¢ and P, which is de-

tailed in The effect of maximising
ELBO = Ez,g(z/x) [108(p(x|Z))] — Dxr(90(Z[x)||p(Z))

over a dataset is often explained term-by-term. The first term is a principled measure
of the VAE’s ability to reconstruct latent representations, as with autoencoders. The
second term is a principled measure of the similarity of the latent distribution gg(z|x)
and the prior p(z). The prior is chosen before training and the most common choice
is a d—dimensional standard Gaussian, i.e. p(z) = N(0,Iz). As such, minimising the
negative KL-divergence between the latent distribution and said prior is often interpreted

35

as encouraging the learning of the encoder such that latent representations are distributed
according to the prior. This is particularly useful in the case that one is learning a VAE to
generate new samples from Qx: post-training, sample z’ ~ p(z), compute the parameters
¢(2') of the reconstruction distribution pg(x|z’) via the decoder and sample from it. Note
that using a VAE for generative purposes does not invoke the use of the encoder, only the
decoder is required post-training.

Given a dataset D = {x1,...,xp} C Qx, we learn a VAE by choosing function classes
© and ® (e.g. MLPs as in [Figure 18) and computing
M

argmax | Y Bz g, zx,) [108(ps (%i|Z))] — Dxr(gs(ZIx:)||p(Z)) | -
(0.p)coxd | =

In practice, after choosing a latent dimension d, we often take p(z) = N(0,1;), Q4 =
R? x Sjir y and P, = R" xS, i.e. Gaussians for the latent and reconstruction distribution
families and the standard d—dimensional Gaussian for the prior. A benefit of these choices
is that it yields a differentiable and easy-to-implement closed form for the KL-divergence
term in the ELBO [14, Subsection 2.2]. Additionally, the expectation pertaining to the
reconstruction term is typically approximated via a single sample, boiling down to a mean
square error term.

4.3 Completing the Overview of CMPCs
In [Subsection 4.1} we motivated continuous mixtures using Monte Carlo (MC) integration,

which are mixture models of the form

N

PO = 1 D polxla)

i=1

for latent samples zj,...,zy ~ p(z) where Z is continuously distributed. We saw that
if each component py(x|z;) is fit using a PC (e.g. an FFM or CLT) then p(x) itself can
be represented as a PC and is referred to as a continuous mixture of probabilistic circuits
(PCs). From here, the final piece in overviewing CMPCs is how one might compute the
parameters of the N component distributions py(x|z1),...,ps(x|zn) from their sampled
latents z1,...,zn. As detailed earlier, choosing simple subclasses of PCs, such as FFMs
and CLTs, removes the need to use latents to learn the computational graph or the weights
of the PCs fit to the component distributions. In the case of FFMs, the computational
graph G is fixed independently of the data and there are no weights w. In the case of
CLTs, the computational graph G and weights w are learned from data by computing
the maximum spanning tree in which weights correspond to mutual information between
model variables. As such, fitting an FFM/CLT to one of the N components amounts to
computing the parameters 6 (not to be confused with the notation used for encoders) of
its leaf nodes given the component’s latent sample.

36

To fit the IV components, Correia et al. took inspiration from VAEs and learn a decoder
which outputs the parameters of FFM- or CLT-structured component distributions given
7z € Qg as input. That is, a decoder ¢ : R* — P, is learned where d is the latent
dimension and P, is the parameter space corresponding to an FFM or CLT. To clarify
when the parameters of a component distribution p(x|z’) are determined by the output
¢(2') of a decoder we write py(x|z’).

Example 4.5 Suppose we would like to model the joint distribution p(x) pertaining to
Binary MNIST using a CMPC with N = 16 components, so

1 16
=16 > py(xlz)
=1

Further, suppose we choose the latent dimension d = 4, the prior p(z) = N(0,1;) and
have learned a decoder ¢. Using ¢, we sample z1,...,2z16 ~ p(z) and fit FFMs to the
16 component distributions pg(X|z1),...,ps(X|216). From here, all one needs to complete
their CMPC'is a choice of parameter space Prsq. Samples of Binary MNIST consist of 784
features, each taking on a value of 0 or 1, i.e. Qx = {0,1}7®. As such, fitting an FFM to
each component distribution yields component distributions of the form

784

Py (x|2;) Hp xj|zi)

in which Xj|z; ~ Ber(ﬁé). That is, for the i component py(x|z;), the ™ pizel is at-
tributed a Bernoulli distribution whose parameter ﬁ; is determined by some latent sample

z; according to the output of the decoder, i.e. the parameter space is Prgq = [0,1]* and
50 ¢ : R — [0,1]. Our CMPC is thus of the form

16 784

p(x) = p(z1, ..., T784) =16 qus T1,. .., T784]23) Z H Ber(x]p)

11]1

where Ber(x|p) denotes the probability mass function of X ~ Ber(p) and (pi,...,phe,) =
&(z;) fori=1,...,16.

Note that once the decoder ¢ is learned, when constructing a CMPC at test time we may
choose the number of components Niest freely: simply draw Niest latent samples and pass
them through the decoder. For example, we could train ¢ using Nirain = 16 components
and at test time compile CMPCs consisting of Nt = 32 components for what would
usually be a better estimator than one with Niegt = 16 components.

37

4.3.1 Training the decoder

Given a dataset D = {x1,...,xp} C Qx, a latent dimension d and a fixed parameter
space for the structure used to fit the N component distributions (the parameter spaces of
FFMs or CLTs), the method used to learn the decoder ¢ : RY — P, is maximum-likelihood
estimation over D. The reason that maximume-likelihood estimation is possible in learning
CMPCs is that PCs are tractable with respect to evi queries and so evaluating p(x) exactly
for a particular realisation x € {2x is tractable, which is not the case with VAEs. This is
to say that there is no need to train according to approximate maximum likelihood using
some sort of evidence lower bound as with VAEs. An interesting benefit of this is that we
do not need to learn an encoder in conjunction with the decoder: we learn the decoder
directly. Choosing a function class ® to which the decoder ¢ will belong, we sample latents
Z1,...,zZN ~ p(z) and compute

M M N
1
arg maleog(p(xj)) = arg maleog N Zp¢(xj]zi)
deD j=1 ped j=1 =1
1 & 1 &
= in [——) 1 — |z
e |3y Sovs (3 S5m0
7=1 =1
= arg min NLL(¢, D)
ped
where D = {x1,...,xp} and NLL stands for negative log-likelihood. Correia et al. choose

® to be the class of MLPs with d input nodes and n output nodes. With this choice,
the parameters of the decoder are learned using gradient descent. Once the decoder is
learned, constructing a CMPC amounts to choosing a number of components Niegt, sam-

pling z1,...,zn,., ~ p(z) and computing the parameters ¢(z1), ..., #(zn,..,) to obtain the
CMPC
1 Neest
p(x) = Dy (x|2;).
0= oy 2o pelci)

To avoid overfitting, Correia et al. incorporate early stopping with a patience of 15. That
is, after each epoch of training, the validation error corresponding to the newly-proposed
parameters is computed. Then, the old parameters are replaced only in the case that said
validation error is lower than the validation error corresponding to the old parameters. If
no change in parameters occurs after 15 consecutive epochs then the model loses patience
and training ends. It is possible that the decoders learned by Correia et al. would benefit
from further regularisation techniques, such as dropout, but they are not considered in
their work.

38

4.3.2 Latent optimisation

As the compilation of CMPCs begins with randomly sampling zi, . ..,zy ~ p(z), a natural
question is how much better CMPCs perform when the latent samples z1,...,zy € 0z are
instead computed such that the corresponding CMPC maximises some principled measure.
That is, does treating the latent samples used in constructing a CMPC as parameters to-
be-optimised yield better CMPCs?

This idea is employed by Correia et al. and is referred to as latent optimisation in line
with similar approaches in literature [2, B1]. In treating the latent samples as parameters,

one computes
M

N
arg max Z log (]17 Zpd)(xj]zi))
Z1,...,ZN EQ7 =1 i—1

using gradient descent. The effect of latent optimisation can be seen in In
cases where the number of components Niest at test time is relatively small compared to the
number of components employed during training, CMPCs learned using latent optimisation
perform similarly to non-latent optimised CMPCs in which eight times as many components
are used. For example, if the decoder was learned using Nirain = 2" components then at
test time, a latent optimised-CMPC with N = 27 components can, at times, perform as
well as a CMPC consisting of Niest = 2'° components to which latent optimisation was not
applied. In cases where the number of components at test time is comparable or higher
than the number of components used during training, the effect of latent optimisation is
relatively small. This is due to the relatively low variance of such MC estimators at such
a number of components.

Note that Correia et al. considered the effect on generalisation of CMPCs with latent
optimisation applied during training [9, Latent Optimisation| but concluded that it would
lead to undesirable behaviour, such as overfitting, and so did not employ it during training.

4.4 Results Obtained by CMPCs

Correia et al. benchmarked CMPCs on density estimation and sample fidelity. The effects
of applying latent optimisation, changing the latent dimension d and component number
N during training and testing were addressed. Additionally, comparisons between CMPCs
to which FFMs/CLT's were fit to the N components are presented. For density estimation,
CMPCs were compared to the best performing PC at the time of their work (2022). For
sample quality, CMPCs were compared to Small Einet and Big Einet, PCs consisting of
five million and 84 million parameters respectively.

Whether a CMPC used FFMs or CLTs to fit the N component distributions is denoted
by ¢cm(Sg) or em(Scpr) respectively. If latent optimisation was used in learning a CMPC
then it is denoted by LO(cm(Sr)) or LO(cm(Scrr)).

39

Dataset BestPC em(Sr) cm(Scrr) LO(em(Scrr))

Dataset BestPC cm(Sr) cm(Scrr) LO(em(Scrr))

accid. 26.74 33.27 28.69 28.81 jester 52.46 51.93 51.94 51.94
ad 16.07 18.71 14.76 14.42 kdd 2.12 2.13 2.12 2.12
baudio 39.77 39.02 39.02 39.04 kosarek 10.60 10.71 10.56 10.55
bbe 248.33 240.19 242.83 242.79 msnbc 6.03 6.14 6.05 6.05
bnetflix 56.27 55.49 55.31 55.36 msweb 9.73 9.68 9.62 9.60
book 33.83 33.67 33.75 33.55 nltcs 5.99 5.99 5.99 5.99
c20ng 151.47 148.24 148.17 148.28 plants 12.54 12.45 12.26 12.27
crb2 83.35 81.52 81.17 81.31 pumbs 22.40 27.67 23.71 23.70
cwebkb 151.84 150.21 147.77 147.75 tmovie 50.81 48.69 49.23 49.29
dna 79.05 95.64 84.91 84.58 tretail 10.84 10.85 10.82 10.81

Table 3: Mean negative log-likelihoods attained by CMPCs on the test sets of 20 den-
sity estimation datasets [24]. CMPCs, which are listed under ¢cm(Sg), cm(Scrr) and
LO(ecm(Scrr)), are compared to the best performing PC (BestPC) at the time of their
work which consisted of five PC learning methods: Einets [33], LearnSPN [16], ID-SPN
[37], RAT-SPN [34] and HCLT [25]. All models pertaining to cm(Sy) and cm(Scrr) were
trained with Nirain = 2'° components and at test time used Niest = 22 components except
for latent-optimised models which used Nies; = 2'0 components. Taken from [J, Table 1].

4.4.1 Density estimation

For benchmarking density estimation, 20 binary datasets were used. These 20 datasets,
whose names are given in are binary density estimation datasets often used in the
PC literature [24]. All datasets pertain to binary model variables whose number ranges
from 16 to 1556 between datasets. The number of samples within each dataset varies
heavily too, ranging from fewer than 2,000 to hundreds of thousands. Additionally, how
each dataset is split for training, validation and testing varies. Such details can be found on
the GitHub repository in which the datasets are held [24]. It is important to note that the
extent to which the features of each distribution correlate differs. For example, as noted
by Correia et al., the accidents, ad, dna and pumbs datasets consist of features which
depend highly on each other. This is reflected in in which we see that cm(Scrr)
and LO(cm(Scrr)) perform significantly better than cm(Sy) for these datasets.

Each CMPC fit to these datasets used a latent dimension of d = 4, the prior p(z) =
N(0,1,), and Nipain = 210 components during training. Each decoder ¢ : R* — P, was
fit using an MLP consisting of four hidden layers with LeakyReLU as activation functions
with hyperparameter a = 0.01, i.e.

() T ifz>0
(o) =
0.01 001z ifz<O0.

The number of nodes in the four hidden layers are 4, 4 + L%j, 44 2L%J and 4+ 3L%J
where f denotes the number of features in the given dataset. For example, if the number
of features for a given dataset is f = 20 then the hidden layers of the corresponding MLP
consist of 4, 8, 12 and 16 nodes respectively. As illustrated in for 16 of the
20 density estimation datasets, CMPCs set state of the art mean negative log-likelihoods

40

20.0
cm(Sk) —e= CM(ScLT)
17.5 -«

\ =0= CM(SF)vag =@= LO(cMm(ScLT))
15.0 AN

12.5 b

10.0 L T
7.5 i e

S

50 e
2.5

0.0

Performance gap (%)

O ~
Tt . e E S 0 = —

27 28 29 210 211 212 213

Number of integration points

Figure 19: The effect of latent optimisation. Relative performance shown. Number of
integration points refers to the number of components N. Taken from [0, Figure 1].

among PC-based approaches. The results of this benchmark did not state the parameter
count of the competing models and so the per-parameter-performance is not considered.

As for latent optimisation, its use effectively reduces the number of components Niest
needed to attain a given mean NLL. illustrates the mean performance gap be-
tween the lowest mean NLL across all 20 datasets in [Table 3] and what each model with
27,...,21 components attained. We see immediately that CMPCs whose base compo-
nents were fit using CLTs required eight times fewer components when applying latent
optimisation to reach the performance gap attained by its non-latent optimised equivalent.
This example illustrates precisely what the authors sought to achieve in applying latent
optimisation: at test time, instead of randomly sampling latents, search the latent space
for latent samples which yield CMPCs that generalise better. The precise log-likelihoods
attained by cm(Sr), cm(Scrr) and LO(cm(Scrr)) with a varying number of components
N € {27,28 ... 213} is provided in [9, Figure 6].

4.4.2 Negative log-likelihoods and sample quality

The image datasets used in benchmarking CMPCs were Binary MNIST, MNIST, Fashion-
MNIST and Street View House Numbers (SVHN). MNIST is a dataset of 70,000 images of
handwritten digits (0 to 9, i.e. 10 classes) in which each sample is 28 by 28 with pixel values
in {0,...,255}. Fashion-MNIST is specified precisely as MNIST except that its samples
depict items of clothing. It is generally considered to be a more complex distribution to
encode than MNIST as items of clothing are less neatly-structured than handwritten digits.
SVHN consists of around 100,000 images of single digit house number signs (10 classes,

41

Dataset H Small Einet (5M) ‘ Big Einet (84M) ‘ CMPC

Binary MNIST 0.206 0.184 0.179 (4.8M)
MNIST 1.490 1.415 1.282 (100K)
Fashion-MNIST 3.938 3.737 3.546 (100K)
SVHN 6.442 5.961 6.307 (300K)

Table 4: Mean negative log-likelihood (NLL) per dimension measured in bits (logy used
for their computation). ‘Per dimension’ refers to the fact that each NLL is normalised
according to the dimension of its corresponding distribution, e.g. divided by 784 for Binary
MNIST and MNIST. Number of parameters of decoders taken from [9, Table 3|. The Binary
MNIST model had 1.2M parameters for the cm(Sr) models and 4.8M for the cm(Scrr).

‘ Number of integration points at test time
Model N. Param ‘ 27 28 29 910 oll 912 913 ol4

CM(Sr) (LO) 1.2M 167.29 (144.00) 150.67 (135.89) 138.55 (129.15) 129.24 (123.44) 121.96 116.42 112.03 108.69
CM(Scrr) (LO) 4.8M 127.59 (114.02) 119.09 (110.02) 113.15 (107.14) 108.30 (104.37) 104.50 101.55 99.23 97.48

Table 5: Binary MNIST mean negative log-likelihoods (NLLs) at test time for CM(Sp)
and CM(Scrr) trained with Niain = 2!4 components. All NLLs measured in nats (natural
logarithm used for their computation). In parentheses we report test mean negative log-
likelihoods obtained via latent optimisation. Taken from [9, Table 2].

as with MNIST and Fashion-MNIST) in which each sample is 32 by 32 and pixel values
are in accordance with an 8-bit RGB standard. As such, each pixel can take on one of
224 = 16,777,216 possible values.

For each of these datasets, the CMPCs learned used a latent dimension of d = 16, the
prior p(z) = N(0, I1) and the number of components used during training was Nipain =
214 Distinctions are made in the architectures of the decoders. For Binary MNIST, an
MLP with six hidden layers was used to fit the decoder. For MNIST, Fashion-MNIST
and SVHN, deconvolution neural networks [46, subsection 2.1] were employed to fit the
decoders. Categorical distributions of 256 categories were attributed to the leaf nodes
pertaining to the pixels. For MNIST and Fashion-MNIST, the 256 categories pertained
to 256 gray scale values of the pixels. For SVHN, as the pixels of samples are coloured
according to an 8-bit RGB standard, to fit each pixel value with 256 categories, the authors
simplified samples in some way though it is unclear precisely how. This naturally results in
some loss of information. The number of parameters pertaining to each model is illustrated
in in their corresponding entry of the column titled CMPC. We see that CMPCs
remarkably offer lower mean NLLs than massively parameterised PCs. Recall that Small
Einet and Big Einet consist of 5 and 84 million parameters respectively.

An assessment of how changing the number of components Niest € {27,...,2'4} at
test time for Binary MNIST is illustrated in There we see that in some cases,

42

Figure 20: Samples of MNIST, Fashion-MNIST and SVHN drawn from Small Einet (left),
Big Einet (centre) and a CMPC (right). Taken from [9 Figure 2].

particularly for the CLT-based CMPCs, latent optimisation can reduce the number of
components needed to attain a given mean NLL by around a factor of four. This helps
produce far more compact CMPCs. Note additionally that a latent-optimised CMPC using
CLTs with N = 2'4 components attained a mean NLL of around 97.5 on Binary MNIST,
improving on the performance offered by the most highly-parameterised PC at the time,
consisting of 90 million parameters, which attained a mean NLL of 100 nats.

Note that the discrepancy in the scale of negative log-likelihood values (NLLs) illus-
trated in [Table 4] and [Table 5|is due to the former having NLLs represented in bits (log,
used for computations) and having been normalised according to the dimension of the cor-
responding distribution. For example, the NLLs illustrated for Binary MNIST and MNIST
(in bits) are divided by 784. All NLLs in[Table F|are represented in nats (natural logarithm
used for NLL computations) and are not normalised.

Finally, in evaluating the sample quality of CMPCs, consider in which we
illustrate samples drawn from Small Einet, Big Einet and CMPCs learned on MNIST,
Fashion-MNIST and SVHN. We see that CMPCs produce samples, seen in the rightmost
column of the figure, which do not pixelate nearly as harshly as those drawn from Small or
Big Einet. For the samples of MNIST, the underlying structure of digits is far more clear
and leaves very little ambiguity. Similar comparisons can be made for the samples drawn
of Fashion-MNIST and SVHN.

43

Dataset dm(Sr) dm(S¥) dm(SEM) cm(SF)‘Dataset dm(Sr) dm(S¥) dm(SEM) cm(Sp)

accidents 42.58 40.61 35.38 33.94 | jester 55.32 53.54 52.54 52.03
ad 104.57 97.79 24.91 20.42 | kdd 6.81 2.15 2.14 2.13
baudio 42.24 40.41 39.76 39.14 | kosarek 16.20 11.17 10.88 10.75
bbc 281.88 288.31 252.82 241.54 | msnbc 6.36 6.12 6.03 6.15
bnetflix 58.19 57.00 56.34 55.71 | msweb 18.29 11.36 10.00 9.72
book 41.72 35.61 34.66 33.79 | nltcs 6.16 6.01 6.00 6.00
c20ng 163.04 157.80 151.79 149.10 | plants 16.66 14.41 13.44 12.65
crb2 104.91 98.79 87.07 82.33 | pumbs 46.59 42.90 32.84 28.50
cwebkb 176.60 170.90 154.75 151.00 | tmovie 66.94 61.64 52.80 49.12
dna 101.93 98.14 94.46 96.11 | tretail 18.35 11.42 10.90 10.85

Table 6: Mean negative log-likelihoods on the test sets of 20 standard density estimation
benchmarks for plain mixtures with non-learnable equally-probable weights trained using
the Adam optimiser (dm(Sr)), with learnable weights also using Adam (dm(S})), with
learnable weights trained using EM (dm(SEM)), and a CMPC with FFMs fit to mixture
components cm(Sp) evaluated with Niest = 2'9 components at test time. All models had
the same structure with Niam = 2'0 components during training and were trained for up
to 300 epochs with early stopping. Taken from [9, Table 6].

4.4.3 Comparing performance of CMPCs to regular mixture models

A natural question when shown CMPCs as approximations of continuous latent variable
models is whether or not they perform better than regular discrete mixture models. That is,
does allowing for continuously distributed latent variables improve generalisation? Discrete
mixture models are of the form

N

pie() = 1 S p(x|Z =)

i=1

As with the CMPCs used for density estimation, the individual components of these plain
mixture models were fit using FFMs. They are denoted by dm(Sg) in Additionally,
Correia et al. considered discrete mixture models in which the weights wi,...,wy > 0 of
the N components are learned, as in

N
Pmix(X) = Z wip(x|Z = 1)
i=1

with Ef\; L w; = 1. These are learned separately using gradient descent (denoted dm(S}))
and the EM-algorithm (denoted dm(SZM)). All three model types are compared to CMPCs
with FFMs fit to the N components (denoted cm(SF), as before).

As illustrated in [Table 6] CMPCs outperform the considered discrete mixture models
on 18 of the 20 distributions considered. The authors note that latent optimisation is not

44

applied to the CMPCs whose results are shown in the table. These results are particu-
larly interesting as, for a fixed number of components at test time, the class of CMPCs is
necessarily less expressive than the class of discrete mixture models. Despite this, the use
of a decoder in parameterising each component distribution, as in CMPCs, yields mixture
models which generalise better. The authors explain this as the use of a decoder inherently
regularising the parameterisation process of the mixture components through parameter
sharing. This contrasts with the case of discrete mixture models in each component dis-
tribution is parametrised entirely independently. The authors additionally note that the
use of a decoder may help to ensure that CMPCs do not consist of components which are
effectively ‘dead weight’, as has been observed in discrete mixture models [IT].

5 Hybrid CMPCs

As the intended applications of CMPCs, as proposed by Correia et al., were density es-
timation and image generation (sampling), their training objective was naturally in line
with maximum likelihood estimation. That is, the loss function minimised during training
each CMPC was of the form

1 M 1 N
L(¢,D) = —7; > log (N Zp¢(xj|zi)> =: NLL(¢, D)
j=1 i=1

where D = {x1,...,xp} C Qx. This is a natural approach to learning a generative model,
especially when one’s objective is to apply the model to tasks which are generative in
nature: sampling, density estimation, anomaly detection, etc.

In this section, we consider learning CMPCs for tasks that are discriminatory in na-
ture such as classification. Further, we employ hybrid loss functions which encourage the
learning of CMPCs applicable to both generative and discriminatory tasks. We refer to
CMPCs learned in this hybrid fashion as hybrid CMPCs. We assess hybrid CMPCs by
applying them to the classification of incomplete samples of Binary MNIST and to sample
generation. Therein lies the purpose of benchmarking hybrid CMPCs: to evaluate the
extent to which we can maintain the generative ability of CMPCs while encouraging some
amount of discriminative learning.

5.1 Learning Discriminative CMPCs

Learning discriminative CMPCs amounts to employing a loss function which encour-
ages discriminative learning during training. For a CMPC which performs classifica-
tion, a natural choice for the loss function is one pertaining to the mean cross-entropy
of class labels predicted by the model and those observed in a given labelled dataset

45

D ={(x1,91),---,(Xa,ym)} C Qx X Qy. Such a loss function is given by

1 M
L(¢.D) = —4; > "log (pe(y;1x)))

jfl
_ og Po(Xj,Yj)
a Zl (po(x;) >
M
1 Y CINNIED
Mz:: (Zi:1p¢(xj|zi) >
CE(¢, D).

Note that PCs are tractable with respect to marg queries and so computing pe(x;|2;), i.e.
marginalising out the class label y, is straightforward in practice. Alternatively, one could
marginalise the class label out manually, as in

Po(Xjlzi) =) po(xj,ylz),
yeQy

but this is a cumbersome task if the number of class labels |Qy | is sufficiently high.

As detailed in[Subsection 3.4] the application of PCs to classification is straightforward.
As a brief reminder, given a sample x € {dx, its corresponding label y € 2y, according to
our model, is given by

_ Po(X,y)
arg max p(y|x) = arg max ———= = arg max py (X, y)
yeQy yeQy p¢(x) yeQy

which requires us to answer |Qy | evi queries using our PC. In|Subsection 5.3| we benchmark
entirely (and partially) discriminative CMPCs on samples of Binary MNIST in which

differing portions of pixel values are missing at random.

5.2 Learning Hybrid CMPCs

If a class of generative probabilistic models is tractable with respect to both evi and
marg queries then such models can be learned in a generative fashion (using negative
log-likelihood loss functions) or in a discriminative fashion (using cross-entropy loss func-
tions). More interestingly, such models can be learned in a manner which encourages both
generative and discriminative learning simultaneously. That is, they can be learned in a
hybrid fashion. The earliest work known to us which utilises the learning of generative
models in a hybrid fashion [3, Section 3] proposed a loss function akin to

£x(¢,D) = ACE(¢, D) + (1 — A)NLL(¢, D)

46

where A € [0, 1] is a mixing hyperparameter which dictates the extent to which we encourage
discriminative learning (due to the cross-entropy term) and generative learning (due to
the negative log-likelihood term). For example, A = 1 encourages entirely discriminative
learning, as L£1(¢, D) = CE(¢, D), and A = 0 encourages entirely generative learning, as
Lo(¢, D) = NLL(¢, D). Taking X € (0, 1) encourages both to varying extents. Using such
a hybrid loss function, one would hope to produce a generative model that performs well
for both generative and discriminative tasks.

The application of a hybrid loss function has already been applied to a different ap-
proach to learning PCs referred to as random and tensorised sum-product networks (RAT-
SPNs) [34, Section 3]. When trained discriminatively on MNIST, RAT-SPNs consisted of
around 1.2 million parameters and classified incomplete samples of MNIST with impres-
sive accuracy. In line with this approach, we evaluate the generative and discriminative
capabilities of CMPCs learned using such a hybrid loss function £y, referred to further as
hybrid CMPCs.

5.3 Benchmarking Hybrid CMPCs on Binary MNIST

In the literature, Binary MNIST typically refers to a binarisation of MNIST according to
some assessment of pixel intensities across samples [40, Section 5]. It serves as an often-
used baseline for evaluating approaches in generative modelling [21) 42| 5] [40] [43]. As its
use is benchmarking models’ generative abilities, the set of class labels corresponding to
samples of Binary MNIST is not available. As such, to obtain a similarly-complex labelled
dataset on which to learn hybrid CMPCs, we manually binarise MNIST ourselves. For
each sample of MNIST, we set each pixel value to 0 if it is less than 128 and to 1 otherwise.
Note that comparing benchmarks between models trained on the Binary MNIST used in
literature and the manually binarised version proposed here is not recommended as the
distinctions between the datasets are subtle but important. From here onward, Binary
MNIST refers to our manual binarisation of MNIST. All Python programs used to train
and test hybrid CMPCs on Binary MNIST can be found in our GitHub repository [IJ.

Binary MNIST consists of 70,000 samples. Each sample is a 28 by 28 image of a
handwritten digit in {0,...,9} in which each pixel value is either 0 or 1. As such, Qx =
{0,1}7* and Qy = {0,...,9}. We partition the dataset into 50,000 samples for training,
10,000 for validation and 10,000 for testing. As all model variables pertaining to our hybrid
CMPCs are binary, the class label of each sample during training is encoded into its final
four pixels according to its binary representation. As illustration, consider the middle of
which consists of a sample pertaining to the digit 7 (whose binarisation is 01115).
Its final four pixels, in the bottom right are manually lit or dimmed accordingly.

Note that, upon inspection, the final four pixels of all 70,000 samples of MNIST are
zero. As such, this doctoring of samples during training does not alter the complexity of
the underlying to-be-learned distribution. To classify a sample at test time, our model’s
prediction is whichever binarisation of the final four values yields the highest probability

47

Figure 21: Samples of Binary MNIST. Left: A regular sample. Middle: a sample in which
the final four pixels are set to 0,1,1 and 1 respectively, corresponding to the binarisation
01115 of its class label which is 7. Right: A sample pertaining to the digit 4 in which
30% of pixel values are missing at random. The final four pixels are not considered when
masking pixel values at random.

output by our hybrid CMPC. That is,

y* = argmax p(X, Ybys Yby s Ybs s yb4)
y€{0,...,9}

where yp,, . . ., yp, is the binarisation of y € {0,...,9} and x € {0, 1}7%° denotes the first 780
original pixel values of the sample. This approach is taken for its simplicity in maintaining
the 28 by 28 image structure without deteriorating the complexity of the to-be-learned
distribution. With this adjustment in mind, Qx = {0,1}" and Qy = {0,1}%.

Further, we normalise the mean cross-entropy and mean negative log-likelihood terms
in our hybrid loss function such that each is per-pixel. This is because the cross-entropy
term corresponds to only the final four pixel values and the negative log-likelihood term
corresponds to the first 780 pixel values. In line with this, the hybrid loss function used is
given by

A A
£2(9,D) = JCE(p, D) + - NLL(9, D)

M 1 N M N
Al N Dic1 Po(X), Y512:) 1
e — log N ’LfN _ log 1 X]|Z
4 M (%Zizlpﬁ(xﬂzi) 780 M Z N ;

Jj=1
M N N
1 Z A 1 Z 1—Xx A Z
) _Mj:1 [4 " <N i=1 p¢(xj7yj’Zi)> ’ (780 4> " (N pobn))]

where D = {(x1,91), ..., (Xam,ynm)} C Ox x Qy. Here, the logarithm in the first term was

48

split, which is why the additional

A 1 &
-5 log (N ;pqg(xﬂzi))
1=
term appears in the second logarithm present in the sum.

5.3.1 Our experiments

As in the work of Correia. et al, we fix the prior p(z) = N(0,I;) and vary the latent
dimension d € {2,4,8,16,32}. During training, we fit FFMs to the Niain = 2! components
Po(X,Y|Z1), - - ., ps(X,y|Z13). The decoder ¢ : RY — [0,1]™* itself is fit using an MLP
consisting of six hidden layers of 16, 144, 272, 400, 528 and 656 nodes respectively. The
number of nodes scale linearly from 16 to the number of outputs which is 784. Overall,
each decoder consisted of 1.2 million tunable parameters. We employed LeakyReLU as
activation functions, defined earlier, with hyperparameter ¢ = 0.01. Training involved 100
max epochs and we employed early stopping with a patience of 15 epochs. A hybrid CMPC
is learned using this criteria for each A\ € {0,0.2,0.4,0.6,0.8,1}. As five latent dimensions
d € {2,4,8,16,32} and six values of A are assessed, we trained 5 -6 = 30 hybrid CMPCs
in total. The benchmarks illustrated here forward are for the latent dimension 16. The

results for other latent dimensions are given in

5.3.2 Classifying incomplete samples

Since PCs are tractable with respect to marg queries, we can apply hybrid CMPCs to
classifying incomplete samples of Binary MNIST. As detailed earlier, the class label of an
incomplete sample x’ € Qx, according to our model, is given by

Ntest
arg max p(x’, Yo, , Yoy Yo You) = argmax > po(xX, Yoy, Yoy Yog» Yoy | %)
y€{0,...,9} y€{0,...9} ;4

where (Yp,, Ybys Ybs, Ub,) € 10,1} is the binarisation of y € {0,...,9}. This involves an-
swering nine marg queries. The portions of missing pixel values at random during our
experiments are 0%, 10%, ..., 90% and 95%. Note that the first 780 pixel values can be
sampled to be removed. The final four pixels are reserved for class labels. Additionally,
our hybrid CMPCs consist of Nies; = 2'* components: twice the number of components
used during training Niain = 2'°.

The results of this experiment are illustrated in[Figure 22] Perhaps surprisingly, the best
classification accuracies at different levels of missing pixel values is not given by the hybrid
CMPC learned with A\ = 1 (the entirely-discriminatively learned hybrid CMPC). In the
right of we see that the highest classification accuracies are offered by A = 0.4 and
A = 0.6 and that the lowest classification accuracies are offered by the hybrid CMPC learned

49

100 4 ~o b “e =0
EE!E!!::.=. A2 97: A=02
901 “N:.Qa . A=04 3 e :=g>2
- -o A=0.
~ .- A=06 96
80 - \‘§~ - A=08 . e A=08
SN, - A=1 s S~ = N - A=1
N U\ 95 P==eszz- ~~szis =
701 \\‘ ~
s 60 | N S g4l o-.. Y
> \\ \ oy
©
s 50 - \‘\\ 3 034
3 » g
g AN g .
< \ . .
407 ‘\‘ N 924 =
\
30 DR
W 91
W N
20 + WS
L Y 90
-

6 lb 2‘0 3‘0 4‘0 5‘0 éO 76 8‘0 9‘0 95 0 1‘0 Zb 3‘0
Pixel values missing at random (%) Pixel values missing at random (%)
Figure 22: C(lassification accuracies of hybrid CMPCs with d = 16 and A €
{0,0.2,0.4,0.6,0.8,1} for incomplete samples of Binary MNIST in which differing por-
tions of pixel values are masked at random. Niegt = ol4 components were used at test
time. A zoomed version (for 0% to 30% missing pixels values) is given on the right for
clarity.

with A = 0. The latter is not at all surprising as it corresponds to the hybrid CMPC learned
entirely generatively. We observe that the decrease in classification accuracy for A = 0, as
the portion of missing pixel values increases, is a lot more sudden than for other values
of A. This is especially observed when comparing the drop in accuracies corresponding to
20% and 30% missing pixel values. For the classification accuracies obtained by hybrid
CMPCs for other latent dimensions d € {2,4, 8,32}, consider [Subsection D.2|

To demonstrate that the highest classification accuracies belonging to hybrid CMPCs
trained with A € {0.4,0.6} is not due to a particular initialisation of the decoder, consider

Append

5.3.3 Mean negative log-likelihoods and sampling

To demonstrate the extent to which hybrid CMPCs maintain generative ability while vary-
ing A € {0,0.2,0.4,0.6,0.8,1}, we illustrate the negative log-likelihoods obtained by each
hybrid CMPC on our test set consisting of 10,000 samples in We see that tran-
sitioning from entirely generative with A = 0 to hybrid learning with A = 0.2 invokes
notable increases in the obtained mean negative log-likelihoods regardless of the number
of components Niest at test time. In particular, for each Niest, we see that the transition
from A = 0.8 to the fully discriminative A = 1 invokes a significant increase in mean NLL.
This is to be expected since hybrid CMPCs with A = 1 are not at all encouraged to learn
generatively. The mean negative log-likelihoods obtained by hybrid CMPCs with latent
dimensions d € {2,4, 8,32} are given in [Subsection D.1|

To complement this assessment of the mean negative log-likelihoods in assessing the

50

)\\ Ntest H 28 29 210 211 212 213 214
0.0 141.58 | 129.61 | 119.39 | 111.93 | 105.76 | 101.03 | 97.33
0.2 147.62 | 137.97 | 130.82 | 125.18 | 120.20 | 116.53 | 113.63
0.4 152.20 | 145.21 | 139.08 | 134.01 | 130.56 | 127.66 | 125.40
0.6 159.49 | 152.20 | 146.38 | 142.04 | 138.83 | 136.24 | 134.39
0.8 176.34 | 172.47 | 168.94 | 166.41 | 164.35 | 162.47 | 161.16
1.0 239.40 | 235.96 | 233.38 | 231.50 | 229.97 | 228.79 | 227.73

Table 7: The mean negative log-likelihood obtained by hybrid CMPCs trained on Binary
MNIST with d = 16 and A € {0,0.2,0.4,0.6,0.8,1}.

generative ability of hybrid CMPCs for differing values of A, we consider the quality of
samples drawn from each model. For an illustration of nine samples drawn from each of
the six hybrid CMPCs corresponding to d = 16, consider We see that as A
increases, the underlying digits remain interpretable until A = 0.8. That said, for A = 0.4
and A = 0.6, though the digits pertaining to samples remain mostly interpretable, heavy
pixelisation occurs. For the entirely discriminative hybrid CMPC (with A = 1, bottom
right of we see samples in which the digit is seemingly painted in black while
the background is painted in white. This may seem strange at first but it corresponds to
the nature of the learning of the entirely discriminative model from which these samples
were drawn. Obtaining entirely non-human interpretable samples is thus unsurprising.
Samples drawn from hybrid CMPCs with latent dimensions d € {2,4, 8,32} are given in
Subsection D.3l

5.4 Our GitHub Repository

Our repository, available at github.com/dewi-batista/hybrid-cmpcs, was initially forked
from |github.com/AlCorreia/cm-tpm, the repository published by Correia et al. as part
of their work, and modified for the learning of decoders of hybrid CMPCs. Here, we offer
a brief overview of our repository which has the following directory structure:
hybrid-cmpc/

data/

figures/

logs/

models/

utils/

hybrid CMPC_test.ipynb

hybrid_CMPC_train.py

LICENSE.txt

README.md

requirements.txt

51

https://github.com/dewi-batista/hybrid-cmpcs
https://github.com/AlCorreia/cm-tpm

Figure 23: Samples of Binary MNIST drawn from hybrid CMPCs with d = 16 and A €
{0,0.2,0.4,0.6,0.8,1} ordered left-to-right top-to-bottom (so top right samples correspond
to A = 0.4 and bottom left to A = 0.6).

Beginning with the files found in the root directory, requirements.txt consists of the
Python dependencies needed to train and test hybrid CMPCs. How to install these de-
pendencies is detailed in the root directory’s README.md file. To train the decoder of a
hybrid CMPC, the user must use hybrid CMPC_train.py which is thoroughly-commented.
The user can straightforwardly set the hyperparameters pertaining to the decoder that
they would like to train, e.g. latent dimension d, the number of components used during
training Niain and A € [0, 1].

Post-training, the parameters of the learned decoders can be found in logs/. Inside,
a trained decoder is found within a series of nested directories according to its hyper-
parameters. In the scenario that more than one decoder has been trained with the same
hyperparameters, each decoder will be listed according to its version number, indexing from
0, within its nested path. For example, if the user trains two decoders with latent dimension
d = 16, Nygain = 2" and A = 0.4 then the directory logs/latent_dim_16/lambda _0.40
will contain the directories version_0/ and version_1/. The former corresponds to the
first trained decoder and the latter corresponds to the second. Each directory will contain
information pertaining to training, e.g. figures depicting convergence of training and val-
idation errors. More importantly, each contains a checkpoints/ directory within which
is a single *.ckpt file. This is precisely where the parameters of the learned decoder are
stored. The integer (between 1 and 100) which appears at the end of the name of said

52

*.ckpt file is the number of epochs reached before invoking the patience of 15 employed
during training with early stopping. For example, if during training a decoder the val-
idation error at epoch 66 was not improved upon within the proceeding 15 epochs then
training halts and the parameters of the decoder are those pertaining to the 66" epoch
and are found in checkpoints/best model_valid-epoch=66.ckpt.

As for the remaining unexplained directories, figures/ contains figures pertaining to
performance during testing, including classification accuracies, samples drawn and Monte
Carlo analysis. The utils/ directory consists of utility-like programs, e.g. the program
used to seed all relevant random components during training and testing to ensure the
reproducibility of our results. Finally, the models/ directory consists of the implementation
of the multi-layer perceptron architectures used in fitting our decoders (nets.py) and the
program used to compile hybrid CMPCs from latent samples zi,...,zy,,., and a trained
decoder (cm_hybrid.py).

6 Discussion

The classification accuracies obtained by hybrid CMPCs for incomplete samples of Binary
MNIST should be interpreted with a few important considerations. The first consideration
to be made is that without a point of comparison in literature, it is difficult to address
the raw discriminative performance of hybrid CMPCs. That said, we are still able to
assess the effect that increasing A € [0, 1] has on the extent to which hybrid CMPCs gain
discriminative power while losing generative power. We saw earlier, in the form of mean
negative log-likelihoods and sample quality, that reasonable generative power is maintained
using A = 0.4 and A = 0.6 while classification accuracies on incomplete samples improved
noticeably compared to the entirely-generative hybrid CMPC with A = 0.

The second consideration pertains to the fact that evaluating classification accuracies
on incomplete samples begs a natural question: are the missing pixel values within a sample
equally informative of the sample’s class label? In our case of Binary MNIST, the answer
is that pixel values are certainly not equally informative of the class label and that a large
portion of pixels are almost entirely uninformative of the class label. This is unsurprising
as the samples pertain to neatly pre-processed images of handwritten digits. As such,
pixels close to the boundary of each sample are almost exclusively 0 across the dataset and
so their lack of presence when removed at random is far less detrimental to classification
accuracy than pixels found in the centre. Perhaps an assessment of which pixel values
are most informative, using mutual information, could be conducted. Then, an evaluation
of the classification accuracy of incomplete samples in which some portion of the most
informative pixel values are removed could be done. We expect that such an evaluation
would require careful consideration: what is written here is only an informal description of
the idea.

Regarding sample quality as A € [0, 1] increases: samples drawn do not degrade im-

93

mediately as A is increased incrementally. The underlying structure of digits remains
interpretable to a reasonable extent until A = 0.8. From this point, the model’s learning is
too heavily discriminatory to produce convincing samples and heavy pixelation is observed.
This is reflected further in the significant increase in the mean negative log-likelihoods ob-
tained by the model from A = 0.6 to A = 0.8 and from A = 0.8 to A = 1. To add to
this, it is entirely possible that a more appropriate weighting of the mean cross-entropy
and mean negative log-likelihood terms would make for a smoother transition in negative
log-likelihoods obtained (and samples drawn) at test time. In our work, each term was
divided by the number of model variables to which they correspond: four for cross-entropy
(in line with the class label represented in binary) and 780 for the digit’s pixel values.

Computational limitations

It is worth stating that, given more time and computational resources, fitting hybrid
CMPCs to datasets which are more complicated than Binary MNIST, such as MNIST,
FASHION-MNIST, SVHN, etc., is a natural avenue of further assessment. It can be ar-
gued that benchmarking on Binary MNIST is not entirely representative of the power of
hybrid CMPCs as its distribution is low in complexity. In line with this, our contribution
in introducing hybrid CMPCs and benchmarking them on Binary MNIST can be seen as
a tutorial-like example of benchmarking hybrid CMPCs in general.

7 Conclusion

We gave overviews of probabilistic circuits (PCs) and continuous mixtures of probabilistic
circuits (CMPCs). Their application to tractable probabilistic inference was addressed. In
particular, overviews of the tractability of PCs with respect to certain probabilistic queries,
such as evi and marg queries, were offered. In extending CMPCs, a hybrid loss function
which encourages simultaneous discriminatory and generative learning was employed in
introducing hybrid CMPCs, an original contribution of our work.

Our motive in assessing hybrid CMPCs was to see to what extent the generative ability
of CMPCs, developed in the original work of Correia et al. [9], could be maintained
while increasing the extent to which discriminative learning is encouraged. Typically, the
learning of both paradigms are at odds with one another but the tractability of PCs with
respect to evi and marg queries facilitates the learning of both paradigms at once. The
performance of hybrid CMPCs was assessed according to their classification accuracy on
incomplete samples of Binary MNIST as well as the quality of samples drawn from them.
Our results demonstrate that increasing the extent to which discriminative learning is
encouraged reduces the generative ability of hybrid CMPCs notably. Perhaps surprisingly,
hybrid CMPCs learned entirely discriminatively (with A = 1) did not attain the highest
classification accuracies. Instead, the hybrid CMPC learned with A = 0.4 performed best
during classification.

o4

As for future work, for concrete comparisons to literature, hybrid CMPCs learned on
MNIST, FASHION-MNIST and SVHN should be investigated. Alongside, transposed con-
volutional decoders should be employed. While the computational demands of transposed
convolutional decoders is certainly higher, noticeable improvements in performance are
expected. Further, using a transposed convolutional neural network to fit the decoder
drastically reduces the decoder’s parameter count. To complement this, an assessment of
the performance of hybrid CMPCs in which the N mixture components are fit using PCs
more sophisticated than FFMs, such as CLTs, should be considered. Perhaps the most
natural next step in this regard would be Bayesian networks in which nodes have at most
two parents. We believe that the performance of such hybrid CMPCs for both classifica-
tion and sampling would be significantly better than the hybrid CMPCs considered in our
work.

References

[1] Dewi Batista. Hybrid continuous mixtures of probabilistic circuits. https://github.
com/dewi-batista/hybrid-cmpcs.

[2] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing
the latent space of generative networks. arXiv preprint arXiw:1707.05776, 2017.

[3] Guillaume Bouchard and Bill Triggs. The tradeoff between generative and discrimina-
tive classifiers. In 16th IASC International Symposium on Computational Statistics,
pages 721-728, 2004.

[4] Cory J Butz, Jhonatan S Oliveira, André E dos Santos, and André L Teixeira. Deep
convolutional sum-product networks. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 33, pages 3248-3255, 2019.

[5] Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for genera-
tive modeling. Physical Review B, 99(15):155131, 2019.

[6] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A
unifying framework for tractable probabilistic models. http://starai.cs.ucla.edu/
papers/ProbCirc20.pdf, 2020.

[7] CKCN Chow and Cong Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.

[8] Dan Ciregan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep neural net-
works for image classification. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3642-3649. IEEE, 2012.

95

https://github.com/dewi-batista/hybrid-cmpcs
https://github.com/dewi-batista/hybrid-cmpcs
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

[9]

[10]

[11]

[12]

Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert
Peharz. Continuous mixtures of tractable probabilistic models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 7244-7252, 2023.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303-314, 1989.

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse probabilistic circuits via
pruning and growing. Advances in Neural Information Processing Systems, 35:28374—
28385, 2022.

Meihua Dang, Antonio Vergari, and Guy Broeck. Strudel: Learning structured-
decomposable probabilistic circuits. In International Conference on Probabilistic
Graphical Models, pages 137-148. PMLR, 2020.

Nicola Di Mauro, Gennaro Gala, Marco lannotta, and Teresa MA Basile. Ran-
dom probabilistic circuits. In Uncertainty in Artificial Intelligence, pages 1682—1691.
PMLR, 2021.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016.

Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks.
Advances in Neural Information Processing Systems, 25, 2012.

Robert Gens and Domingos Pedro. Learning the structure of sum-product networks.
In International Conference on Machine Learning, pages 873-880. PMLR, 2013.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 249-256. JMLR Workshop and Conference
Proceedings, 2010.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

Tan J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-
vances in Neural Information Processing Systems, 27, 2014.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840-6851, 2020.

Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked convolution for au-
toregressive models. In Conference on Uncertainty in Artificial Intelligence, pages
1358-1367. PMLR, 2020.

96

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[32]

[33]

[34]

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Interna-
tional Conference on Learning Representations, 2014.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, Cambridge, MA, 2009.

UCLA StarAl Lab. Density estimation benchmark datasets, 2025. Available at https:
//github.com/UCLA-StarAI/Density-Estimation-Datasets.

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits.
Advances in Neural Information Processing Systems, 34:3558-3570, 2021.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits
by latent variable distillation. arXiv preprint arXiv:2210.04398, 2022.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqgiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. Advances in Neural Information
Processing Systems, 30, 2017.

Stefan Liidtke, Christian Bartelt, and Heiner Stuckenschmidt. Outlier explanation via
sum-product networks. arXwv preprint arXiw:2207.08414, 2022.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative mod-
els. arXiv preprint arXiw:1610.05483, 2016.

Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive Bayes. Advances in Neural Information Pro-
cessing Systems, 14, 2001.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. DeepSDEF: Learning continuous signed distance functions for shape rep-
resentation. In Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition, pages 165—-174, 2019.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent
variable interpretation in sum-product networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(10):2030-2044, 2016.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Mar-
tin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum
networks: Fast and scalable learning of tractable probabilistic circuits. In International
Conference on Machine Learning, pages 7563-7574. PMLR, 2020.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao,
Martin Trapp, Kristian Kersting, and Zoubin Ghahramani. Random sum-product

57

https://github.com/UCLA-StarAI/Density-Estimation-Datasets
https://github.com/UCLA-StarAI/Density-Estimation-Datasets

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

networks: A simple and effective approach to probabilistic deep learning. In Uncer-
tainty in Artificial Intelligence, pages 334-344. PMLR, 2020.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architec-
ture. In Proceedings of the 2011 IEEFE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 689690, Barcelona, Spain, 2011. IEEE.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In International Conference on Machine Learning, pages 1530-1538. PMLR, 2015.

Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with
direct and indirect variable interactions. In International Conference on Machine
Learning, pages 710-718. PMLR, 2014.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1—
2):273-302, 1996.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533-536, 1986.

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief
networks. In Proceedings of the 25th International Conference on Machine Learning,
pages 872-879, 2008.

Edward H Shortliffe. Mycin: A knowledge-based computer program applied to infec-
tious diseases. In Proceedings of the Annual Symposium on Computer Application in
Medical Care, page 66, 1977.

Jakub Tomczak and Max Welling. VAE with a VampPrior. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1214-1223. PMLR, 2018.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder.
Advances in Neural Information Processing Systems, 33:19667-19679, 2020.

Yang Yang, Gennaro Gala, and Robert Peharz. Bayesian structure scores for prob-
abilistic circuits. In Proceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS), volume 206, pages 563-575. PMLR, 2023.

Lotfi A. Zadeh. The role of fuzzy logic in the management of uncertainty in expert
systems. Fuzzy Sets and Systems, 11(1-3):199-227, 1983.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages 818-833. Springer, 2014.

o8

[47] Han Zhao, Mazen Melibari, and Pascal Poupart. On the relationship between sum-
product networks and Bayesian networks. In International Conference on Machine
Learning, pages 116-124. PMLR, 2015.

99

Appendices

A Sample Spaces

Here, we define the sample space Qg over a subset S C {Xi,...,X,} = X. For this,
consider the lexicographic ordering function

O:PHX1,....Xn}) > ™
S (X11’7sz)

where 1 < iy < iy < --- < i <n and
n
k=0

O outputs a tuple in which the elements of the input subset S C X are ordered according
to their subscripts, e.g. O({ X5, X1, Xs}) = (X1, X5, Xg). For our purposes, simply define

Qg := QXil X - X QX%

where S C X and (X;,,...,X;,) = O(S).

B Kullback—Leibler Divergence (KL-divergence)

Given probability density/mass functions p and g on the same space €2, their Kullback—Leibler
divergence (KL-divergence) is given by

DKLQﬂM)::EXNpPOg<§€§§)].

It is often used as a measure of similarity between two distributions: it follows from Gibbs’
inequality that it is non-zero and it is often proposed as a loss function when assessing how
well a model ¢ encodes an underlying distribution p.

The KL-divergence of two distributions can be expressed in terms of self-entropy and
cross-entropy terms as

B p(X)
DKLQHM)——EX~pP0g<qLX))]

= Ex~p [~ log(¢(X))] = Ex~p [~ log(p(X))]

= H(p,q) — H(p)

where H(p,q) denotes the cross-entropy between p and ¢ while H(p) denotes the self-
entropy of p. It follows that minimising the KL-divergence Dkr,(p, q) in ¢ corresponds to
minimising the cross-entropy H (p, q).

60

C Multi-Layer Perceptrons (MLPs)

Multi-layer perceptrons (MLPs) are fully-connected feed-forward networks consisting of an
input layer (where data is input), hidden layers and an output layer. An MLP with three
hidden layers is illustrated in Each layer is made up of a number of neurons,
each of which has a real-valued activation value derived from the activation values of the
nodes in its preceding layer. The only exception to this is the input layer whose nodes’
activation values are determined by the raw input data.

The suitability of MLPs for learning functions from data is due to their expressivity
and their expressive-efficiency. Their expressivity is known due to a proof of the universal
function approximation theorem for MLPs [I0]. To add to this, their high expressive-
efficiency has been demonstrated empirically [27] and ensures that the number of model
components (hidden layers and neurons) needed to represent arbitrary functions is often
far lower than competing methods.

hidden layers
input layer ‘_.‘_, output layer
| 7
D) (&)
/

/
X/

/ - [\/
N /
/ o
‘ﬁ
Figure 24: A multi-layer perceptron (MLP) with & = 3 hidden layers.

For ease of notation, given an MLP with k& hidden layers, denote the index of the input
layer by 0, the output layer by k + 1 and by extension the j' layer by j € {0,...,k+1}.
Additionally, note the following;:

e Let nj € Z>1 denote the number of neurons in layer j.

61

e Let a() € R denote the activation value of neuron 7 in layer j.

e Let w(]) € R denote the weight associated with the edge pointing to neuron ¢ in layer
Jje {1 ,k + 1} from neuron [in layer j — 1.

e Let bl(-j) € R denote the bias of neuron ¢ in layer j € {1,..., k+ 1}.
e Let 0; : R — R denote the non-linear activation function of layer j € {1,...,k + 1}.

From here we can express the activation value of any neuron in a non-input layer in terms
of the activation values of the neurons in the layer which precedes it as

£a+ (Z wf l+1) + b(y+1)>

o)
1
= o | WV Y
N0
for j € {0,...,k}. The reason for writing the second equality above, involving the dot

product of two vectors, is that it helps us to see how using matrix-vector notation allows
us to write an elegant and compact expression for the activation values of all nodes in a
non-input layer in terms of the activation values of the neurons belonging to its preceding
layer as

J+1 (3+1) (7+1) J J+1
i Wig T Wiy, af’ pi Y
: = 0j+1 : : o+ :

(j+1) (+1) (j+1) () (+1)
iy Wy 1 e Wiigng | Lo bn]Jrl

which we abbreviate to
ali*™) = 5. (W<j+1>a<j> 1 b(j+1>>

where the activation function o1 is applied element-wise.

If we fix the structure and choice of activation functions of an MLP then all that is left to
learn are its weights and biases. These are often learned from data using gradient descent
to minimise some loss function in which gradients are computed via back-propagation
[39]. Such a loss function can be a principled measure, e.g. corresponding to maximum
likelihood, but this is not always necessary: ad-hoc loss functions are sometimes employed.

62

D Additional Results

D.1 Mean Negative Log-likelihoods for d € {2,4,8, 32}

Table 8contains the mean negative log-likelihoods of hybrid CMPCs for Nieg € {28, R 214}
and differing latent dimensions d € {2,4,8,32}. Each was trained with N, = 213 and
A €{0,0.2,0.4,0.6,0.8,1} on Binary MNIST.

)\\ Niest H 28 ‘ 29 ‘ 910 ‘ ol1 ‘ 912 ‘ 913 ‘ ol4
0.0 139.86 | 127.70 | 120.40 | 111.80 | 106.84 | 104.12 | 102.47
0.2 144.26 | 137.31 | 133.77 | 127.37 | 124.71 | 123.37 | 122.42
0.4 152.82 | 146.82 | 143.40 | 138.89 | 136.87 | 135.67 | 134.76
0.6 162.29 | 157.23 | 154.57 | 150.98 | 149.60 | 148.40 | 147.58
0.8 181.48 | 178.20 | 175.42 | 173.54 | 172.51 | 171.62 | 170.87
1.0 282.71 | 281.04 | 279.93 | 278.99 | 278.25 | 277.55 | 276.85

)\\ Niest H 28 29 210 911 912 913 ol4
0.0 145.55 | 129.86 | 120.48 | 111.27 | 105.65 | 101.04 | 98.27
0.2 147.01 | 136.50 | 129.15 | 122.32 | 118.19 | 114.63 | 112.56
0.4 152.88 | 144.45 | 138.02 | 131.45 | 127.98 | 125.02 | 123.15
0.6 162.69 | 156.26 | 152.57 | 148.49 | 146.34 | 144.31 | 142.92
0.8 173.88 | 167.48 | 164.41 | 161.36 | 159.51 | 157.60 | 156.42
1.0 256.01 | 253.45 | 250.98 | 248.96 | 247.77 | 246.67 | 245.85

)\\ Niest H 28 ‘ 29 910 911 ‘ 912 ‘ 913 ‘ ol4
0.0 143.37 | 130.19 | 120.21 | 111.69 | 105.54 | 100.67 | 97.04
0.2 146.66 | 137.54 | 131.08 | 123.77 | 119.22 | 115.80 | 113.10
0.4 152.14 | 144.13 | 138.73 | 134.43 | 131.14 | 128.59 | 126.55
0.6 160.37 | 154.96 | 149.70 | 145.84 | 142.93 | 140.66 | 138.87
0.8 175.87 | 170.93 | 167.16 | 164.75 | 162.05 | 160.17 | 158.83
1.0 240.90 | 238.53 | 236.05 | 234.53 | 233.13 | 232.02 | 230.98

/\\ Niest H 28 29 910 ol1 212 913 ol4
0.0 141.28 | 129.49 | 119.36 | 111.96 | 105.94 | 101.26 | 97.46
0.2 145.67 | 137.35 | 130.65 | 124.92 | 120.61 | 117.17 | 114.43
0.4 152.36 | 144.58 | 139.28 | 134.56 | 131.12 | 128.30 | 126.13
0.6 163.24 | 155.98 | 151.24 | 147.48 | 144.52 | 142.14 | 140.34
0.8 179.00 | 175.04 | 170.42 | 167.73 | 165.84 | 163.82 | 162.32
1.0 228.26 | 226.23 | 224.18 | 222.06 | 220.48 | 219.28 | 218.16

Table 8: Latent dimensions 2,4, 8 and 32 respectively top-to-bottom.

63

D.2 Classification accuracies for d € {2,4, 8,32}

Figure 25| contains the classification accuracies of hybrid CMPCs for Niest = 2™ and
differing latent dimensions d € {2,4,8,32}. Said classification accuracies are for varying
portions of pixel values missing at random. FEach was trained with Niam = 213 and

A €{0,0.2,0.4,0.6,0.8,1} on Binary MNIST. Zoomed copies are given to the right of each.

1004
97
90
96+
80
701 ®
= g
S g
5 607 < 94+
3 3
g [
3 50+ 3 93
40+ 0
30
91
20 e
904 -
10 T T U T U T T T T T T u T T
0 10 20 30 40 50 60 70 8 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
100
=
E-S!:=....
90 S~ Ny
<
~J 8
~- \Q\
80 ~ NS,
AN R ‘\\
70 RS RN
g ATERXYR N s
£ SOV £
> 60 R 2
8 AR]
5 5o ANR R Y 5
3 XU WY g
< N <

s
8
”
/7.
fod
”

Nu
¥ g
7
7,
,/
'f
bl
% -
.
e s

“ 90
0 10 20 30 4 50 6 70 80 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
100 -
- 7
ERS 3== s 9
20 S33w &=
Se N NS 96+
80 4 So S,
N, Q\i 95
70 N N
= SO g
8 S N N € o,
> 60 NN, >
g AR 8
5 AT \) 5034
g s0 ASERE\) g
< W <
404 SO 92 %
O W\
30+ W
saN 91
Tw,
e
20 1 Aate
) 907 >,
D \
o 10 20 30 40 50 60 70 80 90 95 o 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
100
%0
80
70+ _
= S
5 60+ >
g
5 E
3 504 3
< <
40 92 e ..
30+ 91
20
90+
0 10 20 30 40 50 60 70 8 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)

Figure 25: Latent dimensions 2,4, 8 and 32 respectively top-to-bottom.

64

D.3 Sample quality for d € {2,4,8,32}

[Figure 26| [Figure 27} [Figure 28| and [Figure 29| contain samples of Binary MNIST drawn
from hybrid CMPCs for Nyt = 2'* and differing latent dimensions d € {2,4,8,32}. Each
was trained with Ny = 2% and A € {0,0.2,0.4,0.6,0.8,1} on Binary MNIST. Ordered
left-to-right top-to-bottom increasing in A.

oo I N
El BRI

Figure 27: Latent dimension d = 4.

65

8.

Figure 28: Latent dimension d

Figure 29: Latent dimension d = 32.

66

E Monte Carlo Analysis

In assessing the variance in classification accuracies of our estimators with respect to sam-
pled latents z1,...,zn,., € 2z, we sampled 50 separate times and computed the mean and
standard deviations of the obtained classification accuracies for said latents on the Binary
MNIST test set. We illustrate the means and single standard deviations in [Figure 30
[Figure 31} [Figure 32} [Figure 33| [Figure 34| and |Figure 35| for A € {0,0.2,0.4,0.6,0.8,1}.

Zoomed copies are given to the right of each figure.

100 4 98 4
90 97
80+ 964
70 4
> 60 >
z 2
e e
S 50 3
g ¢
< <
40
304
20+
T T T T T T T T T T 89 T T U
0 10 20 30 40 50 60 70 80 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
Figure 30: Mixing hyperparmeter A = 0
100 98 4
90
80
704
> 60 s
3 50 3
< <
404 92
30 91
204 90
; T T v : v v v v U 89 T g
0 10 20 30 40 50 60 70 80 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
Figure 31: Mixing hyperparmeter A = 0.2
100 98 4
90 4
80
704
3 604 >
2 2
e e
3 50 5 934
2 <
404 92
30 1 91
20+ 90+
e 89
0 10 20 30 40 50 60 70 80 90 95 0 10 20 30

Pixel values missing at random (%)

Pixel values missing at random (%)

Figure 32: Mixing hyperparmeter A = 0.4

67

Accuracy (%)

Accuracy (%)

Accuracy (%)

100

98 4

90 97 4
80 96 -
70 95 4
g
60+ S 94+
9
e
50 S 93+
]
<
40 92 4
30 A 91 4
20 90 4
v U U v u u u U 89 T U .
10 20 30 40 50 60 70 80 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
. . s
Figure 33: Mixing hyperparmeter A = 0.6
100 98
90 97
80 96
70 95 4
S
60 1 : 94 -
9
e
50 S 93+
o]
<
40 92
30 91 4
20 90 4
10 - P v i u u u u T 89 T U .
10 20 30 40 50 60 70 80 90 95 0 10 20 30
Pixel values missing at random (%) Pixel values missing at random (%)
. . .
Figure 34: Mixing hyperparmeter A = 0.8
100 - 98 -
90 - 97 4
80 - %7
70 _ 957
IS
< 94 4
60 1 >
e
5 93
50 - S
<
92
40
91
30
90
20
T T T T T T T T T 89 T T 1
10 20 30 40 50 60 70 80 90 95 0 10 20 30

Pixel values missing at random (%)

Pixel values missing at random (%)

Figure 35: Mixing hyperparmeter A = 1

68

F Invariance of Classification Accuracies on Binary MNIST
to Initial Conditions of Decoder

We seek to demonstrate that hybrid CMPCs with A = 0.4 obtaining the highest classifica-
tion accuracies on Binary MNIST in our experiments is not due to initial conditions. To
do so, we learn the decoders of ten hybrid CMPCs with A = 0.4 and ten with A = 1 whose
parameters are initialised according to Xavier initialisation [I7]. The Xavier initialisation
of an MLP (the decoders used in constructing our hybrid CMPs are MLPs, detailed in

Appendix C) amounts to initialising all biases to 0 and initialising all weights in the ;"
layer by sampling each from

ul— 6 7 6
nj—1+n; nj—1+n;

where n; denotes the number of neurons in layer j. In initialising an MLP in this way, we
ensure that the variance of activations (and gradients) remains roughly constant across lay-
ers, preventing undesirable behaviour during training, e.g. vanishing or exploding gradients
during training.

The results are illustrated in[Figure 36]in which we see that hybrid CMPCs with A = 0.4
consistently yield higher classification accuracies on Binary MNIST than hybrid CMPCs
with A = 1.

0.975
0
8 A
3
[}
% 0.970 4 R —
C
S
5
S o
=
%]
%]
o
O
o @
0.4 1.0

Mixing hyperparameter A

Figure 36: Boxplots pertaining to classification accuracies over ten independent runs for
the mixing hyperparameters A = 0.4 and A = 1.0. Each box spans the interquartile range
(IQR), representing the central 50% of the data pertaining to the runs, with the median
shown by the horizontal line. Whiskers extend to the most extreme values within 1.5-IQR
of the quartiles, and red triangles denote the mean.

69

