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Chapter 1

Introduction

In this thesis, we study the behavior of solutions to the damped Vlasov-Poisson-Fokker-Planck equa-
tion, characterizing the evolution of the phase-space distribution of a many-body system where the
interactions are given by an inverse square law in the presence of a thermal reservoir. It models the
evolution of the distribution of ions interacting in a plasma subject to repulsive Coulomb forces as
well that of galaxies interacting in space subject to attractive Newton forces [4]. It is given by

∂tµ
γ
t + γv · ∇xµ

γ
t + γ∇v · (µγt (F (x, ρ

γ
t )− γv)) = γ2∆vµ

γ
t , (VPFP)

where (x, v) ∈ Rd × Rd is a vector with d = 3, corresponding to the position and velocity variables
respectively, and γ ≥ 1 is a parameter quantifying the amount of damping introduced in the velocity
variable. In addition, the solution µγ ∈ C([0, T ],P(Rd × Rd)) describes the evolution of the state of
system µγt ∈ P(Rd × Rd), corresponding to a probability measure on Rd × Rd, subject to the initial
condition µγ0 ∈ P(Rd × Rd). Moreover, the element ργ ∈ C([0, T ],P(Rd)) represents the evolution of
the particle density corresponding to the distribution of the mass of the system, obtained by

ργt (x) :=

∫
Rd

µγt (x, v) dv.

Lastly, we consider a force field defined using an interaction potential Φ : R3 → R such that

F : Rd × P(Rd) → Rd, F (x, ρ) := −∇Φ ∗ ρ(x), ∇Φ(x) := ζ
x

|x|d
, ζ ∈ {−1,+1},

where ζ = +1 gives repulsive Coulomb forces, providing a model for the distribution of ions moving in
a plasma, whereas taking ζ = −1 gives attractive Newton forces, giving a model for the distribution of
galaxies interacting in space. In both cases, the interaction potential Φ satisfies the Poisson equation

∆Φ = −ζδ,

up to a positive constant depending on the chosen model, where δ is the Dirac delta function.

In this work, we focus on the behavior of solutions to the damped Vlasov-Poisson-Fokker-Planck
equation in the limit as γ → ∞, corresponding to the increase in the viscosity of the medium where
the particles interact. Under suitable assumptions, the main result of the work consists in showing
that the particle density ργ converges in the Wasserstein distance as γ → ∞ to the unique solution ρ
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to the corresponding Aggregation-Diffusion equation, given by

∂tρt +∇x · (ρtF (x, ρt)) = ∆xρt. (AD)

Here, for p ≥ 1, the p-Wasserstein distance is a metric on the space of probability measures (see
Definition 2.3) with finite p-th moments Pp(Rd), corresponding to measures ρ ∈ P(Rd) satisfying∫

Rd

|x|p dρ <∞.

To be specific, the proof of the main result follows the framework outlined in [4] by establishing the
existence of a constant C > 0, independent of γ ≥ 1 such that we have the inequality

W 2
2 (ρ

γ
t , ρt) ≤ C

(
W 2

2 (ρ
γ
0 , ρ0) +

1

γ2

)
.

The proof rests upon the existence of a weak solution to the damped Vlasov-Poisson-Fokker-Planck
equation satisfying some restrictive properties. Unfortunately, the well-posedness theory covered in
this work does not include all the properties required to prove the main result at a formal level.

However, we do provide conditions so as to guarantee existence and uniqueness of solutions for the
damped Vlasov-Poisson-Fokker-Planck equation where the induced force is essentially bounded and
the solution has finite second position and velocity moments.

To prove these statements, we fix γ ≥ 1 and apply a change of variables to turn (VPFP) into

∂tµt + v · ∇xµt +∇v ·
(
µt(E(x, ρt)− γ2v)

)
= γ4∆vµt,

where E(x, ρ) := γF (x, ρ). This ensures that the results from [1] become applicable.

The thesis is structured as follows. In Chapter 2, we give a derivation of the damped Vlasov-Poisson-
Fokker-Planck equation (VPFP) and justify the reason we expect the Aggregation-Diffusion equation
(AD) to manifest in the limit as γ → ∞. Also, we outline the strategy for proving the main Wasser-
stein convergence result, serving as a partial blueprint for the remainder of the thesis. In Chapter 3,
we obtain uniform estimates in the damping parameter on the second position and velocity moments,
which play a critical role in the proof of the main result. These are deduced by considering a natural
energy functional and showing that this quantity decays throughout the evolution. In Chapter 4, we
outline the framework for taking overdamped limits of the Vlasov-Poisson-Fokker-Planck equation
using tools from optimal transport theory. Namely, we exploit the various connections of the field
with the theory of partial differential equations to obtain explicit estimates on the quantity of interest
in the main result. Combined with results from the previous chapter, the main result is proved. In
Chapter 5, we prove existence and uniqueness of smooth classical solutions to the damped Vlasov-
Poisson-Fokker-Planck equation satisfying the necessary properties for the proof of the main result.

Note: We use the convention C > 0 to denote a constant whose value is irrelevant, depending on the
context. In addition, the value of this constant may change from line to line. We use both measure-
theoretic integration conventions, integrating against dµ(x) and µ(dx), depending on convenience.
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Chapter 2

Derivation and result

In this chapter, we provide an informal derivation of the damped Vlasov-Poisson-Fokker-Planck equa-
tion, motivated through the study of an interacting particle system [3]. In particular, we write down
the equations of motion for a deterministic particle system evolving in a viscous medium and intro-
duce noise into the system. This models the effect of a thermal reservoir acting on the particles,
giving a stochastic differential equation whose solution is an Itô process. The structure of the solu-
tion can be exploited to write down the evolution equation for the law of the process, corresponding
to the damped Vlasov-Poisson-Fokker-Planck equation. In addition, we justify the reason to expect
the Aggregation-Diffusion equation to govern the dynamics when taking γ → ∞ in the damped
Vlasov-Poisson-Fokker-Planck equation [4]. Lastly, we provide a formal statement of the main result
described in Chapter 1 and outline the strategy behind its proof.

2.1 Informal derivation of the equation

To motivate the study of the damped Vlasov-Poisson-Fokker-Planck equation, we begin by describing
a deterministic interacting particle system evolving in a viscous fluid, subject to interaction forces
given by an inverse square law. This serves as a stepping stone to our desired model, so that noise can
later be added to the system, modelling the effects of uncertainty in the measurements or randomness
in the system. To set the scene, we set the dimension to d = 3 and a finite time interval I = [0, T ]

with T > 0. For a fixed viscosity parameter γ ≥ 1, consider a system of N identical particles

Zγ,N
I := (Zγ,1

t , . . . , Zγ,N
t )t∈I ,

where Zγ,i
t = (Xγ,i

t , V γ,i
t ) ∈ Rd × Rd corresponds to the position and velocity variables of particle

i at time t ∈ I. In addition, we make use of an interaction potential Φ : Rd → R to specify the
interactions between the particles. To model ions interacting in a plasma subject to Coulomb forces
or galactic systems interacting in space subject to Newton’s universal law of gravitation, we take

∇Φ(x) = ζ
x

|x|d
, ζ =

{
+1 if Φ is the Coulomb potential,

−1 if Φ is the Newton potential.
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(
Xγ,1

t , V γ,1
t

)

(
Xγ,2

t , V γ,2
t

)

(
Xγ,N

t , V γ,N
t

)

Figure 2.1: Particles interacting in a viscous medium, depending on γ ≥ 1.

Writing down Newton’s second law to obtain the equations of motion for the damped N -particle
system yields the following system of coupled ordinary differential equations

dXγ,i
t

dt
= γV γ,i

t ,

dV γ,i
t

dt
= − γ

N

∑
j ̸=i

∇Φ(Xγ,i
t −Xγ,j

t )− γ2V γ,i
t ,

for i = 1, 2, . . . , N . For each particle, the first equation defines its velocity whereas the second equa-
tion defines its acceleration. The second equation is obtained by normalizing the mass and computing
the resultant force of the system. This force is made up of two parts. The first consits of the inverse
square law acting between each pair of particles, rescaled by the number of particles. The second
part is a damping term that is proportional to the velocity of the particle under consideration.

To model the fact that the particles evolve in the presence of a thermal reservoir, some Brownian
noise is added to the velocity variables, introducing randomness into the system. This results in a
system of coupled stochastic differential equations

dXγ,i
t = γV γ,i

t dt,

dV γ,i
t = − γ

N

∑
j ̸=i

∇Φ(Xγ,i
t −Xγ,j

t )dt− γ2V γ,i
t dt+

√
2γ2dBi

t,

for i = 1, 2, . . . , N , where the stochastic processes (Bi
t)t∈I correspond to N independent d-dimensional

Brownian motions. The solution to the system of stochastic differential equations is a collection of
stochastic processes corresponding to the N particle distributions in phase space, collected in Zγ,N

I .
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(
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t
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t
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t

)

Figure 2.2: An interaction potential Φ specifies the interactions between the particles.

It is worth noting that since the particles are allowed to interact, the particle processes (Zγ,i
t )t∈I

are not pairwise independent. However, since we assume that the N particles are identical, we can
identify the particle system with the random empirical measure µγ,Nt ∈ P(P(Rd × Rd)), defined by

µγ,Nt :=
1

N

N∑
i=1

δ
Zγ,i
t

=
1

N

N∑
i=1

δ
(Xγ,i

t ,V γ,i
t )

,

where δ is the Dirac measure. We can apply a similar trick for the position processes only, defining

ργ,Nt :=
1

N

N∑
i=1

δ
Xγ,i

t
.

This keeps track of the spacial distribution of the particles throughout the evolution. This allows us
to rewrite the dynamics governing the stochastic N -particle system using a convolution of the form{

dXγ,i
t = γV γ,i

t dt,

dV γ,i
t = −γ∇Φ ∗ ργ,Nt dt− γ2V γ,i

t dt+
√
2γ2dBi

t.
(PS)

As the number of particles N grows large, the following two behaviors are to be expected from the
system. The first is that the influence that any given particle i has on another particle j becomes
increasingly negligible, meaning that the particle distributions become increasingly independent. In
other words, for all t ∈ I and all i ̸= j, we have

Law(Zγ,i
t ) ≃ Law(Zγ,j

t ),

where Law(Z) denotes the probability density function of a random variable Z. The second expected
behavior is that the dynamics become increasingly governed by the macroscopic state of the system,
rather than by the microscopic interactions between the particles. This averaging effect is described
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mathematically by imposing that all particle distributions solve the McKean-Vlasov equationdX
γ
t = γV γ

t dt

dV γ
t = −γ∇Φ ∗ ργt (X

γ
t )− γ2V γ

t dt+
√
2γ2dBt,

(MV)

where ργt = Law(Xγ
t ). To establish this limiting behavior, three points need to be established.

1. The well-posedness of the particle system (PS).

2. The well-posedness of the limiting equation (MV).

3. Prove convergence of solutions from (PS) to (MV) in some suitable topology as N → ∞.

Proving the above three items establishes a phenomenon known as propagation of chaos, meaning
that the limiting system is a good description for the corresponding finite particle system when N is
large. This topic has been the subject of intense study ever since Boltzmann’s ideas on the matter
were formulated in a rigorous framework by Kac and McKean in the first half of the twentieth century.

Unfortunately, establishing propagation of chaos is a very difficult task. While propagation of chaos
has been established with other interaction potentials, propagation of chaos for (PS) to (MV) with
Newton or Coulomb interactions is an open problem. Despite these challenges, propagation of chaos
results have been established by various authors under various regularizing assumptions on the sin-
gularity in the interaction potential for the system (PS). For instance, see [2].

From this point on, we assume that the dynamics governed by (MV) is a reasonable approximation
for the particle system (PS) and that the problem is well-posed. The remainder of this section is
devoted to the derivation of the damped Vlasov-Poisson-Fokker-Planck, describing the evolution of
the law of the stochastic process solving (MV). In particular, we begin by writing (MV) as

dZγ
t = bγ(Zγ

t , µ
γ
t )dt+ σγ(Zγ

t , µ
γ
t )dBt,

where Zγ
t = (Xγ

t , V
γ
t ) and µγt = Law(Zγ

t ). In addition, we define

βγ : R2d × P(R2d) → R2d, bγ(z, µ) :=

(
γv

−γ∇Φ ∗ ρ(x)− γ2v

)
,

σγ : R2d × P(R2d) → R2d×2d, σ(z, µ) :=
√

2γ2

(
03×3 03×3

03×3 I3×3

)
,

where ρ ∈ P(Rd) is the first marginal of µ, defined for all measurable sets A ⊂ Rd by

ρ(A) := µ(A× Rd).

This means that the solution to (MV) is an Itô process with drift vector bγ and diffusion matrix σγ .
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A critical observation is that the dynamics in (MV) describing the evolution of the law of Zγ
t are

independent of past states of the system, exhibiting a certain forgetfulness property. In particular,
the dynamics only depend of the current law of the process, characterizing the solution to (MV) as a
nonlinear Markov process in the sense of McKean.

Thus, for an arbitrary probability measure ν ∈ P(R2d), we can consider the family of transition
functions (P ν

t )t∈I adapted to the nonlinear process (Zγ
t )t∈I , driving the evolution of the nonlinear

process with initial condition ν (see [3, Appendix A.4] for its definition and time-inhomogeneous
analogue). Using these transition functions, we construct the nonlinear operator

St : P(R2d) → P(R2d), St(ν)(dw) :=

∫∫
Rd×Rd

P ν
t (z, dw) ν(dz),

describing the evolution of the law of Zγ
t with initial condition ν. In particular, note that (St)t∈I is a

nonlinear semigroup since S0 = id and using the nonlinear Chapman-Kolmogorov identity, we obtain

St+s(ν) =

∫∫
Rd×Rd

PSt(ν)
s (w, ·)

(∫∫
Rd×Rd

P ν
t (z, dw) ν(dz)

)
= SsSt(ν).

We can use these this nonlinear semigroup to transform the nonlinear Markov process into a time-
inhomogeneous Markov process by considering new transition functions of the form

P s,t : R2d → P(R2d), P s,t := P
Ss(µ

γ
0 )

t−s ,

where s ≤ t with s, t ∈ I. This was introduced by McKean [14], allowing the use of semigroup methods
to track the behavior of the law of the nonlinear Markov process. Namely, we get an evolution system
(see [3, Definition A.31]) defined on bounded Borel measurable test functions by

Ts,t : Bb(R2d) → Bb(R2d), Ts,tφ(z) :=

∫∫
Rd×Rd

φ(w) P s,t(z, dw) =

∫∫
Rd×Rd

φ(w) P
µγ
0

t−s(z, dw).

The test functions, also known as observables, are used to probe information about the current state
of the system whereas Ts,t describes the behavior of these observables along the evolution. From the
evolution system Ts,t, we obtain the evolution equation governing the law of the process by solving

d

dt
Ts,tφ(z) = Ts,tLµγ

t
φ(z).

Here, we require the (right) infinitesimal generator of the evolution system, defined by

Lµγ
t
: Bb(R2d) → Bb(R2d), Lµγ

t
φ(z) := lim

h→0

Tt,t+hφ(z)− φ(z)

h
= lim

h→0

∫
R2d φ(w)P

µγ
t

h (z, dw)− φ(z)

h
.

For the Itô process solving (MV), we may restrict the domain of the evolution system and infinitesimal
generator to the set of smooth compactly supported test functions. In this case, provided that the
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induced force field is bounded, the infinitesimal generator can be computed using Itô’s lemma to be

LMV
µγ
t

: C∞
c (R2d) → C∞

c (R2d), LMV
µγ
t
φ(z) := bγ(z, µγt ) · ∇φ(z) +

1

2

2d∑
i,j=1

aγij(z, µ
γ
t )

∂2φ

∂zi∂zj
(z),

where aγ(z, µ) := σγ(z, µ)σγ(z, µ)T . Thus, after substituting the above with w := (x, v), we have

∫∫
Rd×Rd

φ(w)
∂Pµγ

s
t−s

∂t
(z, dw) = −

∫∫
Rd×Rd

((
γ∇Φ ∗ ργt (x) + γ2v

)
· ∇vφ(w)

)
Pµγ

s
t−s(z, dw)

+ γ

∫∫
Rd×Rd

(v · ∇xφ(w))P
µγ
s

t−s(z, dw)

+ γ2
∫∫

Rd×Rd

(∆vφ(w))P
µγ
s

t−s(z, dw).

Taking s = 0 and integrating with respect to z against the initial law µγ0 with Fubini’s theorem,∫∫
Rd×Rd

φ(w)
∂St(µ

γ
0)

∂t
(dw) = −

∫∫
Rd×Rd

((
γ∇Φ ∗ ργt (x) + γ2v

)
· ∇vφ(w)

)
St(µ

γ
0)(dw)

+ γ

∫∫
Rd×Rd

(v · ∇xφ(w))St(µ
γ
0)(dw)

+ γ2
∫∫

Rd×Rd

(∆vφ(w))St(µ
γ
0)(dw),

giving a weak solution (see Definition 2.1) to the damped Vlasov-Poisson-Fokker-Planck equation

∂tµ
γ
t + γv · ∇xµ

γ
t + γ∇v · (µγt (F (x, ρ

γ
t )− γv)) = γ2∆vµ

γ
t ,

with initial condition µγ0 and F (x, ρ) = −∇Φ ∗ ρ. This concludes the derivation of the equation.

2.2 Informal overdamped limit argument

After providing an informal derivation of the damped Vlasov-Poisson-Fokker-Planck equation (VPFP),
we consider the reasons to expect the Aggregation-Diffusion equation (AD) to arise by taking γ → ∞.
Similarly to the derivation of the main equation, the arguments presented here are informal and should
only serve as motivation for the phenomenon under study. For simplicity of presentation, we abuse
notation by identifying measures with their Lebesgue density. To start with overdamped limits, note
that we can express the dynamics of the damped Vlasov-Poisson-Fokker-Planck equation in the form

∂tµ
γ
t + γv · ∇xµ

γ
t + γ∇v · (µγt F (x, ρ

γ
t )) = γ2∇v · (∇vµ

γ
t + vµγt ) .

In addition, the right-hand side in the above equation is of the order of γ2, which can be expanded to

γ2∇v · (∇vµ
γ
t (x, v) + vµγt (x, v)) = γ2∇v ·

(
µγt (x, v)∇v log

(
µγt (x, v)

N d(v)

))
,
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where N d ∈ P(Rd) is the standard normal distribution on Rd. This distribution is defined by

N d : Rd → R, N d(v) :=
1

(2π)d/2
e−|v|2/2.

Thus, for large values of γ ≥ 1, the quadratic term dominates so that we can expect the factorization

µγt (x, v) ≃ ργt (x)N d(v) :=M(µγt ).

In addition, we can make use of the momentum field, defined in terms of the phase-space density as

mγ
t : Rd → R, mγ

t (x) :=

∫
Rd

vµγt (x, v) dv,

to rewrite the dynamics for the damped Vlasov-Poisson-Fokker-Planck in the position variables only.
This is obtained by integrating in the velocity variables to obtain the system of equations

∂tρ
γ
t + γ∇x ·mγ

t = 0,

∂tm
γ
t + γ∇x ·

(∫
Rd

v ⊗ v µγt (x, dv)

)
= γργt F (x, ρ

γ
t )− γ2mγ

t ,

where ⊗ denotes the outer product. Using the phase-space factorization of the density µγt , we have

γ∇x ·
(∫

Rd×Rd

v ⊗ v µγt (x, dv)

)
≃ γ∇xρ

γ
t (x),

for large values of γ ≥ 1. Thus, the second equation of the system of equations can be simplified to

∂tm
γ
t + γ∇ργt ≃ γργt F (x, ρ

γ
t )− γ2mγ

t .

From the above equation, we can omit lower-order terms in γ ≥ 1 to get the refined approximation

γmγ
t ≃ ργt F (x, ρ

γ
t )−∇xρ

γ
t .

Substituting this expression in the momentum dynamics yields the Aggregation-Diffusion equation

∂tρ
γ
t +∇x · (ργt F (x, ρ

γ
t )) ≃ ∆xρ

γ
t ,

for large values of γ ≥ 1. In other words, the particle densities in the damped Vlasov-Poisson-Fokker-
Planck equation become increasingly governed by the Aggregation-Diffusion equation as required.

2.3 Formal statement of the main result

In the remainder of the thesis, we work towards establishing the phenomenon described informally in
the previous section in a more rigorous framework. To do so, we first introduce the necessary notions
to provide a formal statement of the main result of the work. These notions mainly come from the
theory of partial differential equations, statistical mechanics, optimal transport and geometry.
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To even start treating partial differential equations in a rigorous context, we first need to specify
what it means to solve a partial differential equation. Many different notions of solution exist in the
literature, including weak, mild, strong and classical solutions, to name a few. For our purposes,
we begin by introducing the notion of weak solution to the Vlasov-Poisson-Fokker-Planck equation
and Aggregation-Diffusion equation. These are defined by multiplying the equations by a smooth,
compactly supported test function and integrating by parts. This shifts the differential operators away
from the solution to the test function. As a result, weak solutions need not be even differentiable.

Definition 2.1. A continuous curve µγ ∈ C([0, T ],P2(Rd × Rd)) is a weak solution to the Cauchy
problem for the damped Vlasov-Poisson-Fokker-Planck equation (VPFP) with initial condition µ0 ∈
P2(Rd × Rd) if for all s, t ∈ (0, T ) and all φ ∈ C∞

c (Rd × Rd), we have∫∫
Rd×Rd

φ dµγt −
∫∫

Rd×Rd

φ dµγs

= γ

∫ t

s

∫∫
Rd×Rd

(v · ∇xφ+ (F (x, ργr )− γv) · ∇vφ+ γ∆vφ) dµ
γ
rdr.

Similarly, a continuous curve ρ ∈ C([0, T ],P2(Rd)) is a weak solution to the Aggregation-Diffusion
equation (AD) with initial condition ρ0 ∈ P2(Rd) if for all s, t ∈ (0, T ) and all φ ∈ C∞

c (Rd), we have∫
Rd

φ dρt −
∫
Rd

φ dρs =

∫ t

s

∫
Rd

(F (x, ρr) · ∇xφ+∆xφ) dρrdr.

For both equations, we can define stronger notions of solution by imposing that additional properties
need to be satisfied. For the damped Vlasov-Poisson-Fokker-Planck equation, we are mainly interested
in solutions where the induced force field is bounded. Many other useful features of the solution can
be deduced from this property, characterizing it as a strong solution.

Definition 2.2. A continuous curve µ ∈ C([0, T ],P2(Rd × Rd)) is a strong solution to the Cauchy
problem for the damped Vlasov-Poisson-Fokker-Planck equation (VPFP) with initial condition µ0 ∈
P(Rd×Rd) if µ is a weak solution to the damped Vlasov-Poisson-Fokker-Planck equation with initial
condition µ0 in the sense of Definition 2.1 and the induced force is bounded, meaning that

sup
0≤t≤T

∥F (·, ρt))∥L∞ <∞.

On the other hand, the Aggregation-Diffusion equation has recently been the subject of intense
study through the lens of optimal transport theory. This field of mathematics uses measure theory
to rigorously define the notion of moving distributions so as to minimize a certain cost function.
Whenever the measures are defined on Euclidean spaces equipped with the Euclidean distance, the
optimal cost of transportation corresponds to the Wasserstein distance, defined as follows. See [20]
and [10] for an introduction to the field.
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Definition 2.3. Let p ≥ 1 and consider probability measures µ, ν ∈ Pp(Rd) with finite p-th moment∫
Rd

|x|p dµ <∞,

∫
Rd

|x|p dν <∞.

In addition, let Π(µ, ν) ⊂ P(Rd × Rd) denote the set of transport plans from µ to ν, consisting of
measures with first marginal µ and second marginal ν. This means that for π ∈ Π(µ, ν), we have∫∫

Rd×Rd

(φ(x) + ψ(y)) dπ =

∫
Rd

φ(x) dµ+

∫
Rd

ψ(y) dν,

for all φ,ψ ∈ Cb(Rd). Then, the Wasserstein distance between µ and ν is defined as

W p
p (µ, ν) := inf

π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|p dπ.

In particular, a deep result was established by Jordan et al. [16], writing the Aggregation-Diffusion
equation as a gradient flow with respect to the 2-Wasserstein distance. Intuitively speaking, this
means that solutions evolve so as to minimize a certain energy functional. To define this energy
functional, we first need to define a way to quantify the difference in information carried between two
probability measures. Typically, we compare measures against another reference measure satisfying
some natural property. This can be chosen to be a stationary solution or the usual Lebesgue measure.
This comparison of measures with respect to information is captured by the notion of relative entropy.

Definition 2.4. Let E be a Euclidean space and consider probability measures µ, ν ∈ P(E). Then,
the relative entropy between µ and ν is defined as

H(µ|ν) :=


∫∫

Rd×Rd

h
(µ
ν

)
dν if µ≪ ν.

+∞ otherwise,

Here, we define h(s) := s log s, which is conventionally extended to h(0) := 0 by continuity.

In particular, the energy functional that is minimized along the evolution of the Aggregation-Diffusion
equation can be expressed as a sum of a relative entropy term with a potential energy term, depending
on the interaction potential Φ. This is defined as follows.

Definition 2.5. The energy functional for the Aggregation-Diffusion equation (AD) is defined by

E : P(Rd) → R ∪ {+∞}, E(ρ) := H(ρ|Ld) +
1

2

∫
Rd

Φ ∗ ρ dρ,

where Ld is the d-dimensional Lebesgue measure. Using this energy functional, we can define a
stronger notion of solution to the Aggregation-Diffusion equation that is consistent with the gradient
flow structure of the equation, known as E-regular solutions. Their main feature is that certain key
quantities remain bounded throughout the evolution.
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Definition 2.6. Let E be the energy functional given in Definition 2.5. A continuous curve ρ ∈
C([0, T ],P2(Rd)) is an E-regular solution to the Cauchy problem (AD) with initial condition ρ0 ∈
P2(Rd) ∩ dom(E) if it is a weak solution to the Aggregation-Diffusion equation in the sense of
Definition 2.1, belongs to the Sobolev space throughout the evolution ρ ∈ L1((0, T ),W 1,1(Rd)) and

sup
0≤t≤T

E(ρt) + sup
0≤t≤T

∥F (·, ρt)∥L∞ +

∫ T

0

∫
Rd

|∇ρt|2

ρt
dxdt <∞.

Similarly to the Aggregation-Diffusion dynamics, we can also define an energy functional for the
damped Vlasov-Poisson-Fokker-Planck equation by considering the phase-space factorization de-
scribed in Section 2.2. This replaces the reference used in the relative entropy term.

Definition 2.7. The energy for the Vlasov-Poisson-Fokker-Planck equation (VPFP) is defined by

E : P(Rd × Rd) → R ∪ {+∞}, E(µ) := H(µ|M(µ)) +
1

2

∫
Rd

Φ ∗ ρ dρ,

where M(µ) is the phase-space factorization of µ described in Section 2.2 for large values of γ ≥ 1.

Between the Vlasov-Poisson-Fokker-Planck equation and the Aggregation-Diffusion equation lies an
intermediate system, obtained defining modified particle densities which take into account the effect
of the velocity variable on the position variable ahead of time. These are known as coarse-grained
particle densities, which also play an important role in the existence and uniqueness theory.

Definition 2.8. Let λ ≥ 0 and consider the unique weak solution µγ ∈ C([0, T ],P(Rd × Rd)) to the
damped Vlasov-Poisson-Fokker-Planck equation (VPFP). Then, the λ-coarse-grained particle density
ργ,λ ∈ C([0, T ],P(Rd)) is defined as

ργ,λt (x) :=

∫
Rd

µγt (x− λv, v) dv.

We refer to the case where λ = 1/γ as the standard coarse-grained particle density, denoted by ρ̂γ .

We are now ready to provide a formal statement of the main result that is proved in the thesis. For
now, we assume the well-posedness of both (VPFP) and (AD) and state the overdamped limit result.

Theorem 2.9. Consider the energy functionals given in Definition 2.5 and 2.7 and consider a family
of initial conditions (µγ0)γ≥1 satisfying the following uniform energy and moment bounds

sup
γ≥1

E(µγ0) + sup
γ≥1

∫∫
Rd×Rd

|x|2 + |v|2 dµγ0 <∞.

In addition, consider the family of unique strong solutions (µγ)γ≥1 to the Vlasov-Poisson-Fokker-
Planck equation (VPFP) and let (ργ)γ≥1 and (ρ̂γ)γ≥1 denote the corresponding families of particle
densities and standard coarse-grained particle densities. Assume that

sup
γ≥1

sup
0≤t≤T

{
∥ργt ∥L∞ + ∥ρ̂γt ∥L∞

}
<∞.
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In addition, assume that the family (ρ̂γ)γ≥1 satisfies the properties of E-regular solutions and induces
a family of Lipschitz forces with Lipschitz constants bounded uniformly in γ ≥ 1, meaning that

sup
γ≥1

sup
0≤t≤T

∥F (·, ρ̂γt )∥Lip <∞.

In addition, let ρ ∈ C([0, T ],P2(Rd)) be the unique E-regular solution to the Aggregation-Diffusion
equation (AD) with initial condition ρ0 ∈ P2(Rd) ∩ dom(E). Then, there exists some constant C > 0

independent of γ ≥ 1 such that

sup
0≤t≤T

W 2
2 (ρ

γ
t , ρt) ≤ C

(
W 2

2 (ρ
γ
0 , ρ0) +

1

γ2

)
.

To prove the statement, we first need to ensure that the second position and velocity moments remain
uniformly bounded in γ ≥ 1 throughout the evolution. The position moments are required to ensure
that the 2-Wasserstein distances are well-defined whereas the velocity moments are used to deduce the
uniform bound. These results are obtained in Chapter 3. The bound itself is obtained by considering

W 2
2 (ρ

γ
t , ρ) ≤ 2W 2

2 (ρ
γ
t , ρ̂

γ
t ) + 2W 2

2 (ρ̂
γ
t , ρt).

and bounding each term separately. The first term can be bounded by the second velocity moment of
µγt using elementary techniques from optimal transport theory. However, bounding the second term
is more involved. A Grönwall argument is applied to a modified evolution-variational inequality

1

2

d

dt
W 2

2 (ρ̂
γ
t , ρt) ≤ λW 2

2 (ρ̂
γ
t , ρt)−DΦ(ρ̂

γ
t , ρt) +

1

2
∥eγt ∥L2(ρ̂t)

.

where λ > 0 is independent of γ ≥ 1. Moreover, we have that DΦ is the modulated interaction energy

DΦ(ρ, ν) :=

∫∫
Rd×Rd

Φ(x− y) d(ρ− ν)(y) d(ρ− ν)(x),

defined for probability measures ρ, ν ∈ P(Rd). Lastly, the term eγt in the modified evolution-
variational inequality reflects the difference in the forces governing the two systems. We prove that
both the modulated interaction energy DΦ(ρ̂

γ
t , ρt) and the error term eγt can be controlled uniformly

in γ ≥ 1 with respect to the Wasserstein distance. These results are treated in Chapter 4.
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Chapter 3

Uniform estimates

In this chapter, we obtain estimates on various quantities of interest that can be bounded uniformly
in the damping parameter γ ≥ 1. In particular, we establish some useful properties for the energy
functional corresponding to the damped Vlasov-Poisson-Fokker-Planck equation (VPFP), defined in
Section 2.3. We use these features to prove an energy dissipation inequality, giving natural assump-
tions to obtain uniform energy bounds throughout the evolution [4]. In addition, we combine these
bounds with Grönwall’s lemma to obtain uniform bounds on the second moments of the phase-space
density. Throughout this section, we assume the well-posedness for the damped Vlasov-Poisson-
Fokker-Planck equation (VPFP) with finite second position and velocity moments. This is postponed
until Chapter 5. Rather, we focus on bounding the moments uniformly in γ ≥ 1, assuming they exist.

3.1 Uniform energy estimates

To start, we begin by considering the relative entropy term present in the energy functional corre-
sponding to the damped Vlasov-Poisson-Fokker-Planck equation. To help motivate the presence of
this term in Definition 2.7, we consider the possible state variables that can contribute to the total
energy of the underlying particle system. From a macroscopic perspective, we can consider two kinds
of mechanisms giving rise to energy due to the movement of the particles. The first gives rise to
energy that is available to do useful work, corresponding to the kinetic energy of the system. The
second gives rise to energy that is unavailable to do useful work, corresponding to the entropy of the
system. We collect these two mechanisms in a term which we call the kinetic entropy as follows.

Definition 3.1. The kinetic entropy of a probability measure µ ∈ P(Rd × Rd) is defined by

H(µ) : Rd × Rd → R, H(µ)(x, v) :=
|v|2

2
µ(x, v) + h(µ(x, v)),

where we recall that h(s) := s log s for s > 0, which is conventionally extended to h(0) := 0.

The notion of entropy was originally introduced by Clausius [5], which was subsequently investigated
further by many physicists of the late nineteenth century. A few years prior, however, Maxwell
discovered that the standard normal distribution naturally arises as a good description for the velocity
distribution in idealized gases [11, 12]. However, it was Jaynes who first showed that the standard
normal distribution minimizes the entropy as defined in Definition 3.1 [8, 9].
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Theorem 3.2. Let ρ ≥ 0 be a non-negative real number. Define the function

mρ(v) := ρN d(v),

where N d ∈ P(Rd) is the standard normal distribution on Rd. Then, the function mρ solves

min

{
H(σ) | σ : Rd → [0,∞) measurable,

∫
Rd

σ(v) dv = ρ

}
.

Proof. By convexity of the function h, for all non-negative real numbers s ≥ 0 and t > 0, we have

h(t) ≥ h(s) + h′(s)(t− s).

Take s = mρ(v) and t = σ(v) where σ is a function in the feasible set of the problem. Then, we get

h(σ(v)) ≥ h(mρ(v)) + h′(mρ(v))(σ(v)−mρ(v))

= h(mρ(v)) +

(
1 + log

(
ρ

(2π)d/2

)
− |v|2

2

)
(σ(v)−mρ(v)).

Using the fact that σ belongs to the feasible set of the minimization problem along with∫
Rd

σ(v)−mρ(v) dv = 0,

we can integrate both sides of the convexity inequality to deduce that

H(σ) =

∫
Rd

|v|2

2
σ(v) + h(σ(v)) dv ≥

∫
Rd

|v|2

2
mρ(v) + h(mρ(v)) dv = H(mρ).

Thus, we have shown that mρ minimizes the kinetic entropy as required.

In other words, for a given particle density, the phase-space distribution with a standard normal
velocity profile minimizes the kinetic entropy. For convenience, we give a name to this distribution.

Definition 3.3. The Maxwellian associated to a probability measure µ ∈ P(Rd × Rd) is defined by

M(µ) : Rd × Rd → R, M(µ)(x, v) := mρ(x)(v) = ρ(x)N d(v),

where ρ ∈ P(Rd) is the first marginal of µ, corresponding to the particle density obtained from µ.

What is interesting is that the Maxwellian associated to a phase-space density serves as a good
reference distribution in the relative entropy defined in Definition 2.4. With this choice of reference,
the relative entropy coincides with the total energy difference arising from the kinetic entropy.

Remark 3.4. For a probability measure µ ∈ P(Rd × Rd), a small computation yields∫∫
Rd×Rd

H(µ) dz −
∫∫

Rd×Rd

H(M(µ)) dz = H(µ|M(µ)),

This implies that the relative entropy of µ with respect to its Maxwellian is non-negative.
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On the other hand, another source of energy comes from the position of the particles with respect
to each other. This term is known as the potential energy of the system, which depends on the
interaction potential mediating the behavior of the particles between themselves. Note that this type
of energy is independent of the velocity profile of the state of the system.

Definition 3.5. The potential energy of a probability measure µ ∈ P(Rd × Rd) is defined as

V (µ) :=
1

2

∫
Rd

Φ ∗ ρ dρ,

where ρ ∈ P(Rd) is the first marginal of µ, corresponding to the particle density obtained from µ.

As a result, we can obtain the energy functional defined in Definition 2.7 by summing the potential
energy with the energy obtained from the kinetic entropy. Namely, we obtain the equality

E(µ) := H(µ|M(µ)) +
1

2

∫
Rd

Φ ∗ ρ dρ =

∫∫
Rd×Rd

(H(µ)−H(M(µ))) dz + V (µ).

Using the fact that the relative entropy with respect to the Maxwellian is non-negative, we prove that
that the energy exhibits a dissipative behavior. In fact, we prove two inequalities. The first is later
used to prove the uniform bound on the moments, whereas the second is more physically natural.

Theorem 3.6. Let µγ be the unique strong solution to the damped Vlasov-Poisson-Fokker-Planck
with finite second position and velocity moments and sufficient regularity. Then, we have

E(µγt ) + 4γ2
∫ t

0

∫∫
Rd×Rd

∣∣∣∣∇v

√
µγse|v|

2/2

∣∣∣∣2 e−|v|2/2 dz ≤ E(µγ0)

E(µγt ) + 2γ2
∫ t

0
H(µγs |M(µγs )) ds ≤ E(µγ0).

Proof. Using the regularity of the solution µγt and the fact that Φ is even, we have

d

dt

(∫∫
Rd×Rd

|v|2

2
dµγt +

1

2

∫
Rd

Φ ∗ ργt dρ
γ
t

)
=

∫∫
Rd×Rd

(
|v|2

2
+ Φ ∗ ργt (x)

)
∂µγt
∂t

dz.

Substituting the damped Vlasov-Poisson-Fokker-Planck equation and integrating by parts yields

d

dt

(∫∫
Rd×Rd

|v|2

2
dµγt +

1

2

∫
Rd

Φ ∗ ργt dρ
γ
t

)
= −γ2

∫∫
Rd×Rd

v · (∇vµ
γ
t + vµγt ) dz.

On the other hand, using a similar procedure, we have

d

dt

(∫∫
Rd×Rd

h(µγt ) dz

)
=

∫∫
Rd×Rd

(1 + log µγt )
∂µγt
∂t

dz

= γ2
∫∫

Rd×Rd

(1 + log µγt ) (∇v · (∇vµ
γ
t + vµγt )) dz

= −γ2
∫∫

Rd×Rd

∇vµ
γ
t

µγt
· (∇vµ

γ
t + vµγt ) dz.
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As a result, summing the two contributions yields

d

dt
E(µγt ) = −γ2

∫∫
Rd×Rd

(∇vµ
γ
t + vµγt ) ·

(
v +

∇vµ
γ
t

µγt

)
dz

= −γ2
∫∫

Rd×Rd

∣∣∣∣v√µγt + 2∇v

√
µγt

∣∣∣∣2 dz

= −4γ2
∫∫

Rd×Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2 dz.

Thus, the first inequality follows by integration

E(µγt ) + 4γ2
∫ t

0

∫∫
Rd×Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2dz ≤ E(µγ0).

On the other hand, the logarithmic Sobolev inequality [6] gives

2

∫
Rd

µγt log

(
µγt

M(µγt )

)
dv ≤ 4

∫
Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2 dv.

Thus, we can use deduce that

d

dt
E(µγt ) ≤ −2γ2H(µγt |M(µγt )).

As a result, we can conclude by using Remark 3.4 to obtain

E(µγt ) + 2γ2
∫ t

0
H(µγs |M(µγs )) ≤ E(µγ0).

This concludes the proof of the required inequalities.

3.2 Uniform first position moments

The energy dissipation inequalities obtained in Theorem 3.6 provide natural assumptions to obtain
uniform bounds on the energy throughout the evolution. In the quest for uniform bounds on the
second moments, we start by proving that the first position moments are uniformly bounded as long
as the same holds true for the energy. In the process, we also obtain uniform bounds on the second
velocity moments. For the remainder of this section, we consider Coulomb interactions between the
particles, but the arguments can be adapted to include the Newtonian interaction.

Theorem 3.7. Let (µγ)γ≥1 be the family of unique strong solutions to the damped Vlasov-Poisson-
Fokker-Planck equation with finite second position and velocity moments and sufficient regularity,
where the initial conditions satisfy

sup
γ≥1

E(µγ0) + sup
γ≥1

∫∫
Rd×Rd

|x| dµγ0 <∞.
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Then, it follows that the first position moments are uniformly bounded throughout the evolution

sup
γ≥1

sup
0≤t≤T

∫∫
Rd×Rd

|x| dµγt <∞.

Proof for Coulomb interactions. Consider the following decomposition of the logarithm

log(µγt ) = log+(µγt )− log−(µγt ),

where we define

log+(µγt ) := max{log(µγt ), 0}, log−(µγt ) := max{− log(µγt ), 0}.

In particular, on the domains

S1 :=

{
(x, v) ∈ Rd × Rd : µγt > e−

|x|
2
− |v|2

4

}
, S2 :=

{
(x, v) ∈ Rd × Rd : µγt ≤ e−

|x|
2
− |v|2

4

}
,

we have the following respective bounds∫∫
S1

µγt log
−(µγt ) dz ≤

∫∫
Rd×Rd

(
|x|
2

+
|v|2

4

)
dµγt ,∫∫

S2

µγt log
−(µγt ) dz ≤

∫∫
Rd×Rd

e−
|x|
4
− |v|2

8 dz,

The latter follows from the definition of S2 and the fact that

0 ≤
√
µγt log

−(µγt ) ≤ 1.

Thus, it follows that∫∫
Rd×Rd

|x|
2

+
|v|2

4
+ log+(µγt ) dµ

γ
t −

∫∫
Rd×Rd

e−
|x|
4
− |v|2

8 dz ≤ E(µγt ) +
∫∫

Rd×Rd

|x| dµγt .

Furthermore, using the regularity of the solution, we can apply Young’s inequality to deduce that

d

dt

(∫∫
Rd×Rd

|x| dµγt
)

= γ

∫∫
Rd×Rd

x

|x|
· v dµγt

= γ

∫∫
Rd×Rd

x

|x|
·
(
v
√
µγt + 2∇v

√
µγt

)√
µγt dxdv

≤ 1

2
+
γ2

2

∫∫
Rd×Rd

∣∣∣∣v√µγt + 2∇v

√
µγt

∣∣∣∣2 dxdv

=
1

2
+ 2γ2

∫∫
Rd×Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2 dxdv.

Thus, by integration, we have∫∫
Rd×Rd

|x| dµγt ≤
∫∫

Rd×Rd

|x| dµγ0 +
t

2
+ 2γ2

∫ t

0

∫∫
Rd×Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2 dxdvds.
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Hence, it follows that∫∫
Rd×Rd

|x|
2

+
|v|2

4
dµγt ≤

∫∫
Rd×Rd

|x|
2

+
|v|2

4
+ log+(µγt ) dµ

γ
t

≤ C +

∫∫
Rd×Rd

|x| dµγt + E(µγt )

≤ C +

∫∫
Rd×Rd

|x| dµγ0 +
T

2
+ E(µγt )

+ 2γ2
∫ t

0

∫∫
Rd×Rd

∣∣∣∣∇v

√
µγt e

|v|2/2
∣∣∣∣2 e−|v|2/2 dxdvds

<∞,

uniformly in γ ≥ 1 and 0 ≤ t ≤ T by Theorem 3.6. Thus, we can conclude that

sup
γ≥1

sup
0≤t≤T

∫∫
Rd×Rd

|x|+ |v|2 dµγt <∞.

This provides uniform bounds on the first position and second velocity moments as required.

3.3 Uniform second moments

The uniform bounds on the first position and second velocity moments play a key role in the estab-
lishment of uniform bounds on the second position moments. In particular, we use a Grönwall-type
argument twice to deduce this result. This is formalized in the following theorem.

Theorem 3.8. Let (µγ)γ≥1 be the family of unique strong solutions to the damped Vlasov-Poisson-
Fokker-Planck equation with finite second position and velocity moments and sufficient regularity,
where the initial conditions satisfy

sup
γ≥1

E(µγ0) + sup
γ≥1

∫∫
Rd×Rd

|x|2 dµγ0 <∞.

Then, it follows that

sup
γ≥1

sup
0≤t≤T

{∫∫
Rd×Rd

|x|2 dµγt
}
<∞.

Proof for Coulomb interactions. Again, using the regularity of the solution µγt , we have that

1

2

d

dt

(∫∫
Rd×Rd

|x|2 dµγt
)

= γ

∫∫
Rd×Rd

x · v dµγt .

Thus, we can integrate to obtain

1

2

∫∫
Rd×Rd

|x|2 dµγt =
1

2

∫∫
Rd×Rd

|x|2 dµγ0 + γ

∫∫ t

0

∫∫
Rd×Rd

x · v dµγsds.
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In addition, we have

d

dt

(∫∫
Rd×Rd

x · v dµγt
)

=

∫∫
Rd×Rd

(x · v)
(
−γv · ∇xµ

γ
t − γF (x, ργt ) · ∇vµ

γ
t + γ2∇v · (∇vµ+ vµγt )

)
dz

= γ

∫∫
Rd×Rd

|v|2 dµγt + γ

∫∫
Rd×Rd

x · F (x, ργt ) dµ
γ
t − γ2

∫∫
Rd×Rd

x · v dµγt .

To bound the second term, note that∫∫
Rd×Rd

x · F (x, ργt ) dµ
γ
t =

∫∫
Rd×Rd

y∇Φ(y − x) dργt (x)dρ
γ
t (y)

−
∫∫

Rd×Rd

(x− y)∇Φ(x− y) dργt (x)dρ
γ
t (y)

≤−
∫∫

Rd×Rd

x · F (x, ργt ) dµ
γ
t +

∫
Rd

Φ ∗ ργt dρ
γ
t .

Thus, we can deduce that

d

dt

(∫∫
Rd×Rd

x · v dµγt
)

≤ γ

(∫∫
Rd×Rd

|v|2 dµγt +
1

2

∫
Rd

Φ ∗ ργt dρ
γ
t

)
− γ2

∫∫
Rd×Rd

x · v dµγt .

Using the same bounds for the negative part of the logarithm as in the proof of Theorem 3.7, we have

d

dt

(∫∫
Rd×Rd

x · v dµγt
)

≤ γ

(∫∫
Rd×Rd

|v|2 dµγt + 4

∫∫
Rd×Rd

h(µγt ) dz +
1

2

∫
Rd

Φ ∗ ργt dρ
γ
t

)
− 4γ

∫∫
Rd×Rd

h(µγt ) dz − γ2
∫∫

Rd×Rd

x · v dµγt

≤ 4γE(µγt ) + 4γ

∫∫
Rd×Rd

e−
|x|
4
− |v|2

8 dz

+ 2γ

∫∫
Rd×Rd

|x| dµγt − γ2
∫∫

Rd×Rd

x · v dµγt

≤ Cγ − γ2
∫∫

Rd×Rd

x · v dµγt .

for some constant C > 0 independent of γ ≥ 1, which follows by Theorems 3.6 and 3.7. Applying
Grönwall’s lemma followed by Young’s inequality yields∫∫

Rd×Rd

x · v dµγt ≤
(∫∫

Rd×Rd

|x|2

2
+

|v|2

2
dµγ0

)
e−γ2t +

C

γ

≤ C

γ

where the last inequality follows by Theorem 3.7. Thus, we have that

1

2

∫∫
Rd×Rd

|x|2 dµγt =
1

2

∫∫
Rd×Rd

|x|2 dµγ0 + γ

∫ t

0

∫∫
Rd×Rd

x · v dµγsds

<∞,
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uniformly in γ ≥ 1 and 0 ≤ t ≤ T . Thus, we can conclude that

sup
γ≥1

sup
0≤t≤T

∫∫
Rd×Rd

|x|2 dµγt <∞.

This gives uniform bounds on the second position moments as required.

As a closing remark, since the uniform bound on the second position moments implies that the first
position moments are also uniformly bounded, we can deduce that both position and velocity moments
remain uniformly bounded throughout the evolution. Under the assumptions of Theorem 3.8, we have

sup
γ≥1

sup
0≤t≤T

∫∫
Rd×Rd

|x|2 + |v|2 dµγt <∞.

This fact is key in ensuring that the Wasserstein distances between particle densities are well-defined
and serve as a building block for the establishment of the uniform bound given in Theorem 2.9.
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Chapter 4

Overdamped limits

In this chapter, we focus on establishing the main result of the thesis, corresponding to a convergence
result in the Wasserstein distance of solutions to the damped Vlasov-Poisson-Fokker-Planck equation
(VPFP) to the corresponding Aggregation-Diffusion equation (AD). In particular, the proof of Theo-
rem 2.9 passes through an intermediate system, solved by the standard coarse-grained particle density
defined in Definition 2.8. Namely, we bound the Wasserstein distances to the intermediate system in
terms of the second position and velocity moments of the phase-space density [4]. Combined with the
results from Chapter 3, these bounds are made uniform in the damping parameter, under suitable
energy assumptions. Throughout this section, we assume the well-posedness of the two equations and
postpone the proof for the damped Vlasov-Poisson-Fokker-Planck equation until Chapter 5.

4.1 The coarse-grained system

We begin by investigating the properties of the coarse-grained particle densities introduced in Defini-
tion 2.8. These quantities resemble the usual particle density, where the effect of the velocity variable
on the position variable is taken into account ahead of time. This ahead-of-time influence is controlled
by a parameter λ ≥ 0 through the coarse-graining map, defined by

Γλ : Rd × Rd → Rd × Rd, Γλ(x, v) := (x+ λv, v),

Note that this is a volume-preserving diffeomorphism with inverse given by

Γ−λ : Rd × Rd → Rd × Rd, Γ−λ(x, v) := (x− λv, v).

This can be verified by checking that detDΓλ = 1. To understand the role of the coarse-graining
map, observe that the integrand in Definition 2.8 corresponds to the push-forward measure of the
phase-space density by the coarse-graining map. Namely, for a probability measure µ ∈ P(Rd × Rd)

that is absolutely continuous with respect to the Lebesgue measure, we have the equality

Γλ
#µ(x, v) = µ(x− λv, v).

In this measure-theoretic language, we have the following equalities

ργt (x) = πx#µ
γ
t (x), ργ,λt (x) = (πx ◦ Γλ)#µ

γ
t (x), ρ̂γt (x) = (πx ◦ Γ

1
γ )#µ

γ
t (x),
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where πx : Rd × Rd → Rd denotes the projection onto the first component. After shedding light on
the coarse-grained particle densities, we consider the dynamics describing their evolution in time.

Theorem 4.1. Let µγ be a strong solution to the damped Vlasov-Poisson-Fokker-Planck equation.
Then, the standard coarse-grained particle density ρ̂γ is a weak solution to the equation

∂ρ̂γt
∂t

+∇x · Ĵγ
t = ∆xρ̂

γ
t , Ĵγ

t (x) :=

∫
Rd

F (x− v/γ, ργt ) Γ
1
γ

#µ
γ
t (x, v) dv.

Proof. Let φ ∈ C∞
c (Rd) be an arbitrary test function. Denote φγ(x.v) := φ(x + v/γ). Since µγ is a

weak solution to the Vlasov-Poisson-Fokker-Planck equation, we have that

0 =

∫∫
Rd×Rd

(
∂φγ

∂t
+ γv · ∇xφ

γ + γ∇vφ
γ · (F (x, ργt )− γv) + γ2∆vφ(x+ v/γ)

)
dµγt

=

∫∫
Rd×Rd

(
∂φ

∂t
◦ (πx ◦ Γ

1
γ ) +∇xφ ◦ (πx ◦ Γ

1
γ ) · F (x, ργt ) + ∆xφ ◦ (πx ◦ Γ

1
γ )

)
dµγt

=

∫
Rd

(
∂φ

∂t
+∆xφ

)
dρ̂γt +

∫∫
Rd×Rd

∇xφ · F (x− v/γ, ργt ) dΓ
1
γ

#µ
γ
t .

Integrating with respect to t yields the desired the weak formulation of Definition 2.1 as∫
Rd

φ dρ̂γt −
∫
Rd

φ dρ̂γ0 =

∫ t

0

∫
Rd

∆xφ dρ̂γsds+

∫∫
Rd×Rd

∇xφ · F (x− v/γ, ργs ) dΓ
1
γ

#µ
γ
t ds.

As a result, we obtain a weak solution to our desired system with initial condition ρ̂γ0 .

We are now ready to prove the first half of the triangle inequality argument. In particular, we give
a bound on the Wasserstein distance between the particle density of the damped Vlasov-Poisson-
Fokker-Planck equation and the corresponding standard coarse-grained particle density.

Theorem 4.2. Let µγ be the unique strong solution to the Vlasov-Poisson-Fokker-Planck equation
and consider the corresponding particle density ργ and the standard coarse-grained particle density
ρ̂γt . Then, we have the bound

W 2
2 (ρ̂

γ
t , ρ

γ
t ) ≤

1

γ2

∫∫
Rd×Rd

|v|2 dµγt .

Proof. Consider an optimal transport plan Πt ∈ P(R2d × R2d) from Γ
1
γ

#µ
γ
t to µγt with respect to the

square Euclidean norm. Such a measure Πt exists since the initial and final measures are defined on
a Polish space and the transportation cost is lower semi-continuous. By projecting onto the position
variables, it follows that (πx × πx)#Πt ∈ P(Rd × Rd) is a transport plan from ρ̂γt to ργt . Thus, we
obtain the estimate

W 2
2 (ρ̂

γ
t , ρ

γ
t ) ≤

∫∫
Rd×Rd

|x− ξ|2 d(πx × πx)#Πt(x, ξ)

=

∫∫∫∫
Rd×Rd×Rd×Rd

|πx(x, v)− πx(ξ, ν)|2 dΠt(x, v, ξ, ν)

≤
∫∫∫∫

Rd×Rd×Rd×Rd

|x− ξ|2 + |v − ν|2 dΠt(x, v, ξ, ν)
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=W 2
2 (Γ

1
γ

#µ
γ
t , µ

γ
t ).

Moreover, consider the transport plan (Γ
1
γ × id)#µ

γ
t ∈ P(R2d × R2d) from Γ

1
γ

#µ
γ
t to µγt . This yields

W 2
2 (Γ

1
γ

#µ
γ
t , µ

γ
t ) ≤

∫∫
Rd×Rd

|Γ
1
γ (x, v)− (x, v)|2 dµγt =

1

γ2

∫∫
Rd×Rd

|v|2 dµγt .

Thus, we have shown that

W 2
2 (ρ̂

γ
t , ρ

γ
t ) ≤

1

γ2

∫∫
Rd×Rd

|v|2 dµγt ,

giving a bound on the Wasserstein distance in terms of the second velocity moment.

4.2 Displacement interpolation

The second half of the triangle inequality argument requires significantly more work. As a starting
point, we begin by stating a standard result from optimal transport theory, concerning the existence
of an optimal transport map whenever the source measure does not give mass to small sets. This is
known as Brenier’s theorem, which plays an important role in the arguments in this chapter [20].

Theorem 4.3. Let p ≥ 1 and consider probability measures µ, ν ∈ P(Rd) such that µ is absolutely
continuous with respect to the Lebesgue measure. Then, there exists a convex function Ψ : Rd → R
such that T := ∇Ψ is the unique optimal transport map from µ to ν, meaning that∫

Rd

|x− T (x)|p dµ = inf
S#µ=ν

∫
Rd

|x− S(x)|p dµ.

Here, the infimum is taken over all transport maps from µ to ν. In addition, the map T is monotone
in the sense that for all x, y ∈ Rd, we have the order inequality

(T (x)− T (y)) · (x− y) ≥ 0.

In addition to Brenier’s theorem, we introduce the ideas attributed McCann, concerning the inter-
polation of probability measures, given a transport map [13]. This entails generating a family of
probability measures, consisting of all measures obtained throughout the process of transportation.

Definition 4.4. Let µ, ν ∈ P(Rd) be probability measures such that µ is absolutely continuous with
respect to the Lebesgue measure. In addition, consider the optimal transport map T from µ to ν

obtained from Theorem 4.3. For 0 ≤ θ ≤ 1, the displacement function is defined by

T θ : Rd → Rd, T θ(x) := (1− θ)x+ θT (x)).

We call the measure T θ
#µ ∈ P(Rd) the θ-displacement interpolant between µ and ν.

Moreover, the following theorem relates displacement interpolants with the Wasserstein distance.
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Theorem 4.5. Let µ, ν ∈ P2(Rd) be probability measures with finite second moments such that µ
is absolutely continuous with respect to the Lebesgue measure. In addition, consider the optimal
transport map T from µ to ν and let 0 ≤ θ1, θ2 ≤ 1. Then, we have the equality

W2(T
θ1
# µ, T θ2

# µ) = |θ1 − θ2|W2(µ, ν).

Proof. Let Π ∈ P(Rd × Rd) be an optimal transport plan from µ to ν. Consider the interpolation

Cθ(x, y) : Rd × Rd → Rd, Cθ(x, y) := (1− θ)x+ θy.

Using the fact that the optimal transport plan Π from µ to ν is supported on the graph of the optimal
transport map T from µ to ν, we have

Cθ
#Π = Cθ

#(id× T )#µ = ((1− θ)id+ θT )#µ = T θ
#µ.

Thus, we can deduce that (Cθ1 , Cθ2)#Π is a transport plan from T θ1
# µ to T θ2

# µ and thus

W2(T
θ1
# µ, T θ2

# µ) ≤
(∫∫

Rd×Rd

|x− y|2 d(Cθ1 , Cθ2)#Π

)1/2

= |θ2 − θ1| W2(µ, ν).

If the strict inequality holds for some θ1 < θ2, the triangle inequality yields

W2(µ, ν) ≤W2(µ, T
θ1
# µ) +W2(T

θ1
# , T θ2

# µ) +W2(T
θ2
# , ν)

< θ1W2(µ, ν) + (θ2 − θ1)W2(µ, ν) + (1− θ2)W2(µ, ν)

=W2(µ, ν),

giving a contradiction. Thus, we can deduce that

W2(T
θ1
# µ, T θ2

# µ) = |θ1 − θ2|W2(µ, ν).

This provides our desired result and concludes the proof of the theorem.

In our quest for the proof of the main theorem, we need to compute the relative entropy of interpolants
with respect to the Lebesgue measure. To ensure that this quantity is finite, we must guarantee that
the interpolants are absolutely continuous with respect to the Lebesgue measure (see Definition 2.4).

Theorem 4.6. Let µ, ν ∈ P(Rd) be probability measures that are absolutely continuous with respect
to the Lebesgue measure. Consider the optimal transport map T from µ to ν obtained from Theorem
4.3. For 0 ≤ θ ≤ 1, the θ-displacement interpolant T θ

#µ between µ and ν is absolutely continuous
with respect to the Lebesgue measure.

Proof. We verify that the θ-displacement interpolant from µ to ν satisfies the definition of absolute
continuity with respect to the Lebesgue measure. In particular, let A ⊆ Rd be a Borel set with zero
Lebesgue measure. Let T = ∇Ψ be the optimal transport map from µ to ν provided by Theorem 4.3.
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Define

ψθ : Rd × R, Sθ(x) := (1− θ)
|x|2

2
+ θΨ(x).

Since the function Ψ is convex, we have that ψθ is strictly convex. Thus, we have that ∇ψθ is strictly
monotone and so its inverse is well-defined on its domain. By Cauchy-Schwarz and the monotonicity
of the optimal transport map, we obtain

|∇ψθ(x)−∇ψθ(y)||x− y| ≥ (∇ψθ(x)−∇ψθ(y)) · (x− y)

= (1− θ)|x− y|2 + θ(∇Ψ(x)−∇Ψ(y)) · (x− y)

≥ (1− θ)|x− y|2.

From this, we can deduce that the inverse map

(∇ψθ)−1 : ran ∇ψθ → Rd

is Lipschitz with constant less than (1− θ)−1. It follows that the set (∇ψθ)−1(A) has zero Lebesgue
measure. Hence, the interpolant is absolutely continuous with respect to the Lebesgue measure.

Given the absolute continuity of interpolants with respect to the Lebesgue measure, we state without
proof a deeper result concerning the convexity of the relative entropy along interpolants [13].

Theorem 4.7. Let p > 1 and consider probability measures µ, ν ∈ P(Rd) that are absolutely
continuous with respect to the Lebesgue measure. In addition, let T be the optimal transport map
from µ to ν obtained from Theorem 4.3. Then, the functions

K,L : [0, 1] → R, I(θ) := H(T θ
#µ|Ld), L(θ) := log(∥T θ

#µ∥Lp)

are convex, where T θ
#µ is the θ-displacement interpolant between µ and ν.

Using the convexity of the relative entropy along interpolants, we show that the displacement inter-
polants remain essentially bounded, whenever this property holds for the initial and final measures.

Corollary 4.8. Let µ, ν ∈ P ∩ L∞(Rd) be probability measures that are absolutely continuous with
respect to the Lebesgue measure with essentially bounded densities. In addition, let T be the optimal
transport map from µ to ν obtained from Theorem 4.3. For 0 ≤ θ ≤ 1, the θ-displacement interpolant
is essentially bounded with the estimate

∥T θ
#µ∥L∞ ≤ max{∥µ∥L∞ , ∥ν∥L∞}.

Proof. By Theorem 4.7, we have

log(∥T θ
#µ∥Lp) ≤ max{log(∥µ∥Lp), log(∥ν∥Lp)}.
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Taking the limit superior yields

lim sup
p→∞

log(∥T θ
#µ∥Lp) ≤ max{lim sup

p→∞
log(∥µ∥Lp), lim sup

p→∞
log(∥ν∥Lp)}.

By continuity of the logarithm and monotonicity of the exponential, we have

∥T θ
#µ∥L∞ ≤ max{∥µ∥L∞ , ∥ν∥L∞}.

This shows that the displacement interpolants are essentially bounded as desired.

The essential boundedness of the displacement interpolants can be leveraged to obtain control in the
Wasserstein distance on the modulated interaction energy, described in Section 2.3. The rest of this
section is devoted to this aim. To start, we recall the definition of the modulated interaction energy.

Definition 4.9. Let µ, ν ∈ P(Rd) be probability measures that are absolutely continuous with respect
to the Lebesgue measure. Then, the modulated interaction energy between µ and ν is defined by

DΦ(µ, ν) :=

∫∫
Rd×Rd

Φ(x− y) d(µ− ν)(y)d(µ− ν)(x).

Before controlling the modulated interaction energy with respect to the Wasserstein distance, we first
consider the homogeneous Sobolev norm, defined on the space of signed measures having zero total
mass. This norm is suitable for the signed measures appearing in Definition 4.9.

Definition 4.10. Let ω be a signed measure on Rd with zero total mass, that is ω(Rd) = 0. Then,
the Ḣ−1 homogeneous Sobolev norm is defined by

∥ω∥Ḣ−1 := sup
∥∇φ∥L2≤1

∣∣∣∣∫
Rd

φ dω

∣∣∣∣ .
Remark 4.11. It immediately follows from the definition that if ∇Φ ∗ (µ− ν) ∈ L2(Rd), we have

|DΦ(µ, ν)| ≤ ∥∇Φ ∗ (µ− ν)∥L2 ∥µ− ν∥Ḣ−1 .

We are ready to prove an estimate on the modulated interaction energy with respect to the Wasserstein
distance under an essential boundedness assumption on the density of the measures.

Theorem 4.12. Let µ, ν ∈ P2 ∩ L∞(Rd) be probability measures that are absolutely continuous
with respect to the Lebesgue measure with finite second moments and essentially bounded densities.
Then, we have the estimate

∥µ− ν∥Ḣ−1 ≤
√
c∞ W2(µ, ν), c∞ := max{∥µ∥L∞ , ∥ν∥L∞}.

Proof. Let φ ∈ C∞
c (Rd) with ∥∇φ∥L2 ≤ 1. By change of variables, we have∫

Rd

φ(x) dT θ
#µ =

∫
Rd

φ((1− θ)x+ θT (x)) dµ.
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Thus, taking derivatives with respect to θ yields

d

dθ

∫
Rd

φ dT θ
#µ =

∫
Rd×Rd

∇φ((1− θ)x+ θT (x)) · (T (x)− x) dµ

≤
(∫

Rd

|T (x)− x|2 dµ
)1/2(∫

Rd

|∇φ|2dT θ
#µ

)1/2

≤
√
c∞ W2(µ, ν),

where the last inequality follows by Corollary 4.8. By the Mean Value Theorem, it follows that

∥µ− ν∥Ḣ−1 ≤
√
c∞ W2(µ, ν).

This gives the required result, concluding the proof of the theorem.

4.3 Evolution-variational inequalities

In this section, we make use of a deep connection between the field of optimal transport and the
theory of partial differential equations. From an intuitive point of view, the result gives a formula
for the time-derivative of the 2-Wasserstein distance along a solution to a continuity equation with a
sufficiently regular vector field. For a proof, see [10, Theorem 8.4.7, Remark 8.4.8].

Theorem 4.13. Let ρ ∈ C([0, T ],P2(Rd)) be a weak solution to the continuity equation

∂ρt
∂t

+∇ · (ρtξt) = 0,

∫ T

0
∥ξt∥2L2(ρt)

dt <∞,

that is absolutely continuous with respect to the Lebesgue measure. For any probability measure
ν ∈ P2(Rd) with finite second moments, consider the optimal transport map Tt from ρt to ν, obtained
from Theorem 4.3. Then, for almost every 0 < t < 1, we have the equality

1

2

d

dt
W 2

2 (ρt, ν) =

∫
Rd

(x− Tt(x)) · ξt(x) dρt.

The above theorem serves as a stepping stone to proving an inequality characterizing E-regular so-
lutions to the Aggregation-Diffusion equation, as given in Definition 2.6. In particular, we obtain a
bound on the energy differences between measures defined on spacial spaces.

Theorem 4.14. Let ρ, ν ∈ P2(Rd) ∩ dom(E) be probability measures with finite second moments,
belonging to the domain of the energy functional defined in Definition 2.5. In addition, assume that
the measures ρ and ν are absolutely continuous with respect to the Lebesgue measure satisfying

DΦ(ρ, ν) <∞,

∫
Rd

|∇ρ|2

ρ
dx <∞, F (·, ρ) ∈ L∞(Rd).

Consider the optimal transport map T from ρ to ν obtained from Theorem 4.3.
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Then, it follows that we have the energy inequality

E(ν)− E(ρ) ≥
∫
Rd

(T (x)− x) · ∇ρ(x) dx+
1

2
DΦ(ρ, ν)

−
∫ 1

0

∫
Rd

(T (x)− x) · F (T θ(x), ρ) dρdθ,

for ρ-almost every x ∈ Rd, where the map T θ is the displacement function defined in Definition 4.4.

Proof. We begin by bounding the differences in entropy. Using Theorem 4.7, we can use the convexity
of the relative entropy along displacement interpolants to deduce that for all 0 < θ < 1, we have

H(ν|Ld)−H(ρ|Ld) ≥ 1

θ

(
H(T θ

#ρ|Ld)−H(ρ|Ld)
)
.

In addition, we can use [10, Lemma 10.4.4 (iv)] to deduce that in the limit as θ → 0, we obtain

H(ν|Ld)−H(ρ|Ld) ≥ −
∫
Rd

ρ(x) tr ∇̃(T (x)− x) dx,

where tr ∇̃ denotes the approximate divergence. By Hölder’s inequality, we have that

∫
Rd

|∇ρ| dx ≤
(∫

Rd

|∇ρ|2

ρ
dx

)1/2

<∞,

from which we can deduce that ρ ∈W 1,1(Rd). Thus, we can use [10, Lemma 10.4.5] to deduce that

H(ν|Ld)−H(ρ|Ld) ≥
∫
Rd

(T (x)− x) · ∇ρ(x) dx

holds for ρ-almost every x ∈ Rd. When it comes to the differences in the potential energy, using the
optimal transport map T from ρ to ν with a change of variables, we obtain

1

2

∫
Rd

Φ ∗ ν dν − 1

2

∫
Rd

Φ ∗ ρ dρ =
1

2

∫
Rd

Φ ∗ (ν − ρ) dν +
1

2

∫
Rd

Φ ∗ ρ dν − 1

2

∫
Rd

Φ ∗ ρ dρ

=
1

2
DΦ(ρ, ν) +

∫
Rd

Φ ∗ ρ(T (x))− Φ ∗ ρ(x) dρ

=
1

2
DΦ(ρ, ν) +

∫ 1

0

∫
Rd

∇Φ ∗ ρ(T θ(x)) · (T (x)− x) dρdθ.

As a result, we obtain

E(ν)− E(ρ) ≥
∫
Rd

(T (x)− x) · ∇ρ(x) dx+
1

2
DΦ(ρ, ν)

−
∫ 1

0

∫
Rd

F (T θ(x), ρ) · (T (x)− x) dρdθ.

This proves our desired result, concluding the proof of the theorem.

In particular, for systems corresponding to a perturbation of the Aggregation-Diffusion, we can obtain
a refined inequality whenever the induced force of the system is Lipschitz in the position variable.
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Theorem 4.15. Let ρ ∈ C([0, T ],P2(Rd) ∩ dom(E)) be a weak solution to the continuity equation

∂ρt
∂t

+∇ · (ρt(F (·, ρt) + et)) = ∆ρt,

∫ T

0
∥et∥2L2(ρt)

dt <∞,

∫ T

0

∫
Rd

|∇ρt|2

ρt
dxdt <∞,

that is absolutely continuous with respect to the Lebesgue measure. In addition, assume that for all
0 ≤ t ≤ T , the force field F (·, ρt) ∈ L∞ ∩ Lip(Rd) is essentially bounded and Lipschitz, satisfying

c0 := sup
0≤t≤T

∥F (·, ρt)∥Lip <∞, λ := 1 + c0.

Then, for all ν ∈ P(Rd) ∩ dom(E) and almost every 0 ≤ t ≤ T , we have the inequality

1

2

d

dt
W 2

2 (ρt, ν) ≤ E(ν)− E(ρt)−
1

2
DΦ(ρt, ν) +

λ

2
W 2

2 (ρt, ν) +
1

2
∥et∥2L2(ρt)

. (EVI)

We refer to this inequality as the modified evolution-variational inequality.

Proof. Note that the governing equation can be written in the form

∂ρt
∂t

+∇ · (ρtξt) = 0, ξt := F (·, ρt) + et −
∇ρt
ρt

.

Using Young’s inequality, there exists a constant C > 0 such that the vector field ξt satisfies

∫ T

0
∥ξt∥2L2(ρt)

dt ≤ C

(∫ T

0

∫
Rd

|F (·, ρt)|2 dρtdt+
∫ T

0

∫
Rd

|et|2 dρtdt+
∫
Rd

∣∣∣∣∇ρtρ
∣∣∣∣2 dρtdt

)
<∞,

Hence, combining Theorems 4.13 and 4.14 yields

1

2

d

dt
W 2

2 (ρt, ν) ≤ E(ν)− E(ρt)−
1

2
DΦ(ρt, ν) +

1

2
W 2

2 (ρt, ν) +
1

2
∥et∥2L2(ρ)

+

∫ 1

0

∫
Rd

(T (x)− x) · (F (T θ
t (x), ρt)− F (x, ρt)) dρtdθ

≤ E(ν)− E(ρt)−
1

2
DΦ(ρt, ν) +

1

2
W 2

2 (ρt, ν) +
1

2
∥et∥2L2(ρ)

+ c0W2(ρt, ν)

∫ 1

0
W2(T

θ
t #µ, ν) dθ,

where the last equation follows by Hölder’s inequality. Using Theorem 4.5, we can deduce that

W2(T
θ
t #µ, ν) = θW2(ρt, ν).

Thus, we can integrate to conclude that

1

2

d

dt
W 2

2 (ρt, ν) ≤ E(ν)− E(ρt)−
1

2
DΦ(ρt, ν) +

λ

2
W 2

2 (ρt, ν) +
1

2
∥et∥2L2(ρt)

.

This gives our desired result, concluding the proof of the theorem.
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4.4 Wasserstein control of EVIs

To apply Grönwall’s lemma with the modified evolution-variational inequality (EVI), we must control
each term appearing in the inequality with respect to the Wasserstein distance. To relate the frame-
work detailed in Section 4.3 to the Aggregation-Diffusion equation and the coarse-grained system, we
begin by choosing a suitable error term. In particular, we take

eγt (x) :=
dĴγ

t

dρ̂γt
(x)− F (x, ρ̂γt ),

where the first term corresponds to the Radon-Nikodym derivative of Ĵt with respect to ρ̂γt for ρ̂γt -
almost every x ∈ Rd. In this case, by applying Theorem 4.15 twice with [10, Lemma 4.3.4], we
get

1

2

d

dt
W 2

2 (ρ̂
γ
t , ρt) ≤

1

2

d

dt
W 2

2 (ρ̂
γ
t , ρs)

∣∣
s=t

+
1

2

d

ds
W 2

2 (ρ̂
γ
t , ρs)

∣∣
t=s

≤ λγW 2
2 (ρ̂

γ
t , ρt)−DΦ(ρ̂

γ
t , ρt) +

1

2
∥eγt ∥L2(ρ̂t)

,

where λγ is defined as in Theorem 4.15 for ρ̂γ . We now estimate the modulated interaction energy
with respect to the Wasserstein distance. This is given in the following theorem.

Theorem 4.16. Let µ, ν ∈ P ∩L∞(Rd) be probability measures that are absolutely continuous with
respect to the Lebesgue measure with essentially bounded densities. Then, we have that

|DΦ(µ, ν)| ≤ c∞W
2
2 (µ, ν).

Proof. To begin, let φ ∈ C∞
c (Rd) with ∥∇φ∥L2 ≤ 1. We use colinearity to maximize the L2 inner

product to deduce that

∥µ− ν∥Ḣ−1 = sup
∥∇φ∥L2≤1

∣∣∣∣∫
Rd

φ(x)(∆Φ ∗ (µ− ν))(x)

∣∣∣∣
= sup

∥∇φ∥L2≤1

∣∣∣∣∫
Rd

∇φ(x) · ∇Φ ∗ (µ− ν)(x) dx

∣∣∣∣
= ∥∇Φ ∗ (µ− ν)∥L2 .

Using Remark 4.11 with Theorem 4.12, we have that

|DΦ(µ, ν)| ≤ c∞W
2
2 (µ, ν).

This gives our desired result, concluding the proof of the theorem.

Next, we bound the error term due to the discrepancy in the forces of the two systems appearing in the
modified evolution-variational inequality. This is bounded in terms of the second velocity moments of
the damped Vlasov-Poisson-Fokker-Planck equation, providing a first step towards uniform estimates.
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Theorem 4.17. Let µγ be the unique strong solution to the damped Vlasov-Poisson-Fokker-Planck
equation (VPFP) such that the corresponding particle density ργt ∈ P ∩L∞(Rd) and standard coarse-
grained particle density ρ̂γ ∈ P ∩ L∞(Rd) have essentially bounded densities with

sup
0≤t≤T

{
∥ργt ∥L∞ + ∥ρ̂γt ∥L∞

}
<∞.

Assume the standard coarse-grained particle density satisfies the assumptions of Theorem 4.15. Then,

1

2
∥eγt ∥

2
L2(ρ̂γt )

≤ cγ∗
γ2

∫∫
Rd×Rd

|v|2 dµγt ,

where we define the following constants

cγ∗ := cγ0 + (cγ∞)2, cγ0 := sup
0≤t≤T

∥F (·, ρ̂γt )∥Lip , cγ∞ = sup
0≤t≤T

max{∥ργt ∥L∞ , ∥ρ̂γt ∥L∞}.

Proof. Using Hölder’s inequality with a change of variables, we obtain

∥eγt ∥
2
L2(ρ̂γt )

=

∫∫
Rd×Rd

eγt (x) · (F (x− v/γ, ργt )− F (x, ρ̂γt )) dΓ
1
γ

#µ
γ
t

≤ ∥eγt ∥L2(ρ̂γt )

(∫∫
Rd×Rd

|F (x, ργt )− F (x+ v/γ, ρ̂γt )|
2
dµγt

)1/2

.

Thus, we can deduce that

1

2
∥eγt ∥

2
L2(ρ̂γt )

≤ 1

2

∫∫
Rd×Rd

|F (x, ργt )− F (x+ v/γ, ρ̂γt )|2 dµ
γ
t

≤
∫
Rd

|F (x, ργt )− F (x, ρ̂γt )|2 dρ
γ
t +

∫∫
Rd×Rd

|F (x, ρ̂γt )− F (x+ v/γ, ρ̂γt )|2 dµ
γ
t .

By introducing a Dirac delta by integration by parts, the first term can be bounded as∫
Rd

|F (x, ργt )− F (x, ρ̂γt )|2 dρ
γ
t ≤ cγ∞

∣∣∣∣∫
Rd×Rd

Φ ∗ (ργt − ρ̂γt )(x) · (−ζ∆Φ ∗ (ργt − ρ̂γt )(x)) dx

∣∣∣∣
= .cγ∞

∣∣∣∣∫
Rd×Rd

Φ ∗ (ργt − ρ̂γt ) d(ρ
γ
t − ρ̂γt )

∣∣∣∣
= cγ∞|DΦ(ρ

γ
t , ρ̂

γ
t )|.

In particular, using Theorems 4.2, 4.12 and 4.16, we obtain∫
Rd

|F (x, ργt )− F (x, ρ̂γt )|2 dρ
γ
t ≤ (cγ∞)2

γ2

∫∫
Rd×Rd

|v|2 dµγt .

By assumption, the second term can be bounded by∫∫
Rd×Rd

|F (x, ρ̂γt )− F (x+ v/γ, ρ̂γt )|2 dµ
γ
t ≤ cγ0

γ2

∫∫
Rd×Rd

|v|2 dµγt .
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Thus, we can conclude that

1

2
∥eγt ∥

2
L2(ρ̂γt )

≤ cγ∗
γ2

∫∫
Rd×Rd

|v|2 dµγt .

This gives our desired result, concluding the proof of the theorem.

We are ready to prove the main result of the thesis by applying the uniform moments estimates of
Chapter 3. Keep in mind that the result assumes the existence of a strong solution to the damped
Vlasov-Poisson-Fokker-Planck equation, in addition to the existence of an E-regular solution to the
Aggregation-Diffusion equation. In addition, these solution must satisfy some additional properties,
which are not completely covered by the well-posedness theory described in Chapter 5. Finding suf-
ficient conditions for these properties to hold forms an open problem, left for future work.

Theorem 2.9. Consider the energy functionals given in Definition 2.5 and 2.7 and consider a family
of initial conditions (µγ0)γ≥1 satisfying the following uniform energy and moment bounds

sup
γ≥1

E(µγ0) + sup
γ≥1

∫∫
Rd×Rd

|x|2 + |v|2 dµγ0 <∞.

In addition, consider the family of unique strong solutions (µγ)γ≥1 to the Vlasov-Poisson-Fokker-
Planck equation (VPFP) and let (ργ)γ≥1 and (ρ̂γ)γ≥1 denote the corresponding families of particle
densities and standard coarse-grained particle densities. Assume that

c∞ := sup
γ≥1

sup
0≤t≤T

{
∥ργt ∥L∞ + ∥ρ̂γt ∥L∞

}
<∞.

In addition, assume that the family (ρ̂γ)γ≥1 satisfies the properties of E-regular solutions and induces
a family of Lipschitz forces with Lipschitz constants bounded uniformly in γ ≥ 1, meaning that

c0 := sup
γ≥1

sup
0≤t≤T

∥F (·, ρ̂γt )∥Lip <∞, λ := 1 + c0.

In addition, let ρ ∈ C([0, T ],P2(Rd)) be the unique E-regular solution to the Aggregation-Diffusion
equation (AD) with initial condition ρ0 ∈ P2(Rd) ∩ dom(E). Then, there exists some constant C > 0

independent of γ ≥ 1 such that

sup
0≤t≤T

W 2
2 (ρ

γ
t , ρt) ≤ C

(
W 2

2 (ρ
γ
0 , ρ0) +

1

γ2

)
.

Proof. Using Theorems 4.16 and 4.17, we obtain

1

2

d

dt
W 2

2 (ρ̂
γ
t , ρt) ≤ (λ+ c∞)W 2

2 (ρ̂
γ
t , ρt) +

c∗
γ2

∫∫
Rd×Rd

|v|2 dµγt , c∗ := c0 + c2∞.

Since all constants λ, c∞, c∗ > 0 are independent of γ ≥ 1, we can apply Grönwall’s lemma

W 2
2 (ρ̂

γ
t , ρt) ≤

(
W 2

2 (ρ̂
γ
0 , ρ0) +

2c∗
γ2

∫ t

0

∫
Rd×Rd

|v|2 dµγsds
)
e2(λ+c∞)t.
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In addition, using the triangle inequality along with two applications of Theorem 4.2, we have

W 2
2 (ρ

γ
t , ρt) ≤ 2

(
W 2

2 (ρ
γ
t , ρ̂

γ
t ) +W 2

2 (ρ̂
γ
t , ρt)

)
≤ C

(
W 2

2 (ρ̂
γ
0 , ρ0) +

1

γ2

∫ t

0

∫
Rd×Rd

|v|2 dµγsds
)

≤ C

(
W 2

2 (ρ
γ
0 , ρ0) +

1

γ2

)
,

where the constant C > 0 is independent of γ ≥ 1.
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Chapter 5

Well-posedness for the equation

In this chapter, we study the well-posedness for the Cauchy problem associated to the damped Vlasov-
Poisson-Fokker-Planck equation (VPFP). In particular, we look for initial conditions to ensure the
existence and uniqueness of a strong solution to the Vlasov-Poisson-Fokker-Planck equation in the
sense of Definition 2.2. In particular, we need prove the existence of a weak solution which induces an
essentially bounded force field with finite second position and velocity moments. To establish these
results, we first fix γ ≥ 1 and apply the change of variables

µt(X(x), V (v)) := µγt (x, v), X(x) := x, V (v) := γv,

to obtain the following modified damped Vlasov-Poisson-Fokker-Planck equation

∂tµt + v · ∇xµt +∇v ·
(
µt(E(x, ρt)− γ2v)

)
= γ4∆vµt, (MVPFP)

where ρt is the first marginal of µt and E(x, ρ) := γF (x, ρ), after a relabeling of variables. This
corresponds to the setting of [1] by taking β = γ2 and σ = γ4. Since the change of variables is
invertible, the well-posedness of the modified equation (MVPFP) implies the well-posedness of the
original equation (VPFP). Thus, we proceed with the well-posedness for the modified equation.

5.1 The Lions-Perthame representation

To start, we study a related equation, coinciding with the modified equation where the inverse square
law is replaced by an arbitrary essentially bounded force field. In particular, we consider the equation

∂tµt + v · ∇xµt + γ∇v ·
(
µt(Êt − γ2v)

)
= γ4∆vµt, (LVPFP)

where the force field Ê ∈ L∞([0, T ], L∞(Rd)) is essentially bounded at almost all times. Moreover, the
initial condition 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) is integrable, essentially bounded and has finite second
position and velocity moments. This equation can be viewed as a linear counterpart of (MVPFP)
as the force field is independent of the solution µ. Since both (MVPFP) and (LVPFP) are parabolic
partial differential equations, the solutions satisfy a maximum principle [1], meaning that we have

∥µt∥L∞ ≤ ∥µ0∥ edγ
2t. (MP)
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To obtain the existence of a weak solution to the Cauchy problem associated to the linearized equation
(LVPFP), we use the Green’s function corresponding to the fundamental solution to

∂tGt + v · ∇xGt − γ2∇v · (vGt)− γ4∆vGt = 0, G0(x, v, ξ, ν) = δ(x,v)(ξ, ν).

This solution can be computed to be

Gt(x, v, ξ, ν) = g(t, x− ξ − ν(1− e−γ2t)/γ2, v − νe−γ2t),

where the functions g : [0, T ]× Rd × Rd → R and D : [0, T ] → R are defined by

g(t, x, v) :=
1

(4πγ4)dD(t)3/2
exp

 −1

4γ4D(t)

∫ t

0

∣∣∣∣∣1− e−γ2s

γ2
v − e−γ2sx

∣∣∣∣∣
2

ds

 ,

D(t) :=
1

γ4

1− e−2γ2t

2γ2
t−

(
1− e−γ2t

γ2

)2
 .

Equipped with the above Green’s function, we can use the ideas introduced in [15] to write the state
of the system as an implicit relation, given by

µt(x, v) =

∫∫
Rd×Rd

Gt(x, v, ξ, ν) dµ0(ξ, ν)

+

∫ t

0

∫∫
Rd×Rd

∇νGs(x, v, ξ, ν)Êt−s(ξ) dµt−s(ξ, ν)ds

:= µ̄t(x, v) + µ̃t(x, v).

This is known as the Lions-Perthame representation of a solution to (LVPFP). This integral repre-
sentation is used to establish the existence of a weak solution to the linearized Vlasov-Poisson-Fokker-
Planck equation (LVPFP) by applying a fixed-point argument with the operator

T : C([0, T ], L1(Rd × Rd)) → C([0, T ], L1(Rd × Rd)),

(Tµ)t(x, v) :=

∫∫
Rd×Rd

Gt(x, v, ξ, ν) dµ0(ξ, ν)

+

∫ t

0

∫∫
Rd×Rd

∇νGs(x, v, ξ, ν)Êt−s(ξ) dµt−s(ξ, ν)ds.

(FPO)

In particular, we aim to apply the Schauder fixed-point theorem,provided below. For a proof, see [17].

Theorem 5.1. Let X be a Banach space and consider a bounded, compact operator T : X → X

such that the set

{x ∈ X : x = λTx for some 0 ≤ λ ≤ 1} (FP)

is bounded. Then T has a fixed point.
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Theorem 5.2. There exists a weak solution µ ∈ C([0, T ], L1(Rd × Rd)) to the linearized Vlasov-
Poisson-Fokker-Planck equation (LVPFP), corresponding to a fixed-point of the operator T , defined
in (FPO).

Proof. The self-mapping property and boundedness of the operator are straightforward. The same is
true for the boundedness of the set in (FP). However, the compactness of the operator can be obtained
by applying the Aubin-Lions lemma (see [18, Corollary 4]), concluding the existence proof.

Unfortunately, the fixed-point argument only provides integrability for the constructed solution µ.
However, some regularity on the particle density can be inferred from the boundedness of the second
velocity moments. In fact, using our assumptions on the initial condition, the subtle analysis provided
in [19] shows that the second position and velocity remain bounded throughout the evolution.

Theorem 5.3. Suppose that the density µt ∈ L∞(Rd×Rd) has finite m-th velocity moment, meaning∫
Rd×Rd

|v|m dµt <∞,

Then, the particle density has the regularity ρt ∈ Lq(Rd), where q = (m+ d)/d.

Proof. By splitting the domain of integration using a ball of radius R > 0, we obtain

ρt(x) ≤ ∥µt∥L∞

∫
|v|≤R

1 dv +
1

Rm

∫
|v|>R

|v|m µt(x, v) dv

≤ 4πR3

3
∥µ0∥L∞ edγ

2t +
1

Rm

∫
Rd

|v|m µt(x, v) dv,

where the last inequality follows by (MP). Minimizing the above bound over all R > 0 gives

ρt(x) ≤ C ∥µ0∥1/q
′

L∞

(∫
Rd

|v|m µt(x, v) dv

)1/q

,

where q′ = (m+ d)/m. Taking the Lq-norm in the position variable, we obtain

∥ρt∥Lq ≤ C ∥µ0∥1/q
′

L∞

(∫∫
Rd×Rd

|v|m dµt

)1/q

<∞.

Thus, we have shown that ρt ∈ Lq(Rd), concluding the proof of the theorem.

Remark 5.4. Since the coarse-graining map has unit Jacobian determinant, we can deduce that the
coarse-grained density satisfies the same bound as in Theorem 5.3, under the same assumptions,

∥ρλt ∥Lq ≤ C ∥µ0∥1/qL∞

(∫∫
Rd×Rd

|v|m dµt

)1/q

<∞.

As a result, we use the Lions-Perthame representation to extend the regularity of the particle density
by analyzing the constituent terms separately. To this aim, we first define

ρ̄t(x) := πx#µ̄t(x), ρ̃t(x) := πx#µ̃t(x).
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Similarly, we define the contribution of each term in the integral representation to the induced force

N̄t(x) := γ∇Φ ∗ ρ̄t(x), Ñt(x) := γ∇Φ ∗ ρ̃t(x).

By linearity of convolutions, it immediately follows that the induced force can be expressed as

Nt(x) := ∇Φ ∗ ρt(x) = N̄t(x) + Ñt(x), E(x, ρt) = −Nt(x).

5.2 Coarse-graining via convolutions

To obtain estimates on the particle densities and the induced forces originating from each term in
the Lions-Perthame representation, we use the coarse-graining map to define particle densities in a
similar spirit as Definition 2.8. Since γ ≥ 1 is fixed, we omit the dependence on this parameter for
clarity of presentation. In particular, we define

ρλt (x) := (πx ◦ Γλ)#µt(x), ρ̄λt (x) := (πx ◦ Γλ)#µ̄
λ
t (x), ρ̃t(x) := (πx ◦ Γλ)#µ̃t(x).

In addition, the driving force of the coarse-grained system plays an important role in the arguments
to come. As a result, we recall that this force is given by the expression

Jλ
t (x) :=

∫
Rd

Et(x− λv)Γλ
#µt(x, v) dv.

In addition to the force field Jλ
t , another useful reference field is the one induced by the coarse-grained

initial particle density, where the amount of coarse-graining increases with time, defined by

Rt(x) := ∇Φ ∗ ρt0(x).

In addition, a rather long computation shows that [1]

∫
Rd

Gt(x− λv, v, ξ, ν) dv =
1

(2γ4δ(t, λ))3/2
N

(
x− ξ − σ(t, λ)ν√

2γ4δ(t, λ)

)
, (5.1)

∫
Rd

∇νGt(x− λv, v, ξ, ν) dv = − σ(t, λ)

(2γ4δ(t, λ))2
∇N

(
x− ξ − σ(t, λ)ν√

2γ4δ(t, λ)

)
, (5.2)

∫
Rd

|∇νGt(x− λv, v, ξ, ν)| dv ≤ C

(2γ4δ(t, λ))3/2
√
γ4t

M

(
x− ξ − σ(t, λ)ν√

2γ4δ(t, λ)

)
, (5.3)

where N ,M : Rd → R are the standard and rescaled normal distribution respectively and the
functions σ : [0, T ]× [0,∞) → R and δ : [0, T ]× [0,∞) → R are defined by

N (x) :=
1

(2π)3/2
e−|x|2/2, M(x) :=

√
1 + |x|2N (x),

σ(t, λ) :=
1− e−γ2t

γ2
+ λe−γ2t, δ(t, λ) :=

∫ t

0
σ(τ, λ)2 dτ.
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As a result, using (5.1), we get the convolution expressions

ρ̄λt (x) =
1

(4γ4πδ(t, λ))3/2
exp

(
−|x|2

4γ4δ(t, λ)

)
∗ ρσ(t,λ)0 (x), (5.4)

N̄t(x) =
1

(4γ4πδ(t, 0))3/2
exp

(
−|x|2

4γ4δ(t, 0)

)
∗Rσ(t,0)(x). (5.5)

In addition, using (5.2), we obtain

ρ̃λt (x) = −
∫ t

0

σ(s, λ)

(2γ4δ(s, λ))2
∇N

(
x√

2γ4δ(s, λ)

)
∗ Jδ(s,λ)

t−s (x) ds, (5.6)

Ñt(x) =

∫ t

0

σ(s, 0)

(2γ4δ(s, 0))3/2
A

(
x√

2γ4δ(s, 0)

)
∗ Jδ(s,0)

t−s (x) ds, (5.7)

where the matrix A has entries

Ajk(x) =
∂2

∂xj∂xk
(−∆)−1N (x), 1 ≤ j, k ≤ N.

5.3 Convolutional regularity estimates

Given that the quantities of interest in (5.4), (5.5), (5.6) and (5.7) are expressed using convolutions, we
recall two important inequalities that can deal with terms of this form. The first is a reformulation
of Young’s inequality for convolutions, whereas the second theorem is particularly used to bound
convolutions where one of the functions contains a singularity at the origin. For a proof, see [7].

Theorem 5.5. Let 1 ≤ p, q ≤ ∞ and define 1/r := 1/p− 1/q ≥ 0. Then, we have the inequality

∥f ∗ g∥Lr ≤ ∥f∥Lp ∥g∥Lq′ , where
1

q
+

1

q′
= 1.

Theorem 5.6. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞ such that 1/r := 1/p− 1/q satisfies −1/3 < 1/r < 0

and assume that there exist constants C0, C1 > 0 such that

|g(x)| ≤ C0

|x|3/q′
, |∇g(x)| ≤ C1

|x|1+3/q′
.

Then, it follows that for all f ∈ Lp(Rd), we have the convolution inequality∥∥∥∥∫
Rd

(g(x− y)− g(−y))f(y) dy
∥∥∥∥
Lr

≤ C(p, q)(C0 + C1) ∥f∥Lp .

We consider a uniform-in-time bound on the nonlinear force induced by the second term in the Lions-
Perthame representation for the solution to the linearized Vlasov-Poisson-Fokker-Planck equation.
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Theorem 5.7. Suppose that the force field E ∈ L∞((0, T );L∞(Rd)) is essentially bounded and that
the initial density satisfies 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) and there exist constants 1 ≤ p < ∞ and
3/2 < q ≤ ∞ such that

Sp(T ) := sup
0≤t≤T,λ≥0

∥ρλt ∥Lp <∞, Kq(T ) := esssup
0≤t≤T

∥Et∥Lq <∞.

Then, for all 1 ≤ r ≤ ∞, satisfying

1

pq′
− 2

3

(
2

3
− 1

q

)
<

1

r
<

1

pq′
,

we have the estimate

sup
0≤t≤T

∥Ñt∥Lr ≤ C(p, q, r, γ, T ) ∥µ0∥1/qL∞ Kq(T )Sp(T )
1/q′

Proof. In light of the convolution obtained in (5.7), we begin by estimating the quantity Jλ
t . In

particular, for λ > 0 and 1 ≤ q ≤ ∞, we can apply Hölder’s inequality, followed by a change of
variables to obtain

|Jλ
t (x)| ≤

1

λ3/q
∥Et∥Lq ∥µt∥1/qL∞ |ρλt (x)|1/q

′
. (5.8)

Using the above bound in combination with the maximum principle given in (MP), we get

|Ñt(x)| ≤ Kq(T )
(
∥µ0∥L∞ edγ

2t
)1/q ∫ t

0

σ(s, 0)1−3/q

(2γ4δ(s, 0))3/2

∣∣∣∣∣A
(

x√
2γ4δ(s, 0)

)∣∣∣∣∣ ∗ |ρσ(s,0)t−s (x)|1/q′ ds.

Applying Theorem 5.5 with 0 < 1/k := 1/pq′ − 1/r < 1, along with a change of variables yields

∥Ñt∥Lr ≤ Kq(T )Sp(T )
1/q′ ∥A∥Lk′

(
∥µ0∥L∞ edγ

2t
)1/q ∫ t

0

σ(s, 0)1−3/q

(2γ4δ(s, 0))3/2k
ds.

Using the fact that as s→ 0, we have

σ(s, 0) ≃ s, δ(s, 0) ≃ s3/3, 1− 3

q
− 9

2k
> −1,

we can deduce that the above integral term converges and thus we have shown that

sup
0≤t≤T

∥Ñt∥Lr ≤ C(p, q, r, γ, T ) ∥µ0∥1/qL∞ Kq(T )Sp(T )
1/q′ .

This gives our desired result, concluding the proof of the theorem.

We subsequently aim to control the regularity of the particle density along the evolution under certain
assumptions on the initial particle density. This is given by the following theorem.
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Theorem 5.8. Suppose that the force field E ∈ L∞((0, T ), L∞(Rd)) is essentially bounded and that
the initial condition satisfies 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) and there exist constants 1 ≤ p ≤ ∞ and
6 < q ≤ ∞ such that

Qp := sup
λ≥0

∥ρλ0∥Lp <∞, Kq(T ) := esssup
0≤t≤T

∥Et∥Lq <∞.

Then, we have the estimate

Sp(T ) := sup
0≤t≤T,λ≥0

∥ρλt ∥Lp <∞.

In addition, when the parameters 1 ≤ k, r ≤ ∞ satisfy

0 ≤ 1

r
<

1

9
− 2

3q
,

1

p
≤ 1

k
,

1

kq
+

1

r
> 0,

we obtain the inequality

Sp(T ) ≤ C(k, p, q, r)Qp + C(k, p, q, r, γ, T )Sk(T )
θ(Kq(T ) ∥µ0∥1/qL∞)κ,

where

θ =
1/pq + 1/r

1/kq + 1/r
, κ =

1/k − 1/p

1/kp+ 1/r
.

Proof. We begin by writing

S̄l(T ) := sup
0≤t≤T,λ≥0

∥ρ̄λt ∥Ll , S̃l(T ) := sup
0≤t≤T,λ≥0

∥ρ̃λt ∥Ll .

These quantities satisfy the following properties

Sl(T ) ≤ S̄l(T ) + S̃l(T ), S̄l(T ) ≤ Sl(T ), S̃l(T ) ≤ 2Sl(T ), (5.9)

where the first inequality follows by Minkowski’s inequality, whereas the second follows from

∥ρ̄λt ∥Ll ≤ ∥ρσ(t,λ)0 ∥Ll , (5.10)

obtained by applying Theorem 5.5 with the convolution expression obtained in (5.4). The last in-
equality in (5.9) follows from the second along with an application of Minkowski’s inequality.

To show that Sp(T ) is bounded, observe that it suffices to show that S̃p(T ) is bounded since we have
S̄l(T ) ≤ Qp from the second inequality in (5.9). Following a similar approach as in the proof of
Theorem 5.7, we can bound the coarse-grained particle density corresponding to the second term in
the Lions-Perthame representation obtained in (5.6) using the estimate on Jλ

t obtained in (5.8) and
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the maximum principle given in (MP) to get

|ρ̃λt (x)| ≤ Kq(T )
(
∥µ0∥ edγ

2t
)1/q ∫ t

0

σ(s, λ)1−3/q

(2γ4δ(s, λ))2

∣∣∣∣∣∇N

(
x√

2γ4δ(s, λ)

)∣∣∣∣∣ ∗ |ρσ(s,λ)t−s (x)|1/q′ ds.

At this point, we make the following observation. Assume that

0 ≤ 1

r
<

1

9
− 2

3q
, q′ ≤ l ≤ ∞,

1

m
:=

1

l
− 1

r
,

along with the fact that Sl/q′ < ∞. If 1/m ≥ 0, we can apply Theorem 5.5 in the above integral,
followed by a change of variables to obtain the estimate

∥ρ̃λt ∥Lm ≤ Kq(T )(∥µ0∥L∞ edγ
2t)1/q ∥∇N∥Lr′ Sl/q′(T )

1/q′
∫ t

0

(σ(s, λ))1−3/q

(2γ4δ(s, λ))1/2+3/2r
ds.

Using a similar reasoning as in the end of the proof of Theorem 5.7, we have that as s→ 0,

σ(s, λ) ≃ s, δ(s, λ) ≃ s3/3, 1− 3

q
− 3

2
− 9

2r
> −1,

and thus, the above integral converges. In fact, this integral can be bound independently of λ ≥ 0

since it can be verified that for all α ≥ 0, β ≤ 2α and all s > 0, we have that the function λ 7→
σ(s, λ)β/δ(s, λ)α is non-increasing on [0,∞). Thus, we obtain our desired estimate

S̃m(T ) ≤ C(q, r, l, γ, T ) ∥µ0∥1/qL∞ Kq(T )Sl/q′(T )
1/q′ . (5.11)

On the other hand, if −1/9 ≤ 1/m < 0, we can proceed identically except applying Theorem 5.6
in lieu of Theorem 5.5 when bounding the convolution. This covers all the cases that our assumed
parameters can satisfy.

Using conservation of mass, we have that S1(T ) ≤ ∥µ0∥L1 < ∞. Consider the parameters as in the
statement of the theorem 1 ≤ k, r ≤ ∞ such that

0 ≤ 1

r
<

1

9
− 2

3q
,

1

p
≤ 1

k
,

1

kq
+

1

r
> 0.

In particular, we distinguish two cases:

1. If 1/kq′ − 1/r ≤ 1/p, define l = kq′. In that case, we obtain 1/m = 1/kq′ − 1/r ≤ 1/p and so
using the result obtained in (5.11) gives

S̃m(T ) ≤ C ∥µ0∥1/qL∞ Kq(T )Sk(T )
1/q′ .

Using interpolation of Lebesgue spaces, we deduce

S̃p(T ) ≤ CS̃k(T )
1−ΘS̃m(T )Θ, where Θ =

1/k − 1/p

1/k − 1/q
.
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Combining the above with the inequalities in (5.9) gives the desired result

Sp(T ) ≤ Qp + C(∥µ0∥1/qL∞ Kq(T ))
ΘSk(T )

1−Θ+Θ/q′ .

2. If 1/kq′ − 1/r > 1/p, define 1/m = 1/r + 1/p < 1/kq′. Note that this defines the constant
1/l = 2/r + 1/p. Using the bound in (5.11), we get

S̃p(T ) ≤ C ∥µ0∥1/qL∞ Kq(T )Sl/q′(T )
1/q′ .

Again, by interpolation of Lebesgue spaces, we obtain

Sl/q′(T ) ≤ CSk(T )
1−ΘSp(T )

Θ where Θ =
1/k − q′/l

1/k − 1/p
.

This yields

Sp(T ) ≤ Qp + C ∥µ0∥1/qL∞ Kq(T )Sk(T )
(1−Θ)/q′Sp(T )

Θ/q′ ,

where we can apply Young’s inequality obtain the desired estimate

Sp(T ) ≤
1

1−Θ/q′
Qp + C(∥µ0∥1/qL∞ Kq(T )Sk(T )

(1−Θ)/q′)1/(1−Θ/q′).

These two cases prove our desired result, concluding the proof of the theorem.

5.4 Existence and uniqueness result

Now that we have established some a priori estimates on the solution to the linearized Vlasov-Poisson-
Fokker-Planck equation (LVPFP), we prove the existence of a strong solution to the modified Vlasov-
Poisson-Fokker-Planck equation (MVPFP) using a mollification argument. In particular, we begin
by regularizing the inverse square law using the standard mollifier ηϵ. Namely, we define

Eϵ(x, ρ) := ∇Φϵ ∗ ρ, ∇Φϵ(x) :=
x

|x|d
∗ ηϵ ∈ L∞(Rd).

Since the regularized force is essentially bounded, Theorem 5.2 generates a family of weak solutions
(µϵ)ϵ>0. In what follows, we apply the estimates obtained in Section 5.3 to obtain bounds that are
independent of ϵ > 0. As a result, the limiting solution obtained by taking ϵ → 0 will satisfy the
same bounds. This limiting solution exists [1] and corresponds to a weak solution to the modified
Vlasov-Poisson-Fokker-Planck equation (MVPFP). However, for clarity of presentation, we omit the
dependence on ϵ > 0 to avoid ambiguity with coarse-graining and directly compute uniform estimates
for the induced force Nt.
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Since the velocity moments remain finite throughout the evolution, Theorem 5.3 implies that

sup
0≤t≤T

∥ρt∥Lp <∞, for 1 ≤ p ≤ 5/3. (5.12)

Using the above with Theorem 5.6, we can also obtain some regularity on the induced force

sup
0≤t≤T

∥Nt∥Lq <∞ for 3/2 ≤ q ≤ 15/4. (5.13)

However, we can improve the regularity on the induced force under stricter assumptions on the initial
condition. This is formulated in the following theorem.

Theorem 5.9. Suppose that the initial condition 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) has finite second
velocity moment and there exists a constant 3/2 < p < 6 such that

sup
t≥0

∥Rt∥Lp <∞.

Then, there exists a weak solution µ ∈ C([0, T ],P2(Rd×Rd)) to the modified Vlasov-Poisson-Fokker-
Planck equation (MVPFP) where the induced force satisfies

sup
0≤t≤T

∥Nt∥Lp <∞.

Proof. As a starting observation, note that applying Theorem 5.5 on the induced force from the first
term in the Lions-Perthame representation given in (5.5) provides

sup
t≥0

∥N̄t∥Lp ≤ sup
t≥0

∥Rt∥Lp <∞.

For the second term, since S5/3(T ) <∞ and we can choose a parameter q such that

3

5p′
− 2

3

(
2

3
− 1

p

)
<

1

q
<

3

5p′
,

and apply Theorem 5.7 to deduce

sup
0≤t≤T

∥Ñt∥Lq ≤ C(p, q, γ, T ) ∥µ0∥1/pL∞ Kp(T )S5/3(T )
1/p′ <∞.

Indeed, note that the condition Kp(T ) <∞ is satisfied by interpolation. In particular, the parameters
satisfy p < q < 6, from which we can deduce that

sup
0≤t≤T

∥Ñt∥Lp ≤ CKp(T )
α <∞,

for some 0 < α < 1 by interpolation. Combining the two contributions gives the desired result

sup
0≤t≤T

∥Nt∥Lp <∞.
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This first result serves as a stepping stone, which combined with Theorem 5.8 gives sufficient conditions
for the existence of a weak solution whose particle density is essentially bounded along the evolution.

Theorem 5.10. Suppose that the initial condition 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) with finite second
velocity moments, and there exist constants p ≥ 5/3 and k > 6 such that

sup
t≥0

∥ρt0∥Lp <∞, sup
t≥0

∥Rt∥Lk <∞.

Then, there exists a weak solution µ ∈ C([0, T ],P2(Rd×Rd)) to the modified Vlasov-Poisson-Fokker-
Planck equation (MVPFP) such that there exists some 6 < q < k with

sup
0≤t≤T

∥Nt∥Lq <∞.

Proof. Without loss of generality, we can assume that p < ∞ by interpolation on the initial coarse-
grained particle density. For a fixed 6 < q < k and 3/2 < r < 6 such that

1

pr′
− 2

3

(
2

3
− 1

r

)
<

1

q
<

1

pr′
, (5.14)

we search for conditions on q and r ensuring the boundedness of induced force throughout the evolu-
tion. By Theorem 5.8 with 1/r = 0 and k = 5/3 in the notation of that theorem, we get

Sp(T ) ≤ C
(
1 +Kq(T )

(5/3)(q)(3/5−1/p)
)
.

In addition, using Theorems 5.7 and 5.9, we get for q sufficiently close to 6 so that the first term in
the induced force is bounded,

sup
0≤t≤T

∥Ñt∥Lq ≤ CSp(T )
1/r′ , sup

0≤t≤T
∥Nt∥Lq ≤ C(1 + Sp(T )

1/r′) ≤ C
(
1 +Kq(T )

(5/3)(q/r′)(3/5−1/p)
)
.

Thus, note that it is sufficient to ensure that (5/3)(q/r′)(3/5 − 1/p) < 1 to obtain boundedness of
the induced force along the evolution. In particular, take p sufficiently small so that this is achieved.
This is possible by interpolation. Subsequently, choose r < 6 and q > 6 sufficiently close to 6 such
that the condition (5.14) is satisfied.

We are ready to prove the existence of a solution with an essentially bounded particle density through-
out the evolution. However, stronger assumptions on the initial density are imposed.

Theorem 5.11. Suppose that the initial condition 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) with finite m-th
velocity moment, for some m > 6. Then, there exists a strong solution µ ∈ C([0, T ],P(Rd × Rd)) to
the modified Vlasov-Poisson-Fokker-Planck equation (MVPFP).

Proof. Since the initial condition has finite m-th velocity moments, we can apply Remark 5.4 to
obtain the first assumption of Theorem 5.10 for some p > 3. Using Sobolev embeddings with Remark
5.4, we obtain the second assumption of Theorem 5.10 for some k > 6. As a result, we can deduce
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that

sup
0≤t≤T

∥Nt∥Lq <∞,

for some 6 < q < k. Subsequently, we can apply Theorem 5.8 to deduce that Sp(T ) <∞. With p > 3

and q > 6, we can apply Theorem 5.7 with r = ∞ to deduce that

sup
0≤t≤T

∥Ñt∥L∞ <∞.

In addition, the fact that

sup
0≤t≤T

∥N̄t∥L∞ <∞

follows from the fact that this term is obtained by convolution with a Gaussian which is essentially
bounded. Thus, we can conclude that

sup
0≤t≤T

∥Nt∥L∞ <∞.

This proves the required result, concluding the proof of the theorem.

Hence, we have found conditions implying the existence of a strong solution to the modified Vlasov-
Poisson-Fokker-Planck equation. Now, we prove uniqueness of such solutions.

Theorem 5.12. Suppose that the initial condition 0 ≤ µ0 ∈ L1 ∩ L∞(Rd × Rd) has finite second
velocity moment. Then, there exists at most one strong solution µ ∈ C([0, T ], L1(Rd × Rd)) to the
Vlasov-Poisson-Fokker-Planck equation (MVPFP).

Proof. Let µ, µ̂ be two distinct solutions to the modified Vlasov-Poisson-Fokker-Planck equation with
essentially bounded induced forces N and N̂ respectively. In light of the convolution expression
obtained in (5.7), we can express the difference of the induced forces as

N̂t(x)−Nt(x) =

∫ t

0

σ(s, 0)

(2γ4δ(s, 0))3/2
A

(
x√

2γ4δ(s, 0)

)
∗ Iσ(s,0)t−s (x) ds, (5.15)

where the quantity Iλt is the difference of the fluxes, given by

Iλt (x) := Ĵλ
t (x)− Jλ

t (x).

In particular, we estimate this quantity Iλt by splitting the integral in the definition of Jλ
t by

|Iλt (x)| ≤
∫
Rd

|N̂t(x− λv)µ̂t(x− λv, v)−Nt(x− λv)µt(x− λv, v)| dv

≤
∫
Rd

|(N̂t −Nt)(x− λv)| Γλ
#µ̂t(x, v) dv + C

∫
Rd

|(µ̂t − µt)(x− λv, v)| dv

:= Īλt (x) + Ĩλt (x),
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where we used the fact that Nt is essentially bounded throughout the evolution. In addition, for any
λ > 0 and 1 ≤ q ≤ ∞, using Hölder’s inequality followed by a change of variables yields

∥Īλt ∥Lq′ ≤
1

λ3/q
∥N̂t −Nt∥Lq ∥µt∥Lq′ . (5.16)

Let q > 2. Applying Theorem 5.5 with 1/k := 1/q′ − 1/q, followed by a change of variables gives us
that, in Lq norm, the first term in (5.15) after substituting the bound on Iλt is bounded by∫ t

0

σ(s, 0)1−3/q

(2γ4δ(s, 0))3/2k
∥A∥Lk′ ∥N̂t−s −Nt−s∥Lq∥µ̂t−s∥Lq′ ds

≤ Ctα1 sup
0≤s≤t

∥N̂s −Ns∥Lq ,

where α1 ≃ 1/2. When it comes to the second term in the expression, using the Lions-Perthame
representation, we have

µ̂t − µt =

∫ t

0

∫∫
Rd×Rd

∇νGs(x, v, ξ, ν)(N̂t−s(ξ)µ̂t−s(ξ, ν)−Nt−s(ξ)µt−s(ξ, ν)) dξdνds.

For convenience, by defining

F λ
t (x) :=

∫
Rd

|N̂t(x− λv)µ̂t(x− λv, v)−Nt(x− λv)µt(x− λv, v)| dv,

and using the estimate provided in (5.3) and the fact that the forces are essentially bounded, we get

Ĩλt (x) ≤
∫ t

0

C

(2γ4δ(s, λ))3/2
√
γ4s

M

(
x√

2γ4δ(s, λ)

)
∗ F σ(s,λ)

t−s (x) ds.

Thus for any 1 ≤ p ≤ ∞, we have the regularity

∥Ĩλt ∥Lp ≤ C

∫ t

0

1√
γ4s

∥F σ(s,λ)
t−s ∥Lp ds.

Moreover, define

hp(t) := sup
0≤s≤t,λ≥0

∥Ĩλs ∥Lp .

Using the fact that the initial density has finite second moments which are propagated throughout
the evolution, we have the regularity provided by (5.12). Combined with Theorem 5.8 from which we
can deduce that hp(t) is finite for 1 ≤ p ≤ 5/3. Hence, we obtain

hp(t) ≤ sup
0≤s≤t,λ≥0

∫ t

0

C√
γ4s

∥Iσ(s,λ)t−s ∥Lp ds

≤ sup
0≤s≤t,λ≥0

∫ t

0

C√
γ4s

(
∥Īσ(s,λ)t−s ∥Lp + ∥Ĩσ(s,λ)t−s ∥Lp

)
ds

≤ sup
0≤s≤t,λ≥0

∫ t

0

C√
γ4s

∥Īσ(s,λ)t−s ∥Lp ds+ 2tChp(t).
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Thus, by taking ϵ > 0 sufficiently small, we get

hp(ϵ) ≤ sup
0≤t≤ϵ,λ≥0

∫ t

0

1√
γ4s

∥Īσ(s,λ)t−s ∥Lp ds.

However, using a change of variables, we have

|Īσ(s,λ)t−s (x)| = 1

σ(s, λ)3

∫
Rd

|N̂t−s(v)−Nt−s(v)|µ̂t−s

(
v,

x− v

σ(s, λ)

)
dv.

Thus, from Minkowski’s integral and Hölder’s inequality, we have

∥Iσ(s,λ)t−s ∥Lp(dx) ≤
1

σ(s, λ)3

∫
Rd

|N̂t−s(v)−Nt−s(v)|
∥∥∥∥µ̂t−s

(
v,

x− v

σ(s, λ)

)∥∥∥∥
Lp(dx)

dv

≤ 1

σ(s, λ)3/p′

∥∥∥N̂t−s −Nt−s

∥∥∥
Lq

∥∥∥∥µ̂t−s(x, v)∥Lp(dv)

∥∥∥
Lq′ (dx)

≤ 1

σ(s, λ)3/p′

∥∥∥N̂t−s −Nt−s

∥∥∥
Lq

∥∥∥∥µ̂t−s(x, v)∥1/pL1(dv)

∥∥µ̂t−s(x, v)
p−1
∥∥1/p
L∞(dv)

∥∥∥
Lq′ (dx)

≤ C

σ(s, λ)3/p′

∥∥∥N̂t−s −Nt−s

∥∥∥
Lq

(∫
Rd

ρ̂t(x)
q′/pdx

)1/q′

.

Whenever 1 ≤ q′/p ≤ 5/3, the last integral factor is finite and so we can bound

hp(ϵ) ≤ C sup
0≤t≤ϵ

∫ t

0

1

σ(s, λ)3/p′
√
γ4s

∥∥∥N̂t−s −Nt−s

∥∥∥
Lp

ds.

Choosing q′/p = 5/3 such that 1 < p < 6/5 will guarantee that the above integral is finite and so

hp(ϵ) ≤ C sup
0≤s≤ϵ

∥∥∥N̂s −Ns

∥∥∥
Lq
. (5.17)

Thus, for all 0 ≤ t ≤ ϵ, we can apply Theorem 5.5 with 1/q = 1/p− 1/r ≥ 0 to deduce∥∥∥∥∥
∫ t

0

σ(s, 0)

(2γ4δ(s, 0))3/2

∣∣∣∣∣A
(

x√
2γ4δ(s, 0)

)∣∣∣∣∣ ∗
(∫

Rd

|(µ̂t−s − µt−s)(x− σ(s, 0)v, v)| dv
)
ds

∥∥∥∥∥
Lp

≤
∫ t

0

σ(s, 0)

(2γ4δ(s, 0))3/2

∥∥∥∥∥A
(

x√
2γ4δ(s, 0)

)∥∥∥∥∥
Lr

∥∥∥∥∫
Rd

|(µ̂t−s − µt−s)(x− σ(s, 0)v, v)|
∥∥∥∥
Lp

ds

≤ hp(ϵ) ∥A∥Lr

∫ t

0

σ(s, 0)

(2γ4δ(s, 0))3/2r
ds

≤ Cϵα2 sup
0≤s≤ϵ

∥∥∥N̂s −Ns

∥∥∥
Lq
, (5.18)

where α2 ≃ 1/2. Thus, combining (5.16) and (5.18) with α ≃ 1/2 yields∥∥∥N̂ϵ −Nϵ

∥∥∥
Lq

≤ Cϵα sup
0≤s≤ϵ

∥∥∥N̂s −Ns

∥∥∥
Lq
.

By taking ϵ sufficiently small, we obtain that Nt = N̂t for 0 ≤ t ≤ ϵ. In addition, we can use the bound
obtained in (5.17) to deduce that µt = µ̂t for 0 ≤ t ≤ ϵ. Thus, uniqueness holds for all 0 ≤ t ≤ T .
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