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Abstract

This thesis presents a comparative analysis of feature extraction methods for neurode-
generative disease diagnosis using 3D fluorodeoxyglucose positron emission tomography
(FDG-PET) brain imaging. We compare Principal Component Analysis (PCA) and
Region-of-Interest (ROI) aggregation, using 10-fold stratified cross-validation for con-
sistent comparison between the methods. Additionally, we investigate the reconstruc-
tion accuracy of both methods and between different atlases. For the ROI method, we
also examine the disease-specific regions to determine optimal atlas selection for spe-
cific diseases. Results show PCA’s great performance in information retention, through
reconstruction, and classification performance. For ROI aggregation, despite higher
reconstruction errors, shows comparable or even slightly better classification results
than PCA. This result indicates that anatomical dimensionality reduction can very
well capture metabolic patterns even with significant information loss.
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1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Cases of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease are in-
creasing globally, affecting millions of people and putting a heavy load on our healthcare
systems [1]. Alzheimer’s disease alone affects over 50 million people and Parkinson’s disease
impacts another 10 million, worldwide |2|. These conditions should be diagnosed precisely
and on time to evaluate the right treatment plan and patient care.

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) directly tracks the up-
take of glucose in the brain [3] 4], which is directly effected by neurodegenerative disease [5),
6]. Therefore, it can be noted as one of the most effective methods for metabolic activity map-
ping in the brain. Since metabolic changes often precede observable anatomical changes [7],
we can detect diseases like Alzheimer’s and Parkinson’s much earlier using FDG-PET [§].
However, there is a drawback; the high dimensionality of these scans makes automated anal-
ysis and classification way to computationally expensive and therefore, we need to reduce
this high dimensionality.

In this thesis, two types of feature extraction methods will be discussed to reduce the high
dimensional FDG-PET data. A data-driven technique using Principal Component Analysis
(PCA) [9] and an anatomy based technique using Region-of-Interest (ROI) aggregation [10].
Each of these approaches is beneficial in different ways to reduce the computational com-
plexity and to capture important features that are relevant to the diagnosis of disease. Such
a pipeline may only perform as well as the features given as input. This work evaluates what
types of features are the most informative to distinguish between different neurodegenerative
diseases.

Such an assessment is relevant as it responds to the important issue of developing effec-
tive and reproducible diagnostic systems that can be applied in clinical practice [11].

1.2 PROBLEM STATEMENT

Each FDG-PET scan creates a high-dimensional 3D image of the brain containing spatial
information about its metabolic activity. Yet, this high dimensionality, referring to the large
number of voxels (=~ 10°) in the image , causes issues when trying to implement and execute
automated data analysis and classification, especially with limited scans available. In addi-
tion, a part of the full data set (reference set) needs to be held out only for PCA to prevent
overfitting.

One way to tackle this problem of high dimensionality is by using dimensionality reduction,
where the original data is transformed from a high dimensional space into a low dimensional
space and the low-dimensional representation preserves most of the critical properties of the
original data. Principal Component Analysis, or PCA, is such a technique used in neu-
roimaging [12]|. It extracts the principal components by identifying patterns in the data of



highest variance, making the size of the data more manageable. Even though it is a straight-
forward approach and computationally efficient, it assumes these patterns can be captured
by linear relationships between variables and fails to capture more complex, non-linear, re-
lationships that may exist in the FDG-PET scans, for distinguishing between healthy and
diseased brains. |13} |14]

Besides PCA, the use of predefined regions of interest (ROI) is an adequate strategy. In this
approach, an anatomical atlas is used to divide the brain into segments, based on anatomy,
function or probability |15, [16]. Each segment is summarized, by taking the average uptake
of the segment, giving a low dimensional space that is easier to interpret. This allows for
analysis of a specific area of the brain more likely to be affected by disease. That being
said, this ROI-based approach depends heavily on the level of detail of the atlas and may
overlook subtleties within specific regions, hindering early diagnoses [17]. On the contrary,
an atlas may contain too many ROIs, such that the dimensionality is still too high for a
robust model.

1.3 RESEARCH OBJECTIVES

For this research, we propose a comparative analysis of two feature extraction methods for
neurodegenerative disorders, using FDG-PET brain scans that reveal patterns of glucose
hypo- & hypermetabolism. However, direct analysis of these scans is way too computation-
ally intensive. That is because each scan is composed of approximately 10° voxels, called
the “high dimensionality”.

Therefore, our main research question states: “Which feature extraction method is best
for brain FDG-PET in the context of neurodegenerative diseases?” To be able to answer
this, we will compare two feature extraction methods, Principal Component Analysis (PCA)
and Region-of-Interest (ROI) aggregation, to see which one gives better results for analyzing
FDG-PET data. Here, “best” will be judged in terms of information preservation and clas-
sification performance, i.e. how well the reduced data set retains the original information
and how effectively the extracted features can help distinguish between several diseases and
healthy controls.

We will evaluate PCA and ROI-based feature extraction, testing multiple atlases of varying
region counts, on the brain scan data. This will show the trade-offs between dimensionality
reduction and information loss, by their impact on the accuracy of the diagnosis. The com-
parison of these methods allows us to see which method is most effective and under what
conditions and what type of atlas, for diagnosing neurodegenerative diseases.



2 THEORETICAL BACKGROUND

2.1 PREVIOUS WORK

Recent research by van Veen et al. (2022) serves as the foundational on which this research
builds [18|. Their study showed the effectiveness of combining principal component analysis
(PCA) and Generalized Matrix Learning Vector Quantization (GMLVQ) for classification of
neurodegenerative diseases

They showed that GMLV(Q could effectively learn disease-specific patterns in FDG-PET
data and that the relevance matrix learned by GMLVQ could be projected back to the orig-
inal voxel space. This enabled them to identify brain regions most discriminative for disease
classification. By using 10-fold cross-validation, they managed to achieve classification ac-
curacies ranging from 74% to 91%.

Apart from the van Veen study, early research by Minoshima et al. (1997) identified char-
acteristic patterns of glucose hypometabolism in AD patients, affecting posterior cingulate
and parietotemporal regions [19]. Other studies have shown other disease-specific metabolic
patterns |7}, 20, [21].

2.2 DIMENSIONALITY REDUCTION

Dimensionality reduction methods allow for efficient analysis of FDG-PET brain scans by
transforming them from very high-dimensional space into much lower-dimensional repre-
sentations and at the same time preserving the most important information of the original
data.

2.2.1 PRrINCIPAL COMPONENT ANALYSIS

Principal Component Analysis tries to maximize the variance of the retained data using
eigenvalue decomposition (though implemented via singular value decomposition in most
computational frameworks). To fit the high-dimensional brain scan data, we rotate our
coordinate system to align with the directions of maximum variance. This way, the most
important dimensions are preserved and the least important ones are discarded |[9].

2.2.1.1 Mathematical Foundation

For a matrix X € R™*P with n samples and p voxels, where each row represents a brain
scan and each column a voxel intensity, the decomposition is done using singular value
decomposition (SVD):

X =Uxv’ (1)

where U € R™"™ and V € RP*? are orthogonal matrices and 3 € R"*? is a diagonal matrix
containing the singular values 0, > 05 > ... > 0.



The columns of V correspond to the principal directions and the squared singular values
correspond to the eigenvalues of the covariance matrix C, the variances:

o2

A= — (2)

T n-—1

The sample covariance matrix shows the relationships between all pairs of voxels:

C= XX € RP<P (3)

n J—
The principal components are the solutions to:
CVi = )\ivi (4)

where Ay > Ay > ... > )\, > 0 are the eigenvalues, representing the explained variances and
v; are the corresponding eigenvectors, showing the principal directions. So, the eigenvalue-
eigenvector relation of the covariance matrix C is determined from the singular value de-
composition.

2.2.1.2 Dimensionality Reduction and Reconstruction Quality

For dimensionality reduction to k£ < p components, the transformation projects data onto
the subspace spanned by the first k£ principal components:

Y = XV, € R™* (5)

where Vi = [vy, Vo, ..., vi] contains the most significant principal components.

The reconstruction calculation reverses the projection:
X =YV! =XV, V! (6)

Then the reconstruction error, given by the matrix norm, equals the sum of discarded eigen-
values:

p
112
IX-X|P= > X\ (7)
i=k+1
Note that the reconstruction error can be significantly larger for out of sample data points

when d >> n, or when the dimensionality is much larger than the number of available data
points.

2.2.1.3 Explained Variance and Component Selection

The total variance explained by the first £ components is:

Zf:l Ai Zle 01'2
PN NP 1012 (8)

=1 =

Ry, =

This holds under the singular value decomposition without computing the covariance matrix,
which is beneficial when p > n.



2.2.1.4 Limitations and Assumptions

PCA has a few limitations however. It cannot capture non-linear relationships that may
characterize disease specific metabolic patterns. Additionally, it focuses on variance max-
imization and may not capture features represented by low-variance signals, depending on
how many components are included.

When the number of features exceeds the number of samples (p > n), PCA can only identify
at most n — 1 components. This may suggest that PCA primarily captures patterns that are
present in the training data, potentially missing important variations in new, never before
seen, data.

2.2.2 REGION-OF-INTEREST AGGREGATION

Region-of-Interest (ROI) methods take a different approach by incorporating the anatomical
and functional structure of the brain to subdivide it in specific regions. ROI feature ex-
traction leverages the fact that neurodegenerative diseases do not affect the brain uniformly.
ROI methods try to capture these disease-specific patterns, by focusing on anatomically
meaningful regions |10, |15].

2.2.2.1 Mathematical Foundation

The ROI approach transforms the three-dimensional brain volume into a feature vector,
starting with the brain parcellation, where atlases divide the entire brain volume into dis-
crete regions based on anatomical, functional or probabilistic patterns.

Let’s define the brain volume V € R%*%Xd and a corresponding atlas A € Z41 x4 con-
taining R distinct regions. Fach voxel in the atlas volume carries an integer label indicating
its regional assignment:

R.={(i,5,k): A(i,j,k)=r}, re{l,2,...,R} (9)

This defines the set of voxel coordinates belonging to region r.

The next step is transforming the metabolic information within each region into scalar fea-
tures. The choice of aggregation function significantly impacts the resulting feature quality.
The regional feature extraction follows:

£, = g({V(i,j, k) : (i.j,k) € R.}) (10)

where ¢g(-) represents the aggregation function that transforms the collection of voxel inten-
sities within region r into a single representative value. The aggregation function can be the
mean, median or the mode, but mean is most intuitive to use.

Mean aggregation is done by computing the average metabolic activity across all voxels
within each region:

1 ..
frgmean) — m Z V(Z,j, k;) (11)

(4,5,k)ERr



This approach assumes that the average metabolic activity is representative of each region.

The standard deviation signifies the heterogeneity within regions and is given by:

s 1 . . mean
f = \/|R|——1 > (V(ig k) — ) (12)
T (4,4,k)ER

2.2.2.2 Atlas Types and Parcellation

The choice of brain atlas shapes the ROI analysis, as different atlases embody distinct per-
spectives on brain organization. Each atlas type reflects different theoretical frameworks
for understanding brain structure and function, leading to complementary insights into neu-
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AAL-90 Atlas BN-246 Atlas . AAL3-170 Atlas X HOA-112 Atlas

Figure 1: Visualization of brain atlases used in this study: AAL-90 Atlas (90 regions), BN-
246 Atlas (246 regions), AAL3-170 Atlas (170 regions), and HOA-112 Atlas (112 regions),
shown in both lateral view (top row) and sagittal (bottom row) view. Figure reprinted from

p2).

Anatomical atlases define regions based on the macroscopic structure visible in anatomical
MRI scans. These atlases partition the brain according to sulcal and gyral patterns that
remain relatively consistent across individuals. The Automated Anatomical Labeling (AAL)
atlas, developed by Tzourio-Mazoyer et al. (2002), has 116 regions, both cortical and subcor-
tical, based on sulcal and gyral patterns . The Destrieux atlas has 148 cortical anatomical

regions [23], with finer granularity [16] [24].

Functional atlases derive brain parcellations from patterns of neural activity and connec-
tivity. The Schaefer atlas, derived from resting-state functional MRI data, identifies regions
based on similar temporal patterns of activity .

Probabilistic atlases derive brain parcellations by determining the likelihood that each voxel
belongs to a specific region. The Harvard-Oxford atlases are probabilistic maps with 48
cortical and 21 subcortical regions derived from parcellation of healthy references [25].

For probabilistic atlases, a threshold of 25% probability for voxel assignment was used,
following FSL software defaults [26]. Using this threshold makes sure that only voxels with



sufficient confidence of being in a specific region are used. Additionally, making sure there
is still enough brain coverage for the analysis. Voxels with a probability below 25% for all
regions are discarded. This is done to make sure we don’t introduce noise into the atlas and
therefore the analysis.

2.2.2.3 Dimensionality Reduction and Information retention

ROI methods can achieve a compression ratio of approximately 1000 : 1 with dimensionality
reduction, transforming brain volumes containing p ~ 10° voxels into feature vectors with
R =~ 10? values, making it computationally efficient.

However, this will inevitably lead to information loss. The aggregation discards all in-
formation within the regions of the atlas. The information loss can be expressed as follows:

R
‘CROI = Z Z (V(Z>]> k) - fr>2 (13)

r=1 (ivjvk)eRT

representing the total squared difference between original voxel values and their regional
representatives.

2.2.2.4 Atlas Granularity

The granularity of an atlas affects its ability to retain information. Coarse atlases with fewer,
larger regions have a higher change of increasing bias, as it mixes different tissue types by
averaging unhealthy and healthy regions. On the other hand, fine-grained atlases with many
small regions have a higher chance of high variance due to insufficient number of patients to
compensate for individual variance in the data. This is more precise anatomically, but can
lead to noisy and unreliable analysis.

2.2.2.5 Advantages and Limitations

The ROI approach offers some advantages over PCA. The extracted features maintain
anatomical information, making it easier to see which brain regions contribute to what
disease.

However, the predetermined parcellations may miss important information depending on
what type of atlas is used, the coverage of said atlas and the granularity of that atlas. So,
different atlases perform differently for different application, making it harder to find the
optimal atlas that works for all applications. Additionally, the aggregation removes patterns
within regions that can contain important information about the tissue.



2.3  CLASSIFICATION

We now have established the feature extraction methods that transform high-dimensional
brain scans into manageable representations, but we still need classification algorithms to
identify the subtle patterns within these features that distinguish between healthy and dis-
eased states and even between different neurodegenerative diseases.

2.3.1 GENERALIZED MATRIX LEARNING VECTOR QUANTIZATION

Generalized Matrix Learning Vector Quantization (GMLVQ) learns both representative pro-
totypes for each diagnostic category and an adaptive distance metric that emphasizes the
most discriminative feature combinations [27].

2.3.1.1 Prototype-Based Learning

The idea of GMLVQ) is that classification problems can be solved by identifying representa-
tive examples, or prototypes, for each class and classifying new observations based on how
similar they are to these prototypes.

GMLVQ maintains a set of prototype vectors {Wj}j]\/il, where each prototype w; € RP rep-
resents a characteristic pattern for a specific diagnostic class ¢(w;). These prototypes serve
as bases in the feature space, capturing the characteristics that define each category. The
learning process also adapts the distance metric to emphasize features that give maximal
discriminative power.

0
A :imsz

data space € RN embedded data space € RM

classification
correlation ¥ prototypes
matrix x o data points

Figure 2: Tllustration of dimensionality reduction from high-dimensional data space (RY) to
lower-dimensional embedded space (RM). The transformation is performed through matrix
Q, where A = QTQ is the classification correlation matrix. Data points (circles and crosses)
and prototypes (hearts) are preserved in the embedding, as indicated by the distance mea-
sures d and d'. Figure reprinted from [28].



2.3.1.2 Distance Metric Learning
GMLVQ learns a relevance matrix A € RP*P that weights and matches features based on

their discriminative importance [29].

The adaptive distance between input x and prototype w; is computed as:
da(x,w;) = (x — w;)" A(x — w;) (14)

where A = Q7Q represents the learned relevance matrix. The diagonal elements of A
determine the importance of individual features and the off-diagonal elements capture rela-
tionships between features. The irrelevant features receive near-zero weights by the gradient-
based optimization.

The relevance matrix effectively transforms the feature vector space: stretching dimensions
along discriminative directions and compressing irrelevant variations.

2.3.1.3 Classification Decision Making

For any input sample x, the algorithm identifies the closest prototypes from both the correct
class and the incorrect classes:

dt = (m)in( )dg(x, w;) (correct class distance) (15)
Jie(wj)=c(x

d”= min dgo(x,w;) (incorrect class distance) (16)
Jre(wy)#e(x)

The relative distance can be used to determine the confidence of the algorithm between
correct and incorrect class assignments:

dt —d-

p(x) = 1 d (17)

where d*,d~ > 0. The magnitude of i reflects the decision confidence, with values near
zero, with d™ = d~, indicating low confidence and values near +1 indicating high confidence,
either d* = 0 and the sample lies exactly on the correct prototype (u = —1) or d~ = 0 and
the sample lies exactly on the wrong prototype (u = +1).

2.3.1.4 Activation Type

The learning process optimizes the prototypes and relevance matrix with derivative-based
minimization of a differentiable cost function, called the activation type. The activation type
used in this study is the sigmoid activation function:

n

B = 30009 = 3 ) (18)

i=1




2.3.2 CROSS-VALIDATION

Neurodegenerative disease datasets most often contain limited samples with imbalanced class
distributions. For example, Alzheimer’s disease samples often outnumber rarer conditions
like Dementia with Lewy Bodies.

2.3.2.1 Stratified K-Fold Cross-Validation

For dataset D = {(x;,y;)}l~; with class distribution p = [p1,pa,...,pk] where p; = |{i :
y; = j}|/n, each fold Fj, maintains approximate class proportions:

{i € Fr:yi =3} .
| F| !

for small tolerance e > 0. This constraint ensures that each validation fold contains repre-
sentative samples from categories, preventing favoring larger classes.

<e (19)

The 10-fold cross-validation performance estimate averages across all folds:

. 1 10
Rov = 45 ; Ry (Fr) (20)

where Ry (F) is performance on fold k, using a model trained on D\ Fi. Ten-fold cross-
validation was chosen to maximize training data per fold, minimize bias and maintain ac-
ceptable variance, given our limited dataset size and class imbalance [30].



3 MATERIALS AND METHODS

3.1 DATASET CHARACTERISTICS AND PROCESSING

3.1.1 DATASET COMPOSITION

The analysis makes use of the same FDG-PET neuroimaging dataset used by van Veen
et al. (2022), comprising 236 brain scans from patients with neurodegenerative conditions
and healthy controls. The dataset includes: Parkinson’s Disease (PD, n = 41), Alzheimer’s
Disease (AD, n = 56), Dementia with Lewy Bodies (DLB, n = 23), idiopathic REM sleep
behavior disorder (RBD, n = RBD1 + RBD2 = 47), and Healthy Controls (HC, n = 69) [18].

The images are stored in NIfTT format (.nii) with corresponding participant metadata
in tab-separated value (.tsv) files. Each image has dimensions of 91 x 109 x 91 voxels, with
each voxel having dimensions of 2 x 2 x 2 millimeters.

3.1.2 DiagNoOSTIC CATEGORY

To address the imbalance within the dataset between diseases, the decision was made to
group related disease subtypes: AD variants (AD, AD-P, AD-ATYP, AD-MCI) combined
into AD, PD kept as a distinct category, RBD variants (RBD1, RBD2) combined into RBD
as a separate category, DLB kept as a distinct category and HC kept as healthy controls.

RBD remains as a separate category due to its uncertain progression. iRBD can develop
into PD, DLB or multiple system atrophy (MSA), with patterns varying heavily across pa-
tients [31].

3.1.2.1 Class Distribution
The final class distribution vector follows n = [npp, nap, npLB, "RBD, PHc] With five distinct
diagnostic categories.

3.1.3 DATA SPLITTING STRATEGY

To make sure the class imbalance doesn’t cause any problems during the analysis, stratified
random sampling is used to create training and reference datasets, with a split ratio of 90/10,
such that there was proportional class representation across splits. Each split configuration
is verified to have minimum class representation of at least 5 samples.



3.2 IMAGE PREPROCESSING AND OPTIMIZATION

3.2.1 INTENSITY NORMALIZATION

To make the brain scans comparable between scans, voxel intensity normalization is applied
to all scans beforehand, by dividing each voxel value by the mean intensity of all in-brain
voxels.

For brain volume V € R#*4Xds and brain mask M € {0,1}%*%xd the normalization
follows: Vi i k)
S 27,
V(i j k)= —"= 21
( J ) Vbrain ( )
where Vi, is the mean in-brain intensity and M(i, j, k) = Lypain(i, 5, k) With Lyim(i, 4, k),
the indicator function that equals 1 if the voxel at coordinates (i, j, k) is an in-brain voxel.

3.3 FEATURE EXTRACTION IMPLEMENTATION

3.3.0.1 PCA Feature Extraction

PCA models are fitted exclusively on reference data (10% of total samples) and then the
training data is projected onto the principal components for classification analysis. For
reference dataset D,qs and training dataset Dy, the transformation follows:

Tpca(X) = (X — Hrer) Viet i (22)

where Tpea(x) is the PCA-transformed version of input sample x, p, is the mean vector
computed from the reference dataset and V¢, is the principal components matrix with the
k most important eigenvectors learned from reference data.

3.3.1 ROI FEATURE EXTRACTION

For the ROI aggregation method, 6 brain parcellation atlases are used: AAL (116 regions),
Destrieux (148 regions, 47.8% brain coverage), Harvard-Oxford Cortical (48 regions, 65.1%
brain coverage), Harvard-Oxford Subcortical (21 regions, 83.9% brain coverage), Schaefer
2018 (100 regions, 65.3% brain coverage; 200 regions), representing two atlases for each
type: anatomical, probabilistic and functional, respectively. These atlases have varying
brain coverages and cover varying regions in the brain. This will help us determine which
regions are most important for which disease types.

Then, for each atlas, the mean FDG uptake values within each region is calculated. For
region r with voxel set R,, the feature extraction follows:

1 o
frzm > V(i k) (23)
" (i,5,k)ER,

In the aggregation process, we do voxel-wise multiplication with brain mask M defined
previously to only include in-brain voxels and then the mean uptake calculation across the
valid voxels within each region.



3.4 EXPERIMENTAL DESIGN

For the PCA methods, transformation parameters are learned from reference data and ap-
plied to training data for cross-validation. The ROI-based methods use standard stratified
cross-validation only on the training data, using the exact same data splits as the PCA ex-
periments, since the atlas-based feature extraction requires no training phase.

10-fold stratified cross-validation was used with scikit-learn’s StratifiedKFold with shuffle=True
and random_state=42. We determine the weighted F'1-score to account for class imbalance.
Additionally, the overall accuracy, class-specific precision and recall, and confusion matrices.

The weighted F1-score follows:

K
1y
F]-weighted = Z —_ Flz (24)

- n
i=1

where n; is the true count for class ¢ and F1; is the class-specific F1-score.

3.5 CLASSIFICATION AND RECONSTRUCTION ANALYSIS

3.5.1 CLASSIFIER IMPLEMENTATION

Scikit-learn’s GMLVQ is used from the sklvq library |32] with the following hyperparameters:
The prototype learning rate of 0.1 avoids overshooting and adapts quickly to class-specific
patterns, which is important for our limited sample sizes (23-69 per class). The relevance
matrix rate of 0.01 prevents oscillation in the adaptive distance metric, important for con-
vergence in high-dimensional data [27].

3.5.2 RECONSTRUCTION ANALYSIS

The reconstruction quality is determined by mean squared error (MSE) between original
and reconstructed voxel values. The PCA reconstruction was performed using the standard
PCA inverse transformation:

T
Xreconstructed = Xpro jectede (25)

The ROI reconstruction was performed by assigning regional mean values to all voxels within
each region against original normalized data.

3.5.3 REGION IMPORTANCE ANALYSIS

Following GMLVQ training, the learned relevance matrix A = Q7€ contains feature impor-
tance weights. For ROI-based features, the diagonal elements A,, show the discriminative
importance of region r. These values are the learned weights that the algorithm applies to
each feature during sample-prototype distance calculations. The higher these diagonal ele-
ments are, the more significantly their corresponding regions contribute to class separation.



Each diagonal element is then normalized by dividing it by the maximum diagonal ele-
ment across all regions, giving us relative importance scores between 0 and 1. A score of
1 corresponds to the most discriminative region and a score of 0 corresponds to the least
discriminative region for distinguishing between disease categories.

For the disease-specific analysis, the differences between disease group means and healthy
control means are determined: _ _
fr,d - fr,HC

= Jrd ~ Jniic (26)

Zr.d
Or HC

where f,4 is mean FDG uptake in region r for disease d, f,. ¢ is the healthy control mean
and o, gc is the healthy control standard deviation.

3.5.4 EXPERIMENTAL PIPELINE
The experimental pipeline follows these steps:
For PCA:
1. Apply stratified split to create reference data (10%) and training data (90%)
2. Learn PCA transformation parameters (f4,os, Vyers) only from reference data
3. Apply learned transformation to training data: Yirain = (Xtrain — Hyer) Vietk
4. Perform 10-fold stratified cross-validation on transformed training data using GMLVQ
5. Evaluate reconstruction quality using reference data transformation
For ROI:
1. Apply atlas-based feature extraction to training data (no reference data needed)
2. Perform 10-fold stratified cross-validation on training data using GMLVQ

3. Evaluate reconstruction quality by averaging all voxels within each region and com-
paring with the original data.

The maximum number of meaningful principal components is limited by the reference dataset
size. For reference datasets, PCA can extract at most n, — 1 meaningful components.



4 RESULTS AND DISCUSSION

4.1 RECONSTRUCTION PERFORMANCE ANALYSIS
4.1.1 PCA RECONSTRUCTION RESULTS

Overall, principal component analysis showed substantially superior reconstruction perfor-
mance across all metrics compared to all ROI methods. As expected, PCA-23, with maxi-
mum available components, achieved a reconstruction MSE score of 0, PCA-20 produced an
MSE of 4.15 x 107* + 5.73 x 10~* with normalized MSE of 7.54 x 1072. PCA-15 achieved
an MSE of 1.33 x 1072 £ 9.00 x 10~* with normalized MSE of 2.42 x 1072, and PCA-10
produced an MSE of 2.59 x 1072 4 1.29 x 10~2 with normalized MSE of 4.70 x 1072,

The variance explained shows a clear negatively correlated trend in Figure [3} PCA-23
achieved the best information retention at 100.0% variance explained, followed by PCA-
20 at 96.2%, PCA-15 at 87.8%, and PCA-10 at 76.2%. This shows that PCA has very
impressive information retention performance, even with very little components extracted.

PCA: Variance Explained vs Reconstruction Error
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Figure 3: Variance explained by principal components



PCA-10 Reconstruction (Variance Explained: 76.2%)
Original Reconstructed Difference

S OE

PCA-23 Reconstruction (Variance Explained: 100.0%)
Original Reconstructed Difference

Figure 4: PCA reconstruction quality comparison: (Top) PCA-10 showing higher recon-
struction error with visible loss of fine details, (Bottom) PCA-23 demonstrating perfect
reconstruction.

4.1.2 ROI RECONSTRUCTION RESULTS

The Region-of-Interest methods perform substantially worse, compared to PCA, with much
higher reconstruction errors. The AAL atlas achieved the lowest ROI reconstruction MSE of
8.88 x 107243.35 x 1073, followed by Harvard-Oxford-Subcortical (1.65x 1071 +1.45 x 1072)
and Harvard-Oxford-Cortical (3.12x107'41.60 x 1072). The functional atlases showed much
higher reconstruction errors, compared to anatomical and probabilistic atlases: Schaefer-
200 (3.12 x 1071 4+ 1.61 x 1072), Schaefer-100 (3.13 x 107! 4 1.61 x 1072). The Destrieux
(4.94 x 1071 £ 9.54 x 107?) atlas produced the highest reconstruction errors, due to its low
brain coverage of 47.8%.

These reconstruction error values are approximately 2 to 3 orders of magnitude higher
compared to PCA, see Figure [7] This clearly shows the advantage PCA has over ROI-
aggregation. PCA, even with very little components used, retains information way better.
Important to note is that the performance of the anatomical atlas AAL compared to any
functional atlases suggests that an anatomical parcellation with medium fine granularity
(116 regions) performs better in preserving metabolic structure than both very fine-grained
anatomical or any functional atlases.



ROI-AAL Reconstruction (116 regions, 88.7% coverage)
Original Reconstructed Difference
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Figure 5: ROI reconstruction comparison: (Top) AAL atlas showing the best ROI recon-
struction performance, (Bottom) Destrieux atlas showing the highest reconstruction error
among ROI methods due to its limited brain coverage (47.8%).

L

In Figure 8 we see that when we only include the regions contained in an atlas, the
reconstruction performance improves significantly. Which is not surprising, but shows us
that with the right implementation, ROI-aggregation can be competitive with PCA.



Figure [6] shows that this approach also results in approximately equal performance across
atlas types, where before there wasn’t a trend between reconstruction performance and atlas
type.

Reconstruction MSE by Atlas Type and Method
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Figure 6: Reconstruction performance comparison between PCA and ROI, both for recon-
struction of the full brain and reconstruction of only the regions each atlas contains. PCA
methods still outperform ROI methods, but only by one order of magnitude.



Reconstruction Error Comparison All Methods
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Figure 7: Reconstruction performance comparison between PCA and ROI. PCA methods
achieve 2-3 orders of magnitude lower reconstruction errors than ROI methods.
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Figure 8: Reconstruction performance comparison between PCA and ROI, both for recon-
struction of the full brain and reconstruction of only the regions each atlas contains. PCA
methods still outperform ROI methods, but only by one order of magnitude.



4.2 CLASSIFICATION RESULTS

4.2.1 PCA CLASSIFICATION RESULTS

In the case of classification, again PCA scored very well. PCA-10 showed great classification
performance with a cross-validation F1-score of 0.606 4+ 0.098. However, PCA-20 achieved
0.704 £ 0.089, which is the best result of all methods.

The confusion matrix for PCA-10 shows that it performs decent in DLB and RBD clas-
sification, getting 66.7% true positive rate for these categories (Figure E[) Overall, PCA-10
scored well across all disease categories, with healthy controls getting 90.3% classification
accuracy and Parkinson’s disease reaching 51.8% accuracy.

PCA-10 Confusion Matrix
Accuracy: 0.623, F1: 0.612
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Figure 9: Confusion matrix for PCA-10 classification showing true versus predicted diag-
nostic categories. It shows strong performance for healthy controls (90.3% accuracy) and
DLB classification (66.7% true positive rate), with average performance for other disease
categories.



4.2.2 ROI CLASSIFICATION RESULTS

The ROI classification shows varying performance depending on parcellation type and brain
coverage percentage. Destrieux achieved an Fl-score of 0.641 £+ 0.098, making it the best
performing ROI method and second-best overall. This suggests that anatomical connectivity-
based parcellations with fine granularity are very well suited for classification of neurodegen-
erative diseases. Schaefer-200 showed moderate performance with 0.632 4+ 0.067 and AAL
showed weaker performance at 0.554 4+ 0.124.

The Harvard-Oxford cortical atlas shows moderate performance (0.436 £ 0.099), while the
subcortical variant showed comparable results (0.466 +£0.048). Schaefer-100 performed worse
(0.598 + 0.151) than Schaefer-200. Which suggests that higher granularity in functional at-
lases can improve performance, similar to anatomical atlases where fine parcellation captures
important discriminative information.

ROI-AAL Confusion Matrix
Accuracy: 0.590, F1: 0.575
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Figure 10: Confusion matrix for AAL classification showing true versus predicted diagnostic
categories. Healthy controls reached 88.7% accuracy. The matrix reveals challenges in
distinguishing PD from other neurodegenerative diseases, consistent with known overlapping
metabolic patterns.



The confusion matrix for the AAL atlas (Figure shows good performance in healthy
control classification (88.7% accuracy). However, it struggled in distinguishing PD from
other neurodegenerative diseases.

Cross Validation F1 Score All Methods (Full + Atlas-Coverage-Aware)
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Figure 11: Cross-validation F1-score comparison across all feature extraction methods. PCA
methods (blue bars) show competitive performance with PCA-10 getting 0.606 and PCA-20
reaching 0.705. ROI methods (red bars) show varied performance with Schaefer-200 getting
0.632, while Harvard-Oxford subcortical atlas showed the worst performance at 0.436. The
yellow bars are redundant.

4.3 METHOD COMPARISON

4.3.1 PERFORMANCE VS DIMENSIONALITY ANALYSIS

PCA methods, with only 10 or 20 components, performed very well in both classification
and reconstruction. ROI methods, with 21 to 200 regions, showed great performance at
intermediate granularity, with Schaefer-200 outperforming both lower-dimensional Harvard-
Oxford subcortical (21 regions) and lower-granularity Schaefer-100 atlases.



4.3.2 INFORMATION RETENTION VS CLASSIFICATION PERFORMANCE

Classification vs Reconstruction Performance
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Figure 12: Classification F1-score versus reconstruction MSE. PCA methods (bottom right
quadrant) perform the best overall, both in reconstruction quality (MSE < 0.003) and classi-
fication performance (CV Fl-score > 0.606). ROI methods show way higher reconstruction
errors, but have comparable or even better classification performance in some cases.



4.4 DISEASE-SPECIFIC BRAIN REGION ANALYSIS

4.4.1 REGION IMPORTANCE AND DISEASE PATTERNS

Destrieux Most Important Brain Regions
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Figure 13: Most important brain regions for the Destrieux atlas ranked by GMLVQ relevance

scores. These scores are the dimensionless relevance weights learned by GMLVQ), representing
the relative importance of each brain region for classification.

From Figure [13] we can see that the Destrieux atlas, the most important regions included

the R G parietal inf Angular (0.038), R S oc temp lat (0.029), and L S interm prim Jensen
(0.026). In Figure , a visualization can be seen of spatial position of these most important
regions. In figure [I5], we can see the metabolic deviations from healthy controls.
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Figure 14: Visualization of the most important regions of the Destrieux atlas



Destrieux Disease Specific Brain Region Effects
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Figure 15: Disease-specific brain region metabolic deviations for the Destrieux atlas. The
heatmap displays metabolic deviations from healthy controls, with red indicating hyperme-
tabolism and blue indicating hypometabolism compared to healthy controls. Disease effect
values determined by Equation [26]



Harvard-Oxford-Subcortical Most Important Brain Regions
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Figure 16: Most important brain regions for the Harvard-Oxford-Subcortical atlas ranked
by GMLVQ relevance scores. These scores are the dimensionless relevance weights learned
by GMLVQ), representing the relative importance of each brain region for classification.

From Figure we can see that the Harvard-Oxford-Subcortical atlas, the most discrim-
inative brain regions included the Brain Stem (relevance score: 0.145), Pallidum (0.129),
and Hippocampus (0.116). In Figure a visualization can be seen of spatial position of
these most important regions. In figure [I§ we can see the metabolic deviations from healthy
controls.
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Figure 17: Visualization of the most important regions of the Harvard-Oxford-Subcortical
atlas



Harvard-Oxford-Subcortical Disease Specific Brain Region Effects
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Figure 18: Disease-specific brain region metabolic deviations for the Harvard-Oxford-
Subcortical atlas. The heatmap displays metabolic deviations from healthy controls, with
red indicating hypermetabolism and blue indicating hypometabolism compared to healthy
controls. Disease effect values determined by Equation @



4.4.2 ATLAS TYPES PERFORMANCE

CV Performance by Atlas Type All ROl Methods
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Figure 19: Classification performance comparison by atlas type. Functional atlases achieve
median Fl-scores of ~ 0.632, anatomical atlases achieve ~ 0.622, but probabilistic atlases

achieve =~ 0.430.

From Figure we can see that the atlas parcellation type significantly impacts the classifi-
cation performance, with functional and anatomical atlas types outperforming probabilistic
ones. This suggests that connectivity-based atlases capture metabolic patterns more effec-

tively than purely anatomical ones.



5 STUDY LIMITATIONS

5.1 SAMPLE SIZE AND DATASET

Our study had a small number of patients (189 total), making it harder to find small dif-
ferences between diseases and means our results might not translate well to other datasets.
Additionally, keeping RBD patients in their own separate group made our individual groups
even smaller.

5.2 TECHNICAL PROBLEMS

For the PCA method, we could only use a limited number of components because our refer-
ence dataset was small. We also had to set aside some data just to set up PCA, leaving us
with less data for training our models.

For the ROI approach, we took the average of all the values within each region. This
approach throws away information from within each region that might actually be useful.
We could have used other aggregation methods and compared the performance of those in
reconstruction and classification.

5.3 REAL-WORLD USE

Our study only looked at how accurate the information retention and classifications were.
What we didn’t consider is how well these results translate to the real world and how confi-
dent we can be in the results, when applied in practice.



6 CONCLUSION

6.1 METHOD PERFORMANCE

Principal Component Analysis showed to have both great reconstruction and classification
performance. This is likely due to probably is the case because of the way it captures variance,
as it purely focuses on trying to maximize the variance. Region-of-Interest methods showed
seem to perform much worse when it comes to reconstruction quality, but achieved compa-
rable and even slightly better classification performance. This indicates that dimensionality
reduction using an anatomic method like ROI-aggregation is still able to capture relevant
patterns despite heavy information loss. We also see that the performance of connectivity-
based functional atlases is comparable to, and sometimes even better than, anatomical par-
cellations, which supports the hypothesis that neurodegenerative diseases primarily alter
functional brain networks.

6.2 ATLAS SELECTION

Atlas choice makes a huge difference in the classification performance, with the best results
achieved at higher functional parcellation granularity. The performance of Schaefer-200 func-
tional atlas compared to both lower-dimensional and lower-granularity functional shows that
for functional atlases, higher granularity gives better performance.

So, we can conclude that PCA is a better choice in most cases over ROI-aggregation. How-
ever, for ROI, functional connectivity-based with fine parcellations and anatomical atlases
are the best choice for neurodegenerative disease classification. The 65.3% brain and 47.8%
coverage of the Schaefer-200 and Destrieux atlases, respectively, proved to be sufficient for
this analysis. This suggests that complete brain coverage may be unnecessary and counter-
productive due to potentially including irrelevant regions and, depending on the granularity,
increasing computation times.



REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

Feigin, V. L. et al. Global, regional, and national burden of neurological disorders
during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.
The Lancet Neurology 16, 877-897 (2017).

Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted
prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet
Public Health 7, e105-e125 (2022).

Phelps, M. E. Positron emission tomography provides molecular imaging of biological
processes. Proceedings of the National Academy of Sciences 97, 9226-9233 (2000).

Sokoloff, L. et al. The [14C] deoxyglucose method for the measurement of local cerebral
glucose utilization: theory, procedure, and normal values in the conscious and anes-
thetized albino rat. Journal of Neurochemistry 28, 897-916 (1977).

Frisoni, G. B., Fox, N. C., Jack Jr, C. R., Scheltens, P. & Thompson, P. M. The clinical
use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6, 67-77 (2010).

Thompson, P. M. et al. Dynamics of gray matter loss in Alzheimer’s disease. Journal
of Neuroscience 23, 994-1005 (2003).

Tang, C. C., Poston, K. L., Dhawan, V. & Eidelberg, D. Abnormalities in metabolic
network activity precede the onset of motor symptoms in Parkinson’s disease. Journal
of Neuroscience 30, 1049-1056 (2010).

Mosconi, L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s
disease. Furopean Journal of Nuclear Medicine and Molecular Imaging 32, 486-510
(2005).

Jolliffe, I. T. Principal component analysis 2nd (Springer, New York, 2002).

Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neurolmage
15, 273-289 (2002).

Teipel, S. J. et al. Multivariate network analysis of fiber tract integrity in Alzheimer’s
disease. NeuroImage 34, 985-995 (2007).

Eidelberg, D. Metabolic brain networks in neurodegenerative disorders: a functional
imaging approach. Trends in Neurosciences 32, 548-557 (2009).

Scholkopf, B., Smola, A. & Miiller, K.-R. Kernel principal component analysis. Artificial
Neural Networks—ICANN’97, 583-588 (1997).

Lee, J. A. & Verleysen, M. Nonlinear dimensionality reduction. Information Sciences
138, 1-37 (2007).

Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic
functional connectivity MRI. Cerebral Cortex 28, 3095-3114 (2018).

Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical
labelling atlas 3. Neurolmage 206, 116189 (2020).



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human
brain MRI registration. Neurolmage 46, 786-802 (2009).

Van Veen, R. et al. FDG-PET combined with learning vector quantization allows clas-
sification of neurodegenerative diseases and reveals the trajectory of idiopathic REM
sleep behavior disorder. Computer Methods and Programs in Biomedicine 225, 107042
(2022).

Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early
Alzheimer’s disease. Annals of Neurology 42, 85-94 (1997).

Diehl-Schmid, J. et al. Frontotemporal dementia: patient characteristics, cognition, and
behaviour. International Journal of Geriatric Psychiatry 19, 894-901 (2004).

Lobotesis, K. et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies
but not AD. Neurology 56, 643-649 (2001).

Long, Z. et al. A Multi-Modal and Multi-Atlas Integrated Framework for Identification
of Mild Cognitive Impairment. Brain Sciences 12. 1SSN: 2076-3425. https: //www .
mdpi.com/2076-3425/12/6/751 (2022).

Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human
cortical gyri and sulci using standard anatomical nomenclature. Neurolmage 53, 1-15
(2010).

Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new parcellation of
the orbitofrontal cortex in the automated anatomical labeling atlas. Neurolmage 122,

1-5 (2015).

Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic
volumes in pediatric bipolar disorder. American Journal of Psychiatry 162, 1256-1265
(2005).

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL.
Neurolmage 62, 782-790 (2012).

Hammer, B. & Villmann, T. Generalized relevance learning vector quantization. Neural
Networks 15, 1059-1068 (2002).

Bittrich, S. et al. Application of an interpretable classification model on Early Folding
Residues during protein folding. BioData Mining 12 (Jan. 2019).

Schneider, P., Hammer, B. & Biehl, M. Adaptive relevance matrices in learning vector
quantization. Neural Computation 21, 3532-3561 (2009).

Kohavi, R. et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. International Joint Conference on Artificial Intelligence 14, 1137-1145
(1995).

Postuma, R. B. et al. Risk and predictors of dementia and parkinsonism in idiopathic
REM sleep behaviour disorder: a multicentre study. Brain 142, 744-759 (2019).

Van Veen, R., Biehl, M. & de Vries, G.-J. sklvq: Scikit learning vector quantization.
Journal of Machine Learning Research 22, 1-6 (2021).


https://www.mdpi.com/2076-3425/12/6/751
https://www.mdpi.com/2076-3425/12/6/751

	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives

	Theoretical Background
	Previous Work
	Dimensionality Reduction
	Principal Component Analysis
	Region-of-Interest Aggregation

	Classification
	Generalized Matrix Learning Vector Quantization
	Cross-Validation


	Materials and Methods
	Dataset Characteristics and Processing
	Dataset Composition
	Diagnostic Category
	Data Splitting Strategy

	Image Preprocessing and Optimization
	Intensity Normalization

	Feature Extraction Implementation
	ROI Feature Extraction

	Experimental Design
	Classification and Reconstruction Analysis
	Classifier Implementation
	Reconstruction Analysis
	Region Importance Analysis
	Experimental Pipeline


	Results and Discussion
	Reconstruction Performance Analysis
	PCA Reconstruction Results
	ROI Reconstruction Results

	Classification Results
	PCA Classification Results
	ROI Classification Results

	Method Comparison
	Performance vs Dimensionality Analysis
	Information Retention vs Classification Performance

	Disease-Specific Brain Region Analysis
	Region Importance and Disease Patterns
	Atlas Types Performance


	Study Limitations
	Sample Size and Dataset
	Technical Problems
	Real-World Use

	Conclusion
	Method Performance
	Atlas Selection


