
Exploring Retrieval in Hybrid

SSM-Transformers

Bachelor’s Project Thesis

Kurt Felix Michalak, s5142644, k.f.michalak@student.rug.nl,

Supervisors: Steven Abreu & Dr Herbert Jaeger

Abstract: Hybrid large language models (LLMs) combining state-space models (SSMs) with
transformer self-attention layers offer promising computational efficiency while maintaining per-
formance. However, the specific roles of different components remain unclear. This paper investi-
gates retrieval capabilities in hybrid LLMs through systematic experiments on RecurrentGemma-
2B, RecurrentGemma-9B, and Jamba-Mini-1.6. Using the Needle-in-a-Haystack benchmark and
attention manipulation techniques, we demonstrate that retrieval depends exclusively on self-
attention layers. Complete attention ablation causes total retrieval failure across all models,
confirming that SSM layers do not contribute to retrieval. Methods to improve SSMs’ retrieval
abilities fail to recover retrieval capabilities in ablated models. Sparsification experiments reveal
that attention layers can be significantly reduced without substantial performance degradation.
Systematic attention weight manipulation shows that successful retrieval requires needle token
exposure during generation and sufficient context during prefill or generation stages. These find-
ings establish that self-attention layers serve as specialized retrieval modules while SSM and
MLP layers handle general language capabilities.

1 Introduction

The transformer architecture (Vaswani et al.,
2017), specifically the self-attention mechanism,
is the basis for state-of-the-art (SOTA) models
(DeepSeek-AI et al., 2025; Grattafiori et al., 2024;
Gemma Team et al., 2024). However, FLOPs scal-
ing quadratically with the length of the attention
window makes transformer self-attention expensive
during inference. So, recent advances in Large Lan-
guage Models (LLMs) have increasingly focused
on linear-attention models, especially state-space
models (SSMs) (De et al., 2024; Gu & Dao, 2024;
Dao & Gu, 2024; Qin et al., 2024). The FLOPs
for processing a single token scale linearly with se-
quence length, which, computationally, makes them
an attractive alternative to transformer-based mod-
els.

However, even modern SSMs are not yet ca-
pable enough to compete with transformer mod-
els, with their scores reaching a maximum of 90%
of comparable transformers in performance bench-
marks; depending on the task, these scores can

drop down to 18% (De et al., 2024). Recent re-
search on SSM-interpretability has highlighted the
weaknesses of this architecture, primarily its lack
of retrieval or copying ability (Arora, Eyuboglu,
et al., 2024; Jelassi et al., 2024; Ben-Kish et al.,
2025). This lacking ability is attributed to their
fuzzy memory (Waleffe et al., 2024), where the in-
context retrieval success rate decreases with the
distance of to-be-retrieved token sequences to the
end of the prompt. In contrast, for transformer-
based models, this in-context retrieval is dependent
on the attention implementation, and full accuracy
can range from within a certain token window, e.g.,
the last 2048 tokens (sliding window attention), to
the full sequence length (global attention).

During training, different heads of the self-
attention mechanism (see Figure 3.1) learn spe-
cialized roles, while others learn more general
roles (Voita et al., 2019). Recently, Yin & Stein-
hardt (2025) showed that specialized function vec-
tor (FV) heads (Todd et al., 2024; Hendel et al.,
2023) contribute to the In-Context Learning (ICL)
capability of transformer models, whereas special-

1



ized induction heads (Olsson et al., 2022; Elhage
et al., 2021) learn pattern-matching functions en-
abling longer context retrieval. ICL describes the
ability of a model to use in-context information
(information contained in the prompt) to answer a
question, understand a problem, or learn a behavior
(Brown et al., 2020). The combination of these spe-
cialized and general heads is a strong driver of the
performance of transformer-based architectures.
In an attempt to close the gap between trans-

formers and SSMs, hybrid LLMs combine both
layer architectures in a single model to reap
the benefits of both: transformer-level retrieval
and SSM-level efficiency. The strengths of the
transformer architecture, namely, perfect retrieval,
seem to complement the missing retrieval abili-
ties of SSMs. Combining pure SSMs with self-
attention in model architectures like Recurrent-
Gemma (Botev et al., 2024; De et al., 2024) or
Jamba (Lieber et al., 2024) appears to negate these
weaknesses. They deliver similar capabilities to
comparable transformer-based models. These per-
formance gains were only achieved due to the (min-
imal) addition of self-attention mechanisms, based
on the hypothesis that these mechanisms can com-
plement the capabilities of pure SSMs. Now, the
success of hybrid LLMs begs the question of the
actual contributions of self-attention to the new ca-
pabilities and how they impact the latent space.
In a first attempt, Zani et al. (2025) investi-

gated the impact of self-attention on hybrid LLM
retrieval in an ablation study on RecurrentGemma-
2B (referred to as RG2B). Their results suggest
that hybrid LLM retrieval is solely dependent on
self-attention, as a full ablation of this mechanism
in RG2B leads to complete retrieval failure across
all sequence lengths, such that not even the inferior
fuzzy memory is retained. As a result of their find-
ings, Zani et al. hypothesize that retrieval is learned
as a specialized function in a small number of at-
tention heads, similar to the occurrence of copying
and induction heads in full transformers.
With this paper, we aimed to answer the follow-

ing research questions regarding hybrid LLMs:

Q1 Does the finding that hybrid LLMs rely on
their attention layers for retrieval hold for hy-
brid LLMs other than the RG2B model tested
by Zani et al. (2025)?

Q2 Can methods for improving SSM’s retrieval

abilities (Arora, Timalsina, et al., 2024) be
used to amplify SSM retrieval in hybrid LLMs?

Q3 Can attention layers be sparsified to isolate
their retrieval capability without degrading the
overall performance of the language model?

Q4 Under what conditions do attention layers in
hybrid LLMs perform successful retrieval?

To answer Q1, we tested RecurrentGemma-9B
(referred to as RG9B) and Jamba-Mini-1.6 (re-
ferred to as Jamba) on the Needle-In-A-Haystack
(NIAH) task (Bai et al., 2024) with ablated and
top-k-sparsified attention, similar to the experi-
ments run by Zani et al. (2025). NIAH is a retrieval
benchmark that tests the ability of a model to re-
trieve an exact string, the needle, from a previously
presented context, the haystack. See Section 2.2 for
more details.

To answer Q2, one has to answer two ques-
tions: ”Does only attention perform retrieval?” and
”Does attention only perform retrieval?”. While
the earlier question seems to be covered through
Q1, Arora, Timalsina, et al. (2024) found that the
prompting structure is a limiting factor for retrieval
in SSMs, so they derived the Just Read Twice
(JRT) method to circumvent this problem. We re-
peated all experiments from Q1 and applied the
JRT method.

To answer Q3, we ran Jamba on two bench-
marks: the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2019) and
the Massive Multitask Language Understanding
benchmark (MMLU) (Hendrycks et al., 2020). Both
benchmarks measure general natural language pro-
cessing capabilities, although MMLU was designed
as a more difficult successor to GLUE. Jamba was
run three times on this benchmark: once in the
base configuration, once in the optimally sparsi-
fied configuration, and once in the ablated con-
figuration. The optimally sparsified configuration
used the highest possible self-attention sparsifica-
tion that still showed close to full retrieval capa-
bilities in NIAH; the ablated configuration fully
sparsified the model, effectively removing the self-
attention mechanism.

To answer Q4, we systematically manipulated
the self-attention mechanism of RG2B to highlight
the importance of different parts in the context
for successful retrieval. Inference in most language

2



models is split into two stages, the prefill stage and
the generation stage. During the prefill stage, all
prompt tokens are processed in parallel to fill model
activations, and the first token is generated. The
generation stage follows after the prefill stage, and
uses autoregressive sampling to predict the second
and every following token after another. We ran a
combination of different ablation methods during
prefill and generation.

Since the research questions are partially depen-
dent on each other, they will be addressed in order,
one at a time. Sections 3-6 deal with Q1-4.

2 Methodology

2.1 Models

Across all four questions, we used three dif-
ferent models: RecurrentGemma-2B (RG2B),
RecurrentGemma-9B (RG9B), and Jamba-Mini-
1.6 (Jamba).

RG2B was used by Zani et al. (2025) as a com-
paratively small hybrid LLM that is easy to run.
We used this model to provide comparability to
previous results. This model consists of 2.03B pa-
rameters (excluding embedding parameters) spread
across 26 layers, being eight repetitions of the pat-
tern ”2× SSM, 1× Attention” followed by two SSM
layers. Each attention layer hosts ten attention
heads.

RG9B was used as a model of a larger size that is
comparable to RG2B. RG9B and RG2B are of the
same structure and architecture, just that RG9B is
bigger in scale with 7.53B parameters spread across
38 layers, being 12 repetitions of the pattern ”2×
SSM, 1× Attention” followed by two SSM layers.
The attention layers of RG9B host 16 heads each.

Both RG models use sliding window attention
with a sliding window size of 2048.

Jamba was used as a model of different archi-
tecture to compare to the RG models. Jamba uses
global attention and Mixture of Experts (MoE) lay-
ers that systematically substitute Multilayer Per-
ceptrons (MLPs). MoE layers are sparse alterna-
tives to MLPs that only use a fraction of parame-
ters during inference, effectively reducing the mem-
ory footprint of a model. Jamba consists of 51.03B
total parameters (excluding embedding parame-
ters), of which only 12B are active during inference,

spread across 32 layers in a pattern of ”3× SSM,
1× Attention 4× SSM”. Each attention layer hosts
32 attention heads.

These three models built a diverse basis for
experimental results, differing in their parameter
sizes, attention implementation, and surrounding
architecture.

All experiments were conducted on a high-
performance cluster, utilizing a maximum of two
AMD Zen 3 EPYC 7763 processors, eight NVIDIA
A100 (40 GB HBM2) graphics cards, and 1024 GB
of memory.

2.2 The NIAH Benchmark

The Needle-In-A-Haystack (NIAH) benchmark is
built on the implementation by Bai et al. (2024).
The task in NIAH is to retrieve a specific sentence
from a context that is filled with irrelevant text.
The to-be-retrieved information is called the needle,
and the whole context, including the irrelevant text
and the needle, is called the haystack. The bench-
mark evaluates the ability of a model to retrieve
the needle from the haystack for multiple prompts
of different lengths. Through strategic prompt gen-
eration, this benchmark can yield retrieval maps
that unveil the retrieval performance of a model,
depending on the position of the needle and the
size of the haystack. See Figure 6.2 for examples of
such a retrieval map. Following Bai et al. (2024), we
used the same collection of essays from Paul Gra-
ham∗ to generate the haystack, as well as the same
needle.

The needle was ”The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park
on a sunny day”. The retrieval question was ”What
is the best thing to do in San Francisco?”. See Ap-
pendix A for our prompt templates.

As an improvement over the scoring method used
by Zani et al. (2025), which was a simple binary
string matching evaluation, we implemented gran-
ular scoring. While still based on string matching,
partial matches were allowed to yield partial scores.
For each keyword of the needle that was present
in the output string, the score was increased. The

∗All essays can be found in their original form
at https://www.paulgraham.com/articles.html, and are
also part of the github repository for this project
at https://github.com/lamalunderscore/retrieval-in-hybrid-
ssms.

3

https://www.paulgraham.com/articles.html
https://github.com/lamalunderscore/retrieval-in-hybrid-ssms
https://github.com/lamalunderscore/retrieval-in-hybrid-ssms


scores for all partial keywords added up to three.
If the full needle string matched, the score was set
to five. While examining outputs from test experi-
ments on Jamba, we stumbled across a curious phe-
nomenon: the grammatically imperfect needle was
predicted with corrected grammar, thereby only
scoring three points. To visualize this phenomenon,
we added a rule: if the needle was predicted with
corrected grammar, the score was set to four. See
Table 2.1 for concrete strings and their scoring be-
havior.

Keyword Score

”eat a sandwich” increase by 1.0

”Dolores Park” increase by 0.5

”sit in Dolores Park” increase by 0.5

”sunny day” increase by 1.0

”is to eat a sandwich and sit in
Dolores Park on a sunny day”

set to 4.0

”The best thing to do in San
Francisco is eat a sandwich
and sit in Dolores Park on a
sunny day”

set to 5.0

Table 2.1: Keyword strings used in the evalua-
tion of retrieval success, and their influence on
the score. Notice the grammatical imperfection
in the full needle string (last row).

3 Hybrid SSM-Transformers
rely on self-attention for re-
trieval

3.1 Methodology

Zani et al. (2025) used 100 prompts to test re-
trieval in RG2B: ten prompt lengths on ten differ-
ent depths at which the to-be-retrieved information
was located in the prompt. The maximum prompt
length was chosen as double the sliding window size
of RG2B - namely, 4096 tokens.
RG9B has the same sliding window size as RG2B,

so to ensure comparability to previous results, we
used the same maximum prompt length of 4096
for RG9B. As Jamba features global attention, one
expects the retrieval ability of the unmanipulated

model to be similar across all token lengths. The
only limiting factor for its retrieval ability is the
prompt length it was trained on, affecting the ef-
fectively usable context length during inference. For
Jamba-Mini-1.6, this context length is reported to
be 256k tokens. Fully investigating the impact of
attention head-sparsification on Jamba retrieval -
testing prompt lengths up to 512k tokens - was
not feasible, as it would have required hardware re-
sources that were inaccessible for this project. For
continuity reasons, we chose to test Jamba on the
same maximum prompt length as RG9B, 4096 to-
kens. We used the same prompt distribution as Zani
et al. (2025), meaning ten prompt lengths across
ten different depths, amounting to 100 prompts in
total.

For sparsification, the k attention heads with the
lowest uniformity in their attention weight distri-
bution were retained, and all other attention heads
were ablated - this is called top-k sparsification and
assumes k ∈ N. Entropy was used as a uniformity
measure and calculated as

H(A) = −
∑
t

at × log2(at),

where A is the attention weight vector of an atten-
tion head, and at is the attention weight of token t
in A. See Figure 3.1 for more details, as it indicates
the parts of interest in the self-attention mecha-
nism. The ablation acted on the attention output,
based on the metrics calculated on the attention
weights. Ablating a specific head here meant set-
ting all values reflecting that head in the attention
output to zero.

RG9B and Jamaba were run for k ∈ [0, 16] and
k ∈ [0, 32] respectively. Note that k = num heads
(the highest tested k for both models) is equivalent
to the non-sparsified model.

Zani et al. (2025) only applied sparsification dur-
ing the generation stage. However, we ran all spar-
sification levels twice, once only during generation,
and once during prefill as well as generation, be-
cause it provided a more detailed overview of the
impact of attention sparsification on model output.

Since RecurrentGemma and Jamba have to be
run via different means (Kaggle/custom loading or
HuggingFace, respectively), we built an extendable
library to create a unified interface for the manip-
ulations mentioned in this paper, and creatively

4



Residual Stream 𝑥

h1h…Value

x 

Final

hn

⊕

Attention weights

Attention output

Figure 3.1: Structural overview of the self-
attention mechanism. Projections are indicated
as blue squares. Green squares represent the op-
erations of a single head, outputting A = QKT ,
where Q = xWQ and K = xWK are results of
head-specific projections of the residual stream
x. Consider Vaswani et al. (2017) for a detailed
explanation of the attention mechanism.

called it ManipuLatte†.
To increase comparability, the sparsification

setup for RG2B used by Zani et al. (2025) was re-
run on the updated procedure, and we also added
a run that sparsified RG2B during both stages for
continuity.
All models were tested without batching (using

a batch size of one).

3.2 Results

As seen in Figure 3.2, all three models showed dis-
tinct but similar behaviors for sparsification.
We will refer to the model versions that are only

sparsified during the generation stage as generation
versions, and to the versions that are sparsified dur-
ing both stages as prefill versions.
Jamba scored the highest across all models,

reaching 100% accuracy until k = 27. The prefill
and generation versions behave very similarly, both

†Available at https://github.com/lamalunderscore/
manipulatte

first decline slowly and steadily until k = 6, and
then sharply drop in their scores. The prefill ver-
sion shows an advantage of around five points until
k = 6, but also drops more sharply afterwards.

RG9B scored the second best across the three
models. Both versions showed a dip that starts at
k = 16 and ends around k = 3, only that the pre-
fill version bottoms out deeper. Accuracy sharply
dropped after k = 2 for the generation version, and
after k = 3 for the prefill version.
RG2B scored the worst overall, although the gen-

eration version was comparable to the generation
version of RG9B at low k. For this model, the two
different versions also showed drastically different
behaviors. While the generation version showed a
steady increase in accuracy until k = 1, the prefill
version almost immediately dropped to below 20%
accuracy, where it then stayed until k = 1. The ac-
curacy of both versions sharply drops again after
k = 1.

All models and versions shared a common be-
havior: there was a tipping k after which accura-
cies dropped quickly to zero percent. This k ranged
from 5 to 1, and was higher for models with a higher
number of attention heads.

3.3 Discussion

Retrieval failed for all models at k = 0, which
confirmed that the findings made by Zani et al.
(2025) also hold on other hybrid LLMs. However,
all three models showed slightly different tipping
points in generation versions, after which the ac-
curacy started to decrease drastically: k = 4 for
Jamba, k = 2 for RG9B, and k = 1 for RG2B. This
difference was expected to a degree, as all three
models are different, either in size or architecture,
and different training runs can yield differently per-
forming models even if the underlying structure is
identical. Still, the overall behavior is similar across
all three models. Note that our results showed the
tipping point for RG2B at k = 1, whereas Zani et
al. (2025) identified this tipping point to be around
k = 2. This difference can be attributed to our im-
proved scoring method and prompt structure.

Regarding the prefill versions, the difference in
behaviors was striking, especially looking at the be-
havior of RG2B. It seems that the prefill sparsifi-
cation made the effects more prominent in Jamba
and RG9B, whereas it made RG2B fail even at low

5

https://github.com/lamalunderscore/manipulatte
https://github.com/lamalunderscore/manipulatte


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

10

20

30

40

50

60

70

80

90

100 RG9B - Generation
RG9B - Prefill
RG2B - Generation
RG2B - Prefill
Jamba - Generation
Jamba - Prefill

Accuracy~K on NIAH for all models

K

A
cc

ur
ac

y 
in

 %

Figure 3.2: Accuracy as a function of k in top-k sparsification on standard NIAH for generation and
prefill versions. Accuracy was approximated by the average score across all 100 prompts, relative
to the maximum score (5). Note that scoring was neither linear nor continuous (see Table 2.1 for
interpretation guidance). Read from right to left for increasing sparsity.

sparsification levels.

To understand why RG2B was impacted by pre-
fill sparsification, it is important to consider the im-
pact of sparsification on the internals of the model.
Any manipulation of the computations during a
forward pass will alter the residual stream and
therefore yield, compared to the original activa-
tions, an imperfect version of all downstream acti-
vations. This means that every layer activation af-
ter the first manipulation is imperfect, and that ev-
ery further manipulation likely pushes subsequent
layer activations further away in the latent space.
This also means that every query-, key- and value-
projection is imperfect. Since the RG models used
a cache for the values of key- and value-projections
(kv-cache) to optimize inference time, the query-
projection will use these imperfect activations for
every subsequent forward pass during that infer-
ence run, increasing the impact of the manipula-
tion. Especially important for this cache is the pre-
fill stage, as it fills the kv-cache with all projections
of the prompt tokens. Hence, we would expect the
RG models to be more impacted by prefill sparsifi-
cation.

Furthermore, approximately the last third of lay-
ers contributes the most decisive information in
transformer-based models (Belrose et al., 2023),
the most important self-attention layers act on
the most manipulated activations. Additionally, the
number of heads per self-attention layer should be

considered, as the relative impact of incrementing
k by one differs, being higher for smaller models
(with fewer heads per layer). Jamba was the biggest
model, but featured the fewest self-attention layers.
RG9B has three times as many self-attention lay-
ers but has about half the active parameters; RG2B
has twice as many self-attention layers as Jamb but
only a sixth of the active parameters.

All things considered, it is likely that the detri-
mental impact of prefill sparsification on RG2B’s
retrieval accuracy originated in the fact that it used
a kv-cache, which was further amplified by the com-
paratively small size of the model.

The impact of activation manipulations on dif-
ferent model structures could be investigated in the
future by comparing runs with and without using
a kv-cache, as well as training different configura-
tions of the same model architecture that capture
a wide diversity in combinations of the number of
layers and heads per layer.

4 Attempting to recover
SSM-retrieval capabilities

4.1 Methodology

In line with Arora, Timalsina, et al. (2024), we
applied the JRT method by simply repeating the
context and question parts once (see Appendix

6



A).
The goal of this experiment was to amplify po-

tentially hidden retrieval capabilities in the SSM
layers. Results from runs with higher k would not
yield any insights, as successful retrieval was al-
ready accomplished through self-attention. Investi-
gating low k sparsification minimized the effect of
self-attention retrieval and so isolated the potential
retrieval performed through SSM layers. Hence, for
both models, we only ran NIAH with JRT applied
for k ∈ {0, 1, 2}. Note that k = 2 already showed
close to full retrieval performance without applying
JRT. Since we were comparing the JRT retrieval
results to the findings by Zani et al. (2025), we
used the generation versions for all models - RG2B,
RG9B, and Jamba.

4.2 Results

0 1 2
0

10

20

30

40

50

60

70

80

90

100 RG9B
RG9B - JRT
RG2B
RG2B - JRT
Jamba
Jamba - JRT

Accuracy~K on NIAH - JRT

K

A
cc

ur
ac

y 
in

 %

Figure 4.1: Accuracy as a function of k in top-k
sparsification on NIAH with and without JRT
applied, for all models in the generation ver-
sion. Accuracy was approximated by the aver-
age score across all 100 prompts, relative to the
maximum score (5). Note that scoring was nei-
ther linear nor continuous (see Table 2.1 for in-
terpretation guidance). Read from right to left
for increasing sparsity.

As seen in Figure 4.1, the accuracies on NIAH
with JRT applied were very similar to the accura-

cies without JRT applied. The JRT versions only
scored slightly higher at k = 2 for RG9B and
Jamba, but for RG2B at k = 2, the JRT version
scored notably lower. At k = 0, the RG versions
scored identically with zero percent retrieval ac-
curacy, and the Jamba versions scored similarly,
around three percent.

See Appendix B for a comparison between re-
trieval maps for standard and JRT prompting.

4.3 Discussion

Applying JRT during NIAH does not recover the
retrieval ability of any model. With this experi-
ment, we wanted to test if indeed only the self-
attention layers perform retrieval, as hypothesised
by Zani et al. (2025). These results, together with
the results from Q1 (see Section 3.2), provide fur-
ther strong evidence that retrieval in hybrid LLMs
is exclusively implemented through self-attention
layers. This also further solidifies the hypothesis
that during training, only self-attention layers learn
the retrieval function, so much so that SSM lay-
ers do not even develop the common fuzzy memory
(Waleffe et al., 2024).

To investigate these training dynamics, one could
identically train a pure SSM and a hybrid ver-
sion of the same SSM that only adds self-attention
layers. After it was confirmed that the hybrid
model indeed failed retrieval tasks with ablated
self-attention, the state transition matrices of the
SSM layers of both models should be compared.
Since the pure SSM layers will have learned a re-
trieval function (at least for fuzzy memory), but the
layers of the hybrid SSM will not, contrasting the
state transition matrices could uncover the retrieval
mechanism in the pure SSM layers. Uncovering the
retrieval mechanism used in SSMs would provide
an example approach for mechanistic SSM analysis,
furthering the field of Mechanistic Interpretability.

5 Benchmarking sparsified
and ablated self-attention

5.1 Methodology

Recent advances in benchmarking LLMs included
the LM-Eval-Harness (LME) in Gao et al. (2024).

7



LME is a library that implements easy bench-
marking of, among others, HuggingFace models
and allows for the extension of custom wrappers.
However, writing a custom wrapper for Recurrent-
Gemma was not feasible due to time constraints.
For this reason, we only benchmarked Jamba, as it
is provided by HuggingFace.
The MMLU benchmark provided by LME is eval-

uated using the log likelihood of multiple-choice op-
tions right after the prefill stage. We chose to only
run the benchmarks on prefill-sparsified Jamba,
since only this version would impact the evaluated
likelihoods of multiple-choice tokens.
First, Jamba was loaded and then initialized for

sparsification using k = 5 via ManipuLatte. We
chose k = 5, as experiments for Q1 showed that this
is the lowest k for Jamba in the prefill version that
retains close to full retrieval capabilities (see Figure
3.2). The loaded model was then exposed to the
LME library to run the benchmarks (see Appendix
C).
MMLU is tested in a five-shot configuration

(Hendrycks et al., 2020), and GLUE in a zero-shot
configuration (Wang et al., 2019). We followed the
same procedure.
n-shot evaluations prepend n examples of ques-

tions and their answers to every prompt.

5.2 Results

Figure 5.1 shows the average achieved scores per
benchmark, per model configuration. See Appendix
C for subtask results.
On GLUE, the base configuration of Jamba per-

formed best, but the ablated and sparsified versions
only scored slightly lower (6.6 and 9.1 points, re-
spectively). Although only marginally, the ablated
version scored higher than the sparse version (2.8
points).
On MMLU, the base configuration performed

best again. The sparse version only scored six
points below the base configuration, whereas the
ablated version scored around 42 points below the
base configuration.
For the more challenging MMLU benchmark, the

sparse performance only declined 7.4% (relatively),
despite the same configuration showing a more sub-
stantial 16.4% decrease in NIAH (see Figure 3.2).
On the one hand, since the average decrease on
MMLU is much lower than the decrease in retrieval

capabilities, this suggests that the self-attention
layers do not host other critical and exclusive ca-
pabilities beyond retrieval. On the other hand, the
ablation (k = 0) completely failed on MMLU, drop-
ping close to the random guessing baseline, which
could be an indicator that self-attention layers play
a role outside of retrieval, and that their contribu-
tion is crucial to the model’s inner workings. How-
ever, the GLUE results contradicted this theory
by showing that the ablated configuration and the
sparse configuration score similarly (and close to
the base configuration) on GLUE, with the ablated
configuration even coming out on top on average.

MMLU GLUE
0

10

20

30

40

50

60

70

80

90

100
Ablated
Sparse
Base

Benchmark Scores, Ablated/Sparse/Base Jamba-Mini-1.6

Benchmark

S
co

re
 in

 %

Random Guessing Baseline

Figure 5.1: Scores for Jamba-Mini-1.6, in an ab-
lated configuration (k = 0), a sparse configu-
ration (k = 5), and the base configuration, on
GLUE and MMLU.

5.3 Discussion

The results provide evidence that the retrieval
capability of self-attention layers can be isolated
through sparsification. However, the effect of spar-
sification depends significantly on the complexity
and nature of the evaluated task.

The big difference in the effect of sparsification
and ablation between MMLU and GLUE highlights
the necessity for retrieval capabilities for more diffi-
cult language modeling tasks, whereas general lan-

8



guage capabilities do not depend on retrieval to
such a degree.
Still, the finding that the sparsified configura-

tion performed worse than the ablated configura-
tion hints at a suboptimal sparsification method.
There are two likely explanations for this observa-
tion. First, the sparsification metric may be inade-
quately selecting which attention heads to preserve
and ablate, preserving heads that potentially intro-
duce noise while ablating the ones that are crucial
for retrieval. Second, building on the first expla-
nation, an incomplete retrieval mechanism may be
worse than no retrieval at all, as a broken retrieval
function that was learned to be crucial for certain
tasks could lead to inconsistent or misleading infor-
mation flow. The effect of such a broken retrieval
function could range from simply introducing ran-
dom noise (as mentioned in the first explanation)
to systematically moving the activation vector in
a wrong direction in the latent space, potentially
pushing values out of distribution.
The findings from GLUE highlight the necessity

for a more sophisticated sparsification method. In-
stead of investigating attention heads behaviorally,
Olsson et al. (2022) structurally investigated atten-
tion heads through an offline analysis that examines
the weights of different circuits in the self-attention
architecture. Such an analysis could provide in-
sights into which heads are implementing which
kind of capabilities and functions before running in-
ference. This way, instead of dynamically choosing
the attention heads to ablate at run time, a model
could be sparsified statically, based on the charac-
teristics of different heads, and with more care.

6 Manipulating Attention
Weights

6.1 Methodology

As previous experiments showed that the influence
of interventions on self-attention yields similar re-
sults across models (see Section 3.2), this experi-
ment was only run on RG2B because of time and
compute constraints.
To isolate the effect of ablating attention weights,

we used the base configuration, without sparsifica-
tion (k = 10 for RG2B). Sparsity would only lead
to confounding variables since the focus here is on

the full self-attention mechanism and how it imple-
ments retrieval.

There were four different ablation methods used
for this experiment: Null, Only, Binary, and Omit.

Null : Does as the name suggests and nullifies ev-
ery attention weight, having the same effect as a
k = 0 sparsification (see Figure 6.1d).

Only : With this method, the attention weights
for all tokens, except for the needle tokens, get nul-
lified. The needle tokens retain their original values
(see Figure 6.1a).

Binary : Similarly to Only, all attention weights
except for the needle tokens get nullified. With this
method, however, every attention weight of the nee-
dle tokens gets assigned the same value, namely
the average weight across needle tokens (see Figure
6.1b).

Omit : This method is the inverse of Only, only
nullifying the attention weights of the needle to-
kens, and all other attention weights retaining their
original value (see Figure 6.1c).

0 T
Token

At
te

nt
io

n 
we

ig
ht

(a) Only

0 T
Token

At
te

nt
io

n 
we

ig
ht

(b) Binary

0 T
Token

At
te

nt
io

n 
we

ig
ht

(c) Omit

0 T
Token

At
te

nt
io

n 
we

ig
ht

(d) Null

Figure 6.1: Simplified representation of different
manipulation methods. The original attention
weights are the dotted blue line, and the mod-
ified attention weights are the solid blue line.
The token needles are indicated by the yellow
highlight.

9



25
0

67
7
11

05
15

32
19

59
23

87
28

14
32

41
36

69
40

96

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

(a) Keep-Omit

25
0

67
7
11

05
15

32
19

59
23

87
28

14
32

41
36

69
40

96

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

(b) Omit-Keep

25
0

67
7
11

05
15

32
19

59
23

87
28

14
32

41
36

69
40

96

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0 0

1

2

3

4

5

Sc
or

e 
(0

 =
 Fa

ilu
re

, 5
 =

 P
er

fe
ct

)

(c) Keep-Keep (Base)

Figure 6.2: Retrieval maps for RG2B on NIAH with the manipulations Keep-Omit, Omit-Keep,
and Keep-Keep applied. The x-axis shows the used prompt length, the y-axis the depth of the
needle, 0% being the very end of the prompt and 100% being the very beginning of the prompt.

Additionally, consider Keep as an indicator for
no manipulation.
Every manipulation method can be applied dur-

ing the prefill stage as well as the generation stage,
and there is no need for both stages to be sub-
ject to the same method. We apply every prefill-
generation method combination in a manner of in-
creasing severity and run NIAH on those configu-
rations.
Note that we exclude Null as a method for the

generation stage, as this scenario is equivalent to
full sparsification using k = 0. Full sparsification
leads to a complete retrieval failure (see Figure 3.2),
so further manipulating self-attention would only
lead to the same result.
Since the position of the needle tokens in the

tokenized context was different for every prompt
in NIAH, the necessary positions were recalculated
before every prompt when applying Only, Omit, or
Binary.
Combinations were named ”Generation mode

- Prefill mode”, so ”Omit-Null” means applying
Omit during generation, and Null during prefill.

6.2 Results

Table 6.1 gives an overview of the accuracies scored
in NIAH for different combinations of prefill and
generation manipulation. Omitting the needle to-
kens during generation led to a drastic drop in ac-
curacy, with Omit-Keep reaching 3.7% accuracy,
and all other combinations scoring zero or close to
zero percent accuracy. Applying the Binary method

Generation

Keep Omit Only Binary

P
re
fi
ll

Keep 50.3% 3.7% 85.7% 3.7%

Omit 63.0% 0.0% 53.0% 0.0%

Only 70.6% 0.1% 18.2% 0.1%

Binary 0.0% 0.0% 0.0% 0.0%

Null 68.8% 0.0% 17.0% 0.0%

Table 6.1: NIAH results for all tested manip-
ulation combinations on RecurrentGemma-2B.
Marked as overall best, second best and third best.

during generation yielded the same accuracies as
applying the Omit method; all combinations ap-
plying binary during prefill scored zero percent ac-
curacy. The combinations Keep-Omit, Keep-Only,
and Keep-Null all improved the accuracy relative
to the base configuration, with 63.0%, 70.6%, and
68.8%, respectively. When only keeping the needle
tokens during prefill, not manipulating the prefill or
omitting the needle tokens also improved the scores
relative to the base configuration, with 85.7% and
53.0% respectively. Only-Keep reached the highest
score across all combinations. Note that every spar-
sification combination that did not severely reduce
retrieval capabilities yielded better scores than the
base model (Keep-Keep).

For a complete overview of all retrieval maps, see
Appendix D.

10



6.3 Discussion

The results suggest that successful retrieval neces-
sitates, firstly, exposure of the needle tokens dur-
ing generation, and secondly, enough exposure of
tokens that provide sufficient context either dur-
ing prefill or during generation. The first point is
obvious from the results when applying Omit dur-
ing generation. Every combination, including Omit-
Keep, fails retrieval. To deduce the second point,
the key combinations to look at are Only-Omit
and Only-Only, as well as Keep-Omit, Keep-Only,
and Keep-Null. Only-Omit shows that, even when
only exposing the needle tokens during generation,
only exposing the structure around the needle dur-
ing prefill suffices to facilitate successful (above
baseline) retrieval capabilities; when not exposing
the structure during prefill, like in Only-Only, re-
trieval fails. The other three combinations, espe-
cially Keep-Null, show that the tokens exposed dur-
ing prefill are irrelevant, likely because enough to-
kens are exposed during generation.

Additionally, the low accuracy scores when ap-
plying Binary showed that the values of the atten-
tion weights are important for successful retrieval.
It is not enough to expose necessary tokens more
than unnecessary ones, but the exact structure and
relations matter.

Investigating the retrieval maps of different com-
binations revealed further details, refining the pre-
vious hypothesis. The retrieval maps for Keep-Omit
(Figure 6.2a) and Omit-Keep (Figure 6.2b) comple-
ment each other to make up the retrieval map of
Keep-Keep (Figure 6.2c). This means that Omit-
Keep, which was previously labeled as a retrieval
failure, was in fact not a failure but only a partial
success.

The phenomenon we can see here is likely re-
lated to the 2048 token sliding window attention
that the RG models employ. Observe that the trian-
gle of partially successful retrievals in the top right
corner of Figure 6.2b starts at a prompt length of
2387, which is the first tested prompt length after
2048 tokens. The combinations of prompt length
and needle depth that showed successful retrieval
all have one thing in common: the needle was out-
side of the 2048 token sliding window of attention
exposure.

This is only possible because the RG models ac-
tually only employ sliding window attention dur-

ing the generation stage, but not during the prefill
stage. The fact that there is even partially success-
ful retrieval means that either the first output to-
ken (which is generated by prefill) carries a large
enough bias, or the kv-cache generated during pre-
fill encoded enough implicit information to make
the model partially retrieve correct information de-
spite this information not being exposed to the self-
attention mechanism during further inference steps.
It also means that the retrieval function learned
by the model can generalize beyond 2048 tokens.
These retrieval maps show that retrieval capabili-
ties beyond the sliding window in RG2B are strictly
dependent on all necessary tokens being exposed
during the prefill stage, as Omit-Omit and Omit-
Only do not show this behavior. They also show
that the retrieval capabilities inside the sliding win-
dow are dependent on the tokens exposed during
the generation stage.

Since the Binary method yielded such detrimen-
tal results, we examined the outputs of correspond-
ing combinations. The outputs showed that when
Binary was applied during prefill, the generated to-
kens were mostly nonsensical. When Binary was ap-
plied during generation, the generated tokens made
sense, but were off topic. See Appendix E for a se-
lection of pearls of wisdom generated by confused
hybrid models.

Just as the effect of sparsifying during the pre-
fill stage as discussed in Section 3.3, applying Bi-
nary during prefill likely has a similar effect on the
kv-cache, which produces nonsensical tokens during
generation. This would also explain why applying
Binary only during generation did not result in such
catastrophic failures, as the kv-cache was prefilled
with unmanipulated keys and values.

Overall, the Binary method was not thoroughly
investigated before employing it, but rather it was
implemented in a way that most efficiently applied
the idea of unifying attention weights across a range
of tokens. For example, upon examining attention
weights for the first activations in the generation
stage, it became obvious that the range of the nee-
dle tokens always started with a large peak in the
weights on the exact token that would have to be
predicted (also visible in Figure 6.1). The behavior
of the attention weights throughout the generation
process was not further investigated. It is likely that
this peak moves across the range of needle tokens,
always being located on the token corresponding to

11



the correct prediction. A behavior like this would
mean that the method used to apply the idea of
unifying and binarizing attention weights was inad-
equate. This limitation could be overcome in future
research.

7 Conclusion

This paper investigates the role of self-attention
mechanisms in hybrid language models through
systematic experiments on RecurrentGemma-2B,
RecurrentGemma-9B, and Jamba-Mini-1.6, ad-
dressing four key research questions about retrieval
capabilities and sparsification potential.
Our experiments demonstrate that retrieval in

hybrid LLMs depends exclusively on self-attention
layers. Ablation of self-attention resulted in com-
plete retrieval failure across all tested models, con-
firming that SSM layers do not contribute to re-
trieval, as even the fuzzy memory observed in pure
SSMs (Waleffe et al., 2024) is absent. The Just
Read Twice method (Arora, Timalsina, et al., 2024)
failed to recover any retrieval capabilities in spar-
sified models, further confirming this exclusive de-
pendence.
The retrieval capabilities of self-attention could

be isolated without detrimental effects on the
model, as shown by our benchmarks on different
model versions. Still, the effect of self-attention
sparsification was dependent on the tested task.
We showed that successful retrieval requires two

conditions: to-be-retrieved tokens must be exposed
during generation, and sufficient context must be
available during prefill or generation. Furthermore,
the exact attention weight values matter, which
means that binarizing attention weights post-hoc
leads to retrieval failure.
These findings suggest that hybrid architectures

can be optimized through targeted attention spar-
sification without significant performance degrada-
tion on non-retrieval tasks. The exclusive special-
ization of attention for retrieval indicates that these
components could be designed specifically for this
function, potentially reducing computational over-
head and increasing explainability.
Our entropy-based sparsification method showed

suboptimal performance in some cases, indicating
the need for more sophisticated approaches such
as structural circuit analysis of the self-attention

mechanism, as was performed by Olsson et al.
(2022). Future work may investigate training dy-
namics that lead to this component specialization
and explore whether self-attention layers can be
substituted by a light-weight retrieval-only mech-
anism in hybrid architectures.

This work establishes that self-attention serves
as a specialized retrieval module in hybrid models,
while SSM layers handle general language capabil-
ities. Understanding this division of functionalities
is crucial for designing efficient hybrid architectures
that achieve transformer-level performance with
improved computational efficiency, for developing
more explainable substitutes to self-attention, and
to understand the magic behind transformers. The
exclusive dependence on attention for retrieval pro-
vides clear guidance for optimizing these architec-
tures through targeted sparsification strategies and
points out pathways for future research.

References

Arora, S., Eyuboglu, S., Zhang, M., Timalsina,
A., Alberti, S., Zinsley, D., . . . Ré, C. (2024,
February). Simple linear attention language mod-
els balance the recall-throughput tradeoff. arXiv.
Retrieved 2024-12-24, from http://arxiv.org/

abs/2402.18668 (arXiv:2402.18668 [cs]) doi:
10.48550/arXiv.2402.18668

Arora, S., Timalsina, A., Singhal, A., Spector, B.,
Eyuboglu, S., Zhao, X., . . . Ré, C. (2024).
Just Read Twice: closing the recall gap for re-
current language models. arXiv. Retrieved
2024-12-25, from http://arxiv.org/abs/2407

.05483 (arXiv:2407.05483 [cs]) doi: 10.48550/
arXiv.2407.05483

Bai, Y., Lv, X., Zhang, J., He, Y., Qi, J., Hou,
L., . . . Li, J. (2024). LongAlign: A Recipe for
Long Context Alignment of Large Language Mod-
els. Retrieved from https://arxiv.org/abs/

2401.18058

Belrose, N., Furman, Z., Smith, L., Halawi, D.,
Ostrovsky, I., McKinney, L., . . . Steinhardt, J.
(2023). Eliciting Latent Predictions from Trans-
formers with the Tuned Lens. Retrieved from
https://arxiv.org/abs/2303.08112

12

http://arxiv.org/abs/2402.18668
http://arxiv.org/abs/2402.18668
http://arxiv.org/abs/2407.05483
http://arxiv.org/abs/2407.05483
https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2303.08112


Ben-Kish, A., Zimerman, I., Abu-Hussein, S., Co-
hen, N., Globerson, A., Wolf, L., & Giryes,
R. (2025, April). DeciMamba: Exploring the
Length Extrapolation Potential of Mamba. arXiv.
Retrieved 2025-06-24, from http://arxiv.org/

abs/2406.14528 (arXiv:2406.14528 [cs]) doi:
10.48550/arXiv.2406.14528

Botev, A., De, S., Smith, S. L., Fernando, A.,
Muraru, G.-C., Haroun, R., . . . Frietas, N. d.
(2024, August). RecurrentGemma: Moving Past
Transformers for Efficient Open Language Mod-
els. arXiv. Retrieved 2025-01-05, from http://

arxiv.org/abs/2404.07839 (arXiv:2404.07839
[cs]) doi: 10.48550/arXiv.2404.07839

Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J., Dhariwal, P., . . . Amodei, D. (2020).
Language Models are Few-Shot Learners. CoRR,
abs/2005.14165 . Retrieved from https://arxiv

.org/abs/2005.14165

Dao, T., & Gu, A. (2024, May). Transformers
are SSMs: Generalized Models and Efficient Al-
gorithms Through Structured State Space Dual-
ity. arXiv. Retrieved 2025-01-05, from http://

arxiv.org/abs/2405.21060 (arXiv:2405.21060
[cs]) doi: 10.48550/arXiv.2405.21060

De, S., Smith, S. L., Fernando, A., Botev, A.,
Cristian-Muraru, G., Gu, A., . . . Gulcehre, C.
(2024, February). Griffin: Mixing Gated Lin-
ear Recurrences with Local Attention for Ef-
ficient Language Models. arXiv. Retrieved
2025-01-05, from http://arxiv.org/abs/2402

.19427 (arXiv:2402.19427 [cs]) doi: 10.48550/
arXiv.2402.19427

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song,
J., Zhang, R., . . . Zhang, Z. (2025). DeepSeek-
R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. Retrieved from
https://arxiv.org/abs/2501.12948

Elhage, N., Nanda, N., Olsson, C., Henighan,
T., Joseph, N., Mann, B., . . . Olah,
C. (2021). A Mathematical Framework
for Transformer Circuits. Transformer
Circuits Thread . (https://transformer-
circuits.pub/2021/framework/index.html)

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black,
S., DiPofi, A., . . . Zou, A. (2024, 07). The

Language Model Evaluation Harness. Zenodo.
Retrieved from https://zenodo.org/records/

12608602 doi: 10.5281/zenodo.12608602

Gemma Team, Riviere, M., Pathak, S., Sessa, P. G.,
Hardin, C., Bhupatiraju, S., . . . Andreev, A.
(2024, October). Gemma 2: Improving Open
Language Models at a Practical Size. arXiv.
Retrieved 2025-07-01, from http://arxiv.org/

abs/2408.00118 (arXiv:2408.00118 [cs]) doi:
10.48550/arXiv.2408.00118

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A.,
Kadian, A., Al-Dahle, A., . . . Ma, Z. (2024).
The Llama 3 Herd of Models. Retrieved from
https://arxiv.org/abs/2407.21783

Gu, A., & Dao, T. (2024, May). Mamba:
Linear-Time Sequence Modeling with Selective
State Spaces. arXiv. Retrieved 2025-01-
05, from http://arxiv.org/abs/2312.00752

(arXiv:2312.00752 [cs]) doi: 10.48550/arXiv.2312
.00752

Hendel, R., Geva, M., & Globerson, A. (2023).
In-Context Learning Creates Task Vectors.
Retrieved from https://arxiv.org/abs/2310

.15916

Hendrycks, D., Burns, C., Basart, S., Zou, A.,
Mazeika, M., Song, D., & Steinhardt, J. (2020).
Measuring Massive Multitask Language Under-
standing. CoRR, abs/2009.03300 . Retrieved
from https://arxiv.org/abs/2009.03300

Jelassi, S., Brandfonbrener, D., Kakade, S. M., &
Malach, E. (2024, June). Repeat After Me:
Transformers are Better than State Space Mod-
els at Copying. arXiv. Retrieved 2024-12-
24, from http://arxiv.org/abs/2402.01032

(arXiv:2402.01032 [cs]) doi: 10.48550/arXiv.2402
.01032

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin,
J., Dalmedigos, I., . . . Shoham, Y. (2024,
July). Jamba: A Hybrid Transformer-Mamba
Language Model. arXiv. Retrieved 2025-01-
05, from http://arxiv.org/abs/2403.19887

(arXiv:2403.19887 [cs]) doi: 10.48550/arXiv.2403
.19887

Olsson, C., Elhage, N., Nanda, N., Joseph, N., Das-
Sarma, N., Henighan, T., . . . Olah, C. (2022).

13

http://arxiv.org/abs/2406.14528
http://arxiv.org/abs/2406.14528
http://arxiv.org/abs/2404.07839
http://arxiv.org/abs/2404.07839
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2402.19427
http://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2501.12948
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2402.01032
http://arxiv.org/abs/2403.19887


In-context learning and induction heads. Trans-
former Circuits Thread . (https://transformer-
circuits.pub/2022/in-context-learning-and-
induction-heads/index.html)

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D.,
Sun, W., & Zhong, Y. (2024, April). HGRN2:
Gated Linear RNNs with State Expansion. arXiv.
Retrieved 2024-07-10, from http://arxiv.org/

abs/2404.07904 (arXiv:2404.07904 [cs]) doi:
10.48550/arXiv.2404.07904

Todd, E., Li, M., Sharma, A. S., Mueller, A., Wal-
lace, B. C., & Bau, D. (2024). Function Vec-
tors in Large Language Models. In The Twelfth
International Conference on Learning Represen-
tations. Retrieved from https://openreview

.net/forum?id=AwyxtyMwaG

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., . . . Polosukhin,
I. (2017). Attention is All you Need. In
Advances in Neural Information Processing
Systems (Vol. 30). Curran Associates, Inc. Re-
trieved 2025-07-01, from https://proceedings

.neurips.cc/paper files/paper/2017/

hash/3f5ee243547dee91fbd053c1c4a845aa

-Abstract.html

Voita, E., Talbot, D., Moiseev, F., Sennrich, R.,
& Titov, I. (2019). Analyzing multi-head self-
attention: Specialized heads do the heavy lifting,
the rest can be pruned. Retrieved from https://

arxiv.org/abs/1905.09418

Waleffe, R., Byeon, W., Riach, D., Norick, B.,
Korthikanti, V., Dao, T., . . . Catanzaro, B.
(2024, June). An Empirical Study of Mamba-
based Language Models. arXiv. Retrieved
2024-12-25, from http://arxiv.org/abs/2406

.07887 (arXiv:2406.07887 [cs]) doi: 10.48550/
arXiv.2406.07887

Wang, A., Singh, A., Michael, J., Hill, F., Levy,
O., & Bowman, S. R. (2019). GLUE: A Multi-
Task Benchmark and Analysis Platform for Nat-
ural Language Understanding. Retrieved from
https://arxiv.org/abs/1804.07461

Yin, K., & Steinhardt, J. (2025). Which At-
tention Heads Matter for In-Context Learning?
Retrieved from https://arxiv.org/abs/2502

.14010

Zani, D., Michalak, F., & Abreu, S. (2025). Con-
textual Sparsity as a Tool for Mechanistic Under-
standing of Retrieval in Hybrid Foundation Mod-
els. In Sparsity in LLMs (SLLM): Deep Dive into
Mixture of Experts, Quantization, Hardware, and
Inference. Retrieved from https://openreview

.net/forum?id=TGWzg86kYv

14

http://arxiv.org/abs/2404.07904
http://arxiv.org/abs/2404.07904
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1905.09418
https://arxiv.org/abs/1905.09418
http://arxiv.org/abs/2406.07887
http://arxiv.org/abs/2406.07887
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2502.14010
https://openreview.net/forum?id=TGWzg86kYv
https://openreview.net/forum?id=TGWzg86kYv


A Prompt templates used in NIAH

For base models that were not instruction-tuned, we used the following template to style the prompts:

CONTEXT:

<haystack>

QUESTION:

<retrieval question>

ANSWER: Here is the most relevant sentence in the context:

For instruction-tuned models, we changed the template to:

CONTEXT:

<haystack>

QUESTION:

<retrieval question> Output the most relevant sentence in the context, word by word!

B Comparing retrieval maps for JRT and standard NIAH

In Section 4, we are testing if applying JRT improves retrieval capabilities for top-k-sparsified RG2B,
RG9B and Jamba. Figure B.1, B.2, and B.3 compare the retrieval maps of standard NIAH and JRT-
applied NIAH on the same k on all models. Refer to Figure 6.2 for an explanation of the axes.

(a) RG2B - Base (b) RG9B - Base (c) Jamba - Base

(d) RG2B - JRT (e) RG9B - JRT (f) Jamba - JRT

Figure B.1: Retrieval maps for RG2B, RG9B and Jamba at k = 0 on NIAH with and without JRT
applied.

15



(a) RG2B - Base (b) RG9B - Base (c) Jamba - Base

(d) RG2B - JRT (e) RG9B - JRT (f) Jamba - JRT

Figure B.2: Retrieval maps for RG2B, RG9B and Jamba at k = 1 on NIAH with and without JRT
applied.

(a) RG2B - Base (b) RG9B - Base (c) Jamba - Base

(d) RG2B - JRT (e) RG9B - JRT (f) Jamba - JRT

Figure B.3: Retrieval maps for RG2B, RG9B and Jamba at k = 2 on NIAH with and without JRT
applied.

C LME Benchmark

In Section 5, we tested Jamba using LME. It is an instruction-tuned model, so evaluation was run with
the apply chat template and fewshot as multiturn flags. Figures C.1 and C.2 show the performance

16



of Jamba in the ablated, sparsified and base version per subtask on GLUE and MMLU.

MNLI MNLI-MM MRPC QNLI QQP RTE SST2 WNLI CoLA
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
Ablated
Sparse
Base

GLUE Scores
Ablated/Sparse/Base Jamba-Mini-1.6 by Sub Task

Sub Task

S
co

re
 in

 %

Random Guessing Baseline

Figure C.1: GLUE benchmark Sub Task scores of the ablated (k = 0), sparse (k = 5) and base
configuration.

H
um

anities

H
igh S

chool European H
istory

H
igh S

chool W
orld H

istory

Jurisprudence

M
oral D

isputes

Philosophy

Professional Law

O
ther

C
linical K

now
ledge

G
lobal Facts

M
anagem

ent

M
edical G

enetics

N
utrition

Professional M
edicine

S
ocial S

ciences

H
igh S

chool G
eography

H
igh S

chool M
acroeconom

ics

H
igh S

chool Psychology

Professional Psychology

S
ecurity S

tudies

U
s Foreign Policy

A
bstract A

lgebra

A
stronom

y

C
ollege C

hem
istry

C
ollege M

athem
atics

C
om

puter S
ecurity

Electrical Engineering

H
igh S

chool B
iology

H
igh S

chool C
om

puter S
cience

H
igh S

chool Physics

M
achine Learning

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
Ablated
Sparse
Base

MMLU Scores, Ablated/Sparse/Base Jamba-Mini-1.6 by Sub Task

Sub Task

S
co

re
 in

 %

Random Guessing Baseline

Figure C.2: MMLU benchmark Sub Task scores of the ablated (k = 0), sparse (k = 5) and base
configuration.

17



D Retrieval maps for attention weight manipulation

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Keep-Keep Omit-Keep Only-Keep Balanced-Keep

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Keep-Omit Omit-Omit Only-Omit Balanced-Omit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Keep-Only Omit-Only Only-Only Balanced-Only

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Keep-Balanced Omit-Balanced Only-Balanced Balanced-Balanced

25
0

67
7

11
05

15
32

19
59

23
87

28
14

32
41

36
69

40
96

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h 
Pe

rc
en

t

Keep-Null

25
0

67
7

11
05

15
32

19
59

23
87

28
14

32
41

36
69

40
96

Token Limit

Omit-Null

25
0

67
7

11
05

15
32

19
59

23
87

28
14

32
41

36
69

40
96

Token Limit

Only-Null

25
0

67
7

11
05

15
32

19
59

23
87

28
14

32
41

36
69

40
96

Token Limit

Balanced-Null

0

1

2

3

4

5

Sc
or

e 
(0

 =
 Fa

ilu
re

, 5
 =

 P
er

fe
ct

)

Figure D.1: Retrieval maps for all manipulation combinations used in Section 6.

18



In Section 6, we systematically manipulated the attention weights in RG2B during NIAH benchmarks.
Figure D.1 shows the retrieval maps of those benchmarks, structured in the same way as Table 6.1 for
easy comparison.

E Pearls of Wisdom

Investigating and experimenting with manipulated models often results in amusing outputs. Since life is
about joy, and reading some of those outputs definitely caused us joy, we distilled a collection of output
strings to share our laughter with the world. Some quotes are also absurdly wise, which led us to believe
they were part of the Paul Graham essays that were used to fill the context in the NIAH benchmark.
However, none of the generated strings were found in the context strings. All following quotes were
generated by sparsified or manipulated RG2B or RG9B, in response to the question: ”What is the best
thing to do in San Francisco?”

The best way to get to the top of the mountain is to start by walking.
- Mark Twain
The first thing I want to say is that I am not a native English speaker

RG2B - Binary-Keep

”The most important thing is to be kind. It is the little things that make the difference.”
- Unknown

RG2B - Binary-Keep

The first sentence is a sentence that is not a sentence. It is a sentence that has been written in a way that is not
a sentence.

RG2B - Binary-Null

”The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day on a sunny
day.”
The above is a joke.

RG2B - Only-Keep

I am a programmer. I am a programmer. I am a programmer. I am a programmer. I am a programmer. I am a
programmer. I am a programmer.

RG2B - k = 0, sparse prefill

You need humility to know when to use qualification.

RG9B - k = 4

19


	Introduction
	Methodology
	Models
	The NIAH Benchmark

	Hybrid SSM-Transformers rely on self-attention for retrieval
	Methodology
	Results
	Discussion

	Attempting to recover SSM-retrieval capabilities
	Methodology
	Results
	Discussion

	Benchmarking sparsified and ablated self-attention
	Methodology
	Results
	Discussion

	Manipulating Attention Weights
	Methodology
	Results
	Discussion

	Conclusion
	Prompt templates used in NIAH
	Comparing retrieval maps for JRT and standard NIAH
	LME Benchmark
	Retrieval maps for attention weight manipulation
	Pearls of Wisdom

