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Abstract
Survival analysis underpins time-to-event prediction in medicine, where accurate timing matters for
decisions and outcomes. In kidney transplantation, anticipating graft failure can guide monitoring,
immunosuppression, and re-listing. Classical tools such as the Cox proportional hazards model
struggle when relationships are nonlinear and data are high-dimensional or censored. In this context,
machine learning methods, used to extract predictive signal from complex measurements, offer a
pragmatic way to interpret rich sources such as Nuclear Magnetic Resonance (NMR) metabolomics.

This thesis evaluates dynamic ensemble selection (DES) for survival prediction, using XGBoost
models ensembles to convert complex input data into clinically useful risk estimates. DES tailors,
per patient, which models are combined - in contrast to static selection or uniform averaging - and is
designed to exploit local structure in heterogeneous populations.

We study two settings. First, a high-dimensional NMR cohort of kidney transplant recipients
(n=249; 30 events) serves as the primary test bed. Second, as a cross-dataset check, we apply the
same pipeline to NHANES with linked mortality follow-up (lower-dimensional, larger sample). The
concordance index (C index) is the primary metric. In the NMR cohort, the DES strategy that prunes
and then weights models (DES-WS) outperformed static selection and uniform averaging in the
external test set (peak C-index ¡0.05), while single-model selection (DES-S) was unstable. Genetic
algorithm optimization of competency weights generally did not improve performance, consistent
with overfitting in small validation sets. In NHANES, all strategies performed similarly (C index
¡0.81-0.82), indicating limited headroom for DES when predictors are few and the signal is more
global.

These results support DES as a data-driven mechanism for interpreting complex biosignals
(e.g. NMR spectra) for patient-specific survival prediction, with clear gains in heterogeneous high-
dimensional settings and parity in simpler ones. Future work should emphasize larger multicenter
cohorts, calibration and decision-analytic evaluation, model interpretability, and extensions to com-
peting risks and time-varying covariates.
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1 Introduction
Survival analysis is a statistical approach used to estimate the time until an event of interest occurs
within a given observation period Barnwal, Cho, and Hocking (2022). It is commonly applied in
medical studies, where the goal is to predict survival time or the occurrence of adverse events such
as organ failure.

Traditional regression models, such as linear regression, are inadequate for complex survival
analysis scenarios due to their simplistic assumptions and inability to properly handle censored or
time-dependent data. To address these challenges, specialized methods such as the Cox Proportional
Hazards (CPH) model Cox (1972) have been widely adopted. The CPH model assumes proportional
hazards and linear covariate effects, which often fail to capture the non-linear and heterogeneous
patterns present in biomedical data Pickett, Suresh, Miller, Davis, and Juarez (2021). This limitation
has motivated the exploration of machine learning–based survival models that can better model
complex structures.

Significant advances include the development of Random Survival Forests (RSF) and the integra-
tion of the CPH model into Gradient Boosting Machine (GBM) frameworks Ke et al. (2017); Pickett
et al. (2021). These methods leverage flexible algorithms to overcome proportional hazards assump-
tions and effectively model nonlinear relationships, improving predictive performance in real-world
applications.

Alongside these advances, ensemble learning techniques, such as eXtreme Gradient Boosting
(XGBoost) T. Chen and Guestrin (2016), have emerged as state-of-the-art methods for refining
prediction models. XGBoost incorporates regularization techniques to reduce overfitting and has
set new performance benchmarks across regression and classification tasks. Ensemble learning
methods, which combine multiple models to improve robustness, have demonstrated superior accu-
racy over single-model approaches Caruana, Niculescu-Mizil, Crew, and Ksikes (2004); Dietterich
(2000); Zhou (2015). They typically follow three phases: generation, selection, and combination
Cruz, Sabourin, and Cavalcanti (2018).

In the generation phase, an ensemble of models is created by training on a given dataset. Ensem-
bles can be homogeneous if a single learning algorithm is used across all models, or heterogeneous
if multiple learning algorithms are employed. The selection phase then chooses a single model or a
subset of models to make the final prediction. This selection can be static, where the same subset is
used for all test cases based on global validation performance, or dynamic, where a different subset
is chosen per test instance according to its location in feature space. Dynamic selection techniques,
which adaptively pick the most competent models for each case, have been shown to outperform
static methods in heterogeneous settings (Ko, Sabourin, & Britto Jr, 2008).

For example, in medical diagnosis, each patient presents a unique combination of symptoms,
history, and biomarker data, creating significant variability between cases. Here, dynamic selection
proves advantageous, as it allows the model ensemble to adaptively choose those ’weak learners’
(or models) that are particularly well suited to the specific profile of each patient. In this way, the
ensemble uses models that are more accurate within particular regions of the feature space, such as
models trained on specific age groups or on patients with certain comorbidities. This flexibility to
dynamically adjust the ensemble to individual cases often results in better predictive performance
than static methods, which apply the same model or fixed subset to all patients.

Finally, in the combination phase, the selected models are combined to generate a final pre-
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diction, often through simple methods such as averaging or weighted averaging. In contrast to
static weighting, which applies a fixed set of weights based on overall model performance, dynamic
weighting adjusts these weights based on the relevance of each model’s performance in specific re-
gions of the feature space. This approach has been found to improve accuracy because it allows the
ensemble to account for localized patterns in the data. By emphasizing models that perform well
within a given region of the feature space, dynamic weighting tailors predictions to the nuances of
each test instance, leading to more precise and reliable results (Valdovinos, Sánchez, & Barandela,
2005).

One field where personalization is especially critical is medicine, where predictive models must
adapt to the unique characteristics of individual patients. In kidney transplantation, even small im-
provements in predictive accuracy can affect prognosis and follow-up. The primary dataset in this
thesis consists of high-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy data from
kidney transplant recipients, which provides rich metabolic profiles but also poses substantial chal-
lenges due to its dimensionality and heterogeneity.

To test whether the proposed dynamic ensemble selection (DES) framework generalizes beyond
high-dimensional metabolomics, we also evaluate it on a larger, public cohort: the National Health
and Nutrition Examination Survey (NHANES) with linked mortality follow-up. NHANES differs
from the NMR dataset along two informative axes: it includes substantially more subjects but far
fewer features (mostly demographic and clinical variables). This contrast allows us to probe when
instance-wise model selection is beneficial (complex, high-dimensional profiles) versus when sim-
pler aggregation may suffice (lower-dimensional, population-scale data).

This thesis investigates DES within ensembles of XGBoost survival models. Unlike static ap-
proaches that rely on a fixed subset of models, DES adaptively selects and weights the most com-
petent models for each patient, tailoring predictions to local patterns in the feature space. This
patient-specific approach takes advantage of metabolic signatures captured by NMR data and serves
as a stress test in NHANES, providing a flexible and clinically meaningful framework for survival
prediction.

1.1 Research Question
In light of the preceding discussion, the research questions at the core of this study can be formulated
as follows.

• Does dynamic ensemble selection improve the prediction of kidney graft failure from NMR
data compared to static selection and uniform averaging methods?

• Which DES strategy—single selection (S), weighting (W), or weighting with selection (WS)—yields
the best predictive performance on the NMR dataset?

• Does optimizing DES competence weights with a genetic algorithm improve prediction on
NMR?

• Generalization: Do the observed DES gains in high-dimensional NMR data transfer to a
lower-dimensional, larger cohort (NHANES) or do baseline / static methods perform compa-
rably there?
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1.2 Contributions
This thesis makes the following contributions to survival analysis and ensemble learning:

• We implement and evaluate a dynamic model selection framework for survival analysis, ap-
plying it to an ensemble of XGBoost models trained on NMR spectroscopy data from kidney
transplant recipients. The framework dynamically selects the most competent models per test
instance based on local (region-specific) performance.

• We conduct a systematic comparison between dynamic and static ensemble selection strate-
gies, showing when instance-wise selection improves predictive performance over uniform
averaging and static pruning.

• We study competence-weighted aggregation and test genetic algorithm (GA) optimization of
competence weights, analyzing benefits and failure modes in event-sparse settings.

• Cross–dataset evaluation: We replicate the full pipeline on NHANES with linked mortality
follow-up to assess generalizability across data regimes (high-dimensional NMR vs. lower-
dimensional NHANES), providing guidance on when DES is advantageous versus when sim-
pler ensembles suffice.

1.3 Thesis Outline
• Chapter 1 – Introduction: Motivation, problem setting, research questions, and contribu-

tions.

• Chapter 2 – Literature Review: Core concepts in survival analysis (including censoring),
classical models (Cox, AFT), ensemble methods, and model selection (static vs. dynamic)
with applications to transplantation and metabolomics.

• Chapter 3 – Methodology: Datasets (NMR and NHANES), targets, preprocessing, evaluation
metrics, and the proposed DES framework (S, W, WS) including competence measures and
GA weighting.

• Chapter 4 – Experimental Setup: Train/test splits, cross-validation protocol, baselines, hy-
perparameters, and a unified cross-data set protocol applied identically to NMR and NHANES.

• Chapter 5 – Results: Cross-validation and external test performance on NMR and NHANES,
strategy comparisons, GA optimization effects, and additional analyses (e.g., calibration, patient-
level timelines).

• Chapter 6 – Discussion: Interpretation of findings in data sets, implications for when DES
helps, limitations, and methodological considerations.

• Chapter 7 – Conclusion and Future Work: Summary of contributions and avenues for scal-
ing, calibration, interpretability, and broader survival settings.
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2 Literature Review

2.1 Survival Analysis
Survival analysis is essential in medical studies where the timing of an event, such as graft failure
in organ transplantation, is critical. Traditional binary outcome models, such as logistic regression,
simply categorize events as occurring or not, which misses crucial information about when the failure
occurs. For example, differentiating between graft failure occurring within the first month after
transplantation and failure after several years is vital, as it reveals different risk factors and treatment
effects.

In survival analysis, the main focus is on the time-to-event data, referred to as the failure time,
survival time, or event time. In the event of graft failure, the event would be the failure of the trans-
planted organ, and the time-to-event would be how long the graft remains functional after transplan-
tation. This method also handles censored data, which occurs when the time of an event of a subject
is not fully observed. For example, if a patient in a study is still alive with a functioning graft after
five years of follow-up, their time-to-failure is right-censored at five years (denoted as 5+).

A core aspect of survival analysis is the estimation of the survival function, S(t) , which gives
the probability that the event occurs after time t :

S(t) = P(T > t) (1)

where T is the time to the event.

2.1.1 Censoring

Censoring occurs because participants are rarely continuously monitored from the moment they
become at risk until the event actually occurs. Some enroll late, others miss visits or withdraw, and
many remain event-free when the study ends. Consequently, each record provides only a bound on
the true event time - after the last contact, before enrollment, or between two assessments - rather
than on the exact date. Provided that the censoring mechanism is non-informative (that is, not related
to future risk given the observed history), these limits can be analyzed with standard survival analysis
methods. Figure 1 and Table 1 summarize the four resulting patterns: a fully observed event and the
three types of canonical censoring: right, left, and interval, which underpin the modeling strategy
used in this thesis.

Table 1: Different types of censoring Harrell (2015)

Type Lower bound Upper bound
Uncensored T T
Left-censored 0 Follow-up n
Right-censored Follow-up n +∞

Interval-censored Follow-up n−1 Follow-up n

• Fully observed (Patient 1). The event occurs during active follow-up, so its exact time is
recorded.
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• Right-censoring (Patients 2–3). The study ends—or the subject is lost –before the event is
seen; we know only that the event, if it occurs, occurs after the last contact. Example: a
transplant recipient is still alive at the end of the study.

• Left-censoring (Patient 4). The event has begun before the observation starts, leaving only a
upper bound on its true time. Example: a disease detected on a routine exam almost certainly
started earlier, but the onset date is unknown.

• Interval-censoring (Patient 5). The event is known to fall between two visits, giving a time
window rather than a single point. Example: a condition screened only yearly must have
developed between the last negative and the first positive result.

Figure 1: Patient timelines illustrating full observation, right censoring, left censoring, and interval
censoring. Basics of survival analysis in Biostatistics (n.d.)

2.1.2 Current methodologies

Classical approaches to time-to-event analysis rely on the nonparametric Kaplan-Meier estimator
and the semiparametric Cox proportional hazards model (Cox-PH) (Cox, 1972; Kaplan & Meier,
1958). These tools remain workhorses of clinical research but assume linear, additive covariate ef-
fects, and (for Cox-PH) proportional hazards. To accommodate nonlinearities and high-dimensional
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inputs, researchers increasingly turn to machine learning (ML) methods. A survey of 18 kidney
transplant studies by Senanayake et al. (2019) shows that decision trees, Bayesian networks, and
neural networks have all been explored, although with mixed improvements over Cox baselines.
The remainder of this section therefore reviews:

(i) Cox-PH,

(ii) accelerated-failure-time (AFT) regression, and including associated model-selection challenges.

2.1.3 Semi-parametric Cox proportional-hazards model

The Cox proportional-hazards model (Cox-PH) (Cox, 1972) is one of the most widely used regres-
sion approaches in survival analysis. It describes the instantaneous risk of experiencing an event at
time t, known as the hazard function λ(t | x), as a product of a baseline hazard and covariate effects:

λ(t | x) = λ0(t)exp(w⊤x), (2)

In this formulation, λ0(t) represents the baseline risk shared between all individuals, x denotes
the patient’s covariate vector that incorporates factors such as age or biomarkers, and w comprises
logarithmic risk ratios that quantify covariate effects on risk.

The model exhibits several defining characteristics. Its semiparametric nature avoids restrictive
assumptions about the baseline hazard’s temporal pattern while retaining interpretable covariate ef-
fects. The exponentiated value of each coefficient (exp(wi)) yields a hazard ratio that represents the
multiplicative effect on risk per unit change in the corresponding covariate. Central to the model’s
validity is the proportional hazards assumption, mathematically expressed as:

λ(t | xa)

λ(t | xb)
= constant ∀t

This requirement that hazard ratios remain constant over time represents both the strength and
limitation of the model. When violated - such as when treatment efficacy diminishes or biomarker
effects evolve during follow-up - risk estimates become biased. Such departures from proportional-
ity can be identified through diagnostic tools including Schoenfeld residuals, which systematically
detect time-varying effects, or graphical methods assessing parallelism in log-log survival curves.

Clinically, the model outputs relative rather than absolute risks, necessitating additional steps to
predict actual survival times. These relative risk measures, while valuable for comparing patient
groups, do not directly translate to clinically actionable time-to-event predictions without additional
baseline hazard estimation. When proportionality violations emerge, methodological adaptations,
such as stratification or time-varying coefficients, become essential to maintain model validity and
clinical interpretability.

2.1.4 Parametric Accelerated Failure Time (AFT)

The Accelerated Failure Time (AFT) model is another established approach to survival analysis,
offering an alternative to Cox-PH. Unlike Cox, which models relative risk, AFT directly models
survival time by assuming that covariates accelerate or decelerate the life course by a constant factor.
The model is written as:
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lnY = ⟨w,x⟩+σZ, (3)

where Y is the survival time, x the covariates, w the coefficients, and Z a random variable drawn
from a specified distribution. Common distributional choices for Z include exponential, Weibull, or
lognormal, each leading to different parametric forms of the survival function.

A key advantage of AFT is its ability to provide direct estimates of survival times and absolute
risks, making it more interpretable in certain clinical settings. Moreover, it does not rely on the
proportional hazards assumption, which makes it attractive when relative risks vary over time.

However, the model is limited by its reliance on a correct specification of the survival time distri-
bution. If the chosen distribution does not accurately reflect the underlying data, the estimates may
be biased or unstable. This sensitivity to distributional assumptions explains why AFT is less com-
monly applied in practice than Cox-PH, despite its theoretical appeal. Extensions using penalization
(for example, elastic net regularization) and integration into boosting frameworks have improved its
applicability to high-dimensional data Khan and Shaw (2016).

2.2 Machine-learning and ensemble methods
Survival trees and forests. A survival tree partitions the covariate space using logarithmic rank or
likelihood splits; a Random Survival Forest (RSF) aggregates many such trees grown on bootstrap
samples, averaging their cumulative-hazard estimates Breiman (2001); Pickett et al. (2021). RSF
handles non-linear interactions and missing data with minimal tuning.

Boosted survival models. Gradient boosting builds an additive ensemble of weak learners (e.g.,
decision trees), each sequentially optimized to minimize survival-specific loss functions. These
include the Cox partial likelihood for hazard ratios or smoothed concordance for classification ac-
curacy, yielding strong discrimination while retaining variable importance measures Y. Chen, Jia,
Mercola, and Xie (2013); Khan and Shaw (2016); Pölsterl (2020).

Stacking and heterogeneous ensembles. While bagging reduces variance and boosting reduces
bias, large homogeneous ensembles may overfit. Stacked generalization (e.g., super-learners) com-
bines heterogeneous base models, such as Cox-PH, random survival forests, and gradient-boosted
learners via a meta-learner trained on out-of-fold predictions. This integrates complementary strengths
and often outperforms any single constituent Hu, Ji, and Li (2021); Yan and Feng (2022).

Although ensemble methods consistently improve predictive performance, their use in survival
analysis also introduces practical challenges. Large ensembles often contain many redundant or
weak learners, and their predictive value can vary substantially between different patient subgroups.
This raises the question model selection: Which subset of learners should be retained and how should
they be combined to achieve robust, efficient, and interpretable predictions in survival settings? We
therefore turn to model selection as a central focus of this thesis.
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2.3 Model Selection in Survival Ensembles
As ensemble learning methods have gained prominence in survival analysis, the problem of model
selection has emerged as a central challenge. Ensembles are typically constructed by aggregating a
large number of base learners, such as decision trees, Cox models, or gradient-boosted regressors,
trained on resampled or partitioned subsets of the data. Although this strategy increases predictive
accuracy and robustness, it also introduces redundancy: many base models may contribute little to
overall performance, while others may perform well only for specific patient subgroups. Therefore,
selecting the most relevant models, globally or locally, is crucial to balancing predictive perfor-
mance, computational efficiency, and clinical interpretability (??).

Static model selection. In static approaches, a subset of models is chosen prior to deployment and
subsequently applied to all future patients. Selection can be achieved through partitioning-based
methods, such as clustering similar learners and retaining representatives from each cluster (Coelho
& Von Zuben, 2006; Lazarevic & Obradovic, 2001), or through search-based strategies, including
greedy selection (Partalas, Tsoumakas, Hatzikos, & Vlahavas, 2008), genetic algorithms, and tabu
search (Ruta & Gabrys, 2001). Although effective in reducing redundancy, static methods disregard
instance-specific differences: a model that performs well for one patient may be suboptimal for
another.

Dynamic model selection. Dynamic methods address this limitation by tailoring the selection of
models to each test instance. The concept originates from the definition of a region of compe-
tence around the query point, typically identified using nearest neighbors in the training set (Woods,
Kegelmeyer, & Bowyer, 1997). Within this local neighborhood, base models are ranked or weighted
according to their competence, estimated from historical errors or other performance measures. Sev-
eral dynamic strategies have been proposed:

• DS — dynamic selection of the single most competent model for the query instance (Rooney,
Patterson, & Nugent, 2004).

• DW — dynamic weighting of all models, where weights reflect local competence (Mendes-
Moreira, Jorge, Soares, & de Sousa, 2009).

• DWS — a hybrid method that prunes underperforming models and then applies competence-
based weighting to the remainder (Mendes-Moreira, Soares, Jorge, & Sousa, 2015).

Dynamic selection has been shown to improve predictive accuracy in heterogeneous domains, but it
also raises challenges regarding computational cost, stability, and the definition of reliable compe-
tence measures in censored survival data.

Open challenges. Despite advances in both static and dynamic selection, three persistent issues
remain. First, there is no consensus on how to define and measure competence in survival analysis,
particularly under censoring. Second, most methods have been developed for classification and
regression tasks, with relatively little attention paid to time-to-event outcomes. Finally, external
validation in medical applications remains rare, limiting the generalizability of findings. Addressing
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these gaps requires frameworks that not only adapt model selection to the patient level, but also
integrate survival-specific performance metrics and evaluate generalization on independent cohorts.

In this thesis, we build upon these insights by developing and benchmarking dynamic ensemble
selection strategies tailored to survival prediction. By applying these methods to kidney transplant
outcomes and high-dimensional NMR metabolomics data, we aim to demonstrate the potential of
competence-aware model selection to enhance predictive accuracy in clinically heterogeneous set-
tings.

2.4 Applications in Medicine

2.4.1 Survival Prediction of Graft kidney failure

Kidney transplantation is the preferred treatment for patients with end-stage renal disease, offer-
ing better survival and quality of life compared to dialysis. However, graft failure remains a major
concern, as it necessitates a return to dialysis or re-transplantation and is associated with increased
morbidity and mortality. The causes of graft failure are complex and multifactorial, including im-
munological rejection, recurrence of primary kidney disease, cardiovascular complications, and in-
fections. Despite advances in immunosuppressive therapy, long-term graft survival has only mod-
estly improved over the last decades, making the accurate prediction of graft failure a critical goal
in transplantation medicine Meier-Kriesche, Schold, and Kaplan (2004); Meier-Kriesche, Schold,
Srinivas, and Kaplan (2004).

Traditionally, prognostic models for graft survival have relied on clinical and demographic risk
factors such as donor and recipient age, HLA mismatching, cold ischemia time, and delayed graft
function. Statistical methods such as logistic regression and the Cox proportional hazards model
have been applied extensively, but they are limited by their assumptions of linearity and proportional
hazards, which often fail to capture the heterogeneity of transplant populations Senanayake et al.
(2019). As a result, the predictive accuracy of conventional models remains modest, particularly for
long-term outcomes where multiple interacting factors influence graft survival.

In recent years, machine learning approaches have been explored as alternatives for predicting
graft failure. A systematic review by Senanayake et al. (2019) evaluated 18 studies applying ma-
chine learning to kidney transplant outcomes. Cohort sizes varied widely, from fewer than 100
patients to nationwide registries with more than 90,000 recipients, reflecting the heterogeneity of
available datasets. Popular methods included decision trees, artificial neural networks, and Bayesian
belief networks. Although these models sometimes outperformed traditional regression in terms of
discrimination, the results were inconsistent and, in some cases, simpler models performed equally
well. In particular, only a minority of studies incorporated survival modeling, despite its clear rele-
vance to event-time outcomes. Most machine learning studies instead focused on classification tasks
(e.g., graft survival at 1 year), which disregards valuable information about the timing of failure.

Another issue highlighted by Senanayake et al. (2019) was methodological rigor. Few stud-
ies performed external validation, many did not report hyperparameters, and there was substantial
variability in the choice of predictors, ranging from basic demographic data to complex immuno-
logical and laboratory variables. This heterogeneity makes comparison between studies difficult and
underscores the need for standardized methodologies.

In general, prediction of survival for kidney graft failure remains an open challenge. Although
machine learning methods offer promise, their success has so far been limited by small sample
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sizes, inconsistent methodologies, and insufficient use of survival data. There is a clear need for
models that can better capture nonlinear interactions, adapt to heterogeneous patient populations, and
integrate high-dimensional biomarker data. Addressing these challenges would not only improve the
accuracy of graft failure prediction but would also support more personalized approaches to post-
transplant care.

2.5 Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR) spectroscopy has become an important tool for machine learn-
ing–based medical prediction Corsaro et al. (2022). From a plasma sample, the instrument records
radiofrequency signals as the nuclei return to equilibrium in a magnetic field. These raw signals,
called free induction decays (FIDs), are Fourier transformed into frequency-domain spectra. Each
spectrum contains distinct peaks reflecting the chemical environment of atoms, enabling the molec-
ular characterization of biological fluids such as blood or plasma.

This application, known as metabolomics, provides valuable information on biomarkers and
disease mechanisms Johnson, Ivanisevic, and Siuzdak (2016); Nicholson, Buckingham, and Sadler
(1983). Machine learning has been widely used in this context, from signal processing to biomarker
discovery, with promising results for conditions such as cancer relapse and Alzheimer’s disease
Cobas (2020); Di Donato et al. (2021). For example, Peng, Ng, and Loh (2020) showed that two-
dimensional NMR data could be used for rapid blood phenotyping and accurate diagnosis from just
a drop of blood. NMR-based assays are thus cost-effective, minimally invasive, and fast.

However, a major challenge is the very high dimensionality of NMR spectra, which complicates
both computational analysis and interpretability. Dimensionality reduction is often used Costanti,
Kola, Scarselli, Valensin, and Bianchini (2023), but this risks discarding useful information. Survival
analysis using NMR data remains scarce for this reason. Deelen et al. (2019), for instance, applied
a Cox-PH model to hand-selected metabolic biomarkers to predict all-cause mortality, but this tar-
geted approach risks overlooking novel predictors. Similarly, Kaynar et al. (2023) reduced spectra
to metabolites using a neural network before survival modeling, improving accuracy but limiting
discovery to predefined metabolites.

These challenges make NMR-based survival prediction an ideal testing ground for advanced
model selection strategies. Selecting and weighting the most informative learners dynamically al-
lows the full richness of spectral data to be leveraged without discarding potentially valuable signals,
offering a path toward more accurate and interpretable survival models in metabolomics.
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3 Methodology

3.1 Dataset
This study evaluates the proposed framework on two cohorts with complementary characteristics:
(i) a high–dimensional metabolomics dataset from the ELSE laboratory (plasma NMR spectroscopy
with clinical follow-up in renal transplant recipients), and (ii) a larger, lower-dimensional public
cohort from the National Health and Nutrition Examination Survey (NHANES) with linked mortality
follow-up. Both datasets are analyzed under a time-to-event formulation with right censoring.

3.1.1 ELSE Lab Clinical Cohort

Clinical data is derived from a prospective longitudinal cohort in the Northern Netherlands, collected
within the TransplantLines Food and Nutrition Biobank and Cohort study (NCT02811835) between
November 2008 and June 2011 van den Berg et al. (2014). All renal transplant recipients aged
≥18 years with at least one year of functional allograft were eligible. Exclusion criteria included
congestive heart failure, cancers other than cured skin cancer, and endocrine disorders other than
diabetes mellitus. Of 817 eligible patients, 707 (86.5%) provided informed consent, without material
differences from the broader eligible population. Patients with missing values required to define
remnant cholesterol or new-onset diabetes after transplantation (NODAT) (n=57), or with a history
of diabetes or glucose-lowering medication (n = 169), were excluded, producing 480 RTR eligible
for analysis in the source study. The study was approved by the local Institutional Review Board
(METc 2008/186) and conducted in accordance with the Declaration of Helsinki.

For the present work, we analyzed the subset of RTR with available plasma NMR spectra and
complete survival follow-up throughout the fourth scheduled visit. After matching clinical records
with spectroscopy availability, the resulting analytical cohort comprised 249 patients. Patients with-
out an event at the fourth follow-up were right-censored at that visit.

3.1.2 NMR Spectroscopy Data

Plasma NMR spectra were acquired on a Varian spectrometer operating at a proton resonance fre-
quency of 400 MHz, with analyses performed on a Vantera® Clinical Analyzer. Each spectrum
contained 32,768 points over a spectral width of 4,496 Hz. A Carr–Purcell–Meiboom–Gill (CPMG)
pulse sequence was used to emphasize low molecular weight metabolites, and free induction decay
(FID) signals were converted to frequency domain spectra via Fourier transform.

Preprocessing retained only the absorption (real) component (spectra were properly phased), ap-
plied baseline correction by subtracting average noise estimated from the first and last 1,000 points,
and averaged the three replicate spectra per sample to improve signal-to-noise ratio. Noisy spectral
regions at the extremes (chemical shifts >9.0 ppm and <−0.5 ppm) were removed. The final pre-
processed NMR matrix comprised 18,724 spectral intensity features per patient for the 249 matched
RTR.

3.1.3 NHANES Mortality Cohort

NHANES is a continuous, nationally representative health survey of the U.S. population, fielded in
two-year cycles since 1999 (Centers for Disease Control and Prevention (n.d.)). It combines in-home
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interviews with standardized examinations in mobile examination centers (MECs). For this study,
we used publicly available NHANES data with the National Center for Health Statistics (NCHS)
Linked Mortality File. The target was time-to-all-cause mortality; participants without a recorded
death were right-censored at their last known follow-up in the linkage file. Cases without valid
follow-up time were excluded.

NHANES includes substantially more participants than the NMR cohort but far fewer predictors,
primarily demographic, examination, and laboratory variables. This contrast provides a complemen-
tary testbed for evaluating the proposed method in a lower-dimensional, population-scale setting.

NHANES preprocessing. Predictors were kept in their native numeric form; boolean variables
were cast to {0,1}. Missing predictor values were imputed using the column median. No additional
scaling, normalization, or dimensionality reduction was applied.

3.1.4 Descriptive Analysis (NMR)

A descriptive analysis of the final dataset was conducted. The dataset comprises 249 samples, of
which 30 (12.05%) experienced graft failure or patient death (see Figure 3). The average follow-up
time for all participants was approximately 6.47 years (SD = 2.28), with event times ranging from
0.20 to 9.08 years. The median survival time was 7.38 years, indicating a high degree of right-
censorship.

To assess and visualize the temporal dynamics of graft survival, we constructed a Kaplan–Meier
(KM) survival curve using observed time-to-event data with censoring properly accounted for. The
KM estimate in Figure 2 shows the probability of graft survival over time. The curve starts at 1.0
(indicating 100% survival) and gradually decreases at the times of graft failure events. The shaded
region around the survival function denotes the 95% confidence interval. A more pronounced drop is
visible around 9 years, corresponding to a cluster of events, suggesting limited long-term durability
for some grafts. The relatively high proportion of censored observations, particularly in later follow-
up, contributes to the widening of the confidence interval over time.
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Figure 2: Kaplan–Meier survival curve for kidney graft survival in the NMR dataset. The curve
represents the estimated probability of survival over time, with the shaded area indicating the 95%
confidence interval. The gradual decline reflects steady event occurrences, while the sharp drop near
9 years indicates a cluster of late graft failures. Right censoring contributes to increased uncertainty
in later time points.

Figure 3: Survival time distribution of participants in the NMR dataset. Bars distinguish between
participants who experienced the event (graft failure or death) and those who were censored. A total
of 30 events were observed, while 219 participants were censored.
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3.1.5 Data Split

To ensure fair model evaluation and prevent data leakage, the dataset was partitioned into a train-
ing/validation set and a holdout test set. As shown in Figure 4, the original dataset of 249 samples
was split into:

• Training/Validation Set (80%): 199 samples, including 25 observed events. This subset
was used for model training, dynamic ensemble selection, weight optimization, and cross-
validation.

• Test Set (20%): 50 samples, including 5 observed events. This subset was kept aside and
only used once for the final evaluation of the models trained and optimized in the training /
validation set.

Within the training/validation subset, cross-validation was performed to evaluate model selec-
tion strategies and to optimize competence weights in dynamic ensemble selection using genetic
algorithms. The final trained model (or ensemble) was then applied to the held-out test set to assess
generalization performance. This unified protocol was applied identically to NMR and NHANES.

Figure 4: Data split schema for model training, validation, and final evaluation.

3.2 Metrics

3.2.1 C-index

The primary evaluation metric used to assess model performance in this survival analysis study is
the concordance index (C-index). The C-index quantifies the predictive capability of a model by
measuring its ability to correctly order pairs of individuals based on predicted survival times relative
to their actual observed survival times.

Specifically, the C-index evaluates pairs of samples, determining whether the predicted survival
times correctly reflect which individual survives longer. Concordant pairs occur when the model
correctly predicts the relative order of survival durations between two individuals, while discordant
pairs arise when the predicted ordering contradicts the observed outcomes. If the model predicts
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identical survival times for a pair, the pair is considered tied and is given half the weight of a con-
cordant pair.

The C-index is calculated using the following formula:

C =
Number of Concordant Pairs+0.5×Number of Tied Pairs

Total Number of Comparable Pairs
(4)

It is important to note that the calculation of the C-index only considers pairs involving at least
one uncensored observation. Pairs consisting solely of censored observations are excluded, as they
provide no definitive outcome comparison. Additionally, comparisons involving censored observa-
tions can only be made if the observed event time for the uncensored observation occurs before the
censoring time of the censored observation.

Thus, the C-index provides an effective measure of the predictive discrimination of survival
models, indicating the extent to which the models can correctly rank individuals by their risk of
experiencing the event of interest.

3.3 Framework
This study employs a dynamic selection framework specifically designed for survival analysis, utiliz-
ing multiple error-based competence measures. As illustrated in Figure 5 the architecture comprises
three sequential phases: Generation, Optimization, and Generalization.

• Generation: Constructs a homogeneous ensemble of XGBoost models using the Accelerated
Failure Time (AFT) approach, followed by computation of survival-specific competence mea-
sures

• Optimization: Assigns weights to competence measures reflecting their predictive importance

• Generalization: Dynamically selects ensemble subsets using weighted competence scores to
generate predictions for query samples

3.3.1 Ensemble generation

In this phase, we generate a homogeneous ensemble F comprising N XGBoost models, each config-
ured with the Accelerated Failure Time (AFT) loss function for survival analysis. Using the Bagging
algorithm (Bootstrap Aggregating) Breiman (2001), each model is trained on distinct bootstrapped
subsets of the dataset. This approach induces model diversity and enhances predictive robustness.
The resulting ensemble members subsequently serve as candidate models for dynamic selection dur-
ing prediction.

3.3.2 Optimization

Dynamic regressor selection identifies query-specific optimal models by evaluating prediction errors
in local competence regions. Six errors were assessed, which capture distinct performance dimen-
sions under survival constraints. In the absence of a universally optimal measure, we integrate them
using a weight vector W = w1, . . . ,w6. This phase involves: (1) extracting competence measures
and (2) optimizing their weights.
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Figure 5: Overview of the Dynamic Selection Framework. The pipeline consists of three main
phases: generation, optimization, and generalization. A homogeneous ensemble F ′ = { f̂1, . . . , f̂N}
is trained on bootstrapped samples from the training set T . Competence measures are extracted
and optimized to obtain a weight vector W = {w1, . . . ,wP}. During generalization, for each test
instance x j ∈ X , the most competent models are dynamically selected and combined to produce the
final ensemble prediction f̂ens(x j).

Legend: T – Training set; X – Test set; F ′ – Full ensemble of base learners; F – Selected subset of
models; W – Optimized competence weights; x j – Test instance; f̂ens(x j) – Final ensemble prediction.

Extraction of Error Measures A total of six error-based competence measures {m1,m2, . . . ,m6}
are extracted from the region of competence for each regressor f̂n ∈F . These measures are designed
to capture different aspects of the quality of prediction in survival analysis.

To compute neighborhood-based measures, the distance weight dk for a neighbor pattern tk is
defined as the inverse of its normalized distance:

dk =
1/distk

∑
K
j=1 1/dist j

(5)

where {dist1,dist2, . . . ,distK} are the distances between the test pattern and its K nearest neigh-
bors in the training set T ′. Each distance distk corresponds to the similarity between a query instance
and a neighbor pattern tk, with k ∈ {1,2, . . . ,K}. Normalizing the distances in this way ensures that
the weights dk lie in the interval [0,1] and sum to 1, giving more influence to closer neighbors during
competence estimation. The region of competence Ψ = {t1, t2, . . . , tK} is defined for each test sample
and used to calculate the error-based competence of each regressor f̂n. The six competence measures
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Table 2: Error–based competence measures used for dynamic ensemble selection in survival analy-
sis.

Measure Acronym Equation

Variance m1 Var
(

f̂n(t1), f̂n(t2), . . . , f̂n(tK)
)

Prediction Range m2 max
1≤k≤K

f̂n(tk)− min
1≤k≤K

f̂n(tk)

Prediction Consistency m3
1
K

K

∑
k=1

∣∣ f̂n(tk)− f̂n(x j)
∣∣

Censored–Weighted Squared Error m4
∑

K
k=1 ek

(
f̂n(tk)− yk

)2

∑
K
k=1 ek

AFT Negative Log-Likelihood Proxy m5
1
K

K

∑
k=1

[
1
2

(
yk− f̂n(tk)

σ

)2

+ 1
2 log

(
2πσ

2)]

Discordance Error m6

K

∑
k=1

dk ndiscordant
k,n

used in this framework are described below.

• m1 - Variance: Measures the prediction spread within the region of competence. The variance
is calculated for each regressor using the estimated values for the patterns in the region of
competence, according to Eqquation 6:

m1,n = Var( f̂n(t1), f̂n(t2), . . . , f̂n(tK)) (6)

• m2 - Prediction Range: Measures the spread of predictions made by regressor f̂n within
the region of competence. It captures the difference between the maximum and minimum
predicted values among the K nearest neighbors of a test instance. A larger range may indicate
higher uncertainty or model instability in that local region.

The prediction range m2,n is computed as:

m2,n = max
(

f̂n(t1), f̂n(t2), . . . , f̂n(tK)
)
−min

(
f̂n(t1), f̂n(t2), . . . , f̂n(tK)

)
(7)

Here, t1, t2, . . . , tK represents the K patterns in the region of competence, and f̂n(tk) denotes the
prediction made by regressor f̂n on sample tk.

• m3 - Prediction Consistency: This measure quantifies how consistent the predictions of re-
gressor f̂n are across the region of competence t1, t2, . . . , tK compared to its prediction on the
test instance x j. A lower value indicates that the model behaves similarly in the neighborhood
and on the test sample, suggesting more reliable local behavior.

The prediction consistency m3,n is defined as:
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m3,n =
1
K

K

∑
k=1

∣∣ f̂n(tk)− f̂n(x j)
∣∣ (8)

Here, f̂n(tk) is the prediction of regressor f̂n on the k-th neighbor tk, f̂n(x j) is the prediction
of the same regressor on the test pattern x j, and K is the number of nearest neighbors in the
region of competence.

This metric penalizes models that produce locally unstable or erratic predictions relative to the
test sample.

• m4 - Censored-Weighted Squared Error: This measure emphasizes prediction accuracy
on uncensored samples, which provide complete event-time information. It applies higher
penalties to errors where the true event time is known (i.e., uncensored), while assigning less
weight to censored observations.

The censored-weighted squared error m4,n is computed as:

m4,n =
∑

K
k=1 ek

(
f̂ n(tk)− yk

)2

∑k = 1Kek
(9)

Where yk is the observed survival time (lower bound) of neighbor tk, ek ∈ 0,1 is the event
indicator (1 if uncensored, 0 if censored), f̂n(tk) is the prediction of regressor f̂n on tk, K is the
number of neighbors in the region of competence.

By weighting the squared error by the event indicator, this measure ensures that uncensored
samples—those contributing the most information—dominate the loss computation.

• m5 - AFT Negative Log-Likelihood Proxy: This measure approximates the log-likelihood
of the Accelerated Failure Time (AFT) model by assuming normally distributed residuals. It
captures how well the model’s predictions align with the observed survival times, penalizing
large deviations.

The AFT negative log-likelihood proxy m5,n is defined as:

m5,n =
1
K

K

∑
k=1

[
1
2

(
yk− f̂n(tk)

σ

)2

+
1
2

log(2πσ
2)

]
(10)

Where yk is the observed survival time of neighbor tk, f̂n(tk) is the prediction of regressor f̂n
for tk, σ is a fixed scale parameter (commonly set to 1 in this approximation), and K is the
number of nearest neighbors in the region of competence.

This proxy penalizes predictions that deviate substantially from the observed times, consistent
with the log-likelihood of the normal distribution used in AFT models.

• m6 - Discordance Error: The discordance error quantifies how frequently a given sample
appears in discordant prediction pairs, a concept derived from the concordance index used in
survival analysis. A pair of samples is defined as discordant when the model predicts a higher
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survival time (i.e., lower risk) for a sample that actually experienced the event earlier—thus
misaligning with the observed outcome. This error emphasizes incorrect risk ordering, espe-
cially in censored datasets where individual prediction loss is not well-defined.

Let ndiscordant
i,n denote the number of discordant pairs that sample i is involved in for regressor

f̂ n. The discordance error m6,n for a test instance x j is then calculated by aggregating these
discordance counts across the K nearest neighbors, weighted by their normalized distance:

m6,n =
K

∑
k=1

dk ·ndiscordant
k,n (11)

Here, dk is the normalized inverse distance weight of neighbor tk, as stated before. This weight-
ing scheme ensures that discordance counts from closer neighbors contribute more strongly to
the overall error, thereby focusing the competence evaluation on the local region around the
test sample. High values of m6,n indicate that the model frequently ranks survival times incor-
rectly for nearby patterns and may need to be downweighted during dynamic selection.

For every pair consisting of a training sample ti ∈ T and a regressor f̂ n, six competence measures
are computed based on the region of competence around ti. These values form a vector Mi,n =
{m1,n,m2,n, . . . ,m6,n}, where each mp,n represents the score of the p-th measure for the regressor f̂n.

GA Optimization The measures extracted in the previous step provide varying degrees of insight
into model performance. Therefore, this phase aims to determine optimal weights for each measure,
reflecting their relative importance. A Genetic Algorithm (GA) Eiben and Smith (2015) is employed
to compute one weight per measure using the vectors Mi,n described in the previous section.

Algorithm 1 presents the pseudocode for the optimization procedure. It outputs the weight vector
W = {w1,w2, ...,wp} that minimizes the C-Index of the training set T . The mutation, crossover, and
elitism parameters are detailed in Section 4.4
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Algorithm 1: Genetic Algorithm for Dynamic Ensemble Selection (DES)
Input: Trained Ensemble F , Data X ,Y , Parameters: L (population size), G (max

generations), K (top elites), τ (c-index threshold)
Output: w∗: Best weight vector

1 Initialize population P of L individuals (random, all-ones, one-hot);
2 best cindex←−∞;
3 stall← 0;
4 for g← 1 to G do
5 Select subset (Xg,Yg) for this generation;
6 Compute mutation rate µg (decaying);
7 foreach individual w in P (in parallel) do
8 Set DESRegression weights w;
9 foreach sample xi in Xg do

10 Compute competence scores (all models, using kNN);
11 Dynamic selection: select models, aggregate prediction;
12 end
13 Compute c-index of predictions for w;
14 end
15 Save best K elites from P by c-index;
16 Generate new offspring from elites (crossover, mutation) to form new P;
17 Update best cindex, best weights if improved;
18 if best cindex≥ τ or stall ≥ limit then
19 break;
20 end
21 end
22 return best weights;

The algorithm starts by initializing a population P of L individuals, each representing a candi-
date weight vector (Line 1). This initialization includes random vectors, an all-ones vector (equal
weighting), and one-hot vectors to encourage early diversity. The current best c-index score and a
stall counter are initialized (Lines 2–3).

The algorithm then proceeds iteratively for a maximum of G generations (Line 4). In each
generation, a bootstrap subset of the training data (Xg,Yg) is sampled (Line 5) to compute fitness
scores efficiently. A decaying mutation rate µg is computed based on the generation number (Line
6), allowing for larger exploratory mutations in early generations and smaller, fine-tuning mutations
in later ones.

Each individual in the population is evaluated in parallel (Line 7). For every weight vector w∈ P,
the ‘DESRegression‘ model is updated to use w as its competence measure weights. Then, for
each sample xi in the training set, the algorithm calculates the competence scores using the selected
measures and applies dynamic selection to choose a subset of models from the ensemble (lines 8–
10). The predictions of these models are aggregated, and the c-index of the resulting predictions is
computed as the fitness of w (Line 11).

After all individuals are evaluated, the top K elites with the highest c-index scores are retained
(Line 15). These elites are then used to generate the next population through crossover and mu-
tation (Line 16). Crossover blends weights from two parents, while mutation introduces random
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perturbations to promote exploration.
The algorithm tracks the best-performing weight vector and its c-index score across generations.

If the current generation yields a better score, it updates the global best; otherwise, it increments
the stall counter. The search terminates early if the best c-index exceeds the threshold τ or the stall
counter reaches a predefined limit (Line 18).

Finally, the algorithm returns the best-performing weight vector w∗, which is then used in the
generalization phase.

3.3.3 Generalization

In the Generalization Phase, the final prediction f̂ens(x j) is computed for each test sample x j ∈ X
by dynamically selecting and combining regressors from the ensemble F . This phase involves two
main steps: Measure Extraction and Dynamic Selection.

The Measure Extraction step defines the region of competence for each test instance x j using the
validation set T ′, and computes a vector of local performance measures for each regressor f̂n ∈ F ,
as detailed in Section ??. The result is a set of measure vectors M j,n = {m1,n,m2,n, . . . ,mP,n} for
every test-regressor pair.

The Dynamic Selection step evaluates the competence of each regressor f̂n on x j by computing
a competence score αn using the optimized weights w∗ obtained during the Optimization Phase:

αn =
P

∑
p=1

wp ·mp,n (12)

These competence scores form a vector α = (α1,α2, . . . ,αN) used to guide the selection and
combination of regressors.

Selection and Combination Strategies Based on the competence scores, three dynamic strategies
are implemented in the framework:

• S: Selects the single most competent regressor f̂n with the lowest αn.

• W: Combines all regressors in the ensemble, weighting their outputs inversely to αn.

• WS: Selects a subset of top-k regressors based on αn and combines their predictions.

The final prediction f̂ens(x j) is computed by aggregating the selected regressors’ outputs, either
through simple averaging or weighted combination depending on the strategy.

These strategies build upon concepts from Mendes-Moreira et al. (2009) but are adapted for
survival analysis with a different competence definition based on error measures, and a genetic
algorithm-optimized weighting scheme. The framework remains flexible and can be extended to
support alternative selection mechanisms.

S Competence measures mp,n quantify distinct aspects of prediction error for regressor f̂n within
its region of competence. A lower aggregated score αn (weighted sum of these measures) indicates
higher regressor competence. The S strategy therefore selects the regressor f̂n that minimizes αn for
each test instance x j ∈ X , as formalized in Equation 13:
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index = arg min
1≤n≤N

αn (13)

The final prediction for x j is then computed using the selected regressor:

f̂ens(x j) = f̂index(x j) (14)

where f̂index(x j) denotes the prediction from the optimal regressor. The complete procedure is de-
tailed in Algorithm 2.

Algorithm 2: Selecting using S (Single best model)
Input: Ensemble F , Training set T ′, Test set X , Weights W , Neighborhood size K
Output: c-index: Concordance Index

1 Initialize empty lists Ytrue and Ypred;
2 for each test pattern x j in X do
3 Find the region of competence Ψ of x j using T ′;
4 for each fn in F do
5 Calculate the measures {m1,n,m2,n, ...,mP,n} using Ψ;
6 αn = ∑

P
p=1 wp×mp,n;

7 end
8 index = argmin1≤n≤N({α1, ...,αN});
9 f̂ens(x j) = findex(x j);

10 Append true value f (x j) to Ytrue;
11 Append predicted value f̂ens(x j) to Ypred;
12 end
13 Compute c-index between Ytrue and Ypred;
14 return c-index

W In the W strategy (Weighting), all regressors in the ensemble F contribute to the final predic-
tion. For each test sample, the estimated output is calculated as a weighted average of individual
model predictions. The weights are derived from the competence scores αn ∈A = {α1,α2, . . . ,αN},
which are normalized according to Equation 15:

α̃n =
1/αn

∑
N
n=1 1/αn

(15)

These normalized weights α̃n assign greater influence to more competent models (i.e., those with
lower αn). The final prediction for a test instance x j is then computed using Equation 16:

f̂ens(x j) =
N

∑
n=1

α̃n · f̂n(x j) (16)

The full procedure is detailed in Algorithm 3.
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Algorithm 3: Combining all regressors using W
Input: Ensemble F , Training set T ′, Test set X , Weights W , Neighborhood size K
Output: c-index: Concordance Index

1 Initialize empty lists Ytrue and Ypred;
2 for each test pattern x j in X do
3 Find the region of competence Ψ of x j using T ′;
4 A ← [];
5 for each fn in F do
6 Calculate measures {m1,n, ...,mP,n} using Ψ;
7 αn = ∑

P
p=1 wp×mp,n;

8 Append αn to A ;
9 end

10 for each αn in A do
11 α̃n =

1/αn

∑
N
i=1 1/αi

;

12 end
13 f̂ens(x j) = ∑

N
n=1 α̃n fn(x j);

14 Append true value f (x j) to Ytrue;
15 Append predicted value f̂ens(x j) to Ypred;
16 end
17 Compute c-index between Ytrue and Ypred;
18 return c-index
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WS In the WS strategy (Weighting with Selection), each test instance is evaluated by first iden-
tifying and removing regressors with competence scores αn that exceed the midpoint of the score
range, i.e., those for which αn > (αmax−αmin)/2. This effectively discards the least competent
half of the ensemble based on the spread of competence scores. The remaining regressors are then
combined to produce the final prediction using Equations 15 and 16. The full procedure is outlined
in Algorithm 24.

Algorithm 4: Selecting and Combining the Regressors using WS
Input: Ensemble F ; Training set T ′; Test set X ; Vector of Weights W ; Neighborhood size

K
Output: c index: Concordance Index

1 Preds← [];
2 TrueLowerBounds← [];
3 Events← [];
4 for each test pattern x j in X do
5 Find the region of competence Ψ of x j using T ′;
6 for each f̂n in F do
7 Calculate the measures {m1,n,m2,n, ...,mP,n} using Ψ;
8 αn = ∑

P
p=1 wp×mp,n;

9 A = A ∪αn;

10 F̃ ← F ;
11 Ã ← A ;
12 for each f̂n in F do
13 if αn > (αmax−αmin)/2 then
14 F̃ = F̃ − f̂n;
15 Ã = Ã−αn;

16 N = |F̃ |;
17 for each αn in Ã do
18 α̃n =

1/αn

∑
N
n=1 1/αn

;

19 f̂ens(x j) = ∑
N
n=1 α̃n× f̂n(x j) ; // f̂n ∈ F̃

20 Append f̂ens(x j) to Preds;
21 Append f (x j) (lower bound) to TrueLowerBounds;
22 Append event status of x j to Events;

23 c index = concordance index(TrueLowerBounds,Preds,Events);
24 return c index;
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4 Experimental Setup
This section details the experimental setup used to evaluate dynamic ensemble selection (DES) for
survival prediction. All experiments were implemented in Python using a modular pipeline to ensure
reproducibility across datasets (NMR and NHANES).

4.1 Experiment 1: Model Selection (NMR)
This set of experiments addresses the first two research questions (Q1 and Q2), focusing on model
selection and ensemble strategies.

• Q1 – Does dynamic ensemble selection improve the prediction of kidney graft failure from
NMR data compared to static selection and uniform averaging methods?

• Q2 – Which dynamic ensemble selection strategy—single selection (S), weighting (W), or
weighting with selection (WS)—yields the best predictive performance for graft failure on the
NMR dataset?

To explore these questions, we construct ensembles of XGBoost models trained on high-dimensional
NMR metabolomic data from kidney transplant patients. The goal is to evaluate whether dynam-
ically selecting or weighting models for each test instance leads to improved survival prediction
performance.

We compare several prediction strategies, including both static and dynamic approaches. Static
ensemble methods involve uniform averaging of all models or clustering-based selection, which ap-
ply the same combination rule to all test samples. In contrast, dynamic ensemble selection (DES)
methods—S, W, and WS—adaptively select or weight regressors based on local competence mea-
sures derived from each test sample’s region of competence.

The core hypothesis is that dynamic selection can enhance predictive accuracy by emphasizing
models that demonstrate higher local competence in the region of the test sample, thereby reducing
the influence of weaker regressors and improving the concordance index (C-index).

To ensure a fair comparison, all methods use identical data preprocessing (including PCA), train-
ing procedures, and cross-validation settings. We evaluate each strategy across a range of ensemble
sizes, allowing us to analyze performance trends under varying levels of model diversity.

This experimental setup enables a systematic and rigorous comparison of dynamic versus static
ensemble strategies, providing insight into their effectiveness for predicting kidney graft failure using
high-dimensional NMR data.

4.1.1 Configurations and Hyperparameter Optimization

To optimize model performance for the selection experiments, we conducted hyperparameter tuning
via stratified 5-fold cross-validation with a fixed random seed (42) for reproducibility. The optimiza-
tion targeted XGBoost with Accelerated Failure Time survival objective (XGB-AFT), incorporating
early stopping after 50 consecutive boosting rounds without validation improvement.

The resulting optimal hyperparameters are documented in Table 7. This tuning phase aims to
establish a reasonably well-performing configuration for fair comparison across ensemble strategies,
without claiming global optimality.
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Parameter Value

Learning rate 0.03
Maximum tree depth 2
Minimum child weight 1
AFT loss distribution Normal
AFT loss distribution scale 0.1
Growth policy Loss-guided
λ 0.01
α 0.02

Table 3: Best hyperparameters for the XGBoost AFT model obtained from grid search on the NMR
dataset.

4.2 Data and Preprocessing
We used an NMR dataset that contains high-dimensional metabolomic profiles annotated with graft
survival times and event indicators. The dataset was pre-split into training and external test sets.
Principal Component Analysis (PCA) reduced the original 19,000-dimensional feature space to 24
components while preserving 99% of the variance (Figure 6). Clinical covariates such as Sex and
Age were excluded from the PCA transformation and added later.

4.3 Survival Modeling with XGBoost
We constructed ensembles of XGBoost models using the AFT (Accelerated Failure Time) objective
with normal loss distribution. The ensemble size varied from 1 to 100 in steps (e.g., 1, 5, 10, ...,
100). Each model was trained on a bootstrapped subset of the training data (subset fraction =
0.7), with 30% reserved for validation during early stopping. Concordance index (C-index) was used
to evaluate predictive performance.

4.4 Experiment 2: Genetic Algorithm Optimization
This section presents the second experiment, focused on optimizing dynamic ensemble selection
through genetic algorithms (GA).

• Q3. Does optimizing DES weights with a genetic algorithm improve graft failure prediction
from NMR data?

In this experiment, we use a genetic algorithm (GA) to optimize the competence weights ap-
plied in DES strategies. The objective is to improve the concordance index (C-index) by adaptively
learning which error measures are most informative for selecting or weighting regressors during
inference.

For all replications, the genetic algorithm was configured as follows:
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Figure 6: Cumulative explained variance plot from PCA applied to the NMR metabolomic dataset.
The first 24 components retain over 99% of the variance, and are used for training and evaluation.

• Population Size: 60

• Initial Mutation Rate: 0.5

• Final Mutation Rate: 0.05

• Maximum Generations: 600

• Stall Generation Limit: 15 (early stopping if no improvement)

• Subset Fraction: 0.4 (fraction of validation data used per generation)

• Elitism: Top 6 individuals from each generation are carried forward unchanged

• Initial Population:

– 54 individuals are randomly initialized with real values in the interval [0,1].

– 1 chromosome is initialized with all genes set to 1.

– The remaining chromosomes follow a one-hot initialization, where each chromosome
has a 1 in only one gene position and 0 elsewhere, see Matrix 17. This encourages early
exploration of isolated error measures.

The GA operates on a fitness function based on the concordance index (C-index) computed over
a validation subset. By evolving competence weight vectors over generations, the algorithm learns
optimal combinations of local error measures for dynamic selection. The optimized weights are
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then evaluated on a held-out test set to assess improvements in predictive performance compared to
unoptimized DES configurations.

f irstPop =



1 1 1 1 1 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


(17)

4.5 Additional Dataset: NHANES (Cross–Dataset Validation)
To assess generalizability beyond high-dimensional metabolomics, we applied the same selection
framework to the public NHANES cohort with NCHS linked mortality follow-up (time-to-all-cause
mortality; right-censoring at last follow-up). Individuals without valid follow-up were excluded.

4.6 Additional Analyses
Beyond discrimination metrics, we prespecified two descriptive analyses to assess calibration and
visualize case-level behavior on the external test set. These analyses are purely exploratory and
were not used for model selection or hyperparameter tuning.

We plotted the predicted time t̂i (y-axis) against the observed time ti (x-axis) for all test sub-
jects, colouring points by outcome (event = red, censored = green). The 45◦ line (y=x) serves as a
visual reference for perfect pointwise agreement. No recalibration was applied; the plot is purely
descriptive.

To illustrate individual behaviour, we randomly sampled five test subjects (using a fixed seed
for reproducibility) and drew per-patient timelines. These show the predicted time t̂i (blue dot), the
censoring time where applicable (green square), and the observed event time for failures (orange
cross). All times are reported in years since baseline.





Section 5 RESULTS 40

5 Results

5.1 Model Selection
This section compares the performance of dynamic ensemble selection (DES) strategies (DES-S,
DES-W, DES-WS) against static selection and baseline (uniform averaging) methods. The base-
line approach averages predictions across all models, while the static selection employs k-means
clustering to identify representative models.

Figure 7 illustrates the mean concordance index (C-index) scores obtained from 5-fold strati-
fied cross-validation across various strategies and ensemble sizes. Overall, the baseline and static
methods demonstrate better performance compared to DES strategies. Notably, the static method
achieves the highest cross-validation performance at an ensemble size of 50, with a C-index score of
0.74. The relatively poor performance of DES strategies during cross-validation may be attributed
to their dependency on accurately identifying local neighborhoods within the training data. Given
the limited dataset size, the local neighborhoods may not contain sufficient representative samples,
adversely affecting DES performance. This pattern is further emphasized in Figure 8, which dis-
plays the top 10 configurations based on cross-validation results. Here, static and baseline methods
dominate, with only one DES strategy (DES-WS at ensemble size N=15) appearing among the top
configurations.

However, examining the external test set performance in Figure 9, DES strategies (particularly
DES-S and DES-WS) display substantially improved results. The availability of the entire training
dataset for model selection significantly improves the ability of DES methods to accurately match
test instance profiles with suitable models. Despite the relatively modest increase of approximately
40 additional samples compared to cross-validation, the DES methods show marked improvements
in predictive accuracy. The DES-WS strategy consistently outperforms static selection and baseline
methods, especially at intermediate and larger ensemble sizes (N=40, 60, 80, 100), reaching its
highest performance at an ensemble size of 60 with a C-index of 0.75. Interestingly, while the static
method excelled during cross-validation, it demonstrates considerable performance instability and
ranks among the lowest-performing methods on the external test set, especially after ensemble sizes
greater than 50.
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Figure 7: 5-fold stratified cross-validation mean C-index scores for each strategy and ensemble size.
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Figure 8: Top 10 configurations based on mean C-index from cross-validation folds.

Figure 9: Heatmap of external test set C-index scores by strategy and ensemble size.
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5.2 Comparison among DES Strategies
We further investigate the relative performance of the three dynamic ensemble selection (DES)
strategies: DES-S, DES-W, and DES-WS.

Figures 10, 11, and 12 compare the performance of the external test set of each strategy; see
chapter 3.3.3. Each DES method is defined as follows:

• DES-S: Selects the single most competent regressor with the lowest competence score (αn).

• DES-W: Combines all regressors in the ensemble, weighting their predictions inversely pro-
portional to their competence scores.

• DES-WS: Selects a subset of topk regressors based on competence scores and combines their
predictions using weighted averaging.

Figure 10: Comparison among DES strategies on the external test set.

In Figure 10, the C-index (y axis) is plotted against ensemble size (x axis). DES-S reaches its
maximum performance at N = 15 (C-index ≈ 0.74) but shows variability across ensemble sizes.
DES-W displays more stable performance across different ensemble sizes, with its peak score at
N = 40 (C-index ≈ 0.71).

However, the DES-WS strategy demonstrates both robustness and good predictive performance.
It consistently improves with ensemble size and peaks at N=60 with a C-index of 0.75, outperform-
ing the other strategies. By combining the most competent subset of models, DES-WS balances
performance and stability. This is further supported by the heatmap in Figure 9, which shows that
DES-WS frequently achieves the highest scores in all sizes of the ensemble.

This trend is also reflected in Figure 11, which highlights the top 10 best performing configu-
rations on the external test set. DES-WS and DES-S dominate the rankings, with multiple entries
each, confirming their competitiveness relative to DES-W and other methods.
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Figure 11: Top 10 configurations based on mean C-index from the external test set.

Figure 12: External test set performance (C-index) comparing DES-WS, static, and baseline across
ensemble sizes.
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Finally, Figure 12 compares the DES-WS strategy to static and baseline methods. For small
ensembles (N < 20), the static method slightly outperforms DES-WS. However, as the size of the
ensemble increases, DES-WS clearly exceeds both baselines, consistently exceeding a C index of
0.7 and peaking at 0.75. In contrast, both static and baseline methods plateau below 0.7 and exhibit
higher variance.

These results confirm that DES-WS is the best performing strategy for the NMR dataset. Its
ability to balance model competence with ensemble diversity leads to both higher accuracy and
better generalization. Given its stable behavior across ensemble sizes and test performance, DES-
WS appears particularly well suited for clinical survival prediction tasks where robust, individualized
predictions are critical.

However, it is important to note that all DES strategies rely on an accurate estimation of local
competence. Since this process depends on the validation set and nearest neighbors (kNN), perfor-
mance can degrade when the training data are small or unbalanced, as discussed in further detail in
Section 4.4.

Table 4: Summary of DES strategy performance (external test set).

Strategy Peak C-index Best Ensemble Size (N) Stability

DES-S 0.74 15 Low (fluctuating)
DES-W 0.71 40 High (stable, lower)
DES-WS 0.75 60 High (stable)

5.3 Impact of Genetic Algorithm Optimization
We examine the impact of genetic algorithm (GA) optimization on competence weight learning
within the dynamic ensemble selection (DES) framework. The GA procedure (described in Sec-
tion 4.4) was designed to find optimal weights to combine multiple competence measures, with the
goal of maximizing the concordance index (C index) in the validation set.

Figure 13 compares the performance of the external test set of each DES strategy with and
without optimization of the genetic algorithm. While a few configurations benefited from the op-
timization, the majority of optimized models underperformed relative to their non-optimized coun-
terparts. This performance drop is likely due to overfitting to the small validation set used during
optimization, which contained only about 50 samples with five observed events. The limited num-
ber of events made it difficult for the algorithm to generalize well, especially for local competence
estimation based on the k-nearest neighbors (kNN).

Furthermore, the 5-fold stratified cross-validation setup used for optimization further reduced
the number of samples available for reliable neighborhood formation. Since DES strategies are
highly dependent on local competence estimation, the resulting neighborhoods were often too small
or unrepresentative, weakening the optimization process and leading to sub-optimal weights.
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Figure 13: External test set performance (C-index) comparing DES strategies with and without
optimized weights. Lighter bars represent equal (non-optimized) weighting; darker bars indicate
GA-optimized weights.

Figure 14: Average optimized competence measure weights per DES strategy (genetic algorithm).

Figure 14 presents the average weights assigned to each competence measure in all strategies
after GA optimization. In particular, DES-S placed a heavy emphasis on the discordance error
(average weight ≈ 0.65), suggesting that this strategy relied on identifying models with low rank-
based disagreement. This could indicate a tendency toward selecting models that produce rankings
similar to ground-truth survival times; however, this singular focus may have limited generalization.

DES-W, on the contrary, relied primarily on prediction consistency, assigning it the highest av-
erage weight. This aligns with its objective of leveraging the full ensemble while adjusting contri-
butions based on the reliability of individual model predictions across local samples.

DES-WS demonstrated a more balanced weighting across all competence measures, indicating
that the combination of selection and weighting benefits from diverse error signals. This diversity
could explain its comparatively robust performance, as shown in previous results.
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In summary, while genetic algorithm optimization showed potential in tuning competency weights,
its effectiveness was limited by data scarcity and local sample instability during validation. Future
work may explore hybrid optimization strategies or regularization methods to mitigate overfitting in
low-event settings.

5.4 Cross–Dataset Results: NHANES
In NHANES, all the strategies performed very similarly. Across ensemble sizes (N ∈{1,5,10,15,20,30,50,100}),
the held-out C-index clustered tightly around 0.80–0.82 for baseline averaging, static selection,
DES-W, and DES-WS, while DES-S was consistently lower by about 0.01–0.03.

Figure 15 reports the 5-fold cross-validation means per N and strategy. For almost all set-
tings, baseline, static, DES-W, and DES-WS yield C-index ≈ 0.81; DES-S is uniformly smaller
(≈ 0.79–0.80).

External test results in Figure 16 confirm this pattern: baseline, DES-W, and DES-WS are es-
sentially indistinguishable (≈ 0.81–0.82), static remains close (≈ 0.81), and DES-S trails slightly
(≈ 0.79–0.80).

For the three DES variants, Figure 17 shows the external C-index as a function of N. DES-WS
and DES-W overlap around 0.81–0.82 with minimal sensitivity to N, while DES-S remains lower
and slightly more variable.



Section 5 RESULTS 48

Figure 15: NHANES: 5-fold mean C-index by strategy and ensemble size N. Values concentrate
near 0.81 for baseline, static, DES-W, and DES-WS; DES-S is consistently lower.
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Figure 16: NHANES: external test C-index by strategy and ensemble size N. Baseline, DES-W, and
DES-WS are nearly identical (≈ 0.81–0.82); static is comparable; DES-S is slightly lower.
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Figure 17: NHANES: external C-index vs. ensemble size N for DES variants. DES-WS and DES-W
overlap around 0.81–0.82; DES-S remains ≈ 0.79–0.80.

5.5 Additional Analyses
To complement the quantitative evaluation of the ensemble strategies, we conducted additional ana-
lyzes to explore model calibration and the interpretability of individual predictions.

Figure 18 presents a calibration graph for the best-performing strategy -DES-WS with N = 60
models. Each point represents a single patient: red points indicate observed graft failures, while
green points represent censored observations. The diagonal line corresponds to perfect calibration,
where the predicted survival time exactly matches the observed or last known time.

The model generally performs well in the midterm survival range (5-8 years), where most red
points cluster tightly around the diagonal, suggesting accurate calibration in this critical window.
However, for early failures (before year 4), red points are frequently positioned above the diagonal,
indicating that the model tends to overestimate survival time when the risk of failure is highest. This
behavior reflects a tendency to underestimate the risk in the early posttransplant stages. In contrast,
green (censored) cases tend to lie on or above the diagonal, suggesting that the model conservatively
predicts shorter survival than actually observed, an encouraging sign from a clinical risk management
perspective.
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Figure 18: Calibration plot for DES-WS with N = 60. Each point represents a patient. Red = graft
failure; Green = censored. The diagonal represents perfect calibration (predicted = observed time).

To better illustrate the behavior of the model on an individual level, we also plotted the predicted
and observed survival times of five randomly selected patients in Figure 19. Each timeline shows the
predicted failure time (blue dot), the time of censoring if applicable (green square), and the observed
graft failure (orange cross) if the event occurred.

These examples highlight a variety of behavior patterns in the model. Patient 1 was censored
around year 8, with a predicted survival of approximately 10 years. Patient 2, also censored at year
8, had a longer predicted survival of 14 years - both cases are slightly optimistic, but clinically safe.
Patient 3 experienced a graft failure in year 7, which the model predicted with high precision (7.2
years). Patient 4 failed early at year 1, but the model predicted 3.5 years, showing an overestimation
and a potential risk underestimation in high-risk cases. Lastly, patient 5 was censored at 7.5 years
and had a predicted survival of around 11 years, again slightly optimistic but reasonable given the
lack of observed failure.
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Figure 19: Individual survival time predictions for five randomly selected patients using DES-WS
(N = 60). Blue dots represent predicted survival times, green squares denote censoring, and orange
crosses indicate observed graft failure.

Together, these visual analyses strengthen the findings presented earlier. Although the DES-WS
strategy demonstrates strong overall performance, particularly in the mid-term prediction window,
there are still limitations in high-risk early failures. However, the model shows reasonable con-
servatism for censored cases and produces interpretable patient-specific predictions - an important
feature for potential clinical integration.
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6 Discussion
This study evaluated dynamic ensemble selection (DES) for survival prediction in two settings: a
high-dimensional NMR metabolomics cohort for graft-failure risk and a lower-dimensional, population-
scale NHANES cohort for time-to–all-cause mortality. We asked whether DES improves upon static
selection and uniform averaging, how DES variants compare, and whether genetic-algorithm (GA)
weighting adds value. We summarize the findings by question and then note limitations and impli-
cations.

6.1 Dynamic Selection vs. Static and Baseline Strategies
NMR (Graft Failure). On the external test set, DES strategies—particularly DES-WS—outperformed
both baseline averaging and static selection once the ensemble size exceeded N > 40 members,
peaking around N = 60 (C-index ≈ 0.75). While static selection performed competitively during
cross-validation, its performance degraded on the external set. This suggests that selecting a fixed
subensemble without access to instance-specific information at test time can limit generalizability.

NHANES (All-Cause Mortality). In contrast, all strategies performed similarly on the NHANES
dataset across ensemble sizes (N ∈ 1,5,10,15,20,30,50,100), with C-indices tightly clustered be-
tween 0.80 and 0.82 for the baseline, static, DES-W, and DES-WS methods; DES-S was slightly
lower (≈ 0.79–0.80). This lack of separation indicates that when the underlying predictive signal is
global and well-captured by the base learners, dynamic instance-level selection offers little advan-
tage over simpler aggregation methods.

These results demonstrate that the benefit of DES is dataset-dependent. DES provides the greatest
advantage in high-dimensional, heterogeneous feature spaces (e.g., NMR), where local neighbor-
hoods reveal meaningful instance-specific differences in model competence. When the predictive
structure is smoother and base models are in strong agreement (e.g., NHANES), uniform averaging
or static selection are sufficient. Thus, our first hypothesis is supported by the NMR data but not by
the NHANES data.

6.2 Comparison of DES Strategies
NMR. DES-WS achieved the best balance of accuracy and stability, consistently outperforming
DES-W (all-model weighting) and DES-S (single-model selection). DES-S occasionally achieved
high accuracy at small N but exhibited higher variance, reflecting the inherent risk of relying on a
single model per instance. DES-W was stable but was sometimes diluted by including less competent
learners.

NHANES. DES-WS and DES-W were virtually indistinguishable (≈ 0.81–0.82) across all N,
while DES-S trailed slightly and was more variable. Consequently, in contexts where DES pro-
vides minimal overall benefit (as with NHANES), DES-WS does not harm performance but also
offers no clear advantage over DES-W. Overall, our second hypothesis (WS > W > S) holds for the
NMR dataset but simplifies to (W ≈WS > S) for NHANES.



Section 6 DISCUSSION 55

6.3 Effect of Genetic Algorithm Optimization
Across both datasets, GA optimization of competence weights failed to produce consistent improve-
ments over equal weighting. On the NMR dataset, the few configurations improved by GA were
outweighed by performance decreases on the external set—likely due to overfitting, given the small
validation subsets and low event rates used during optimization. On NHANES, where method per-
formance had already converged, GA had a negligible impact. These findings suggest that GA-based
weighting may require larger, better-balanced validation sets or stronger regularization with early
stopping to prevent overfitting. Therefore, our third hypothesis is not supported.

6.4 Limitations
Several limitations of this study should be acknowledged. (i) The NMR dataset is small with few
events, which constrained the stability of both DES neighborhood estimation and GA optimization.
(ii) DES performance relies on the definition of k-NN regions of competence; the choice of k, the
distance metric, and feature scaling can influence results, and we did not exhaustively retune these
hyperparameters for each dataset beyond predefined grids. (iii) Our assessment focused primarily on
discrimination (C-index), which measures the ranking of patients by risk but does not quantify the
accuracy of predicted event times. Although the supplemental plots suggested reasonable midterm
calibration, early failures were overestimated in the NMR data, requiring a more comprehensive
calibration analysis for clinical applicability. (iv) The endpoints and data modalities differ (graft
failure with metabolomics vs. all-cause mortality with tabular covariates), meaning comparisons
between datasets illustrate generalizability rather than direct head-to-head performance.

6.5 Summary and Implications
DES is not universally superior but can be highly advantageous in complex, heterogeneous settings
like NMR metabolomics, where no single model is best for all patients. A practical indicator for
adopting DES is significant disagreement among base models (e.g., large within-patient spread of
predicted times). Where base models agree (e.g., NHANES), simpler aggregation is competitive and
easier to deploy.

For translational impact, DES could help surface patient sub-phenotypes of risk that one-size-
fits-all models miss—supporting more tailored post-transplant monitoring or therapy adjustments.
A pragmatic triage is to adopt DES-WS when exploratory analysis shows strong local heterogeneity
or diverse error profiles; otherwise prefer simpler schemes. Future work should (i) pursue more
regularized competence optimization, (ii) include survival-specific calibration and decision-curve
analyses to gauge clinical utility, and (iii) define simple pre-implementation diagnostics (e.g., model-
disagreement scores) to guide when DES is warranted.
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7 Conclusion

7.1 Conclusion
This thesis evaluated dynamic ensemble selection (DES) for survival analysis in two complementary
settings: predicting kidney graft failure from high-dimensional NMR metabolomics data and fore-
casting time-to-all-cause mortality in the tabular NHANES cohort. We investigated whether DES
outperforms conventional ensembling, which DES variant is most effective, and whether genetic
algorithm (GA) optimization of competence weights provides added value.

Three principal conclusions emerge from this work.
(1) The benefit of DES is context-dependent. On the complex, high-dimensional NMR dataset,

DES—particularly the weighting-with-selection variant (DES-WS)—surpassed both baseline aver-
aging and static selection on the external test set for ensembles larger than N > 40 members, achiev-
ing a peak C-index of ≈ 0.75 at N = 60. In contrast, all strategies performed similarly on the
NHANES dataset (C-index ≈ 0.80–0.82), with DES-S slightly underperforming. This indicates that
DES is most advantageous in heterogeneous, high-dimensional feature spaces where model compe-
tence varies significantly by instance. In simpler, more homogeneous settings where base learners
exhibit strong agreement, conventional aggregation methods are sufficient.

(2) DES-WS provides the most robust performance. DES-WS consistently delivered an opti-
mal balance of stability and accuracy across experiments. It outperformed the high-variance DES-S,
which relies on a single model per instance, and often exceeded DES-W, which can be diluted by
including less competent models. On NHANES, where the potential for improvement was limited,
DES-WS and DES-W performed identically, further confirming the pragmatic advantage of the hy-
brid approach.

(3) GA optimization failed to enhance performance. GA-derived competence weights did not
consistently outperform equal weighting and in some cases reduced external validation performance,
likely due to overfitting on small, event-sparse validation sets. This suggests that the instability of
local neighborhoods in limited data settings makes the optimization problem particularly challeng-
ing.

In summary, this work establishes DES as a powerful but specialized tool. It is most effective
in settings with substantial local heterogeneity and diverse base model error profiles (e.g., NMR
metabolomics). This approach is particularly suited for clinical problems where patient populations
are not uniform and outcomes are driven by multiple biological pathways. In the absence of these
conditions (e.g., NHANES), simpler ensemble strategies remain competitive and operationally sim-
pler to implement.

7.2 Future Work
Several directions follow from these findings.

Data scale and external validation. Larger, multi-center transplant cohorts with more events
would strengthen DES neighborhood estimation and provide fairer grounds for weight optimization.
Prospective external validation is critical for clinical adoption.

Robust competence optimization. Replace GA with more regularized schemes (Bayesian
optimization with priors, multi-objective evolution with parsimony pressure, or cross-fitted meta-
learners) and add early stopping / shrinkage to reduce overfitting under sparse events.
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Adaptive regions of competence. Learn the neighborhood itself: metric learning or representa-
tion learning tailored to survival objectives; event-aware distances; variable k that scales with local
event density.

Calibration and clinical utility. Extend beyond discrimination to thorough calibration (time-
dependent calibration curves, Brier scores) and decision-curve analysis to quantify net benefit across
thresholds—especially in early high-risk windows. This is essential for translating predicted risks
into actionable clinical decisions.

Interpretability. Augment DES with survival-specific attribution (e.g., SHAP for AFT/XGBoost
with temporal summaries) and pathway-level analyses for NMR to make predictions clinically ac-
tionable.

Taken together, this work positions DES as a targeted tool for personalized survival prediction:
valuable when heterogeneity is substantial, and otherwise gracefully deferring to simpler ensembles.
With better diagnostics, larger datasets, and more robust optimization, DES can be deployed where
it is most likely to deliver clinical benefit.
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Appendices

A GA optimization results

Figure 20: Comparison of external C-index performance between the DES-WS ensemble using
equal weighting (light green) and GA-optimized weighting (dark green) across different ensemble
sizes N. The results show no improvement for the majority of configurations

Figure 21: Comparison of external C-index performance between the DES-WS ensemble using
equal weighting (light green) and GA-optimized weighting (dark green) across different ensemble
sizes N. The results show no improvement for the majority of configurations
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Figure 22: Comparison of external C-index performance for the DES-S ensemble using equal
weighting (light orange) versus GA-optimized weighting (dark orange) across different ensemble
sizes N. The results show no improvement for the majority of configurations.

B Optimization

C XGBoost Hyperparameter Search Space

Table 5: Tuned hyperparameters for XGBoost (grid search).

Hyperparameter Values explored
Learning rate {0.01, 0.03, 0.1}
Maximum tree depth {2, 3, 4, 5, 6, 7, 8}
Minimum child weight {1, 2, 3, 4, 5}
Alpha (L1 regularization) {0.01, 0.03, 0.1}
Lambda (L2 regularization) {0.01, 0.03, 0.1}
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Table 6: Fixed hyperparameters for XGBoost.

Hyperparameter Value
Objective survival:aft
Evaluation metric aft-nloglik
AFT loss distribution normal
Tree method hist
Seed 42
Grow policy lossguide
AFT loss distribution scale 0.1
Booster gbtree

Table 7: Final optimized XGBoost hyperparameters for the NMR dataset.

Parameter Value
Objective survival:aft
Evaluation metric aft-nloglik
AFT loss distribution normal
Learning rate 0.03
Max depth 2
Min child weight 1
Alpha (L1 regularization) 0.02
Lambda (L2 regularization) 0.01
Tree method hist
Seed 42
Grow policy lossguide
AFT loss distribution scale 0.1
Booster gbtree
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