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Relativistic coupled cluster ionisation
potential calculations for HgCl, HgI, and

TaN

Accurate molecular calculations for eEDM experiment candidates

Aiden Orion Strijker

Abstract
The ionisation potentials of three molecules, HgCl, HgI, and TaN, have been calculated using the
relativistic Dirac-Hartree-Fock and coupled cluster methods. The computational methods are ex-
plored to determine the accuracy of the theoretical predictions, leading to corrections for higher
order effects and the determination of a conservative uncertainty estimate. This includes basis set
effects, level of relativity, and electron correlation. With this, the ionisation potentials obtained are
IP = 9.411± 0.033 eV, IP = 8.768± 0.032 eV, and IP = 8.485± 0.039 eV for HgCl, HgI, and TaN,
respectively. For easier comparison to experimental results, the vibrationally corrected ionisation
potentials have also been determined as IPvc = 9.446 ± 0.0035 eV (HgCl), IPvc = 8.770 ± 0.035
eV (HgI), and IPvc = 8.485 ± 0.042 eV (TaN). No experimental measurements are available for
comparison, although the calculated equilibrium bond lengths are in agreement with experimental
and earlier theoretical values.



Acknowledgements
I could not have done this project alone, and I would like to sincerely thank Prof. Dr. Anastasia
Borschevsky and Prof. Dr. Steven Hoekstra for allowing me to work on my own tempo. Your
patience and feedback has been instrumental in the success of this thesis. I am especially grateful
for the great supervision and support I received from Prof. Dr. Anastasia Borschevsky, who was
very involved and always available for questions in a way that greatly boosted my confidence. I
don’t think that I could have asked for better guidance.

Special thanks goes out to Dr. Agust́ın Aucar, who patiently helped me develop a basic understand-
ing of much of the theory and had great advise for the many computational difficulties I encountered.
Your encouragement and in-depth explanations were a tremendous help. Additionally, every other
person in the AIM research group has been kind and informative, and I have learned much from
being included in group meetings and social events. Even though I am most comfortable as an
observer, I always felt welcome to ask questions and join discussions, which means a lot to me.

Thank you all, and thank you to the reader for reading this.



Contents

1 Introduction - the bigger picture 1
1.1 The Standard Model and CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The eEDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 eEDM in molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Molecules of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 6
2.1 Solving the Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Schrödinger and DiraC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 The relativistic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 X2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Computational methods and approximations . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Slater determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Electron interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 CI and CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 CCSD and CCSD(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Gaussians or Slater orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Molecular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Naming system of basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 CBS limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methods 16
3.1 Bond length optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Ionisation potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results and discussion 18
4.1 Literature research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 HgCl and HgI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 TaN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Calculation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Bond length optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Ionisation potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion 33

A Abbreviations glossary i

B Literature results HgX and TaN iii

C Complete calculation results HgX and TaN viii



CONTENTS

C.1 Equilibrium bond lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
C.2 Ionisation potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
C.3 Uncertainty calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii



1 INTRODUCTION - THE BIGGER PICTURE

1 Introduction - the bigger picture

Nearing the end of the 19th century, some held the belief that physics was a mature science, without
much left to discover[1]. A century-and-a-half later, this idea is thoroughly thrown out the window,
as more advanced theories regularly emerge and our collective understanding of the universe and
its inner workings grows. Continually, researchers target structures within structures, aiming to
understand the patterns of the universe in the overlap of physics with other fields. This thesis
fits in that picture, combining chemistry and physics to create a better understanding of molecular
structures to be used in the improvement of particle physics models.

The rest of this introduction will explain the bigger picture that this master project is part of,
zooming in towards the focus of this thesis. This also includes the research questions the project
aims to answer in subsection 1.5. The theory behind the calculations performed is described in
section 2. Following that, section 3 explains the methodology. In 4.1 relevant earlier research is
addressed. The calculation results are reported and discussed in section 4.2. Finally, everything is
summarised in 5.

1.1 The Standard Model and CP violation

The Standard Model (SM) is the current best model of particle physics, describing all (known)
elementary particles and their interactions. It explains three of the four fundamental forces in the
universe from a quantum mechanical perspective. Through extensive research the SM has also
become a very robust theory, explaining many phenomena in the universe and predicting particles
such as the Higgs boson [2].

Tests of discrete symmetries have been instrumental throughout the last century in making the SM
as well-structured as it is now [3]. These symmetries are described by the actions;

Cϕ(t, x) = ϕ(t, x), (1)

Pϕ(t, x) = ϕ(t,−x), (2)

Tϕ(t, x) = ϕ(−t, x). (3)

Here, C is the charge symmetry (particle into anti-particle exchange, roughly), P stands for parity
(reflection in spatial coordinates), and T for time reversal (reversing the time coordinates) [4] [5].
Together they form the CPT symmetry, which is invariant at the level of known fundamental physics
due to Lorentz symmetry and causality 1.

While the SM is the most exhaustive theory to describe the laws of physics of the universe at the
moment, it is by no means complete. There are a few observed phenomena that fail to be explained
by the model. These include the missing connection to the fourth fundamental force of gravity, the
uneven distribution of matter and anti-matter, the expansion of the universe and the elusive dark
matter and dark energy [7]. To explain the matter-antimatter asymmetry, scientists look for sources
of CP violation.

Within the Standard Model CP violation is possible in interactions governed by the weak force, but
many of these interactions are heavily suppressed. The first experimentally measured case of direct
CP violation was done by analysing the decay of strange mesons into kaons and pions, where a
significant asymmetry in the decay process was found [8], though indirect CP-violation was already
measured in 1964 through P and T violation in the decay of Kaons [9]. While many other CP

1For a more extensive and relatively accessible explanation of CPT invariance and its implications, see ref. [6]
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1 INTRODUCTION - THE BIGGER PICTURE

violating sources exist, none known currently are abundant or strong enough to explain the matter-
antimatter asymmetry. Thus the SM does not lead to the matter-antimatter asymmetry we observe
in the universe, and an explanation might be found in analysis of new CP violating sources.

1.2 The eEDM

One signature of CP violation is the eEDM; the electron electronic dipole moment. This is a
permanent charge separation on the axis of the electron-spin [10]. It violates parity (P) and time

reversal (T) due to the opposite behaviour 2 of E⃗ ·S⃗ and B⃗ ·S⃗ under both these symmetry actions [3],
as can be seen in Figure 1. Consequently, assuming the CPT theorem, the combined CP symmetry
is also violated.

Figure 1: For a non-zero EDM d⃗, it must be parallel or antiparallel to spin S⃗. Time reversal would
change the orientation of the spin, not the EDM, while parity inversion flips the orientation of the
EDM, but not the spin. Whether we start with a parallel or antiparallel system, we end up with
the opposite after either operation, meaning it violates the symmetries [11]

The eEDM does exist within the Standard Model, but is - as many other CP violating sources -
heavily suppressed. In the language of Feynman diagrams, this is because it only occurs in higher loop
order. The integrals can be described by a perturbative expansion have ever decreasing coefficients
depending on the amount of loops in the diagram. [11]

2The electric E⃗ and magnetic B⃗ field dot-product with the spin S⃗
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1 INTRODUCTION - THE BIGGER PICTURE

Figure 2: Four-loop Feynman diagrams with a non-zero eEDM [11]. The weak interaction (a)
changes the quark flavour with W-bosons, and strong interaction (b) is characterised by the gluon
g interaction between quarks.

As is visible in Figure 2, the eEDM appears at fourth order within the Standard Model. The
prediction of the size is therefore also very small in the theory; about de ∼ 10−40 e cm [11], or
having an upper limit around |de| ≤ 10−38 e cm [3]. Many other theories that try to include the
matter-antimatter asymmetry predict a much higher value of the eEDM, that should be within
measureable range of modern experiments [10]. With state-of-the-art high precision experiments
and theoretical molecular knowledge, these predictions are in a measurable range.

1.3 eEDM in molecules

Motivated by the SM and Beyond the Standard Model (BSM) predictions, there are many exper-
iments aimed at detecting the eEDM. Though the SM-upper limit is still quite a few orders of
magnitude away, the current experimental limit on the eEDM lies at |de| < 4.1 · 10−30ecm (90%
confidence interval) [12], from a measurement using HfF+. This is an improvement on the previous
upper limit - |de| < 1.1 · 10−29ecm from the ACME II measurement using ThO [13] - by a factor of
about 2.4. The reason this range is reachable is because molecules experience an enhancement factor
Wd that creates a measurable energy shift of U = −d⃗e ·(1/Ω)W⃗d [13][14]3. While earlier experiments
worked with atoms, current experiments use molecules, which give an enhancement of 3 to 4 orders
of magnitude compared to atoms [7]. Specifically, Wd is dependent on the internal electric field for
molecules and of the order of GV/cm, while in atoms the dependence is on an external electric field
∼kV/cm [16]. A sufficiently large Wd is required and the exact enhancement is different for each
system. Because the factor is intrinsic for molecules, this needs to be theoretically calculated before
the size of the eEDM can be extracted from experimental data.

The improvement of the most recent upper limit was also made possible due to the trapping of
the ions [12]. In order to improve from here, theoretical knowledge about molecules is required to
both propose good candidates for future experiments and provide Wd values for chosen candidates.
Therefore, not only the large value of Wd is important, but relevant molecular aspects are found in

3In literature, the enhancement factor is also often called the effective electric field (Eeff = ΩWd, where the factor
Ω is the projection of the angular momentum onto the internuclear axis [15]), but nowadays the use of Wd is more
common
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1 INTRODUCTION - THE BIGGER PICTURE

the statistical uncertainty relation of an eEDM experiment, given as

σd =
ℏ
e

1

2|P |ΩWdτ
√
ṄT

, (4)

where P is the polarisation, Ω the projection of the angular momentum onto the internuclear axis, τ
the time that the molecules interact with the electric field, Ṅ the rate of detection, and T the time
of measurement [17][10]. In the rest of this section, I will go over these factors, that all need to be
as large as possible in order to lower the statistical uncertainty.

Starting with the enhancement factor; there is not a standard methodical way to find a system with a
large enhancement factors, but there are a few hints to start the search. Wd is a relativistic property
and it scales as Z3 in atoms. The factor also benefits from higher Z in molecules [3][16], hence heavy
systems are studied to find the eEDM [18]. In calculations on these molecules (or atoms), relativity
needs to be taken into account due to the large mass differences between the nuclei and electrons
and high velocities these electrons reach.

Polarisation is also a relevant factor for the eEDM measurement. The size of the σd is inversely
proportional to the electric polarisation of a system, thus having the ability to polarise a molecule
fully (|P | → 1) is ideal to take full advantage of a large enhancement factor Wd [19]. The best
systems are polarisable with highly controlled electric fields, in order to limit errors from electric
and magnetic field noise [11]. Combined with the previous point, heavy polar molecules become
most interesting. However, these systems come with increasing complexity as well; the bigger the
molecule, the more computational resources required to make accurate calculations. The focus of
this thesis will therefore be on diatomic molecules, though some larger systems have already been
proposed as candidates (see for example [20], [21], or [22]).

Historically, the focus of research has been on molecules in a Σ state, as these tend to be the simplest
systems, but they limit Ω. ∆ states are being considered as well, especially in cases where the doublet
states can help eliminate systematic errors due to a chance in sign for uncertainty causing effects
[23]. Naively, it would be better to look at states with higher Ω, but the electronic structure gets
much more complex and the electronic and vibrational energy levels become a saturated web that
is hard to separate into different states and work with from both an experimental and theoretical
perspective.

On top of that, there are logistical considerations to look out for in preparing future eEDM experi-
ments, which could lead to an increase of interaction times, measurement times, and detection rates.
One such logistical example is laser coolability; in order to trap molecules for measurements, they
need to be slowed down, but suitable electronic transitions need to be available and understood well
for laser cooling to be possible [24]. Being able to trap molecules leads to higher measurement times
and longer lifetimes, and can also positively impact the detection rate.

In this thesis, my focus is on calculations of ionisation potentials (IP s) of different diatomic molecules.
These could potentially be optically trapped at crygenic temperatures with a method proposed by
Singh et al [25], making precise measurements with better τ , Ṅ and T possible. The ionisation
potentials and other molecular properties need to be in a specific range in order for the molecule
to be suitable for the trap. The calculated ionisation potentials can also be easily compared to
experimentally measured IP s and other theoretical predictions in the future, in order to test their
agreement and accuracy.

4



1 INTRODUCTION - THE BIGGER PICTURE

1.4 Molecules of interest

There are many molecules being used in eEDM research, such as BaF in the NL-eEDM collaboration
[17], HfF+ [12], and ThO [13]. For future research many more are being considered. Specifically for
the optical trap of Singh et al, the most ideal molecules will have a high ionisation potential [25], but
the IP of many diatomic systems is unknown. The molecules chosen for this project are mercury
chloride (HgCl), mercury iodine (HgI), and tantalum nitride (TaN). I will introduce why these in
particular are of interest in the search for the eEDM and for trapping experiments below.

Mercury atoms have been used in theoretical eEDM and other CP violating effects studies before
[26][27][28][29], and mercury containing molecules were already proposed for molecular parity vio-
lating experiments before the turn of the century [30]. The first was mercury fluoride HgF (among
other fluoride diatomics), which has been identified as a candidate for future research and the en-
hancement factor has been calculated [31][32][33]. It turned out Wd of HgF was much larger than
that of other candidates like YbF and ThO, respectively about 5 times and 1.5 times larger [34][16],
in spite of mercury being lighter than thorium. This is due to the enhanced relativistic effects in
mercury which don’t follow the typical behaviour of scaling as ∼ Z2 [35]. From HgF, the natural
step was to look for diatomics with similar properties, namely mercury halides in general. They all
have a 2Σ ground state, can be produced easily and measured at high coherence times, and dissociate
similarly leading to efficient detection [36][16]. This group includes HgF, HgCl, HgBr 4, and HgI.
HgF and HgBr are left out of this project, but will be reconsidered in the future.

The connection of tantalum nitride with CP violation research is not as easily traceable to its metal
atom like with the mercury halides, though both TaO+ [38][39] and TaN [23][40] have been proposed
as eEDM candidates recently. Along with HgF and a few other eEDM candidates, TaN has a nuclear
magnetic quadrupole moment (MQM) due to its deformed nuclei and large nuclear spin I (> 1/2),
which makes it interesting for CP violation research in general [41]. Specifically, the first excited
3∆1 state of TaN is similar to that of ThO [41], which was used to set the previous eEDM limit
[13]. On top of that, TaN is valence-isoelectric to both ThO and HfF+ [40], the latter being the
molecule used to set the current eEDM upper limit [12]. Thus, along the same lines of logic used for
HgCl and HgI, tantalum nitride is a candidate for future eEDM research through interest in similar
molecules.

With the knowledge that these three molecules are potential eEDM experimental candidates rises the
need to understand them and their structures better. The ionisation potential is crucial for that, as
it provides detailed information of the electronic structure [42]. The IP has not been determined for
most molecules, while it is known to high precision for most atoms, only excepting the heaviest not
naturally-occurring elements [43]. HgCl, HgI, and TaN are no exception, with barely any available
data regarding their ionisation potentials. What is known from previous research will be discussed
in section 4.1, but first, I will elaborate on the objective of my thesis.

1.5 Research focus

The goal of this thesis is to calculate the ionisation potentials of HgCl, HgI, and TaN, in order to
determine if these molecules can be trapped in future experimental set-ups. This would be a small
puzzle piece in the search for the eEDM and more generally in Standard Model-testing research.
Besides that, ionisation potentials are a window into a deeper understanding of the electronic struc-
ture of molecules. The theoretical determination of IP s can provide a stepping stone for measuring

4HgBr has been looked into for eEDM research as well [36][37]
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2 THEORY

them in the future. The knowledge could also provide a helping hand to better understand trends
in similar molecules and make predictions about heavier and more complex systems.

Now, having placed the goals of this thesis in the large perspective of fundamental physics research
goals, I will continue this report by addressing the practical questions of my thesis. These are
mostly aimed at addressing the accuracy of the theoretical calculations, including the level of theory
and computational limits that can be taken into account or later corrected for, and the available
information about the three chosen molecules.

2 Theory

In this section, a few of the main theories behind the molecular calculations are highlighted (section
2.1), including an explanation of the computational methods that were utilised (section 2.2). The
equations in the rest of this thesis are expressed in atomic units [44], meaning ℏ = me = e = 4πϵ0 = 1,
unless otherwise specified.

2.1 Solving the Schrödinger equation

The theoretical understanding and description of atoms and molecules rests on the famous Schrödinger
equation, describing the components of the (molecular) system and how they interact. In this section
I will start with the general description of the Schrödinger equation and its relativistic counterpart,
the Dirac equation (see section 2.1.1), after which I will introduce their respective Hamiltonians
and the first approximation (section 2.1.2 and 2.1.3), and conclude with the first computationally
motivated approximation (see section 2.1.4), leading into the next section 2.2.

2.1.1 Schrödinger and DiraC

Describing molecules with quantum chemistry must start with the time-independent Schrödinger
equation [45];

Hψ = Eψ, (5)

which is a second order differential equation, where H is a scalar Hamiltonian, ψ the wavefunction,
and E the energy. The Hamiltonian will be discussed in detail in section 2.2, but for now its
complexity depends on the number of electrons in the system. In the case of the hydrogen atom,
analytical solutions can be found and there is a simple and well-known expression for the energy [45].
But, as soon as we introduce a second electron or nucleus, we are dealing with a many-body problem,
which becomes complex and quickly (when adding even more electrons and nuclei) impossible to
solve analytically. On top of that, for heavier systems, the Schrödinger equation is not the most
accurate to work with, as relativistic effects become increasingly relevant. Instead, we switch to the
Dirac equation, [45]

HΨ = EΨ, (6)

which is written similarly to the Schrödinger equation, but with the key difference that it is no
longer scalar. Instead, H is a 4x4 matrix operator and Ψ is a vector. The 4 comes from quantum
electrodynamics (QED), where spin-1/2 particles are described using 4x4 Dirac matrices [46]

α =

[
02 σ⃗
σ⃗ 02

]
, (7)

6



2 THEORY

with σ⃗ = (σx, σy, σz) the traditional 2x2 Pauli spin matrices that are explicit components of the
relativistic Hamiltonian. We also get a set of 2-spinor components [46] for the wavefunction

Ψ =

(
ΨL

Ψs

)
, (8)

where ΨL is upper block describing positive energy solutions (electrons), and Ψs is lower block 5

forming the negative energy solutions (positrons). However, before diving deeper into the represen-
tation of the wavefunction, let me first describe the Hamiltonian(s) in more detail.

2.1.2 The Born-Oppenheimer approximation

The full hamiltonian of a system in the Schrödinger equation (eq. 5) is

H = Te(r⃗) + TN (R⃗) + VeN (r⃗, R⃗) + Vee(r⃗) + VNN (R⃗), (9)

where T are the kinetic energies of the electrons e and nuclei N , and V are the potential energies
including Coulombic repulsion of nuclei VNN or electrons Vee, and Coulombic attraction of electrons
to the nuclei VeN [47]. They are described by the sums;

Te(r⃗) = −1

2

∑
i

∇2
i , TN (R⃗) = −

∑
A

1

2MA
∇2

A,

VeN (r⃗, R⃗) = −
∑
A,i

ZA

rAi
, Vee(r⃗) =

∑
i<j

1

rij
, VNN (R⃗) =

∑
A>B

ZAZB

RAB
.

Here, the capital letters refer to the nuclei (A,B) and their respective masses M , atomic numbers Z
and internuclear distances R, while all lowercase letters refer to the variables for the electrons [47].
The sums are not further specified, leaving this to be a general Hamiltonian for a molecule.

The first simplification to be made before the Schrödinger equation can be solved is the Born-
Oppenheimer approximation, where the description of electrons and nucleons is split. We start from
the full Hamiltonian (eq. 9) in the Schrödinger equation (eq. 5). By separating the solution into a
electronic and nuclear wavefunction - making the total wavefunction Ψ a product of the two Ψe ·ΨN

- it is possible to find the Born-Oppenheimer approximation as the electronic Schrödinger equation
[48]

He(R⃗) |Ψe⟩ =
(
Te(r⃗) + VeN (r⃗; R⃗) + Vee(r⃗)

)
|Ψe⟩ = Ee(R⃗) |Ψe⟩ . (10)

This separation is made because the electrons are lighter and move faster than the nuclei, meaning
the nuclei have relatively small changes in position. The position of the nuclei R⃗ is thus a parameter
in the electronic equation. The total molecular energy is found from the remaining nuclear part [47]

HN |ΨN ⟩ =
(
TN (R⃗) + VNN (R⃗) + Ee

)
|ΨN ⟩ = Etot |ΨN ⟩ . (11)

2.1.3 The relativistic Hamiltonian

In the relativistic picture, we separate the one-electron part of the electronic Hamiltonian from the
two-electron operator as h and g [49];

H = VNN +
∑
i

h(i) +
1

2

∑
i ̸=j

g(i, j). (12)

5These components are also referred to as upper (ΨU ) and lower (ΨL) in literature, but because the positive-energy
terms tend to be bigger when working with matter, ”larger” and ”smaller” are the preferred terms here
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2 THEORY

The h contains the relativistic equivalent terms to Te and VeN and can be expressed [49] with the
matrix

hd =

[
VeN c(σ⃗ · p⃗)

c(σ⃗ · p⃗) VeN − 2c2

]
, (13)

where

VeN (r⃗) = −
∑
A

∫
R3

ρA(r⃗
′)

|r⃗′ − r⃗|
d3r⃗′; (14)

and

∫
R3

ρA(r⃗) d
3r⃗ = ZA. (15)

Here, p⃗ is the momentum, c the speed of light, and ρA the nuclear charge density. In the latter we
see that the nuclei now no longer get treated as a point-like object, instead having a finite size. To
this one-electron expression we add

g(1, 2) =
1

r12
, (16)

which is the zeroth-order relativistic correction to the two-electron repulsion Vee [46]. These expres-
sions together in equation 12 form the Dirac-Coulomb Hamiltonian.

The full Breit operator is the first order correction term, that could be added to the 2-electron
expression, giving

g(1, 2) =
1

r12
− α⃗(1) · α⃗(2)

r12
+

1

2

[
α⃗(1) · α⃗(2)

r12
− (α⃗(1) · r⃗12)(α⃗(2) · r⃗12

r312

]
(17)

with α the 4x4 Pauli matrix expression from equation 7. If this full expression is used, we get the
Dirac-Coulomb-Breit (DCB) Hamiltonian, in which an approximation of quantum-electrodynamics
is taken into account for the electron-electron interaction with the Breit term. The first part of the
Breit term - the second term on the right-hand side of equation 17 - is called the Gaunt term and
represents a magnetic interaction, and some methods are restricted to using only the Gaunt term,
instead of the full Breit operator. The effect of the Breit term is small (O(c−2) correction [50]), but
it’s computational cost is high, so it was not included in this work.

2.1.4 X2C

While accurate, the relativistic method of using a four-component (4C) Dirac equation, DC or DCB
Hamiltonian, and 4-spinor wave-function requires solving more complex integrals and performing
larger calculations than the non-relativistic scheme. The level of relativistic accuracy in compu-
tational methods competes for resources with other levels of approximation and precision in the
electron correlation and wavefunction descriptions. The full Breit term, for example, could not be
taken into account in this thesis, though the DC 4C Hamiltonian and added Gaunt term are included
in the corrections of the uncertainty estimation (see section 3.3, and results in section 4.2.3). Most
of the calculations I have made, however, make use of the exact-2-component (X2C) method.

Because the upper and lower components of the wavefunction in equation 8 are not independent,
but instead related through

Ψs = XΨL, where X =
1

2c

(
1− V − E

2c2

)−1

σ⃗ · p⃗ , (18)
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some steps can be made to save computational resources [46]. Here, V is the external potential
and E the energy shifted to the rest mass of the electron. Because of this relation, many approxi-
mate 2 component methods have been developed throughout the years to bridge the gap between
non-relativistic and relativistic approaches. An important example is as the normalised elimina-
tion of the small component (NESC) method [51][52], which eventually lead to the X2C method,
where the two-electron integration is solved in a 2C description and afterwards translated back into
4C [53][54][55]. The one-electron integrals are still solved in a 4C matrix system, and the two are
combined for the full solution. The crucial element that makes X2C an ”exact” method is matrix
algebra; through diagonalisation and matrix transformations, the final energy calculations are equiv-
alent to 4C calculations, but the complexity of electron interaction integrals is significantly lowered
by treating them in the transformed, simpler shape. [46]

2.2 Computational methods and approximations

The Schrödinger and Dirac equations of even the smallest molecules cannot be solved analytically,
thus approximations of the Hamiltonian are made. The Born-Oppenheimer approximation was
already treated in section 2.1.2, and the (Dirac)-Hartree-Fock ((D)HF) method will be introduced
in section 2.2.3. To lead into this, the variational principle and Slater determinant will be treated
first in sections 2.2.1 and 2.2.2 respectively, as HF is a variational method where the wavefunction
is expressed as a Slater determinant.

2.2.1 Variational principle

The variational principle can be used when an exact solution of the Schrödinger equation cannot
be found, and methods based on it can be described as a form of informed trial-and-error. When a
system is described by a Hamiltonian H with its lowest eigenvalue E0, the Rayleigh ratio E [56] is
defined through

E =

∫
ψ∗
trialHψtrial dτ∫
ψ∗
trialψtrial dτ

=
⟨ψtrial|H |ψtrial⟩
⟨ψtrial|ψtrial⟩

. (19)

The trial functions can be used to solve the system, as the variation theorem states

∀ ψtrial, E ≥ E0, (20)

meaning; to minimise E is to find the ground state of the system [56]. This is done with the
Rayleigh-Ritz method. The trial function is described as a sum of basis functions and coefficients
[56]

ψtrial =
∑
i

ciψi, (21)

and the variation of the Rayleigh ratio is minimised by redefining the expression

E =

∫
ψ∗
trialHψtrial dτ∫
ψ∗
trialψtrial dτ

=

∑
c∗i cjHij∑
c∗i cjSij

→ δE =

∑
δc∗i cj(Hij − ESij)∑

c∗i cjSij
= 0. (22)

This can be solved when the numerator vanishes, which will occur for a set of equations [56] defined
by

det{|Hij − ESij |} = 0. (23)

These determinants and the basis functions will be further discussed below in sections 2.2.2 and 2.4
respectively.
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2.2.2 Slater determinant

A Slater determinant is an N by N determinant, with N being the amount of electrons. It contains
all electrons (1, ..., N) and spinorbitals (ϕa, ..., ϕz), satisfying the Pauli principle as interchanging a
pair of electrons is an antisymmetric action, and no two electrons can be in the same state as the
determinant will vanish. It is often written as

Ψ(1, 2, ..., N) =

(
1

N !

)1/2

det |ϕa(1)ϕb(2)...ϕz(N)|, (24)

which shows the principal diagonal of the full determinant [56]. The 1/N ! term is sometimes left out
and just implied, as it is a normalisation factor that shows up consistently due to the indistinguishable
nature of the electrons [48]. The Slater determinant is an antisymmetrised product of 1-electron
orbitals, so when using it we are no longer working in a true many-particle system. In fact, it was
developed in the mean-field approximation, where interactions between electrons were simplified
greatly [57].

2.2.3 Hartree-Fock

In order to solve the Schrödinger equation within the Born-Oppenheimer approximation, we use
another approximation where repulsion between electrons is not calculated exactly, but a field using
the average positions is used to interact with each electron separately. This is why the Hartree-Fock
theory is called a mean field theory [48]. It is also an ab initio theory, as it uses a potential derived
without semi-empirical parameters [58]. To illustrate this, we continue with the variational method,
because the Rayleigh ratio leads into the Hartree-Fock equations [56]

f(x⃗1)χi(x⃗i) = ϵiχi(x⃗1), (25)

with the Fock operator [56];

f(x⃗1) = hD(x⃗1) +
∑
j

Jj(x⃗1)−Kj(x⃗1) (26)

which includes the Coulomb operator [48]

Jj(x⃗1) =

∫
dx⃗2|χj(x⃗2)|2

1

r12
, (27)

and exchange operator [48]

Kj(x⃗1)χi(x⃗1) =

[∫
dx⃗2χ

∗
j (x⃗2)

1

r12
χi(x⃗2)

]
χj(x⃗1). (28)

When these equations are solved numerically with basis sets we get the Roothaan equations [56].
For each spin orbital i, there is an expansion of atomic orbital basis functions χ̃ [48]

χi =

K∑
µ

Cµiχ̃µ. (29)

When inserting this in the Hartree-Fock equations 25, multiplying by χ̃∗
µ(x⃗1) and integrating, we

get a matrix equation very reminiscent of what appeared in the variational theory in section 2.2.1;∑
ν

FµνCνi = ϵi
∑
ν

SµνCνi → FC = SCϵ, (30)

10
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with

Sµν =

∫
dx⃗1 ˜chi

∗
µ(x⃗1)χ̃ν(x⃗1) (31)

Fµν =

∫
dx⃗1χ̃

∗
µ(x⃗1)f(x⃗1)χ̃ν(x⃗1) (32)

where ϵ contains the orbital energies on the diagonal, and S is the overlap matrix that will vanish
when a transformation to an orthogonal basis is performed. The Hartree-Fock-Roothaan model is a
self-consistent field method, as F is solved iteratively. [48]

While this method was explained entirely in the non-relativistic regime, the Fock operator in equation
26 already shares clear similarity with the relativistic Hamiltonian in equation 12 from the Dirac
description (section 2.1.3). The 1-electron component of the relativistic Hamiltonian contains terms
that are comparable to the hD and J terms in the Fock operator. The Coulomb operator J is
directly the non-relativistic description of the potential VeN . The exchange operator takes spin
correlation into account [56], which is more explicitly tied into the Dirac equation as it has no
classical analogue. Therefore, while I am not explaining the details of the relativistic Dirac-Hartree-
Fock method, it can be understood from the same principles as the non-relativistic equations are
based on.

2.3 Electron interaction

The approximation of an average field is necessary to make calculations of large systems possible,
but it removes electron correlation from the picture. The instantaneous interactions between elec-
trons and other quantum mechanical electron-electron effects, which can together be called electron
correlation, can be recovered with a few different methods.

2.3.1 CI and CC

There are multiple ways to include electron-electron interaction on top of Hartree-Fock calculations.
One of these is Configuration Interaction (CI), while another is the coupled cluster (CC) method. The
CI method starts by writing the exact wavefunction Ψ as a linear combination of Slater determinants

Ψ = c0Ψ0 +
∑
a,p

cpaΨ
p
a +

∑
a<b,p<q

cpqabΨ
pq
ab + ... (33)

where Ψ0 is the HF ground state wave function. Each sum is over pairs of spinorbitals, singly excited
(a, p), doubly excited (a&b, p&q), and so on. The complete inclusion of all sums accounts for the
electron correlation that is not taken into account in the Hartree-Fock method, and is called full CI.
However, that approach is practically difficult for many-electron systems as it is computationally
expensive. Often CI gets truncated as CISD, with only single and double excitations, though that
is not size extensive. This means the energy does not scale linearly with the number of particles
of the system [59]. It is also not size consistent when truncated 6, meaning the energy of infinitely
distanced subsystems A and B would not be the same as the energy of A and B added up where
they treated as separate systems [60].

The method used in this thesis is the coupled cluster method, where the exact wavefunction is related
to Ψ0 through

Ψ = eCΨ, (34)

6The QCISD method of truncation can restore size consistency for CISD [60], but any natural truncation of CI
without such a correction is not size consistent
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where

eC = 1 + C +
1

2!
C2 + ..., (35)

is the series expansion defining the operator eC (in which Ψ0 is recovered from the 1 term), and

C = C1 + C2 + ...+ CN (36)

further defines the Cluster operator. Here, Cn is the n-electron excitation operator, and N is the
number of electrons in the system [56]. As opposed to configuration interaction, CC is size extensive
[61] and size consistent [62] even when truncated 7.

In order to combine the coupled cluster method, the Schrödinger equation is transformed as

e−CHeC |Ψ0⟩ = E |Ψ0⟩ , (37)

where e−CHeC forms a new operator that can be can be expanded as

e−CHeC = H + [H,C] +
1

2!
[[H,C], C] +

1

3!
[[[H,C], C], C] +

1

4!
[[[[H,C], C], C], C] (38)

The expansion is based on the Baker-Campbell-Hausdorff formula [63], and contains commutators
of operators defined by [H,C] = HC −CH. The series can be used because the higher order terms
after the fifth commute for the coupled cluster method, meaning these terms are the only non-zero
terms in the expansion. In order to solve equation 37, we will need to take a look at the Ci operators
in equation 36.

2.3.2 CCSD and CCSD(T)

The one- and two-electron excitation operators of the coupled cluster method act equal to those of
CI, namely

C1Ψ0 =
∑
a,p

tpaΨ
p
a (39)

C2Ψ0 =
∑

a,b,p,q

tpqabΨ
pq
ab (40)

where t are the amplitudes [56]. As CC is defined with an exponential operator, truncation of
the method at Singles (S), Singles and Doubles (SD), or any other is not the same as for CI. The
expansion of eC produces cross terms such as C1C2Ψ0. When CI is truncated as CISD, it includes
all single and double excitations, but no more. CCSD is a truncation of C as C = C1+C2, meaning
- on top of all single and double excitations - some triple and quadruple excitations are also included
in the calculation. The projection equations for the CCSD method are

⟨Ψ0|H
∣∣∣∣(C2 +

1

2
C2

1 )Ψ0

〉
= Ecorr, (41)

⟨Ψa
i | H̄

∣∣∣∣(C1 + C2 +
1

2
C2

1 + C1C2 +
1

6
C3

1

)
Ψ0

〉
= taiEcorr, (42)

7For a more extensive discussion on the size-extensivity of truncated CC, see [59], as there are some different
models and methods of applying CC that are more or less size extensive
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〈
Ψab

ij

∣∣ H̄ ∣∣∣∣(1 + C1 + C2 +
1

2
C2

1 + C1C2 +
1

6
C3

1 +
1

2
C2

2 +
1

2
C2C

2
1 +

1

24
C4

1

)
Ψ0

〉
= (tabij + tai t

b
j − tbi t

a
j )Ecorr, (43)

with H̄ = H − EHF . This is how the coupled cluster method gets combined with the Hartree-Fock
method [60], solving the transformed Schrödinger equation 37. The projection method is used with
the coupled cluster method instead of the variational principle, as the equations become rather
unmanageable otherwise. This means the correlation energy is not related to an upper bound, as
we would expect from methods based on the variation theorem.

The DIRAC programme used in this project is capable of CCSD calculations, but not of full CCSDT
due to the computational cost. Instead, it used a perturbative method to include triple excitations,
noted as CCSD(T). The triples correction

∆ET (CCSD) =

(
S∑
S

+

D∑
S

)
T∑
t

D∑
u

(E0 − Et)
−1tSVsiVtutu, (44)

gets added converged CCSD energies E0, with V representing the perturbation operator [60]. There
are a few different methods of adding triple excitations perturbatively, but CCSD(T) is currently
used as the golden standard. This is because it uses not only all fourth order terms, but also one
fifth order perturbative term that corrects for an imaginary frequency produced in some alternative
methods [64][60].

2.4 Basis sets

The use of the variation theorem within the HF procedure leads us to use trial functions to find the
lowest energy state. These trial functions are then described in equation 21 as a sum of coefficients
and basis functions. These coefficients are optimised, while the basis functions remain fixed. Basis
sets are used to describe the number and type of basis functions used to approximate the electronic
orbitals.

2.4.1 Gaussians or Slater orbitals

Basis functions need to be centred on the atoms in the molecule, to represent the electrons moving
around the heavy nucleus. The two most often used function forms to describe orbitals are Slater-
type and Gaussian-type. The difference between them is quite small, as they are defined by

ϕSTO
abc (x, y, z) = Nxaybzce−ζr, (45)

ϕGTO
abc (x, y, z) = Nxaybzce−ζr2 , (46)

with N a normalisation constant, a, b, c relating to angular momentum, and ζ the width of the orbital
[56]. Slater-type orbitals represent orbitals more accurately (see Figure 3a), but are much harder to
work with than Gaussian-type orbitals. The latter have analytical solutions and the useful feature
that the product of two Gaussians will form a Gaussian (see Figure 3b). Therefore, combining
multiple Gaussian functions to form orbitals is preferred over the use of Slater-type orbitals in many
programmes, including the DIRAC programme used in this project [49].
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(a) (b)

Figure 3: (a) Orbital of Slater-type (STO) has a cusp at a nucleus, while a Gaussian does not (b)
Gaussian product G1G2 is centred between G1 and G2. (Figures 9.3 and 9.4 of [56])

2.4.2 Molecular orbits

Similar to how trial functions are a sum of coefficients and basis functions, molecular orbitals are
approximated as a sum of coefficients and atomic orbitals represented by basis functions;

χk =
∑
s

cksϕs (47)

This is known as the linear combination of atomic orbitals (LCAO) approximation [56]. The coeffi-
cients are optimised based on variational theory. This description of molecular orbitals is a necessary
approximation, because their behaviour is more complex than that of atomic orbitals, especially for
the bonding region. In an atom, letters like s, p, and d are used to refer to different shells or energy
levels, which get replaced by σ, π, δ, et cetera in molecules. In the valence shell, where atomic
orbitals in the molecule overlap most, the combined molecular orbitals are particularly mixed in
character. The determination of molecular structure with these methods is done based on molecular
orbital theory. [56]

2.4.3 Naming system of basis sets

In this project, the Dyall basis sets are used, which are tailored for relativistic calculations [65][66][67].
Within these basis sets, accuracy of approximation and computational cost can be balanced multiple
ways.

First, the amount of functions to describe orbitals is described with the cardinality. For example,
a minimal basis set contains one function to represent each occupied orbital; s-type orbitals get 1
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functions, p-type get 3 for the combined px, py, and pz orbitals, and so on. When two functions are
used per orbital this is referred to as a double zeta basis set (e.g. vDz or v2z ), which adds accuracy
in the representation of the orbitals. Using three or four functions per orbital, triple and quadruple
zeta basis sets are the ones used most in this thesis.

Next, the difference between core and valence orbitals is of importance. For the ionisation potential,
the electrons in the most outer shells tend to be more relevant than the electrons closest to the
nuclei. The name of a basis set will have a v in it to signify split-valence, where a single set of
functions is used for core electrons, and cardinality describes that of valence electrons only. It is
a small compromise of accuracy, in order to save computational resources. For other molecular
properties however, the core electrons have a larger effect, and split-valence basis sets provide less
reliable results. For a complete basis set where all electrons are actively correlated instead of only
valence orbitals, ae is used in the basis set name in place of the v (e.g. v3z and ae3z).

Furthermore, additional diffuse functions can be added to more accurately describe excited states or
ions, or other situations where orbitals are extended to large distances. They are referred augmented
functions, and are Gaussians with a small exponent (see equation 46). This is often described with
the prefix aug - for augmented functions - combined with an s (for a single function). When the
augmented function is optimised for Dyall basis sets, a is used instead of aug [67], and they can also
be combined (e.g. s-aug-v4z, av4z, and s-aug-av4z).

2.4.4 CBS limit

Extending basis sets with higher cardinality and including more and more functions is too compu-
tationally expensive. However, progressively larger basis sets give more accurate results, from which
it is possible to extrapolate the converged lowest energy. The complete basis set limit is found by
an exponential or power law extrapolation function using the energy points at different cardinality.
Further corrections can be added by comparing X2C and 4C results, or including more electrons in
the valence set.

Due to the convergence rate of DHF and CC calculations being different, there are two extrapolation
methods. For DHF energies, an exponential formula applies [68]

E(x) = E∞ +Be−αX , (48)

while for CCSD and CCSD(T) correlation energies, a power law is used [69]

E(x) = E∞ +BX−α. (49)

The x refers to the cardinality of the basis set, and through filling in the energies at three cardinal
numbers 2, 3, and 4, the CBS energy (E∞) and fitting parameters B and α can be found. In the
exponential case (eq. 48), the joined equations are;

E∞ =
E(Dζ)E(Qζ)− E(Tζ)2

E(Dζ)− 2E(Tζ) + E(Qζ)
, (50)

B =
(E(Dζ)− E(Tζ))

4

(E(Tζ)− E(Qζ))
2
(E(Dζ)− 2E(Tζ) + E(Qζ))

, (51)

α = ln

(
E(Dζ)− E(Tζ)

E(Tζ)− E(Qζ)

)
, (52)

where Dζ, Tζ, and Qζ refer to double, triple, and quadruple zeta [69].
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For the power law in equation 49, there is no analytical solution, so instead we use an approximation
where α = 3, and find

Ecorr
∞ =

43E(Qζ)− 33E(Tζ)

43 − 33
, (53)

B = 33 (E(Tζ)− E∞) , (54)

as the CBS correlation energy [70][71][42]. For the calculations of this thesis project, the CBS-limit
solutions were found using the formulas above in my own python script.

3 Methods

In this section, the theoretical knowledge of section 2 is applied to explain the strategy for the
calculations reported in section 4. This is split up in the approach of bond length calculations
(section 3.1) as the basis of the determination of ionisation potentials (section 3.2), and finally the
procedure of uncertainty estimation (section 3.3).

For this project, the 2023 and 2024 versions of the DIRAC programme [49] were used via the Hábrók
computing cluster [72]. Post-processing was done in Python [73], using libraries os, numpy [74], copy,
and matplotlib.pyplot [75].

3.1 Bond length optimisation

The bond lengths of the molecules were optimised with different Dyall basis sets, starting with
vXz (cardinality X = 2, 3, 4), and adding two layers of augmentation; one pre-optimised (avXz
sets), the next obtained by a ratio (s-aug-avXz) 8. For each basis set, the bond lengths were found
with 8th degree polynomial curves fitted to at least 9 points of data from different calculations,
meaning the Re is converged to at least mÅ 9. This was done with python, using the function
”numpy.polynomial.polynomial.polyfit” [74], which returns the coefficients of a polynomial equation

p(x) =

n∑
i=0

cix
i (55)

up to a specified degree n of the least-squares fit polynomial for the dataset. To find the equilibrium
bond length, the derivative of the polynomial is taken through

p′(x) =

n∑
i=1

icix
i−1. (56)

The minimum can then be found with the function ”numpy.polynomial.polynomial.polyroots” [74].
This function also gives maxima and other extrema on the complex domain. To focus on the
equilibrium bond length, I first required the the potential Re to be real, ignoring the complex results
of the polyroots function through a check with the function ”numpy.iscomplex”. I then specified
a domain with the calculated bond length - assuming that Re would be between the smallest and

8TaN could not be optimised with additional augmented basis sets due to convergence issues, which are discussed
in section 4.2

9The convergence rate of the polynomial curves depending on the degree was determined with a different molecule,
as part of a tutorial in the use of the DIRAC programme developed by prof. Anastasia Borschevsky for internal use
by the VSI-AIM research group
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biggest bond lengths I had calculated with DIRAC - and this should leave only one minimum, which
is the equilibrium bond length.

For all calculations, DHF, CCSD, and CCSD(T) methods were used. The bond length optimisation
was done at the X2C level of relativity. For each molecule, an active set of spinors was chosen. In
HgCl and TaN this was from −30.0 to 30.0 Hartree, while the active space in HgI was set from −50.0
to 50.0 Hartree. This choice was made after a preliminary DHF calculation determining the energy
levels of the different orbitals, where −30.0 Hartree turned out to be an inappropriate cut-off for
HgI as it was approximately the energy of an electronic eigenvalue. At −50.0 Hartree, there was no
such issue, thus that cut-off was chosen instead. HgCl and TaN did not have this issue, and thus a
comparatively smaller active energy region was kept to reduce computational cost. In HgCl, which
has a 2Σ1/2 ground state and 97 electrons total, that meant 65 electrons were included in the valence
region. TaN has a 1Σ+ ground state and 80 electrons, of which 52 are included in the active space.
Lastly, HgI has a 2Σ1/2 ground state and 133 electrons, of which 91 are treated as valence electrons.

The complete basis set limit extrapolation was calculated using the s-aug-avXz basis set results for
HgCl and HgI, with the schemes described in section 2.4.4. For TaN, the augmented basis sets
that were not optimised did not produce reliable results and because of that the avXz basis sets
were used to determine the CBS bond lengths. These Re were again found through a 8th degree
polynomial fit, this time using the extrapolated energies. Specifically for the CCSD and CCSD(T)
results, the correlation energies from the CBS-extrapolation were added to the DHF CBS energies
before determining the Re, ensuring all bond lengths were determined with the total energies that
form the potential energy curves. All of these results are compiled in section 4.2.1, and the appendix
C.1 contains some additional data.

3.2 Ionisation potentials

The energies at the determined bond lengths were used to calculate the ionisation potential. This
was done by setting x = Re in equation 55 for the neutral molecule and the ion respectively, and
taking the difference between the two energies. The factor used to translate from Hartree to eV
was: 1 Hartree = 27.211386245981 eV. The results of this method are found in section 4.2.2 and the
Appendix C.2.

For better comparison with experiment, I have also employed a method to find a vibrationally
corrected adiabatic ionisation potential IPvc, which can be calculated through

IPvc =

(
E+ +

1

2
ω+
e − 1

4
ωeχ

+
e

)
−
(
En +

1

2
ωn
e − 1

4
ωeχ

n
e

)
, (57)

where superscripts + and n refer to the ion and neutral molecule respectively, E are the energies
at the respective bond lengths, ωe are the vibrational frequencies, and ωeχe is the anharmonicity
correction [42]. Both ωe and ωeχe can be determined from the potential energy curves used to
determine Re, which was done using the twofit programme of DIRAC [76] [49]. Because the twofit
programme uses a polynomial fit as well, the degree was kept at 8 for consistency with the bond
length calculations.

3.3 Uncertainty estimation

To correct for any approximations made throughout the determination of the ionisation potentials,
calculations at different levels of theory and computational ability can be compared. The assumption
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made in this overall uncertainty estimation is that all sources of error are independent enough to be
treated separately, as they are higher-order effects [42].

First, to estimate the size of relativistic effects like the Breit term and QED corrections, the IP s
of all molecules are calculated at X2C, 4C DC (Dirac-Coulomb) and 4C DC+Gaunt level with the
v3z basis set using the CBS CCSD(T) equilibrium bond lengths found in previously described steps.
The Gaunt term correction can only be calculated at DHF level, so the comparison is made between
the SCF level ionisation potentials found with the three methods. The differences between each
step of relativity form the corrections, each at the highest level of electron correlation possible. The
uncertainty is based on part of the correction term from the highest level and second highest level
(4C DC+Gaunt compared to 4C DC), assuming the addition of the full Breit term or QED effects
would lead to a smaller contribution than this correction.

Secondly, in the domain of electron correlation, two methods are used. The IP s of the molecules
are calculated with the original virtual cutoff of 30.0 Hartree (HgCl, TaN) or 50.0 (HgI), with the
v3z basis set at the X2C CBS CCSD(T) Re, which forms the base for comparison of all correction
calculations done. Here, the results are compared to a calculation with the ae3z basis set and a
virtual cutoff of 3300.0 Hartree to mirror the cutoff of −3300.0 Hartree, which is large enough to
include all electrons. This forms the active space correction. While increasing the negative energy
cut-off from here would not make a difference, as all electrons are accounted for, the virtual active
space could still be increased. A percentage of the correction can therefore also be taken to represent
the uncertainty of the contribution due to including an even larger virtual space. Besides that, 10%
of the difference between the CCSD and CCSD(T) result in the CBS limit is taken as an estimate of
the error due to higher-order excitations (full triples, quadruples, etc.). For this, no new calculation
can be made with the DIRAC programme, but as CCSD(T) is known as the golden standard method,
the error is expected to be relatively small. Specifically, the smaller percentage of 10% compared
to the other uncertainty estimates (50% of the correction) is based on the fact that higher order
excitation corrections are known to exhibit changes of sign, and will potentially cancel out [42].

Lastly, to evaluate the basis set incompleteness, two methods are used as well. To start, the difference
between the CBS limit and largest basis set IP results (s-aug-av4z for HgX and av4z for TaN) is
taken to base the extrapolation error on. Next, the effect of addition of diffuse functions can be
compared, using results from the largest basis sets; v4z, av4z, and (where available) s-aug-av4z. The
difference between the respective ionisation potentials can account for the error caused by the lack
of additional diffuse functions. The difference between the best and second-best calculation is taken,
but whenever a third level is available, differences between all three could show a trend. For the
evaluation of basis set completeness, no new calculations are performed, as enough data from large
basis set calculations is gathered prior to this step, for ionisation potential calculations described in
previous section 3.2.

4 Results and discussion

4.1 Literature research

In order to have a starting point for my calculations, as well as a reference for comparison, I focussed
my literature research on the equilibrium bond length, ionisation potential, and previously calculated
eEDM enhancement factors. The complete tables with this data can be found in Appendix B (Tables
B.1 through B.4). In section 4.1.1 and 4.1.2 below, the most relevant findings are highlighted and
elaborated on.
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4.1.1 HgCl and HgI

Mercury monohalides (HgF, HgCl, HgBr, and HgI) are a class of polar molecules with a ground
electronic state of 2Σ1/2, meaning there is one electron in an σ-type orbital that is not in a closed
shell. This makes them sensitive to eEDMs in their ground state. Moreover, σ-type states are
relatively simple to calculate with high accuracy. The heavier HgX molecules are easier to polarise
than HgF, making them more interesting in experimental settings. [36]

While the enhancement factors of both HgCl and HgI have been calculated before [36][61][77] (see
Table B.3), the ionisation potentials and bond lengths of both are only known to limited degrees
of accuracy. The ionisation potential of HgCl and HgI has not been determined experimentally,
although the combined ionisation and dissociation energy of HgX2 [78][79] is often cited to approx-
imately represent the HgX IP . Later, theoretical estimations of the IP where made [80] using
normalised elimination of the small component (NESC) CCSD(T) calculations. In terms of im-
provement; NESC is the predecessor of the X2C method used in this project, and these previous
calculations used smaller (cardinality 2 and 3) basis sets as well. Knowing this, I put my expecta-
tions on finding an ionisation potential of about 9 eV for HgCl, and about 8 eV for HgI (see Table
B.1).

Many more theoretical calculations of the equilibrium bond length of both HgCl and HgI exist, with
one of the most accurate to date a CCSD(T) calculation based on the approximately relativistic
Douglas-Kroll-Hess Hamiltonian for HgCl expanded to the CBS limit [81]. The most recent the-
oretical relativistic determination of the bond length of HgI was a CCSD calculation [82], where
the authors also calculated the bond length of HgCl and both ions HgI+ and HgCl+. There is
some experimental data for HgCl; the bond length has been determined through electron diffraction
photographs [83][84], spectrographs [85], and chemiluminescent spectra [86]. For HgI, there are not
many bond length values available at the moment, and none with high accuracy. However, it is
known than the Re of mercury halides increases regularly with the increase of the atomic number
of the halogen atom [87]. Thus, a bond length around 2.35 Å in HgCl can be expected, and HgI
should have a larger bond length, likely around 2.8 Å (see Table B.2). The ions are both closed-shell
systems with a positive charge, and consequently have a smaller bond length, differing from the
neutral system by 0.1 Å or so.

4.1.2 TaN

Compared to the mercury diatomics, much less is known about tantalum nitride, though it has
attracted attention as a eEDM experiment candidate recently. Tantalum is a transition metal and
transition-metal-molecules often have complex spectra, though they are interesting for chemistry
and astrophysical 10 research [88]. Because of this complexity, much focus has been on the first
excited 3∆1 state of TaN, for which the eEDM enhancement factor has been calculated [23][40] (see
Table B.4). The ground state of TaN is 1Σ+, a closed shell state, though the ground and first excited
states lie very close together [88].

The bond length of TaN was experimentally determined through spectrometry from a hollow-cathode
lamp [88] as well as laser-induced fluorescence [89]. Some theoretically calculated bond lengths exist
as well, the best so far being a recent relativistic CCSD(T) calculation extended to the CBS limit
[90], though that calculation does not agree with the experimental findings as well as some other
theoretical estimates (see Table B.4). This means a bond length of about 1.7 Å can be expected in

10Specifically, diatomic transition metal nitrides like tantalum nitride are important for astrophysical research, while
the focus of organic and organometallic chemistry research is on the general larger group of transition metal molecules
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4 RESULTS AND DISCUSSION

my calculations, but ideally we look for agreement with the 1.6830999(88) Å experimental Re [88].
The bond length of TaN+ is unknown, but can be expected to be a bit smaller than that of TaN,
similar to the trend in HgX/ HgX+. Different from the mercury halides, TaN has a much smaller
bond length than HgCl, even though their atomic number is comparable. Tantalum nitride has a
much more covalent bond than HgX, and is of triple bond order [23]. A combination of these two
factors likely lead to the large difference in bond lengths between HgCl and TaN.

From my search, it seems the ionisation potential of TaN as a diatomic molecule in the gas phase
remains unknown. However, as the bond length was determined with great precision, that can form
an anchor in the calculation accuracy of the IP . The comparison between my results and previously
determined Re and IP will be discussed in section 4.2 for all three molecules.

4.2 Calculation results

All bond lengths are in Angstrom [Å], all ionisation potentials are given in eV. The factor used to
translate from Hartree to eV was: 1 Hartree = 27.211386245981 eV [43]. The convergence from
cm−1 to eV is exact, based on [cm−1]= hc/e [eV], using the CODATA recommended values of h, c,
and e [43].

4.2.1 Bond length optimisation

The bond lengths of HgCl, HgI, TaN, and their respective ions were determined for different basis
sets and at the CBS limit through extrapolation, following the strategy described in section 3.1. An
example of the potential energy curve is shown in Figure 4, with the equilibrium bond length of HgCl
at the extrapolated CBS limit. For completeness, Figures C.1 till C.5 are included in Appendix C.1,
displaying the same Re for the other molecules and their ions. While every polynomial function is
based on at least 9 calculated points, it can be seen in these figures that 11 to 13 points were taken to
determine the final CBS Re. These 12 points are bond lengths for which a (s-aug-)avXz calculation
was performed at all three levels of cardinality (X=2,3,4). These added points contribute to a higher
accuracy of the curve and thus Re for the final CBS values. Figure 4 shows more calculated points
above the equilibrium bond length than below, due to the fact that the Re of smaller basis sets
tends to be larger. Thus, calculations at larger bond lengths are performed, and the parabola-like
shape becomes less obvious. The relationship between equilibrium bond length and basis set size is
visualised in Figures 5 and 6.
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Figure 4: HgCl equilibrium bond length of the CBS X2C CCSD(T) calculation

Figures 5 and 6 are included to illustrate the trend of the equilibrium bond length decreasing with
increasing basis set size. The included Re per molecule are mentioned in Tables 1, 2, and 3. The
s-aug-v3z and s-aug-v4z results were left out because s-aug-vXz calculations are at the same level
of augmentation as avXz, only being slightly less accurate due to the lack of optimisation. While
the differences between both single augmentation methods are small, the stepwise increase of basis
set size and the trend that ensues is more clear when including only one of the methods. For
completeness, the s-aug-vXz Re are included in Tables C.1, C.2, and C.3 in the appendix (and the
ionisation potentials for these basis sets in Table C.4 and C.5).
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Figure 5: Equilibrium bond lengths trend with increasing size of basis set of molecules HgCl, HgI, and
TaN

Figure 6: Equilibrium bond lengths trend with increasing size of basis set of molecules HgCl, HgI, and
TaN
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The coupled cluster calculations especially exhibit a large drop in bond length with
increasing basis set size, while SCF bond lengths settle much more quickly. This was
expected, as the convergence rate of DHF energies is in accordance with an exponen-
tial law, while the correlation energies follow a power law (see section 2.4.4 for the
equations). At a cardinality of 4, the figures also show the determined bond length
slightly lowers with each addition of a diffuse function. This can be explained by the
added accuracy these augmented functions bring to the description of the area further
away from the nuclei, and was thus also an expected trend.

In both the HgCl and HgI trends the decrease in Re for CC calculations is more intense
than for TaN. Additionally, the shift in equilibrium bond length for HgI and its ion is
a bit more erratic rather than following a smooth trend. To explore this behaviour in
the future, basis sets of higher cardinality might be employed. For HgI the additional
exploration of non-augmented cardinality X = 2, 3 basis sets would show if the erratic
behaviour is similar between all vXz, avXz and s-aug-avXz calculations. On the other
hand, there is a bigger difference between the CCSD and CCSD(T) trends for TaN
and the addition of electron interaction raises the bond length compared to the SCF
results. The latter also happens for HgI. In this case, higher excitation terms would
be most interesting in future research.

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 2.400 2.402 2.407 2.269 2.262 2.269

saugav3z 2.388 2.371 2.376 2.258 2.235 2.241

v4z 2.385 2.359 2.362 2.255 2.224 2.228

av4z 2.385 2.358 2.361 2.254 2.222 2.226

saugav4z 2.384 2.357 2.360 2.253 2.221 2.225

CBS (saugavXz) 2.385 2.351 2.353 2.254 2.215 2.219

Final (CBS CCSD(T))

basis set
HgCl Re [Å] HgCl+ Re [Å]

2.353± 0.024 2.219± 0.024

Table 1: HgCl and HgCl+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the saugavXz (X=2,3,4) results
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DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 2.728 2.778 2.784 2.615 2.606 2.612

saugav3z 2.718 2.738 2.748 2.603 2.575 2.580

v4z 2.715 2.716 2.722 2.600 2.556 2.560

av4z 2.714 2.719 2.725 2.599 2.558 2.562

saugav4z 2.713 2.716 2.722 2.598 2.556 2.560

CBS (saugavXz) 2.714 2.708 2.712 2.599 2.549 2.552

Final (CBS CCSD(T))

basis set
HgI Re [Å] HgI+ Re [Å]

2.712± 0.024 2.552± 0.024

Table 2: HgI and HgI+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the saugavXz (X=2,3,4) results

The tantalum nitride CBS extrapolation was performed using the avXz calculations,
while the CBS results of HgCl and HgI both are based on s-aug-avXz energies. The
difference is a layer of augmentation that could not be reached for the TaN calculations,
as non-optimised augmentation calculations often did not converge at the SCF level (s-
aug-vXz and s-aug-avXz). This happened especially with larger basis sets (s-aug-v4z
and s-aug-av4z), although enough s-aug-v3z calculations converged to determine the
Re and the IP , both included in Table C.3 and C.5 in the appendix. The convergence
issue seemed to arise from the molecule not reaching the ground state configuration,
instead getting stuck in a semi-stable state somewhere between the first excited state
3∆1 and 1Σ+. Because the two states are known to be so close together, this is likely
the cause of the behaviour. For molecular properties where augmented functions are
more essential, this issue with TaN should be taken into account by analysing the
electronic eigenvalues and performing a Mulliken population analysis of the valence
electrons.
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DHF CCSD CCSD(T) DHF CCSD CCSD(T)

av2z 1.639 1.676 1.696 1.616 1.656 1.675

v3z 1.636 1.669 1.689 1.612 1.649 1.668

av3z 1.635 1.668 1.689 1.612 1.648 1.667

v4z 1.633 1.659 1.679 1.610 1.639 1.657

av4z 1.632 1.658 1.677 1.609 1.637 1.656

CBS (avXz) 1.632 1.651 1.671 1.608 1.631 1.649

Final (CBS CCSD(T))

basis set
TaN Re [Å] TaN+ Re [Å]

1.671± 0.024 1.649± 0.024

Table 3: TaN and TaN+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the avXz (X=2,3,4) results

For HgCl, there are many earlier determined bond lengths available to compare my
results to. First, the Re of 2.353 Å differs from the experimentally determined Re’s
in Table B.2 with about 100 mÅ. However, these experimental results are mutually
inconclusive, as they range from 2.23 [83] to 2.532 Å [84] with no overlap in confidence
interval due to differing methods. My calculation does fall in this experimental range.
The agreement with the most recent theoretical determination of 2.331 Å Re [34] and
earlier CBS-extrapolation to 2.3777 Å [81] is much better, my Re falling in the middle
and differing with less than 25 mÅ from each. These differences can be expected from
different levels of relativity - the Douglas-Kroll-Hess Hamiltonian [81] being an earlier
two-component approximation of 4C than X2C [49], and the other approach being
quasi-relativistic [34].

The literature results to compare to for HgI are much more sparse. Experimentally,
there is only the large minimum-maximum range from 2.36 to 2.81 Å [86], and 2.443
Å [84] which is unexpectedly smaller than the bond length of HgCl determined in
the same paper. The latter result is thus marked as doubtful, considering the trend
of increasing bond length with larger halides in HgX is well known [87]. This leaves
only the range, in which my calculated Re of 2.712 Å does fit. In 2022, the bond
length of HgI was calculated at 2.7642 Å with a quasi-relativistic method and multi-
reference CI [87], rather than the single reference CC X2C approach taken in this
paper. This and the difference in basis set choice explains the ∼ 50 mÅ difference
between the results. My calculation is likely more accurate due to the use of a more
precise relativity correction technique, the basis set limit extrapolation, and higher
order excitations, even if it is only a single reference method. CCSD calculations with
the Fock space method could be employed to gain a multi-reference CCSD result in the
future. This approach was not employed in this thesis as the DIRAC programme does
not support the use of the perturbative triple CCSD(T) in Fock space calculations,
and a multi-reference method is generally most helpful in complex open-shell states.
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In contrast to the mercury halides, the experimentally determined Re of 1.6830999(88)
Å for TaN [88] agrees very well with my equilibrium bond length of 1.671 Å, differing
only by 12 mÅ. From the previous theoretical estimates, only the 1.6831 Å result agrees
better with experiment, likely partially due to the fact that it is based on a full 4C
relativistic method [40]. However, as a smaller basis set and CI was used, there could
be a favourable error cancellation leading to the better agreement. As can be seen in
Table 3, my av3z Re is actually closest to the experimental bond length. However, the
bond length also increases with added electron correlation from DHF to CCSD(T), so
added higher excitations calculations with the larger basis sets would together give an
even more accurate Re for TaN, if higher precision is required in the future.

Overall, the determined bond lengths are accurate to the mÅ level as equilibria for
the specific applied methods due to the degree of the polynomial curves. From the
agreement between the bond length of TaN and the experimental bond length, a
conservative error of twice the difference is taken as the uncertainty of all Re. The
final equilibrium bond lengths determined in this project of 2.353 Å (2.219 Å) for HgCl
(HgCl+), 2.712 Å (2.552 Å) for HgI (HgI+), and 1.671 Å (1.649 Å) for TaN (TaN+)
have an uncertainty of about 24 mÅ.

4.2.2 Ionisation potentials

The energies at the determined bond lengths were used to calculate the ionisation
potential according to the strategy described in section 3.2. The convergence trend for
the IP of HgCl with increasing basis set size can be observed in Figure 7. The trend is
not quite comparable to those in the bond length illustrated in Figures 5 and 6. For
the SCF calculations, the IP lowers and quickly converges towards the CBS limit, as
happens for the Re. On the other hand, the CCSD and CCSD(T) calculated ionisation
potentials show a slight increase along with the basis set size. This can be explained
by the energy stabilisation that occurs in the neutral molecules, which is larger than
that of the ions. The addition of electron correlation effects lowers the energy of the
molecules, as the system is initially slightly unstable in its neutral state. The same
happens in the ion, but this system is already much more stable due to the charge
interactions. The relative difference between molecular and ionic energy thus becomes
larger, increasing the calculated ionisation potential. This same trend does not appear
for Re, as the shape of the potential energy curves stays similar for both the neutral
molecule and the ion. What is repeated is the relatively large difference in the IP at
CCSD and CCSD(T) level of TaN, while the trend of increasing IP with basis set size
is less pronounced. This is reflected in the uncertainty, and further discussed in 3.3.

The IP s of HgCl and HgI are summarised in Table 4, and those of TaN in Table
5 (complete versions including s-aug-vXz results in Appendix C.2). At the highest
level of precision reached here, the ionisation potentials are determined to be 9.428 eV
(HgCl), 8.771 eV (HgI), and 8.461 eV (TaN).
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DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 8.669 9.339 9.347 8.034 8.622 8.633

saugav3z 8.593 9.330 9.356 7.964 8.646 8.675

v4z 8.583 9.350 9.379 7.955 8.676 8.706

av4z 8.581 9.359 9.391 7.954 8.690 8.722

saugav4z 8.580 9.359 9.391 7.952 8.691 8.723

CBS (saugavXz) 8.583 9.392 9.428 7.955 8.736 8.771

basis set
HgCl IP [eV] HgI IP [eV]

Table 4: HgCl and HgI ionisation potentials per basis set, with the CBS limit extrap-
olation based on the saugavXz (X=2,3,4) results

TaN IP [eV]

basis set

av2z 7.192 8.230 8.406

v3z 7.178 8.262 8.451

av3z 7.177 8.270 8.462

v4z 7.175 8.260 8.456

av4z 7.174 8.263 8.460

CBS (avXz) 7.173 8.259 8.461

DHF CCSD CCSD(T)

Table 5: TaN ionisation potentials per basis set, with the CBS limit extrapolation
based on the avXz (X=2,3,4) results
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Figure 7: HgCl ionisation potential trend with increasing size of basis set
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In order to determine the vibrationally corrected adiabatic ionisation potential IPvc,
the vibrational frequencies ωe and anharmonicity corrections ωeχe were found from the
potential energy curves of the CBS energies. These spectroscopic constants and the
resulting vibrationally corrected ionisation potential IPvc (calculated with equation
57 and the CCSD(T) energies and constants) are included in Table 6. As the focus
of this thesis was on theoretical calculations, the addition of the IPvc calculation was
considered later, thus the ωe and ωeχe calculations were only made with the CBS
results. Therefore, these are not included in the basis set trend analysis.

From the comparison between the terms for the molecule and the ion, it is clear
that these corrections almost fully cancel out for TaN, leading to an IP correction of
approximately 0.4 meV. For HgI, the difference between ωn

e and ω+
e is about 40 cm−1,

and while ωeχ
n
e and ωeχ

+
e are nearly the same size, they are opposite in sign. Still,

this only leads to a vibrational correction of about 2 meV for HgI. In HgCl, the ωeχe

terms approximately cancel out, while the difference between ωn
e and ω+

e is enough to
cause IPvc to be about 50 meV larger than IP .

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

ωe 309.9 302.9 297.6 396.5 394.5 384.5

ωeχe −0.988 8.23 8.14 −2.70 8.14 8.02

ωe 158.9 140.7 135.4 185.7 182.9 179.4

ωeχe −4.01 −2.22 −3.34 2.46 4.63 4.62

ωe 1237.5 1170.8 1107.7 1244.8 1175.9 1114.3

ωeχe 2.54 3.22 3.98 2.60 3.59 4.08

Spectroscopic constants
HgCl [cm−1] HgCl+ [cm−1]

HgI [cm−1] HgI+ [cm−1]

TaN [cm−1] TaN+ [cm−1]

IPvc (CCSD(T)) [eV]
HgCl HgI TaN

9.434 8.773 8.461

Table 6: Spectroscopic constants ωe and ωeχe determined from CBS potential energy
curves, and calculated IPvc

The spectroscopic constants ωe and ωeχe have been determined experimentally for
some of the included molecules. For HgCl, ωe is reported as 292.61 cm−1, about 5 cm−1

smaller than my estimate. In HgI the difference is a bit larger, with the experimental
value being 125.0 cm−1, 10 cm−1 below my estimate. It appears the addition of higher
excitations is important for the ωe values to be more comparable with the experimental
data, as Table 6 shows a gradual decrease of ωe from DHF to CCSD(T) for both HgX
molecules. For TaN, ωe has not been determined purely experimentally, though a

29



4 RESULTS AND DISCUSSION

non-relativistic DFT calculation reporting 1102.7 cm−1 exists and only differs from
my calculations by 5 cm−1. Considering these differences, a conservative uncertainty
estimate of 15 cm−1 can be taken for my ωe calculations, based taking 1.5 times the
difference between the HgI results and experiment.

Next, ωeχe has only been measured with high accuracy for HgCl at 1.6025 cm−1,
which is very different from my estimate. The value has been estimated for HgI at
1.0 cm−1 as well, which shows the stark difference between ωeχe for HgCl and HgI in
my calculations is likely fully due to inaccuracy rather than a representation of real
differences between both molecules. With this, the error is conservatively set to 10
cm−1.

4.2.3 Uncertainty estimation

According to the strategy explained in section 3.3, three correction terms were calcu-
lated for the ionisation potentials using energies at the CBS equilibrium bond lengths.
The first correction, accounting for a higher active space, comes from a comparison
of X2C CCSD(T) v3z IP to the IP calculated from with the ae3z basis set. The
active space was increased from the range of −30 to 30 Hartree, to a range of −3300
to 3300 Hartree, while all other settings were kept constant. This was done for both
HgCl and TaN, but for HgI a smaller basis set was used - v2z with −50 to 50 Hartree
active and ae2z with active −3300 to 3300 Hartree - as the larger size of the molecule
made the ae3z calculation computationally much more expensive. However, all HgI
calculations were made with a larger active space than HgCl and TaN. This means the
HgI calculations include many more virtual orbitals already, leading to a much smaller
correction term and error from additional active virtual orbitals. As can be seen in
Table 8 virtual space is one of the biggest sources of uncertainty for HgCl and TaN,
which could be lowered significantly in future calculations if an active space similar to
that of HgI is taken instead.

For the second correction term, the X2C CCSD(T) v3z IP was taken again, this time
compared to a calculation using the 4C Dirac-Coulomb Hamiltonian (and CCSD(T)
v3z). X2C calculations were made throughout the thesis, as a 4 component method
requires more computational resources. The correction is small, < 8 meV, showcasing
the accuracy of X2C calculations.

Third, an additional relativity correction was acquired with the difference between the
4C DC DHF ionisation potential and the DC+Gaunt DHF IP , both calculated with
the v3z basis set. This correction nearly cancels out the previous, especially for HgCl.
However, higher order relativistic effects are known to sometimes cancel out, so this is
not unexpected. These three corrections have been added to the ionisation potentials
and the vibrationally corrected IPvc per molecule, as shown in Table 7.
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Method HgCl HgI TaN

X2C-CCSD(T) CBS IP 9.428323 8.770635 8.460532

IPvc 9.433711 8.773117 8.460934

+ Active space +0.012917 -0.001120 +0.025803

+ 4C DC +0.007328 +0.005784 +0.007212

+ Gaunt -0.007723 -0.007646 -0.008720

Total corrected IP 9.440844 8.767653 8.484827

Total corrected IPvc 9.446232 8.770135 8.485229

IP + corrections & uncertainty 9.411± 0.033 8.768± 0.032 8.485± 0.039

IPvc + corrections & uncertainty 9.446± 0.035 8.770± 0.035 8.485± 0.042

Table 7: Corrected ionisation potentials [eV]

From the relativistic correction from the 4C DC and DC+Gaunt DHF calculations,
the uncertainty due to the unaccounted for higher order relativity terms was deter-
mined. This is about 4 meV for each molecule, or about 10% of the total uncertainty.
Considering that it is a conservative estimate (as higher order effects can also cancel
out) and 4 component calculations are computationally heavy, the addition of these
higher order effects should not be the main focus for future research when considering
the ionisation potential. When turning to the eEDM enhancement factor, which is a
relativistic effect, calculations at higher orders of relativity likely become more relevant
again.

There are three remaining sources of uncertainty in Table 8, the first of which are
related to the choices of basis set. The largest error factor in both mercury diatomics
is the CBS extrapolation. Comparatively, the TaN ionisation potentials have converged
much better in this regard, which could also be seen in the trend in Figure 7 (section
4.2.2). Likely the cardinality is important for HgCl and HgI, and more accurate results
could be gained in the future with the use of basis sets with cardinality 5. For TaN
quadruple order basis sets seem perfectly adequate, and increasing the cardinality
should not be a main focus.

The difference between v4z and av4z ionisation potentials is bigger than that between
av4z and s-aug-av4z, as can be expected for a larger amount of augmented functions.
This leads to an uncertainty of 2 meV for TaN where the extra level of augmentation
could not be reached, and an error under 0.2 and 0.5 meV for HgCl and HgI respec-
tively. These combined results point to the high accuracy reached using optimised
augmented diffuse functions, and smaller benefit of additional augmentation on top of
that.

Lastly from this table, in TaN half of the total uncertainty (20 out of 40 meV) is caused
by the available level of excitations, as was expected from the trend in Figure 7 (section
4.2.2). For this molecule a calculation of CCSDT energies could be made to compare
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to the CCSD(T) IP in the future to gain a much more accurate ionisation potential.
Such a calculation would also be beneficial for the mercury halides, but less significant
as that error is only about 3.5 meV and on par with the relativity uncertainties.

The total error is reported in Table 8 in meV, and this finally gives us the corrected
ionisation potentials with uncertainty estimates for all three molecules as reported in
Table 7. As hypothesised, these values fall in the range that allows the molecules to
be trapped at cryogenic temperatures.

Category Error source HgCl HgI TaN

Cardinality in CBS extrapolation 18.729 23.870 0.095

Augmentation 0.177 0.452 1.943

Virtual space 6.458 0.560 12.902

Triple and higher excitations* 3.588 3.511 20.162

Relativity Breit and QED 3.862 3.823 4.360

Spectroscopic ωe 1.860 1.860 1.860

constants ωeχe 1.240 1.240 1.240

32.814 32.216 39.462

35.294 34.696 41.942

Basis set

Correlation

Total uncertainty IP [meV]

Total uncertainty IPvc [meV]**

*Higher excitations error is taken as 10% of difference, compared to 50% for all other cases

**∆IPvc
= ∆IP +∆ωe

+ (1/2)∆ωeχe

Table 8: Sources of uncertainty in calculated IP of molecules [meV]
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5 Conclusion

In this research project the ionisation potentials of the molecules HgCl, HgI, and TaN
were determined with relativistic coupled cluster calculations and a complete basis
set-limit extrapolation. The three diatomic molecules are potential eEDM experiment
candidates, but many of their properties are not well known. As the ionisation po-
tential can provide a deeper understanding of the electronic structure, the goal of
this thesis was to determine this with benchmark accuracy. Therefore, on top of the
X2C CCSD(T) CBS IP , a vibrationally corrected IPvc (for better comparison with
experiment) as well as added correction terms for higher active space and 4 compo-
nent relativistic calculations were determined. Lastly, the uncertainty of the ionisation
potentials were estimated based on identifying differences between increasingly better
levels of calculation and comparing to available spectroscopic data.

Through the uncertainty analysis, it became clear future calculations of the ionisation
potential in these molecules could benefit in three main ways. The HgCl and HgI CBS
extrapolations were less well converged than the extrapolation for TaN. In the mercury
diatomics, calculations at higher cardinality (X > 4) could lower the uncertainty
by over 50%. Secondly, the addition of higher excitations (full triples and beyond)
would be the biggest factor in improving the accuracy of the IP for TaN, potentially
decreasing the error by 40%. As a third point, HgCl and TaN calculations were made
with an active space of −30 to 30 Hartree, while HgI calculations had an active space
of −50 to 50 Hartree. The virtual space corrections of HgI were found with lower
cardinality calculations than the other two molecules, but due to the larger initial
active space these corrections were much smaller for HgI compared to HgCl and TaN.
Future calculations, especially for the IP of TaN, could thus benefit from the use of
an active space around −50 to 50 Hartree. The relativistic corrections and error due
to lack of Breit and QED corrections are not the most significant for the ionisation
potential of these three molecules, though they might be more relevant in the eEDM
enhancement factor calculations as that is a relativistic property.

The final values determined are IP = 9.411± 0.033 eV and IPvc = 9.446± 0.0035 eV
(HgCl); IP = 8.768±0.032 eV and IPvc = 8.770±0.035 eV (HgI); IP = 8.485±0.039
eV and IPvc = 8.485±0.042 eV (TaN). These are high enough to allow the molecules to
be trapped at cryogenic temperatures and used in eEDM and other Standard Model-
testing research. The molecules HgCl, HgI, and TaN thus join the list of prospective
eEDM experiment candidates able to be trapped with state-of-the-art techniques, at
least on account of their high ionisation potentials. We can look forward to future
experiments with lower statistical uncertainty considering this new knowledge, and
perhaps the measurement of the eEDM is on the horizon.
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Appendix

A Abbreviations glossary

This overview includes abbreviations used throughout the report, as well as abbrevia-
tions used in Tables B.1 till B.4 in Appendix B.

• 2C = two-component, referring to the type of Hamiltonian
– X2C = exact two-component method, described in section 2.1.4
– 4C = four-component, mostly referring to the relativistic Dirac-Coulomb

Hamiltonian, described in section 2.1.3
• AVTZ-PP = aug-cc-p-VTZ-PP basis set, relativistic effective core potentials
(REPs)

• B3LYP = a hybrid functional added to DFT, less reliable than CCSD(T)
• CASSCF = complete active-space self-consistent field (method)
• CBS = complete basis set, generally extrapolated from multiple calculations
• CC = coupled cluster, an electron correlation method described in section 2.3.1

– CCSD = coupled cluster, with single and double excitations, including some
cross terms. Described in section 2.3.2

– CCSD(T) = coupled cluster, CCSD with added perturbative triple excita-
tions. Described in section 2.3.2

– CCSDT = coupled cluster with single, double, and triple excitations (non-
perturbative triples)

• CI = Configuration Interaction
– CISD = configuration interaction
– MRCI = multi-reference configuration interaction
– MRCI+Q = MRCI with the Davidson correction
– QCISD = CISD corrected for size consistency

• CRENBL = a large, valence, shape-consistent method
• CV = core valence, used in basis sets (added core valence functions)

– QCISD = quadratic CI with single and double substitutions
• DC = Dirac-Coulomb, referring to the 4 component Hamiltonian, explained in
2.1.3

• DFT = density functional theory
• (D)HF = (Dirac-)Hartree-Fock, explained in section 2.2.3
• ECP = effective core potential

– RECCP = relativistic effective core core potential
– NRECP = non-relativistic effective core potential

• EDM = electric dipole moment, or eEDM for electron EDM, explained in section
1.2

• FFCC = finite field perturbation theory adapted to relativistic CCSD method
• GTO = Gaussian type orbital, explained in section 2.4.1
• H = Hamiltonian
• HgX = mercury halides HgCl and HgI. When referring to additional molecules
not in this paper this also includes HgF and HgBr
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• HOMO = highest occupied molecular orbital
• IVO = improved virtual orbital
• LDA (or LDF) = local density functional
• LUMO = lowest unoccupied molecular orbital
• M06 = hybrid-meta, a functional more appropriate for estimating thermochem-
ical energies. M06-L is known as the meta-generalized gradient approximation
(GGA)

• MP2 =Moller-Plesset many-body perturbation theory at second order, a method
of adding electron correlation through the Rayleigh-Schrödinger perturbation
theory

• NESC = normalised elimination of the small component
• PBE0 = hybrid, a functional generally reasonable for molecular geometries and
vibrational frequencies

• PEC(s) = potential energy curve(s)
• P/ POL = polarization, used in basis sets (added polarization functions), or in
general techniques (like POL-CI, being polarization CI)

• PP = pseudopotential, RPP = relativistic pseudopotential
• RKR = Rydberg-Klein-Rees method, generally used for constructions potential
curves

• RCCSD = relativistic CCSD
– LERCCSD = linear approximation of RCCSD
– nLERCCSD = including non-linear terms in RCCSD

• SCF = self consistent field, in this work also used to refer to Dirac-Hartree-Fock
calculations

• SM = the standard model, mentioned in section 1.1
• SO/ SOC = spin-orbit coupling (effects)
• SR = scalar relativity
• STO = Slater type orbital, explained in section 2.4.1
• XZ = (where X is D, T, Q, or a number) X-zeta, in reference to basis set with
cardinality X
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B LITERATURE RESULTS HGX AND TAN

B Literature results HgX and TaN

HgCl IP [eV] HgI IP [eV] Method Extra detail Year Source

12.06± 0.26 11.3± 0.4 Experimental* mass spectrometry from HgX2 → HgX+ +X 1966 [78]

12.06± 0.26 11.3± 0.4 Experimental* photoionisation data from HgX2 → HgX+ +X, cites [78] 1977 [79]

9.518 8.859 theory; NESC DFT B3LYP; basis: [15s13p8d5f] DZ(core) TZ (val) (Hg), Dunning aug-cc-pVTZ (Cl), Dyall [12s11p7d2f] (I) 2008 [80]

9.258 8.581 theory; NESC CCSD(T); basis: [15s13p8d5f] DZ(core) TZ (val) (Hg), Dunning aug-cc-pVTZ (Cl), Dyall [12s11p7d2f] (I) 2008 [80]

val. is short for valence region. Abbreviations can be found in Appendix A

*Values are expected to differ significantly from the actual IPs of HgX molecules, but mentioned here as the source is often referenced in literature

Table B.1: HgCl and HgI ionisation potential (IP )
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B LITERATURE RESULTS HGX AND TAN

HgCl Re [Å] HgI Re [Å] Method Extra details Source

2.23± 0.03 - Experimental (HgCl) electron diffraction photographs 1940 [83]

2.27± 0.03 - Experimental (Hg-Cl from HgCl2) electron diffraction photographs 1940 [83]

2.532± 0.04 2.443± 0.04 Experimental Simulated emission intensity distribution fit with electron diffraction data 1979 [84]

2.3948 - Experimental Photographing 3rd order concave grating spectrograph 1982 [85]

2.419 - 2.434@ 2.36 - 2.81@ Experimental RKR potentials fitted to chemiluminescent spectra 1987 [86]

2.42± 0.04 - theory; RECCP (Hg), NRECP (Cl) SCF with IVO; basis: DZ+P 1979 [91]

2.39 - theory; with GVBTWO prog. SCF; basis: DZ+P (Hg), DZ+P s-aug (Cl) 1980 [92]

2.41 - theory; with GVBTWO prog. SCF POL-CI; basis: RECP (Hg), NRCP (Cl) 1980 [92]

2.54 - theory Bond length and ionicity relation equation 1983 [93]

2.504 - theory; pseudovalence H HF; basis: 9s7p6d1f (Hg), [Ne]-core SZ core+DZ val.+3d(1.8Z) d-pol. (Cl) 1993 [94]

2.450 - theory; pseudovalence H MP2; basis: 9s7p6d1f (Hg), [Ne]-core SZ core+DZ val.+3d(1.8Z) d-pol. (Cl) 1993 [94]

2.50 - theory; pseudovalence H LDA; basis: 9s7p6d1f (Hg), [Ne]-core SZ core+DZ val.+3d(1.8Z) d-pol. (Cl) 1993 [94]

2.441 - theory; quasi-rel. Hg HF; basis: segm. (8s7p6d)/[6s5p3d] val (Hg PP), segm. (5s5p1d)/[3s3p1d] val (Cl) 1994 [95]

2.408 - theory; quasi-rel. Hg MP2; basis: segm. (8s7p6d)/[6s5p3d] val (Hg PP), segm. (5s5p1d)/[3s3p1d] val (Cl) 1994 [95]

2.46 2.80 theory LDF rel. DFT; basis: STO V3Z aug 2p pol (Hg), v2z aug-d-pol (Cl&I) 1995 [96]

2.408 - theory PP rel. DFT; basis: STO V3Z aug 2p pol (Hg), v2z aug-d-pol (Cl&I) 1995 [96]

- 2.8 theory; with GAUSSIAN92 prog. RECP; basis: v2z-p-pol (Hg), v2z-dp-pol (I) 1996 [97]

2.612 - theory; with GAUSSIAN98 A.7 prog. B3LYP; basis: LanL2Dz (Hg&Cl); ECP+VDZ 2003 [98]

2.455 - theory; with GAUSSIAN98 A.7 prog. B3LYP; basis: EC60MWB(9s9p6d4f) (Hg), aug-cc-pVQZ (Cl) 2003 [98]

2.433 - theory; with GAUSSIAN98 A.7 prog. QCISD; basis: LanL2Dz (Hg), 6-311G(2df) (Cl) 2003 [98]

2.398 - theory; with GAUSSIAN98 A.7 prog. QCISD; basis: EC60MWB(9s9p6d4f) (Hg), 6-311G(2df) (Cl) 2003 [98]

2.394 - theory; using RECPs QCISD; basis: RECPs, valence electron only, +polarisation functions 2003 [99]

2.376 - theory; using RECPs CCD; basis: RECPs, valence electron only, +polarisation functions 2003 [99]

prog. is short for programme, H for Hamiltonian, rel. for relativistic. Abbreviations can be found in Appendix A

@Minimum-maximum range

Table B.2: HgCl and HgI equilibrium bond distances
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B LITERATURE RESULTS HGX AND TAN

HgCl Re [Å] HgI Re [Å] Method Extra details Source

2.3870 - theory; Douglas-Kroll-Hess H CCSD(T); basis: AVQZ 2003 [81]

2.3824 - theory; Douglas-Kroll-Hess H CCSD(T); basis: AV5Z 2003 [81]

2.3798 - theory; Douglas-Kroll-Hess H CCSD(T); basis: CBS1, 3-point formula 2003 [81]

2.3777 - theory; Douglas-Kroll-Hess H CCSD(T); basis: CBS2, 2-point formula 2003 [81]

2.3541 2.7075 theory; RPP CCSD(T), SO+SR, with MOLPRO; basis: CBS+CV 2005 [100]

- 2.75 theory; quasi-rel. SCF-Xα-SW; 30% overlapping atomic spheres 2006 [101]

2.460 2.820 theory; NESC DFT B3LYP; basis: DZc+TZv (Hg), aug-cc-pVTZ (Cl), (22s16p12d2f)[12s11p7d2f] (I) 2008 [80]

2.274 (HgCl+) 2.598 (HgI+) theory; NESC DFT B3LYP; basis: DZc+TZv (Hg), aug-cc-pVTZ (Cl), (22s16p12d2f)[12s11p7d2f] (I) 2008 [80]

2.461 2.820 theory; rel. NESC/B3LYP DFT basis: Dyall VDZ core VTZ val. (Hg), Dunning aug-cc-pVTZ (Cl), Dyall (22s16p12d2f)[12s11p7d2f] (I) 2009 [102]

2.274 (HgCl+) 2.598 (HgI+) theory; rel. NESC/B3LYP DFT basis: Dyall VDZ core VTZ val. (Hg), Dunning aug-cc-pVTZ (Cl), Dyall (22s16p12d2f)[12s11p7d2f] (I) 2009 [102]

2.364 2.793 theory; 2C SO DFT CCSD(T)*; basis: RECP CRENBL 2010 [103]

2.392 2.744 theory; 2C SO DFT CCSD(T)*; basis: RECP AVTZ-PP 2010 [103]

2.394 2.739 theory; rel. CCSD; basis: rel. SBKJ VDZ ECP, + aug-f& g pol. (Hg), or + aug-d& f pol. func. (Cl, I) 2011 [82]

2.258 (HgCl+) 2.566 (HgI+) theory; rel. CCSD; basis: rel. SBKJ VDZ ECP, + aug-f& g pol. (Hg), or + aug-d& f pol. func. (Cl, I) 2011 [82]

2.389 2.736 theory; NESC PBE0 functional; basis: def2-QZVPP for Cl, SARC for Hg & I** 2013 [104]

2.331 - theory; quasi-rel. ECP MRCI+Q, CASSCF; basis: ECP78MWB (Hg), ECP10MWB (Cl) 2020 [34]

- 2.7642 theory; quasi-rel., with MOLPRO! MRCI+Q + SOC with SD; basis: cc-pwCV5z-PP, with ECP60MDF (Hg), or with ECP46MDF (I) 2022 [87]

*Multiple DFT functionals were used (PBE0 and M06, and some corrections for these), but CCSD(T) was the reference value

**Recontracted basis sets

!The MOLPRO2012 programme that uses molecular valence model Hamiltonian, quasi-rel. ECP with mass-velocity and Darwin effects in 1C term and spin orbit effects in 2C term

Table B.2: (continued) HgCl and HgI equilibrium bond distances
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B LITERATURE RESULTS HGX AND TAN

HgCl Eeff [GV/cm] HgI Eeff [GV/cm] Hamiltonian Extra details Year Source

103.57 96.85 eff. eEDM H DF; basis: CCPVDZ for Cl, Dyall’s c3v for Hg & I 2015 [36]

113.56 109.30 4C H CCSD, accuracy of 5%; basis: 22s19p12d9f1g (Hg), 12s8p1d (Cl), 21s15p11d (I) 2015 [36]

114.31 109.56 4C H FFCC CCSD; basiss: Dyall cDZV (Hg), cc-pVDZ (Cl, I) 2018 [105]

104.33 99.27 4C H DF; basis: Dyall QZ (Hg, I), Dunning cc-VQZ (Cl); cut-off virtuals at 1000 a.u. 2020 [77]

112.51 110.00 4C H LERCCSD; basis: Dyall QZ (Hg, I), Dunning cc-VQZ (Cl); cut-off virtuals at 1000 a.u. 2020 [77]

110.94 107.38 4C H nLERCCSD; basis: Dyall QZ (Hg, I), Dunning cc-VQZ (Cl); cut-off virtuals at 1000 a.u. 2020 [77]

Abbreviations can be found in Appendix A

Table B.3: Theoretically determined Eeff [GV/cm] for HgCl and HgI
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B LITERATURE RESULTS HGX AND TAN

TaN Type Method Details Year Source

1.6830999(88) Re (Å) Experimental Spectrometry of emission from tantalum hollow-cathode lamp 2002 [88]

1.685 Re (Å) Experimental high-res. laser-induced fluorescence spectra of the [18.42]0+ −X1Σ+ band of TaN 2016 [89]

1.690 Re (Å) Theory; NR DFT BP86 functional; basis: Los Alamos ECP+Dz (Ta), D95* (N) 1998 [106]

1.706 Re (Å) Theory; quasi-relativistic CASSCF/CMRCI; basis: Wood-Boring PPs, v2z +1 Gaussian pol. orbital per atom 2002 [88]

1.69* Re (Å) Theory; GRECP, 2C CCSD(T); basis: MBas 2015 [23]

1.6831 Re (Å) Theory; DC H HF+MR12-CISD(18)+T@; basis: Dyall v3z+val.&core-correlating exponents (Ta), Dunning cc-pVTZ-DK (N) 2016 [40]

1.710 Re (Å) Theory; RECP using Gaussian09 prog.; CCSD(T); basis: CBS limit extrapolation 2024 [90]

34.9* Eeff (GV/cm) Theory; GRECP, 2C CCSD(T)**; basis: 15s10p10d5f2g uncontracted Gaussian (Ta), aug-ccpVQZ (N) 2015 [23]

36.0* Eeff (GV/cm) Theory; DC H HF+MR+T
12 -CISD(18)@ + external triples + ∆ spinors + 4s,4p core-valence corrections; basis: see above 2016 [40]

pol. short for polarisation, prog. for programme. Abbreviations can be found in Appendix A

*For 3∆1 state of TaN

**Result is a combination of CCSD, CCSD(T), and correlation, basis set & core corrections

@The 12 in MR12 refers to the number of Kramers pairs, the 18 in CISD(18) to the accumulated number of electrons

Table B.4: TaN literature overview of Re, Eeff
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C COMPLETE CALCULATION RESULTS HGX AND TAN

C Complete calculation results HgX and TaN

C.1 Equilibrium bond lengths

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 2.400 2.402 2.407 2.269 2.262 2.269

saugv3z 2.388 2.373 2.378 2.258 2.235 2.241

saugav3z 2.388 2.371 2.376 2.258 2.235 2.241

v4z 2.385 2.359 2.362 2.255 2.224 2.228

saugv4z 2.384 2.357 2.360 2.253 2.221 2.226

av4z 2.385 2.358 2.361 2.254 2.222 2.226

saugav4z 2.384 2.357 2.360 2.253 2.221 2.225

CBS (saugavXz) 2.385 2.351 2.353 2.254 2.2157 2.219

basis set
HgCl Re [Å] HgCl+ Re [Å]

Table C.1: HgCl and HgCl+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the saugav2z, saugav3z, and saugav4z results

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 2.728 2.778 2.784 2.615 2.606 2.612

saugv3z 2.718 2.732 2.740 2.604 2.572 2.577

saugav3z 2.718 2.738 2.748 2.603 2.575 2.580

v4z 2.715 2.716 2.722 2.600 2.556 2.560

saugv4z 2.714 2.715 2.721 2.599 2.555 2.559

av4z 2.714 2.719 2.725 2.599 2.558 2.562

saugav4z 2.713 2.716 2.722 2.598 2.556 2.560

CBS (saugavXz) 2.714 2.708 2.712 2.599 2.549 2.552

basis set
HgI Re [Å] HgI+ Re [Å]

Table C.2: HgI and HgI+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the saugav2z, saugav3z, and saugav4z results
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C COMPLETE CALCULATION RESULTS HGX AND TAN

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

av2z 1.639 1.676 1.696 1.616 1.656 1.675

v3z 1.636 1.669 1.689 1.612 1.649 1.668

saugv3z 1.635 1.669 1.689 1.612 1.648 1.667

av3z 1.635 1.668 1.689 1.612 1.648 1.667

v4z 1.633 1.659 1.679 1.610 1.639 1.657

av4z 1.632 1.658 1.677 1.609 1.637 1.656

CBS (avXz) 1.632 1.651 1.671 1.608 1.631 1.649

basis set
TaN Re [Å] TaN+ Re [Å]

Table C.3: TaN and TaN+ optimised bond lengths per basis set, with the CBS limit
extrapolation based on the av2z, av3z, and av4z results

Figure C.1: HgCl+ equilibrium bond length of CBS CCSD(T)
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C COMPLETE CALCULATION RESULTS HGX AND TAN

Figure C.2: HgI equilibrium bond length of CBS CCSD(T)

Figure C.3: HgI+ equilibrium bond length of CBS CCSD(T)
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C COMPLETE CALCULATION RESULTS HGX AND TAN

Figure C.4: TaN equilibrium bond length of CBS CCSD(T)

Figure C.5: TaN+ equilibrium bond length of CBS CCSD(T)
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C COMPLETE CALCULATION RESULTS HGX AND TAN

C.2 Ionisation potentials

DHF CCSD CCSD(T) DHF CCSD CCSD(T)

saugav2z 8.669 9.339 9.347 8.034 8.622 8.633

saugv3z 8.593 9.328 9.355 7.968 8.640 8.668

saugav3z 8.593 9.330 9.356 7.964 8.646 8.675

v4z 8.583 9.350 9.379 7.955 8.676 8.706

saugv4z 8.580 9.358 9.390 7.954 8.686 8.722

av4z 8.581 9.359 9.391 7.954 8.690 8.722

saugav4z 8.580 9.359 9.391 7.952 8.691 8.723

CBS (saugavXz) 8.583 9.392 9.428 7.955 8.736 8.771

basis set
HgCl IP [eV] HgI IP [eV]

Table C.4: HgCl and HgI ionisation potentials per basis set, with the CBS limit
extrapolation based on the saugav2z, saugav3z, and saugav4z results

TaN IP [eV]

basis set

av2z 7.192 8.230 8.406

v3z 7.178 8.262 8.451

saugv3z 7.153 8.247 8.439

av3z 7.177 8.270 8.462

v4z 7.175 8.260 8.456

av4z 7.174 8.263 8.460

CBS (avXz) 7.173 8.259 8.461

DHF CCSD CCSD(T)

Table C.5: TaN ionisation potentials per basis set, with the CBS limit extrapolation
based on the av2z, av3z, and av4z results
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C COMPLETE CALCULATION RESULTS HGX AND TAN

C.3 Uncertainty calculations

setting 1 IP [eV] setting 2 IP [eV] difference [eV] difference [%]

saugav4z 9.3909 CBS 9.4283 0.0375 0.3989

v4z 9.3789 av4z 9.3905 0.0117 0.1248

av4z 9.3905 saugav4z 9.3909 0.0004 0.0038

v3z (-30 to 30 a.u.) 9.3158 ae3z (-3300 to 3300 a.u.) 9.3287 0.0129 0.1387

CCSD 9.3924 CCSD(T) 9.4283 0.0359 0.3820

X2C CCSD(T) 9.3158 4C DC CCSD(T) 9.3231 0.0073 0.0787

4C DC DHF 8.6044 4C DC+Gaunt DHF 8.5967 -0.0078 -0.0898

X2C DHF 8.5982 4C DC+Gaunt DHF 8.5967 -0.0016 -0.0181

Basis set quality (base setting: X2C CCSD(T))

Correlation - active space (base setting: X2C CCSD(T))

Correlation - excitations (base setting: X2C saugav4z)

Level of relativity (base setting: v3z)

Table C.6: Differences in ionisation potentials [eV] of HgCl for different settings, at
bond lengths Rn

e = 2.35259 Å and R+
e = 2.21865 Å
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C COMPLETE CALCULATION RESULTS HGX AND TAN

setting 1 IP [eV] setting 2 IP [eV] difference [eV] difference [%]

saugav4z 8.7229 CBS 8.7706 0.0477 0.5473

v4z 8.7060 av4z 8.7220 0.0160 0.1834

av4z 8.7220 saugav4z 8.7229 0.0009 0.0104

v2z (-50 to 50 a.u.) 8.5224 ae2z (-3300 to 3300 a.u.) 8.5212 -0.0011 -0.0131

CCSD 8.7355 CCSD(T) 8.7706 0.0351 0.4019

X2C CCSD(T) 8.6343 4C DC CCSD(T) 8.6401 0.0058 0.0670

4C DC DHF 7.9834 4C DC+Gaunt DHF 7.9757 -0.0076 -0.0958

X2C DHF 7.9797 4C DC+Gaunt DHF 7.9757 -0.0040 -0.0497

Basis set quality (base setting: X2C CCSD(T))

Correlation - active space (base setting: X2C CCSD(T))

Correlation - excitations (base setting: X2C saugav4z)

Level of relativity (base setting: v3z)

Table C.7: Differences in ionisation potentials [eV] of HgI for different settings, at
bond lengths Rn

e = 2.71204 Å and R+
e = 2.55223 Å

setting 1 IP [eV] setting 2 IP [eV] difference [eV] difference [%]

av4z 8.4603 CBS 8.4605 0.0002 0.0022

v4z 8.4565 av4z 8.4603 0.0039 0.0460

v3z (-30 to 30 a.u.) 8.4512 ae3z (-3300 to 3300 a.u.) 8.4770 0.0258 0.3053

CCSD 8.2589 CCSD(T) 8.4605 0.2016 2.4413

X2C CCSD(T) 8.4512 4C DC CCSD(T) 8.4584 0.0072 0.0853

4C DC DHF 7.1916 4C DC+Gaunt DHF 7.1829 -0.0087 -0.1213

X2C DC DHF 7.1842 4C DC+Gaunt DHF 7.1829 -0.0013 -0.0177

Basis set quality (base setting: X2C CCSD(T))

Correlation - active space (base setting: X2C CCSD(T))

Correlation - excitations (base setting: X2C av4z)

Level of relativity (base setting: v3z)

Table C.8: Differences in ionisation potentials [eV] of TaN for different settings, at
bond lengths Rn

e = 1.67062 Å and R+
e = 1.64918 Å

xiv


	Introduction - the bigger picture
	The Standard Model and CP violation
	The eEDM
	eEDM in molecules
	Molecules of interest
	Research focus

	Theory
	Solving the Schrödinger equation
	Schrödinger and DiraC
	The Born-Oppenheimer approximation
	The relativistic Hamiltonian
	X2C

	Computational methods and approximations
	Variational principle
	Slater determinant
	Hartree-Fock

	Electron interaction
	CI and CC
	CCSD and CCSD(T)

	Basis sets
	Gaussians or Slater orbitals
	Molecular orbits
	Naming system of basis sets
	CBS limit


	Methods
	Bond length optimisation
	Ionisation potentials
	Uncertainty estimation

	Results and discussion
	Literature research
	HgCl and HgI
	TaN

	Calculation results
	Bond length optimisation
	Ionisation potentials
	Uncertainty estimation


	Conclusion
	Abbreviations glossary
	Literature results HgX and TaN
	Complete calculation results HgX and TaN
	Equilibrium bond lengths
	Ionisation potentials
	Uncertainty calculations


