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Abstract
This paper serves as an introduction to the many alternatives to calculus, constructed
by changing the definition of the derivative. For each new derivative we define, we
will assign new terminology and notation, discuss its intuitive meaning, find its differ-
entiation rules, relate it to the ordinary derivative and derive a function approximation
reminiscent of the tangent line. With a primary focus on the ‘multiplicative derivative’,
we will reconstruct various other concepts from calculus like the mean value theorem,
Taylor series, integration and differential equations. Finally, we will use this to show
some practical applications of multiplicative calculus in Biomedical image analysis [2],
using multivariable differential equations of matrix functions.
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1 Introduction
Calculus is a broad field of mathematics based on studying change of functions, compar-
ing infinitesimal changes of different variables and using it to obtain various properties
about functions. This is done using the derivative, a quantity that makes us able to relate
the change in one variable to that of another. How we conventionally do this is with
the derivative 𝑓 ′(𝑥) ∶= lim𝑎→𝑥

𝑓 (𝑎)−𝑓 (𝑥)
𝑎−𝑥 = limℎ→0

𝑓 (𝑥+ℎ)−𝑓 (𝑥)
ℎ , finding the quantity

that multiplies 𝑑𝑥, to get 𝑑𝑦 in essence, where 𝑑𝑥,𝑑𝑦 represents the additive change
𝑥2 − 𝑥1,𝑦2 − 𝑦1 in the given variable taken to infinitesimals. With this derivative, all of
calculus is constructed, including the tangent line, mean value theorem, Taylor series,
integration and all the fields built upon it. However, the way we described the derivative
before defining it suggest that this can be done in more than one way. As an example, we
consider 𝑑𝑦− 𝑑𝑥 instead of 𝑑𝑦∕𝑑𝑥 being our derivative, meaning it is the quantity that
one adds to 𝑑𝑥 to get 𝑑𝑦. However, this is a bad example as for any continuous function
𝑓 we have (𝑑𝑓 − 𝑑𝑥)(𝑥) = limℎ→0 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − ℎ = 𝑓 (𝑥 + 0) − 𝑓 (𝑥) − 0 = 0,
making the quantity trivial. To have a differently defined derivative be not-trivial, i.e.
non-constant, we need to have that simply evaluating the general expression with the
limit leads to an invalid expression, since the difference between two terms that are
equal at the limit is trivial when evaluated. For example, when we evaluate the conven-
tional derivative at the limit we get 𝑓 (𝑎)−𝑓 (𝑥)

𝑎−𝑥
|

|

|𝑎=𝑥
= 𝑓 (𝑥)−𝑓 (𝑥)

𝑥−𝑥 = 0
0 , which is undefined

within normal arithmatic. Note that in the case that a non-trivial derivative is invalid
for all 𝑓 ∈ 𝐶(ℝ), 𝑥 ∈ ℝ, we will not count it as a valid derivative either, since this too
gives no interesting results. An example for such an expression is 1

𝑑𝑦−𝑑𝑥 , which always

equals 1
0 .

There are many ways to construct a derivative with these principles in mind. In
this paper we will discuss different derivative alternatives based not on changing the
equation between the terms 𝑑𝑥 and 𝑑𝑦, but changing the terms 𝑑𝑥 and 𝑑𝑦 themselves.
This means changing what we mean with change in a variable. To start, consider the
two numbers 𝑥1, 𝑥2 ∈ ℝ. When we talk about the difference between 𝑥1 and 𝑥2, we
usually refer to the additive difference 𝑥2 − 𝑥1. However, there are more ways we can
compare two quantities, notably the multiplicative difference also known as the ratio
between 𝑥1 and 𝑥2 being 𝑥2∕𝑥1. This too is a valid way to measure change, as we
have that 𝑥2 > 𝑥1 ⟹ 𝑥2∕𝑥1 > 1 and 𝑥2 < 𝑥1 ⟹ 𝑥2∕𝑥1 < 1 assuming 𝑥1
is positive, similar to how 𝑥2 > 𝑥1 ⟹ 𝑥2 − 𝑥1 > 0. Note that this does have the
downside that we need to be careful with the domain of the variables, since the ratio
does not exist when 𝑥1 = 0 and for 𝑥1 < 0 the inequalities in the above implications
are reversed. Next we have the natural property of preserving multiplication, since
𝑎2𝑏2
𝑎1𝑏1

= 𝑎2
𝑎1

𝑏2
𝑏1

similar to how the regular difference preserves addition. As for something
the additive and multiplicative difference have in common is that when 𝑥1 = 𝑥2, we get
the constants 0 and 1 respectively, coinciding with what we said about trivial and non-
trivial derivatives. The last thing to note is that we can actually write multiplication in
terms of addition, or division in terms of subtraction, by doing the following: 𝑥2∕𝑥1 =
𝑒ln(𝑥2∕𝑥1) = 𝑒ln 𝑥2−ln 𝑥1 . Writing this in infinitesimal form with the notation 𝑞𝑥 for the
quotient difference in 𝑥, we can rewrite it as 𝑞𝑥 = 𝑒𝑑(ln 𝑥). This decomposition will
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come of much use in the new forms of calculus we will construct, as the terms 𝑑𝑥
and 𝑑𝑦 have already been studied in great extent, especially when of the form 𝑑𝑦∕𝑑𝑥.
Furthermore, in this paper we will many times come to encounter the transformation
𝑓 → exp ◦𝑓◦ ln in which 𝑓 may be a function, a derivative or something else, which
always comes down to the underlying idea of turning multiplication into addition.

With this in mind, we will be defining many alternative derivatives, largely based on
turning addition into multiplication. We will observe their properties, redefine the many
concepts in calculus and in the end find practical applications for the first introduced
derivative.

2 The multiplicative derivative
2.1 Constructing a new derivative
Let 𝑓 be a real function. Conceptually, the derivative is about asking how much change
in 𝑦 = 𝑓 (𝑥) happens for a given change in 𝑥. We know this as being defined in the
following way:

𝑓 ′(𝑥) ∶= lim
𝑎→𝑥

𝑓 (𝑎) − 𝑓 (𝑥)
𝑎 − 𝑥

= lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

However, there is another natural way we can measure change between two variables,
the quotient. For this new derivative we will be asking by how much 𝑦 = 𝑓 (𝑥) gets
multiplied by for a given addivive change in 𝑥. The first thing to note is how exponential
functions compare to this notion.

Let 𝑓 (𝑥) = 𝑎𝑏𝑥 for 𝑎 ∈ ℝ and 𝑏 > 0. Then for ℎ ∈ ℝ we have

𝑓 (𝑥 + ℎ) = 𝑎𝑏𝑥+ℎ = 𝑎𝑏𝑥𝑏ℎ = 𝑓 (𝑥) ⋅ 𝑏ℎ

We can see that, independent of 𝑥, each additive change ℎ in 𝑥 multiplies the func-
tion’s value 𝑓 (𝑥) by 𝑏ℎ, so multiplies it ‘ℎ times’. Therefore, the multiplicative deriva-
tive of this function must be 𝑏, and with that idea we can construct our definition.

𝑓 ∗(𝑥) ∶= lim
𝑎→𝑥

𝑎−𝑥

√

𝑓 (𝑎)
𝑓 (𝑥)

= lim
ℎ→0

ℎ

√

𝑓 (𝑥 + ℎ)
𝑓 (𝑥)

We will refer to it as the multiplicative derivative or the ∗-derivative, and will denote
it by 𝑓 ∗ = 𝑑𝑥

√

𝑞𝑓 = 𝑞𝑓
1
𝑑𝑥 or ∗ = 𝑑𝑥

√

𝑞 = 𝑞
1
𝑑𝑥 , where the q stands for quotient.
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Note that the root is there to take care of the power term we seen before:

(𝑎𝑏𝑥)∗ = lim
ℎ→0

ℎ

√

𝑎𝑏𝑥+ℎ
𝑎𝑏𝑥

= lim
ℎ→0

ℎ
√

𝑏ℎ = 𝑏

Let us now try this on a different function:

(𝑥)∗ = lim
ℎ→0

ℎ

√

𝑥 + ℎ
𝑥

= lim
ℎ→0

(

1 + ℎ
𝑥

)

1
ℎ ℎ→ℎ𝑥

= lim
ℎ→0

(1 + ℎ)
1
ℎ𝑥 = 𝑒

1
𝑥

Doing this calculation for every elementary function would be cumbersome. How-
ever, with some simple computations we can rewrite the definition to get a formula that
relates the multiplicative derivative to the conventional derivative.

𝑓 ∗(𝑥) = lim
ℎ→0

[

𝑓 (𝑥 + ℎ)
𝑓 (𝑥)

]
1
ℎ
= lim

ℎ→0
𝑒
ln

(

[

𝑓 (𝑥+ℎ)
𝑓 (𝑥)

]
1
ℎ
)

= lim
ℎ→0

𝑒
1
ℎ ln

(

𝑓 (𝑥+ℎ)
𝑓 (𝑥)

)

= lim
ℎ→0

𝑒
ln(𝑓 (𝑥+ℎ))−ln(𝑓 (𝑥))

ℎ

= 𝑒(ln ◦𝑓 )
′(𝑥)

= 𝑒
𝑓 ′(𝑥)
𝑓 (𝑥)

This identity will allow us to use all our knowledge from conventional calculus to
multiplicative calculus. The second to last equality also lets us interpret the multiplica-
tive derivative in the following commutative diagram:

𝑓 (𝑥) ln(𝑓 (𝑥))

𝑓 ∗(𝑥) 𝑓 ′(𝑥)
𝑓 (𝑥)

∗

ln

′

exp

Another thing to note is that one can rearrange the equation to get
𝑓 ′(𝑥) = 𝑓 (𝑥) ln(𝑓 ∗(𝑥)). This leads to the following theorem.
Theorem 1. Let 𝑓 ∶ ℝ → ℝ be a real function and let 𝑥 ∈ ℝ. Then

𝑓 is differentiable at 𝑥 and 𝑓 (𝑥) ≠ 0 ⟹ 𝑓 is ∗-differentiable at 𝑥
𝑓 is ∗-differentiable at 𝑥 ⟹ 𝑓 is differentiable at 𝑥

Note that 𝑓 ∗(𝑥) = 𝑒
𝑓 ′(𝑥)
𝑓 (𝑥) > 0 always holds true, meaning that 𝑓 (𝑥) ln(𝑓 ∗(𝑥)) is

always well-defined. Because of this requirement for 𝑓 (𝑥) ≠ 0, it is easier to consider
just positive functions, which we will from now on do. For functions with negative val-
ues, the equation 𝑓 ∗(𝑥) = 𝑒(ln(𝑓 (𝑥))′ must instead by written as 𝑒(ln |𝑓 (𝑥)|)′ , as logarithms
are not defined for negative numbers. This still fits with the other ways to write the
multiplicative derivative.
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2.2 Multiplicative differentiation rules
Now that we know the different ways of how the multiplicative derivative is defined, let
us analyze how it acts on functions. Let 𝑎 > 0 and 𝑔, ℎ be real ∗-differentiable functions.
Let 𝑎 ⊙ 𝑏 ∶= exp(ln(𝑎) ln(𝑏)).

# 𝑓 (𝑥) 𝑓 ∗(𝑥) alternative
1 𝑎 1
2 𝑎𝑥 𝑎

3 𝑥 𝑒
1
𝑥

4 𝑥𝑎 𝑒
𝑎
𝑥

5 ln(𝑥) 𝑒
1

𝑥 ln(𝑥)

6 sin(𝑥) 𝑒
1

tan(𝑥)

7 cos(𝑥) 𝑒− tan(𝑥)

8 tan(𝑥) 𝑒
2

sin(2𝑥)

9 𝑎 ⋅ 𝑔(𝑥) 𝑔∗(𝑥)
10 𝑔(𝑥) ⋅ ℎ(𝑥) 𝑔∗(𝑥) ⋅ ℎ∗(𝑥)

11 𝑔(𝑥) + ℎ(𝑥) 𝑒
𝑔′(𝑥)+ℎ′(𝑥)
𝑔(𝑥)+ℎ(𝑥) 𝑓 ∗(𝑥)

𝑓 (𝑥)
𝑓 (𝑥)+𝑔(𝑥) 𝑔∗(𝑥)

𝑔(𝑥)
𝑓 (𝑥)+𝑔(𝑥)

12 𝑔(𝑥)𝑎 𝑔∗(𝑥)𝑎

13 𝑎𝑔(𝑥) 𝑎𝑔′(𝑥) 𝑎𝑔(𝑥) ln(𝑔∗(𝑥))

14 𝑔(𝑥)ℎ(𝑥) 𝑔∗(𝑥)ℎ(𝑥)𝑔(𝑥)ℎ′(𝑥) 𝑔∗(𝑥)ℎ(𝑥)𝑔(𝑥)ℎ(𝑥) ln(ℎ∗(𝑥))

15 𝑔(ℎ(𝑥)) 𝑔∗(ℎ(𝑥))ℎ′(𝑥) 𝑔∗(ℎ(𝑥))ℎ(𝑥) ln(ℎ∗(𝑥))
16 𝑔(𝑥)⊙ ℎ(𝑥) (𝑔∗(𝑥)⊙ ℎ(𝑥)) ⋅ (𝑔(𝑥)⊙ ℎ∗(𝑥))

One of the most important properties of the multiplicative derivative is rule (10),
as it shows that multiplication is preserved, just like how the addition is preserved
under regular differentiation. Because of this, constant multiples of functions (9) do
not change its multiplicative derivative. The rule for addition (11) however is much

less simple, being written as 𝑓 ∗(𝑥)
𝑓 (𝑥)

𝑓 (𝑥)+𝑔(𝑥) 𝑔∗(𝑥)
𝑔(𝑥)

𝑓 (𝑥)+𝑔(𝑥) when put only in terms of ∗-
derivatives. As for the rule for exponentiation (14), it is also simpler than the one for the
regular derivative, giving rise to rule (12) telling us constant exponentiation is preserved
and rule (13) telling us exponentiated functions in some sense turn the multiplicative
derivative into the regular derivative.

Then we have the chain rule (15), which instead of multiplying with the inner func-
tion’s respective derivative, we exponentiate with the regular derivative. This can again
be expressed purely in terms of ∗-derivatives, but this formulation is easier for us to
work with. Lastly there is one operation, ⊙, that according to rule (16) behaves in a
very similar manner to the product rule of the regular derivative. This operation is seen
as the natural extension of what comes after addition and multiplication that is associa-
tive and commutative. In light of this, rule (16) makes sense given rule (10).
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2.3 The tangent exponential
For the regular derivative, we naturally come to the notion of the tangent line. Using the
fact that linear functions have a constant derivative and setting the constrain of 𝑙(𝑎) =
𝑓 (𝑎) and 𝑙′(𝑎) = 𝑓 ′(𝑎) for a chosen point 𝑎 ∈ ℝ, we get the tangent line at 𝑎:

𝑙(𝑥) = 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 (𝑎)
Just like the regular derivative, the multiplicative derivative also gives rise to an

approximation, but instead of a linear function one uses an exponential function. Hence
we suggest the name ‘tangent exponential’. has the so called tangent exponential, a
name I have coined myself. As we seen before, any function 𝑒(𝑥) = 𝑐𝑏𝑥 has a constant
∗-derivative of 𝑏. For a chosen 𝑎 ∈ ℝ and ∗-differentiable function 𝑓 , set 𝑒(𝑎) = 𝑓 (𝑎)
and 𝑒∗(𝑎) = 𝑓 ∗(𝑎). Then

𝑓 ∗(𝑎) = 𝑒∗(𝑎) = 𝑏, 𝑓 (𝑎) = 𝑒(𝑎) = 𝑐𝑓 ∗(𝑎)𝑎 ⟹ 𝑐 = 𝑓 (𝑎)𝑓 ∗(𝑎)−𝑎

This gives us the formula for the tangent exponential at 𝑎:

𝑒(𝑥) = 𝑓 (𝑎)𝑓 ∗(𝑎)𝑥−𝑎

There are quite some similarities to be found with the two formulas. Instead of
multiplying the derivation constant by 𝑥 − 𝑎, it is here exponentiated, and instead of
adding 𝑓 (𝑎) to the quantity, it is multiplied to it.

Another observation is that the tangent line of the tangent exponential is the same
as the tangent line of 𝑓 and the same holds the other way around, assuming all approx-
imations are centered at 𝑎 and 𝑓 (𝑎) ≠ 0. This is because

⎧

⎪

⎨

⎪

⎩

𝑙(𝑎) = 𝑓 (𝑎) = 𝑒(𝑎)
𝑙∗(𝑎) = exp(𝑙′(𝑎)∕𝑙(𝑎)) = exp(𝑓 ′(𝑎)∕𝑓 (𝑎)) = 𝑓 ∗(𝑎) = 𝑒∗(𝑎)
𝑙′(𝑎) = 𝑓 ′(𝑎) = 𝑓 (𝑎) ln(𝑓 ∗(𝑎)) = 𝑒(𝑎) ln(𝑒∗(𝑎)) = 𝑒′(𝑎)

With that, let us look at an example of the tangent exponential and tangent line
applied to the sine function at 𝑥 = 1.

−1 0 1 2 3

0

1

2

3
sin(𝑥)
line

exponential
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3 The quotientive derivative
3.1 A derivative based solely on multiplication
We have seen the multiplicative derivative, which looks at the quotient difference in 𝑦,
but still uses the additive difference in 𝑥. We will now take a look at what happens when
we consider the quotient difference in both 𝑥 and 𝑦. The question that surrounds this
new derivative will be, how much 𝑦 = 𝑓 (𝑥) gets multiplied by for a given multiplication
in 𝑥. Let us now consider power functions, as they fit nicely with this notion.

Let 𝑓 (𝑥) = 𝑎𝑥𝑏 with 𝑎, 𝑏 ∈ ℝ. For 𝑚 ∈ ℝ we have

𝑓 (𝑚𝑥) = 𝑎(𝑚𝑥)𝑏 = 𝑎𝑚𝑏𝑥𝑏 = 𝑓 (𝑥) ⋅ 𝑚𝑏

As we can see, independent of 𝑥, each multiplicative change in 𝑥 multiplies the
function’s value 𝑓 (𝑥) by 𝑚𝑏, meaning it multiplied by the quantity 𝑚 the set amount of
times 𝑏. So in this sense, our new derivative must have the value 𝑏, which brings us to
our definition:

𝑓 ◦(𝑥) ∶= lim
𝑎→𝑥

log 𝑎
𝑥

(

𝑓 (𝑎)
𝑓 (𝑥)

)

= lim
𝑚→1

log𝑚

(

𝑓 (𝑚𝑥)
𝑓 (𝑥)

)

We will refer to this derivative as the quotientive derivative or the ◦-derivative, and
will denote it by 𝑓 ◦ = log𝑞𝑥 𝑞𝑓 or ◦ = log𝑞𝑥 𝑞, using similar notation as previously.

Note that the logarithm is there to take out the exponent:

(𝑎𝑥𝑏)◦ = lim
𝑚→1

log𝑚

(

𝑎(𝑚𝑥)𝑏

𝑎𝑥𝑏

)

= lim
𝑚→1

log𝑚
(

𝑚𝑏) = 𝑏

Let us now look at a different function:

(𝑒𝑥)◦ = lim
𝑚→1

log𝑚
(𝑒𝑚𝑥

𝑒𝑥
)

= lim
𝑚→1

log𝑚
(

𝑒(𝑚−1)𝑥
)

= lim
𝑚→1

(𝑚 − 1)𝑥
ln(𝑚)

ℎ=ln(𝑚)
= lim

ℎ→0

𝑒ℎ − 𝑒0

ℎ
𝑥

= 𝑒0𝑥 = 𝑥
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Again, this formula takes a while to calculate for each function. However, the quoti-
entive derivative also can be transformed to be expressed in terms of the regular deriva-
tive.

𝑓 ◦(𝑥) = lim
𝑎→𝑥

log 𝑎
𝑥

(

𝑓 (𝑎)
𝑓 (𝑥)

)

= lim
𝑎→𝑥

ln
(

𝑓 (𝑎)
𝑓 (𝑥)

)

ln
(

𝑎
𝑥

)

= lim
𝑎→𝑥

ln(𝑓 (𝑎)) − ln(𝑓 (𝑥))
ln(𝑎) − ln(𝑥)

= lim
𝑎→𝑥

ln(𝑓 (𝑎)) − ln(𝑓 (𝑥))
𝑎 − 𝑥

𝑎 − 𝑥
ln(𝑎) − ln(𝑥)

=
(ln ◦𝑓 )′(𝑥)

ln′(𝑥)

= 𝑥
𝑓 ′(𝑥)
𝑓 (𝑥)

With this formula we can again bring all our knowledge from standard calculus to
quotientive calculus. However, this time we cannot write it as a sequence of functions.
We can also now write 𝑓 ′(𝑥) in terms of 𝑓 ◦ using the formula 𝑓 ′(𝑥) = 𝑓 (𝑥)

𝑥 𝑓 ◦(𝑥). Now
we have the following theorem.

Theorem 2. Let 𝑓 ∶ ℝ → ℝ be a real function and let 𝑥 ∈ ℝ. Then

𝑓 is differentiable at 𝑥 and 𝑓 (𝑥) ≠ 0 ⟹ 𝑓 is ◦-differentiable at 𝑥
𝑓 is ◦-differentiable at 𝑥 and 𝑥 ≠ 0 ⟹ 𝑓 is differentiable at 𝑥

As we can see, for us to write 𝑓 ◦(𝑥) in terms of 𝑓 ′(𝑥), we again need 𝑓 (𝑥) to be
non-zero. Like with the multiplicative derivative, we will therefore only use positive
functions 𝑓 in the context of quotientive calculus, even if our definition works with
negative values as well. Unlike the multiplicative derivative, the second implication
requires 𝑥 not to be zero, bringing restrictions onto our domain. However, we will not
take it much into account, as we do not write 𝑓 ′(𝑥) in terms of 𝑓 ◦(𝑥) often, in many
cases it is possible to evaluate the ◦-derivative at 𝑥 = 0 and since working with functions
undefined at 𝑥 = 0 is not an uncommon thing in mathematics either way. However, if
we do want a function to hold both properties, we need 𝑓 (𝑥), 𝑥 ≠ 0.
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3.2 Quotientive differentiation rules
We will now look at the table of the how different functions act under quotientive dif-
ferentiation, making much use of the different ways to write it. Let 𝑎 > 0 and let 𝑔, ℎ
be real ◦-differentiable functions.

# 𝑓 (𝑥) 𝑓 ◦(𝑥) alternative
1 𝑎 0
2 𝑥𝑎 𝑎
3 𝑒𝑥 𝑥
4 𝑎𝑥 ln(𝑎)𝑥
5 ln(𝑥) 1

ln(𝑥)
6 sin(𝑥) 𝑥

tan(𝑥)
7 cos(𝑥) −𝑥 tan(𝑥)
8 tan(𝑥) 2𝑥

sin(2𝑥)
9 𝑎 ⋅ 𝑔(𝑥) 𝑔◦(𝑥)

10 𝑔(𝑥) ⋅ ℎ(𝑥) 𝑔◦(𝑥) + ℎ◦(𝑥)
11 𝑔(𝑥) + ℎ(𝑥) 𝑥𝑓 ′(𝑥)+𝑔′(𝑥)

𝑓 (𝑥)+𝑔(𝑥)
𝑔(𝑥)

𝑔(𝑥)+ℎ(𝑥)𝑔
◦(𝑥) + ℎ(𝑥)

𝑔(𝑥)+ℎ(𝑥)ℎ
◦(𝑥)

12 𝑔(𝑥)𝑎 𝑎𝑔◦(𝑥)
13 𝑎𝑔(𝑥) ln(𝑎)𝑥𝑔′(𝑥) ln(𝑎)𝑔(𝑥)𝑔◦(𝑥)
14 𝑔(𝑥)ℎ(𝑥) ℎ(𝑥)𝑔◦(𝑥) + 𝑥ℎ′(𝑥) ln(𝑔(𝑥)) ℎ(𝑥)(𝑔◦(𝑥) + ℎ◦(𝑥) ln(𝑔(𝑥)))
15 𝑔(ℎ(𝑥)) 𝑔◦(ℎ(𝑥))ℎ◦(𝑥)
16 𝑔(𝑥)⊙ ℎ(𝑥) 𝑔◦(𝑥) ln(ℎ(𝑥)) + ℎ◦(𝑥) ln(𝑔(𝑥)) ln

(

𝑔(𝑥)ℎ◦(𝑥)ℎ(𝑥)𝑔◦(𝑥)
)

The first thing to note is rule (10), as it states that the quotientive derivative turns
multiplication turns into addition. This and rule (12) directly follow from the definition
using the properties of the logarithm. As constants have a ◦-derivative of zero, constant
multiples of the derivative (9) do not change the quotientive derivative, just like with
the multiplicative derivative. Next we have the addition rule (11), which does not have
a simple way to write it, but does have some resemblance to the regular product rule.
As for the exponentiation rule (14), it is unfortunately not quite simple, although for one
of the two being constant (12,13) the formula looks much simpler. Lastly, we have the
chain rule (15), which has the outer function’s ◦-derivative that is this time multiplied
by the regular derivative of the inner function. Rule (16) also is no simple expression.
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3.3 The tangent power function
Like the tangent line and the tangent exponential that we have looked at earlier, we can
define something alike for the quotientive derivative called the tangent power function.
As we know, any function 𝑝(𝑥) = 𝑐𝑥𝑏 has a constant ◦-derivative of 𝑏. For a chosen
𝑎 ∈ ℝ and ◦-differentiable function 𝑓 , set 𝑝(𝑎) = 𝑓 (𝑎) and 𝑝◦(𝑎) = 𝑓 ◦(𝑎). Then

𝑓 ◦(𝑎) = 𝑝◦(𝑎) = 𝑏, 𝑓 (𝑎) = 𝑝(𝑎) = 𝑐𝑎𝑓
◦(𝑎) ⟹ 𝑐 = 𝑓 (𝑎)𝑎−𝑓

◦(𝑎)

Thus, we get the following equation for the tangent power function at 𝑎:

𝑝(𝑥) = 𝑓 (𝑎)
(𝑥
𝑎

)𝑓◦(𝑎)

First thing to note is that, instead of the usual 𝑥 − 𝑎 term, we have the quotient 𝑥
𝑎 .

However, it does share with the ∗-derivative that the term 𝑓 (𝑎) is multiplied with the
rest. This is most likely because the ∗-derivative also has the multiplicative difference
in 𝑦, while only the ◦-derivative has the multiplicative difference in 𝑥.

Like before, it is easy to show that the tangent power function of the tangent line is
the tangent line of 𝑓 and that the same holds the other way around, given all are at 𝑎
and the different derivatives are well defined at 𝑎.

With that, we can take a look at example with the sine function, drawing the tangent
power function at 𝑥 = 1 and 𝑥 = 2. For 𝑥 = 1, we have the following.

0 1 2 3 4

0

1

2

3 sin(x)
power function at 𝑥 = 1
power function at 𝑥 = 2
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4 The anti-multiplicative derivative
4.1 The last derivative of four
We have been looking at different combinations of derivatives that view the 𝑥 or 𝑦
axis either additively or multiplicatively. Now we have one combination left, which is
looking at how multiplicative change in 𝑥 affects additive change in 𝑦. This is similar in
concept as the multiplicative derivative, only that 𝑥 and 𝑦 are reversed. To understand
this concept more, let us look at the following family of functions:

Let 𝑓 (𝑥) = log𝑏(𝑥) + 𝑎 with 𝑎 ∈ ℝ and 1 ≠ 𝑏 > 0. For 𝑚 ∈ ℝ, we have

𝑓 (𝑚𝑥) = log𝑏(𝑚𝑥) + 𝑎 = log𝑏(𝑚) + log𝑏(𝑥) + 𝑎 = 𝑓 (𝑥) + log𝑏(𝑚)

As we can see, independent of 𝑥, each multiplicative change in 𝑥 adds log𝑏(𝑚) to
the function’s value 𝑓 (𝑥), meaning it adds how much 𝑚 fits into the fixed quantity 𝑏
multiplicatively. In this sense, the new derivative must here be equal to 𝑏, with which
we can construct our derivative:

𝑓 ▫(𝑥) ∶= lim
𝑎→𝑥

𝑓 (𝑎)−𝑓 (𝑥)

√

𝑎
𝑥
= lim

𝑚→1
𝑓 (𝑚𝑥)−𝑓 (𝑥)

√

𝑚

We will refer to this derivative as the anti-multiplicative derivative or the ▫-derivative,
and will denote it by 𝑓 ▫ = 𝑑𝑓

√

𝑞𝑥 = 𝑞𝑥
1
𝑑𝑓 or ▫ = 𝑑

√

𝑞𝑥 = 𝑞𝑥
1
𝑑 . The reason we call it the

anti-multiplicative derivative is because of the following identity using the multiplica-
tive derivative and a bijective function 𝑓 :

𝑓 ▫(𝑥) = lim
𝑎→𝑥

𝑓 (𝑎)−𝑓 (𝑥)

√

𝑓−1(𝑓 (𝑎))
𝑓−1(𝑓 (𝑥))

= (𝑓−1)∗(𝑓 (𝑥))

Note that the root in the definition is there to take out the logarithm, for 𝑎, 𝑏 > 0:

(log𝑏(𝑥) + 𝑎)▫ = lim
𝑚→1

𝑚
1

log𝑏(𝑚𝑥)+𝑎−log𝑏(𝑥)−𝑎 = lim
𝑚→1

𝑚
1

log𝑏(𝑚) = lim
𝑚→1

𝑚log𝑚(𝑏) = 𝑏

Let us try out the anti-multiplicative derivative for a different function:

(𝑥)▫ = lim
𝑚→1

𝑚
1

𝑚𝑥−𝑥 = lim
𝑚→1

𝑚
1

(𝑚−1)𝑥
ℎ=𝑚−1
= lim

ℎ→0
(1 + ℎ)

1
ℎ𝑥 = 𝑒

1
𝑥

12



Once more, we will look for an easier formula to express the anti-multiplicative
derivative in terms of the regular derivative.

𝑓 ▫(𝑥) = lim
𝑎→𝑥

(𝑎
𝑥

)
1

𝑓 (𝑎)−𝑓 (𝑥) = lim
𝑎→𝑥

𝑒
ln

(

(

𝑎
𝑥

)
1

𝑓 (𝑎)−𝑓 (𝑥)
)

= lim
𝑎→𝑥

𝑒
ln(𝑎)−ln(𝑏)
𝑓 (𝑎)−𝑓 (𝑥)

= lim
𝑎→𝑥

𝑒
ln(𝑎)−ln(𝑥)

𝑎−𝑥
𝑎−𝑥

𝑓 (𝑎)−𝑓 (𝑥)

= 𝑒
ln′(𝑥)
𝑓 ′(𝑥)

= 𝑒
1

𝑥𝑓 ′(𝑥)

This formula can now be used to figure out all the differentiation rules for the ▫-
derivative using what we know about the regular derivative. This again is not a se-
quence of elementary functions, but we can use the inverse identity to express it as
𝑓 ▫ = exp ◦ 𝑑

𝑑𝑥 (ln ◦𝑓
−1)◦𝑓 . Rewriting the formula to express 𝑓 ′(𝑥) in terms of 𝑓 ▫(𝑥)

gives us 𝑓 ′(𝑥) = 1
𝑥 ln(𝑓 ▫(𝑥)) . This gives us the following theorem:

Theorem 3. Let 𝑓 ∶ ℝ → ℝ be a real function and let 𝑥 ∈ ℝ. Then

𝑓 is differentiable at 𝑥 and 𝑓 ′(𝑥), 𝑥 ≠ 0 ⟹ 𝑓 is ▫-differentiable at 𝑥
𝑓 is ▫-differentiable at 𝑥 and 𝑥 ≠ 0 ⟹ 𝑓 is differentiable at 𝑥

The first thing to note about this is that in both implications, we need 𝑥 needs to be
non-zero. Indeed, when we put 𝑥 = 0 into our original definition, we see that the ▫-
derivative cannot be computed, meaning our domain can at most be ℝ⧵{0}. For similar
reasons as with the quotientive derivative, we will not limit our functions to 𝑥 > 0. The
other condition for writing 𝑓 ▫(𝑥) in terms of 𝑓 ′(𝑥) is that the derivative must be non-
zero. This will not affect our domain or codomain for a general function 𝑓 , but does
tell us that, unlike the other discussed derivatives, the anti-multiplicative derivative is
undefined at stationary points. One should note here that since there is no restriction
on 𝑓 (𝑥), there is no need to restrict the codomain of 𝑓 (𝑥), meaning ▫-differentiable
functions can be negative or zero.
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4.2 Anti-multiplicative differentiation rules
Let us now look at how the anti-multiplicative derivative acts on different elemen-
tary functions and operations between functions. Let 𝑎 > 0 and let 𝑔, ℎ be real ▫-
differentiable functions.

# 𝑓 (𝑥) 𝑓 ▫(𝑥) alternative
1 𝑎 undefined
2 log𝑎(𝑥) 𝑎

5 𝑥 𝑒
1
𝑥

4 𝑥𝑎 𝑒
1

𝑎𝑥𝑎

5 𝑏𝑥 𝑒
1

ln(𝑏)𝑥𝑏𝑥

6 sin(𝑥) 𝑒
1

𝑥 cos(𝑥)

7 cos(𝑥) 𝑒−
1

𝑥 sin(𝑥)

8 tan(𝑥) 𝑒
cos2(𝑥)

𝑥

9 𝑎 + 𝑔(𝑥) 𝑔▫(𝑥)

10 𝑎 ⋅ 𝑔(𝑥) 𝑔▫(𝑥)
1
𝑎

11 𝑔(𝑥)𝑎 𝑔▫(𝑥)
1

𝑎𝑔(𝑥)𝑎−1

12 𝑎𝑔(𝑥) 𝑔▫(𝑥)
1

ln(𝑎)𝑎𝑔(𝑥)

13 𝑔(𝑥) + ℎ(𝑥) 𝑒
1

𝑥(𝑔′(𝑥)+ℎ′(𝑥)) 𝑒
ln(𝑔▫(𝑥)) ln(ℎ▫(𝑥))
ln(𝑔▫(𝑥)ℎ▫(𝑥))

14 𝑔(𝑥) ⋅ ℎ(𝑥) 𝑒
1

𝑥(𝑔′(𝑥)ℎ(𝑥)+𝑔(𝑥)ℎ′(𝑥)) 𝑒
ln(𝑔▫(𝑥)) ln(ℎ▫(𝑥))

ln(𝑔▫(𝑥)𝑔(𝑥)ℎ▫(𝑥)ℎ(𝑥))

15 𝑔(ℎ(𝑥)) ℎ▫(𝑥)
1

𝑔′(ℎ(𝑥)) 𝑔▫(ℎ(𝑥))ℎ(𝑥) ln(ℎ▫(𝑥))

As we can see here, there are not as many rules that have simple expressions, com-
pared to the others we have looked at. The anti-multiplicative derivative has no simple
rule for addition (13) nor does it have one for multiplication (14). The simplest of gen-
eral rules is addition of a constant (9), as these vanish in ▫-differentiation, similar to
the regular derivative. As for constant multiplication (10), the constant surprisingly
returns as an inverted exponent. One thing to note about its chain rule (15) is that the
alternative expression is reminiscent of the multiplicative derivative’s chain rule, while
the first way to write it shows us how rules (11) and (12) make sense. The nicest func-
tion to work with the ▫-derivative is of course the logarithm, as it simply returns the
base’s value (2). As for the worst aspect of the ▫-derivative, constants do not have a
well defined ▫-derivative, meaning we cannot use it in the rules (8)-(14) to get any re-
sults. One thing to note is that some of these equations can be written slightly simpler
when making use of the operators ⊙ and ⊘, defined in chapters 2.2 and 7 respectively.
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4.3 The tangent logarithm
The anti-multiplicative derivative also has an equivalent of the tangent line named the
tangent logarithm. For this we will use the fact that any function of the form 𝑙(𝑥) =
log𝑏(𝑥) + 𝑐 has a constant ▫-derivative of 𝑏. Now for a chosen 𝑎 ∈ ℝ ⧵ {0} and ▫-
differentiable function 𝑓 , we set 𝑙(𝑎) = 𝑓 (𝑎) and 𝑙▫(𝑎) = 𝑓 ▫(𝑎). Then

𝑓 ▫(𝑎) = 𝑙▫(𝑎) = 𝑏, 𝑓 (𝑎) = 𝑙(𝑎) = log𝑓 ▫(𝑎)(𝑎) + 𝑐 ⟹ 𝑐 = 𝑓 (𝑎) − log𝑓 ▫(𝑎)(𝑎)

Thus, we get the following equation for the tangent logarithm at 𝑎:

𝑙(𝑥) = log𝑓 ▫(𝑎)

(𝑥
𝑎

)

+ 𝑓 (𝑎)

Just like the ∗-derivative, we again have the term 𝑥
𝑎 . However unlike with the ∗- and

◦-derivative, the term 𝑓 (𝑎) is added onto the rest of the equation instead of multiplied,
which more resembles the behavior of the regular derivative. The pattern that we can
notice here is that derivatives defined by an additive difference in 𝑥 subtract 𝑎 from
𝑥, while ones with multiplicative difference in 𝑥 divide 𝑥 by 𝑎. In a similar sense,
derivatives defined by an additive difference in 𝑦 add 𝑓 (𝑎) to the rest of the equation,
while ones with multiplicative difference in 𝑦 multiply 𝑓 (𝑎) to the rest of the equation.
In the next part we will explore the other ways in which the four kinds of derivatives
compare.

At last, let us look at what the tangent logarithm of the sine function looks like as
an example, at the points 𝑥 = 1 and 𝑥 = 2.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−1

0

1

2

3

4
sin(x)

logarithm at 𝑥 = 1
logarithm at 𝑥 = 2
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5 Comparing the calculi
We now have four kinds of calculus, created from the notion of taking the regular deriva-
tive and replacing additive differences with multiplicative differences. The following
shows all four definitions along side one another, classified using this notion.

additive in 𝑦 multiplicative in 𝑦
additive in 𝑥 regular derivative multiplicative derivative

lim𝑎→𝑥
𝑓 (𝑎)−𝑓 (𝑥)

𝑎−𝑥 lim𝑎→𝑥
𝑎−𝑥
√

𝑓 (𝑎)
𝑓 (𝑥)

multiplicative in 𝑥 anti-multiplicative derivative quotientive derivative
lim𝑎→𝑥

𝑓 (𝑎)−𝑓 (𝑥)
√

𝑎
𝑥 lim𝑎→𝑥 log 𝑎

𝑥

(

𝑓 (𝑎)
𝑓 (𝑥)

)

Here the ones that are additive in 𝑥 use limℎ→0, as it reduces 𝑎−𝑥 = ℎ, while the ones
that are multiplicative in 𝑥 use lim𝑚→1, as it reduces 𝑎

𝑥 = 𝑚. Generally, these definitions
are of the form lim𝑎→𝑥 𝑟(𝑑1(𝑓 (𝑎), 𝑓 (𝑥)), 𝑑2(𝑎, 𝑥)) where 𝑟, 𝑑1, 𝑑2 are functions of the
form 𝑆 ⊆ ℝ2 → ℝ with 𝑑1, 𝑑2 ∈ {−, ∕}.

As we have discussed in Chapter 4.3, there are quite a few similarities when it comes
to the different kinds of tangential functions at 𝑎 ∈ ℝ, a term not to be confused with
the tangent function tan. Let us now put them along side each other, using the reference
above to determine which calculus we are referring to.

additive in 𝑦 multiplicative in 𝑦
additive in 𝑥 tangent line tangent exponential

𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 (𝑎) 𝑓 (𝑎)𝑓 ∗(𝑎)𝑥−𝑎
multiplicative in 𝑥 tangent logarithm tangent power function

log𝑓 ▫(𝑎)

(

𝑥
𝑎

)

+ 𝑓 (𝑎) 𝑓 (𝑎)
(

𝑥
𝑎

)𝑓◦(𝑎)

We can see that the tangential functions all follow a distinct pattern, based on which
axis is viewed additively or multiplicatively and which type of function is constant under
its respective derivative. Applying all the tangential function to sin at 𝑎 = 1 gives us:

0 1 2 3 4

−1

0

1

2

3
sin(x)
line

exponential
power fct.
logarithm
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Let us now turn to ways to write the derivatives in terms of one another. We have
already looked at ways in which each can be written in terms of the regular derivative
and the other way around. Using those formulas, we can figure out all combinations:

write⧵as 𝑓 ′(𝑥) 𝑓 ∗(𝑥) 𝑓 ◦(𝑥) 𝑓 ▫(𝑥)
𝑓 ′(𝑥) 𝑓 ′(𝑥) 𝑓 (𝑥) ln(𝑓 ∗(𝑥)) 𝑓 (𝑥)𝑓

◦(𝑥)
𝑥

1
𝑥 ln(𝑓 ▫(𝑥))

𝑓 ∗(𝑥) 𝑒
𝑓 ′(𝑥)
𝑓 (𝑥) 𝑓 ∗(𝑥) 𝑒

𝑓◦(𝑥)
𝑥 𝑒

1
𝑥𝑓 (𝑥) ln(𝑓▫(𝑥))

𝑓 ◦(𝑥) 𝑥𝑓 ′(𝑥)
𝑓 (𝑥) 𝑥 ln(𝑓 ∗(𝑥)) 𝑓 ◦(𝑥) 1

𝑓 (𝑥) ln(𝑓 ▫(𝑥))

𝑓 ▫(𝑥) 𝑒
1

𝑥𝑓 ′(𝑥) 𝑒
1

𝑥𝑓 (𝑥) ln(𝑓∗(𝑥)) 𝑒
1

𝑓 (𝑥)𝑓◦(𝑥) 𝑓 ▫(𝑥)

The first observation is that all of these equations are written using the relevant
derivative together with 𝑥 and 𝑓 (𝑥), using only the operations ⋅, ∕, exp and ln. Looking
closer, there seems to be a pattern in these equations when it comes to containing the
term 𝑥 or 𝑓 (𝑥). Whenever one changes the calculus from being additive to multiplica-
tive in 𝑥, or the other way around, the term 𝑥 appears in the equation, while if it does
not change, the term is not included. In the same way, whenever one changes the cal-
culus from being additive to multiplicative in 𝑦, or the other way around, the term 𝑓 (𝑥)
appears in the equation between derivatives, while if it does not change, the term is not
included. For example, the ∗-derivative is additive in 𝑥, the ◦-derivative is multiplica-
tive in 𝑥 and both are multiplicative in 𝑦. That is why 𝑓 ∗(𝑥) = 𝑒

𝑓◦(𝑥)
𝑥 includes the term

𝑥 while not including 𝑓 (𝑥). The likely reason for this is that including the term 𝑥 or
𝑦 = 𝑓 (𝑥) in such an equation fundamentally changes the nature of how the derivative
treats the respective axis, which makes sense as the terms directly correspond to the
value of each axis.
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6 Generalization using arbitrary bijections
We have seen that that the ∗-derivative can be expressed in the following way: 𝑓 ∗ =
exp ◦ (ln ◦𝑓 )′. As we have seen throughout the chapters, the exponential function exp
and its inverse ln come up in quite a lot of equations. In this part we will look at what
happens when we replace exp with an arbitrary bijective differentiable function 𝜑 ∶
𝑈 → 𝑉 where 𝑈, 𝑉 ⊂ ℝ are open sets, and also replace ln with 𝜑−1. Let us start with
generalizing the multiplicative derivative:

𝑓 ∗
𝜑 ∶= 𝜑 ◦ (𝜑−1◦𝑓 )′

𝑓 ∗
𝜑(𝑥) = 𝜑

(

𝑓 ′(𝑥) ⋅ (𝜑−1)′(𝑓 (𝑥)
)

= 𝜑
(

𝑓 ′(𝑥)
𝜑′(𝜑−1(𝑓 (𝑥)))

)

We can also write the regular derivative in terms of this derivative, using the equa-
tion 𝑓 ′(𝑥) = 𝜑′(𝜑−1(𝑓 (𝑥)))𝜑−1(𝑓 ∗

𝜑(𝑥)). As we can see, if 𝜑 = exp, then 𝑓 ∗
𝜑 = 𝑓 ∗,

where we use that exp′ ◦ exp−1 = exp ◦ ln = id. Next, if 𝑓 = 𝜑 we get that 𝑓 ∗
𝜑(𝑥) =

𝜑(1) and if 𝑓 = 𝑐 ∈ ℝ, then 𝑓 ∗
𝜑 = 𝜑(0), both of which can be found to hold through

either formula. The regular derivative is also part of this family of derivatives, as 𝜑 = id
gives us 𝑓 ∗

𝜑 = 𝑓 ′. Lastly, as for some non-trivial examples:

𝜑(𝑥) = 𝑥3 ∀𝑥 ∈ ℝ gives 𝑓 ∗
𝜑(𝑥) =

𝑓 ′(𝑥)3

3𝑓 (𝑥)2

𝜑(𝑥) = 1
𝑥
∀𝑥 ≠ 0 gives 𝑓 ∗

𝜑(𝑥) = −
𝑓 (𝑥)2

𝑓 ′(𝑥)
𝜑(𝑥) = 𝑎𝑥 + 𝑏∀𝑥 ∈ ℝ gives 𝑓 ∗

𝜑(𝑥) = 𝑓 ′(𝑥) + 𝑏

𝜑(𝑥) = ln(𝑥) ∀𝑥 > 0 gives 𝑓 ∗
𝜑(𝑥) = ln(𝑓 ′(𝑥)) + 𝑓 (𝑥)

𝜑(𝑥) = sin(𝑥) ∀𝑥 ∈
(

−𝜋
2
, 𝜋
2

)

gives 𝑓 ∗
𝜑(𝑥) = sin

(

𝑓 ′(𝑥)
√

1 − 𝑓 (𝑥)2

)

𝜑(𝑥) = tan(𝑥) ∀𝑥 ∈
(

−𝜋
2
, 𝜋
2

)

gives 𝑓 ∗
𝜑(𝑥) = tan

(

𝑓 ′(𝑥)
1 + 𝑓 (𝑥)2

)

One thing what all of these have in common (with the exception for 𝜑 linear) is that
they include the term 𝑓 (𝑥). However, the ◦- and ▫-derivative both include the term 𝑥 in
their expression in terms of the regular derivative. These derivatives cannot be of the
form 𝑓 ∗

𝜑 for some 𝜑, because when you fix 𝑓 and 𝑥, 𝜑′(𝜑−1(𝑓 (𝑥))) is purely in terms of
𝑓 (𝑥) which is different from 𝑥 and 𝑓 ′(𝑥) is also a different term from 𝑥, meaning that
𝑓 ∗
𝜑(𝑥) = 𝜑

(

𝑓 ′(𝑥)
𝜑′(𝜑−1(𝑓 (𝑥)))

)

must also not include the term 𝑥. Using our knowledge from
before in chapter 5, we can conclude that for non-linear functions 𝜑, the derivative (⋅)∗𝜑
changes the nature from the regular derivative on how it treats the 𝑦 axis, but does not
change the way it treats the 𝑥 axis.
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We will now look at how we can make a derivative based on a bijection 𝜑 reminis-
cent of the anti-multiplicative derivative, which changes how it treats the 𝑥 axis but not
the 𝑦 axis. Using the fact that 𝑓 ▫ = (𝑓−1)∗◦𝑓 , we will define this new derivative in
terms of 𝑓 ∗

𝜑:

𝑓 ▫
𝜑 ∶= (𝑓−1)∗𝜑◦𝑓

𝑓 ▫
𝜑(𝑥) = 𝜑

(

(𝑓−1)′(𝑓 (𝑥))
𝜑′(𝜑−1(𝑓−1(𝑓 (𝑥))))

)

= 𝜑
(

1
𝜑′(𝜑−1(𝑥))𝑓 ′(𝑓−1(𝑓 (𝑥)))

)

= 𝜑
(

1
𝜑′(𝜑−1(𝑥))𝑓 ′(𝑥)

)

We will now use the following alternate definition that does not require 𝑓 to be
invertible:

𝑓 ▫
𝜑 = 𝜑◦

(𝜑−1)′

𝑓 ′

Again we arrive at that if 𝜑 = exp, then 𝑓 ▫
𝜑 = 𝑓 ▫. Next, if 𝑓 = 𝜑−1, then 𝑓 ▫

𝜑(𝑥) =
𝜑(1) and if 𝑓 = 𝑐 ∈ ℝ, then 𝑓 ▫

𝜑(𝑥) is undefined. This time having 𝜑 = id gives us that
𝑓 ▫
𝜑 = 1

𝑓 ′ . As for some other examples, 𝜑 = ln gives us 𝑓 ▫
𝜑(𝑥) = 𝑥 − ln(𝑓 ′(𝑥)) and for

𝑐 ∈ ℝ we have (𝑓 + 𝑐)▫𝜑 = 𝑓 ▫
𝜑.

Using similar logic as before, 𝑓 ▫
𝜑 is purely in terms of 𝑥 and 𝑓 ′(𝑥), meaning that

these derivatives change the nature from the regular derivative on how it treats the 𝑥 axis,
but not the 𝑦 axis. We will now look at the generalization of the quotientive derivative,
this time by simply replacing exp with 𝜑 again, as the way we derived the previous
generalization was equivalent to replacing exp with 𝜑. Therefore we have

𝑓 ◦
𝜑 ∶=

(𝜑−1◦𝑓 )′

(𝜑−1)′

𝑓 ◦
𝜑(𝑥) =

(𝜑−1)′(𝑓 (𝑥))𝑓 ′(𝑥)
(𝜑−1)′(𝑥)

=
𝜑′(𝜑−1(𝑥))𝑓 ′(𝑥)
𝜑′(𝜑−1(𝑓 (𝑥)))

Once again, if 𝜑 = exp then 𝑓 ◦
𝜑 = 𝑓 ◦. Next if 𝑓 = 𝜑, then 𝑓 ◦

𝜑(𝑥) = 𝜑′(𝜑−1(𝑥)), if
𝑓 = 𝑐 ∈ ℝ, then 𝑓 ◦

𝜑(𝑥) = 0 and if 𝑓 = id, then 𝑓 ◦
𝜑(𝑥) = 1. Lastly, for 𝜑 = id we have

𝑓 ◦
𝜑 = 𝑓 ′. As for some other examples, 𝜑 = ln gives us 𝑓 ◦

𝜑(𝑥) = 𝑒𝑓 (𝑥)−𝑥𝑓 ′(𝑥) and for
fixed points 𝑓 (𝑐) = 𝑐, we have 𝑓 ◦

𝜑(𝑐) = 𝑓 ′(𝑐).
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7 The bigeometric derivative
We will now look at a derivative similar to the ones we have defined in chapter 2 to 4,
but this time not based on some underlying idea of multiplication. We will define the
bigeometric derivative is defined as follows:

𝑓⭐(𝑥) ∶= lim
ℎ→0

(

𝑓 ((ℎ + 1)𝑥)
𝑓 (𝑥)

)
1
ℎ
= lim

𝑚→1

(

𝑓 (𝑚𝑥)
𝑓 (𝑥)

)
1

ln(𝑚)

Note that the second equality of limits holds because lim𝑚→1
𝑚−1
ln(𝑚) = 1. The defini-

tion and name of this derivative comes from [5] and is based on slightly changing the
multiplicative derivative, which they call the geometric derivative. We can rewrite this
to get the following:

𝑓⭐(𝑥) = lim
𝑚→1

(

𝑓 (𝑚𝑥)
𝑓 (𝑥)

)
1

ln(𝑚)
= lim

𝑚→1
𝑒
ln(𝑓 (𝑚𝑥))−ln(𝑓 (𝑥))

ln(𝑚)

𝑎=𝑚𝑥
= lim

𝑎→𝑥
𝑒
ln(𝑓 (𝑎))−ln(𝑓 (𝑥))

ln(𝑎)−ln(𝑥)

= 𝑒
(ln ◦𝑓 )′(𝑥)

ln′(𝑥)

= 𝑒𝑥
𝑓 ′(𝑥)
𝑓 (𝑥)

Another way to define the bigeometric derivative is by looking at the regular deriva-
tive and replacing addition with multiplication and multiplication with the operation ⊙.
Note that division will be replaced with ⊘ defined by 𝑎⊘𝑏 = exp(ln(𝑎)∕ ln(𝑏)). Doing
this gives

lim
𝑎→𝑥

𝑓 (𝑎)
𝑓 (𝑥)

⊘𝑎
𝑥
= lim

𝑎→𝑥
exp

(

ln(𝑓 (𝑎)∕𝑓 (𝑥))
ln(𝑎∕𝑥)

)

= lim
𝑎→𝑥

exp
(

ln(𝑓 (𝑎)) − ln(𝑓 (𝑥))
ln(𝑎) − ln(𝑥)

)

= 𝑓⭐(𝑥)

where the last equality comes from when when deriving the formula 𝑓⭐(𝑥) = 𝑒𝑥
𝑓 ′(𝑥)
𝑓 (𝑥) .

As we can see, the bigeometric derivative is similar to the ∗-derivative as they have
similar definitions, but also from that 𝑓⭐(𝑥) = 𝑓 ∗(𝑥)𝑥. The ◦-derivative is quite similar
too, as we have that 𝑓⭐(𝑥) = 𝑒𝑓◦(𝑥), as well as knowing both change the nature of how
the 𝑥 and 𝑦 axis are treated. With this, we have the following rules:
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# 𝑓 (𝑥) 𝑓⭐(𝑥)
1 𝑎 1
2 𝑥𝑎 𝑒𝑎
3 𝑎𝑥 𝑎𝑥

4 ln(𝑥) 𝑒
1

ln(𝑥)

5 𝑥 ⊙ 𝑏 𝑏
6 𝑎 ⋅ 𝑔(𝑥) 𝑔⭐(𝑥)
7 𝑔(𝑥) ⋅ ℎ(𝑥) 𝑔⭐(𝑥) ⋅ ℎ⭐(𝑥)
8 𝑔(𝑥)𝑎 𝑔⭐(𝑥)𝑎
9 𝑎𝑔(𝑥) (𝑎 ⊙ 𝑔⭐(𝑥))𝑔(𝑥)
10 𝑔(ℎ(𝑥)) 𝑔⭐(ℎ(𝑥))⊙ ℎ⭐(𝑥)
11 𝑔(𝑥)⊙ ℎ(𝑥) 𝑔⭐(𝑥)⊙ ℎ(𝑥) ⋅ 𝑔(𝑥)⊙ ℎ⭐(𝑥)

Note that 𝑎 > 0, 𝑔, ℎ are real ⭐-differentiable functions and 𝑎⊙𝑏 = exp(ln(𝑎) ln(𝑏)).
As we can see, a lot of rules are the same as the ones from the ∗-derivative, like the rules
(1), (6) to (9) and (11). Next, we note that there are many ways in which the operation
⊙ works well with the bigeometric derivative. For example, rule (10) is like the regular
chain rule, but instead of multiplication between the terms we have ⊙. Another example
is rule (5) which shows us that the kind of functions that are turned into a constant under
this calculus are of the form 𝑥 ⊙ 𝑏 = 𝑥ln(𝑏), similar to how the regular derivative has
(𝑎 ⋅𝑥)′ = 𝑎. One more thing that holds similarity to the regular derivative is the rule (3),
as both have 𝑒𝑥 unchanging under either derivatives. The only difference then is that
for the regular derivative, the unchanging functions are 𝑎𝑒𝑥, while for the bigeometric
derivative they are of the form 𝑒𝑎𝑥.

As for the tangential function, it will have to be of the form 𝑚(𝑥) = 𝑐 ⋅ 𝑏 ⊙ 𝑥. Note
that ⊙ comes before ⋅ in the order of operations. Now for a chosen 𝑎 ∈ ℝ and function
𝑓 we set 𝑚(𝑎) = 𝑓 (𝑎) and 𝑚⭐(𝑎) = 𝑓⭐(𝑎), giving us

𝑓⭐(𝑎) = 𝑚⭐(𝑎) = 𝑏, 𝑓 (𝑎) = 𝑚(𝑎) = 𝑐 ⋅ 𝑓⭐(𝑎)⊙ 𝑎 ⟹ 𝑐 =
𝑓 (𝑎)

𝑓⭐(𝑎)⊙ 𝑎

As 𝑏⊙𝑥
𝑏⊙𝑎 = 𝑥ln(𝑏)

𝑎ln(𝑏) =
(

𝑥
𝑎

)ln(𝑏)
= 𝑏 ⊙ 𝑥

𝑎 , we can conclude that

𝑚(𝑥) = 𝑓 (𝑎) ⋅ 𝑓⭐(𝑎)⊙ 𝑥
𝑎

However, as ln(𝑓⭐(𝑥)) = 𝑓 ◦(𝑥), we see that 𝑚(𝑥) = 𝑓 (𝑎) ⋅
(

𝑥
𝑎

)𝑓◦(𝑎)
, which is also

the tangent power function from the ◦-derivative. This makes sense, as both derivatives
turn power functions into constants, only that they differ by exponentiation.
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8 Exploring multiplicative calculus
8.1 The Mean Value theorem
To use what we know from classical calculus, we will first note that for a positive func-
tion 𝑓 we have that

𝑓 ′(𝑥) = 0 ⟺ 𝑓 ∗(𝑥) = 1

This can be seen directly from the formula 𝑓 ∗(𝑥) = 𝑒
𝑓 ′(𝑥)
𝑓 (𝑥) . Let us now turn to the

following theorem.

Theorem 4. ∗-Rolle’s Theorem: Let 𝑓 be positive and continuous on [𝑎, 𝑏] and ∗-
differentiable on (𝑎, 𝑏). If 𝑓 (𝑎) = 𝑓 (𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ∗(𝑐) = 1

As Theorem 1 tells us that 𝑓 is also differentiable, we can use Rolle’s Theorem (the
classical one) to get a number 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 0, meaning 𝑓 ∗(𝑐) = 1. With
this we can turn to the important theorem.

Theorem 5. ∗-Mean Value Theorem: Let 𝑓 be positive and continuous on [𝑎, 𝑏] and
∗-differentiable on (𝑎, 𝑏). There exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ∗(𝑐) =
(

𝑓 (𝑏)
𝑓 (𝑎)

)
1

𝑏−𝑎

Similar to the regular Mean Value Theorem, we will prove this by constructing a
function to which we can apply ∗-Rolle’s Theorem. Consider the following function.

𝐹 (𝑥) ∶= 𝑓 (𝑎)
(

𝑓 (𝑏)
𝑓 (𝑎)

)
𝑥−𝑎
𝑏−𝑎

This function satisfies 𝐹 (𝑎) = 𝑓 (𝑎) and 𝐹 (𝑏) = 𝑓 (𝑏). Next, consider the function
𝐺(𝑥) = 𝐹 (𝑥)

𝑓 (𝑥) . Using that 𝐺(𝑎) = 𝐺(𝑏) = 1 and the properties of 𝑓 , we can apply
∗-Rolle’s Theorem to 𝐺 to get that there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝐺∗(𝑐) = 1. As
multiplication is preserved under ∗-differentiation, we can rearrange the equation to
get that 𝐹 ∗(𝑐) = 𝑓 ∗(𝑐). At last, all we need now is to apply rule (2) and (9) for the
∗-derivative to get that 𝐹 ∗(𝑐) is equal to the constant we are looking for.

One thing to note about this proof is that 𝐹 (𝑥) is the unique exponential function
that coincides with 𝑓 at 𝑎 and 𝑏, in the same way that 𝑓 (𝑏)−𝑓 (𝑎)

𝑏−𝑎 (𝑥 − 𝑎) + 𝑓 (𝑎) is the
unique line with this property. Another way to think about the value 𝑓 ∗(𝑐) is that we
can rearrange the formula to get 𝑓 ∗(𝑐)𝑏−𝑎𝑓 (𝑎) = 𝑓 (𝑏). In this sense, 𝑏−𝑎 is the interval
length and 𝑓 ∗(𝑐) is the growth factor that turns 𝑓 (𝑎) into 𝑓 (𝑏).

We can use this same method to find the ◦-Mean Value Theorem, but not the ▫-
Mean Value Theorem. This is because we know that 𝑓 ′(𝑥) = 0 ⟺ 𝑓 ◦(𝑥) = 0, while
𝑓 ′(𝑥) = 0 ⟹ 𝑓 ▫(𝑥) is undefined. From the equivalency we get
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Theorem 6. ◦-Rolle’s Theorem: Let 𝑓 be continuous on [𝑎, 𝑏] and ◦-differentiable on
(𝑎, 𝑏). If 𝑓 (𝑎) = 𝑓 (𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ◦(𝑐) = 0.

With this we get our equivalent Mean Value Theorem for the ◦-derivative.

Theorem 7. ◦-Mean Value Theorem: Let 𝑓 be continuous on [𝑎, 𝑏] and ◦-differentiable
on (𝑎, 𝑏). There exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ◦(𝑐) = log 𝑏
𝑎

(

𝑓 (𝑏)
𝑓 (𝑎)

)

We start with the unique power function 𝐹 that satisfies 𝐹 (𝑎) = 𝑓 (𝑎), 𝐹 (𝑏) = 𝑓 (𝑏).

𝐹 (𝑥) ∶= 𝑓 (𝑎)
(𝑥
𝑎

)log 𝑏
𝑎

(

𝑓 (𝑏)
𝑓 (𝑎)

)

Next, we define 𝐺(𝑥) = 𝐹 (𝑥)
𝑓 (𝑥) as it has the property 𝐺(𝑎) = 𝐺(𝑏) = 1, meaning ◦-

Rolle’s Theorem gives us a number 𝑐 ∈ ℝ with 𝐺◦(𝑐) = 0. Using rule (10) we get that
𝐺◦(𝑐) = 𝐹 ◦(𝑐) − 𝑓 ◦(𝑐) = 0, meaning 𝐹 ◦(𝑐) = 𝑓 ◦(𝑐). Lastly, applying the ◦-derivative
to 𝐹 gives us the constant we are looking for.

8.2 The Taylor series
As we know, analytical functions can be expressed as the following sum, for 𝑥 around
some point 𝑎 ∈ ℝ:

𝑓 (𝑥) =
∞
∑

𝑛=0
𝑓 (𝑛)(𝑎)

(𝑥 − 𝑎)𝑛

𝑛!

This holds true for most elementary functions. One way to think about this series
is that it works to match all the derivatives (repeated derivation) with the function 𝑓 at
𝑎. To start, we observe the fact that for 𝑛, 𝑘 ∈ ℕ

(

(𝑥 − 𝑎)𝑘

𝑘!

)(𝑛)
|

|

|

|

|𝑥=𝑎
= 𝛿𝑛𝑘 =

{

1 if 𝑛 = 𝑘
0 if 𝑛 ≠ 𝑘

For 𝑛 = 𝑘 this comes from repeated application of 𝑑
𝑑𝑥 (𝑥 − 𝑎)𝑘 = 𝑘(𝑥 − 𝑎)𝑘−1, as

after 𝑘 times it is equal to 𝑘!. Next, for 𝑛 < 𝑘 we have some the term (𝑥 − 𝑎)𝑘−𝑛 in our
formula, which equals 0 when evaluating 𝑥 = 𝑎. Lastly, for 𝑛 > 𝑘 we can use the fact
that after 𝑛 − 𝑘 differentiations we get 1, which after another differentiation equals 0.
Now we can see that
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( ∞
∑

𝑘=0
𝑓 (𝑘)(𝑎)

(𝑥 − 𝑎)𝑘

𝑘!

)(𝑛)
|

|

|

|

|

|𝑥=𝑎

=
∞
∑

𝑘=0
𝑓 (𝑘)(𝑎)

(

(𝑥 − 𝑎)𝑘

𝑘!

)(𝑛)
|

|

|

|

|𝑥=𝑎

=
∞
∑

𝑘=0
𝑓 (𝑘)(𝑎) ⋅ 𝛿𝑛𝑘

= 𝑓 (𝑛)(𝑎) +
∑

𝑘≠𝑛
0 = 𝑓 (𝑛)(𝑎)

We will now consider the following term, using the notation (⋅)∗(𝑛) for applying the
∗-derivative 𝑛 times.

𝑒𝑘(𝑥) ∶= 𝑓 ∗(𝑘)(𝑎)
(𝑥−𝑎)𝑘

𝑘!

Using the fact that (𝑏𝑔(𝑥))∗ = 𝑏𝑔′(𝑥) also means that (𝑏𝑔(𝑥))∗(𝑛) = 𝑏𝑔(𝑛)(𝑥), taking the
∗-derivative 𝑛 times and evaluating 𝑥 = 𝑎 gets us

𝑒∗(𝑛)𝑘 (𝑎) =
(

𝑓 ∗(𝑘)(𝑎)
(𝑥−𝑎)𝑘

𝑘!

)∗(𝑛)
|

|

|

|

|𝑥=𝑎
= 𝑓 ∗(𝑘)(𝑎)

(

(𝑥−𝑎)𝑘
𝑘!

)(𝑛)
|

|

|

|

|𝑥=𝑎

= 𝑓 ∗(𝑘)(𝑎)𝛿
𝑛
𝑘 =

{

𝑓 ∗(𝑛)(𝑎) if 𝑛 = 𝑘
1 if 𝑛 ≠ 𝑘

This is quite similar to how our terms in the Taylor series act with respect to regular
differentiation, except here the term is 1 if 𝑛 ≠ 𝑘 instead of 0. Now, using the fact that
multiplication is preserved under ∗-differentiation, we arrive at the Taylor product:

∞
∏

𝑛=0
𝑒𝑛(𝑥) =

∞
∏

𝑛=0
𝑓 ∗(𝑛)(𝑎)

(𝑥−𝑎)𝑛
𝑛!

This is the function that we are looking for, because
( ∞
∏

𝑘=0
𝑒𝑘(𝑥)

)∗(𝑛)
|

|

|

|

|

|𝑥=𝑎

=
∞
∏

𝑘=0
𝑒∗(𝑛)𝑘 (𝑎) = 𝑓 ∗(𝑛)(𝑎) ⋅

∏

𝑘≠𝑛
1 = 𝑓 ∗(𝑛)(𝑎)

To show that this is equal to 𝑓 (𝑥), we will use the fact that

𝑓 ∗(𝑛) = 𝑒(ln ◦𝑓
∗(𝑛−1))′ = 𝑒(ln ◦𝑒

(ln ◦𝑓∗(𝑛−2))′ )′ = 𝑒(ln ◦𝑓
∗(𝑛−2))′′ = ⋯ = 𝑒(ln ◦𝑓 )

(𝑛)

Plugging this into the Taylor product gives

∞
∏

𝑛=0
𝑓 ∗(𝑛)(𝑎)

(𝑥−𝑎)𝑛
𝑛! =

∞
∏

𝑛=0
𝑒(ln ◦𝑓 )

(𝑛)(𝑎) (𝑥−𝑎)
𝑛

𝑛! = exp

( ∞
∑

𝑛=0
(ln ◦𝑓 )(𝑛)(𝑎)

(𝑥 − 𝑎)𝑛

𝑛!

)

= 𝑒ln(𝑓 (𝑥)) = 𝑓 (𝑥)

Here we used the fact that exponentials turn sums into products and that ln ◦𝑓 is
analytic at 𝑎, which will be the necessary requirement for the Taylor product to exist.
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8.3 Integration
We will be using the following notation for the multiplicative integral of a function 𝑓 .

∗∫ 𝑓 (𝑥)𝑑𝑥 = 𝐹 (𝑥)

Here, 𝐹 is understood to have the property 𝐹 ∗(𝑥) = 𝑓 (𝑥). The reason 𝑑𝑥 is taken to
the power instead of multiplied like with the normal integral is because 𝑑𝑥

√

𝑞𝑦 = 𝑓 (𝑥)
can be rewritten as 𝑞𝑦 = 𝑓 (𝑥)𝑑𝑥, similar to how 𝑑𝑦

𝑑𝑥 = 𝑓 (𝑥) gives us 𝑑𝑦 = 𝑓 (𝑥) 𝑑𝑥.
Viewing the ∗-integral as the ∗-antiderivative, we can find how to express it using regular
calculus.

𝑓 (𝑥) = 𝐹 ∗(𝑥) = 𝑒(ln ◦𝐹 )′(𝑥) ⟹ ln(𝑓 (𝑥)) = (ln ◦𝐹 )′(𝑥)

⟹ ∫ ln(𝑓 (𝑥)) 𝑑𝑥 = ln(𝐹 (𝑥))

⟹ 𝐹 (𝑥) = ∗∫ 𝑓 (𝑥)𝑑𝑥 = 𝑒∫ ln(𝑓 (𝑥)) 𝑑𝑥

This gives us a way to figure out all the integration rules for multiplicative calculus.
The first thing to note is how the general ∗-antiderivative looks like. If 𝐹 ′ = ln ◦𝑓 ,
then ∗∫ 𝑓 (𝑥)𝑑𝑥 = 𝑒∫ ln(𝑓 (𝑥)) 𝑑𝑥 = 𝑒𝐹 (𝑥)+𝐶 = 𝑒𝐶 ⋅ 𝑒𝐹 (𝑥) for 𝐶 ∈ ℝ. In other words,
if 𝐹 ∗ = 𝑓 then the general form is ∗∫ 𝑓 (𝑥)𝑑𝑥 = 𝐶 ⋅ 𝐹 (𝑥) for 𝐶 > 0. This can also
be seen by the ∗-differentiation rule (9) saying constant multiples do not change the
multiplicative derivative, just like how adding constants does not change the regular
derivative. With that we can look at the following table. Note that we will only be
using positive functions, so 𝑎 > 0 and 𝑔, ℎ are positive functions.

𝑓 (𝑥) ∗∫ 𝑓 (𝑥) 𝑑𝑥
1 𝑎 𝐶𝑎𝑥
2 𝑥𝑎 𝐶𝑥𝑎𝑥𝑒−𝑎𝑥

3 𝑎𝑥 𝐶𝑎
𝑥2
2

4 ln(𝑥) undefined
5 𝑔(𝑥)ℎ(𝑥) 𝐶𝐺(𝑥)𝐻(𝑥)
6 𝑔(𝑥)𝑎 𝐶𝐺(𝑥)𝑎

7 𝑎𝑔(𝑥) 𝐶𝑎∫ 𝑔(𝑥) 𝑑𝑥

As mentioned before, all results have an unknown constant multiplied with it to
account for the different functions that ∗-differentiate to the given function. The first
rule tells us that constants turn into exponential functions, which comes from the fact
that the multiplicative derivative was designed to turn exponential functions into con-
stants. Next, rule (2) gives us a hint of what rule (7) is, which states that ∗-integrating
the exponential of a function results in the exponential of the regular integral of our
function. This relates to the ∗-differentiation rule (13) stating that

(

𝑎𝑔(𝑥)
)∗ = 𝑎𝑔′(𝑥).

The most important rule however is the multiplication rule (5), as multiplication too is
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preserved under ∗-integration. Another action that is preserved is raising a function to
a constant power, according to rule (6), as this too is preserved under ∗-differentiation.
One more thing to note is that according to rule (4), logarythmic functions do not have
any ∗-antiderivative, as the integral ∫ ln(ln(𝑥)) 𝑑𝑥 cannot be solved.

Next let us look at what the substitution rule is for the multiplicative integral. Using
the ∗-chain rule, we have that

𝑓 (𝑔(𝑥)) = ∗∫ 𝑓 ∗(𝑔(𝑥))𝑔
′(𝑥) 𝑑𝑥 𝑢=𝑔(𝑥)

= ∗∫ 𝑓 ∗(𝑢)𝑑𝑢

As we chose 𝑢 = 𝑔(𝑥), taking the conventional derivative gives us 𝑑𝑢 = 𝑔′(𝑥) 𝑑𝑥,
which gets us the result above. Indeed, as 𝑑𝑥 is exponentiated, the way we do the sub-
stitution rule in multiplicative calculus is essentially the same as we do in conventional
calculus, except that here we do make use of the derivative of another calculus. There
is the only way of doing the substitution method, as what we need is to replace 𝑑𝑥 with
𝑑𝑢 for both to be a ∗-integral. This can only be done with the derivative comparing
additive differences (𝑑) in both 𝑢 and 𝑥, which is the regular derivative 𝑑𝑢

𝑑𝑥 .
As for ’integration by parts’, there is an equivalent in multiplicative calculus, but

instead of multiplication it uses the ⊙ operation. Using the rule for ∗-differentiating
𝑓 (𝑥)⊙ 𝑔(𝑥), we get

𝑓 (𝑥)⊙ 𝑔(𝑥) = ∗∫
(

𝑓 ∗(𝑥)⊙ 𝑔(𝑥) ⋅ 𝑓 (𝑥)⊙ 𝑔∗(𝑥)
)𝑑𝑥

Rewriting this using rule (5) gives us the equivalent of integration by parts.

∗∫
(

𝑓 (𝑥)⊙ 𝑔∗(𝑥)
)𝑑𝑥 =

𝑓 (𝑥)⊙ 𝑔(𝑥)
∗∫ (𝑓 ∗(𝑥)⊙ 𝑔(𝑥))𝑑𝑥

Other calculi also have their own integrals, but we will not give as much detail this
time as we did for the multiplicative integral. For notation, we will use the logic used
in previous parts, where we will solve the equations log𝑞𝑥 𝑞𝑦 = 𝑓 (𝑥) and 𝑑𝑦

√

𝑞𝑥 = 𝑔(𝑥)
for 𝑞𝑦 and 𝑑𝑦 respectively, putting our result as the notation coming after the integral.
What we get is the following notation.

◦∫ 𝑞𝑥𝑓 (𝑥) = 𝐹 (𝑥) and ▫∫ log𝑔(𝑥) 𝑞𝑥 = 𝐺(𝑥)

where 𝐹 ◦ = 𝑓 and 𝐺▫ = 𝑔. This notation may not be the simplest to read, but it
is the most truthful when it pertains to the meaning of the term 𝑞𝑥. Using the formula
relating these calculi to regular calculus and solving for the function, we get

◦∫ 𝑞𝑥𝑓 (𝑥) = 𝑒∫
𝑓 (𝑥)
𝑥 𝑑𝑥 ▫∫ log𝑔(𝑥) 𝑞𝑥 = ∫

1
𝑥 ln(𝑔(𝑥))

𝑑𝑥

The substitution rule for these two is interesting, as to go from 𝑞𝑥 to 𝑞𝑢, we must use
the ◦-derivative in the following way. Setting 𝑢 = 𝑔(𝑥), we get log𝑞𝑥 𝑞𝑢 = 𝑔◦(𝑥) mean-
ing 𝑞𝑢 = 𝑞𝑥𝑔◦(𝑥). Verifying that this coincides with the chain rules of each derivative
is left as an exercise to the reader.
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8.4 Definite integration and the fundamental theorem of calculus
As for the definite multiplicative integral of a positive continuous function 𝑓 , we will
formally define it in the following way.

∗∫

𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ∶= lim

𝑛→∞

𝑛
∏

𝑖=1
𝑓 (𝑐𝑖)𝑥𝑖−𝑥𝑖−1

where for each 𝑛, we choose an increasing sequence of points (𝑥𝑖)𝑖=0,…,𝑛 where
𝑥0 = 𝑎, 𝑥𝑛 = 𝑏 and choose 𝑐𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]. Note that this limit exists because 𝑓 (𝑐𝑖)𝑥𝑖−𝑥𝑖−1
is always positive and because 𝑓 is continuous. This makes sense to choose as

∗∫

𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 = exp

(

ln

(

lim
𝑛→∞

𝑛
∏

𝑖=1
𝑓 (𝑐𝑖)𝑥𝑖−𝑥𝑖−1

))

= exp

(

lim
𝑛→∞

𝑛
∑

𝑖=1
ln(𝑓 (𝑐𝑖))(𝑥𝑖 − 𝑥𝑖−1)

)

= exp
(

∫

𝑏

𝑎
ln(𝑓 (𝑥)) 𝑑𝑥

)

With this we will now show the fundamental theorem of ∗-calculus.

Theorem 8. Fundamental theorem of ∗-calculus: Let 𝑓 be a positive ∗-differentiable
function and let 𝑎, 𝑏 ∈ ℝ. Then

∗∫

𝑏

𝑎
𝑓 ∗(𝑥)𝑑𝑥 =

𝑓 (𝑏)
𝑓 (𝑎)

and 𝑑𝑥
√

𝑞 ∗∫

𝑥

𝑎
𝑓 (𝑡)𝑑𝑡 = 𝑓 (𝑥)

We can prove both of these theorems using the transformation into regular integrals
and applying the fundamental theorems of regular calculus to the function ln ◦𝑓 .

𝑑𝑥
√

𝑞 ∗∫

𝑥

𝑎
𝑓 (𝑡)𝑑𝑡 = 𝑒

𝑑
𝑑𝑥 ∫ 𝑥

𝑎 ln(𝑓 (𝑡)) 𝑑𝑡 = 𝑒ln(𝑓 (𝑥)) = 𝑓 (𝑥)

∗∫

𝑏

𝑎
𝑓 ∗(𝑥)𝑑𝑥 = 𝑒∫

𝑏
𝑎 ln(𝑓∗(𝑥)) 𝑑𝑥 = 𝑒∫

𝑏
𝑎 (ln ◦𝑓 )

′ 𝑑𝑥) = 𝑒ln(𝑓 (𝑏))−ln(𝑓 (𝑎)) =
𝑓 (𝑏)
𝑓 (𝑎)
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8.5 Generalization to higher dimensions
Let us start with the partial multiplicative derivative. Let 𝑓 ∶ ℝ𝑛 → ℝ be positive. For
𝑥 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 and 1 ≤ 𝑖 ≤ 𝑛 we have

𝑓 ∗
𝑥𝑖
(𝑥1,… , 𝑥𝑛) ∶= lim

ℎ→0
ℎ

√

𝑓 (𝑥1,… , 𝑥𝑖 + ℎ,… , 𝑥𝑛)
𝑓 (𝑥1,… , 𝑥𝑛)

We can then rewrite this in terms of the regular derivative, the same way as we have
done before.

𝑓 ∗
𝑥𝑖
(𝑥) = 𝑒

𝑓𝑥𝑖 (𝑥)
𝑓 (𝑥)

A function 𝑓 now is ∗-differentiable if all partial ∗-derivatives exist. Similarly,
the function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 is ∗-differentiable if all partial ∗-derivatives 𝑓 ∗

𝑥𝑖
∶=

(𝑓 ∗
1,𝑥𝑖

,… , 𝑓 ∗
𝑚,𝑥𝑖

) exist for 1 ≤ 𝑖 ≤ 𝑛, where 𝑓𝑗 is the 𝑗-th component of 𝑓 .
Next we will look at different class of functions: 𝐴 ∶ ℝ → ℝ𝑛×𝑛. As these are

matrices when applied at some value, we can add them and multiply them the way
we do in linear algebra. We can even exponentiate these matrices using the formula
𝑒𝑀 ∶=

∑∞
𝑘=0

𝑀𝑘

𝑘! for 𝑀 ∈ ℝ𝑛×𝑛. We will now define the multiplicative derivative of a
function 𝐴 ∶ ℝ → ℝ𝑛×𝑛 in the following way.

𝐴∗(𝑡) ∶= 𝑒𝐴
′(𝑡)𝐴−1(𝑡)

Here, 𝐴′(𝑡) ∶= (𝑎′𝑖𝑗(𝑡)) and 𝐴−1(𝑡) is the inverse of 𝐴(𝑡). As we can see, not all
matrix functions have a well defined ∗-derivative, as not all matrix functions 𝐴 are
differentiable. But besides needing 𝑎𝑖𝑗 to be differentiable for all 𝑖, 𝑗, we also have
the condition that 𝐴(𝑡) must be invertible for all 𝑡. This condition is equivalent to the
operator ln being well defined, the inverse of exp, which will make us able to write the
∗-derivative as 𝐴∗(𝑡) = 𝑒(ln ◦𝐴)′(𝑡). Furthermore, being invertible is also equivalent to
another condition, that being having all eigenvalues be non-zero. Since the function is
differentiable, it is also continuous, meaning the eigenvalues change continuously when
𝑡 changes. Therefore, we cannot have an eigenvalue of a matrix function 𝐴 change sign,
as that would require it to equal 0 for some 𝑡, making 𝐴(𝑡) not invertible. Knowing this,
we will now add the requirement for 𝐴 to be positive definite, for similar reasons that we
set ∗-differentiable functions 𝑓 ∶ ℝ → ℝ to be positive. It is not a necessary condition,
but it makes the math easier while not having us miss any important results, given that
the negative numbers are not much different to the positive numbers aside from a sign.

There are some articles that instead define the multiplicative derivative as𝐴′(𝑡)𝐴−1(𝑡),
which gets rid of the exponential. We however choose this because it coincides with the
∗-derivative we have defined at the start of the paper. Another thing to note is that, since
matrices generally do not commute, the terms 𝐴′(𝑡)𝐴−1(𝑡), 𝐴−1(𝑡)𝐴′(𝑡) and (ln ◦𝐴)′(𝑡)
are generally not equal for 𝑛 > 1. Therefore we simply choose for 𝐴′(𝑡)𝐴−1(𝑡) to be the
term in the exponent.

28



Now we can also define the multiplicative integral of a matrix function. Let 𝐴 ∶
ℝ → ℝ𝑛×𝑛 be a matrix function with 𝐴(𝑡) being positive definite for all 𝑡 ∈ ℝ. Then

∗∫

𝑏

𝑎
𝐴(𝑡)𝑑𝑡 ∶= lim

𝑛→∞

𝑚
∏

𝑖=1
𝐴(𝑐𝑖)𝑥𝑖−𝑥𝑖−1

where for each 𝑚 we have an increasing sequence (𝑥𝑖)𝑖=0,…,𝑚 with 𝑥0 = 𝑎, 𝑥𝑚 = 𝑏
and numbers 𝑐𝑖 ∈ [𝑥𝑖 − 𝑥𝑖−1]. Note that for 𝑀 ∈ ℝ𝑛×𝑛 positive definite and 𝑟 > 0,
we define 𝑀𝑟 ∶= 𝑒𝑟 ln𝑀 . Also note that since matrices generally do not commute, we
define the product as

∏𝑚
𝑖=1𝑀𝑖 ∶= 𝑀1𝑀2⋯𝑀𝑚 for 𝑀𝑖 ∈ ℝ𝑛×𝑛.

9 Multiplicative differential equations
9.1 The ordinary case
Now that we know about integrals in different calculi, we can use them to solve dif-
ferential equations. We will start with the following, with 𝑓 being a continuous and
positive function.

𝑦∗ = 𝑓 (𝑥) ⟹ 𝑦 = 𝐶 ∗∫ 𝑓 (𝑥)𝑑𝑥 = 𝐶𝑒∫ ln(𝑓 (𝑥)) 𝑑𝑥

Note that solving this is equivalent to solving this ordinary differential equation
𝑦′ = ln(𝑓 (𝑥)) ⋅ 𝑦. Next, let us look at the equation describing functions that do not
change under the ∗-derivative.

𝑦∗ = 𝑦 ⟹
𝑦′

𝑦
= ln 𝑦

⟹
𝑦′

𝑦 ln 𝑦
= 1

⟹ ∫
1

𝑦 ln 𝑦
𝑑𝑦 = ∫ 𝑑𝑥

𝑢=ln 𝑦
⟹ ∫

1
𝑢
𝑑𝑢 = ln |𝑢| = 𝑥 + 𝐶

⟹ 𝑢 = ln 𝑦 = ±𝑒𝑥+𝐶 = 𝐴𝑒𝑥

⟹ 𝑦 = 𝑒𝐴𝑒
𝑥
= 𝐵𝑒𝑥

for 𝐴,𝐶 ∈ ℝ, 𝐵 > 0. Our results coincides with things we know about expo-
nentiation like

(

𝑎𝑔(𝑥)
)∗ = 𝑎𝑔′(𝑥) and (𝑔(𝑥)𝑎)∗ = 𝑔∗(𝑥)𝑎 for 𝑎 > 0 and 𝑔 positive and

∗-differentiable.
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In a similar manner we can compute

𝑦◦ = 𝑦 ⟹ 𝑦 = − 1
ln |𝑥| + 𝐶1

= − 1
ln |𝐶2𝑥|

𝑦▫ = 𝑦 ⟹ 𝑦 =
ln 𝑥 + 𝐶1

𝑊
(

ln 𝑥+𝐶1
𝑒

) where 𝑊 (𝑎𝑒𝑎) ∶= 𝑎

𝑦⭐ = 𝑦 ⟹ 𝑦 = 𝑒𝐶1𝑥 = 𝐶𝑥
2

𝑦∗𝜑 = 𝑦 ⟹ 𝑦 = 𝜑
(

𝐶1𝑒
𝑥)

for 𝐶1 ∈ ℝ, 𝐶2 > 0. As we can see, some calculi have simpler functions that
are preserved under its derivative than others, with ▫-calculus needing non-elementary
functions to solve the equation.

Let us now turn to second degree equations. For 𝐴,𝐵, 𝐶 > 0 we have

⎧

⎪

⎨

⎪

⎩

𝑦∗∗ = 𝐴
𝑦∗(0) = 𝐵
𝑦(0) = 𝐶

⟹ 𝑦 = exp
(1
2
𝑎𝑥2 + 𝑏𝑥 + 𝑐

)

= 𝐴
1
2𝑥

2
𝐵𝑥𝐶

where 𝑎 = ln𝐴, 𝑏 = ln𝐵, 𝑐 = ln𝐶 ∈ ℝ. This can be shown by simply applying
the multiplicative integral twice and then plugging in the initial conditions. One thing
to note is the fact that the differential equation 𝑦′′ = 𝑎, 𝑦′(0) = 𝑏, 𝑦 = 𝑐 has the same
solution as the above, but without the exponentiation.

In regular calculus there is a way to define the sine function using the following
initial value problem.

𝑦′′ = −𝑦, 𝑦(0) = 0, 𝑦′(0) = 1
Replacing the derivative with the ∗-derivative gives us no solution, as ∗-differentiable

functions cannot be zero at any point. Furthermore, if we want 𝑦 to be positive, the equa-
tion cannot be solved as 𝑦∗∗ is positive while −𝑦 is negative. Instead, we will modify
the ∗-initial value problem in a way that more fits the world of multiplication.

𝑦∗∗ = 𝑦−1, 𝑦(0) = 1, 𝑦∗(0) = 𝑒

Here I turned additive inverse (−) into multiplicative inverse (⋅−1) of 𝑦, and changed
the initial conditions by exponentiating them. To solve this, we will first solve the
following first degree equation. For 𝑘 ∈ ℂ, we have

𝑦∗ = 𝑦𝑘 ⟹
𝑦′

𝑦
= 𝑘 ln 𝑦

⟹ ∫
1

𝑦 ln 𝑦
𝑑𝑦 = ∫ 𝑘 𝑑𝑥

⟹ ln | ln 𝑦| = 𝑘𝑥 + 𝐶1

⟹ 𝑦 = 𝑒𝐶𝑒𝑘𝑥 for 𝐶 ∈ ℝ.
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Plugging this 𝑦 into out equation gives us

𝑦∗∗ = (𝑦𝑘)∗ = (𝑦∗)𝑘 = 𝑦𝑘
2
= 𝑦−1

This gives us that 𝑘2 = −1, meaning 𝑘 = ±1. As multiplication is preserved under
the ∗-derivative, we can simply multiply the two solutions to get the following general
solution.

𝑦 = 𝑒𝐶1𝑒𝑖𝑥 ⋅ 𝑒𝐶2𝑒−𝑖𝑥 = 𝑒𝐶1𝑒𝑖𝑥+𝐶2𝑒−𝑖𝑥

where 𝐶1, 𝐶2 ∈ ℝ. To verify, we can do the following calculation.

𝑦∗∗ =
[

𝑒𝐶1𝑒𝑖𝑥+𝐶2𝑒−𝑖𝑥
]∗∗

= 𝑒[𝐶1𝑒𝑖𝑥+𝐶2𝑒−𝑖𝑥]′′ = 𝑒−𝐶1𝑒𝑖𝑥−𝐶2𝑒−𝑖𝑥 = 𝑦−1

Next, we can plug in the initial values to find 𝐶1 and 𝐶2.

𝑦(0) = 𝑒𝐶1+𝐶2 = 1 ⟹ 𝐶1 = −𝐶2

𝑦∗(0) = 𝑒𝐶1𝑖−𝐶2𝑖 = 𝑒 ⟹ 𝐶2 = − 1
2𝑖

⟹ 𝐶1 =
1
2𝑖

Thus, the solution to the initial value problem.

𝑦 = 𝑒
1
2𝑖 𝑒

𝑖𝑥− 1
2𝑖 𝑒

−𝑖𝑥
= 𝑒

𝑒𝑖𝑥−𝑒−𝑖𝑥
2𝑖 = 𝑒sin 𝑥

Thus, the multiplicative calculus version of the sine function is the exponential of
the sign function. Like before, we have found a way to turn an initial value problem
into a ∗-initial value problem, and getting the exponentiated result as solution. We can
formalize and prove this in the following way.

Consider the following kind of initial value problem of degree 𝑛 > 0.

𝑦(𝑛)+𝑘𝑛−1(𝑥)𝑦(𝑛−1)+⋯+𝑘1(𝑥)𝑦′+𝑘0(𝑥)𝑦 = 𝑟(𝑥), 𝑦(𝑥0) = 𝑎0, … 𝑦(𝑛)(𝑥0) = 𝑎𝑛

where 𝑟, 𝑘0,… , 𝑘𝑛−1 ∶ ℝ → ℝ continuous, 𝑥0 ∈ ℝ and 𝑎0,… , 𝑎𝑛 > 0. To turn this
into a multiplicative initial value problem, we will the variable 𝑦̂ = 𝑒𝑦. Now we get the
following.

⟺ (ln 𝑦̂)(𝑛) + 𝑘𝑛−1(𝑥)(ln 𝑦̂)(𝑛−1) +⋯ + 𝑘1(𝑥)(ln 𝑦̂)′ + 𝑘0(𝑥) ln 𝑦̂ = 𝑟(𝑥)

⟺ ln 𝑦̂∗(𝑛) + 𝑘𝑛−1(𝑥) ln 𝑦̂∗(𝑛−1) +⋯ + 𝑘1(𝑥) ln 𝑦̂∗ + 𝑘0(𝑥) ln 𝑦̂ = 𝑟(𝑥)

⟺ 𝑦̂∗(𝑛) ⋅
(

𝑦̂∗(𝑛−1)
)𝑘𝑛−1(𝑥)⋯

(

𝑦̂∗
)𝑘1(𝑥) ⋅ 𝑦̂𝑘0(𝑥) = 𝑒𝑟(𝑥)

𝑦(𝑥0) = 𝑎0,… , 𝑦(𝑛)(𝑥0) = 𝑎𝑛 ⟺ 𝑦̂(𝑥0) = 𝑒𝑎0 ,… , 𝑦̂∗(𝑛)(𝑥0) = 𝑒𝑎𝑛

Here, we substitute 𝑦 = ln 𝑦̂ into the differential equation, use identity 𝑓 ∗(𝑘) =
𝑒(ln ◦𝑓 )(𝑘) and lastly exponentiate all the equations. Finally, we have that if 𝑦 = 𝑔(𝑥) is
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the solution to the initial value problem, then 𝑦̂ = 𝑒𝑔(𝑥) is the solution to the ∗-initial
value problem that we derived to be equivalent. This method is also how the ∗-initial
value problems discussed earlier are related to certain regular initial value problems.
As for another example, consider 𝑦∗ = 𝑦 with 𝑦(0) = 𝑦0 > 0. We have shown before
that the general solution is 𝑦 = 𝑒𝐶𝑒𝑥 , which we can solve for 𝐶 with the initial condition
to get 𝑦 = 𝑒ln(𝑦0)𝑒𝑥 = 𝑦𝑒𝑥0 . We can also arrive at the solution by looking at the problem
𝑦′ = 𝑦 with 𝑦(0) = 𝑦0, rewriting the equation to 𝑦′ − 𝑦 = 0, substituting 𝑦 → ln 𝑦 to
get (ln 𝑦)′ − ln 𝑦 = 0 and then exponentiating to end up with 𝑦∗𝑦−1 = 1 gives us the
∗-differential equation. Since the solution to the regular problem is 𝑦 = 𝑦0𝑒𝑥 and the
initial condition also turns from 𝑦0 to ln 𝑦0, we get the solution to the multiplicative
problem is indeed the exponentiation of ln(𝑦0)𝑒𝑥.

9.2 Applications in higher dimensions
In Chapter 8.5 we have defined the multiplicative derivative and integral of a continuous
function 𝐴 ∶ ℝ → ℝ𝑛×𝑛 with 𝐴(𝑡) differentiable and positive definite for all 𝑡 ∈ ℝ. We
will now look at an application of multiplicative calculus in biomedical image analysis
described in [2], which makes use of multiplicative differential matrix equations.

To start we will look at an initial value problem that is multivariable in the domain,
but single variable in the codomain. With 𝑢 ∶ ℝ𝑛 × ℝ+ → ℝ+ being ∗-differentiable
and 𝑓 continuous, consider the following.

{

𝑢∗𝑡 = Δ∗𝑢
𝑢(𝑥, 0) = 𝑓 (𝑥) for 𝑥 ∈ ℝ

where Δ∗ = exp ◦Δ◦ ln, with Δ = 𝜕2

𝜕𝑥21
+⋯ + 𝜕2

𝜕𝑥2𝑛
. Rewriting this we get

Δ∗𝑢 = 𝑢∗𝑥1𝑥1 ⋯ 𝑢∗𝑥𝑛𝑥𝑛
We can solve the initial value problem by relating it to the known problem of the

heat equation. Consider 𝑦′𝑡 = Δ𝑦 with 𝑦(𝑥, 0) = 𝑔(𝑥) ∀𝑥 ∈ ℝ𝑛. From theory, we know
that the solution to this is (Φ𝑡 ∗ 𝑔)(𝑥) for 𝑥 ∈ ℝ𝑛, where Φ𝑡(𝑥) ∶=

1
√

4𝜋𝑡
𝑛 exp

(

− ||𝑥||2

4𝑡

)

and ∗ is convolution between two functions. Letting 𝑦 = ln 𝑢 and exponentiating the
equation gets us our original problem.

𝑢∗𝑡 = exp (ln 𝑢)′𝑡 = expΔ ln 𝑢 = Δ∗𝑢, ln 𝑢(𝑥, 0) = 𝑔(𝑥) = ln𝑓 (𝑥)

Thus, the solution to our ∗-initial value problem is

𝑢(𝑥, 𝑡) = exp(Φ𝑡 ∗ ln 𝑓 )(𝑥)

With this we will move to something from physics. Consider the variables 𝑣 =
(𝑣1,… , 𝑣𝑛) and 𝑥 = (𝑥1,… , 𝑥𝑛) in ℝ𝑛 as velocity and position respectively and let 𝐿
be the velocity gradient tensor defined by

𝐿𝛼
𝛽 ∶= 𝜕𝑣𝛼

𝜕𝑥𝛽
for 𝛼, 𝛽 = 1,… , 𝑛
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Viewing 𝑥̇𝛼 = 𝜕𝑥𝛼

𝜕𝑡 , we note that 𝑑𝑥̇𝛼 = 𝑑𝑣𝛼 . Applying the chain rule to this and
writing with Einstein summation, it follows that

𝑑𝑥̇𝛼 = 𝑑𝑣𝛼 𝜕𝑣
𝛼

𝜕𝑥𝛽
𝑑𝑥𝛽 = 𝐿𝛼

𝛽𝑑𝑥
𝛽

Next, consider the variable 𝑋 ∈ ℝ𝑛 as the position of the material at the starting
point 𝑡0, while 𝑥 is considered position of the same material at a point 𝑡 ≥ 𝑡0, dependent
on 𝑋. To relate the two, we use the so called deformation tensor field 𝐹 , defined by

𝐹 𝛼
𝑖 = 𝜕𝑥𝛼

𝜕𝑋𝑖 for 𝛼, 𝑖 = 1,… , 𝑛

.
Combining all that gets us the following differential equation between matrices.

𝐹̇ =
( 𝜕
𝜕𝑡

𝜕𝑥𝛼

𝜕𝑋𝑖

)

𝛼,𝑖
=
( 𝜕𝑥̇𝛼

𝜕𝑋𝑖

)

𝛼,𝑖
=
(

𝐿𝛼
𝛽
𝜕𝑥𝛽

𝜕𝑋𝑖

)

𝛼,𝑖
=
(

𝐿𝛼
𝛽𝐹

𝛽
𝑖

)

𝛼,𝑖
= 𝐿𝐹

To solve for 𝐹 , we can treat the equation 𝐹̇ = 𝐿𝐹 as a differential matrix equation
for the variable 𝑡, giving it the initial value condition of 𝐹 (𝑡0) = 𝐼 , since at 𝑡 = 𝑡0 we
have 𝑥 = 𝑋 by definition, making the partial derivatives 𝜕𝑥𝛼

𝜕𝑋𝑖 = 𝛿𝛼𝑖 . When we solve
𝐹̇ = 𝐿𝐹 with the initial condition 𝐹 (𝑡0) = 𝐼 , we get

𝐹 (𝑡) = ∗∫

𝑡

𝑡0
exp(𝐿(𝜏))𝑑𝜏

As we can see, we could also have phrased the problem in the context of multiplica-
tive calculus.

𝐹 ∗ = exp(𝐿), 𝐹 (𝑡0) = 𝐼

The first thing to note about the solution is that if𝐿(𝑡) = 𝐿0 ∈ ℝ𝑛×𝑛 is constant, then
𝐹 (𝑡) = exp

(

(𝑡 − 𝑡0)𝐿0
)

is our solution. However, in practice this is rarely the case, so
this is generally not a good approximation. Next thing to note is that if tr𝐿 = div𝑣 = 0,
then taking the determinant gives

det 𝐹 (𝑡) = ∗∫

𝑡

𝑡0
det exp(𝐿(𝜏))𝑑𝜏 =∗∫

𝑡

𝑡0
exp(tr𝐿(𝜏))𝑑𝜏 =∗∫

𝑡

𝑡0
exp(0)𝑑𝜏 = 1

where we use the continuity of det and that det 𝐴𝐵 = det 𝐴 det 𝐵 for exchanging the
integral with det, and that det exp(𝐴) = exp(tr𝐴), for 𝐴,𝐵 ∈ ℝ𝑛×𝑛. Thus, a divergence
free velocity field 𝐹 preserves volumes.

Going back to the solution of our multiplicative initial value problem of matrices, we
can use this in practice to compute 𝐹 with a discrete version of the matrix ∗-integral we
defined in Chapter 8.5, using regular intervals for some chosen 𝑚 to make 𝑥𝑖−𝑥𝑖−1 con-
stant. This problem can then be applied to Lagrangian strain analysis of Myocardium,
which studies muscle movements in parts of the heart, by finding 𝐹 using 𝐿 and then
calculating the Lagrangian strain tensor field 𝐸 = 1

2 (𝐹
𝑇𝐹 − 𝐼). The article going into
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more detail about this [2] in fact applies this method with the multiplicative integral on
real 2-dimensional datasets.

We will now look at a different application, one that will make use of the heat equa-
tion. To start we will define the so called diffusion tensor image 𝑋 ∶ ℝ𝑛 → 𝕊+

𝑛 , where
𝕊+
𝑛 is the set of symmetric positive definite matrices in ℝ𝑛×𝑛. Since these matrices are

invertible, there is a function 𝑋inv ∶ ℝ𝑛 → 𝕊+
𝑛 such that (𝑋𝑋inv)(𝑥) = (𝑋inv𝑋)(𝑥) = 𝐼

for 𝑥 ∈ ℝ𝑛. The set of these kinds of functions is 𝐶𝜔(ℝ𝑛,𝕊+
𝑛 ), i.e. the set of analytical

functions 𝑋 ∶ ℝ𝑛 → 𝕊+
𝑛 .

Now we will introduce the time variable to 𝑋 using the following blurring operator:

 ∶ 𝐶𝜔(ℝ𝑛,𝕊+
𝑛 ) ×ℝ≥0 → 𝐶𝜔(ℝ𝑛,𝕊+

𝑛 ), (𝑋, 𝑡) ↦  (𝑋, 𝑡)

Logically, for 𝑋 ∈ 𝐶𝜔(ℝ𝑛,𝕊+
𝑛 ), 𝑡 ≥ 0 we will define  (𝑋, 0) = 𝑋 and for short

hand notation write  (𝑋, 𝑡) ≡ 𝑋𝑡. Next, consider the set 𝕊𝑛 of symmetric matrices
in ℝ𝑛×𝑛. Taking the matrix exponential of a symmetric matrix grants us a symmetric
matrix that is also positive definite, meaning exp ∶ 𝕊𝑛 → 𝕊+

𝑛 is well defined and so is
the unique inverse ln ∶ 𝕊+

𝑛 → 𝕊𝑛, making them both bijective.
There is an important property that  can have called the closing property, which

states that for (𝑋, 𝑡) in the domain,

 (𝑋, 𝑡)inv =  (𝑋inv, 𝑡)

This property is important because it means that the blurring operator essentially
preserves the inverse, making  (𝑋, 𝑡) and  (𝑋inv, 𝑡) inverses for any 𝑡 ≥ 0, which is a
useful thing to have in the context of multiplicative calculus. One such operator turns
out to be an expression reminiscent to what we have seen earlier:

 (𝑋, 𝑡) = exp(Φ𝑡 ∗ ln𝑋)

Note that Φ𝑡 is as defined earlier and the convolution is with respect to a vector,
returning a matrix. We can show that the property is preserved in the following way.

 (𝑋, 𝑡)inv = exp(Φ𝑡 ∗ ln𝑋)inv = exp(−Φ𝑡 ∗ ln𝑋) = exp(Φ𝑡 ∗ ln𝑋inv) =  (𝑋inv, 𝑡)

This comes from the fact that (exp𝐴)inv = exp(−𝐴) and ln𝐵inv = − ln𝐵 for
𝐴 ∈ 𝕊𝑛, 𝐵 ∈ 𝕊+

𝑛 , which can easily be shown by definition. As we can see, 𝑋𝑡 =
exp(Φ𝑡 ∗ ln𝑋) is quite similar to the solution we found to the multiplicative heat equa-
tion from earlier, only here being expressed in terms of matrix functions.

For this purpose we will use an alternative definition for the matrix derivative from
what we used in Chapter 8.5, namely 𝑋∗ ∶= exp (ln𝑋)′ as opposed to exp(𝑋′𝑋inv)
for 𝑛 = 1. Similarly, we can define the derivative of 𝑋 w.r.t. 𝑥𝑖 as 𝑋∗

𝑖 = 𝜕∗𝑖 𝑋 ∶=
exp(𝜕∗𝑖 ln𝑋). With that, we define the multiplicative derivative of 𝑋𝑡 with respect to 𝑥𝑖
as

𝜕∗𝑖 𝑋𝑡 ∶= exp(𝜕𝑖Φ𝑡 ∗ ln𝑋)
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With that we can write the heat equation that has 𝑈 = 𝑋𝑡 as the solution.

𝜕∗𝑡 𝑈 = 𝜕∗11𝑈 ⋯ 𝜕∗𝑛𝑛𝑈, 𝑈 (𝑥, 0) = 𝑋(𝑥) ∀𝑥 ∈ ℝ𝑛

The way we can use this for practical purposes is that with a given data set 𝑋 ∶
𝑊 ⊂ ℝ𝑛 → 𝕊𝑛

+, we add random small pertubations to the matrices to get 𝑋̃, and then
apply the blurring operator  coming from the multiplicative heat equation of matrices
by some chosen value 𝑡 > 0. Note that 𝑊 ⊂ ℝ𝑛 is usually a finite grid of points,
for example 𝑊 = {0,… , 𝑘}𝑛. The result of this, 𝑋̃𝑡, is a regularized version of 𝑋̃,
giving us something likely reminiscent of the original 𝑋. In a sense, this is similar to
how computers turn images into noise and then use algorithms to recover the image,
to save data. The paper [2] also provides an example of this application for 𝑛 = 2,
showing 𝑋, 𝑋̃ and 𝑋̃𝑡 with the matrices visualized as ellipses based on its eigenvectors
and eigenvalues. They then put down fixed points and found the shortest path between
them when viewing 𝑋 as a velocity field to travel through. There, 𝑋̃ took very different
paths to 𝑋, while 𝑋̃𝑡 took ones more similar to 𝑋, being somewhat shorter compared
to 𝑋.

10 Conclusion and Discussion
When we look at all the derivatives we have discussed, comparing their respective dif-
ferentiation rules, tangent lines, integrals and more, the overall most useful derivative
remains to be the regular derivative 𝑑

𝑑𝑥 . This is because it preserves addition, has a
simple chain rule, does not add restrictions on the domain or codomain, gives the ap-
proximation at a point by a simple line, does not require the use of other derivatives to
keep the formulas concise and more. However, this does not mean that it is the best
option in all aspects. The multiplicative derivative has the advantage that it preserves
multiplication, has an alternative Taylor Series and has been shown to have applica-
tions which make it preferable to use over the regular derivative. Next, the quotientive
derivative has multiplication turn into addition, has a chain rule reminiscent to the reg-
ular derivative and has the an integral substitution rule making no use of other deriva-
tives. As for the anti-multiplicative derivative, there are no clear advantages to using
it aside from its relation to the multiplicative derivative. Lastly we have the bigeomet-
ric derivative, which preserves multiplication and behaves well with the ⊙ operator.
Overall, the multiplicative derivative is seen as the most preferred alternative to the
derivative, as 𝑥 remains additive like the regular derivative and since exp

(

𝑑
𝑑𝑥 ln ◦𝑓

)

is
a simple formula to move between the two derivatives.

There are many more ways to define the derivative that may hold all kinds of ad-
vantages. For example we can take some bijective real function 𝜑 to generate new
derivatives as described in Chapter 7, finding out what properties they hold. Another
interesting option is to use the operator ⊘𝑛 defined by 𝑎 ⊘𝑛 𝑏 = exp𝑛

(

ln𝑛(𝑎)∕ ln𝑛(𝑏)
)

for 𝑛 ∈ ℤ, where ⊘1 = ⊘, ⊘0 = ∕ and ⊘−1 = −, based on the commutative and
distributive operator ⊙𝑛 defined with multiplication instead. We can then construct
derivatives of the form lim𝑎→𝑥

(

𝑓 (𝑎)⊘𝑛−1 𝑓 (𝑥)
)

⊘𝑛
(

𝑎 ⊘𝑛−1 𝑥
)

, which gives the reg-
ular derivative for 𝑛 = 0, the bigeometric derivative for 𝑛 = 1, and for other 𝑛 cannot
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be expressed using 𝑑𝑥 or 𝑞𝑥, instead using that 𝑥2⊘𝑛 𝑥1 gives us a new way to quantify
change for each 𝑛. Lastly, there is the option to write each of our found derivatives as
a discrete derivative which instead of taking the limit, takes it at a specific point, for
example 𝑓 (𝑥 + 1) − 𝑓 (𝑥) being a discrete regular derivative.

Aside from looking at different derivatives, we can also explore the ones we al-
ready have more deeply. To start, we could look at systems of differential equations like
the Lotka-Voltra equations, rewriting them to more suit the ∗-derivative or whichever
derivative we are using. As for matrix ∗-differential equations, there remains a lot
which we could further develop [3], as we have already seen it having applications
in Biomedical image analysis [2]. Another thing we could do is expand our definition
to the complex numbers, figuring out what properties emerge, finding the ∗-Cauchy-
Riemann conditions and finding an equivalent to line integrals to rederive many results
from complex analysis [4]. There are also parts of multiplicative calculus that we have
not yet expressed in another calculus, like the Jacobian, directional derivatives and sur-
face integrals. Next, in statistics we often take the logarithmic derivative ln(⋅)′ of ex-
pressions in order to turn multiplication into addition, which the quotientive derivative
does as well. Lastly there is the important task of finding practical applications to our
alternative calculi in the fields discussed above.

The study of alternative calculi is a largely underdeveloped subject, as many of its
uses can be rewritten in regular calculus, making it more difficult to see when it is worth
investigating whether using an alternative derivative is worth the effort of rewriting
already established theory. However, we believe that there many places in which using
an alternative calculus will be more useful, as for theoretical use we can make use
of advantageous properties like preserving multiplication, and for practical uses we
can make use of instances where calculating some result using the definition of some
alternative derivative or integral is faster to compute than to use the definitions of regular
calculus. We thus encourage further research to be done in developing the theory and
finding applications for the subject of alternative calculi.
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