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Abstract

Recent improvements in background mitigation in XENONnT have made it one of the most sensitive

experiments worldwide for the direct detection of dark matter. This has extended the search into

lower-mass regions, in the order of keV, where new backgrounds become prominent. Among these is

single-electron emission, a prominent background of all dual-phase time projection chambers, which

can mimic the signal pattern of low-mass dark matter particles. In particular, there exists a delayed

emission component which continues for O(s) after large signals in the detector, greatly hindering this

search. This work utilises a new method of modelling this background, first developed in Ref. [1], in

order to best understand the rate of this delayed electron emission. A new method of data selection

is developed in order to maximise the purity of the results. This work develops extensions to the

model in the form of a radial function and a numerical count of electrons per signal, and tests these

extensions against the original model. This model shows much promise in helping to lower the

background limit in the low-mass regime, and would also likely find applicability in other dual-phase

time projection chambers.
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1 Introduction

The Standard Model is, at present, the best widespread framework we have with which we can begin

to understand the universe and the nature of its composition. Each iteration and addition to it

has withstood strict and thorough experimental testing, allowing us each time to further push the

boundaries of science; every test either incorporating great discoveries such as the Higgs boson, or

else rejecting that which does not hold up to the rigorous scrutiny of the model.

This process means the Standard Model now stands as a testament to the work of countless great

physicists, allowing us to explain a huge extent of the physical phenomena observed before us.

However, despite these successes, there still remain many open questions with observed phenomena

that do not fit into the model; chiefly, that of dark matter, dark energy, and the unification of the

four fundamental forces.

When astronomers look out into space and observe the planets and stars; the galaxies and their

clusters; they are actually only seeing a small fraction of the total mass-energy content of the universe.

About 5% of this total is what we think of as ‘normal’ matter, called baryonic matter; and in fact,

these visible features of stars, planets, and clusters only make up about 6% of that, meaning that

the vast majority of this baryonic matter is in the form of interstellar gas: diffuse, ionised clouds

circulating around and between galaxies, almost impossible to detect directly [2].

This small fraction that makes up visible baryonic matter, only 0.3% of the universe’s mass-energy

content, contextualises how much of the universe is invisible or unknown to us. To account for

the remaining ∼95% of the universe we must look to the mysterious elements of dark energy and

dark matter. Dark energy is, put simply, a hypothesised unknown energy responsible for driving

the accelerating expansion of the universe. Aside from mentioning that it makes up ∼69% of the

universe, it shall otherwise be put to the side for this thesis, leaving it for the cosmologists and

astronomers to work on.

Thus the focus falls now on dark matter, and it is a curious reality faced: approximately five-sixths

of all matter, or ∼26.4% of the universe’s energy-mass content [3], is so far seemingly invisible to any

form of direct observation - revealing itself only in the indirect gravitational effects of celestial bodies,

and in underlying structural features which remain unchanged from the early universe. Despite much

ongoing effort, there has not yet been any unequivocal evidence for, or detection of, anything that

may be considered to be a candidate for this substantial missing chunk.

Dark matter has played a key role in the formation and evolution of the universe, laying gravitational

seeds soon after the Big Bang for the large-scale structures of the current universe [4, 5], and while

it continues to exert its subtle influence on baryonic matter in the current universe, very little else is
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understood about it, or how it might else be observed. Many forms of searches for dark matter are

ongoing, both direct and indirect; indirect searches focusing on searching for signals of dark matter

annihilation or decay into standard model particles [5, 6]; direct searches searching to discover dark

matter particles through their theorised collision and scattering with baryonic matter, which would

allow for the measurement of their mass, among other things [5, 7]. Sec. 2 talks more about the

theories around dark matter particles and how they might be observed directly.

One way direct searches for dark matter are conducted comes in the form of large dual-phase liquid

xenon time projection chambers (LXe TPCs), one of which is the XENONnT detector. The scattering

of incident particles with the liquid xenon creates scintillation and ionisation signals to which these

types of detectors are highly sensitive. These signals are then analysed to undergo extensive position

and energy reconstruction processes in order to categorise each signal and interaction, looking for a

potential dark matter signal. Sec. 3 explores exactly how these detectors work in more detail.

XENONnT and its contemporaries are most sensitive in detecting collisions from particles of mass

in the GeV/c2 regime; however, as stronger upper limits are set on the potential cross-sectional area

vs. mass by these experiments, the search is increasingly being pushed down into the sub-GeV/c2

mass range [8]. This poses many problems for the direct search for dark matter, chief among them

the matter of an increasing background, resulting from both the detector itself and external factors.

This background is because lighter dark matter particle masses result in lower energy depositions

when scattering within the detector, resulting in signals which are harder to pick up amongst the

background noise. Below a certain point the dominant background becomes neutrinos, which we are

unable to shield against, and their extremely infrequent scattering interactions with the xenon in this

regime can mimic low-mass dark matter signals to the point of being nearly indistinguishable [7].

Sec. 3.3 talks more about the low-mass dark matter regime and the problems faced in that search.

One prominent and problematic background present in the lower-mass regime is that of single- or

few-electron emission, and in particular that of an increased rate of these signals which are ‘delayed’

after a scattering event in the detector, between a couple milliseconds to O(100)ms after, presenting

as a power law decay model [9–11]. These signals have been detected since some of the first LXe

TPCs [12, 13], and even in ones not using xenon [14, 15]. The problem is complex in that we have a

few competing hypotheses for it, and furthermore, there is no characteristic timescale to the power

law modelling - the emissions do not seem to end some given time after large S2s - meaning we cannot

adequately distinguish the backgrounds between any two given interactions, even theoretically those

separated by many seconds. Sec. 4 looks more at the background and nature of this problem.

Importantly, these signals mimic those that would be seen from low-mass dark matter particles, as

random single- or few-electron signals within the detector, and thus it is vital to the low-mass regime

search that this background is accurately modelled and understood, in order for it to be minimised in
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analysis. This work presents a method of modelling this delayed electron, first developed in Ref. [1],

by which we may model the rate of this delayed electron emission.

Sec. 2 presents the general search for dark matter, and the context of the field within which

XENONnT lies; Sec. 3 then describes the experiment itself and the physics at play within the

detector. This gives context to the context in which this delayed electron emission takes place,

before we outline the problem in Sec. 4, and analyse the evidence for the hypotheses put forward

as the possible sources. The main body of work is in Secs. 6, 7, and 8, where we develop a data

selection methodology for the model; attempt to improve and extend the model; and then test those

extensions to the model against the original of Ref. [1] in order to understand how this model may

be best used going forward. Sec. 8 also summarises the successes and challenges faced by this model,

and offers improvements which could be made to it in future research.
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2 The Search for Dark Matter

2.1 Discovery and Evidence for Dark Matter

In 1922, Jacobus Kapetyn was making observations of the stars in the Milky Way when he realised

that their total mass was insufficient to produce the gravitational field required to sustain them in

their observed orbits around the galaxy; here we find one of the first references to a ‘dark matter’

[16] - some invisible mass present throughout the universe, exerting its gravitational force on the

observable parts of it. Later understanding of the phenomenon was added by Oort in examining

the motion of stars perpendicular to the galactic plane [17] and by Zwicky in his study of the Coma

galaxy cluster [18, 19], however their hypotheses still only extended to dark matter just being some

‘non-luminous’ form of ordinary matter.

It was not until decades later that more evidence came in from studies on the rotation curves of

galaxies, and on the Cosmic Microwave Background (CMB) radiation, that the nature of dark mat-

ter as this completely invisible, non-interacting substance found in ‘halos’ around the majority of

galaxies, began to be better understood [4, 20, 21]. The CMB is radiation measured from approxi-

mately 3.7 × 106 years after the Big Bang [22, 23]. Before this, photons and baryons were coupled

in the hot plasma of the early universe, and minute (O(10−5)) fluctuations in gravity and pressure

caused acoustic oscillations throughout this fluid, resulting in over- and under- energy-dense regions

[3]. As the universe cooled the baryons and photons gradually decoupled, leaving the CMB as a

slightly-blurred screenshot of these regions over this period - an imprint of the early universe still

detectable today [3].

The picture of the CMB we have, and the peaks we observe in its power spectrum, reflect the

acoustic oscillations of the photon-baryon plasma and the density variations left after recombination,

which can reveal the ratio of baryonic matter to the total amount of matter, and therefore about

the abundance of dark matter in the universe [3]. Furthermore, although we do not yet know if

dark matter is entirely stable across large cosmological timescales - and indeed its possible decay is

the focus of many indirect searches [6] - it is generally calculated to be stable at timespans on the

order of the age of the universe [24], and thus the information encoded by the CMB is accurate for

calculations of its current-day abundance.

In the early universe, it would still have been far too hot for baryonic matter to effectively start

forming larger gravitational objects on its own, and so dark matter, not being affected by coupling

to photons in the early universe and thus being able to clump together faster, must have played a

role in sowing the seeds for early structure formation [5, 25]. Dark matter was still subject to density

perturbations however, and so during and after recombination, over-dense regions of dark matter
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grew to a critical density, eventually collapsing into halos - gravitationally bound regions of dark

matter in which baryonic matter could begin to be bound into the galaxies and clusters that would

eventually be observed today [4, 5]. It is within one of these halos that the Solar System lies, and

therefore there should be a constant flux of dark matter passing through the earth, which we may

possibly detect via an experiment such as XENONnT.

2.2 Models for Dark Matter
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Figure 1: Overview of the mass scales of potential dark matter candidates, from [26]. In XENONnT
we are most interested in the candidate of ‘WIMPs’, in the 1 GeV - 1 TeV mass range.

The theory that best explains this evidence is what is now known as ΛCDM: Λ for a cosmological

constant associated with dark energy, coupled with “Cold Dark Matter”. Dark matter can be re-

ferred to as ‘cold’ or ‘hot’ depending on its thermal velocity in the early universe, non-relativistic or

relativistic respectively; the most widely-supported theories currently favour a ‘cold’ model in order

to best account for observed structure formation. If all dark matter were ‘hot’, structures would be

spread further and differently than we observe, and the CMB anisotropies would be much larger in

size [5].

From this evidence, much can be inferred about the nature and properties of dark matter. We

expect it to be neutral [27]; with an extremely small interaction cross-section (as a collision with

any baryonic matter has not yet been observed); and while the nature of its colour-charge, if any,

is unknown yet, no coupling to a Standard Model particle has yet been observed [6, 28], aside from
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its known gravitational effects on baryonic matter. There is currently no Standard Model particle

that fits all of these criteria. Neutrinos were one proposed hypothesis for a time, being electrically

neutral, stable, and massive, but limits set on their masses show that they would have been too ‘hot’

in the early universe to allow for structure formation [5], and therefore could not be adequate dark

matter candidates. Along with neutrinos, many theories have been proposed and ruled out since the

discovery of dark matter, and the remaining face increasing constraints as more and more experiments

help narrow down the parameters. Fig. 1 shows the wide range of dark matter candidates and their

potential mass-ranges; from the microscopic to the macroscopic. More comprehensive reviews of dark

matter candidates can be found at Refs. [3, 4].

One of the candidates for a cold dark matter particle is that of a Weakly Interacting Massive Particle

(WIMP), the name indicating theoretical couplings via a force that is as strong as, or weaker than,

the weak force. WIMPs are predicted to have been created thermally in the early universe, coupling

and annihilating with baryonic matter in that hot thermal plasma, before the universe cooled to a

point where these interactions were eventually “frozen out”, locking the relative abundance of dark

matter [3, 5]. If we assume dark matter particles to have a mass on the electroweak scale (∼1 GeV

to 1 TeV, motivated by similarities to other electroweak particles and as well as other early-universe

conditions) and a velocity-dependent annihilation cross-section of ⟨σv⟩ ∼ 10−26cm3/s (again a value

motivated by similarities to other electroweak particles), then the values we predict from the thermal

freeze-out as a result very closely match the values we get for the relic abundances of dark matter

today [4]. This remarkable coincidence is known as the “WIMP miracle”, and is what has helped

lend a lot of support to the WIMP hypothesis.

It is dark matter in the mass-range of WIMPs which direct-detection experiments such as XENONnT

are best set up to detect, yielding high sensitivity in the GeV - TeV range of its predicted mass [29],

even possibly probing to the lower-mass MeV regime. The predicted cross-section of WIMPs also

make them the most likely to be detected within detectors such as XENONnT, due to the similarity

with standard model interaction cross-sections. The next section will explore the details of how the

XENONnT experiment works, and how it probes these regions for WIMPs.
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3 The XENONnT Experiment

The XENONnT experiment is the latest vessel for the direct detection of dark matter in a multi-

staged programme by the XENON collaboration, building on its predecessor, XENON1T. While

XENONnT inherited a lot of components from XENON1T in an effort to conserve cost and time

in the upgrade, there were a variety of novel methods for background shielding implemented in its

construction, such as a neutron veto and radon removal plant (neither present in XENON1T). These,

along with a much larger total xenon mass, have made XENONnT more than an order of magnitude

more sensitive to the search for WIMPs than XENON1T was, taking it to be one of the most highly

sensitive experiments in the field to date [30].

3.1 The Dual-Phase Time Projection Chamber

At the core of the XENONnT experiment is a dual-phase time projection chamber (TPC). ‘Dual-

phase’ refers to the two states of xenon present: the liquid (LXe) and gas (GXe) layers seen in Fig.2.

‘Time projection chamber’ refers to the ability to reconstruct the 3D position of a given collision

within the detector by the hit-patterns of the Photo-Multiplier Tube (PMT) arrays at the top and

bottom of the TPC; along with the time discrepancy between the first signal in the LXe (the S1),

and the second signal in the GXe (the S2). These signals are explained in Fig. 2. The TPC consists

of a cylinder 134 cm across and 148 cm long, with the 5.9 tonne LXe target volume below a GXe

layer, and the entire cryostat containing a total 8.5 tonnes of xenon [30]. It is surrounded on the sides

by various background shielding methods (see Sec. 3.2), and on the top and bottom by PMT arrays,

each covered by screening meshes to reduce the electric fields immediately in front of the PMTs [30].

An anode and cathode placed inside the TPC create a drift field running along the length of the

detector [30].

When a particle enters the TPC, it has the possibility of colliding with either a xenon nucleus (called

nuclear recoil) or an electron (electronic recoil). This results in a deposition of energy by the particle,

creating prompt scintillation light and a cloud of ionised electrons. This scintillation light, the S1, is

detected immediately by the photomultiplier tubes (PMTs). The electron cloud then drifts upward

to the top of the LXe under the electric field, and is extracted into the GXe, where the electrons

collide with the gaseous xenon atoms to produce proportional secondary scintillation light (also called

electroluminescence), a much larger signal labelled as the S2. The electron cloud experiences minimal

drift in the x-y plane, so the PMT hit-pattern of the signals encode the x-y interaction coordinates,

while the drift time between the S1 and S2 gives a z coordinate of depth. In conventional searches,

a collision with both an S1 and a clear S2 following it is called an ‘event’. An exemplar event within

the TPC is shown in Fig. 2. For a more detailed description of these processes see Refs. [30, 31].



11

Figure 2: An example of a particle interaction and subsequent signal detections within a dual-phase
TPC. An incident particle collides with the LXe, depositing energy and causing prompt scintillation
light (an S1). The drift track of this collision ionises electrons in the nearby area, causing a cloud
of these ionised electrons to drift upward due to the electric field applied along the length of the
TPC, eventually being extracted into the gaseous xenon layer (GXe) to create a second burst of
proportionally larger prompt scintillation light (an S2). Features such as the hit patterns on the top
and bottom Photo-Multiplier Tube (PMT) arrays, as well as the time difference between the S1 and
S2, can allow for precise position-reconstruction of the collision. Figure from [31].
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Xenon was chosen as the medium for this series of experiments for several key reasons:

• It is the heaviest stable noble element (functionally, with the only unstable isotopes having

half-lives many orders greater than the age of the universe [32]), meaning it is chemically inert,

does not produce high background rates of its own, and can be purified with relative efficiency

[31, 33].

• At an atomic mass of a A ≈ 131 (≃ 122 GeV/c2), it is comparable in size to the theoretical mass

of a WIMP, giving a large coherent scattering cross-section for spin-independent interactions,

a factor that scales roughly with A2 [34].

• As a dense, heavy element it self-shields against external radiation and background extremely

well, allowing for a fiducialisation of the volume in later research - i.e. excluding some outer

volume of the detector from analysis, thus cutting out the highest areas of background rate

[31]. We will make use of this fact when extending the model in Sec. 7.3.2.

• An alternative medium like argon would result in less clear signals with WIMPs (due to the

lower A2 factor), and does not self-shield as well, meaning xenon detectors can be smaller by a

factor of 5-7 [7].

• Xenon scintillates: when excited by a particle interaction, the subsequent decay of that xenon

excimer produces ultraviolet light of 178 nm, to which ground-state xenon is transparent. This

allows the light to propagate through the detector and be picked up by the PMTs [33].

Together, these properties make xenon an exceptionally well-suited medium for WIMP searches.

Nuclear recoil (NR) and electronic recoil (ER) events produce distinct signal patterns, with NRs

typically being from the neutron background, and ERs typically being from β and γ decay [30].

These produce different ionisation tracks, meaning they can be distinguished between by using the

S2/S1 ratios of these different signals. Nuclear recoils result in shorter, more dense ionisation tracks

than ERs, with more recombination effects. This results in larger S1s and smaller S2s as compared

to ERs. XENON1T was found to have a 99.7% efficiency in rejecting ER interactions, with a 50%

NR acceptance [8, 30]. This discrimination allows for the isolation of potential WIMP signals from

background events.

The TPC is highly sensitive and versatile for detecting potential dark matter particles. From its

construction; to the technology surrounding it; to the choice of medium; all give it extended capa-

bilities to prevent and remove external contamination - the key problem facing the direct search for

dark matter. The next section looks at how background signals are mitigated for in XENONnT,

both within the TPC and in the wider experiment.
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3.2 Background Signals in XENONnT

For direct detection experiments such as XENONnT, the prevention and removal of background

signals is essential to the search for dark matter. This suppression is ongoing and occurs at many

stages of the experiment, from the location and hardware; to the data acquisition, processing, and

analysis. Fig. 3 shows the complexity of the physical XENONnT system, before consideration of the

extensive software infrastructure used to process the raw data, and to maintain continuous operation

of the experiment.

Figure 3: A schematic diagram of the physical XENONnT system. Of particular note is the TPC
itself, surrounded by the muon and neutron vetos. Also features are the various subsystems used to
purify the xenon. Blue arrows indicate the path of the liquid xenon, while orange ones the gaseous.
From [30].

Firstly, extensive hardware measures are taken to minimise background. The location of the detector

at the Laboratori Nazionali del Gran Sasso under the Apennine mountains of central Italy provides

1400m of rock coverage (3100 m water equivalent), which leads to a reduction in cosmic ray muon

flux of O(106) relative to the surface [35–37]. The choice of xenon as the detector medium provides

the unique benefits explained previously; while much care was put into the selection of materials

for the detector, such as using polytetrafluoroethylene (PTFE) in the walls of the TPC to reflect

UV-photons.

The TPC is enclosed by a water tank with two shielding sections: the muon and neutron vetos.

These are separated by reflective foils, although the water itself is shared between. The muon veto,

the outer layer, uses PMTs to detect high-energy cosmic-ray muons by the Cherenkov radiation they

create as they pass through the detector, tagging them. Inside that is the neutron veto, designed to
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flag neutrons that are captured by the hydrogen nuclei of the water, which then release gamma-rays

that in turn generate Cherenkov radiation. The water is doped with gadolinium to enhance neutron

capture efficiency, as gadolinium possesses highest capture cross-section for thermal neutrons of any

element [30, 38].

Alongside these chambers are several purification and distillation systems which remove radioactive

and chemical impurities. The LXe and GXe must be purified of electronegative impurities like H2O

and O2 which dissolve into the LXe and trap drifting electrons, a problem that is discussed more in

Sec. 3.3. The LXe purification is another upgrade from XENON1T, where only the GXe purification

was performed [39]. Radon is one of the main sources of background in the detector, being emitted

from many of the detector materials such as stainless steel, and presenting a long decay chain with

many contaminants, the 214Pb part of which can appear to be dark matter interaction. Krypton

similarly is present as a result of the initial xenon collection process, and also can present as dark

matter interaction, so similarly must be removed [30].

These new methods for background reduction have resulted in XENONnT having a low-energy

electronic recoil background of (15.8 ± 1.3) events/(tonne × year × keVee), a factor 5 reduction

compared to XENON1T, making it the lowest electronic recoil background level ever achieved in a

dark matter experiment [30, 40].

3.2.1 A Brief Note on Signal Classification

Beyond hardware, there are also extensive software protocols and data analysis techniques involved in

removing background and ensuring the data collected is as free from contamination as possible. The

Data Acquisition (DAQ) system combines open-source and custom-developed software into one large

analysis framework called Straxen, processing 200+ GB of raw data for every hour of a collection run

[41]. The muon and neutron vetos are integrated into the DAQ framework, and so the events tagged

by these are automatically and removed [41]. Straxen is an extremely versatile framework which

allows for reprocessing of the data in various ways, according to the needs of individual researchers;

all of the data used in this work was processed by it.

When a signal occurs within the TPC, the initial information arrives in the form of PMT pulses:

scintillation photons digitised into waveforms by the DAQ system. This pulse data is then processed

and reconstructed into higher-level structures, which allows us to distinguish individual signals and

events, from single-electrons to large primary S2s. The processing provides data-types encoding key

information about these signals, for example whether it is an S1, an S2, or otherwise unidentifiable;

these are labelled as type 1, type 2, or type 0 respectively.

Other data-types of interest are the peak area and width. Area is measured in photo-electrons (PEs)
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- a unit calibrated as corresponding to the amount of photons hitting the PMTs. The signal width,

often given as the data-type of ‘range 50% area’, is the time-range (in ns) over which the central

50% of the waveform’s integrated area is observed, giving the best idea of how long it took the bulk

of the signal to be detected, and so is roughly proportional to the depth at which the interaction

occurred in the TPC. These two data-types together can offer a clear distinction between different

types of signals, which will also be useful in Sec. 6.

More about how this software is used in analysis will be touched on in Sec. 6, or else can be found

at Refs. [42, 43].

3.3 The Search for Dark Matter in the Low-Mass Regime

Figure 4: Theoretical WIMP mass vs spin-independent nucleon interaction cross-section, with the
limits found by various direct detection experiments, with the 1σ(green) and 2σ sensitivity bands
shown. At the bottom of the graph is the neutrino ‘fog’, in which dark matter interactions would be
nearly indistinguishable from those of neutrinos scattering with xenon. From [44].

As the sensitivity of XENONnT improves, the upper limit on WIMP masses continues to lower.

Consequently, research has increasingly shifted toward the sub-GeV mass regime - an area still

accessible to XENONnT, however one which poses new experimental challenges. Fig. 4 plots some

of the latest limits set on the WIMP mass as a function of spin-independent nucleon cross-section,
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showing the increasingly stringent limits set on DM in the sub-10 GeV/c2 mass range, prompting

search in even lower mass regions. For dark matter particles in the O(100)GeV/c2 range, xenon

provides a large cross-section of similar mass (in the NR case) with which to scatter and transfer

energy, providing clear S1 and S2 signals; this is more difficult for DM particles in the sub-GeV range,

as generally they would not be able to transfer enough energy from an NR interaction to create clear

and detectable signals.

This does not mean that such particles are completely undetectable. Low-mass DM candidates could

still be detected in XENONnT through NR with some difficulty; through ER interactions (though

rarer due to a lower interaction cross-section); and through something known as the Migdal effect.

This is when a NR scattering, with an exceedingly low probability, causes a small displacement of the

nucleus with respect to electrons of the atom, resulting in a small amount of ionisation or excitation of

the atom and a subsequent energy deposition [45]. The Migdal effect has not yet been experimentally

confirmed, but evidence for it would be extremely promising for the search for low-mass DM, and

several investigations into it are ongoing [45–47].

These processes result in much smaller energy depositions compared to standard NR interactions,

producing correspondingly smaller S1 and S2 signals. For NR or ER collisions from low-mass DM

below O(1 keV), the S1 falls below the energy threshold to be picked up by the PMTs [48], resulting

in a signal that we call a ‘lone S2’, often corresponding to the emission of only a single or few electrons

from a xenon atom. This is the signature of would-be low-mass DM candidates, and this area of

analysis is known as the ‘S2-only’ search.

However, the detector is not optimised to detect DM candidates in the low-mass regime, and as such

it presents many unique challenges. The lack of an S1 results prevents a calculation of drift time, and

thus removes information about interaction depth; similarly lost is the S1/S2 signal ratio patterns

used to distinguish between NR and ER interactions in the regular analysis. Despite the work to

make XENONnT as shielded from contamination as possible, there remain numerous unpreventable

or as-yet unidentified sources of background. Photoionisation of metals in the detector; electron pile-

up at the liquid-gas interface; PMT dark-counts; hot-spots along wires in the detector; and many

more, all contribute to the background in XENONnT.

Many of the sources listed above contribute to one of the most problematic backgrounds in the

experiment, that of single- or few-electron emission. This type of emission is ubiquitous throughout

the detector [48, 49]. Single- and few-electron emission has been observed in all XENON-collaboration

detectors, as well as other liquid xenon direct detection experiments [9–15, 48–54].

Many attempts to remove, mitigate, and characterise these signals have been attempted; some of

these are discussed in Sec. 4. These emissions occur even in long intervals between interactions (on

the order of seconds [10]) without clear origin, although a key finding of some of these studies has
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been that large S2s seem to be correlated with increased rates in these single- and few-electron signals

[51].

This is a phenomenon known as ‘delayed electron emission’. Understanding, characterising, and

modelling this single-electron background is essential for robust S2-only analyses in the face of lower-

ing WIMP mass-limit. The next section focuses on the ongoing investigation into this single-electron

background, and the delayed electron emission component of it in particular; exploring how it has

been understood and modelled so far, and how it might better be understood going forward.
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4 Delayed Electron Emission

The single- and few-electron background of liquid xenon detectors may be thought of to be made

up of, at minimum, two parts: a ‘prompt’ emission component; and a ‘delayed’ emission component

[53]. Sec. 4.1 describes the phenomenology of these two separate components, before Sec. 4.2 reports

on the findings of various studies into specifically the delayed electron emission, and the various

theories for its cause. Following that, Sec. 5.1 attempts to evaluate the previous models for the

phenomenon; before Sec. 5.2 introduces a new method to serve as a basis for modelling and thinking

about this delayed electron emission, sometimes referred to as ‘electron trains’, into something that

might provide a more full background characterisation for them.

4.1 Phenomenology of Delayed Electron Emission

This section will review the relevant physics happening in the detector after a particle collision,

partially described in Sec. 3.1; now in the context of understanding the single-electron background,

and the potential causes of delayed electron emission in particular; before outlining the hypothesised

origins.

Following a scattering event in the TPC, an ionisation track of electrons is produced, which then

drifts upward from the electric field to the surface of the LXe. These electrons are extracted almost

instantaneously once there, and form the initial S2 signal. For clarity’s sake in later discussion, these

initial signals are henceforth referred to as the “primary S2s” (pS2s) since an ‘S2’ may technically be

any signal extracted and detected in the GXe. We will thus also here introduce the definition that

any S2 which is not a pS2 is thus called a “small-S2”.

Within ∼1 ‘full drift time’ (fdt) =2.3 ms of an S1 or pS2, another smaller surge of electrons is

observed, attributed to the prompt scintillation light of the S1 or pS2 photoionising with exposed

metal surfaces and electronegative impurities in the detector [10, 51]. Electrons in an ionised drift

cloud can also thermalise at the LXe surface and get trapped at the barrier, some of these may be

stimulated and extracted at this time also; this is talked about more in Sec. 4.2.1. This forms the

‘prompt’ part of the single-electron background observed after a pS2, and hence these signals are

referred to as ‘prompt electrons’. These electrons may take 3-5 fdt after a pS2 is observed to be

fully extracted, as higher-order photoionisation can occur, however the exact number is up to the

preference of the analyst. In this work the cut-off for prompt electrons is taken to be 5 fdt. Sec. 6.2.2

develops more on why this boundary was chosen.

However, small-S2 signals are still observed many full drift times after a pS2, even well beyond the

maximum electron lifetime in the detector (up to ≈15 ms depending on xenon purity [30]). These
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Figure 5: Main: An illustrative waveform showing the number and time distribution of small-S2
signals following a pS2 signal. Inset: A close-up view of an S1 followed by a pS2. Prompt electrons
can be seen immediately following the pS2, from the known background of photoionisation with metal
surfaces or electronegative impurities. The dotted line indicates the one full drift time, beyond which
we expect the single- or few-electron rate to drop off. Note that this data comes from XENON1T,
with a smaller TPC than XENONnT, meaning the maximum drift time is only 750 µs, not 2.3 ms.
From [11].

comprise the ‘delayed’ component, the phenomenon of ‘delayed electron trains’. Relative to prompt

electrons, this background is far less well-understood. An example waveform of the single-electron

background and the two distinct components is shown in Fig. 5.

Also observed in Fig. 5 is the characteristic inverse power law shape of delayed electron trains,

i.e. the form Re ∼ ∆t−n, where Re is the rate of electron emission, and ∆t is the time between

the pS2 and some arbitrary time afterwards. This shape was again noted in other studies [9–11].

Unlike exponential or Poisson processes which govern other detector phenomena, there are few known

processes occurring in the detector which would produce such a long-tailed, temporal distribution,

although it has been reported that processes such as electron-ion recombination in liquid xenon [55],

and bi- exciton quenching in liquid scintillators [56] can produce power law-like time dependencies.

However, the relevance of these processes within XENONnT, and within the context of the delayed

emission hypotheses following, is unclear.

This observed power-law model also means that there is no characteristic ‘cut-off’ time for the

emission of delayed electrons after a pS2 has occurred, meaning they can occur on the order of

seconds after. This poses a big challenge for the low-mass dark matter search, as even regions far

from pS2s in time are not intrinsically ‘safe’ from the possibility of delayed electron emission. Sec. 5.1

looks more at the nature and modelling of this inverse power law shape, and how it affects the search

for light DM.

Two main hypotheses have been proposed for the source of delayed electron emission, though they
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are not mutually exclusive, nor do they necessarily rule out other unnamed or unknown theories:

1. Trapping at liquid-gas interface: Electrons in the drift cloud following an interaction do

not all get extracted into a pS2 signal: some thermalise and get trapped at the interface. Later

interactions, as well as fluctuations in detector conditions, can cause them to release at later

times, either as part of the prompt or delayed electron emission, and perhaps even uncorrelated

to interactions happening in the detector.

2. Electronegative impurities: Molecules such as O2 and H2O present in the LXe can trap

drifting electrons after an interaction, releasing them in an ostensibly stochastic manner up to

seconds after the most recent pS2.

While these two processes are known to happen within the detector and have themselves been

thoroughly researched, their role in producing delayed electron trains and the factors determining

their rates is far less clear. The next section looks more at these two theories; examining the

evidence for and against them being the cause of delayed electron trains; and whether they may both

be contributing to the phenomenon of delayed electron emission.

4.2 Origin Hypotheses

The presence of a delayed emission background in direct detection detectors has been known about

for decades, likely a part of even the earliest liquid xenon and argon detectors, with interest picking

up more as the search for light dark matter intensified [12]. One of the earliest detailed studies

is from XENON10, where the event trigger was sensitive to a single electron, allowing for a more

detailed detection of this background for one of the first times, and where these signals were first

referred to as ‘electron trains’ [50].

Following studies continued to attempt to characterise these emissions and correlate them to de-

tector conditions. A study in XENON100 observed a steep decline in the single- and few-electron

populations after the maximum drift time, indicating a correlation between primary S2s and prompt

electrons; though also noting that this correlation continues even for signals beyond the maximum

drift time [51]. This study also shows that the relative rate of small-S2s is proportional to the size

of the most recent prior pS2, indicating this emission is not likely to be from external sources [51].

As a result of this finding, the two main hypotheses on the origin of delayed electron trains revolve

around some belief that these trains are roughly correlated, both in time and position, with pS2

signals in the detector. Sec. 5.1 will look at how this aspect of a correlation in time forms a key basis

for the initial modelling of delayed electron trains.
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However, there has also been investigation into other sources of single-electron emission in noble

liquid TPCs [54, 57, 58], suggesting that there are sources of emission, uncorrelated in both time and

position to interactions within the TPC. This is an important consideration as light dark matter scat-

tering within the detector would appear as single- and few-electron emission seemingly uncorrelated

with interactions happening in the detector, as this itself would be an interaction. Modelling delayed

electron emission accurately, as electrons which are causally correlated to the detection of pS2s, is

thus a crucial step to isolating this uncorrelated single- and few-electron background. Further to

that, there are also methods of helping to remove these known uncorrelated backgrounds mentioned

above; Sec. 7.3.2 will return to these studies in justifying why fiducialisation is a necessary step for

modelling.

For now, we will work on understanding delayed electron emission, and work under the assumption

that the majority of delayed single- and few-electron signals must come from one of the two following

sources.

4.2.1 Trapping at Liquid-Gas Interface

The first potential cause of delayed electron emission is electrons that rise to the liquid-gas interface

in or around the initial cloud caused by some given interaction, and thermalise just below the LXe

surface, becoming trapped until they are eventually extracted many orders of a drift time later. The

extraction efficiency of the detector is not unity [11], making this a known process in the detector,

for which a more complete treatment can be found at Ref. [59].

One theoretical study by Sorensen [60] looked at the nature of the liquid-gas interface in xenon

detectors, in order to find the energy needed for a drifting electron to overcome the barrier and be

extracted into the gas. From this he calculated the rate at which electrons can become trapped at

this barrier; and thus found the lifetime of these thermalised, trapped electrons, finding it to be

“compatible with the original observations of XENON10” [60]. This paper does note however that

this is a purely theoretical calculation, missing real-world influences of the detector conditions, such

as some surface roughness to the LXe, or non-uniformity to the electric extraction field. Sorensen

does offer potential ways to mitigate this background in experiments, for example by increasing the

extraction efficiency with stronger extraction fields, or by stimulating electron emission with LED

photons [60]. Akerib et al. [10] find physical backing for this process, hypothesising that the liquid

surface gets deformed where electrons are trapped, containing them in a small local bubble. This

would also have the effect of shielding them from exposure to impurities in the LXe bulk, explaining

how they could survive there many orders of magnitude longer than the electron lifetime before being

extracted as delayed electrons [10].
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Later studies, such as from Kopec et al. [52], also find evidence in support of the trapping hypothesis,

by further investigating, among other things, the link between the electron extraction efficiency and

the rate of delayed electron emission. This is an in-depth study to the nature of the electron train and

its characterisation, the methodology of which will be returned to in Sec. 5.1. This study finds that,

modelling the power law rate as R = A · tb, increasing the electron extraction efficiency only increases

the amplitude A of delayed electron emission - the amount of signals making up each delayed electron

train - while having no effect on the rate b, with Refs. [51, 53] also finding similar linear correlations.

This finding is shown on the left of Fig. 6.

Kopec et al. also investigate the effect of the drift field strength, finding that an increase led to

a larger measured pS2. This is because there is a finite electron lifetime in the detector, 3 µs for

Ref. [52], so an increased drift field results in more electrons being extracted within this lifetime.

These drifting electrons also have a higher velocity upon reaching the liquid-gas barrier, and therefore

have a higher emission probability [59].

This finding introduces challenges for the hypothesis of electronegative impurities, explored more in

the next section. Increasing drift speed should mean that electrons have less chance of attaching to

impurities before being extracted [52, 57]. If the impurity hypothesis is the majority contributor to

electron trains, we should thus expect to see a decrease in the amount of delayed electrons relative

to the total amount of electrons in its related pS2, i.e. f =
Ndelayed

NpS2
should decrease: fewer electrons

get trapped by impurities in the drift column after an interaction, resulting in larger measured pS2

signals and smaller measured delayed electron trains.

However, Kopec et al. found the reverse to be true: when measuring NpS2 as the ‘lifetime corrected’

pS2 size (an estimated value of the produced charge from an interaction, a necessary calculation

when the maximum drift time of an electron in the TPC is longer than the electron lifetime), they

found the fraction f increased with drift field, primarily for the single-electron population (right plot

on Fig. 6). This suggests the opposite to the impurities hypothesis stated above: delayed electron

trains get larger with increasing drift speed.

Conversely, when removing the lifetime correction and measuring NpS2 as only the measured pS2

size (i.e. the amount of electrons being detected by the PMTs), the fraction f was found to decrease

with increasing drift speed [52, 57]. This indicates that increasing drift field may have no effect on

impurities and their chances of capturing electrons after an interaction; however, it does increase the

energy of electrons reaching the liquid-gas barrier. This means that proportionally more are extracted

as part of the initial pS2 signal, rather than as delayed electrons later - suggesting a surface effect

dominating the rate of delayed electrons, rather than one happening in the LXe bulk.

This is not the full empirical story, however, with Sorensen and Kamdin [53] finding that only the

earliest parts of an electron train may be accounted for by trapped, thermalised electrons, favouring
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Figure 6: The effect of increasing extraction field strength (Left) and increasing drift velocity and
field (Right) on the fraction of electrons observed in the electron train vs the total produced in
the primary interaction (i.e. lifetime-corrected size), for varying electron populations, from single-
electron emission (1e−) to multiple-electron emission (2e−, 3-5e−. Each of these levels is identified
as a ‘multiplicity’, a concept which will be important in later sections. From [52].
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instead the idea of fluorescence photons photo-ionising with electronegative impurities in the LXe

for the more delayed parts of the electron train. This study finds that increasing the strength of the

electric field decreases the number of prompt electrons immediately following a pS2 [53]. However,

it only linearly increases the rate of delayed electrons, suggesting that the later component of an

electron train is related to the size of a pS2, with a reduction only to be seen in purifying the xenon -

leading to a conclusion of an origin from electronegative impurities getting ionised [53]. Furthermore,

studies from XENON1T [11] and LUX [10] also find more support for the impurities hypothesis, as

shall be shown.

4.2.2 Electronegative Impurities in LXe

This second hypothesis comes from the fact that the LXe is not 100% pure, and therefore contains

many possible impurities which could capture electrons [30]. As mentioned in Sec. 3.2, there are

systems in place to mitigate these impurities and the backgrounds they can cause, however the

process is not perfect. Under this hypothesis, after a primary interaction, electrons in the drift cloud

have a chance of colliding with an impurity like oxygen. The mechanisms by which these electrons

are later released is not fully understood, but photoionisation and direct electron detachment (either

through collision or some tunnelling process) are suggested as the two most likely causes [53]. How

frequently these processes happen, and whether they would be sufficient to account for the observed

rate of delayed electron emission, is less certain.

A XENON1T study from Aprile et al. [11] finds that, as the drift time increases, so too does the

fraction of delayed electrons. That is to say, as the drift field and speed increases, the fraction

of delayed electrons relative to the size of the lifetime-corrected pS2 decreases, running directly

contrary to the findings of Kopec et al. This study observes clear positive trends in the data for

all three position-correlated populations [11], shown in Fig. 7. The nature of position-correlation in

the context of delayed electron emission is explored more in Sec. 7.3.2; Aprile et al. simply defines

a delayed electron as position correlated if it occurs within 15cm of its most recent preceding pS2.

Note that Fig. 7 is a measure of drift time, rather than drift velocity as in Fig. 6. This means that it

is therefore also a function of interaction depth; however Kopec et al. also investigate this function

(Fig. 7 in Ref. [52], finding a decrease for increasing drift time, still contrary to Aprile et al.

This finding from XENON1T supports the hypothesis that impurities in the LXe are trapping elec-

trons after a primary interaction; this is backed up by the conclusion that the electron extraction

efficiency has minimal effect on the intensity of delayed electron emission relative to the effect of

drift times (though it may still be a secondary effect) [11]. Support for this hypothesis may also be

found in Refs. [10, 12, 15, 51]
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Figure 7: The intensity of delayed electron emissions vs drift time between 2-200ms after a pS2
for 1e− (Top), 2e− (Middle), and 3-5e− (Bottom) populations. The grey line is the expected
number of delayed electrons, assuming the production rate is constant along the drift column of
an interaction, and proportional to the number of electrons captured on impurities. Here, position
correlation is defined as delayed electrons which occur in a 15 cm radius around their most recent
prior pS2, whereas position uncorrelated signals occur more than 20 cm away. From [11].
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However, once again not all supports this hypothesis, or at least not as it immediately seems. If

electronegative impurities are capturing electrons, they would only be able to capture and release

one electron at a time [52]. This may be seen with, for example, O2, which is a common impurity in

the detector. Due to the layout of its electron shells, it is energetically favourable for O2 to take on to

take on an electron and become O−
2 . However, taking on a second electron would require overcoming

the repulsive Coulomb force, requiring energy to be put in for it to become O2−
2 . This makes the

possibility of impurities taking on more than one electron at a time virtually nil.

This is contrary to observation, however, as delayed electron emission is frequently observed to be

composed of multiple-electron emission, as well as single-electron emission. Some of this may be ‘pile-

up’ of single electrons, where two or more signals arrive so close together that the software processor

clumps them together as one larger signal, however, not to the rate at which this multiple-electron

emission is observed [11, 52]. This is difficult to explain if electronegative impurities are the main

cause of delayed electron trains.

Kopec et. al also attempted to investigate electronegative impurities by using 1 W of infrared light

(1550 nm), a wavelength to which the PMTs are blind, to try and stimulate electron emission [52]. If

electronegative impurities such as O2 were trapping electrons after an interaction, this method should

stimulate their release, and an increase in position-correlated electrons would be observed. This is

not seen to be the case, instead with only an increase in position-uncorrelated electrons observed.

Furthermore, while Aprile et al. do find evidence for the impurities hypothesis, such as a reduction

in electron train intensity as the LXe purity (measured by electron lifetime) improves, they also

observe a decrease in intensity over periods in which the purity remains constant [11]. This means

that whatever impurity is capturing these electrons, its not something that can be measured by the

electron lifetime (like O2 can), and which can trap electrons for far longer timescales than for typical

impurities. In fact, the fraction of electrons observed as delayed electron emission accounts for only

1% of all drifting electrons after an interaction, meaning the majority of captured electrons are never

extracted, or at least never measured [11]. The alternative is thus some kind of neutral impurity,

that could for example instead capture a scintillation or electroluminescence photon, exciting the

molecule and causing to ionise at some unspecified time later.

Electron trains are not greatly understood, with much conflicting evidence in what the true cause of

them may be. While this phenomenological work is ongoing, many are also trying to approach this

from another angle: modelling the rate of electron trains. If an accurate model of these emissions

can be found, its effect is twofold: 1) Understanding of the characteristic rate and timescale of these

emissions may allow us to better pin down the processes by which they happen; and 2) we can

incorporate it into our background model to better search for light dark matter. This is the main

focus of the rest of this work.
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5 Modelling

5.1 Conventional Modelling of Delayed Election Emission

As mentioned previously, modelling the electron train phenomenon results in some form of inverse

power law in order to best fit the data, with Ref. [9] among the first to note this feature. This section

will describe the general methodology by which we arrive at this fit, and look at how we can begin

to characterise electron trains. This section draws from the work done by Refs. [9–11, 52], as well

as the bachelor’s thesis of K. Umesh [1], which will be looked at further in Sec. 5.2. This section

will only focus on what is done with the data to get a power law model; some simple selection is

explained in the case of this initial modelling, however Sec. 6 examines how this data may actually

get selected for the newer model.

To start the analysis, there are some basic cuts and orderings done to the data to get the relevant

electron populations:

1. Select all S2-type signals ≤ 150 PE. This is an arbitrary cut-off, but since we are interested in

single- and few-electron signals, this gives up to the 5e− multiplicity population. These are the

‘small-S2s’ defined at the start of Sec. 4.1. The definition of S2-type signals is as was given in

Sec. 3.2.1. Primary S2s are thus defined as any S2-type signals above 150 PE.

2. Sort the small-S2 signals by time, and assign each to the most recent pS2 prior to it. This is

done on the basis of the time-correlation findings mentioned earlier, as well as knowledge of the

maximum drift time (2.3 ms) being much shorter than the average time between interactions

(∼ 200 ms), making for a reasonable basis that electrons are probably detected close to the

pS2s which caused them.

3. Remove from the dataset all signals within one full drift time of the pS2 signal. This is done

to cut out prompt electrons, described earlier. We make the cut at 3-5 fdt to fully avoid the

background of second-order photoionisation. Since the order of this cut is 20x or more smaller

than the average fit time (∼ 250 ms), this can be done without any real loss to the delayed

electron emission model. The prominence of these prompt electrons in the dataset and thus

the need to remove them, even to 5 fdt (11.5 ms), can be seen in Fig. 8.

With these cuts done, we can next begin to start modelling the power law, by using a maximum

likelihood cost function to fit a function of the form R(t) = A ·∆tn. This thesis uses the extended

unbinned version from the CERN ROOT team’s iminuit python package throughout. For more

information on this package, see Ref. [61].
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Figure 8: Main: A histogram of all small-S2 signals in a 3 hr Science Run 0 (SR0) run as a function
of time since the most recent previous pS2. Inset: Close-up of the region immediately following a
pS2, showing the large electron count caused by prompt electrons. The gray shaded region up to the
red dotted line shows the 3 fdt boundary cut applied to the data. Figure from [1].

The simplest fit that can be done is over that of the histogram of delayed electron signals vs time

since the previous pS2. On logarithmic axes, this looks like a straight line, as shown in Fig. 9. The

reading of this model, and future ones also, is such that taking its rate at a given point in time gives

the expected rate of electrons per ms. In this case that rate, R(t) is a function of time since previous

pS2, ∆t; importantly, this will change later when looking at the model in Sec. 5.2. A power law

fit is better than an exponential [9, 52] (what we might expect if delayed electrons were the result

of random processes in the detector, unrelated to pS2 signals), and as shown before, there is clear

physical basis for fitting the data like this. The fit in Fig. 9 returns a power law exponent of n = 1.62,

which is slightly high compared to values found from XENON1T (1.1-1.4) [11], LUX (1.0-1.1) [10],

ASTERiX (1.2 for 1e− population) [52], and RED-1 (1.4) [9]. However, this is likely a reflection of

the decision to cut prompt electrons at 5 fdt rather than the 1-3 fdt of these previous studies.

However, this fit is not perfect, particularly at longer timescales. The reasons for this could be that an

uncorrelated electron population begins to dominate at this timescale, or relatedly because delayed

electron emission at longer timescales may be caused by different sources. More importantly, the

average length between pS2s is only ∼200 ms, meaning attempting power law fits at longer timescales

get interrupted by the next pS2, thereby causing these longer regions to have fewer data points in

general according to the method of assigning each delayed electron to its ‘most recent’ prior pS2.

These poorer statistics allow for more skew in the data at these longer time scales, which can be seen

in Fig. 9, where beyond ∼500 ms there are fewer than 10 counts for each bin, for over 6 total hours
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Figure 9: A basic, normalised power law fit to the histogram of single- and few- delayed electron
signals as a function of time since the most recent previous pS2. This data comes from 13 30-minute
SR0 background runs, used throughout this work. Sec. 6 explains the selection of these runs further.
As mentioned before, the prompt electrons are cut from this dataset before fitting. Figure adapted
from that in Ref [1].

of data. To counteract this, prior studies sometimes placed limitations on the fitting windows, for

example Ref. [11] analyses only 2-200 ms after each pS2, which has the effect of reducing the power

law coefficient. Alternatively you can adjust the fit for efficiency, as is done in Ref. [9].

There is however another point to note: within the detector, double-scatters (where a particle inter-

acts again, resulting in a second large S2, usually within 1 fdt) make up 35-40% of all pS2 signals.

This means that some delayed electrons caused by the first pS2, but released and detected at some

point beyond 3-5 fdt after the second pS2, would become associated with the second pS2, and not the

first. We could account for this by combining pS2s within 1 fdt of one another, taking their median

time weighted by size; this also corrects for processor errors in peak-splitting. Kopec et al. resolve

this by only accepting pS2s of a size “larger than 10% of the previous primary S2’s size reduced

exponentially according to a time constant of 1 ms” [52]; Akerib et al. at LUX resolve this by only

accepting pS2s with no other activity 100 ms before it [10].

However, this limits available statistics and does not offer data guaranteed to be clean of contamina-

tion from prior pS2s, it only pushes the problem further along. It was noted previously that delayed

electron emission is observed to be on the order of seconds, meaning that any electron train after

two given interactions even hundreds of milliseconds apart, has a possibility of being contaminated

by the electron train of the first interaction. The nature of a power law model means that soon after

a pS2, a delayed electron has a high likelihood of being caused by that pS2; however, further on this

likelihood evens out with the tails of prior pS2s. Fig. 19 shows a toy example of what this may look
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like in the context of a double scatter. Note that at e.g. 120 ms in the graph, the contribution to

the electron rate is near equal from each pS2. This is to say, it is not possible to accurately model

delayed electron train emission under the assumption that each delayed electron signal originated

from its most recent prior pS2.

Noting these problems, Ref. [1] suggests a slightly different approach to assessing the rate model of

electron trains. In this new model, the rate is given as such that each pS2 is expected to generate

a certain amount of electrons as part of its delayed electron train. Each train can thus be modelled

with a power law in accordance with the real data available. However, each power law is allowed to

‘bleed’ into one another, such that overlaps are accounted for, rather than cut out, in a cumulative-

type model. The nature of the model is set up such that although the most recent prior pS2 will

constitute the greatest contribution to the total electron rate, every prior pS2 will also contribute,

each to some diminishing extent. The exact form of this model is motivated and explained in the

next section.

5.2 A Novel Technique for Modelling Delayed Electron Emission

As has been shown, the prior conventional model has a few problems, chief among them that of

electron train overlap, and lack of statistics at longer timescales. Instead, this new model, which is

first developed in Ref [1] and then developed throughout this work, allows for the overlap of each

electron train throughout the model, with some additional prefactors to normalise and scale. The

exact definitions and meanings of these will be covered in due course.

In this model, the contribution of each individual pS2 to the total electron rate at some given time

is given by:

Rp(t, tp, Ap, Wp | n, tmin, α, β) =

0 t ≤ tp + tmin

Aα
pW

β
p (t− tp)

−n, otherwise
(1)

where tp is the time the peak occurs (in ms since the start of the run); Ap and Wp are the area (in

PE) and width (in ns), with exponents of α and β as scaling parameters. tmin is the cut-off time for

prompt electrons after a pS2, set in Ref. [1] as 3 fdt, or 6.9 ms for XENONnT. Again, it will be set

to 5 fdt in this work. We will use throughout this work the idea of pS2s ‘contributing’ or ‘creating’

delayed electrons, but as a reminder, delayed electrons are actually created as a function of electrons

being lost in some manner from the ionised cloud created following an interaction in the detector,

and then later released. Primary S2s are formed from the majority of this ionised electron cloud
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being extracted at once in the first instance; they therefore do not create delayed electron trains.

However their properties such as area and width correlate to the properties of the electron cloud,

and therefore to the number of delayed electrons which may have been lost from it in one way or

another.

Using this model we may assess the total background electron rate at any point in the run by taking

the sum of all prior pS2 contributions:

R(t | k, C, ...) = k + C ·
P∑
p

Rp(t, tp, Ap, Wp | n, tmin, α, β) (2)

where P is all pS2s prior to t and C is a scaling constant. When put through the likelihood function,

k is the value returned as the background rate of electrons we expect without any electron train

interference. Lowering this value is how we may lower the limit for low-mass dark matter candidates.

From this equation one can see that if we looked at the total electron rate at a point e.g. 10 ms after

a large pS2, Rp, i would give the largest contribution to R(t), with Rp, i−1 a proportionally smaller

one, and so on.

Note here how the rate equation, R(t), has changed from being as a function of time since the

previous pS2, ∆t, to being a function of time since some arbitrary start point in our analysis. This

may be, for example, the start of a ‘run’, the allotments of data collected in some given amount of

time by the experiment. More about these runs is talked about in Sec. 6. By redefining the rate

function in this way, we shift from looking for light dark matter in the windows between pS2s, to

looking for it anywhere. Before, we could only ask whether an excess of single- or few-electrons was

expected within a rate model as a function of where that excess occurred relative in time to some

pS2. However, light dark matter would be, as mentioned, uncorrelated to the emission and detection

of other pS2s in the detector, so this linking of the two is not well motivated physically. With this

new model, we can look at the single- and few-electron rate almost anywhere in the time range of our

data, and ask whether that rate should be expected according to the amount of other interactions

(measured by pS2s and their properties) which have happened in the detector before that point.

In this way the model may offer a new angle of insight into the search for light dark matter not

previously possible.

If we break apart Eq. 1, we find that the value C · Aα
pW

β
p is a predictive calculation of the total

amount of single electrons each pS2 ‘produces’, and therefore contains in its respective electron train.

If this number is accurate, it would go a long way to better modelling this background electron rate.

Sec. 7 will look more at adding to this prefactor, but for now it is a good starting point. The
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exponents of α and β give the model much flexibility also, as if for example the observed electron

trains had no dependence on pS2 width, the cost function would naturally put β to 0. This is not

likely to be the case though, since pS2 area has already been shown to be correlated to the electron

train size, and pS2 width (i.e. how long the signal was observed for) has a rough correlation to drift

time and interaction depth, and can be an passable surrogate for an S1 in S2-only searches [48, 62],

making it also highly likely to be a correlated property of delayed electron emission.

When plotting to ∼300 s of data, corresponding to approximately 2000 pS2s, Ref. [1] finds that this

initial guess does seem to match the pS2 and electron train distribution, at least somewhat. This

plot looks very different from previous ones shown: instead of finding a power law fit across a “time

since pS2” histogram, we are now looking at a visualisation of the electron rates across a larger span

of time, a period of many seconds, with the best fit looking like one where the plotted line best lines

up with the histogram counts at every point and for every peak. A snapshot of this plotting is shown

in Fig. 10. The model seems to have good agreement with many features of the dataset, different

pS2s from large (at ∼900 ms); small (∼400 ms); and clustered (∼1400 ms). This whole region of

data produces a power law exponent value of n = 1.448± 0.005, which is relatively higher than the

previous studies mentioned, however, given this is a method totally apart from previous studies in

reasoning and procedure, there is no real reason to believe that this value is any better or worse for

being higher than the others.

Finally, Ref. [1] finds a background constant rate of k = 36.5± 0.6 electrons/second for this model.

This is three times lower than expected from just fitting a uniform distribution across the delayed

electron data [1], indicating that, as has been shown already, electron trains have some relation to

the pS2s prior to them, and providing a clear physical basis for the model. This is not a comparable

feature of the basic power law models, as the nature and statistical limitations of those ones inhibits

the addition of some background constant, however it is a value that can be returned to later as this

model improves, in order to see how the limit may be lowered further.

However, there are also problems with this model. Fig. 10 shows areas where the rate is not being

picked up, such as a large spike at 600 ms. This likely indicates a problem with the data selection, for

example where a pS2 has not been selected but its electrons have. Sec. 6 looks at how we can address

this issue. Then, a more subtle problem with the model is that although we cut out the prompt

electrons after every pS2, the probability density function of the model still predicts the “tails” of

each previous electron train to pass through these regions, and thus predicts a non-zero amount of

electrons within them, something particularly prominent around double- and multiple-scatter signals.

Sec. 7.1 looks at how this can be fixed in the model.

This new model addresses key concerns with how prior models approached the physical reality of

electron trains, and offers a new and unique way of interpreting the single-electron emission data,
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Figure 10: A visualisation of the cumulative power law fit over 10 or so pS2 peaks. The blue points
are the value C ·Aα

pW
β
p , the expected number of SEs from the peak, which we can see have relatively

good agreement with the heights of both the observed SE values and the cumulative power law fit.
For this plot the resolution is 10 ms, and the error bars are the square root of the counts of each bin,
with the fit passing through the majority of them. From [1].

worth exploring. The rest of this work examines how the model can be improved and expanded upon

in order to best analyse and characterise the phenomenon of delayed electron emission trains.
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6 Selection of Data

Before beginning to assess the quality of this model for characterising the phenomenon of delayed

electron trains, a thorough and comprehensive methodology for selecting signals must be developed,

in order to best capture the signals which we may consider to be pS2s and SEs, and furthermore to

distinguish between them.

The desired result for any selection method is to create a cut or filter within the data such that only

the relevant signals are retained, while minimising and removing all signals that do not pertain to the

modelling of delayed electron trains. A perfect selection method would thereby include all primary

S2s, along with both SE signals from the e-trains and low-mass DM signals that mimic these signals,

while removing all irrelevant signals, namely that of prompt electrons, mentioned in Sec. 5.1.

Most important is that the data selection is physically justified, both in which signals it chooses

to include, and which it chooses to cut, from the dataset. The selection method used by Ref. [1]

is explained in Sec. 6.1, setting the baseline by which the final selection methodology is measured.

Beyond the work of Umesh, there is also motivation from other prior studies for a more developed

selection methodology. As outlined in Sec. 5.1, Refs. [11, 52] define pS2s as those with an area >150

PE, and small-S2s as those below that threshold. Sec. 6.2 describes a methodology developed in this

work; Sec. 6.3 shows comparisons between these two methodologies, and the changes made.

Within the S2-only search ongoing within XENON, there are a variety of established cuts which are

performed on both primary S2s and the single-electron populations. However, since most of these

cuts are performed with the model of Sec. 5.1 in mind, we did not want to take any of these cuts for

granted when obtaining the data for this new selection, and instead only implemented cuts if it was

certain that they would not affect the integrity of the data later being passed to the model.

We can here begin to utilise the data-types provided by Straxen, mentioned in Sec. 3.2.1, namely

that of area and width. Fig. 11 provides a map of the total data landscape available to the selection;

every signal of each type from a 30-minute SR0 run is displayed here. Labelled are the core signals

of interest: those of pS2s, the large, electron-train-generating signals; the single- and few-electron

populations; and a variety of signals we wish to cut, which will be discussed in due course. It is by

this map that we may illustrate the data selection going forward.

The data for this work was selected and tested over 13 30-minute-long runs from Science Run 0 (SR0),

which ran from May to December 2021. These runs contained no additional sources for testing or

calibration, meaning they should assist in making a model for the delayed electron train background

which would be applicable in the wider search for light dark matter. A full list of the runs used can

be found in Appendix B; for viewing clarity only data from the first of those runs was used in the
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Figure 11: A 2D histogram of area (in PE) vs range 50% area (in ns, analogous to signal width) for
all signals in a ∼30 minute SR0 run. This is made using a Straxen mini-analysis, details of which
can be found in [42]. The labels act as guidelines for the typical regions in which each signal type is
expected to be found. The 1PE pileup region is composed of type-0 signals. These occur from single
photon emission in the detector and their pile-up when they hit the PMTs, causing signals too small
to be even a single electron. The other labels will be discussed in the course of this section.



36

plots in this section.

6.1 Previous Data Selection Method

It is from Fig. 11 that a selection like that in Ref. [1] is made. Using the labels as an aid, one can

draw boundaries of the regions where we might expect to find the key populations of interest for

the model; that of 1e−, ne−, and pS2 signals. We thus select only the S2-type signals in each given

region. This was not done in Ref. [1], however it is a simple fix made here for the sake of clarity.

Without this cut, the 1e− and ne− boxes end up with just under 1% of their signals consisting of

either S1s or junk (i.e. type 0) - a small but noticeable difference in data quality. The boundary

limits were selected based on where these desired populations seem to lie on the graph, arbitrary

except to try and maximise the dataset without clear contamination of overlap onto other labels.

The visualisation of how these regions were selected is shown in Fig. 12.

Figure 12: Highlights of the selection regions overlaid on an area vs range 50% area histogram of the
same run as Fig. 11, with the 1e− (red), ne− (blue), and pS2 (yellow) regions shown. This figure is
recreated from a similar one in Ref. [1], which uses ‘area fraction top’ as the colour bar axis instead
of density of signals.

As a starting point, this selection is adequate. It encapsulates large parts of each population in a
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clear manner. If we further perform a prompt electron cut on the small-s2s selected by the 1e− and

ne− boxes, we return the delayed electron population. The two selections are shown in Fig. 13.

(a) Primary S2s (b) Delayed Electrons

Figure 13: Final data selection from Ref. [1].

However, there are problems with this method. For example, without knowing more about the

underlying nature of the data, there is no reason to think that one could not extend e.g. the pS2 to a

lower area value, perhaps even down to the 150 PE limit of prior studies. Similarly for above the ne−

region, there is a vast swathe of signals which may be delayed electrons. Finally, the labels in Fig. 11

give no definitive boundaries; the 1% presence of type 0 and type 1 signals in the small-S2 population

indicates as much. This method is not physically justified, which the above points highlight.

In the next section we will create a new selection methodology which will incorporate specific, physi-

cally justified cuts and filters to select maximally pure populations and eliminate anomalous signals.

Some of these anomalous signals can otherwise appear to be delayed electrons or pS2s by where they

lie on Fig. 12, meaning they certainly contaminate the selection used in Ref. [1]. The details of the

process for each population are explained more in Secs. 6.2.1 and 6.2.2.

6.2 Improvements to Data Selection

Although the basic Straxen signal-type classifications are a useful starting point, these categories

alone are too broad on their own in such busy datasets, when paired with only the area and width

cuts shown above. Straxen can also get the classification wrong, for example sometimes mislabelling

small S2s as S1s [63]. To fix this, we make use of an internal XENON study into how the peaks can

be put into different ‘subtypes’ based on their areas and relations in time to one another [63].

This program is not complicated: simply scanning in time through the dataset to compare signals
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to one another according to area. In doing this it assigns each signal a new ‘subtype’ - which offers

a useful shorthand for better understanding and distinguishing between each signal. It can show

which primary S2s have related S1s; which may be solo or a part of multiple-scatter interactions;

and finally the status of its related electrons, either as photoionisation ones (the ‘prompt’ electrons

mentioned before) or as ones which are part of a delayed electron train. Most of this is not relevant

in our selection of signals: we are most interested in using these subtypes to distinguish between pS2s

and small-S2s; and in correcting mis-classifications from Straxen. A more detailed explanation of the

process and the related code used to implement this in the selection can be found at Refs. [63–65].

After this subtyping process we perform a variety of quality cuts on the respective pS2 and small-S2

populations to complement the selection, and ensure the removal of certain anomalous populations.

These will be described and highlighted in due course.

6.2.1 Selection of Primary S2s

Within this method, primary S2s are distinguished from small-S2s generally as an S2-type signal

which is more than 5 single-electrons (SE), approximately 175 PE, in area. The exact treatment of

these signals and the subtypes assigned to pS2s in different situations can again be found in Refs. [63,

64]; the only classification relevant here is in how they are being selected relative to other S2-type

signals.

All S1s and pS2s generate a series of prompt electron signals from photoionisation detected almost

immediately after the initial S1 or pS2 signal; these were discussed earlier. Depending on factors such

as initial pS2 size, interaction depth, and proximity to the detector edge, more photoionisation can

occur, and in tighter bursts, meaning some of these signals can appear to be pS2s, at least in their

area and widths. For this reason the subtyping program also implements a restriction that after a

large S2 is detected, in order for another S2-type signal near it (i.e. within 1 fdt) to also be classified

as a pS2, it must be more than 0.5x the initial pS2 area. In theory this allows for double- and

multiple-scatter interactions, while preventing the selection of large prompt electron signals, as they

themselves would need to have been caused by substantially larger pS2s. An example of this is shown

in Fig. 14, where the prompt electron signal shown is also followed by multiple signals all >1000 PE

in size, within 1 fdt of the initial pS2. The box selection methodology of Sec. 6.1 inadvertently

introduces some of these unwanted prompt electron signals, as only the delayed electron dataset

undergoes a prompt electron cut.

This is not a perfect method, as this 0.5x factor is arbitrarily chosen with respect to the correlation

between pS2 area and quantity of prompt electrons. This has the effect of where, with a large pS2,

any genuine co-occurring pS2 < 0.5 the size of the larger pS2 will be instead classified as a cluster of
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photoionisation electrons, and thus be cut from the selection for the purposes of this investigation.

This is also a problem for multiple-scatters which fall below this threshold. The frequency of these

types of instances is unknown, however it is a clear limitation of the selection. It would be best to

find the relationship between pS2 and prompt electron sizes in order to choose a more appropriate

factor for this cut; however, this is beyond the scope of this work. An example of a double-scatter

which would be mis-classified as photoionisation is shown in Fig. 15.

Figure 14: An example of a large primary S2 followed very closely by a series of prompt electron
signals, the first of which measures at 4,590 PE in area, large enough to be considered a pS2 in its
own right when viewed in isolation. Note the logarithmic y-axis.

We also perform a quality cut to remove any pS2s with an “area fraction top” (AFT) below 0.5.

AFT is the ratio of the signal’s area detected by the top row of PMTs as compared to the bottom

row. Since S2-type signals happen in the GXe layer, we expect a high AFT (≳ 0.6). These low-

AFT signals usually have a relatively low area for a pS2 (≲ 1000 PE), with a typical ‘range 50%

area’, or width, of between 1000-4000ns. Most importantly, they are almost exclusively preceded by

abnormally large S1s (>10000 PE, with a normal S1 area being ∼1000PE). These factors point to

these ‘pS2s’ actually being PMT ‘afterpulses’, erroneous signals produced by PMTs themselves after

some signals, rather than by any genuine signals. More about afterpulses can be read in Refs. [66,

67]. A full removal of afterpulse signals would be beneficial to the selection, but is beyond the bounds

of this work, so the simple AFT cut was made instead. An example waveform of these low-AFT

‘pS2s’ (in labelling only) is shown in Fig. 16.

Finally, we perform a rough cut on pS2s above 40,000 ns in width, as this region is populated

primarily by signals called “e−-bursts”, a phenomena noted by a few previous studies [9, 10]. These

e−-bursts are large, wide signals sometimes consisting of as many as tens of thousands of electrons,
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Figure 15: An example of a large primary S2 which is followed by a large secondary scatter S2. The
waveform shape of this secondary signal, as well as its proximity in both time and location in the
detector (< 2.5 cm separation), make this highly likely to be a double-scatter event. Note now the
y-axis is not logarithmic.

which register as pS2s due to their areas and widths. However, Ref. [10] notes that they contain no

S1 or S2 pulses, only clusters of single electrons. Fig. 17 shows a representative waveform of a typical

e−-burst signal. The main hypothesis for the physical cause of e−-burst is that electrons trapped at

the LXe surface get released all at once, though the exact triggers are not yet well understood, and

furthermore whether they themselves are also a cause of delayed electron emission or just a form of

it is also in question. They can also form on the surface of metals in the detector, meaning they are

commonly found along the edges of the TPC. An internal XENON study and plug-in for selecting

them was developed in Refs. [68, 69], though too late to be implemented into this work, and therefore

here only a rough cut was performed, which removed O(100) signals per run, 1% of all pS2 signals.

Ref. [10] analyses e−-burst as small as 10e− in size, meaning this may also a significant background

to the entire pS2 population.

After all of this, the new selection for pS2s appears as in Fig. 18a.

6.2.2 Selection of Delayed Electron Signals

After the selection of pS2s, we are left with a wide dataset of small-S2 signals, in which is our desired

delayed electron population. The remaining signals are photoionisation electrons, which make up ≳

80% of this dataset.

To obtain the delayed electron population, a prompt-electron cut of 5 fdt after every pS2, and 2 fdt
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(a) A low-AFT pS2 preceded by a high-area S1, logarithmic y-axis

(b) The same low-AFT pS2 preceded by a high-area S1, linear y-axis

Figure 16: Time vs signal intensity waveform plot on a logarithmic y-axis (Top), and on a linear
y-axis (Bottom). They show the waveform of an S1 with an extremely high area, followed by a
wide, low-area, low-AFT S2, likely PMT afterpulses, that is mislabelled as a pS2 by the subtyping
programme. The data has been coloured to show the Straxen peak classifications of S1s (Red) and
S2s (Blue).
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(a) The same example e−-burst with width >40,000 ns, logarithmic y-axis.

(b) An example e−-burst with width >40,000 ns, linear y-axis.

Figure 17: Time vs signal intensity waveform plot on a logarithmic y-axis (Top), and on a linear
y-axis (Bottom). Although the subtyping has labelled this central signal as a pS2 (Blue), e−-burst
studies show that these signals are single- or few-electrons which have been grouped together into
a larger waveform by the Straxen processor [10, 68], and subsequently labelled as a pS2 by the
subtyping programme. Delayed electrons are coloured in Green, and S1s in Red. Also apparent
in this waveform is the difficulty Straxen has understanding signals of this type, with an S1 marked
just after the pS2 having occurred. In the pairing mechanism of this labelling, this should indicate
that this S1 is associated with another pS2 soon after it, which there is not.
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after every S1, is performed on the whole small-S2 population, as photoionisation can occur after

both signal-types. This can be seen in Fig. 5. This is prompt-electron cut was described before in

Sec. 5.1. Figs. 18b and 18c show the separation we get from this cut on the small-S2 signals.

Furthermore, some quality cuts were performed on this delayed electron population where there were

known issues. One such example is the removal of any signals which were detected exclusively by

the bottom PMT array, as this is indicative of ‘dark counts’, anomalous signals caused by thermal

noise in the PMTs. More information about the removal of these undesired populations can be

found in Ref. [70]. The subtyping program also identifies S1s which were misclassified by Straxen

as small-S2s, effectively overriding the Straxen type classifications in order to remove these signals

from our selection.

Finally, we implemented the ‘counting’ of electrons for each signal, the details of which can be found

in Sec. 7.2, or in Refs. [65, 71]. This was used in the selection to cut the few signals (O(100) relative to

O(10,000) in a 30 minute run) which were >5 electrons in size but still classified as delayed electrons

by the subtyping software. While some of these may be true delayed electron signals, many were

found to be relatively wide and immediately preceding S1s, indicating some signal reconstruction

artefact rather than a genuine delayed electron from some pS2 prior in time to that S1. This also

then puts the delayed electron selection in line with prior studies in their selection of delayed electrons

as those up to the 5e− multiplicity, such as those of Refs. [11, 52]. Although these studies select

the 5 electron limit somewhat arbitrarily, it is a sensible selection within the realms of the potential

causes of the power law and the physics of the related processes discussed in Sec. 4.2, and so it was

chosen as a restriction for this study also.

The new selection for delayed electrons is shown in Fig. 18b

6.3 Comparison of Selection Methodologies

With this selection implemented, we now have a more full view of the signals available to analyse.

Fig. 18 shows the effect of the described cuts and filters on separating the populations from a single

SR0 run. A summary of the process can be viewed as follows:

1. Only S2-type signals are selected initially. This cuts out all S1s and ‘junk’ signals, which

Straxen is unable to classify. The distribution of the signals cut here is shown in Fig. 18d.

2. The S2-type signals are either primary S2s, prompt electrons, delayed electrons, or some form

of anomalous signal (e.g. PMT dark counts). We utilise the subtyping program to sort between

these and select the pS2s, which then undergo quality cuts. This selection is shown in Fig. 18a.



44

(a) Primary S2s (b) Delayed Electrons

(c) Prompt Electrons (d) Remaining signals (S1s, junk)

Figure 18: Area vs range 50% area density histograms for the same run as Fig. 11 showing the
selection for primary S2s (top left) and delayed electrons (top right); along with the unselected or
cut signals in the form of prompt electrons (bottom left) and S1s or junk signals(bottom right).
Note that the prompt electron populations do likely include some double- and multiple-scatter signals,
especially when looking at higher-area signals, however it was not possible to separate these signals
from high-area prompt electrons in this work.
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3. The signals not designated as pS2s are thus some form of small-S2 signal. They then undergo

a cut to remove all signals within 5 full drift times (1 fdt = 2.3 ms for XENONnT) after a

pS2, or 2 fdt after an S1, to ensure all prompt, photoionisation electrons are removed. These

removed signals are shown in Fig. 18c. This then leaves us with the delayed electron dataset.

4. The delayed electron population undergoes its own quality cuts, leaving the selection shown in

Fig. 18b.

Now we may compare these final selections to those of Fig. 13. Importantly, there are no signals

selected in the previous method which are not also initially selected in this improved methodology;

the net is only cast wider. However, more processing is performed afterwards on this wider dataset

to attempt to reduce contamination from doing this. In particular, the delayed electron selection

differs from that of Refs. [1, 11, 52] in that we now allow for a larger prompt electron cut; removal

of anomalous signals; and a more flexible restriction up to and including the 5e− population without

a fixed area boundary.

The selection of primary S2s is also expanded. As more genuine pS2s are identified, this allows also

for the removal of more prompt electrons in the cut: this is reflected in an extra 10% of all small-S2

signals being cut when performing the prompt electron cut, from ∼ 75% in the dataset of Sec. 6.1, to

∼ 85% in the new selection. This is assuming all else is equal, and so does not account for the increase

to 5 fdt from 3 fdt between methods, nor the change to also cut electrons 2 fdt after an S1. This

shows that many more electron signals than previously thought are likely caused by photoionisation,

just were not being picked up by nature of the limited pS2 selection.

However, there are still open questions when it comes to the selection, in particular that of primary

S2s. The existence of smaller e−-bursts in the pS2 dataset is a problem in both selection methodolo-

gies, but the expanded search region of the new selection makes it a larger problem there; this will

be talked about again in Sec. 8. Other known problems with the selection which were not able to be

implemented due to time can be found in Refs. [72, 73]. Again both selection methods will include

these problems, however the increased population of pS2s in the new selection means this may have

an increased effect; this will be shown later to likely be such the case.

Overall, however, this selection methodology is a promising improvement on prior studies. With it,

we can be more confident that the model is analysing a larger and more representative selection of all

delayed electrons, and all the signals which would be causally correlated with the emission of these

electrons, in the form of pS2s. We will now move on to looking at the way in which the modelling

of these primary S2s and their delayed electrons may be expanded, in order that we may begin to

better probe the physics at hand in this phenomenon.
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7 Changes to the Model

With the new data selection, we can feel that the signals being analysed are a more comprehensive

and complete view of the primary S2s and their related delayed electrons. This next section will

look at how this delayed electron rate may be modelled better, expanding on Sec. 5.2. With these

improvements and extensions, we see how the model can be advanced further to better map to the

rate of these delayed electron trains.

7.1 Normalisation of the Model

One of the key issues with the original model was in the normalisation of the model function and its

calculation. Although the nature of the model described in Eq. 1 necessarily means that there is no

contribution from a given pS2, p, to the electron rate for some time tmin afterwards (now 5 fdt = 11.5

ms), the modelled tails of previous pS2s can still continue into this region unrestricted. Consequently,

the probability density function (PDF) used in the likelihood fitting predicts a non-zero amount of

electrons in each region [tp, tp+ tmin] for each of these given tails, where again tp is the time of a pS2.

The 2 fdt cut after each S1 will also cause the same effect. This issue was noted in Ref. [1], with

the observation that this quirk may artificially steepen the power law exponent, especially around

multiple-scatter clusters. This is certainly a non-negligible effect then, as nearly 40% of all pS2s in

a 30 minute SR0 run tested were found to be a part of a double-scatter event, with a total of 60%

being multiple-scatter events. Fig. 19 illustrates a toy model of two nearby pS2s, showing how the

predicted power law tail from one pS2 can overflow into the prompt electron cut region after another

nearby one.

Fixing this problem involved calculating the predicted electron rate as normal, but then applying a

global mask on the region [tp, tp + tmin], where tmin = 11.5 ms (5 fdt) for every primary S2 peak p

(in the chosen analysis time window). We explicitly set those regions to 0, thus matching the real

data cut which occurs. The same process was performed on S1 peak times, at tmin = 4.6 ms, to

match the smaller photoionisation cut performed there. Further implemented was a renormalisation

of the power law to remove any ”dead-zone” contributions from these prompt electron regions to the

total predicted electron rate of an analysis window. Specifically, this was done by subtracting the

integrated probability mass (i.e., the cumulative density function of the PDF) between each region

[tp, tp + tmin] from the total normalisation term, adjusting tmin according to whether it was after

an S1 or S2. These adjustments ensure that the physical nature of the prompt electron cut done in

the data selection is reflected in both the ongoing rate of the model calculated at each time instance

t, as seen in Eq. 2; as well as in its total predicted electron rate across a fit region. This lends

the model more mathematical consistency. This is, as mentioned, especially important for multiple-
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Figure 19: A toy model of a double-scatter event to illustrate how part of one delayed electron train
may leak into the prompt-electron region of another subsequent pS2, thus disrupting the model. Due
to the nature of the prompt electron cut, all small-S2 signals in this region will be removed from the
data-set. However the size of the first pS2 would indicate to the model to expect many electrons
in the train, which would then not match with the observed data. Note the prompt electron region
has here been set as 2 fdt (4.6 ms) for simpler illustration, and the sizes of the pS2s labelled do
not necessarily correspond to the actual number of electrons we expect to observe in their respective
trains.
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Figure 20: A visualisation of the normalisation fix implemented into the model on all prompt-electron
dead-zone regions.

scatter events, which are frequent, and thus certainly allows the model to yield more meaningful

results going forward. Continuing the toy model example, an implementation of this fix is seen in

Fig. 20.

7.2 Electron Counting

In the model of Ref. [1], the model takes as inputs only the times of the delayed electron signals.

However, as mentioned, previous studies have considered up to the 5e− multiplicity as part of the

delayed electron population, even calculating different power laws for the various multiplicities [11,

52]. While this new model does not evaluate the delayed electron population in the same way as

prior studies, the nature of these populations and how they should be considered by our model is

still an interesting question. This section looks at why we might wish to implement electron counting

into our model, and why the chosen method was used over a potentially simpler implementation.

There are a couple ways electron counting can be implemented into the model and wider understand-

ing:

1. Aiding in the selection of delayed electrons, as talked about in Sec. 6.2.2.

2. Measurement of the accuracy of the model factors. One of the the aims of the model is

to understand the relation between the features of a pS2 and the number of delayed electrons

associated with it, with the model prefactor, the value C ·Aα
pW

β
p , providing a predicted number
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of electrons for a given pS2 peak, p. Implementing electron counting may allow a more accurate

comparison between this value and the actual number of electrons observed after a given pS2,

especially within a given time window as a whole. This comparison is looked at more in

Sec. 8.2.2.

3. Implementation into the model itself. If we want to truly understand the physical nature of

delayed electron emission, then it may be beneficial to adapt the model to account for the

number of electrons being detected, rather than purely their times. Additionally, although

Sec. 4.2.2 shows that multiple-electron emission is far more than just a result of single-electron

pile-up, this change to the model would also account for the pile-up population in our dataset.

Whether this is justified physically is not clear; however, this does give us another avenue of

interest to explore with this model.

The ability to ‘count’ the number of electrons in each signal is not something natively provided by

Straxen, and instead needs to be calculated explicitly. One approach is to find the ‘single-electron

gain’ for the run, defined as the average total charge per single electron signal. For SR0 this was

found to be approximately 31 PE [74], meaning each single-electron reaching a PMT registered on

average 31 PE in area. The amount of electrons per peak is then a trivial matter of dividing each

signal’s area by this value. This method is simple and effective, and yields distinct populations within

the delayed electron dataset.

This method is not without shortcomings however, which make it unsuitable to use on its own.

Instead, we here utilise a dedicated plug-in created for Straxen, the details of which can be found in

Ref. [71], which employs a waveform quantisation algorithm to reconstruct the electron counts from

the raw waveforms. More specifically, the algorithm performs the following process:

1. Each waveform is smoothed over a short time window to reduce baseline noise and fluctuations.

2. The total waveform is then analysed for low-points in intensity and broken up into substruc-

tures; each identified as a possible electron pulse.

3. Each substructure is then integrated to find its area, which is then divided by the single-electron

gain value.

4. These values are rounded and summed to find a total reconstructed number of electrons for

each peak.

This method is far more effective for distinguishing between clustered or overlapping delayed electron

signals than a simple area/gain calculation. In the XENONnT data-acquisition system, electrons

detected by the PMTs less than a couple microseconds apart will be clustered and labelled as a single
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peak. An area/gain calculation would thus see this event as a smooth blob of charge, and divide the

total by the single electron gain. While it may sometimes give the correct number of electrons, it is

not a calculation with physical motivation or consistency. However, the waveform still encodes the

information that these are individual events, meaning the quantisation algorithm can retrieve this

and allow for a more physical view of the delayed electron events in the detector.

Figs. 21 and 22 compare calculations of electron multiplicities (up to 5e−) for the delayed electron

dataset when applying a basic area/gain model as compared to the waveform-based electron counting

algorithm. The area/gain method imposes rigid boundaries on the electron populations, while the

electron counting algorithm allows for more flexibility in the variation of electron signal areas and

widths. This illustrates why it is an important feature to implement, both in the selection of delayed

electrons and in improving the physical accuracy of a delayed electron model.

Figure 21: Counts per bin of different electron multiplicities over area for delayed electron signals.
Left: Distribution using peak area/SE gain (here set at 31 PE); Right: Distribution using waveform
quantisation and reconstructed electron counting algorithm. The distributions on the right notably
primarily follow a Gaussian distribution, with a small exception in the 2e− population, which is the
distribution we expect electron multiplicities to follow. This figure is adapted from ones in Ref. [71].

7.3 Fiducialisation & Radial Factor Implementation

One useful feature of xenon as a detector medium is its ability to self-shield from background radia-

tion, a fact mentioned in Sec. 3.1. This means we can restrict our search region for dark matter to

only an internal section of the detector, and eliminate a significant fraction of background noise in

our ‘uncorrelated’ delayed electron background. Fig. 23 shows the location densities of signals in the

detector for primary S2s and delayed electrons, respectively; showing that the outer regions of the

detector are by far the most active, especially for the delayed electron populations.
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Figure 22: Area vs width for electron multiplicities. We can see there is a large dependence in width
on the electron multiplicities, which is not accurately captured in the area/SE gain method (Left),
but far better accounted for in the electron reconstruction method (Right). There is clearly some
problem in accounting for electrons of high area but low width, which both methods assign, perhaps
falsely, to higher-multiplicity electron populations. This explains the non-Gaussian shape of the 2e−

population in Fig. 21.

From these graphs, we can also see a disproportionate excess of events along the two transverse wires

placed to reduce sagging of the gate and anode electrodes, as well as at a clear “hotspot” region in Fig

23b. Although it is believed that the majority (perhaps as much as ∼ 90%) of the delayed electron

population is correlated with pS2s, there is still an uncorrelated background population which cannot

be ruled out [75]. This population is most likely from photoionisation with the metal walls of the

detector, as well as with the wires, contributing somewhat to the excess in these regions. Similarly,

the hotspot region is thought to be uncorrelated to electron trains after pS2s [76], contributing

perhaps another population of single electrons, though not ones part of delayed electron trains. If we

wish to eventually use this model to distinguish between delayed electrons and genuine dark matter

signals, then developing a position-dependent aspect to the model to mitigate for these regions would

be of great benefit to future analysis. Importantly, although light DM scattering would be its own

uncorrelated population, it would not be correlated to the edges of the TPC, and would have the

same likelihood of being found anywhere in the detector.

We may further wish to mitigate for these regions due to the uncertain nature of the phenomena

of e−-bursts and their contributions to the model. As mentioned in Sec. 6.3, these signals are often

mistaken in selection as pS2s, even though phenomenologically they are large clusters of single-

electrons. As e−-bursts tend to happen most frequently at the detector edges, as well as along the

transverse wires, they would contribute far less to the model under the implementation of a radial

scaling factor, the exact mechanics of which will be explored in the following sections. Although

a full position-dependent model incorporating the wires and the hotspot regions was deemed to be
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beyond the scope of this project, a preliminary radial factor was implemented. However, this still

had very promising results, as is shown in Sec. 8, which a complete radial model would likely only

improve further.

Implementing a radial factor into the model is a two-step process:

1. Perform a fiducial volume cut, the dimensions of which are determined and justified in Sec. 7.3.1,

on the delayed electron population. This ensures some removal of an uncorrelated population

at the detector edges.

2. Update the predictive electron rate factor, C ·Aα
pW

β
p , to accommodate for pS2s throughout the

detector having a portion of ‘correlated’ electrons removed by the fiducial cut. We can’t perform

a fiducial volume cut on pS2s also, as this then causes problems for their correlated electrons

inside the volume. Instead, we scale their contribution with a factor between 0 and 1 depending

on the proportion of their electrons remaining inside the fiducial volume. Sec. 7.3.2 explores

how this works, is determined for the model, and also provides a more in-depth explanation as

to its need.

(a) Primary S2s (b) Delayed Electrons

Figure 23: Location of each pS2 and DE signal in 13 background SR0 runs (see the run list in
Appendix B, after the selection methodology of Sec. 6, meaning prompt electrons were already
removed.

7.3.1 Selection of Fiducial Volume Radius

The selection of the radius for the fiducial volume can be calculated using Fig. 24. Fitting a Gaussian

over a histogram of electron counts according to their radial distance from the centre of the TPC,
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we can see where the majority of events occur, and indeed, most occur within 20 cm of the wall of

the TPC (at about 67.5 cm).

To determine the optimal radius to use, we can evaluate the signal sensitivity curve, where sensitivity

is defined as exposure/
√
counts, with exposure scaling with cross-sectional area, πr2. As r increases,

so does the target area for analysis; however, so does the number of background events.

As such there exists an optimal radial value for the maximum sensitivity of analysis, which from

Fig. 25 can be seen to be near the 1σ value from the Gaussian fit. In fitting these curves for the list

of SR0 background runs, following the approach of Ref. [77] (an SR0 analysis of fiducialisation for

the S2-only search), it was found that the value of 45 cm chosen was also an appropriate cut for this

work. As can be seen from Fig. 25, it results in only a small loss of sensitivity compared to the 1σ

value of 49.3 cm, while greatly increasing the amount of wall-events removed.

Figure 24: Histogram of (x, y) distribution of delayed electrons as a function of R2 (Bottom axis).
Wall events can be fit with a Gaussian to indicate where a fiducial volume cut might best lie. This
and Fig. 25 are adapted to the SR0 runs being used in this work from [74], which settles on a value
of 45 cm in order to optimise cutting out the wall volume without significant reduction in signal
sensitivity.
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Figure 25: Sensitivity of the delayed electron dataset vs R2

7.3.2 Adding the Radial Factor

With a suitable boundary for fiducialisation selected, we now require a model which matches the new

reality of the data. To understand why this change is necessary, let us review the physics of delayed

electron emission.

Within the model, every pS2 is expected to correlate to a certain number of delayed electrons, a

function of its size and width. It is this factor which determines the model rate over time, fitting

according to the data. It provides a rough statistical approximation as to whether the delayed

electrons observed are likely to be ‘from’ a pS2 or not. A perfect model would be able to identify

unexpected excesses in the model from this predictive rate, thereby hopefully identifying low-mass

dark matter events. This is why properly normalising the model in the “dead-zone” regions, where

we have performed the prompt electron cuts, is important to the model, as well as fiducialisation,

which will help remove known background.

However, in introducing this fiducialisation, there then exists a mismatch between the predicted

amount of electrons from a pS2 in the model and the real amount in the empirical data. The

magnitude and nature of this mismatch is a physical question: asking the extent to which the delayed

electron population may be ‘position-correlated’ with the primary S2 population. As mentioned
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in Sec. 3.1, the electron cloud released following an interaction experiences minimal drift in the

transverse plane - i.e. the one perpendicular to its upward motion towards the LXe surface. This

means that, regardless of which hypothesis in Sec. 4.1 is dominant, we expect a given delayed electron

train to be in a similar xy-position to the pS2 that caused it. The exact definition for a delayed

electron being position-correlated will be addressed later in this section.

Fig. 26 illustrates a simplified model of the problem occurring from the fiducial volume cut: any

pS2 on the inner boundary of the fiducial volume will have some proportion of its related delayed

electrons removed by the cut, and thus the model will over-predict the amount of electrons that

pS2 contributes to the total electron rate, and under-fit the data on a whole. The inverse scenario,

of a pS2 just on the outside of the fiducial volume, illustrates why we cannot perform the fiducial

volume cut on the pS2 population also: doing so would leave some portion of its delayed electrons

unaccounted for by any pS2 inside the volume, and thus they would act like uncorrelated background

signals in the model, effectively making the fiducial volume cut redundant.

Figure 26: A simplified diagram of the TPC cross-section. This highlights what the fiducial volume
would look like schematically, as well as the effect the cut would have on primary S2s and their
related delayed electron trains. Primary S2s towards the centre of the volume would be relatively
unaffected, while ones closer to the edge would have increasingly more of their related delayed electron
population cut.

The solution to this problem is, as mentioned before, to introduce a radial scaling factor into the

model, between 0 and 1, such that pS2s towards the centre of the TPC are considered to ‘keep’ a

greater proportion of their related delayed electrons relative to those further from the centre. Those

right at the edges may effectively have none of their related delayed electrons remaining inside the
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fiducial volume, and so their factor will be close to 0, reflecting the minimal contribution they make

to the electron rate inside the fiducial volume. A scaled sigmoid curve, seen in Fig. 27, was decided

to be the appropriate function for the model. It takes the form:

f(r | S) = 1

1 + exp(S(
r−rf
rc

))
(3)

where rf = 45 cm is the fiducial volume radius; rc is the radius of ‘position-correlated’ delayed

electrons related to a given pS2; and S is a scaling factor on the function which is also allowed to be

freely fit by the likelihood function. In Fig. 27 rc = 11 cm, and S is set to 3, for illustrative purposes.

Figure 27: The radial factor, f(r), added to Eq. 1 to accommodate for the fiducial volume cut.

To understand the physical significance of the parameter rc in the model, note that this is not a

position-dependent model in the conventional sense: the model is not matching up delayed electrons

with pS2s based on their spatial location in the TPC, nor is the model able to predict the electron

rate at a specific location in the detector. The value rc is simply a measure of how far a delayed

electron signal, or population on a whole, can from a pS2 before the rate becomes insignificant. This

corresponds physically to the radius of the small, grey circle in Fig. 26, and is therefore key to the

tuning of the radial factor as it determines how much a pS2’s related signals, empirically-speaking,

may have been cut out as the pS2 gets closer to the fiducial volume boundary. Too large and the

radial function becomes too shallow, penalising in the model even pS2s at the centre of the detector

as potentially having related DEs outside the fiducial volume; too small and the function becomes

absurdly restrictive, essentially operating as a fiducial volume cut on pS2s also, thus defeating the
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Figure 28: Density histogram of delayed electrons according to their distance to the most recent prior
pS2. We can see a large correlated population at the centre, on top of a far smaller uncorrelated
background.

purpose.

We can plot a ‘position-correlated’ population of delayed electrons by assigning each DE to the

pS2 most recently preceding it in time, and then plotting the position difference. This is seen in

Fig. 28, where there exists a bright hotspot in the centre, justifying the belief that the processes

behind delayed electron trains are most likely happening in a similar x-y position to the interaction

that caused them. This population can be fit to a Gaussian over a modelled background, from

which we find that rc ≃ 11 cm is the value at which 99% of this position-correlated population

is contained. This procedure of separating the correlated Gaussian component from a modelled

uncorrelated background using a 2D fit can be found in more detail in Refs. [11, 78].

With the values for the fiducial volume radius, rf , and the position-correlation radius, rc, now

determined, the adjusted model now looks like this:
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Rp(t, tp, Ap, Wp, rp | n, tmin, α, β, S) =

0 t ≤ tP + tmin

Aα
p W β

p f(r | S) (t− tp)
−n, otherwise

(4)

where f(rp | S) is as defined in Eq. 3, and tP indicates that the rate contribution from a given peak

is now being set to 0 for dead-zone regions after all peaks P in the analysis window, not just its own

dead-zone region.

This means that the total electron rate at a given time is given as before in Eq. 2:

R(t | k, C, ...) = k + C ·
P∑
p

Rp

With this we can now go on to look at fitting the data to this model, and see if these changes do

indeed improve the model in meaningful ways.
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8 Results

We have now addressed the two key areas of this delayed electron train model: first, that of the data

being used by the model, hoping to capture every pS2 signal and every delayed electron signal while

cutting out unrelated contaminating signals; second, that of the model itself, fixing the flaws in its

logic, and working to expand it to better do its job. This section will now analyse the extent to

which these changes have helped, and whether we may further our understanding of delayed electron

emission as a result.

We will compare four variations in how they perform: the ‘old’ data selection outlined in Sec. 6.1;

the ‘new’ data selection outlined in Sec. 6.2; the ‘radial’ addition to the model defined in Sec. 7.3.2;

and the ‘electron-counting’ model defined in Sec. 7.2. In the electron-counting case, each instance

of a delayed electron signal has been cloned in the dataset by the number of reconstructed electrons

given for that signal; this will allow us to examine if the power law signal is determined by number

of electrons being picked up by the PMTs, or by the number of size-independent electron releases.

The variations on the data selection will both use the same model for fairness, which is the original

model of Ref. [1], except with the fix to the rate normalisation described in Sec. 7.1. The new data

selection model also includes the 5 fdt cut on the data (and thus also in the power law model) after

every pS2, and 2 fdt after every S1; whereas the old data selection only cuts 3 fdt after every pS2 in

both the data and the model. The radial and electron-counting variations on the model will each use

the new data selection. In this way, we may compare between each model across different timescales

and windows of data analysis, in order to see which may best explain the phenomenon of delayed

electron emission.

Sec. 8.1 describes how we went about running the model on the data, and general context of the

results. Sec. 8.2 looks at the different parameters returned by each of the variations; from this it

draws some qualitative interpretations of the model fitting, as well as parsing out physical meaning

which may lie in the data as a result. Beyond this, we may also perform goodness-of-fit testing

in order to understand quantitatively which model performs best, and which should be used going

forward. Sec. 8.3 explains this process and the results in more detail.

8.1 Collection of Results

This section looks at how the results for this model were fit and collected, and how certain graphs

may therefore be interpreted. The fundamental modelling loop involved selecting a range of seconds

within a run, over which we wish to fit the model to the delayed electron data using the pS2 data.

At its core, this model asks how well we can understand the nature of delayed electrons from solely
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Figure 29: A typical cumulative power law fit (Red) for a 5 s window. The fit was performed on a
300 s region of data, and zoomed in to a 5 s window of that region for illustrative purposes. Each
dotted green line represents the time of a pS2 in our ‘new’ selection. Dips in the fit of the model are
the S1 and pS2 ‘dead-zone’ regions, where it has been explicitly set to 0.

the presence of primary S2s; the background constant k provided by that fit gives us the extent to

which our model fails - either due to data selection, missing features, or genuine light dark matter

signals.

Within each fitting ‘window’, the model parameters were obtained using the CERN ROOT team’s

iminuit package, specifically the extended unbinned maximum likelihood cost function. It was decided

in Ref. [1] that binning the data would lead to the loss of small-scale features in the model, due to the

varied and uncertain nature of single-electron emission sources. The maximum likelihood estimation

method takes a probability density function and fits it to the data in order to find the best-fit,

maximised likelihood function.

To obtain the fitting plots, the data is binned at a resolution of 10 ms, and the error bars of each

bin taken as the square root of the counts in each bin. This histogram is overlaid by the model

parameter fit. A representative figure for this can be seen in Fig. 29.

To obtain the results discussed in Secs. 8.2.2 and 8.2.3, this modelling loop was ran for a variety

of time windows, from 25 s up to 900 s. This upper limit was chosen as it amounted to ∼ 1
2
of a

30-minute run, so gave a representative overview of a large part of the data while also taking an

acceptable time to fit. The time ranges were randomly selected across the 13 SR0 background runs

listed in Appendix B, and multiple iterations were taken for each window size - with more for the

smaller time ranges and fewer for the largest. The parameter values shown below are thus the median

values for each window size, to best protect against outliers.
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8.2 Discussion of Results

This section examines the results we obtain from the model variations, and what can be learned

about both the model and data selection changes as a result. Sec. 8.2.1 shows plots like those of

Fig. 29 in order to understand what can be learnt from the behaviour of the model in certain regions

of data. Secs. 8.2.2 and 8.2.3 compare model results and parameters across all four variations, in

order to understand which performs the best and in which metrics.

8.2.1 Findings from Model Fits

First we will highlight a few regions of fitted data, in order to understand where it is correctly

mapping to features of delayed electron emission, and where it is not. For simplicity we will purely

be looking at the new data selection fit to the model. There is little difference to the old selection in

the basic workings of the model, and so the majority of small-scale features picked up or missed by

the model are generally the same in both.

We can look at Fig. 29 as an example of a typical plot. This figure was obtained by running the

model for a 300 s region of data to get a balanced fit and then zooming in on a 5 s window to see the

smaller-scale features of the data. There is some clear success to this model in that it passes through

the majority of error bars, as is the case for the similar plots in Ref. [1]. We can see the dips in the

model where we have performed the prompt electron cuts after each S1 and pS2 and subsequently

explicitly normalised the model to 0; this was not present in Ref. [1]. Finally, the largest features of

the data, in the clusters of delayed electron signals, are being picked up by the model, as we would

expect; the clearest example of where this fits well is over the clusters just before 3000 ms into the

window.

However, we can also see clear problems with the model in Fig. 29. For example, just before 2000 ms

there exists a large cluster of delayed electrons following a pS2, however the red line of the model does

not match the count of electrons in this cluster. We also occasionally see instances where, despite a

pS2 being indicated, not as many delayed electrons are present in the data as expected, for example

with the apparent double-scatter at ∼ 1400 ms. This is not necessarily a problem: the nature of

delayed electron emission is that the associated delayed electrons from this event could be released

much later instead. It is also possible, for example if the interaction happened high in the TPC, that

no or very few electrons were lost from the drift cloud of the interaction. And thus we may only see

a weak delayed electron train, if any at all.

However, seeing these features too often in these plots could point to other factors with our model.

The initial assumption prior to selecting the data was that any genuine pS2 (i.e. a GXe signal with
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Figure 30: A cumulative power law fit over 300 s, zoomed in to a 5 s region of that data. A large
burst of delayed electrons can be seen just after 1000 ms, a clear mis-fit with the model.

a matching S1 - detected or not - which was directly caused by a scatter in the LXe) would have the

possibility of being correlated to the emission of delayed electrons. Seeing no delayed electrons after a

pS2, and having a low pS2 to delayed electron ratio in the dataset more generally, may indicate that

our selection of pS2s was too generous, and in fact not all of them contribute delayed electrons. One

anomalous signal mentioned previously was that of e−-bursts, which are known to be as small as 10e−

[10]. It is almost certain that a population of these is included in both selections, and moreso in the

new pS2 population, and could thus be flagging in the model as pS2s which should be contributing

a certain population of delayed electrons, but instead do not.

Another problem can be seen in Fig. 30, where there is a large spike of electrons just after 1000

ms, which is not picked up at all by the model. This indicates a region in the data where the

size of the pS2s does not match the amount of delayed electrons actually being seen immediately

following it. The proximity of this burst to the pS2 immediately before it indicates that this could

be a particularly extended prompt electron region. More likely, this may be an e−-burst, or series of

them, which has been broken up and partly tagged as a pS2 by our processor, and the rest assigned

as a small-S2. Some of that then gets cut by our prompt-electron cut, but e−-bursts, as mentioned,

can be many drift times in width, meaning that the remaining part of it is then counted as delayed

electrons in the histogram. This would also explain why the size of the pS2, and therefore the model,

is not proportional to the amount of the delayed electrons seen immediately following it.

8.2.2 Total Electron Rates

Another way we can visualise the changes brought about to the model is in the total electron rate

calculations made by our model, vs the real amount of electron signals being fed in (without electron

counting). As mentioned in Sec. 5.2, the prefactor of C ·Aα
pW

β
p from Eq. 2, once fit by the model to
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a time range, can provide a prediction as to how many delayed electrons each pS2 in that window

likely contributed. The identification of unlikely excesses in this rate is one possible way in which this

model may be used to aid in the search for light dark matter; however, this avenue was not explored

for the model in this work. Instead, here, we use the total electron rate given by the model fit in

a given time window and compare it to the true empirical amount of electrons in that window, as

given by our selection methods. It is important to note that the two of these are formed separately:

the data selection was not performed with the mechanics of the model in mind, or vice versa. The

closeness of these two values, therefore, can tell us about the veracity of our model, and show if the

changes made become unjustified.

This total predictive number of electrons from the model is given by:

Nmodel = kt +
P∑
p

C · Aα
pW

β
p (5)

where k is the rate of background electrons per ms, multiplied across the live-time t of the window

to get an estimated background; C is a constant given by the likelihood fit to scale to the sample

size; and P is all primary S2s in the time window given by t.

We compare this value for each iteration in each window to the empirical amount of delayed electrons

present in the dataset within that relevant time range, Nempirical, and calculate the absolute difference

between the two rates: | Nmodel − Nempirical |. Examining these values for each window size and

model variation gives us Fig. 31, where the absolute difference between the model predicted rate and

the actual total rate has been calculated for each iteration of randomly selected time ranges. From

this we take the median value for each window size. The error bars are given by the 16th and 84th

percentiles around the median error, corresponding to µ ± 1σ.

In fact, Fig. 31 shows remarkable agreement in all models with the original data. The discrepancy

increases with window size, which is expected as longer windows increase the likelihood of anomalous

data warping the expected electron rates. However, this discrepancy is below 1 even in the errors

for all models, showing that all model variations are estimating the correct total number of electrons

with respect to the data for all window lengths.

In reality, this is mainly a result of how flexible the model is in its fitting. However, this figure is

a good indicator that none of the changes to the model veer away from the median set by the old

selection method. The introduction of truly anomalous or inaccurate data, or in unfounded model

extensions, would introduce far larger discrepancies from the model struggling to accommodate.

From this we may feel that the new selection, radial factor, and electron-counting would all be valid

extensions to the model, at least in principle. Whether this is actually the case is discussed in more
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Figure 31: Median absolute difference between the true amount of electron signals in an analysis
window vs the predicted total amount of electrons from the model, as fit to longer time ranges. This
means that for e.g. 200 s, the model was fit to a time region 200 s long within a run. Note the y-axis
is on a logarithmic scale.

detail in Sec. 8.3.

8.2.3 Model Parameters

As we fit our model to different lengths of time across a run, we can get a picture of how each variation

changes as the fit length increases. The longest fitting times are of the most interest in terms of the

parameters, as then variation in the data becomes more smoothed out, helping to mitigate -albeit

not totally remove - the effect of any anomalous data in either selection method. This is why many

windows were taken and averaged over for each size of window, however with fewer iterations for

longer time spans.

The first parameter of interest is that of the power law exponent itself, n. Fig. 32a shows a large

difference in the median n values of the old and new selections. The likely reason for this is that the

old selection dataset contains far fewer pS2 signals as compared to the new data selection. When a

pS2 is missing from the data (relative to the true physics of the detector), the effect on the delayed

electron dataset is twofold:

• Some amount of genuine prompt electrons don’t get cut from the dataset as they should, instead

appearing as delayed electrons

• These, as well as the genuine delayed electrons caused by missing pS2s, become mis-assigned
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to an earlier prior pS2.

Both of these cause a bias in the model towards later-time electrons, causing longer and heavier (i.e.

more populated) power law tails. Fewer pS2s increases the average time between pS2s, and the model

accommodates for the apparent increased weight of power law trains by adjusting the exponent n to

be lower. The skew that can be introduced into delayed electron dataset from all this also leads to

some signals being placed at ‘unlikely’ times relative to the pS2s in the dataset, causing the model to

instead view it as a possible source of background. Due to the minimal likelihood fitting of the model,

it will often compromise by stretching the parameters in both directions to fit the data: raising the

background constant k while lowering the exponent n. The effect on k can be seen in Fig. 32b.

In contrast, the new selection identifies a larger quantity of pS2s, resulting in a larger proportion

of delayed electrons being assigned to these, rather than to long tails, or to the background rate.

As more delayed electrons are now happening closer to the times of pS2s, this has the effect of

steepening the power law exponent. In this way, there may be nothing inherently negative in the

new data selection having a higher power law exponent than the old selection, even though on the

surface it seems to be further from the result of prior studies (between 1.0 and 1.4 - see Sec. 5.1 for

more reference).

The radial model finds a mid-point in these two exponent values. Although the fiducial volume cut

removes a significant portion of the delayed electron population, the associated radial factor also

lowers the effective density of pS2s, making it so that pS2s near the edges contribute nearly nothing

to the rate. The model flattens the power law exponent slightly to account for this rate, however,

importantly, does not raise the background constant to compensate. On the contrary, it lowers by

over a factor of 3 compared to the other model versions, as can be seen in Fig. 32b.

The n and k values for the 900 s window are given in Tables 1 and 2, respectively.

Table 1: Summary of fitted n parameters for the four model variations for 900 s of data.

Model version n± 1σ

Old selection 1.349± 0.002
New selection 1.588± 0.025
Radial model 1.507± 0.013

Counting model 1.595± 0.026

The other two parameters of interest in the model are those of α and β, which tell us the extent to

which the model values and depends upon the pS2 areas and width, respectively. A value of 0 for one

or the other would indicate that there is no dependency on that value in the cause and correlation

to delayed electron emission. It is good, then, to see that both values are not 0. As was the case for
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(a) n vs window size

(b) k vs window size

Figure 32: Median power law exponent n (Top), and background constant k (Bottom), for each
model variation, as fit to different time ranges across 13 SR0 runs. The error bars are again given
by the 16th and 84th percentiles, µ± 1σ.
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(a) Parameter α vs window size

(b) Parameter β vs window size

Figure 33: Median values for exponents α (Top), and β (Bottom) from Eq. 1, for each model
variation, as fit to different time ranges across 13 SR0 runs. The error bars are again given by the
16th and 84th percentiles, or µ ± 1σ.
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Table 2: Summary of fitted k parameters for the four model variations for 900 s of data.

Model version k ± 1σ

Old selection 0.009± 0.0012
New selection 0.015± 0.0006
Radial model 0.004± 0.0003

Counting model 0.017± 0.0012

including them initially, there is physical justification for there being dependence on both these values;

pS2 area indicates quantity of electrons produced in the interaction, and therefore proportionally the

amount of delayed electrons; width is an approximate surrogate for interaction depth, a correlated

factor to both the probability of electrons being captured by impurities, or the possibility of some

thermalising and getting trapped at the LXe surface. Both of these were mentioned in Sec. 4.1. In

this way we can again feel that no model variation has been so unjustified as to completely break

from our understanding of the physics at play here.

Looking closer, we can see that all variations conclude on very similar results for both parameters:

a heightened emphasis on width via a raised parameter β, and a slightly sub-linear reliance on area

via the parameter α. This may tell us slightly about the physics, that the width of a pS2 plays

slightly more role in the amount of delayed electrons associated with it than area does. However,

it is also important to note that area ranges from O(100) PE to O (10,000,000) PE in the new

selection, whereas width spans O(100) ns to only O(10,000) ns. When we adjust to calculate the

effective weights of each of these parameters in the model given these differing ranges, we find that

the contributions from each parameter to the scaling of the delayed electron rate are approximately

equal across any given fitting range, with area just slightly more important. At best, this may

indicate that the width of the signal, and therefore the depth of the interaction, may be slightly less

important in the delayed electron creation and emission process than the signal area. This does not

necessarily point to one hypothesis over the other, however, just that the amount of ionised electrons

being created from an interaction plays a slightly larger role in the magnitude of delayed electron

trains than the depth of that interaction and of the probability of those electrons encountering an

impurity.

8.3 Evaluation of the Models

8.3.1 Implementation of Goodness-of-fit Testing

Although the results above lead to interesting conclusions on the model and the effect of the changes,

we also wish to quantitatively evaluate how well each model variation reproduces the empirical
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delayed electron distribution. For this we explored goodness-of-fit testing on the model variations.

This would hopefully help us to understand whether the changes to the model and data selection

brought about genuine improvement in the model, beyond eye-test analysis.

We implemented a non-parametric permutation-based goodness-of-fit test on the same regions of

data analysed to collect the model results previously, using the ‘Wasserstein Distance’ as the metric

for our analysis. The Wasserstein metric is also called ‘Earth-mover’s distance’, and can be thought

of as the cost of moving from one CDF to another, as if they were piles of earth to be shifted.

This was chosen over metrics such as the Kolmogorov–Smirnov test - which measures the single

largest distance between two distributions - as it allows for a more holistic view of the region of data

being fit, rather than measuring it by its worst parts. A more ‘typical’ metric of the χ2 test was

also not applicable, as it requires binned data under a Gaussian distribution, whereas these fits are

drawn from unbinned data under a physics model which is inherently continuous. More about the

computation of the Wasserstein distance and justification for its use can be found at Ref. [79].

The goodness-of-fit test was applied for each model variation (old selection; new selection; radial

model extension under new selection; and electron-counting model extension under new selection),

for each iteration of randomly selected start times in each window size, from 25 s up to 900 s. For

each iteration, the procedure was as follows:

1. Calculate the observed statistic: We compute the model CDF from the differential model rate

(the red model line in e.g. Fig. 29). This comes from the best-fit parameters obtained in

Sec. 8.1. This is then compared to the empirical CDF from the delayed electron data in the

same region. From this we calculate our Wasserstein distance, Wobs.

2. Construct the null distribution: We wish to understand if the observed statistic is typical or

anomalous, so must sample from our model to understand the typical model distribution. We

do this Nperm times.

2.1. Sample a Poisson number of electrons, Nsim ∼ Poisson(C ·Aα
pW

β
p ). This is combined with

f(r) in the case of the radial model.

2.2. Nsim simulated electron times are generated from the model, accounting for the dead-zone

regions after S1s and pS2s.

2.3. The value k · tlivetime, where tlivetime corresponds to the length of the analysis window,

gives us a total amount of background electrons to be added to the simulated sample.

3. We compare each simulated distribution of delayed electron times to our model CDF, to get

Nperm Wasserstein metrics.

4. The p-value is the fraction of those simulated metrics which are ≥ Wobs
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5. The z-score is obtained using the mean and standard deviation of the null distribution, z =

(Wobs − µnull)/σnull. This is a measurement of how far the observed statistic is from the

simulated distribution.

8.3.2 Goodness-of-fit Results

As stated, goodness-of-fit testing was run for every random window iteration and size, for every

model variation. This allowed us to obtain the p-value and z-score plots shown in Fig. 34.

The results from the tests are difficult to draw conclusive results from. The radial model and the old

selection both seem to perform better at longer fitting times as compared to at shorter ones, however

even at low p-values seem to maintain lower z-scores than the new selection or electron-counting

models, showing better similarity in the distributions. Indeed, even in shorter fitting windows, the

upper error bars on the p-values for the old selection and radial models indicate that some proportion

of the fits do match reasonably well to the data. What is clear from these fits is that the model

is highly susceptible to variance in the data, especially when anomalies such as e−-bursts may be

involved. The old selection and radial models thus perform better in this goodness-of-fit test as

compared to the new selection and electron-counting model as they do more to limit the variance

in the data. This is done in the old selection by having more strict boundaries on pS2 and delayed

electron populations as compared to the new selection; the radial model limits this variance by

reducing the effect of any anomalies which may be happening at the edges of the detector.

The new selection and electron-counting models have extremely similar results - it is not possible to

separate the two in order to understand if electron-counting ‘improved’ the model in any way. It is

clear that the effect is extremely minimal: 1e− signals make up approximately 92% of the delayed

electron dataset, 2e− signals a further 6%, making the number of signals which are affected by this

electron-counting change to the model extremely small. Whether this would be a justified addition

to the model requires further analysis, therefore.

The susceptibility to the variance in data is clear when looking at the p-values for longer fitted

regions of these two model variations, where they vary between being seemingly extremely accurate,

to completely wrong. The large error bars also indicate that some fits within these windows vary

in the exact opposite ways. As the fitting window increases, the model CDF accumulates structure

which, if it was perfect, would match exactly that of the delayed electron distribution in the detector.

If within the fitting region there are sections of data, however long, which consist of particularly sparse

amounts of delayed electron signals; over-dense in pS2 signals; or perhaps contain many anomalous

signals such as e−-bursts, this will be recorded in the structure of the empirical CDF in that fitting

window, but not in the model, which does not have the flexibility or parameters to account for this.
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(a) p-values vs fitting length

(b) z-scores vs fitting length

Figure 34: Plots of the median p-values (Top) and z-scores (Bottom) for each model variation vs
length of fitting window in seconds. The error bars are given by the 16th and 84th percentiles, µ±1σ
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These plots show that in the new selection methodology (and by extension, the electron-counting

model), a wide range of data is introduced, not all of which the model can adequately account

for. This thus results in some fits closely matching the data (where we may see mostly a typical

distribution of genuine pS2s along with a well-proportioned distribution of delayed electrons), and

some fits with large discrepancies (where e.g. e−-bursts are counted as pS2s, making the model

expect a large number of delayed electrons where empirically there are none). By contrast, the old

selection and radial models reduce this variance as mentioned, and thus also experience more stable

results over longer fitting windows.

An improvement to the overall model would be to implement stricter quality control on the new

selection, especially in that of pS2s, while also adding the radial factor. It is important to note that

while the old selection method may appear to be a good fit, it contains a caveat in that it is a good

fit only of the data it sees. In a way this is an obvious statement, but should be spelled out. The

new selection method sees far more data; this introduces more genuine pS2s and delayed electrons,

but also more anomalies. Within the old selection, there is no way of knowing if each pS2 which

enters the selection has all of its ‘matched’ (i.e. causally-related) delayed electrons, and vice versa.

This problem is lessened in the new data selection by casting a wider net on the selections of both,

however is let down in being unable to properly cut all anomalous data that introduces.

This, as well as the points in Sec. 6, should be a motivation for developing the new selection method-

ology to be more rigorous, as well as incorporating the radial model; applying the radial model to the

old selection methodology would yield improved results also, but would be a greatly incomplete map

of all delayed electron emission in the detector. Overall, this makes the radial model seemingly the

best version of the model, and the one to continue with going forward should one look to continue

improving this model.
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9 Conclusion & Future Work

In this work, we have performed a comprehensive review of the literature around delayed electron

emission within noble-liquid direct detection experiments, and in XENONnT in particular. Using the

information from this, we motivated the use of a new type of model to better map this background.

We then analysed the modes of data selection available to develop a more rigorous methodology.

Finally, we proposed physically-justified extensions to this model, before testing them against one

another and assessing their fitting to the data. This allowed for new insight into the nature of how

we may model delayed electron emission more accurately.

This work gets some promising results, such as a lowering of the background single-electron emission

rate to 5 Hz for the radial model, down significantly from 36.5 Hz in Ref. [1]; as well as learning

more about the nature of anomalies in our data and how they affect the modelling, and therefore,

their relation to delayed electron emission on a whole. The power law exponent, n, was found to be

between 1.5 - 1.6 for the added models; this is slightly higher than previous studies (between 1.0 -

1.4), though only slightly higher than the original work of Ref. [1] (1.448). This is not a complete

model, however, and there is much improvement which could be done in order to better model the

background of delayed electron trains.

One such improvement would be to bring this model into a 3D-space by making it position-dependent,

such that the electron rate becomes R(t, x, y). Instead of just understanding the single-electron rate

at a given point in time, we could map that to x-y location in the detector also, using the position-

correlation findings derived previously. This change would ideally also be able to incorporate the

positions of the two transverse wires running across the top of the TPC, as well as the hot-spot which

is present, which we were not able to do here in the radial model.

Further, although the selection methodology developed here is a step in the right direction, it clearly

introduces anomalies which the model is unable to fully deal with. A few known cuts which could

be incorporated were already mentioned, and these would greatly improve the model. The most

important thing is that any signals which would causally correlate to delayed electron emission as

pS2s do be incorporated, as it is by these signals that our model maps the true data.

Finally, a better understanding of how well this model fits to the data, and more importantly how

it fits within the context of other delayed electron emission studies, would be of great benefit to

analysis. The fundamental differences in how these two different model-types are fit to the data

makes comparisons between parameters difficult, or even impossible. This problem was similarly

noted in Ref. [1], but not able to be solved in this work.

In furthering this model more we could contribute a great deal to the understanding of background
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noise and single-electron emission in the XENONnT experiment, and aid more and more in the

search for dark matter, especially in the low-mass regime.
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Appendices

A Code

Code & Data Availability Code is at: GitHub repository

https://github.com/Conor-Ford/Masters-Project
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B Run IDs

name mode end source start livetime

031693 background linked 2021-11-07 08:59:02.709000 none 2021-11-07 08:28:59.022000 00:30:03.687000
031691 background linked 2021-11-07 07:57:14.305000 none 2021-11-07 07:27:10.918000 00:30:03.387000
031690 background linked 2021-11-07 07:26:19.429000 none 2021-11-07 06:56:17.550000 00:30:01.879000
031688 background linked 2021-11-07 06:24:29.650000 none 2021-11-07 05:54:25.366000 00:30:04.284000
031687 background linked 2021-11-07 05:53:32.980000 none 2021-11-07 05:23:30.029000 00:30:02.951000
031686 background linked 2021-11-07 05:22:38.083000 none 2021-11-07 04:52:37.468000 00:30:00.615000
031685 background linked 2021-11-07 04:51:45.035000 none 2021-11-07 04:21:43.435000 00:30:01.600000
031684 background linked 2021-11-07 04:20:51.818000 none 2021-11-07 03:50:51.205000 00:30:00.613000
031683 background linked 2021-11-07 03:49:59.758000 none 2021-11-07 03:19:57.821000 00:30:01.937000
031682 background linked 2021-11-07 03:19:05.850000 none 2021-11-07 02:49:05.523000 00:30:00.327000
031681 background linked 2021-11-07 02:48:13.539000 none 2021-11-07 02:18:09.654000 00:30:03.885000
031680 background linked 2021-11-07 02:17:17.299000 none 2021-11-07 01:47:14.472000 00:30:02.827000
031679 background linked 2021-11-07 01:46:21.954000 none 2021-11-07 01:16:17.893000 00:30:04.061000
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