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Abstract

In this thesis, we study the scaling limit of uniform random labeled rooted trees Tn
to the continuum random tree (CRT), realized via the stick-breaking construction, in
the Gromov–Hausdorff–Prokhorov topology. The discrete tree Tn is sampled using the
Foata–Fuchs bijection, which can be regarded as the discrete analogue of the stick-
breaking construction. We generalize existing results by introducing two families of
non-uniform random labeled trees Tn,β and Tn,γ whose scaling limits are variants of the
CRT constructed from Poisson point processes with intensities tβdt and lnγ(t + 1)dt
respectively. In the latter case, we find a compactness threshold at γ = 1: for γ > 1,
the limiting tree Tγ is compact almost surely, whereas for γ ≤ 1 the tree Tγ is almost
surely non-compact.
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1 Introduction

The aim of the first part of this thesis is to describe the global structure of uniformly sampled
labeled rooted trees on n vertices as n tends to infinity. We start with some background and
basic definitions.

1.1 Background

Write Tn for the set of all labeled rooted trees on n vertices and denote the root by rn. By
Cayley’s formula, we have |Tn| = nn−1. We define random variable Tn to be the uniform
random labeled rooted tree on n vertices. I.e. for each Tn ∈ Tn, we have, P(Tn = Tn) =

1
nn−1 .

Note that
(
Tn, dn

)
is a random metric space where dn denotes the graph distance on Tn.

Figure 1 contains an example of Tn and Figure 2 contains a sample of Tn.
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Figure 1: The set T3, where the red vertex denotes the root.

Write v ∈ Tn, to denote a vertex in Tn (opposed to v ∈ V (Tn)). Define ht(v) = dn(v, rn) to
be the height of v and ht(Tn) = maxv∈Tn ht(v) to be the height of Tn. Observe that ht(v) and
ht(Tn) are random variables. For tree T60 in Figure 2, we have ht(10) = 6 and ht(T60) = 15.

Another random variable of interest are distances in Tn. Let U, V ∈u Tn be two vertices,
where ∈u denotes a uniformly chosen element. Then dn(U, V ) is a random variable corre-
sponding to the distance between two uniformly chosen vertices in Tn.

The random variables ht(v), ht(Tn) and dn(U, V ) have one thing in common: they depend
on the global structure of Tn. This is unlike, for example, the degree distribution of v ∈u Tn,
which only depends on the neighbors of v. Coincidentally, the degree distribution of v is easy
to study. Recall that Prüfer codes form a bijection between [n]n−2 × n and T (where ×n is
used to pick the root) such that the degree of v ∈ Tn is given by deg(v) = 1 + |{Sn(i) = v}|
with Sn ∈u [n]n−2. In particular, deg(v) ∼ 1 + |{Sn(i) = v}| and it is well known that the
latter converges to a 1 + Poi(1) random variable as n → ∞. This is an example of an easy
to study random variable depending only on the local structure of Tn.

It is not obvious how the asymptotic global structure of Tn behaves by looking at Prüfer
codes, as information on the global structure is not easily recovered from the bijection. To
describe the asymptotic global structure of Tn, we turn to a different bijection.
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Figure 2: A sample of T60. The root is denoted in red

1.2 The Foata–Fuchs Bijection

Similar to Prüfer codes, the Foata–Fuchs bijection is a bijection between [n]n−1 and Tn.
Whereas Prüfer codes are usually seen as bijection between [n]n−2 and non-rooted trees, the
Foata–Fuchs bijections always gives labeled rooted trees. To obtain a sequence in [n]n−1 from
a tree Tn ∈ Tn, we use an exploration process: start at the root and record the path from
the root to the lowest labeled leaf. Iteratively, record the path from the already explored
tree to the next lowest labeled leaf until all leaves are visited. The sequence Sn is obtained
by removing all leaf vertices from the recording. We formally introduce the reverse bijection.
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Definition 1.2.1. Start with a sequence Sn = (v1, v2, . . . , vn−1) ∈ [n]n−1.

i) Set Cn
0 = 0 and set Cn

1 < Cn
2 < · · · < Cn

i−1 to be the locations of Sn that contain a
repeat. Lastly, set Cn

i = n.

ii) Let l1 < l2, · · · < li be the elements of [n] not appearing in Sn, in increasing order.

iii) For j = 1, 2, . . . , i, define Pj = (vCn
j−1
, vCn

j−1+1, . . . , vCn
j −1, lj) to be the path containing

the vertices between Cn
j−1 and Cn

j and appending vertex lj.

iv) Define tree Tn as the tree with root v1, vertices [n] and edge set given by the union of
edges in the paths Pj. That is,,

Tn = (V,E) =

(
[n],

i⋃
j=1

E(Pj)

)
.

Theorem 1.2.2. The Foata–Fuchs bijection is a bijection between Tn and [n]n−1.

Proof. Definition 1.2.1 shows how to construct Tn ∈ Tn from Sn ∈ [n]n−1. For a proof that
this construction is a bijection, we refer to [1, pages 2 and 3].
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Figure 3: Tree T12 ∈ T12 with associated sequence S12 =
(
8, 11, 11, 10, 9, 8, 4, 6, 4, 2, 12

)
Definition 1.2.3. Let Sn ∈ [n]n−1 and i ≤ n− 1. The vertex corresponding to Sn(i) is:

i) The vertex with label Sn(i) if Sn(i) is not a repeat.

ii) The vertex lj if Sn(i) = Cn
j .

Let F : Sn → Tn be the map associated with the Foata–Fuchs bijection. That is, for
each 1 ≤ i ≤ n− 1, we set F (Sn(i)) to be the vertex corresponding to Sn(i).

Example 1.2.4. In Figure 3, we see F (S12(4)) = 10 and F (S12(6)) = 3.

Remark 1.2.5. Certain global properties, like the distribution of the height of leaves in Tn
are easily obtained through the Foata–Fuchs bijection. Indeed, let v ∈ Tn be the leaf with
the smallest label and let Cn

1 ∈ [n] denote the index of the first repeat in Sn (if there are
no repeats, set Cn

1 = n). It follows that F (Sn(C
n
i )) = v and {Sn(1), . . . , Sn(Cn

i )} forms
the path from the root rn to v so that ht(v) = Cn

1 . By vertex exchangeability of Tn, we
automatically obtain that for any leaf u ∈ Tn, we have ht(u)

d
= Cn

1 . In Section 1.3, we show

that Cn
1 = Θ

(
n

1
2

)
in probability. Thus, the height of a typical leaf in Tn is of the order n

1
2 .
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1.3 Tree Tn as Discrete Aggregation Tree

Using the Foata–Fuchs bijection, we construct Tn by gluing together the paths,

Pj =
(
Sn(C

n
j ), . . . , Sn(vCn

j+1−1), lj
)
.

This means that we may construct Tn iteratively by adding the paths one at a time: start
with T (1)

n = P1. Inductively, let T (k)
n be the tree obtained from gluing the path Pk to T (k−1)

n

at the vertex with label Sn(C
n
k−1). We illustrate this in Figure 4.

8 11 l0
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n T (2)

n T (3)
n T (4)

n
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10

9
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10
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3

4

6

5

2
12

7

Figure 4: Trees T (i)
12 for i ∈ {1, . . . , 4} constructed from S12 = (8, 11, 11, 10, 9, 8, 4, 6, 4, 2, 12).

Remark 1.3.1. Observe that T (k)
n is a random variable but inclusions T (1)

n ⊂ T (2)
n ⊂ · · · ⊂ Tn

are deterministically true. Furthermore, note that
(
Sn(1), . . . , Sn(C

n
k−1)

)
encodes the metric

structure of T (k)
n but not the labels of all vertices, as the leaves are labeled based on the

missing vertices in all of Sn, not just
(
Sn(1), . . . , Sn(C

n
k − 1)

)
.

We call the paths Pj sticks or branches and say T (k+1)
n is constructed from T (k)

n by adding
a stick or branch. Before trying to understanding the asymptotic global structure of Tn, we
give some intuitive reasoning what happens to the trees T (k)

n when we take n to infinity.

We start with T (1)
n . Recall that T (1)

n is the path from rn to the lowest labeled leaf, which
is the vertex corresponding to Sn(C

n
1 ). Thus, T (1)

n is a line graph of random number of
vertices Cn

1 . To compute the distribution of Cn
1 , we observe that Cn

1 > x happens pre-
cisely when Sn(1), . . . , Sn(x) are all unique. Note that Sn(i) ∈u [n], and for i < Cn

1 ,
we have

(
Sn(1), . . . , Sn(i− 1)

)
contains i− 1 distinct elements. Thus,

P
(
Cn

1 > x) =

⌊x⌋∏
i=1

(
1− i− 1

n

)
−−−→
n→∞

1.
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We hence see that as n → ∞, the height of a typical leaf in Tn goes to infinity. However,
how fast does the height of a typical leaf go to infinity? For this, let g(n) : N → R≥0 be some
function to be determined. Then, by the reasoning above, we see,

P(Cn
1 > g(n)x) =

⌊g(n)x⌋∏
i=1

(
1− i− 1

n

)
= exp

⌊g(n)x⌋∑
i=1

ln

(
1− i− 1

n

) ,

= exp

− 1

n

⌊g(n)x⌋∑
i=1

i− 1

+ o(1),

= exp

(
−(g(n)x)2

2n

)
+ o(1).

Here, we used first order expansion ln(1 − x) = −x + O(x2). For a rigorous justification on
the error bounds, we refer to the proof of Lemma 3.1.3. From the above analysis we see,

P(Cn
1 > g(n)x) −−−→

n→∞


1 if g(n) = o(n

1
2 ),

0 if g(n) = ω(n
1
2 ),

exp
(
− x2

2

)
if g(n) = n

1
2 .

In particular, n− 1
2Cn

1
d−−−→

n→∞
C1 where C1 ∼ Rayleigh(1). Thus, the typical height of a leaf

is on the order n
1
2 and for large n, the rescaled partial tree

(
T (1)
n , n− 1

2dn
)
can be viewed as

’approximating’ a line segment of random length C1 with vertices at equal distance n− 1
2 . We

illustrate this in Figure 5.

n− 1
2T (1)

n

L

Figure 5: n− 1
2T (1)

n approximates line segment L of random length C1.

This gives intuition in the natural limit object of
(
T (1)
n , n− 1

2dn
)
, also simply denoted n− 1

2T (1)
n :

a line segment with random length C1 ∼ Rayleigh(1). The correct topology for this conver-
gence is the Gromov–Hausdorff topology, which is a metric on the space of compact metric
spaces up to isometries. A comprehensive overview of the Gromov–Hausdorff distance can
be found in Section 2.3.1.

We continue with understanding T (2)
n . Recall that T (2)

n is created by gluing path P2 to the
vertex Sn(C

n
1 ) ∈ T (1)

n . Let Bn
1 be the value in {1, . . . , Cn

1 − 1} for which Sn(B
n
1 ) = Sn(C

n
1 ).

Note Bn
1 ∈u {Sn(1), . . . , Sn(Cn

1 − 1)}, thus the second branch is glued to a uniform point

in T (1)
n . For the length of the second branch, similar reasoning shows that n− 1

2Cn
2

d−−−→
n→∞

C2

where C2 is some random variable dependent on C1 to still be determined.

This gives a heuristic for the limiting object of T (2)
n : let L1 be a line segment of random

length C1 as above and L2 a line segment of random length C2−C1, for C2 to be determined.

5



Attach L2 to a uniformly random point on L1. Let T (2) be the resulting random metric space
(with induced path metric). This metric space can be seen as limiting object for T (2)

n .

n− 1
2T (2)

n

T (2)

Figure 6: n− 1
2T (2)

n approximates T (2)

We iterate this argument: construct T (k+1)
n by attaching stick Pk+1 to T (k)

n at vertex Sn(Ck).
First, let Cn

1 < Cn
2 < · · · < Cn

k denote the indices of the first k repeats in Sn. We aim to find

a heuristic for limiting distribution for n− 1
2

(
Cn

1 , . . . , C
n
k

)
. For this, we have,

P
(
Cn
k > Cn

k−1 + xn
1
2

∣∣ Cn
k−1 = ⌊sn

1
2 ⌋
)
=

x∏
i=1

(
1−

|{Sn(1), . . . , Sn(Cn
k−1)}|+ i

n

)
,

≈
⌊xn

1
2 ⌋∏

i=1

(
1− sn

1
2 + i

n

)
−−−→
n→∞

e−sx−
x2

2 .

where the approximation comes from |{Sn(1), . . . , Sn(Cn
k−1)}| = ⌊sn 1

2 ⌋ − (k− 1) ≈ sn
1
2 since

the fixed k repeats are negligible on scale n
1
2 . The limit is independent of k: that is, for large

n the distribution of the point n− 1
2Cn

k depends only on the location of the point n− 1
2Cn

k−1, but
is independent of the number of prior points and their locations. This memoryless property
hints at the fact that n− 1

2

(
Cn

1 , C
n
2 , . . .

)
approaches an inhomogeneous Poisson point process,

(inhomogeneous since the distribution of n− 1
2Cn

k depends on the location of n− 1
2Cn

k−1). In
Section 3.1, this heuristic is worked out rigorously. We refer to Section 2.2 for a formal
introduction to the Poisson point process.

We saw a heuristic for the limiting object for the scaled repeat points n− 1
2Cn

k . This determines
the distribution of the length of the branches of Tn. Next, we understand how these branches
are attached to the partial trees T (k)

n . For this, define Bn
k = min{l : Sn(l) = Sn(Ck)} to be

the first time Sn(C
n
k ) appeared in Sn. This is the index corresponding to the attachment

point of stick Pk+1 in T (k)
n . Note Bn

k is almost uniform over {1, . . . , Cn
k − 1}. Indeed, Bn

k is
uniform if Sn(1), . . . , Sn(C

n
k − 1) contains no repeats. In our setting, Sn(1), . . . , Sn(C

n
k − 1)

contains exactly k − 1 repeats. However, since Cn
k is on the scale n

1
2 , the proportion of

repeats becomes negligible, which explains n− 1
2Bn

1 −−−→
n→∞

Bi with Bi ∼ Unif([0, Ci]). Section

3.1 contains a formal argument.

Informally, n− 1
2T (k)

n consists of k branches of vertices at distance n− 1
2 such that the length of

branch i converges to Ci − Ci−1 for C1 < C2 < . . . the ordered points of some Poisson point

6



process and the branches are glued to a roughly uniform point on the already existing tree.
As limit, define T (k) to be the random metric space obtained from inductively gluing together
line segments of length Ci−Ci−1 at a uniformly chosen point in the already constructed space,
together with the induced path metric. See Figure 7 for an illustration.

n− 1
2T (k)

n T (k)

Figure 7: A sample of n− 1
2T (k)

n and a sample of T (k).

Remark 1.3.2. It should be noted that we draw samples of n− 1
2T (k)

n and T (k) that sug-
gestively look alike. This way of representing the trees is not misleading: since the branch
length and attachment points converge in distribution, we may work on a probability spaces
where this convergence happens almost surely. See Section 3.2 for details.

Lastly, we define measures on Tn and T (k)
n .

Definition 1.3.3. Let νn be the uniform probability measure defined on the vertices of Tn.
That is, νn(A) =

|A|
n

for all A ⊂ Tn. Similarly, ν
(k)
n denotes the uniform probability measure

on T (k)
n so that ν

(k)
n (A) = |A|

Cn
k−1

= |A|
|T (k)

n |
for all A ⊂ T (k)

n .

1.4 The Continuum Random Tree

We informally defined T (k) as gluing together line segment of random length. We formalize
this construction, leading to the definition of the Continuum Random Tree (CRT). The CRT
can be viewed as the scaling limit of Tn and was first introduced by Aldous in [2]. It should
be noted that the CRT has various definitions, we will be using the stick-breaking definition.

Definition 1.4.1. Let ℓ1 be the space of all absolute real sequences. That is,

ℓ1 =

{
(x1, x2, . . . ) : xi ∈ R and

∞∑
i=1

|xi| <∞

}
.

The space ℓ1 comes with basis vectors zi = (0, . . . , 0, 1, 0, 0, . . . ): i−1 zeros followed by a one.

Let η be a Poisson point process of intensity tdt on R≥0 and let 0 < C1 < C2 < . . . denote
its ordered points. To each Ci, associate Bi ∼ Unif([0, Ci)). Define ρ(t) : R≥0 → ℓ1 piecewise

7



on the intervals (Ci−1, Ci] by,

ρ(t) =

{(
t, 0, . . . , 0) for x ∈ [0, C1],

ρ(Bi−1) + tzi for x ∈ (Ci−1, Ci] with i ≥ 2.

Define T (k) = ρ([0, Ck]) and T (t) = ρ([0, t]). Observe that T (k) and T (t) are compact for
each k ∈ N and t ∈ R. Lastly, we define,

T =
∞⋃
k=1

T (k),

to be the closure of the union of partial trees T (k). Observe that T (1) ⊂ T (2) ⊂ · · · ⊂ T is
deterministically true and

(
T , d

)
is a random metric space, where d denotes distance in ℓ1.

Remark 1.4.2. The intervals [Ci−1, Ci] are called branches and T (k) is constructed by at-
taching a branch of length Ck − Ck−1 to a uniform point on the already constructed tree.

Hence T (k) is a formalization of the description of the limit objects of n− 1
2T (k)

n as described
in Section 1.3.

T (1) T (2) T (3)

Figure 8: Sample of tree T (i) for i = 1, 2, 3 as subset of ℓ1.

Remark 1.4.3. For k ≥ 4, we draw
(
T (k), d

)
in R2. Given that d is the ℓ1 metric, and

branches in T (k) are orthogonal in ℓ1, we see that distances on T (k) should be interpreted as
distances along the branches in T (k) and not Euclidean distance in R2.

Figure 9: A sample of T (110).
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Besides T being the scaling limit of Tn as random metric spaces, we will also see that we can
pick points in T uniformly in a way that resembles picking uniform vertices in Tn. To this
end, we introduce measures on T (k).

Definition 1.4.4. Let µ(k) = ρ∗λ where λ is the normalized Lebesgue measure on [0, Ck].
Here, ρ∗ denotes the push forward by ρ.

Remark 1.4.5. Observe that µ(k) is a random measure such that µ(k)(A) denotes the propor-

tion of A in T (k) in much the same way that ν
(k)
n (B) denotes the proportion of B in T (k)

n . In

particular, µ(k) and ν
(k)
n are similar in the following sense: use a probability space where the

branch lengths of n− 1
2T (k)

n and T (k) converge almost surely (see Remark 1.3.2), and isomet-

rically embed n− 1
2T (k)

n and T (k) in a common space Z via embeddings ϕ and ψ respectively.
Let A ⊂ Z. Then, ϕ∗µ(k)(A) and ψ∗ν

(k)
n (A) are roughly identical as illustrated in Figure 10.

n− 1
2T (k)

n T (k)

Figure 10: the proportion of red vertices in n− 1
2T (k)

n and T (k) is roughly equal.

1.5 Global Convergence and Proof Strategy

We have seen a heuristic that the length of the first k branches in n− 1
2T (k)

n converge in
distribution to the length of the first k sticks of T (k) and in both cases, attachment is roughly
uniform on the constructed tree. Furthermore, both µ(k)(A) and ν

(k)
n (B) are similar in the

sense of Remark 1.4.5. Hence, the following result is not surprising.

Theorem 1.5.1. For k ∈ N, we have,(
T (k)
n , n− 1

2dn, ν
(k)
n

) d−−−→
n→∞

(
T (k), d, µ(k)

)
,

in the Gromov–Hausdorff–Prokhorov topology.

The Gromov–Hausdorff–Prokhorov (GHP) distance is a metric on the space of compact
measure metric spaces, (up to isometries). We refer to Section 2.3.3 for details. Section 3 is
dedicated to a formal proof of the theorem. Theorem 1.5.1 is known as convergence of the
finite dimensional distribution. We aim to upgrade this to,

9



Theorem 1.5.2. There exists a probability measure µ on T such that,(
Tn, n− 1

2dn, νn
) d−−−→

n→∞

(
T , d, µ

)
,

in the GHP topology.

To upgrade Theorem 1.5.1 to Theorem 1.5.2, we follow the reasoning used in [2]. For this, we
introduce the following standard result, which is obtained through the Portmanteau lemma.

Lemma 1.5.3. Suppose that Xn,k, Xn, Xk and X are random variables living in the same
metric space and for all ϵ > 0, we have,

i) Xn,k
d−−−→

n→∞
Xk, ii) lim

k→∞
lim sup
n→∞

P(d(Xn,k, Xk) > ϵ) = 0 and iii) lim
k→∞

P(d(Xk, X) > ϵ) = 0,

then we have Xn
d−−−→

n→∞
X.

This is a standard result. We refer to Section 2.4 for details. To use this result, we set,

X = (T , d, µ) , Xn =
(
Tn, n− 1

2dn, νn

)
, Xk =

(
T (k), d, µ(k)

)
and Xn,k =

(
T (k)
n , n− 1

2dn, ν
(k)
n

)
.

Theorem 1.5.1 implies statement i) of Lemma 1.5.3 is satisfied. By rewriting statement ii)
and statement iii), we obtain that it suffices to show,

Corollary 1.5.4. We have shown
(
Tn, n− 1

2dn, νn
) d−−−→

n→∞

(
T , d, µ

)
in the GHP topology, if

we can show that for all ϵ > 0, and some probability measure µ defined on T , we have,

i) lim
t→∞

P (dH (T (t), T ) > ϵ) = 0, ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵ
)
= 0,

iii) lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0, iv) lim

k→∞
lim sup
n→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0.

The first and third statement combine into iii) of Lemma 1.5.3 and the second and fourth
statement combine into ii) of Lemma 1.5.3. Together with Theorem 1.5.1, this shows all
criteria of 1.5.3 are satisfied. We refer to Section 2.4 for the details.

This gives a clear guideline for the proof of Theorem 1.5.2. We state the results we have to
show, and in which sections the corresponding proofs can be found.

i) We show n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
. Section 3.1

ii) We show
(
T (k)
n , n− 1

2dn, ν
(k)
n

) d−−−→
n→∞

(
T (k), d, µ(k)

)
. Section 3.2

iii) For all ϵ > 0, we have P (dH (T (t), T ) > ϵ) → 0, as t→ ∞. Section 4.1

iv) For all ϵ > 0, we have lim supn→∞ P
(
dH
(
Tn(tn

1
2 ), Tn

)
> ϵ
)
→ 0, as t→ ∞. Section 4.2

v) For all ϵ > 0, we have P
(
dP
(
µ(k), µ

)
> ϵ)

)
→ 0, as k → ∞. Section 5.1

vi) For all ϵ > 0, we have lim supn→∞ P
(
dP

(
ν
(k)
n , νn

)
> ϵ
)
→ 0 as k → ∞. Section 5.2
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Remark 1.5.5. Convergence
(
Tn, n− 1

2dn, νn
) d−−−→

n→∞

(
T , d, µ

)
in the GHP topology allows us

to deduce many asymptotic global properties of Tn from T . An immediate example is that
almost surely ht(Tn) = O(n

1
2 ), which follows from T being compact with probability 1 (see

Remark 4.0.1). Another example includes convergence of mass in ϵ-balls. The short survey
[14] contains some examples on showing which properties can be passed to the limit in GHP

convergence. A last example is convergence of distances of uniformly chosen points in n− 1
2Tn

and Tn, which is covered in [9].

1.6 Generalizations

Recall Definition 1.4.1, in which T was constructed by gluing sticks of lengths determined by
a Poisson point process of intensity tdt. We ask 2 questions: what if we consider Poisson point
processes of different intensities, is the corresponding tree T still compact almost surely? If so,

can we find random variable Tn taking values in Tn such that
(
Tn, g(n)dn, νn

) d−−−→
n→∞

(
T , d, µ

)
in the GHP topology? Here g(n) is some scaling function and νn is the uniform measure on
the vertices of Tn and µ is some probability measure on T .

In chapter 6, we construct random tree Tn,f non uniformly by defining,

Sn(i) ∼

{
Sfn(j) with j ∈u {1, . . . , i− 1}, with probability f

(
i
n

)
,

Unif
(
[n] \ {Sn(1), . . . , Sn(i− 1)}

)
, with probability 1− f

(
i
n

)
,

for some function f : [0, 1] → [0, 1] and letting Tn,f be the tree obtained by applying the
Foata–Fuchs bijection to Sfn . See Section 6 for intuition behind this exact choice of Sn. We
have the following result.

Theorem 1.6.1. Let f(x) = xβ for β > 0. Then, there exists a probability measure µ on Tβ
such that, (

Tn,f , n− β
β+1dn, νn

)
d−−−→

n→∞

(
Tβ, d, µ

)
,

in the GHP topology. Here, Tβ denotes the tree obtained from the stick-breaking construction
with Poisson point process of intensity tβdt.

In Section 7, we construct Tn,f by applying the Foata–Fuchs bijection to,

Sn ≡ Sfn(i) ∼

{
Sn(j) where j ∈u {1, . . . , i− 1}, with probability f(i, n),

Unif
(
[n] \ {Sn(1), . . . , Sn(i− 1)}

)
, with probability 1− f(i, n),

where f(i, n) ≡ fγn (i) = lnγ(in− 1
2 + 1)n− 1

2 . We have the following result,

Theorem 1.6.2. For γ > 1, we have convergence in the GHP-topology,(
Tn,f , n− 1

2dn, νn
) d−−−→

n→∞

(
Tγ, d, µ

)
,

where T is the tree obtained from the stick-breaking construction with a Poisson point process
with intensity lnγ(t+ 1)dt. If γ ≤ 1, then Tγ is not compact almost surely.

In particular, at γ = 1 we find a threshold where Tγ fails to be compact.

11



β = 0.5 β = 1

β = 2 β = 4

Figure 11: four trees constructed from a Poisson point process with intensity tβdt. The

trees are constructed from the interval
[
0, (100(β + 1))

1
β+1
]
so that the expected number of

branches of each tree equals 100.

Remark 1.6.3. One can sample trees Tβ in a coupled manner: start with a Poisson point
process of intensity 1 on R2. Let Tβ = {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y ≤ xβ}. It follows that
ηβ = {(X, Y ) ∈ η : (X, Y ) ∈ Tβ} can be written as η =

∑∞
i=1 δ(Ci,Bi) where 0 < C1 < C2 < . . .

equal (in distribution) the k first ordered points of a Poisson point process of intensity tβdt
and Bi ∼ Unif([0, Ci]). Thus, all Tβ can be constructed from a single PPP such that Tβ has
the correct law for each β. On the bottom left of each page, we have drawn Tβ sampled in
this manner. The intensity of the tree drawn on page number i is approximately 1 + i/1000.
The images can be turned into a video by using the thesis as a flipbook. Note that you start
on the last page, so that you watch the tree change from intensity 1.1 to 1.
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2 Theoretical Framework

This section aims to provide a rigorous background to the Poisson point process and the
Gromov–Hausdorff–Prokhorov topology as well as a formalization of the proof outline dis-
cussed in Section 1.5. We start with the introduction of basic measure theory.

2.1 Measure Theory

The Poisson point process is defined through measure theory. Hence, we introduce some
basic measure theory first.

Definition 2.1.1. A measurable space is a set X together with set of subsets F , where F is
a σ-algebra, i.e. it satisfies,

i) X ∈ F ,

ii) if A ∈ F then X \ A ∈ F ,

iii) if (An)n≥1 ⊆ F then
⋃∞
n=1An ∈ F .

Definition 2.1.2. Let R be a family of sets. The σ-algebra generated by R, denoted σ(R),
is the smallest σ-algebra containing R. Observe that σ(R) always exists, since the power set
of X trivially is a σ-algebra containing R.

Example 2.1.3. The Borel σ-algebra on metric space (M,d), denoted B(M), is defined to
be the σ-algebra generated by the open sets of M .

Definition 2.1.4. Let (X,FX) and (Y,FY ) be two measurable spaces. A function f : X → Y
is called measurable if f−1(B) ∈ FX for all B ∈ FY .

Definition 2.1.5. Let (X,F) be a measurable space. A measure µ : F → [0,∞] is a function
for which,

i) µ(∅) = 0,

ii) If (An)n≥1 ⊆ F are pairwise disjoint, then µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An).

The triple (X,F , µ) is a measure space. If µ(X) < ∞, µ is a finite measure. If µ(X) = 1,
then µ is a probability measure in which case (X,F , µ) is called a probability space.

Definition 2.1.6. A measure µ on (X,F) is,

i) σ-finite if there exists (An)n≥1 ⊆ F so that X =
⋃∞
n=1An and µ(An) <∞ for all n.

ii) s-finite if µ is a countable sum of finite measures. In other words, we can find (µi)i≥1 so
that µ(A) =

∑∞
i=1 µi(A) for all A ∈ F and µi(X) <∞ for all i.

Observe that every σ-finite measure is automatically s-finite. The converse does not hold.

In a measurable space (X,F), the set of subsets F is often large and impractical to work
with directly. However, due to the structural properties of σ-algebras it usually suffices to
work on a smaller generating subset of F . Carathéodory’s extension theorem and Dynkin’s
π − λ lemma are two results using this line of reasoning. We introduce these results below.
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Theorem 2.1.7. Let R be a collection of sets for which,

A,B ∈ R =⇒ A ∪B ∈ R and A\B ∈ R.

Let µ0 : R → [0,∞] satisfy µ0(∅) = 0 and µ0 (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) whenever Ai are

pairwise disjoint and
⋃∞
i=1Ai ∈ R. Then there exists a measure on σ(R) which agrees with

µ0 on R. Furthermore, the extension is unique whenever µ0(Ai) <∞ for all i.

Proof. This is Carathéodory’s extension theorem. See [11, Theorem 1.7.3] for a proof.

Lemma 2.1.8. Let P,L ⊂ 2X , for X a set. If P is closed under intersection, and L satisfies,

i) ∅ ∈ L,

ii) A,B ∈ L with A ⊂ B =⇒ B\A ∈ L,

iii) A1, A2, . . . disjoint implies
⋃n
i=1Ai ∈ L.

Then P ⊂ L, implies σ(P ) ⊂ L. Family P is known as a π-system, L as a Dynkin-system.

Proof. This is Dynkin’s π − λ Lemma, a proof can be found in [4, Theorem 3.2].

Corollary 2.1.9. Let X be a set and P ⊂ 2X be closed under finite intersections. If µ and µ′

agree on P and are σ-finite, then µ and µ′ agree on σ(P ).

Proof. We first assume µ and µ′ are finite and define L = {A ⊂ X : µ(A) = µ′(A)} to be the
sets of which µ, µ′ agree. One may check L satisfies i)− iii) of Lemma 2.1.8 and P ⊂ L. We
conclude σ(P ) ⊂ L and hence µ, µ′ agree on σ(P ).

In case µ, µ′ are only σ-finite, let (An)n≥1 be a measurable partition of X such that An ∈ σ(P )
and µ(An), µ

′(An) <∞ for all n. This is guaranteed possible since µ, µ′ are σ-finite. Define π-
system Pn = {B∩An for all B ∈ P} and define µn(E) = µ(E∩An) and µ′

n(E) = µ′
n(E∩An).

By the finite measure case, we know µn and µ
′
n agree on σ(Pn) for all n. Let B ∈ σ(P ). Then,

µ(B) = µ
( ∞⋃
n=1

(
B ∩ An

))
=

∞∑
n=1

µ
(
B ∩ An

)
=

∞∑
n=1

µ′(B ∩ An
)
= µ′

( ∞⋃
n=1

(
B ∩ An

))
= µ′(B),

which concludes the proof.

We use Carathéodory’s Extension Theorem to define product measure spaces. Below, we give
the construction for finite products. We restrict our attention to the product of two spaces,
but any finite number products can be reached inductively. A similar, yet more technical
construction can be applied to achieve similar results for (countably) infinite product spaces.

Definition 2.1.10. Let (X1,F1), (X2,F2) be two measurable spaces. We define their product
measurable space as (X1,F1)× (X2,F2) = (X1 ×X2,F1 ⊗F2) = (X1 ×X2, σ(F1 ×F2)).

Theorem 2.1.11. For two finite measure spaces (X1,F1, µ1), (X2,F2, µ2), there exists a
unique measure µ on the product measurable space (X1 ×X2,F1 ⊗F2) for which,

µ(A1 × A2) = µ1(A1)µ2(A2), for all A1 ∈ F1, A2 ∈ F2.
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Proof. This follows directly from Carathéodory’s Extension Theorem. Define R = F1 × F2

and µ0 : R → [0,∞] as µ0(A1 × A2) = µ1(A1)µ2(A2). Then Carathéodory’s Extension
Theorem gives a unique extension µ to σ(R) = F1⊗F2 such that µ(A1×A2) = µ1(A1)µ2(A2)
for all A1 ∈ F1, A2 ∈ F2. Uniqueness follows as µ0 is σ-finite on R.

Definition 2.1.12. Let (X1,F1, µ1), (X2,F2, µ2) be two finite measure spaces. The product
measure space is defined as,

(X1,F1, µ1)× (X2,F2, µ2) = (X1 ×X2,F1 ⊗F2, µ),

where µ is the unique measure so that µ(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ F1, A2 ∈ F2.

This definition can be extended to countable products of probability measure spaces.

Definition 2.1.13. Let (Xi,Fi)
∞
i=1 be a sequence of probability spaces. Define,

X =
∞∏
i=1

Xi, and F =
∞⊗
i=1

Fi = σ

({
∞∏
i=1

Ai : Ai ∈ Fi and Ai ̸= Xi finitely often

})
.

Then (X,F) denotes the product measurable space of (Xi,Fi)
∞
i=1.

Remark 2.1.14. Note that the above definition for F is chosen precisely such that the
projection maps become measurable. In other words, this choice of σ-algebra is the smallest
such that π−1

j (A) ∈ F for all A ∈ Xj. This is often taken as equivalent definition.

Theorem 2.1.15. Let (Xi,Fi, µi)
∞
i=1 be probability measure spaces with (X,F) their product

space. We can define a measure µ on X such that for all finite J ⊂ {1, 2, . . . }, we have,

µ

∏
j∈J

Aj
∏
j /∈J

Xi

 =
∏
j∈J

µj(Aj), where Aj ∈ Fj for all j ∈ J,

The triple (X,F , µ) is called the product measure space of (Xi,Fi, µi)
∞
i=1.

Proof. Similar to the proof of the finite case, we define R and µ0 : R → [0, 1] as,

R =

{
∞∏
i=1

Ai : Ai ∈ Fi and Ai ̸= Xi finitely often

}
and µ0

∏
j∈J

Aj
∏
j /∈J

Xi

 =
∏
j∈J

µj(Aj),

To apply Carathéodory’s Extension Theorem, one needs to check thatR is closed under finite
unions and intersections, µ0 is well defined, and µ0

(⋃∞
i=1Ai

)
=
∑∞

i=1 µ0(Ai) for pairwise
disjoint Ai with

⋃∞
i=1Ai ∈ R. Unlike the finite case, these statements are no longer trivial.

We outsource the details to [15, Theorem 4].

2.2 The Poisson Point Process

This subsection aims to give a formal description of the Poisson point process (PPP). We
start with its definition and proceed by proving the existence of the PPP. The theory in this
subsection is largely based on work by Günter Last and Mathew Penrose [12]. Throughout
this section, we write N0 = N ∪ 0 and N0 = N0 ∪∞.
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2.2.1 Definition of the PPP

Definition 2.2.1. Let (X,F) be a measurable space. We define N to be the set of countable
sums of all nonnegative integer valued measures. That is,

N ≡ N(X) =

{
∞∑
i=1

µi : µi(A) ∈ N0 for all A ∈ F

}
,

where we write N instead of N(X) for brevity. We turn this set into a measurable space
with the following σ-algebra,

N = σ
({

{µ ∈ N : µ(B) = k} for all B ∈ F and k ∈ N0

})
.

Example 2.2.2. Let (X,F) be a measurable space and let x ∈ X. Then, the Dirac measure
defined as δx(A) = 1{x∈A} is an element of N . For x1, x2, · · · ∈ X, the measure

∑∞
i=1 δxi is

also in N . One may think that any measure in N can be written as
∑k

i=1 δxi for some k ∈ N0.
This however is not the case.

Indeed, take X = [0, 1] and F = {A ⊂ [0, 1] : #A < ∞ or #Ac < ∞}. Set µ(A) = 1{#A=∞}
for A ∈ F . One may check that (X,F , µ) is a measure space. Clearly µ ∈ {0, 1} so µ ∈ N .
However, µ({x}) = 0 for all x ∈ [0, 1] and thus µ ̸= δx for any x. This problem only came
about from the poor choice of σ-algebra on [0, 1] as the σ-algebra was too coarse.

This problem disappears if we work on a finer σ-algebra such as ([0, 1],B([0, 1])). Suppose
µ ∈ N and µ(A) = 1 for some A ∈ B([0, 1]). By a standard halving argument, we can
find measurable closed intervals Ii ∈ A such that

⋂∞
i=1 Ii = {x} and µ(Ii) = 1 for all i. By

continuity from above for measures, we conclude µ({x}) = 1.

Remark 2.2.3. Throughout this thesis, we will be working with random elements in N ,
where the measures in N are defined on (R≥0,B(R≥0). In this setting, every measure µ ∈ N
is locally finite and thus repeating the above argument at all A ∈ B(R≥0) where µ(A) > 1,
we see µ can be written as sums of Dirac measures. However, the theory presented in the
current section also works on a more general level.

We continue with the definition of a point process, informally a point process on (X,F) is a
random variable taking values in the space N . The formal definition follows below.

Definition 2.2.4. Let (X,F) be a measurable space. A point process on X is a measure
valued random variable η defined on probability space (Ω,A,P), taking values in the space N .

Using shorthand notation, {η(B) = k} = {ω ∈ Ω : η(ω)(B) = k}, we see η is a point process
precisely when {η(B) = k} ∈ A for all B ∈ F and k = N0.

Example 2.2.5. Let (X,F) be a measurable space and let Y be a random variable defined
on (Ω,A,P) taking values in X. Then η = δY is a point process as for B ∈ F and k ∈ N0,

{η(B) = k} =


{ω : Y (ω) /∈ B} k = 0

{ω : Y (ω) ∈ B} k = 1

∅ k > 1.

And {ω : Y (ω) /∈ B}, {ω : Y (ω) ∈ B}, ∅ ∈ A. Also note P(η(B) = 1) = P(Y ∈ B).
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Example 2.2.6. Let (X,F) be a measurable space and µ be a probability measure onX. Let
Y1, . . . , Ym be i.i.d. random variables with distribution µ. Then, η = δY1 + · · ·+δYm is a point
process, since {η(B) = k} is measurable. Indeed, P(η(B) = k) =

(
m
k

)
µ(B)k(1− µ(B))m−k.

Next, we introduce the Poisson point process, a special type of point process.

Definition 2.2.7. Let (X,F , µ) be a measure space with a s-finite measure µ. A point
process η on X is a Poisson point process with intensity measure µ if,

i) For all A ∈ F with µ(A) <∞, we have η(A) ∼ Poi(µ(A)).

ii) For mutually disjoint sets A1, . . . , An ∈ F , η(A1), . . . , η(An) are independent.

On Rd, we make the distinction between homogeneous and inhomogenous measures. If µ = γλ
with λ the Lebesgue measure and γ > 0, we say η is a homogeneous PPP of intensity γ.
If µ(A) =

∫
A
f(t)dt, we say η is an inhomogeneous PPP of intensity f(t)dt.

Observe that the definition of a PPP only tells us how counts in finite disjoint sets are
distributed based on averaging an intensity measure µ over sets. It is not obvious that this
uniquely determines a PPP. In principle, there could be a PPP with a different law that
produces the same average intensities. Below, we show that this is not the case. The proof
relies on the fact that the σ-algebra N is generated by the events {η : η(A) = k} hence N
consists of events of the form {η : η(A1) = k1, . . . , µ(An) = kn}, which is precisely determined
by the intensity measure of a PPP.

Lemma 2.2.8. Let η and η′ be two point processes on (X,F). We have,

η
(d)
= η′ ⇐⇒ (η(A1), . . . , η(Ak))

(d)
= (η′(Ai), . . . , η

′(Ak)) for all k ∈ N0 and Ai ∈ F

Proof. Suppose η and η′ are two point processes with η
(d)
= η′. Then P(η ∈ A) = P(η′ ∈ A)

for all A ∈ N . Note that {µ : µ(A1) = k1, . . . , µ(An) = kn} ∈ N for all n ∈ Z≥0, Ai ∈ F .
Thus, P(η(A1) = k1, . . . , η(An) = kn) = P(η′(A1) = k1, . . . , η

′(An = kn)) follows immediately.

Assume (η(A1), . . . , η(Ak))
(d)
= (η′(Ai), . . . , η

′(Ak)) for all k ∈ Z≥0 and Ai ∈ F . We define,

P = {{µ : µ(A1) = k1, . . . , µ(An) = kn} for n ∈ N, k1, . . . , kn ∈ N, Ai ∈ F} ⊂ N .

Then P is closed under intersection and σ(P ) = N . Furthermore, P(η ∈ A) = P(η′ ∈ A) for

all A ∈ P . Hence by Corollary 2.1.9, η and η′ agree on σ(P ) = N . We conclude η
(d)
= η′.

Corollary 2.2.9. Let η and η′ be two PPP’s with the same intensity measure. Then η
(d)
= η′.

This finishes the formal introduction of the Poisson point process and shows that, if such a
measure valued random variable exists, is uniquely determined by its intensity measure. The
following sections proves the existence of PPP’s of arbitrary intensity measure.
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2.2.2 Existence of the PPP

Before rigorously proving the existence of the PPP, we give an outline of the proof strategy,
by first informally constructing a PPP of finite intensity measure µ and then upgrading this
to arbitrary s-finite measures µ.

Let (X,F , µ) be a probability space and γ > 0. To construct a PPP of intensity γµ on X, we
sampleX1, . . . , XN ∼ µ i.i.d. whereN ∼ Poi(γ). We claim η =

∑N
i=1 δXi

is a PPP of intensity
measure γµ. To see this, for A ⊂ X, we have η(A) ∼ Binom(N,µ(A)) ∼ Poi(γµ(A)). Given
thatX1, . . . , XN are independent, and the Poisson thinning property, we may expect mutually
disjoint sets to have independent counts, making η a PPP of intensity measure γµ on X.
This construction allows for PPP’s of arbitrary intensity measure µ as long as µ(X) <∞.

If µ(X) = ∞, we will use that µ is s-finite. Indeed, suppose µ =
∑∞

i=1 µi with µi(X) < ∞.
Using the approach above, we may construct PPP’s ηi with intensity measure µi. It turns
out that η =

∑∞
i=1 ηi is a PPP with intensity measure µ. This last claim is known as the

superposition principle. In the remainder of this section, we formalize the reasoning in the
first paragraph, introduce the superposition principle and show how this ensures the existence
of PPP of arbitrary s-finite intensity measures.

Lemma 2.2.10. Let (X,F , µ) be a probability space and fix γ > 0. Suppose thatN ∼ Poi(γ)
and X1, . . . , XN ∼ µ i.i.d. Then η =

∑N
i=1 δXi

is a PPP with intensity γµ.

Proof. Let B1, . . . , Bm ∈ F be pairwise disjoint sets, and define Bm+1 = X\
⋃m
i=1Bi so

that B1, . . . , Bm+1 forms a partition of X. Let k1, . . . , km ∈ N≥0 and set k = k1 + . . . + km.
Conditional on N = n, (η(B1), . . . , η(Bm+1)) follows a multinomial distribution. We obtain,

P(η(B1) = k1, . . . , η(Bm) = km) =
∞∑
n=k

P(N = n)P(η(B1) = k1, . . . , η(Bm+1) = n− k)

=
∞∑
n=k

e−γ
γn

n!

n!

k1! . . . km!(n− k)!
µ(Bm+1)

n−k
m∏
i=1

µ(Bi)
ki ,

= e−γ
m∏
i=1

(γµ(Bi))
ki

ki!

∞∑
n=k

γn−k
µ(Bm+1)

n−k

(n− k)!
,

= e−γ(1−µ(Bm+1))

m∏
i=1

(γµ(Bi))
ki

ki!
.

By setting m = 1 in the above expression, we get, P(η(B1) = k1) = (γµ(B1))k1

k1!
e−γµ(B1) and

hence η(B1) ∼ Poi
(
γη(B1

)
. By symmetry, we have η(Bi) ∼ Poi(γµ(Bi)) for 1 ≤ i ≤ m.

Independence of η(Bi) follows from the fact that the product of marginals equals the joint
pmf as seen below,

m∏
i=1

P(η(Bi) = ki) =
m∏
i=1

(γµ(Bi))
ki

ki!
e−γµ(Bi) = eγ(µ(Bm+1)−1)

m∏
i=1

(γµ(Bi))
ki

ki!
,

= P(η(B1) = k1, . . . , η(Bm) = km).

We conclude that η is a PPP with intensity γµ.
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This shows that for measurable space (X,F) and probability measure µ, we can find a
PPP of intensity γµ. Since γµ(X) = γ < ∞, this construction can only construct PPP’s
of finite intensity measure. However, in practice this often is insufficient. For example
a PPP of intensity 1 on R already cannot be created using this construction, as λ(R) =
∞. Next, we introduce the superposition principle for PPP’s and show how this mitigates
the above limitation.

Lemma 2.2.11. Let η1, η2, . . . be a sequence of independent Poisson point processes with
intensity measures λ1, λ2, . . . taking values in (X,F). Then,

η(A) =
∞∑
i=1

ηi(A) A ∈ F ,

is a PPP with intensity measure λ =
∑∞

i=1 λi.

Proof. Define νn(A) =
∑n

i=1 µi(A). We have,

P(νn(A) ≤ k) = P

(
n∑
i=1

ηi(A) ≤ k

)
= P

(
n∑
i=1

Poi(λi(A)) ≤ k

)
= P

(
Poi

(
n∑
i=1

λi

)
≤ k

)
.

Then, by continuity of probability of increasing sets and continuity of the Poisson distribution,
we obtain,

P(η(A) ≤ k) = lim
n→∞

P(νn(A) ≤ k) = lim
n→∞

P

(
Poi

(
n∑
i=1

λi

)
≤ k

)

= P

(
Poi

(
∞∑
i=1

λi

)
≤ k

)
= P (Poi (λ) ≤ k) ,

and thus η(A) ∼ Poi(λ(A)) distributed. Next, let B1, . . . , Bm ∈ F be mutually disjoint.
Then ηi(Bj) are independent for all 1 ≤ j ≤ m and i ∈ N and thus by the grouping property
of independence, we obtain the independence of,

∞∑
i=1

ηi(B1), . . . ,
∞∑
i=1

η(Bm).

This finishes the proof.

Now we are in a position to prove the general existence of the Poisson point process.

Lemma 2.2.12. Let µ be an s-finite measure on measurable space (X,F). Then there exists
PPP on X with intensity measure µ

Proof. Suppose µ(X) <∞. Let γ = µ(X) and λ(·) = µ(·)
γ

so that λ is a probability measure.
By Lemma 2.2.10, we obtain the existence of a PPP with measure γ · λ = µ as desired.

In the case µ(X) = ∞, we use s-finiteness of µ to write µ =
∑∞

i=1 µi with µi(X) < ∞ for
all i. Then let ηi be a PPP on X with intensity µi. By Lemma 2.2.11, we obtain that

∑∞
i=1 ηi

is a PPP of intensity
∑∞

i=1 µi = µ as desired.
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This rigorously shows the existence of the Poisson point process on measurable space (X,F)
with s-finite intensity measure. Recall Example 2.2.2 in which we showed that not every
nonnegative integer valued measure can be realised as Dirac measure. We show this is not a
limitation for PPP’s. That is, a PPP of any intensity measure can be obtained as a random
sum of dirac measures located at random variables. We formalize this below.

Theorem 2.2.13. Let (X,F) be a measurable space, and µ be an s-finite measure on X.
There exists a probability space (Ω, A,P) supporting random variables X1, X2, . . . taking
values in X and random variable K taking values in N0 such that,

η =
K∑
i=1

δXi

is a PPP of intensity µ.

Proof. If µ(X) < ∞, then Lemma 2.2.10 gives us the desired result with N ∼ Poi(µ(X))
and X1, . . . , XN ∼ µ

µ(X)
, which, using Theorem 2.1.15, can be defined on the countably

infinite product space, (
N0, 2

N0 ,PN
)
×

∞∏
i=1

(
X,F , µ

µ(X)

)
,

where PN is the Poisson probability measure. I.e. PN({n}) = e−µ(X) (µ(X))n

n!
.

In case µ(X) is infinite, we use that µ is s-finite and decompose µ =
∑∞

i=1 µi with µi(X) <∞.
Define λi =

µi
µi(X)

. For each i, we construct probability space,

(Ωi,Ai,Pi) =
(
N0, 2

N0 ,PKi

)
×

∞∏
i=1

(X,F , λi) ,

on which Ki ∼ Poi(µi(X)) and Xi1, Xi2, · · · ∼ λi are all independently defined. Let,

(Ω,A,P) =
∞∏
i=1

(Ωi,Ai,Pi) .

On this product space, define the random variable K =
∑∞

i=1Ki and n(i, j) =
∑i−1

l=1Ki + j,
which both are measurable (as countable sums of random variables are measurable). Lastly,
we relabel the random variables Yn(i,j) = Xij. We see,

K∑
i=1

Yi =
∞∑
i=1

Ki∑
j=1

δXij
=

∞∑
i=1

ηi = η,

where ηi is a PPP of intensity µi and η is a PPP of intensity
∑∞

i=1 µi = µ as desired.

Remark 2.2.14. Although formally the Poisson point process is a measure-valued random
variable, the above theorem also justifies the common view that the PPP is a collection of
random points. Indeed, for a PPP of any intensity, we can find a countable collection of
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random points such that the sum of Dirac measures at those points share the same intensity
measure and thus by Lemma 2.2.8 are equal in distribution. This is not to say that any PPP
is actually a sum of Dirac measures, but if we talk on the level of distributions, there is no
difference.

2.2.3 The PPP as Renewal Process

Theorem 2.2.13 tells us that a PPP of arbitrary intensity can be realized as sum of Dirac
measures. In this section, we explore some implications of this, in particular when we work
with PPP’s on (R≥0,B(R≥0)). We first introduce some natural definitions.

Definition 2.2.15. Let (X,F) be a measurable space and let suppose there exist X-valued
random variables X1, X2, . . . and N0 valued random variable K such that,

η =
K∑
i=1

δXi

is a PPP of intensity measure µ on (X,F). We call X1, X2, . . . the points of η. Note that
the points are random variables. We also write x ∈ η for the event that η({x}) > 0.

If (X,F) = (R≥0,B(R≥0)) and there are random variables 0 < C1 < C2 < · · · ∈ R≥0 so that,

η =
∞∑
i=1

δCi

is a PPP of intensity µ on (R≥0,B(R≥0)), then 0 < C1 < · · · < Ck are the first k points of η.

In this section, we will find random variables 0 < C1 < C2 < . . . such that η =
∑∞

i=1 δCi
is a

PPP of intensity 1 on (R≥0,B(R≥0)). We then generalize this construction to PPP’s of more
general intensity measure on (R≥0,B(R≥0)) and use this to find the distribution of the first k
ordered points for PPP’s of intensity f(t)dt.

Lemma 2.2.16. Let Ti ∼ Exp(1) be i.i.d. and let Ci = T1 + · · ·+ Ti for i ∈ N. We have,

η =
∞∑
i=1

δCi
,

is a PPP on
(
R≥0,B(R≥0)

)
of intensity 1.

Proof. We first define Na = #{Ci s.t. Ci < a} to count the number of points Ci in the

interval [0, a]. For b > a, we have P(Na = m and Nb = m+ k) = e−aam

m!
· e

−(b−a)(b−a)k
k!

. Indeed,

Na = m and Nb = m+ k ⇐⇒


Cm ≤ a,

a− Cm ≤ Tm+1 ≤ b− Cm,

Tm+2 + · · ·+ Tm+k ≤ b− (Cm + Tm+1),

b− (Cm + Tm+1 + · · ·+ Tm+k) ≤ Tm+k+1.
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Recall that summing n i.i.d. Exp(1) random variables yields a Gamma(n, 1) random variable.
Thus Cm follows a Gamma(m, 1) distribution, and Tm+2+· · ·+Tm+k follows a Gamma(k−1, 1)
distribution. Also note that Cm, Tm+1, Tm+2+ · · ·+Tm+k and Tm+k+1 are independent. Thus,

P(Nb = m+ k,Na = m) =

∫ a

0

∫ b−t1

a−t1

∫ b−t1−t2

0

∫ ∞

b−t1−t2−t3
f(t1, t2, t3, t4)dt4dt3dt2dt1,

where f(t1, t2, t3, t4) =
tm−1
1 e−t1

(m−1)!
e−t2

tk−2
3 e−t3

(k−2)!
e−t4 . Some computations show,∫ a

0

∫ b−t1

a−t1

∫ b−t1−t2

0

∫ ∞

b−t1−t2−t3

tm−1
1 e−t1

(m− 1)!
e−t2

tk−2
3 e−t3

(k − 2)!
e−t4dt4dt3dt2dt1

=

∫ a

0

∫ b−t1

a−t1

∫ b−t1−t2

0

tm−1
1

(m− 1)!

tk−2
3

(k − 2)!
e−bdt3dt2dt1

=

∫ a

0

∫ b−t1

a−t1

tm−1
1

(m− 1)!

(b− t1 − t2)
k−1

(k − 1)!
e−bdt2dt1

=

∫ a

0

∫ b−a

0

tm−1
1

(m− 1)!

uk−1

(k − 1)!
e−bdudt1

=
am

m!

(b− a)k

k!
e−b

=
ame−a

m!
· (b− a)ke−(b−a)

k!
.

This implies that,

P(Nb = m+ k | Na = m) =
(b− a)ke−(b−a)

k!
.

Hence, η([a, b]) ∼ Poi(b−a), this being independent of the number of points prior to the inter-
val [a, b]. Basic inductive reasoning implies that for independent intervals [a1, b1], . . . [an, bn]
we have that η([a1, b1]), . . . , η([an, bn]) are independent.

This shows that i) and ii) in Definition 2.2.7 hold for all closed intervals in R≥0. For η to be
a PPP, this needs to hold for all A ∈ B(R).

To show this, one typically shows that given η([0, T ]) = n, the points C1, . . . , Ck are the
order statistics of uniformly distributed in [0, T ]. Once this is established, a proof identical
to that of Lemma 2.2.10 can be used to obtain that η(A) ∼ Poi(λ(A)) and disjoint sets giving
independent counts. We leave the details to [13, Section 5.3.5].

The above construction coincides with a PPP on R≥0 with Lebesgue intensity measure. Next,
we show how we can obtain PPP on the positive real line with different intensity measures
by applying transformations to the above point process.

Lemma 2.2.17. Let (X,FX), (Y,FY ) be measurable spaces and η be a PPP of intensity
measure µ on (X,FX). Let f : X → Y be measurable. Then f(η) = η ◦ f−1 is a PPP of
intensity measure µ ◦ f−1 on (Y,FY ).
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Proof. Let (X,FX), (Y,FY ), η and f be as above. Fix A ∈ FY . Then,

f(η)(A) = η(f−1(A)) ∼ Poi(λ(f−1(A))) = Poi((λ ◦ f−1)(A)).

Lastly, A1, . . . , An mutually disjoint implies f−1(A1), . . . , f
−1(An) mutually disjoint, hence,

f(η))(A1), . . . , f(η)(An) = η(f−1(A1)), . . . , η(f
−1(An)),

are independent. This shows that f(η) is a PPP of intensity measure λ ◦ f−1 on (Y,FY )

Example 2.2.18. Let η be a PPP of intensity 1 on R≥0 and let f(x) =
√
2x. Then f(η) is

a PPP with intensity tdt. Indeed, note that f−1(x) = 1
2
x2. Hence,

(λ ◦ f−1)(A) =

∫
f−1(A)

dt =

∫
A

tdt.

Thus the intensity measure of f(η) is indeed (λ ◦ f−1)(t) = tdt.

Remark 2.2.19. Let Ti ∼ Exp(1) be i.i.d. and Ci = T1 + · · ·+ Ti. Then, η =
∑∞

i=1 δCi
is a

PPP of intensity 1 (Lemma 2.2.16). We have that f(η)
(d)
=
∑∞

i=1 δf(Ci) and thus
∑∞

i=1 δf(Ci)

is a PPP of intensity measure λ ◦ f−1 for λ the Lebesgue measure.

Example 2.2.20. Suppose f(t) : R≥0 → R≥0 is measurable and set,

T = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ f(x)}.

Let η be a PPP of intensity 1 on (T,B(T )) and let g : T → R≥0 be given by g(x, y) = x. By
Lemma 2.2.17, g(η)(A) is a PPP of intensity λ ◦ g−1 on (R≥0,B(R≥0)) for λ the Lebesgue
measure. In particular g(η) is a PPP of intensity f(t)dt since,

(λ ◦ g−1)(A) =

∫ ∫
g−1(A)

dxdy =

∫
A

f(t)dt.

In particular, if we order the points of η as {(C1, B1), (C2, B2), . . . } with 0 < C1 < C2, . . .
then (C1, . . . , Ck) follow the same law as the first k ordered points of a PPP of intensity
f(t)dt and Bi ∼ Unif([0, f(Ci)]). The last claim is intuitive but can be formalized using
Marked point processes. We link [12, Section 7.2].

We now proceed by giving the distribution of the first k points of a PPP on (R≥0,B(R≥0)).
First for PPP’s of intensity 1 and later for arbitrary intensity measures.

Lemma 2.2.21. Let η be a PPP of intensity 1 on R≥0 and let 0 < C1 < C2 < · · · < Ck be
the first k points of η. Then (C1, . . . , Ck) has pdf fC1,...,Ck

(s1, . . . , sk) = e−sk for s1 < · · · < sk.

Proof. Recall from the construction of the homogeneous PPP on R≥0 that if C1 < · · · < Ck
denote the first k ordered points of a PPP, then we have C⃗ = AT⃗ where,

C⃗ =


C1

C2
...
Ck

 , A =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 , T⃗ =


T1
T2
...
Tk

 , with Ti ∼ Exp(1).
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This linear transformation is invertible with inverse,

A−1 =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Observe that fT⃗ = e−(t1+···+tk), thus we obtain,

fC⃗(s1, . . . , sk) = fT⃗ (A
−1(s1, . . . , sk))det(A

−1) = e−sk · 1,

as desired.

We now upgrade this proof to the probability density function of the first k ordered points
of PPP’s of intensity f(t)dt.

Lemma 2.2.22. Let η be a PPP of intensity f(t)dt on (R≥0,B(R≥0)) for some increasing f
and let 0 < C1 < · · · < Ck be the first k ordered points of η. Then,

fC1,...,Ck
(s1, . . . , sk) =

k∏
i=1

f(si) exp

(
−
∫ sk

0

f(t)dt

)
, where s1 < · · · < sk.

Proof. Using 2.2.17, we aim to find g such that (λ ◦ g−1)(A) =
∫
A
fdt as then g(η) is a

homogeneous PPP. We define F (x) =
∫ x
0
f(t)dt, which is invertible since f is increasing.

Then,

(λ ◦ F )(A) =
∫
F (A)

dt =

∫
A

F ′(t)dt =

∫
A

f(t)dt.

Thus we take g = F−1. If 0 < X1 < · · · < Xk are the first k points of a PPP of intensity 1,
then C1 = F−1(X1), . . . , Ck = F−1(Xk) are the first k points of η with intensity f(t)dt. We
define g(X1, . . . , Xk) = (F−1(X1), . . . F

−1(Xk)) so g−1(C1, . . . , Ck) = (F (C1), . . . , F (Ck)).
We get,

det

(
∂g−1(x1, . . . , xk)

∂(x1, . . . , xk)

∣∣∣
(x1,...,xk)=(s1,...,sk)

)
=

k∏
i=1

f(si).

Thus,

fC1,...,Ck
(s1, . . . , sk) = fX1,...,Xk

(g−1(s1, . . . , sk))det

(
∂g−1(x1, . . . , xk)

∂(x1, . . . , xk)

∣∣∣
(x1,...,xk)=(s1,...,sk)

)
,

=
k∏
i=1

f(si) exp

(
−
∫ sk

0

f(t)dt

)
,

as desired.

This concludes the section on Poisson point processes. We continue with a description of the
Gromov–Hausdorff–Prokhorov topology.
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2.3 The Gromov–Hausdorff–Prokhorov Topology

In essence, the Gromov–Hausdorff–Prokhorov topology is a topology on the space of compact
measure metric spaces. More precisely, the Hausdorff distance compares distances between
two subsets in a common metric space. The Gromov–Hausdorff metric assign distances
between metric spaces by isometrically embedding them in an optimal common space and
then assigning distances using the Hausdorff metric. Lastly, the Prokhorov distance is a
metric on measures defined on a common metric space. Below, we formalize these notations.

2.3.1 The Gromov–Hausdorff Distance

We start with introducing the Gromov–Hausdorff distance, a metric that assigns distances
between compact metric spaces.

Definition 2.3.1. Let (X, d) be a metric space, and let A,B ⊆ X be two non-empty subsets.
The Hausdorff distance dH(A,B) between A and B is defined as:

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
.

Where the distance between a point a and set B is given by d(a,B) = infb∈B d(a, b).

A B
sup
b∈B

d(A, b)

sup
a∈A

d(a,B)

Figure 12: Hausdorff distance

This notion is useful for comparing subsets inside a common metric space, but cannot be
used to compute distance between two metric spaces. To extend this definition to compute
distances between two metric spaces, we first embed them in an optimal common space, and
then compare them using the Hausdorff distance defined above.

Definition 2.3.2. Let (X, dX) and (Y, dY ) be two compact metric spaces. The Gromov–
Hausdorff distance dGH(X, Y ) between X and Y is defined as:

dGH(X, Y ) = inf
Z,ϕ,ψ

dZH(ϕ(X), ψ(Y )),

where the infimum is taken over all metric spaces Z and all isometric embeddings ϕ : X → Z
and ψ : Y → Z. Here, dZH denotes the Hausdorff distance in the space Z. If Z is clear from
context, we simply write dH instead of dZH .
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Remark 2.3.3. We claim the Gromov–Hausdorff distance is a metric on the space of isometry
classes of compact metric spaces. However, first note that we define the Gromov–Hausdorff
distance using compact metric spaces. It is intuitive that we want totally bounded metric
spaces as unbounded metric spaces lead to infinite Gromov–Hausdorff distance. However,
completeness of the metric space is also important as is illustrated with the following example.
If we compare the metric spaces (0, 1) and [0, 1] (say, both with Euclidean distance) then
clearly dGH((0, 1), [0, 1]) = 0. However, (0, 1) and [0, 1] are not isometric. Restricting to
complete metric spaces removes this problem.

Theorem 2.3.4. The Gromov–Hausdorff distance is a pseudo-metric on the space of compact
metric spaces and is a metric on the space of isometry classes of compact metric spaces.

Proof. We refer to [5, Theorem 7.3.30] for a proof.

An equivalent definition of the Gromov–Hausdorff distance can be stated in terms of corre-
spondences and distortions.

Definition 2.3.5. Let (X, dX) and (Y, dY ) be two compact metric spaces. We say R ⊆ X×Y
is a correspondence if for all x ∈ X there exists at least one y ∈ Y with (x, y) ∈ R, and vice
versa.

The distortion of a correspondence R is defined as,

dis(R) = sup
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y
′)| ,

where the supremum is taken over all pairs of elements in the distortion.

Theorem 2.3.6. We have,

dGH(X, Y ) =
1

2
inf
R

dis(R).

where the infimum is taken over all correspondences R between X and Y .

Proof. This is a standard result and can be found in [5, Theorem 7.3.25].

2.3.2 The Prokhorov Distance

Before continuing with the Gromov–Hausdorff–Prokhorov distance, we define the Prokhorov
distance between two measures defined on a common metric space.

Definition 2.3.7. Let (M,d) be a metric space and A ⊂M . Then,

Aϵ = {x ∈M s.t. d(x,A) < ϵ},

is called the ϵ-thickening of A.

Definition 2.3.8. Let (M,d) be a metric space with associated Borel sigma algebra B(M).
Let P(M) denote the set of all probability measures on (M,B(M)). Then,

dP (µ, ν) = inf{ϵ > 0 : µ(A) ≤ ν(Aϵ) + ϵ for all A ∈ B(M)},

for µ, ν ∈ P(M) is called the Prokhorov distance between µ and ν.
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Remark 2.3.9. To motivate this definition, suppose µ is a metric in some measure metric
space. There are two ways we can perturb µ: We can slightly change the sets to which µ
gives measure, and slightly change the mass size µ gives to each set. The ϵ enlarging of A
allows for the former, while adding ϵ accounts for the latter.

This is different from total variation distance, which accounts for perturbations in measures
given to sets, but does not differentiate between distances of sets in the underlying metric
space. This makes total variation distance flexible, as it does not have to be defined on
metric spaces (after all, it does not need a notion of two sets being close). However, total
variation distance is not the right metric to go with Gromov–Hausdorff distance, precisely
since it cannot differentiate between sets that are close in terms of Hausdorff distance.

Theorem 2.3.10. The function dP is a metric on P(M).

Proof. Below, we check symmetry, positivity and the triangle inequality,

i) For showing symmetry, suppose that µ(A) ≤ ν(Aϵ)+ϵ for some ϵ > 0 and all A ∈ B(M).
Then ν(A) = 1− ν

(
(Aϵ)ϵ

)
≤ 1− µ(Aϵ) + ϵ = µ(Aϵ) + ϵ, as A =

(
Aϵ
)ϵ

and Aϵ ∈ B(M).

ii) It is clear that dP (µ, ν) ≥ 0 and dP (µ, µ) = 0 for all µ, ν ∈ P(M). Suppose dP (µ, ν) = 0.
Then, for all A ∈ B(M), µ(A) ≤ ν(Aϵ) + ϵ. Taking A closed, and letting ϵ → 0, we see
that µ(A) ≤ ν(A) for all closed A ∈ B(M). By symmetry, µ(A) ≥ ν(A). Since B(M) is
generated by the open (and hence closed) sets, we may conclude µ = ν.

iii) For the triangle inequality, suppose dP (µ, ν) ≤ ϵ1 and dP (ν, π) ≤ ϵ2. For all A ∈ B(M),

µ(A) ≤ ν(Aϵ1) + ϵ1 ≤ π ((Aϵ1)ϵ2) + ϵ1 + ϵ2 = π(Aϵ1+ϵ2) + ϵ1 + ϵ2.

We conclude, dP (µ, π) ≤ dP (µ, ν) + dP (ν, π).

This shows that dP is a metric on P(M).

If the metric space (M,d) is Polish (separable and complete), then (P(M), dP ) inherits the
same property.

Theorem 2.3.11. Let (M,d) be a Polish metric space. Then (P(M), dP ) is also Polish.

Proof. We reference [7, Appendix 2.5.III].

We introduce two useful lemmas that bound the Prokhorov distance between two measures.

Lemma 2.3.12. Let (M,d) be a metric space with µ, ν ∈ P(M). If X ∼ µ, Y ∼ ν are two
random variables defined on a common space such that P(d(X,Y ) > ϵ) < ϵ, then dP (µ, ν) < ϵ.

Proof. Let A ∈ B(M). Then,

µ(A) = P(X ∈ A) = P(X ∈ A, d(X, Y ) < ϵ) + P(X ∈ A, d(X, Y ) ≥ ϵ),

≤ P(Y ∈ Aϵ) + ϵ,

= µ(Aϵ) + ϵ

Since this holds for all A ∈ B(M), we conclude dP (µ, ν) < ϵ.
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Lemma 2.3.13. Let µ, ν be two measures, and suppose K1, . . . , KN is a partition of the
support of µ such that diam(Ki) < ϵ for all i = 1, . . . , N . We have,

dP (µ, ν) ≤ max

{
ϵ,

N∑
i=1

|µ(Ki)− ν(Ki)|

}
≤ ϵ+

N∑
i=1

|µ(Ki)− ν(Ki)|.

Proof. Let A be measurable, and define I = {i ∈ {1, . . . , N} s.t. Ki ∩ A ̸= ∅}. We have,

µ(A) ≤
∑
i∈I

µ(Ki)

≤
∑
i∈I

(µ(Ki)− ν(Ki)) +
∑
i∈I

ν(Ki)

≤
∑
i∈I

|µ(Ki)− ν(Ki)|+ ν

(⋃
i∈I

Ki

)

≤
N∑
i=1

|µ(Ki)− ν(Ki)|+ ν(Aϵ).

Where
∑

i∈I ν(Ki) = ν(
⋃
i∈I Ki) by disjointness of the Ki’s and ν(

⋃
i∈I Ki) ≤ ν(Aϵ) follows

since
⋃
i∈I Ki ⊂ Aϵ. This shows dP (µ, ν) ≤ max

{
ϵ,
∑N

i=1 |µ(Ki), ν(Ki)|
}
as desired.

2.3.3 The Gromov–Hausdorff–Prokhorov Distance

It remains to combine the Gromov–Hausdorff distance and the Prokhorov distance to obtain
a metric on the space of compact measure metric spaces.

Definition 2.3.14. Let (X, dX , µX) and (Y, dY , µY ) be two compact measure metric spaces.
The Gromov–Hausdorff–Prokhorov distance, or GHP-distance for short, is defined as,

dGHP (X, Y ) = inf
φ,ψ,Z

{
max

(
dZH(φ(X), ψ(Y )), dZP (µX ◦ ϕ−1, µY ◦ ψ−1)

)}
.

The infimum is over all metric spaces Z and isometric embeddings φ : X → Z, ψ : Y → Z
and dZH , d

Z
P are the Hausdorff and Prokhorov distance in Z respectively.

Remark 2.3.15. Let (Y, d, µY ), (X, d|X , µX) be two measure metric spaces for X ⊂ Y and
probability measures µX , µY . Then dGHP (X, Y ) ≤ max(dY (X, Y ), dP (µX , µY )). This follows
immediately by taking Z = Y and ϕ : X → Y, ψ : Y → Y to be the identity embeddings.

In the case X ⊂ Y , one might intuitively expect the identity embeddings to always be
optimal, which would turn the above inequality into an equality. This however is not true.
For example, take X = [0, 1] and Y = [0, 5], both with normalized Lebesgue measure. Then
dY (X, Y ) = 4. To bound dGH(X, Y ), take Z = [0, 5], ϕ(x) = x + 2 and ψ(x) = x. This
shows, dGH(X, Y ) ≤ 2. Also, dZP (µX ◦ ϕ−1, µY ◦ ψ−1) ≤ 1 for any choice Z, ϕ, ψ. Hence we
may conclude, dGHP (X, Y ) = max(dY (X, Y ), dP (µX , µY )) cannot hold for all X ⊂ Y .

Similar to the Gromov–Hausdorff distance, we can restate the Gromov–Hausdorff–Prokhorov
distance in terms of correspondences.
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Definition 2.3.16. Let (X,FX , µX), (Y,FY , µY ) be two measure spaces, let π be a measure
on the product space (X × Y ) and let pi be the projection to i’th coordinate. We define,

D(π;µX , µY ) = ||π ◦ p−1
1 − µX ||TV + ||π ◦ p−1

2 − µY ||TV ,

where ||µ−ν||TV = sup{|µ(A)−ν(A)| : A ⊂ X measurable} for µ, ν measures on measurable
space (X,FX).

Theorem 2.3.17. Let (X, dX , µX), (Y, dY , µY ) be compact measure metric spaces. Then,

dGHP (X, Y ) = inf
R,π

{
max

(
1

2
dis(R), D(π;µX , µY ) + π(Rc)

)}
,

where the infimum is taken over all correspondences R between X and Y and all measures
on X × Y . Lastly, Rc denotes the complement of R in X × Y .

Proof. A proof of the result can be found in [10, Theorem 3.6].

Remark 2.3.18. Note that D(π;µX , µY ) = 0 when π(A, Y ) = µX(A) and π(X,B) = µY (B),
for all A ∈ FX , B ∈ FY . Such a measure π on the product space X × Y is called a coupling.

Example 2.3.19. Let Ln = (V,E) with V = [n] and E = {{i, i+1} : i ∈ [n−1]} be the line
graph on n vertices and Let dn be the graph distance. For A ⊂ V (Ln), define µn(A) =

#A
n

to be the uniform probability measure on the vertices of Ln. Define metric space
(
[0, 1], d

)
with d Euclidean distance and let λ be the Lebesgue measure on [0, 1]. Then,

(Ln, n
−1dn, µn) −−−→

n→∞
([0, 1], d, λ),

in the GHP topology. In Figure 13, we visualize how n−1Ln approximates [0, 1] by n equally
spaced points.

1
16L16

[0, 1]

Figure 13: In red, we visualize the idea behind the correspondence Rn: we pair to each vertex
in Ln the corresponding segment in Rn.

We make the correspondence described in Figure 13 concrete as subset of Ln × [0, 1],

Rn =

{
(x, y) ∈ L1 × [0, 1] : x ∈ [n] and

x− 1

n
≤ y ≤ x

n

}
.

Then for arbitrary (x, y), (x′, y′) ∈ Rn, note that n−1d(x, x′) − d(y, y′) ≤ 2n−1 and thus we
found a correspondence with dis(Rn) −−−→

n→∞
0. Hence n−1Ln −−−→

n→∞
[0, 1] in the GH-topology.

We first give some intuition into the convergence of µn to λ. Let A ⊂ [0, 1] be an interval
and let Bn = {x ∈ Ln : (x, y) ∈ Rn for y ∈ A} be the set approximating A in Ln. It is
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intuitive that µn(Bn) → λ(A) as the left side computes the proportion of Bn in Ln and the
right side the proportion of A in [0, 1]. This is the intuition behind GHP-convergence. The
correspondence used for GH-convergence gives us a way to approximate sets in [0, 1] by sets
in n−1Ln. The measures µn converge to λ since µn converges on approximations of sets.

Below we make this reasoning formal by finding a measure πn on Ln × [0, 1] such that we
have, D(πn;µX , µY ) → 0 and πn(R

c
n) → 0. For this, define,

πn(A,B) = λ ({y ∈ [0, 1] : y ∈ B, (x, y) ∈ Rn for some x ∈ A}) ,

where this is well defined since Rn is measurable in the product space. Note that πn(R
c
n) = 0

for all n since πn(R
c
n) = λ(∅) by construction. Then,

πn(Ln, B) = λ({y ∈ B : (x, y) ∈ Rn for some x ∈ Ln}) = λ(B).

Then lastly,

πn(A, [0, 1]) = λ({y ∈ [0, 1] : (x, y) ∈ Rn for some x ∈ A}),

=
∑
i∈A

λ

([
i− 1

n
,
i

n

])
=

#A

n
= µn(A)

Thus, we have shown that D(π;µn, λ) = 0 as π is a coupling of µn and λ. This concludes the
example and shows (Ln, n

−1dn, µn) −−−→
n→∞

([0, 1], d, λ) in the GHP-topology.

2.4 Formalization of Proof Strategy

In this section, we justify the proof outline as given in Section 1.5. We formalize how
the convergence of finite dimensional distributions (Theorem 1.5.1), together with tightness
arguments (Corollary 1.5.4) are sufficient to deduce our main result, Theorem 1.5.2.

Lemma 2.4.1. Let X1, X2, . . . and X be random variables taking values on metric spaceM .
The following are equivalent,

i) Xn converges in distribution to X,

ii) lim supn→∞ P(Xn ∈ A) ≤ P(X ∈ A) for all closed sets A ⊂M .

Proof. This is Portmanteua’s Lemma, we reference [8, Theorem 3.2.11].

We use Portmanteau’s lemma to prove the following,

Lemma 2.4.2. Suppose that Xn,k, Xn, Xk and X are random variables living in the same
metric space and for all ϵ > 0,

Xn,k
d−−−→

n→∞
Xk, lim

k→∞
lim sup
n→∞

P(d(Xn,k, Xn) > ϵ) = 0 and lim
k→∞

P(d(Xk, X) > ϵ) = 0,

then we have Xn
d−−−→

n→∞
X.
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Proof. First observe that using Lemma 2.4.1, it suffices to show,

lim sup
n→∞

P(Xn ∈ A) ≤ P(X ∈ A) for all A closed.

Now observe that for all ϵ > 0, and A closed, we have,

lim sup
n→∞

P(Xn ∈ A) ≤ lim sup
n→∞

P(Xn,k ∈ Aϵ) + lim sup
n→∞

P(d(Xn, Xn,k) > ϵ),

≤ lim
k→∞

lim sup
n→∞

P(Xn,k ∈ Aϵ),

≤ lim
k→∞

P(Xk ∈ Aϵ),

where the last step follows from Lemma 2.4.1 together with the assumption Xn,k
d→ Xk and

the observation that Aϵ is closed. Similarly, for all B and all δ > 0 we have,

lim
k→∞

P(Xk ∈ B) ≤ P(X ∈ Bδ) + lim
k→∞

P(d(Xk, X) > δ) = P(X ∈ Bδ).

By using B = Aϵ, we combine both bounds into,

lim sup
n→∞

P(Xn ∈ A) ≤ P(X ∈ Aϵ+δ), for all A closed.

Let r = ϵ + δ. Since the result holds for all ϵ, δ > 0, we let r → 0 and thus Ar ↓ A (Recall
that A is closed, thus for all

(
ri
)
i∈N with ri → 0, we have

⋂∞
i=1A

(ri) = A). By continuity
of P from above, we find,

lim sup
n→∞

P(Xn ∈ A) ≤ P(X ∈ A), for all A closed,

as desired.

Proposition 2.4.3. Suppose we have convergence
(
T (k)
n , n− 1

2dn, ν
(k)
n

)
d−−−→

n→∞

(
T (k), d, µ(k)

)
in GHP-topology, and for all ϵ > 0, we have,

i) lim
t→∞

P (dH (T (t), T ) > ϵ) = 0, ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵ
)
= 0,

iii) lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0, iv) lim

k→∞
lim sup
n→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0.

Then,
(
Tn, n− 1

2dn, νn

)
−−−→
n→∞

(T , d, µ) in the GHP-topology.

Proof. We aim to use Lemma 2.4.2. To this end, we define,

X = (T , d, µ) , Xn =
(
Tn, n− 1

2dn, νn

)
, Xk =

(
T (k), d, µ(k)

)
and Xk,n =

(
T (k)
n , n− 1

2dn, ν
(k)
n

)
.

Thus we need to show that for all ϵ > 0,

lim
k→∞

P(dGHP (Xk, X) > ϵ) = 0 and lim
k→∞

lim sup
n→∞

P(dGHP (Xk,n, Xn) > ϵ) = 0.
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Observe T (k) ⊂ T . Hence dGHP (Xk, X) ≤ max
(
dH(T (k), T ), dP (µ

(k), µ)
)
, (Remark 2.3.15).

By an application of the union bound, we obtain,

P(dGHP (Xk, X) > ϵ) ≤ P(max(dH(T (k), T ), dP (µ
(k), µ)) > ϵ),

≤ P(dH(T (k), T ) > ϵ) + P(dP (µ(k), µ) > ϵ).

By taking limits and substituting iii) we see,

lim
k→∞

P(dGHP (Xk, X) > ϵ) ≤ lim
k→∞

P(dH(T (k), T ) > ϵ).

Thus it suffices to show P(dH(T (k), T ) > ϵ) → 0 as k → ∞. This statement follows from i).
Indeed, assuming i) we have that for any δ > 0, we can pick T > 0 such that,

P(dH(T (T ), T ) > ϵ) <
δ

2
.

Let K be large enough so that P(η([0, T ]) > K) < δ
2
for η a PPP of intensity tdt. On the

event {η([0, T ]) ≤ K}, we have T (T ) ⊂ T (K) as CK > T . Thus by another application of
the union bound,

P(dH(T (K), T ) > ϵ) ≤ P(η([0, T ]) > K) + P(dH(T (T ), T ) > ϵ) < δ.

This shows that i) implies limk→∞ P(dH(T (k), T ) > ϵ) = 0 for all ϵ > 0. We conclude that
for all ϵ > 0,

lim
k→∞

P(dGHP (Xk, X) > ϵ) = 0.

An analogous argument shows that for all ϵ > 0,

lim
k→∞

lim sup
n→∞

P(dGHP (Xk,n, Xn) > ϵ) = 0.

Thus we may invoke Lemma 2.4.2 to get,

(Tn, n− 1
2dn, νn)

d−−−→
n→∞

(T , d, µ),

in the GHP-topology. This finishes the proof.

Remark 2.4.4. For now we consider T to be the tree constructed via stick-breaking where
the length of the sticks are determined by a PPP of intensity tdt. During this thesis, we also
consider various other intensities of PPP’s and their corresponding trees. The above proof
is sufficient in the more general cases as long as limk→∞ P(η([0, T ] > k)) = 0. All PPP’s
considered in this thesis satisfy this criteria.

Proposition 2.4.3 gives us the precise layout of the proof that the CRT is the scaling limit of
uniform labeled rooted trees, and justifies the proof layout given in Section 1.5.
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3 The Finite Dimensional Distribution

This section is aimed at proving Theorem 1.5.1.

3.1 Convergence of the Repeat and Attachment Points

Recall that for Sn ∈u [n]n−1, we write,

Cn
i is the index of the i’th repeat and Bn

i = min{l ∈ [n] s.t. Sn(l) = Sn(C
n
k )}.

In Section 1.3, we saw a heuristic for the fact that the scaled repeat points n− 1
2

(
Cn

1 , . . . , C
n
k

)
jointly converge to the k first ordered points of a Poisson point process of intensity tdt. In
this section, we make this convergence formal. Furthermore, we saw a heuristic that Bn

k is

almost uniform on {1, . . . , Cn
k − 1}. Thes we may expect n− 1

2
d−−−→

n→∞
Unif([0, Ck]).

This section is dedicated to proving,

Theorem 3.1.1. For any k ∈ N, we have,

n− 1
2 (Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k )

d−−−→
n→∞

(C1, . . . , Ck, B1, . . . , Bk),

where 0 < C1 < · · · < Ck are the first k points of a PPP of intensity tdt and Bi ∼ unif([0, Ci]).

Remark 3.1.2. It suffices to show that for 0 < s1 < · · · < sk and t1, . . . , tk ∈ [0, 1], we have,

i) P
(
Cn

1 ≤ s1n
1/2, . . . , Cn

k ≤ skn
1/2
)
−−−→
n→∞

P
(
C1 ≤ s1, . . . , Ck ≤ sk

)
,

ii) P
(
Bn

1 ≤ t1C
n
1 , . . . , Bk ≤ tkC

n
k

∣∣∣ Cn
1 ≤ s1n

1/2, . . . , Cn
k ≤ sk−1n

1/2
)
,

−−−→
n→∞

P
(
B1 ≤ t1C1, . . . , Bk ≤ tkCk

∣∣∣ C1 ≤ s1, . . . , C
n
k ≤ sk−1

)
.

We start with i), for which we introduce the following result.

Lemma 3.1.3. For all k ∈ N and 0 < s1 < · · · < sk, we have,

n
k
2P
(
Cn

1 = ⌊s1n
1
2 ⌋, . . . , Cn

k = ⌊skn
1
2 ⌋
)

u.c.−−−→
n→∞

f(C1,...,Ck)(s1, . . . , sk),

where fC1,...,Ck
(s1, . . . , sk) is the joint pdf of the first k points in a PPP of intensity tdt. Here

u.c. denotes that the convergence is uniform over compact sets.

Proof. Recall from Lemma 2.2.22 that fC1,...Ck
(s1, . . . , sk) = s1 . . . ske

− s2k
2 . We apply induction

on k. For k = 1, observe Cn
1 = ⌊s1n

1
2 ⌋ precisely when the first ⌊s1n

1
2 ⌋ − 1 entries of Sn are

unique, and entry ⌊s1n
1
2 ⌋ is a repeat. Note that,

P
(
Sn(i) is a repeat

∣∣ Sn(1), . . . , Sn(i− 1) are not repeats
)
=
i− 1

n
,

since there are i− 1 distinct entries in Sn(1), . . . , Sn(i− 1).
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Thus,

n
1
2P
(
Cn

1 = ⌊s1n
1
2 ⌋
)
= n

1
2
⌊s1n

1
2 ⌋ − 1

n

⌊s1n
1
2 ⌋−2∏

i=1

(
1− i

n

)
,

=
⌊s1n

1
2 ⌋ − 1

n
1
2

exp

⌊s1n
1
2 ⌋−2∑

i=1

log
(
1− i

n

) .

Since ⌊s1n
1
2−1⌋
n

1
2

u.c.−−−→
n→∞

s1, it only remains to show that,

⌊s1n
1
2 ⌋−2∑

i=1

log
(
1− i

n

)
u.c.−−−→
n→∞

−s
2
1

2
.

For this, we use the Taylor expansion log(1− x) = −
∑∞

j=1
xj

j
for |x| < 1 to obtain,

⌊s1n
1
2 ⌋−2∑

i=1

log
(
1− i

n

)
= − 1

n

⌊s1n
1
2 ⌋−1∑

i=1

i−
⌊s1n

1
2 ⌋−1∑

i=1

∞∑
j=2

(
i

n

)j
1

j
.

Using that
∑k

i=1 i =
k(k+1)

2
, we obtain that the first sum converges uniformly over compacts

to − s21
2
. For the second sum, we have,

⌊s1n
1
2 ⌋−1∑

i=1

∞∑
j=2

(
i

n

)j
1

j
≤ s1n

1
2

∞∑
j=2

(
s1

n
1
2

)j
= s31n

− 1
2

∞∑
j=0

(
s1

n
1
2

)j
= s31n

− 1
2

1

1− s1

n
1
2

u.c.−−−→
n→∞

0,

which concludes the base case of the induction proof. Before continuing we ease notation by
writing,

Cn
k (s) =

{
Cn

1 = ⌊s1n
1
2 ⌋, . . . , Cn

k = ⌊skn
1
2 ⌋
}
, where s = (s1, . . . , sl) with l > k,

so that the induction hypothesis reads, n
k
2P(Cn

k (s))
u.c.−−−→
n→∞

s1 . . . ske
− s2k

2 . Then, for the induc-

tion step, we see,

n
k+1
2 P
(
Cn
k+1(s)

)
= n

1
2P
(
Cn
k+1 = ⌊sk+1n

1
2 ⌋
∣∣ Cn

k (s)
)
n

k
2P
(
Cn
k (s)

)
,

By the induction hypothesis, n
k
2P
(
Cn
k (s)

) u.c.−−−→
n→∞

s1 . . . ske
− s2k

2 , so that it suffices to show,

n
1
2P
(
Cn
k+1 = ⌊sk+1n

1
2 ⌋
∣∣ Cn

k (s)
) u.c.−−−→

n→∞
sk+1e

−
s2k+1−s2k

2 .

For this, we follow identical steps to the base case. Observe
{
Cn
k+1 = ⌊sk+1n

1
2 ⌋
∣∣ Cn

k (s)
}
hap-

pens precisely when Sn(i) is not a repeat for i = ⌊skn
1
2 ⌋+1 to ⌊sk+1n

1
2 ⌋−1 and Sn(⌊sk+1n

1
2 ⌋)
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is a repeat. There are precisely ⌊skn
1
2 ⌋ − 1 − k unique entries in Sn(1), . . . , Sn(⌊skn

1
2 ⌋) and

thus P(Sn(i) is a repeat) = ⌊skn
1
2−1−k+i⌋
n

for i = Cn
k + 1, . . . , Cn

k+1 − 1. For notational clarity,

write In = {i ∈ N : ⌊skn
1
2 ⌋+ 1 ≤ i ≤ ⌊sk+1n

1
2 ⌋ − 1}. We compute,

n
1
2P
(
Cn
k+1 = ⌊sk+1n

1
2 ⌋
∣∣ Cn

k (s)
)
=

⌊sk+1n
1
2 ⌋ − 1− k

n
1
2

∏
i∈In

(
1− i− k − 1

n

)
,

= sk+1 exp

(
O(n−1/2)− 1

n

∑
i∈In

(
i− k − 1

))
+ o(1),

where we again used the Taylor expansion log(1−x). Also note that ⌊sk+1n
1
2 ⌋−k−1

n
1
2

u.c.−−−→
n→∞

sk+1

so that o(1) is uniformly small on compact sets,

1

n

∑
i∈In

(
i− k − 1

)
=

1

n

(
−|In|(1 + k) +

∑
i∈In

i

)
,

=
1

n

−O
(
n

1
2

)
+

⌊sk+1n
1
2 ⌋−1∑

i=1

i−
⌊skn

1
2 ⌋∑

i=1

i

 ,

= o(1) +

(
⌊sk+1n

1
2 ⌋ − 1

)
⌊sk+1n

1
2 ⌋

2n
−

⌊sk+1n
1
2 ⌋
(
⌊sk+1n

1
2 ⌋+ 1

)
2n

,

=
s2k+1 − s2k

2
+ o(1),

with all convergence being uniform over compact sets. This shows that,

n
1
2P
(
Cn
k+1 = ⌊sk+1n

1
2 ⌋
∣∣ Cn

k (s)
) u.c.−−−→

n→∞
sk+1e

−
s2k+1−s2k

2 ,

and concludes the induction proof.

In order to use this result to prove i) in Remark 3.1.2, we introduce the following lemma.

Lemma 3.1.4. Let K ⊂ Rk be compact and A,An ⊂ K be Borel measurable sets. Fur-
thermore, suppose λ(An∆A) → 0 as n → ∞ and assume gn : K → R is measurable and
converges uniformly over compact sets to measurable and integrable g : K → R. Then,∫

An

gn(x)dx −−−→
n→∞

∫
A

g(x)dx

Proof. Let A∗ be the closure of A ∪
⋃∞
i=1An so that A∗ is compact (here we use that An, A

are bounded by a compact set K). We have,∫
An

gn(x)dx =

∫
An

(
gn(x)− g(x)

)
dx+

∫
An

g(x)dx.
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Since λ(An∆A) → 0, we have
∫
An
g(x)dx→

∫
A
g(x)dx. Similarly,∫

An

|gn(x)− g(x)|dx ≤
∫
A∗

|gn(x)− g(x)|dx −−−→
n→∞

0,

since gn → g uniformly on A∗. Thus
∫
An

(
gn(x)− g(x)

)
dx→ 0, concluding the proof.

Using the lemma above, we show,

Lemma 3.1.5. For 0 < s1 < · · · < sk, we have,

P
(
Cn

1 ≤ s1n
1/2, . . . , Cn

k ≤ sk−1n
1/2
)
−−−→
n→∞

P
(
C1 ≤ s1, . . . , Ck ≤ sk

)
.

Proof. Using Lemma 3.1.4 together with Lemma 3.1.3, we get,

P
(
Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2

)
=

⌊s1n
1
2 ⌋∑

x1=1

⌊s2n
1
2 ⌋∑

x2=x1+1

· · ·
⌊skn

1
2 ⌋∑

xk=xk−1+1

P
(
Cn

1 = x1, . . . C
n
k = xk

)
,

=

∫ ⌊s1n
1
2 ⌋

1

∫ ⌊s2n
1
2 ⌋

x1+1

· · ·
∫ ⌊skn

1
2 ⌋

xk−1+1

P
(
Cn

1 = ⌊x1⌋, . . . Cn
k = ⌊xk⌋

)
dxk . . . dx2dx1,

=

∫ ⌊s1n
1
2 ⌋n− 1

2

n− 1
2

∫ ⌊s2n
1
2 ⌋n− 1

2

y1+n
− 1

2

· · ·
∫ ⌊skn

1
2 ⌋n− 1

2

yk−1+n
− 1

2

n
k
2P
(
Cn

1 = ⌊y1n
1
2 ⌋, . . . Cn

k = ⌊ykn
1
2 ⌋
)
dyk . . . dy2dy1,

−−−→
n→∞

∫ s1

0

∫ s2

y1

· · ·
∫ sk

yk−1

y1 . . . yke
− y2k

2 dyk . . . dy2dy1,

= P(C1 ≤ s1, . . . , Ck ≤ sk),

where we used the substitution xi = n
1
2yi and recognize y1 . . . yke

− y2k
2 as the pdf of the first k

ordered points of a PPP of intensity tdt. This finishes the proof of i) in Remark 3.1.2.

We continue with a proof of ii).

Lemma 3.1.6. For t1, . . . , tk ∈ [0, 1] and 0 < s1 · · · < sk, we have,

P
(
Bn

1 ≤ t1C
n
1 , . . . , B

n
k ≤ tkC

n
k

∣∣ Cn
1 = ⌊x1n

1
2 ⌋, . . . , Cn

k = ⌊xkn
1
2 ⌋
) u.c.−−−→

n→∞
t1 . . . tk

Proof. We introduce new shorthand notation,

Bn
k (t) =

{
Bn

1 ≤ t1C
n
1 , . . . , B

n
k ≤ tkC

n
k

}
, where t = (t1, . . . tl) with l ≥ k.

To show P
(
Bn
k (t) | Cn

k (x)
) u.c.−−−→

n→∞
t1 . . . tk, we condition on the event that the first k repeats

are unique. That is, we condition on P n
k =

{
Sn(C

n
i ) ̸= Sn(C

n
j ) : for i, j ∈ {1, . . . , k}, i ̸= j

}
.

Conditional on P n
k , we have,

Sn(C
n
i ) ∈u S =

{
Sn(1), . . . , Sn(C

n
i − 1)

}
\
{
Sn(C

n
1 ), . . . , Sn(C

n
i−1)
}
,
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for all i ∈ {1, 2, . . . , k}. Since S (as multiset) does not contain repeats under P n
k , we conclude

that Bn
i is uniformly distributed on

{
1, 2, . . . , Cn

i − 1
}
\
{
Cn

1 , . . . , C
n
i−1

}
and thus,

P
(
Bn
i ≤ tiC

n
i

∣∣ Cn
k (x), B

n
i−1(t), P

n
k

)
=

⌊tiCn
i ⌋ −#{j : Cn

j ≤ tiC
n
i }

Ci − i
.

Given that 0 ≤ #{j : Cn
j ≤ tiC

n
i } ≤ i− 1 and Cn

i = ⌊xin
1
2 ⌋ we obtain,

⌊ti⌊xin
1
2 ⌋⌋ − (i− 1)

⌊xin
1
2 ⌋ − i

≤ P
(
Bn
i ≤ tiC

n
i

∣∣ Cn
k (x), B

n
i−1(t), P

n
k

)
≤ ⌊ti⌊xin

1
2 ⌋⌋

⌊xin
1
2 ⌋ − i

.

Thus we find, P
(
Bn
i ≤ tiC

n
i

∣∣ Cn
k (x), B

n
i−1(t), P

n
k

) u.c.−−−→
n→∞

ti as both bounds converge to ti

uniformly over compacts. We conclude,

P
(
Bk(t)

∣∣ Cn
k (x), P

n
k

)
=

k∏
i=1

P
(
Bn
i ≤ tiC

n
i

∣∣ Cn
k (x), B

n
i−1(t), P

n
k

) u.c.−−−→
n→∞

t1 . . . tk.

Thus it suffices to show P
(
P n
k

)
→ 1 as n→ ∞. For this let ϵ > 0 and apply a union bound,

P
(
(P n

k )
c
)
≤ P

({
Cn

1 < ϵn
1
2

}
∪

k⋃
i=1

{
∃j ∈ [k]\{i} : Sn(C

n
j ) = Sn(C

n
i ), C

n
1 ≥ ϵn

1
2

})
,

≤ P
(
Cn

1 < ϵn
1
2

)
+

k∑
i=1

P
(
∃j ∈ [k]\{i} : Sn(C

n
j ) = Sn(C

n
i )
∣∣ Cn

1 > ϵn
1
2

)
.

From Lemma 3.1.5, we have P(Cn
1 < ϵn

1
2 ) −−−→

n→∞
P(C1 < ϵ). Furthermore, for any fixed i, j we

get, P
(
Sn(C

n
i ) = Sn(C

n
j ), i ̸= j

)
≤ 1

ϵn
1
2−1

as there are at least Cn
j − j− 1 ≥ Cn

1 − 1 ≥ ϵn
1
2 − 1

distinct entries in Sn(1), . . . , Sn(C
n
j −1) and we need Sn(C

n
j ) to be the unique value equaling

Sn(C
n
i ). By another union bound we get,

P
(
∃j ∈ [k]\{i} : Sn(C

n
j ) = Sn(C

n
i )
∣∣ Cn

1 > ϵn
1
2

)
≤ (k − 1)

1

ϵn
1
2 − 1

Hence for all ϵ > 0, we have,

lim
n→∞

P
(
(P n

k )
c
)
≤ lim

n→∞
P
(
Cn

1 < ϵn
1
2

)
+

k∑
i=1

P
({
Sn(C

n
j ) ̸= Sn(C

n
i ), j ∈ [k]\{i}

∣∣ Cn
1 > ϵn

1
2

})
,

≤ P
(
C1 < ϵ

)
+ k lim

n→∞
(k − 1)

1

ϵn
1
2

= P(C1 < ϵ).

By letting ϵ→ 0, we see P
(
(P n

k )
c
)
−−−→
n→∞

0 and thus P(P n
k ) −−−→

n→∞
1, concluding the proof.

We are now in a position to prove ii) in Remark 3.1.2.
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Lemma 3.1.7. For t1, . . . , tk ∈ [0, 1] and 0 < s1 < · · · < sk, we have,

P
(
Bn

1 ≤ t1C
n
1 , . . . ,Bk ≤ tkC

n
k

∣∣ Cn
1 ≤ s1n

1/2, . . . , Cn
k ≤ skn

1
2

)
−−−→
n→∞

P
(
B1 ≤ t1C1, . . . , Bk ≤ tkCk

∣∣ C1 ≤ s1, . . . , Ck ≤ sk
)
.

Proof. By using the total law for conditional probabilities followed by the same approach as
the proof of Lemma 3.1.5, we see,

P
(
Bn
k (t)

∣∣ Cn
1 ≤ s1n

1
2 , . . . , Cn

k ≤ skn
1
2

)
,

=

⌊s1n
1
2 ⌋∑

x1=1

· · ·
⌊skn

1
2 ⌋∑

xk=xk−1+1

P
(
Bn
k (t)

∣∣ Cn
1 = x1, . . . , C

n
k = xk

)
P
(
Cn

1 = x1, . . . , C
n
k = xk

)
P
(
Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2

) ,

=

∫ b1

a1

· · ·
∫ bk

ak

P
(
Bn
k (t)

∣∣ Cn
k (x)

)
n

k
2P
(
Cn
k (x)

)
P
(
Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2

)dxk . . . dx1,
where a1 = n− 1

2 , ai = xi + n− 1
2 for i ∈ {2, . . . , k} and bi = n− 1

2

(
⌊sin

1
2 ⌋ + 1

)
for i ∈ [k].

Furthermore, by Lemma 3.1.3, 3.1.6 and 3.1.5, we have,

P
(
Bn
k (t)

∣∣ Cn
k (x)

)
n

k
2P
(
Cn
k (x)

)
P
(
Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2

) u.c.−−−→
n→∞

t1 . . . tkfC1,...,Ck
(x1, . . . , xk)

P
(
C1 ≤ s1, . . . , Ck ≤ sk

) .
By Lemma 3.1.4 we conclude,

P
(
Bn
k (t)

∣∣ Cn
1 ≤ s1n

1
2 , . . . , Cn

k ≤ skn
1
2

)
,

−−−→
n→∞

∫ s1

0

· · ·
∫ sk

xk−1

t1 . . . tkfC1,...,Ck
(x1, . . . , xk)

P
(
C1 ≤ s1, . . . , Ck ≤ sk

) dxk . . . dx1,
= P

(
B1 ≤ t1C1, . . . , Bk ≤ tkCk

∣∣ C1 ≤ s1, . . . , Ck ≤ sk
)
,

as desired.

This shows that for all 0 < s1 < · · · < sk and t1, . . . , tk ∈ [0, 1], we have

P
(
Cn

1 ≤ s1n
1
2 , . . . Cn

k ≤ skn
1
2 , Bn

1 ≤ t1C
n
1 , . . . , B

n
k ≤ tkC

n
k

)
−−−→
n→∞

P
(
C1 ≤ s1, . . . , Ck ≤ sk, B1 ≤ t1C1, . . . , Bk ≤ tkCk

)
,

and hence finishes the proof of Theorem 3.1.1.

Remark 3.1.8. We can visualize the points
(
Ci, Bi

)
i∈N as a two dimensional point process.

Indeed, let η =
∑∞

i=1 δ(Ci,Bi). By Example 2.2.20, we know that η is a PPP of intensity 1 on
the region T = {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y ≤ x}. In particular, this means that for large n,

the points n− 1
2

(
Cn

1 , B
n
1

)
are roughly distributed as a homogeneous PPP of intensity 1 on T .

See Figure 14.
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Figure 14: The points n− 1
2

(
Cn
i , B

n
i

)
for a sequence Sn with n = 5000.

3.2 Convergence of the Partial Trees T (k)
n → T (k)

In the prior section, we saw,

n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
.

Since Cn
i denotes the endpoint of the i’th stick in Tn, and Ci denotes the endpoint of the

i’th stick in T , this means that the length of the first k sticks in (Tn, n− 1
2dn) converge in

distribution to the length of the first k sticks in (T , d). Furthermore, in both cases the
attachment points are roughly uniform over the already constructed trees. Thus we should

expect that for any k, the trees (T (k)
n , n− 1

2dn)
d−−−→

n→∞
(T (k), d) converge in distribution in the

Gromov–Hausdorff topology. In this section, we show this is indeed the case.

From Section 2.3.1, we know that it is enough to find a relation Rn between T (k)
n and T (k)

such that dis(Rn) → 0 as n → ∞. However, we can only define relations on metric spaces,
not on probability distributions. Thus we need to work with coupled realized ’values’ (i.e.

metric spaces) of the random variables T (k)
n and T (k) and show that on the coupling, the

Gromov–Hausdorff distance goes to 0 in probability or almost surely.

An easy coupling is obtained via Skorohod’s representation theorem. In short, this theorem
allows us to go from convergence in distribution of,(

Cn
1 , . . . , C

n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

to almost sure convergence by defining the random variables on a common probability space,

P
(

lim
n→∞

n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

)
=
(
C1, . . . , Ck, B1, . . . , Bk

))
= 1.
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n− 1
2Cn

1

n− 1
2Cn

2

n− 1
2Bn

1

C1

C2

B1

Figure 15: Trees T (2)
n (left) and T (2) (right).

On this new probability space, we can then show P
(
limn→∞ dGH

(
n− 1

2T (k)
n , T (k)

)
= 0
)
= 1, i.e.

n− 1
2T (k)

n converges to T (k) almost surely in Gromov–Hausdorff topology. This immediately
implies the desired convergence in distribution.

We first state Skorohod’s representation theorem and then show, by constructing an explicit
correspondence, that the above almost sure convergence of repeat and attachment points also
leads to almost sure convergence of T (k)

n to T (k) in the GH-topology.

Theorem 3.2.1. Let (Xn) be a sequence of random vectors such that Xn
d−−−→

n→∞
X. Then

there exist a probability space with random vectors Yn, Y , such that,

i) The distribution of Yn, Y is the same as the distribution of Xn, X respectively.

ii) We have convergence, Yn
a.s.−−→ Y as n→ ∞.

I.e. whenever we have convergence in distribution, we may change probability spaces to get
almost sure convergence.

Proof. We reference to [4][Theorem 25.6.]

By Skorohod’s representation theorem, we may work in a probability space where,

P
(

lim
n→∞

(
n− 1

2Cn
1 , . . . , n

− 1
2Cn

k , B
n
1 , . . . , B

n
k

)
=
(
C1, . . . , Ck, B1, . . . , Bk

))
= 1.

We will show that whenever n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

)
−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
and Bi ̸= Ci for all i, j ∈ [k], which is a probability 1 event, then the corresponding trees

T (k)
n (unique up to relabeling) converge to T (k) (deterministic) in GH-distance. I.e. we show

the following,

Theorem 3.2.2. Suppose n− 1
2

(
Cn
i , B

n
i

)
−−−→
n→∞

(
Ci, Bi

)
with Bi ̸= Cj for all i, j ∈ [k]. Then,

dGH
(
T (k)
n , T (k)

)
−−−→
n→∞

0.
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To show convergence in the Gromov–Hausdorff topology, we first define a correspondence Rn

between the metric
(
T (k)
n , n− 1

2dn
)
and

(
T (k), d

)
.

Remark 3.2.3. We could define the correspondence as follows: For s ∈ [0, Ck], we pair ρ(s)

with vertex vs ∈ T (k)
n where vs has label Sn

(
⌊sn 1

2 ⌋
)
, I.e. R =

{
(ρ(s), vs) where s ∈ [0, Ck]

}
.

However, let s = C1, so ρ(s) is on the second stick of T . Then, ⌊sn 1
2 ⌋ = Cn

1 + o(n
1
2 ) and thus

we cannot prevent say ⌊sn 1
2 ⌋ ≤ Cn

1 − 1 for all n, in which case vs is on the first stick.

The problem is that this relation links vertices in Tn up to scale
√
n: we have no control over

vertices within a distance o(
√
n) of a repeat index and these vertices might be linked to the

wrong stick in T . Since the distortion of a correspondence is based on the supremum over all
pairs in the correspondence, we need to make sure that the correspondence links all vertices
between Cn

k−1 and Cn
k to the vertices between Ck−1 and Ck. Below, we introduce a working

correspondence, based on an interpolation between the discrete and continuous sticks.

Definition 3.2.4. Let Sn have at least k repeats and define ϕn : [0, Ck) → T (k)
n as,

ϕn(x) =
{
F
(⌊
Cn
i−1 +

x−Ci−1

Ci−Ci−1

(
Cn
i − Cn

i−1

)⌋)
for x ∈ [Ci−1, Ci) ,

to be the projection of the first k sticks of T (as subset of R) onto the first k sticks of T (k)
n .

Define correspondence Rn ⊂
(
T (k) × T (k)

n

)
as,

Rn =
{(
ρ(x), ϕn(x)

)
for x ∈ [0, Ck)

}
.

For all n ≥ 1, Rn is a correspondence. Indeed, for all x ∈ [0, Ck), we have (ρ(x), ϕn(x)) ∈ R.

For the other direction, let v ∈ T (k)
n be on stick i. Note f(x) = Cn

i−1 +
x−Ci−1

Ci−Ci−1
(Cn

i − Cn
i−1)

is continuous with f(Ci−1) = Cn
i−1 and f(Ci) = Cn

i . Hence, ⌊f(x)⌋ with x ∈ [Ci−1, Ci) takes
every integer between Cn

i−1 and Cn
i . Unlike the naive correspondence from Remark 3.2.3,

correspondence Rn by definition only contains pairs of vertices on the same stick.

Lemma 3.2.5. Suppose limn→∞(Cn
i , B

n
i ) = (Ci, Bi), with Ci ̸= Bj for i, j ∈ [k]. We have,

lim
n→∞

Dis(Rn) = lim
n→∞

sup
x,y∈[0,Ck)

|d(ρ(x), ρ(y))− n− 1
2dn(ϕ(x), ϕ(y))| = 0.

Proof. Let 0 ≤ x ≤ y < Ck, so that ρ(x), ρ(y) ∈ T (k) and suppose ρ(x) and ρ(y) are on

stick i, j respectively. Then for all n ≥ 1, ϕn(x) and ϕn(y) are also on stick i, j in T (k)
n . To

ease notation, let Disn(x, y) = |d(ρ(x), ρ(y)) − n− 1
2dn(ϕn(x), ϕn(y))|. A simple computation

shows,

d(ρ(x), ρ(y)) = d(ρ(Ci), ρ(Cj))− d(ρ(x), ρ(Ci))− d(ρ(y), ρ(Cj)),

dn(ϕn(x), ϕn(y)) = dn(ϕn(Ci), ϕn(Cj))− dn(ϕn(x), ϕn(Xi))− dn(ϕn(Cj), ϕn(y)),

and thus we obtain the bound,

Disn(x, y) ≤ Disn(x,Ci) + Disn(Ci, Cj) + Disn(Cj, y).

41



Since x and Ci are on the same stick, we have d(ρ(x), ρ(Ci)) = Ci − x. Similarly, ϕn(x)
and ϕn(Ci) are on the same stick, therefore,

dn(ϕn(x), ϕn(Ci)) =

⌊
Cn
i−1 +

Ci − Ci−1

Ci − Ci−1

(Cn
i−1 − Cn

i )

⌋
−
⌊
Cn
i−1 +

x− Ci−1

Ci − Ci−1

(Cn
i−1 − Cn

i )

⌋
,

= δ + (Ci − x)
Cn
i−1 − Cn

i

Ci − Ci−1

,

with δ ∈ (−1, 1). We obtain,

Disn(x,Ci) = |d(ρ(x), ρ(Ci))− n− 1
2dn(ϕn(x), ϕn(y))|,

=

∣∣∣∣Ci − x− n− 1
2

(
δ + (Ci − x)

Cn
i−1 − Cn

i

Ci − Ci−1

)∣∣∣∣ ,
≤ n− 1

2 +

∣∣∣∣(Ci − x)

(
1− n− 1

2
Cn
i − Cn

i−1

Ci − Ci−1

)∣∣∣∣ ,
≤ n− 1

2 + max
1≤i≤k

(
|Ci − Ci−1|

(
1− n− 1

2
Cn
i − Cn

i−1

Ci − Ci−1

))
.

Observe that this bound is independent of x. Thus we have,

lim
n→∞

sup
x,y∈[0,Ck)

Disn(x, y) ≤ lim
n→∞

2n− 1
2 + lim

n→∞
2 max
1≤i≤k

(
|Ci − Ci−1|

(
1− n− 1

2
Cn
i − Cn

i−1

Ci − Ci−1

))
+ lim

n→∞
max

1≤i,j≤k
Disn(Ci, Cj) = lim

n→∞
max

1≤i,j≤k
Disn(Ci, Cj).

Hence, the lemma is proven upon showing limn→∞max1≤i,j≤k Dis
n(Ci, Cj) = 0. Note that,

Disn(Ci, Cj) =
∣∣∣d(ρ(Ci), ρ(Cj))− n− 1

2dn(F (C
n
i ), F (C

n
j ))
∣∣∣ .

We turn the assumptions limn→∞(n− 1
2Cn

i , n
− 1

2Bn
i ) = (Ci, Bi) and Bi ̸= Cj for 1 ≤ i, j ≤ k

into: ∀ϵ ∈
(
0, |Ci−Bi|

4

)
, there exists n large enough such that,

|n− 1
2Cn

i − Ci| < ϵ, |n− 1
2Bn

i −Bi| < ϵ, |n− 1
2Bn

i , Ci| > 2ϵ.

Thus, for large enough n, we have Cn
j ≤ Bn

i ≤ Cn
j+1 if and only if Cj ≤ Bi ≤ Cj+1. Hence,

any path from Cn
i to Cn

j in Tn must follow the same segments as the path from Ci to Cj in T .
Given that i, j ≤ k, we have that dn(C

n
i , C

n
j ) equals the length of at most k branch segments,

which all take the form |Cn
i − Cn

i−1|, |Cn
i − Bn

j | or |Bn
i − Bn

j |. Similarly d(Ci, Cj) consists of
the corresponding branches with lengths |Ci − Ci−1|, |Ci − Bj| or |Bi − Bj|. Since Cn

i → Ci
and Bn

i → Bi as n → ∞, we apply the triangle inequality to the at most k branches to find

that for n large enough we have |n− 1
2dn(C

n
i , C

n
j ) − d(Ci, Cj)| < 2ϵk for all 1 ≤ i, j ≤ k. We

obtain limn→∞ max1≤i,j≤k Dis
n(Ci, Cj) = 0. This concludes the proof.

Theorem 3.2.6. We have
(
T (k)
n , n− 1

2dn
) d−−−→

n→∞

(
T (k), d

)
in the Gromov–Hausdorff topology.
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Proof. From Theorem 3.1.1, we know that (Cn
i , B

n
i )

d−−−→
n→∞

(Ci, Bi) for 1 ≤ i ≤ k. Then using

Theorem 3.2.1, we may work in a probability space where this convergence is almost sure,
that is:

P
(
lim
n→∞

(Cn
i , B

n
i ) = (Ci, Bi) for 1 ≤ i ≤ k

)
= 1.

Recall that each Bi ∼ Unif([0, Ci]), hence P (Bi ̸= Cj for all 1 ≤ i, j ≤ k) = 1. Combining
both events yields,

P
(
lim
n→∞

(Cn
i , B

n
i ) = (Ci, Bi) and Ci ̸= Bj for all 1 ≤ i, j ≤ k

)
= 1.

By Lemma 3.2.5, we obtain that almost surely,

lim
n→∞

sup
s,u∈[0,t]

|n− 1
2dn(vs, vu)− d(ρ(s), ρ(u))| = 0.

Thus, we have found a relation Rn between (T (k)
n , n− 1

2dn) and (T (k), d) for which almost

surely Dis(Rn) −−−→
n→∞

0. Hence we obtain (T (k)
n , n− 1

2dn)
a.s.−−−→
n→∞

(T (k), d) in the GH-topology,

which implies the desired convergence in distribution.

3.3 Finite Dimensional Convergence of the Measures

In the prior section, we saw how we can construct a correspondence that shows(
T (k)
n , n− 1

2dn
) d−−−→

n→∞

(
T (k), d

)
,

in the GH-topology. In the current section, we extend this to the GHP-topology by including
the measures ν

(k)
n and µ(k). Using Skorohods representation Theorem 3.2.1, we again work

in a probability space on which
(
Cn
i , B

n
i ) converges to

(
Ci, Bi) almost surely and extend this

space to also include measures ν
(k)
n and µ(k). From Definition 2.3.17, it suffices to find a

measure πn : T (k)
n × T (k) → [0, 1] so that D

(
π; νn(k), µ

(k)
)
→ 0 and πn

(
Rc
n

)
→ 0 as n → ∞

where Rn is the correspondence from Definition 3.2.4.

Definition 3.3.1. For A ⊂ T (k)
n , B ⊂ T (k), and ϕn as in Definition 3.2.4, we define,

πn(A,B) = µ(k)
({
x ∈ B : ϕn(ρ

−1(x)) ∈ A
})
.

Lemma 3.3.2. With Rn as in Definition 3.2.4, we claim,

i) πn
(
Rc
n

)
= 0 and ii) D

(
π; ν(k)n , µ(k)

)
−−−→
n→∞

0.

Proof. We start with i). Since {x : ϕn(ρ
−1(x)) ∈ Rc

n)} = ∅, we find,

πn(R
c
n) = µ(k)(∅) = 0, for all n.

We continue with ii). For this, let B ⊂ T (k). Then,

πn(T (k)
n , B) = µ(k)

({
x ∈ B : ϕn(ρ

−1(x)) ∈ T (k)
n

})
= µ(k)(B).
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Thus, ||πn ◦ p−1
1 − µ(k)||TV = 0 for all n. It remains to show that ||πn ◦ p−1

2 − ν
(k)
n ||TV → 0

as n→ ∞. For this, let A ⊂ T (k)
n . We compute,

πn
(
A, T (k)

)
= µ(k)

({
x ∈ T (k) : ϕn(ρ

−1(x)) ∈ A
})

=
∑
a∈A

µ(k)
({
x ∈ T (k) : ϕn(ρ

−1(x)) = a
})
.

Let a ∈ T (k)
n be a vertex on the i’th branch and let s ∈ {Cn

i−1, . . . , C
n
i − 1} be the index

corresponding to a. Recall that µ(k) is the pushforward by ρ of the normalized Lebesgue
measure on [0, Ck], denoted λ. Hence,

µ(k)
({
x ∈ T (k) : ϕn(ρ

−1(x)) = a
})

= λ
({
x ∈ [0, Ck] : ϕn(x) = a

})
,

= λ
({
x :
⌊
Cn
i−1 +

x− Ci−1

Ci − Ci−1

(Cn
i − Cn

i−1)
⌋
= s
})
,

= λ
({
x : Cn

i−1 +
x− Ci−1

Ci − Ci−1

(Cn
i − Cn

i−1) ∈ [s, s+ 1)
})
,

= λ
([

0,
Ci − Ci−1

Cn
i − Cn

i−1

))
,

=
1

Ck

Ci − Ci−1

Cn
i − Cn

i−1

.

Observe that,

1

Ck

Ci − Ci−1

Cn
i − Cn

i−1

=
1

Ck

Ci − Ci−1

n
1
2 (Ci − Ci−1) + o(n

1
2 )

=
1

Ckn
1
2

+ o
(
n− 1

2

)
=

1

Cn
k

+ o
(
n− 1

2

)
.

We conclude,

πn(A, T (k)) =
∑
a∈A

µ(k)
({
x ∈ T (k) : ϕn(x) = a

})
=

#A

Cn
k

+#Ao
(
n− 1

2

)
= ν(k)n (A) + o(1),

Since #A
Cn

k
= ν

(k)
n (A) and #A ≤ Cn

k = O(n
1
2 ). We conclude that D

(
πn; ν

(k)
n , µ(k)

)
−−−→
n→∞

0.

This verifies ii) and concludes the proof.

This allows us to prove dGHP
((
T (k)
n , n− 1

2 , ν
(k)
n

)
,
(
T (k), d, µ(k)

)
→ 0 as n→ ∞.

Lemma 3.3.3. For all k ∈ N, we have,

P
(
dGHP

((
T (k)
n , n− 1

2 , ν(k)n

)
,
(
T (k), d, µ(k)

)
−−−→
n→∞

)
= 1

Proof. Suppose limn→∞(Cn
i , B

n
i ) = (Ci, Bi), with Ci ̸= Bj for i, j ∈ [k]. Then we have,

dGHP
((
T (k)
n , n− 1

2 , ν(k)n

)
,
(
T (k), d, µ(k)

))
= inf

R,π

{
max

(
1

2
dis(R), D(π; ν(k)n , µ(k)) + π(Rc)

)}
,

≤ max

(
1

2
dis(Rn), D(πn; ν

(k)
n , µ(k)) + πn(R

c
n)

)
,

−−−→
n→∞

0.

Given that limn→∞(Cn
i , B

n
i ) = (Ci, Bi), with Ci ̸= Bj for i, j ∈ [k] holds almost surely, the

desired result follows.
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Since almost sure convergence implies convergence in distribution, we find that,(
T (k)
n , n− 1

2 , ν(k)n

) d−−−→
n→∞

(
T (k), d, µ(k)

)
,

which finishes the proof of Theorem 1.5.1.

Remark 3.3.4. The results in Section 3.2 and Section 3.3 relied only on the convergence of,

n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

)
→
(
C1, . . . , Ck, B1, . . . , Bk

)
,

and the fact that Ci ̸= Bj for all i, j ∈ [k] is true with probability 1. In Section 6 and Section 7

we consider finite dimensional convergence g(n)T
(k)
n → T (k) for more general trees Tn and T

and scaling functions g : N → [0,∞). In each of these cases, we will show,

g(n)
(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

for their respective repeat and attachment indices Cn
i , B

n
i , Ci, Bi and Ci ̸= Bj for all i, j ∈ [k]

is true with probability 1. This allows us to immediately apply the result in this section to
obtain convergence in the GHP-topology of the trees and uniform measures obtained from
the first k branches.
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4 Tightness of
(
Tn, n−1

2dn
)
n∈N

This section is dedicated towards showing i) and ii) from Proposition 2.4.3. That is, we aim
to show that for all ϵ > 0,

i) lim
t→∞

P (dH (T (t), T ) > ϵ) = 0 and ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn
(
tn

1
2

)
, Tn
)
> ϵ
)
= 0.

Remark 4.0.1. Observe that i) implies that T is compact almost surely. This follows from
a diagonalization argument. To see this, i) implies that we can find a sequence ti such that,

∞∑
i=1

P
(
dH
(
T (ti), T

)
> ϵ
)
<

∞∑
i=1

2−i <∞.

By the first Borel–Cantelli lemma, this yields,

P
(
lim sup
i→∞

dH
(
T (ti), T

)
> ϵ

)
= 0.

Since the metric space
(
T (t), d

)
is compact for every t, we have T is compact almost surely.

4.1 Compactness of the Continuous Tree

Theorem 4.1.1. For all ϵ > 0, we have,

lim
t→∞

P
(
dH
(
T (t), T

)
> ϵ
)
= 0.

The idea behind the proof is to bound the growth dH(T (t), T ) by controlling the growth of
infinitely many intermediate sections of finite length. That is, we bound the distances,

dH(T (t), T (2t)), dH(T (2t), T (4t)), dH(T (4t), T (8t)), . . . .

Theorem 4.1.1 is proven upon showing the combined growth on these infinitely many sections
is smaller than ϵ with probability 1 as t→ ∞. We illustrate this in Figure 16.

T (t) T (2t) T (4t)

Figure 16: Illustration of T (t), T (2t) and T (4t).
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Before proving Theorem 4.1, we first introduce various intermediate results.

Lemma 4.1.2. Fix ϵ > 0 and let ϵi ≡ ϵi(T ) > 0, for some T > 0 such that
∑∞

i=0 ϵi < ϵ.
Then for any t > 0,

P
(
dH
(
T (t), T

)
> ϵ
)
≤

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
.

Proof. By repeatedly applying the triangle inequality, we obtain,

dH
(
T (t), T

)
= lim

k→∞
dH
(
T (t), T (2kt)

)
≤ lim

k→∞

k∑
i=0

dH
(
T (2it), T (2i+1t)

)
.

Observe that,

dH
(
T (t), T

)
> ϵ =⇒ dH

(
T (2it), T (2i+1t)

)
> ϵi for some i ∈ N0.

Thus we apply a union bound to obtain,

P
(
dH
(
T (t), T

)
> ϵ
)
≤ P

(
∞⋃
i=0

{
dH
(
T (2it), T (2i+1t)

)
> ϵi

})
,

≤
∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
,

as desired.

Corollary 4.1.3. Theorem 4.1.1 is proven upon finding ϵi(t) : [0,∞) → [0,∞) for which,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
= 0.

Proof. Condition i) ensures that for all ϵ > 0, there exists T > 0 such that
∑∞

i=0 ϵi(T ) < ϵ
and condition ii) ensures that limt→∞ P

(
dH
(
T (t), T

)
> ϵ
)
= 0.

We aim to bound P
(
dH
(
T (a), T (2a)

)
> c
)
and substitute a = 2it and c = ϵi for a suitable ϵi.

To bound dH(T (a), T (2a)), we first bound dH(T (a), ρ(s)) for some s ∈ (a, 2a].

Remark 4.1.4. We give intuition behind bounding P
(
dH
(
T (a), ρ(s)

)
> c
)
. As explained in

Figure 17, we may write dH
(
T (a), ρ(s)

)
=
∑N

i=1 di, where N is the random number of sticks
traversed on the path from ρ(s) to T (a) and di denotes the length of the path traversed on
the i’th stick. Note that d1 > c is only possible if s− c > a. Hence,

P(d1 > c) = 1{s−c>a}P
(
η([s− c, s]) = 0

)
= 1{s−c>a} exp

(
−
∫ s

s−c
tdt

)
≤ exp (−ca) ,

where η is a PPP of intensity tdt. Thus d1 is stochastically dominated by an Exp(a) random
variable. Similar reasoning shows that di is also stochastically dominated by an Exp(a)
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random variable for i ∈ {1, . . . , N}. To dominate N , any stick ρ((Cj, Cj+1]) ⊂ T (2a) is
attached at ρ(Bj) with Bj ∼ Unif([0, Cj]). Since Cj ≤ 2a, we have ρ((Cj, Cj+1]) is attached
to T (a) with probability at least 1

2
. This gives a heuristic why N is stochastically dominated

by a Geom
(
1
2

)
random variable. If we assume the stochastic domination of di and N can be

done by independent random variables, we see,

P(dH(T (a), ρ(s)) > c) = P

(
N∑
i=1

di > c

)
≤ P

(
M∑
i=1

Xi > c

)
≤ exp

(
−ca

2

)
,

where M ∼ Geom
(
1
2

)
and Xi ∼ Exp(a) and the last inequality uses that

∑M
i=1Xi ∼ Exp

(
a
2

)
.

Unfortunately, we do not have independence between N and di. However, negative correla-
tions (large number of sticks N implies di smaller and vise versa) could allow us to formalize
this argument using couplings. This approach is taken in Section 7.4.

ρ(s)

d1d2

d3

Figure 17: Illustration of dH
(
T (a), ρ(s)

)
. Here ρ([0, a]) is drawn in black, while ρ((a, 2a]) is

gray. Red denotes the path from ρ(s) to T (a). This path can be divided into partial paths
along each branch in T (2a) \ T (a) as indicated. We have dH

(
T (a), ρ(s)

)
= d1 + d2 + d3.

In this section, we use an approach relying on sampling the repeat points 0 < C1 < C2 < . . .
and attachment points Bi ∼ Unif([0, Ci]) using one PPP. Recall Example 2.2.20, where for,

T = {(x, y) ∈ R2 : x ≥ 0, y ≤ x},

and η a PPP of intensity 1 on T , we may write η =
∑∞

i=1 δ(Ci,Bi), where 0 < C1 < C2 < . . .
are the ordered points of a PPP of intensity tdt on R≥0 and Bi ∼ unif([0, Ci]). Thus, to
construct T , we may take the ordered x-coordinates of η as endpoints of the sticks, and
the corresponding y-values as attachment point of the sticks. We illustrate this in a small
example in Figure 18, where for readability, we scale up the constructed tree by a factor 2.

T (4)

Figure 18: Tree from PPP on wedge T
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By using this coupled sampling approach of 0 < C1 < C2 < . . . and B1, B2, . . . , we show the
following.

Lemma 4.1.5. Fix a, c > 0 and let s ∈ [a, 2a]. Then,

P
(
dH
(
T (a), ρ(s)

)
> c
)
≤ e−ac.

Remark 4.1.6. Before proving this, we explain how to recover the path from ρ(s) to T (a)
from the PPP η on T . For this, let η′ = η + δ(a,a). The tree constructed from η and η′ is the
same, only difference being that the stick added to exceed T (a) is broken in two. This means
that we always start the construction T (2a)\T (a) with a new stick, ensuring the definitions
below are consistent.

The distance from ρ(s) to the start of the stick on which ρ(s) lies equals the distance between
the line x = s and the closest point in η to the left x = s. If the y-value of this point is
smaller than a, we attach this stick to T (a) and found dH(T (a), ρ(s)). If the corresponding
y-value is larger than a, we attach to a stick in T (2a)\T (a) and need to look further down
the tree for the full path from ρ(s) to T (a). This description explains the definition below.

Definition 4.1.7. Let η =
∑∞

i=1 δ(Ci,Bi) be a PPP of intensity 1 on T and set η′ = η+ δ(a,a).
We define,

p1 ≡
(
p1x(s), p

1
y(s)

)
= argmax

(x,y)∈η′: x≤s
x, d1 ≡ d1(s) = s− p1x(s) and s2 = p1y(s).

Note that p1 exists as η has no accumulation points almost surely. Also p1 ≥ a as we added
the points (a, a) to the point process. Recursively, whenever si−1 > a, we set,

pi ≡ pi(s) = p(pi−1(s)), di ≡ di(s) = si − pix(s) and si+1 = piy(si).

Set N = min{i ∈ N : si+1 ≤ a} for the number of sticks on the path from ρ(s) to T (a) and
let S =

⋃N
i=1[p

i
x(s), si] to be the subset of [a, 2a] corresponding to the parts of the sticks on

the path from ρ(s) to T (a) as stated in Lemma 4.1.8.

Lemma 4.1.8. Let η be a PPP of intensity 1 in T . The path from ρ(s) to T (a) given η
equals ρ(S) and hence dH

(
T (ρ(s)), T (2a)

)
= λ(S) with λ the Lebesgue measure on R.

Proof. The result is immediate as Definition 4.1.7 is a mathematical formalization from the
explanation in Remark 4.1.6. We also give a visual explanation in Figure 19.

Remark 4.1.9. We make two observations,

i) dH
(
T (a), ρ(s)

)
> c given η happens exactly when λ(S) = d1 + · · · + dN > c where λ is

the Lebesgue measure on R.

ii) By removing points from η in (a, 2a]× [0, a), we cannot decrease dH(T (a), ρ(s)).

We combine these observations to show dH(T (a), ρ(s)) > c is possible only if η(R) = 0 for
R ⊂ T with λ(R) = ac for λ the Lebesgue measure on R2.
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d1

d2

d3

x = s

p1

x = p1y

p2

p3

x = p2y

ρ(s)

(a, a)

Figure 19: Explanation Definition 4.1.7. The red intervals on the x-axis is the set S ⊂ [a, 2a].
On the right, we see the tree constructed from this sample of η.

proof of Lemma 4.1.5. Define the point process η∗ = {(x, y) ∈ η′ : x ≤ a or y ≥ a} for the
set of points in η in T \

(
(a, 2a]× [0, a)

)
. Let S∗, N∗ and p∗i , d

∗
i for i ∈ [N∗] be as defined in

Definition 4.1.7, but using η∗ instead of η′. Since η∗ is obtained from η′ by removing points
only in (a, 2a]× [0, a), we have, dH(T (a), ρ(s)) ≤ λ(S∗) given η. We define,

S∗
r = {x ∈ S∗ : x ≥ r} and r∗ = argmax

a≤r≤2a
{η′(S∗

r × [0, a]) ≥ 1}

so that r∗ is the rightmost point in η inside S∗× [0, a]. Observe S = S∗
r∗ = {x ∈ S∗ : x ≥ r∗}.

Indeed, suppose r∗ ∈ [(pkx)
∗, s∗k] ⊂ S∗ for some k ∈ [N∗]. Then, pi = p∗i for i < k and pxk = r∗

with sk < a. This shows S = {x ∈ S∗ : x ≥ r∗}. See Figure 20 for an explanation with k = 3.

To conclude, suppose λ(S∗) > c and take j ∈ [a, 2a] such that λ(S∗
j ) = c. Then,

P
(
dH
(
T (a), ρ(s)

)
> c
)
≤ P

(
λ(S∗

r∗) > c
)
≤ 1{λ(S∗)>c}P

(
η
(
S∗
j × [0, a]

)
= 0
)
≤ e−ac,

as desired.

We continue by upgrading P
(
dH
(
T (a), ρ(s)

)
> c
)
≤ e−ac to a bound P(dH(T (a), T (2a)) > c).

We will give two approaches. First a more standard reasoning, and then a trick-based proof.

Remark 4.1.10. For the standard reasoning, we observe,

P
(
dH
(
T (a), T (2a)

)
> c
)
= P

(
sup

s∈[a,2a]
dH
(
T (a), ρ(s)

)
> c

)
≤ P

 ⋃
s∈[a,2a]

dH
(
T (a), ρ(s)

)
> c

.
50



x = r∗

d∗1

d∗2

d∗3

d3

x = s

p∗1

p∗2

p∗3

p3

Figure 20: Explanation relation η∗ and η. Red denotes the region S∗ × [0, a].

We would like to use a union bound, but cannot apply this technique as we are taking the
union over an uncountable set. However, dH

(
T (a), ρ(s)

)
must take its maximum value at

the endpoint of a stick, or at s = 2a. The number of sticks on the interval [a, 2a] follows a

Poi
(∫ 2a

a
tdt
)
= Poi

(
3
2
a2
)
distribution, so the number of s ∈ [a, 2a] where dH(T (a), ρ(s)) can

attain its maximum value is nicely behaved. This can be turned into a bound, as seen below.

Lemma 4.1.11. Let a, c > 0. We have,

P
(
dH
(
T (a), T (2a)

)
> c
)
≤
(
3

2
a2 + 1

)
e−ac.

Proof. Let K = {Ci : Ci ∈ (a, 2a]} ∪ {2a} and note |K| ∼ Poi
(∫ 2a

a
tdt
)
+ 1 = Poi

(
3
2
a2
)
+ 1.

By the discussion in Remark 4.1.10, and the law of total probability, we obtain,

P(dH(T (a), T (2a)) > c) =
∞∑
k=1

P
(
max
x∈K

{dH(T (a), ρ(x))} > c
∣∣∣ |K| = k

)
P(|K| = k),

≤
∞∑
k=1

P

(⋃
x∈K

{
dH(T (a), ρ(x)) > c

} ∣∣ |K| = k

)
P(|K| = k),

≤ e−ac
∞∑
k=1

kP(|K| = k).

This completes the proof as
∑∞

k=1 kP(|K| = k) = E[|K|] =
(
3
2
a2 + 1

)
.
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Remark 4.1.12. The second proof relies on
the fact that if there exists s ∈ [a, 2a] so that
dH(T (a), T (2a)) > c, then every point in a
segment of length at least c

2
in T (2a)\T (a) is at

distance at least c
2
from T (a). This is illustrated

in Figure 21, where in black we draw T (a) and
T (2a) \ T (a) is drawn in gray. red denotes all
points that are at least half as far from T (a) as
the (furthest) point ρ(x). Using this, we obtain
the following bound.

ρ(x)

Figure 21: Distances in T (2a).

Lemma 4.1.13. Let a, c > 0. Then we have,

P(dH(T (a), T (2a)) > c) ≤ 2a

c
e−

ac
2 .

Proof. By Lemma 4.1.5, we get,

E
[
λ
({
x ∈ [a, 2a] : dH

(
T (a), ρ(x)

)
>
c

2

})]
≤ ae−

ac
2 .

Then if dH(T (a), T (2a)) > c, we have λ
({
x ∈ [a, 2a] : dH

(
T (a), ρ(x)

)
> c

2

})
> c

2
as seen in

Remark 4.1.12. Using this, we obtain the bound,

E
[
λ
({
x ∈ [a, 2a] : dH

(
T (a), ρ(x)

)
>
c

2

})]
≥ c

2
P(dH(T (a), T (2a)) > c).

Combining both inequalities yields P
(
dH(T (a), T (2a)) > c

)
≤ 2a

c
e−

ac
2 , the desired result.

Proof of Theorem 4.1. From Corollary 4.1.3, it is enough to find ϵi(t) such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
= 0.

Substitute a = 2it and c = ϵi in Lemma 4.1.13. This yields,

P
(
dH
(
T (t), T

)
> ϵ
)
≤

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
≤ 2i+1t

ϵi
exp

(
−2i−1tϵi

)
.

Set ϵi = (i+1)2
1−i
√
t
. Then ii) is satisfied. Indeed, assume t is large enough so ln(4)−

√
t ≤ −1.

Then,

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
=

∞∑
i=0

2i+12i−1

i+ 1
t
3
2 exp

(
−
√
t(i+ 1)

)
,

≤ t
3
2

∞∑
i=0

exp
(
ln(4)−

√
t
)i+1

,

≤ t
3
2

4 exp(−
√
t)

1− 4 exp(−
√
t)
,

−−−→
t→∞

0.
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Clearly, i) is satisfied too as,

lim
t→∞

∞∑
i=0

ϵi(t) = lim
t→∞

1√
t

∞∑
i=0

i+ 1

2i−1
= lim

t→∞

8√
t
= 0.

This concludes the proof.

Remark 4.1.14. In the above reasoning, we used the bound from Lemma 4.1.13. If instead
we used the bound from Lemma 4.1.11, a similar approach works with the same choice of ϵi.
We leave filling in the details to the interested reader.

4.2 Compactness of the Discrete Tree

In this section, we prove ii) of Proposition 2.4.3. That is, we aim to show,

Theorem 4.2.1. For all ϵ > 0, we have,

lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵn

1
2

)
= 0.

Due to the presence of both n and t, this result might seem more difficult to obtain. However,
we will see that we can follow similar reasoning to Section 4.1, with minor modifications to
various proofs to adapt them to the discrete setting. One such modification is immediately
made. We work with the event,

An =
{
Cn
j > αj for all j ∈ {1, . . . , N}

}
,

where α > 1 is a constant to be determined and N denotes the random number of repeats
in Sn. Instead, we try to show,

Lemma 4.2.2. For all ϵ > 0, we have,

lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵn

1
2 , An

)
= 0.

Remark 4.2.3. To show that Lemma 4.2.2 implies Theorem 4.2.1, it is enough to show
P
(
Acn
)
→ 0 as n→ ∞, as,

P
(
dH
(
Tn(tn

1
2 ), Tn

)
> ϵ
)
≤ P

(
dH
(
Tn(tn

1
2 ), Tn

)
> ϵ,An

)
+ P

(
Acn
)
.

We show this claim in Lemma 4.2.14 at the end of this section. The reason for working on
An will become clear later. We start with the discrete counterpart of Lemma 4.1.2.

Lemma 4.2.4. Let ϵ > 0 and let ϵi ≡ ϵi(T ) > 0, for some T > 0 such that
∑∞

i=0 ϵi < ϵ.
Then, for any t > 0,

P
(
dH
(
Tn
(
tn

1
2

)
, Tn
)
> ϵn

1
2 , An

)
≤

∞∑
i=0

P
(
dH
(
Tn
(
2itn

1
2

)
, Tn
(
2i+1tn

1
2

))
> ϵin

1
2 , An

)
.
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Proof. The proof is analogous to that of 4.1.2.

Corollary 4.2.5. Lemma 4.2.2 is shown upon finding ϵi(t) : [0,∞) → [0,∞) such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

lim sup
n→∞

∞∑
i=0

P
(
dH
(
T (2itn

1
2 ), T (2i+1tn

1
2 )
)
> ϵin

1
2 , An

)
= 0.

Fix a, c ∈ N and s ∈ {a+ 1, . . . , 2a}. Let vs denote the vertex in Tn corresponding to Sn(s).
We aim to bound P

(
dH
(
Tn(a), Tn(vs)

)
> c
)
. For this, we introduce notation for the ancestral

line of a vertex in Tn.

Definition 4.2.6. For s ∈ [n − 1], let vs be the label of the vertex corresponding to Sn(s).
Let p(vs) ∈ [n] be the label of the parent of vs where the parent of the root is considered to
be the root itself. Inductively, set pk(vs) = p(pk−1(vs)).

Example 4.2.7. In Figure 22, we draw the tree corresponding to S8 = {1, 8, 4, 4, 8, 1, 7}.
We have v3 = 4 and p(4) = 8. Similarly, v4 = 3 and p3(3) = 1.

1

8 7

4 5 6

3 2

Figure 22: Tree T8 corresponding to Sn = {1, 8, 4, 4, 8, 1, 7}.

Lemma 4.2.8. Let s ∈ [n] and vs be the vertex corresponding to s. We have,

P
(
pi(vs) = k

∣∣ vs, . . . , pi−1(vs) and p
i−1(vs) ̸= Sn(1)

)
=

{
1
n−i if k /∈ {vs, . . . , pi−1(vs)},
0 if k ∈ {vs, . . . , pi−1(vs)}.

I.e. given that pi−1(vs) is not the root, p
i(vs) is uniform over the vertices not yet seen on the

ancestral line of vs.

Proof. This follows from vertex exchangeability. Indeed, for a0, . . . , ai−1, x ∈ [n], define,

Tx = {Tn : vs = a0, p(vs) = a1, . . . , pi−1(vs) = ai−1, pi(vs) = x},

for the set of trees with ancestral line vs = a0, . . . , p
i−1(vs) = ai−1 for which p

i(vs) = x. Note,

P
(
pi(vs) = x

∣∣ vs = a0, . . . , p
i−1(vs) = ai−1 and ai−1 ̸= Sn(1)

)
=

|Tx|∑
y∈I |Ty|

,
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where I = [n] \ {a0, . . . , ai−1}. Next, let y ∈ I and define σ : [n] → [n] to be the permutation
swapping x and y. Permutation σ is its own inverse, and hence a bijection on [n] which leaves
a0, . . . , ai−1 untouched. Observe σ(Tx) = Ty, hence, |Tx| = |Ty|. In particular,

P
(
pi(vs) = x

∣∣ vs = a0, . . . , p
i−1(vs) = ai−1 and ai−1 ̸= Sn(1)

)
,

is identical for all x ∈ [n] \ {a0, . . . , ai−1}. This proves the lemma as for any realization of
vs, p(vs), . . . , p

i−1(vs) with p
i−1(vs) ̸= Sn(1), we see p

i(vs) ∼ Unif([n]\{vs, . . . , pi−1(vs)}).

Lemma 4.2.9. We have dH
(
Tn(a), vs

)
≤ m = mink∈N

{
pk(vs) ∈

{
Sn(1), . . . , Sn(a)

}}
.

Proof. Observe that {vs, p(vs), . . . , pm(vs)} is a path of length m from vs to Tn(a). Hence we
obtain dH(Tn(a), vs) ≤ mink∈N

{
pk(vs) ∈ {Sn(1), . . . , Sn(a)}

}
.

Remark 4.2.10. In Lemma 4.2.9, we cannot in general have an equality. Indeed, if pk(v) is a
leaf of Tn(a), then pk(v) /∈ {Sn(1), . . . , Sn(a)} and thus we need to look a step further before
finding an element in {Sn(1), . . . , Sn(a)}. The Lemma explains why we work on An: Event An
ensures {Sn(1), . . . , Sn(a)} can have at most a

α
repeats and thus #{Sn(1), . . . , Sn(a)} ≥ aα−1

α
,

which lower bounds P
(
p(v) ∈ {Sn(1), . . . , Sn(a)}

)
.

Lemma 4.2.11. Let a, c ∈ N and fix s ∈ {a+1, . . . , 2a}. Let vs be the vertex corresponding
to Sn(s). Then,

P
(
dH
(
Tn(a), Tn(vs)

)
> c,An

)
≤ exp

(
−ac
n

α− 1

α

)
.

Proof. From Lemma 4.2.9, we get,

P
(
dH
(
Tn(a), vs

)
> c,An

)
≤ P

(
min
k∈N

{
pk(vs) ∈

{
Sn(1), . . . , Sn(a)

}}
> c,An

)
,

≤ P
(
min
k∈N

{
pk(vs) ∈

{
1, . . . ,

⌈
a
α− 1

α

⌉}}
> c

)
,

where working on An guarantees #{Sn(1), . . . , Sn(a)} > aα−1
α

and where we used vertex
exchangeability. Recall from Lemma 4.2.8 that pk(vs) ∈u [n] \ {vs, . . . , pk−1(vs)} for pk−1(vs)
not the root (which is guaranteed since pk−1(vs) = Sn(1) =⇒ pk−1(vs) ∈ T (a)). Thus,

P
(
dH
(
Tn(a), vs

)
> c,An

)
≤ P

(
min
k∈N

{
pk(vs) ∈

{
1, . . . ,

⌈
a

α

α− 1

⌉}}
> c

)
,

=
c∏
i=0

(
1− a

(n− i)

α− 1

α

)
,

≤
(
1− a

n

α− 1

α

)c+1

,

≤ exp

(
−ac
n

α− 1

α

)
,

where we used (1− x) ≤ e−x in the last step. This concludes the proof.
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We upgrade this to a bound for P
(
dH
(
Tn(a), Tn(2a)

)
> c
)
using the same trick used in the

proof of Lemma 4.1.13.

Lemma 4.2.12. Fix a, c ∈ N. We have,

P
(
dH
(
Tn(a), Tn(2a)

)
> c,An

)
≤ 2a

c
exp

(
− ac

2n

α− 1

α

)
Proof. From Lemma 4.2.11, we immediately get,

E
[
#
{
s ∈ {a+ 1, . . . , 2a} : dH

(
Tn(a), vs

)}
>
c

2
, An

]
≤ a exp

(
− ac

2n

α− 1

α

)
.

If vertex v ∈ Tn(2a) \ Tn(a) satisfies dH
(
Tn(a), v

)
> c, then all x ∈

{
v, p(v), . . . , p⌊c/2⌋+1(v)

}
satisfy dH

(
Tn(a), x

)
> c

2
. Hence,

E
[
#
{
s ∈ {a+ 1, . . . , 2a} : dH

(
Tn(a), vs

)}
>
c

2
, An

]
≥ c

2
P
(
dH
(
Tn(a), Tn(2a)

)
> c,An

)
.

Combining both bounds gives the desired result.

We are now in a position to prove Lemma 4.2.2.

Proof of Lemma 4.2.2. By substituting a = 2itn
1
2 and c = ϵin

1
2 into the above bound, we get

∞∑
i=0

P
(
dH
(
T (2itn

1
2 ), T (2i+1tn

1
2 )
)
> ϵin

1
2 , An

)
≤

∞∑
i=0

2i+1tn
1
2

ϵin
1
2

exp

(
−2itn

1
2 ϵin

1
2

4n

)
,

=
∞∑
i=0

2i+1t

ϵi
exp

(
−2i−2tϵi

)
Thus, Corollary 4.2.5 is transformed into finding ϵi(t) such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0, and ii) lim
t→∞

∞∑
i=0

2i+1t

ϵi
exp

(
−2i−2tϵi

)
.

We choose ϵi(t) = (i+ 1)2
2−i
√
t
. Analogous computations to that of Proof 4.1 show this choice

of ϵi satisfies both i) and ii), finishing the proof.

It remains to show Lemma 4.2.2 implies Theorem 4.2.1. It is enough to show P(Acn) −−−→
n→∞

0.

For this, we bound the lower tail of Cn
j .

Lemma 4.2.13. For x < n, we have,

P(Cn
j < x) ≤ e

(
x2e

2nj

)j
exp

(
−x2

2n

)
≤ e

(
x2e

2nj

)j
.
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Proof. Observe that Cn
j < x happens when Sn(1), . . . , Sn(x− 1) contains at least j repeats.

Also observe that,

P
(
Sn(i) is a repeat

∣∣ Sn(1), . . . , Sn(i− 1)
)
≤ i− 1

n
.

Hence, P(Cn
j < x) ≤ P(X ≥ j) where X ∼ Ber

(
1
n

)
+ · · · + Ber

(
x−1
n

)
with independent

Bernoulli random variables. Recall the Chernoff bound for the sum of independent Bernoulli
random variables with mean µ and where δ > −1,

P(X > (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
=

e(δ+1)µ

(1 + δ)(1+δ)µ
e−µ.

In our case, µ =
∑x−1

i=1
i
n
= (x−1)x

2n
and (1 + δ)µ = j. Filling this in yields the bound,

P(Cn
j < x) ≤ P(X > j) ≤

(
µe

j

)j
e−µ ≤

(
x2e

2nj

)j
exp

(
−(x− 1)2

2n

)
,

≤ e

(
x2e

2nj

)j
exp

(
−x2

2n

)
,

where we used exp
(
− (x−1)2

2n

)
= exp

(
− x2

2n
+ x

n
− 1

2n

)
≤ exp

(
− x2

2n
+ 1
)
since x < n. This

gives the desired bound.

With this tool, we show the following lemma, from which it follows that P(Acn) → 0.

Lemma 4.2.14. Let N be denote the number of repeats in Sn. Then, there exists β > 1
2

and α > 1 such that for n large enough and k ∈ N,

i) P(N > βn) ≤ exp(−c1n) and ii)

⌊βn⌋∑
j=k

P(Cn
j < αj) ≤ n− k

3 .

for c1 a positive constant.

Proof. For i), Observe N > βn =⇒ Cn
⌊βn⌋ < n, as the ⌊βn⌋’th repeat must happen at or

before index n− 1 in Sn. By Lemma 4.2.13, we obtain,

P
(
N > βn

)
≤ P(Cn

βn < n) ≤ e

(
n2e

2nβn

)βn
exp

(
−n2

2n

)
≤ e exp

(
n
(
β
(
1− ln

(
2β
))

− 1

2

))
,

Since β
(
1 − ln(2β)

)
− 1

2
< 0 for β > 1

2
, we have shown i). For ii) we use Lemma 4.2.13 to

get,

⌊βn⌋∑
j=k

P(Cn
j > αj) ≤

⌊βn⌋∑
j=k

(
jα2e

2n

)j
exp

(
−j2α2e

2n

)
,

≤
⌊n

2
3 ⌋∑

j=k

(
jα2e

2n

)j
+

βn∑
j=⌈n

2
3 ⌉

(
βα2e

2

)j
exp

(
−j

2α2e

2n

)
,

≤ C1n
− k

3 + βn exp
(
−C2n

1
3

)
,
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where C1, C2 > 0 are positive constants. Here we used
(
βα2e
2

)
< 1 in the last step. This is

possible for β > 1
2
and α > 1 as for example the choice β = 0.6 and α = 1.1 works.

Corollary 4.2.15. We can find α > 1 such that P(Acn) → 0 as n→ ∞.

Proof. By a union bound, we have,

P(Acn) ≤ P
(
∃j ∈ {1, . . . , ⌊βn⌋} : Cn

j < αj or N > ⌊βn⌋
)
≤ P(N > βn) +

⌊βn⌋∑
j=1

P(Cn
j < αj).

By Lemma 4.2.14, we can find β and α > 1 such that both terms go to zero.

Thus we have shown criteria i) and ii) of Proposition 2.4.3 are satisfied. Together with
convergence of finite dimensional distributions, Theorem 1.5.1, this shows that,(

Tn, n− 1
2dn
) d−−−→

n→∞

(
T , d

)
,

in the Gromov–Hausdorff topology. In the next section, we will add the measures νn and µ
to this convergence, and upgrade the result to Gromov–Hausdorff–Prokhorov convergence.

Figure 23: Difference between T (100) (left) and T (300) (right).
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5 Tightness of the Measures

In this section, we show iii) and iv) of Proposition 2.4.3. That is, there exists a probability
measure µ on T such that for all ϵ > 0,

iii) lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0 and iv) lim

k→∞
lim sup
n→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0.

Recall that µ(k) is the pushforward of the normalized Lebesgue measure on [0, Ck] by ρ, and

that νn(A) =
|A|
n

and ν
(k)
n (A) = |A|

|T (k)
n |

are the uniform probability measure on the vertices of

Tn and T (k)
n respectively. We start with proving iii).

5.1 Convergence of µ(k) to µ

Recall Theorem 2.3.11. Since ℓ1 is Polish, we have that (P(ℓ1), dP ) is Polish. As µ
(k) ∈ P(ℓ1),

it is enough to show
(
µ(k)
)
k∈N is Cauchy as then µ(k) has a unique limit which we can take

as µ. Thus our aim is to show that for all ϵ > 0, there exists N > 0 such that k,m > N
implies P(dP

(
µ(k), µ(m)

)
< ϵ) = 1.

By definition of the Prokhorov distance, it suffices to show that for large enough k,m and
for all measurable A ⊂ T ,

µ(k)(A) ≤ µ(m)(Aϵ) + ϵ.

Here, we take A ⊂ T instead of A ⊂ ℓ1 since µ(k)(B) = µ(m)(B) = 0 whenever B ∩ T = ∅.
We give some intuition why µ(k)(A) ≤ µ(m)(Aϵ) + ϵ holds true. For this, the measures µ(k)

and µ(m) may differ by ϵ in two different ways: they should assign assign roughly the same
measure (i.e. allowed to differ by ϵ) to roughly the same sets (can enlarge set by ϵ).

Note that µ(k)(A) is the proportion of A in T (k). We will show that the expected proportion
of tree T \T (k) attached to A ⊂ T (k) is the same as the proportion of A in T (k). We illustrate
this in Figure 24, where A↑ denotes A together with the branches attached to A.

T (3) T (17)

Figure 24: Left: A ⊂ T (3) drawn in red. Right: A↑ drawn in red.

This property will allow us to conclude that µk(A↑) converges as k → ∞. Thus for large
enough k,m we have |µ(k)(A↑) − µ(m)(A↑)| ≤ ϵ. This shows that µ(k) and µ(m) are roughly
the same on sets of the form A↑. Lastly, we use that P(dH(T (k), T ) < ϵ) → 1 as k → ∞
to conclude that for k large enough, A ⊂ T (k) is such that A↑ ⊂ Aϵ. This will allow us
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to conclude dP (µ
(k), µ(m)) ≤ ϵ. Below we make this reasoning formal. We start with some

definitions and a result on martingales.

Definition 5.1.1. For A ⊂ T (k), let A↑ = π−1
k (A)∩T , with πk : ℓ

1 → Rk the projection map.
Observe that A↑ consists of A together with points in T \T (k) whose path to T (k) ends in A.

To shorten notation, we write ci = Ci − Ci−1.

Remark 5.1.2. Note that A↑ for A ⊂ T (k) depends on k as seen in Figure 25. In both the
top and bottom figure, we have A = T (1). However, in the top case, we view A ⊂ T (1) and
in the bottom case, we view A ⊂ T (2). We always write ’let A ⊂ T (k)’ to indicate that A↑ is
taken with respect to k.

A ⊂ T (2)

A ⊂ T (1)

A↑ ⊂ T (6)

A↑ ⊂ T (6)

Figure 25: A↑ depends on k

Theorem 5.1.3. Suppose (X1, X2, . . . ) is a martingale such that supn |Xn| <∞, then there
is a random variable X such that limn→∞Xn = X with probability 1.

Lemma 5.1.4. Let A ⊂ T (k). Then µ(j)(A↑) is a martingale for j ≥ k in filtration σ(T (j)).

Proof. It is clear that µ(j) is σ(T (j)) measurable and E[|µ(j)(A↑)|] < ∞ as µ(j)(A↑) ∈ [0, 1].
It remains to show E[µ(j+1)(A↑) | Fj] = µ(j)(A↑). For this, define Gj = σ(Fj, cj+1, Cj+1).
Observe that conditional on T (j) the j + 1’th branch is part of A↑ with probability µ(j)(A↑).
Depending on weather branch j + 1 is added to A↑ or not, we see,

µ(j+1)(A↑) =

{
(Cjµ

(j) + cj+1)/Cj+1 with probability µ(j)(A↑),

Cjµ
(j)/Cj+1 with probability 1− µ(j)(A↑).

By putting the two cases together, we obtain,

E
[
µ(j+1)(A↑)

∣∣ Gj

]
= µ(j)(A↑)

Cjµ
(j)(A↑) + cj+1

Cj+1

+ (1− µ(j)(A↑))
Cjµ

(j)(A↑)

Cj+1

= µ(j)(A↑).

By the tower property, we obtain,

E
[
µ(j+1)(A↑)

∣∣ σ(T (j))
]
= E

[
E
[
µ(j+1)(A↑)

∣∣ Gj

] ∣∣ σ(T (j))
]
= µ(j)(A↑),

where we used that µ(j)(A↑) is σ(T (j)) measurable. This concludes the proof.
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Remark 5.1.5. Since µ(j)(A↑) ∈ [0, 1], we apply Theorem 5.1.3 to find that there must exists
some random variable µ(A↑) such that limj→∞ µ(j)(A↑) = µ(A↑) almost surely. In particular,
this means that for sufficiently large k,m we have |µ(j)(A↑)− µ(m)(A↑)| < ϵ almost surely.

Theorem 5.1.6. The sequence
(
µ(j)
)
j∈N is almost surely Cauchy in (P(ℓ1), dP ).

Proof. Fix ϵ > 0 and let K be large enough so that P(dH(T (K), T ) > ϵ) < ϵ, which is possible
by Theorem 4.1.1. Condition on T (K) and let J1, . . . , JNϵ be a measurable partition of T (K)

for which diam(Ji) < ϵ for all i. Conditional on the event E =
{
dH
(
T (K), T

)
< ϵ
}
, we have

diam(J↑
i ) ≤ 3ϵ since for any x, y ∈ J↑

i , we can bound,

d(x, y) ≤ d(x, πK(x)) + d(πK(x), πK(y)) + d(πK(y), y),

≤ dH(T (K), T ) + diam(Ji) + dH(T (K), T ) = 3ϵ,

where d denotes the distance in T and πK is the projection map from ℓ1 → Rk. The proof
is illustrated in Figure 26. Be aware this is a two-dimensional representation of T ⊂ ℓ1,
thus d(x, y) should not be interpreted as Euclidean distance but instead be seen as distance
traversed over the drawn branches.

Ji

πK(x)

πK(y)

x

y

d(x, πK(x))

d(y, πK(y))

Figure 26: Illustration diam(J↑
i ) ≤ 3ϵ

Conditional on E, the family
(
J↑
i

)
i∈[Nϵ]

is a partition of T of sets of diameter at most 3ϵ.

From Lemma 2.3.13, we get,

dP
(
µ(j), µ(m)

)
≤

Nϵ∑
i=1

|µ(j)(J↑
i )− µ(m)(J↑

i )|+ 3ϵ+ 1{Ec}.
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By applying union bounds, we get for all δ > 0 and b > 0,

P
(
dP (µ

(j), µ(m)) ≥ δNϵ + 3ϵ
∣∣ T (K)

)
,

≤ P

(
Nϵ∑
i=1

|µ(j)(J↑
i )− µ(m)(J↑

i )| ≥ δNϵ

∣∣∣∣∣ T (K)

)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec}

≤
Nϵ∑
i=1

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| > δ

∣∣∣ T (K)
)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec}.

By setting δ = ϵ
Nϵ

and taking expectations, we obtain for all b > 0,

P(dP (µ(j), µ(m)) ≥ 4ϵ),

≤ E

[
Nϵ∑
i=1

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| >

ϵ

Nϵ

∣∣∣∣ T (K)

)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec}

]
,

≤
b∑
i=1

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| >

ϵ

b

)
+ P(Nϵ > b) + P

(
dH
(
T (K), T

)
> ϵ
)
.

By choice of K, we have P
(
dH
(
T (K), T

)
> ϵ

)
< ϵ. Recall that Nϵ is the minimal num-

ber of sets Ji of diameter ϵ needed to partition T (K). Since T (K) ⊂ T is compact al-
most surely, we can make P(Nϵ > b) arbitrarily small with finite b. By Remark 5.1.5,

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| > ϵ

b

)
can be made arbitrarily small by taking n,m large enough. We

conclude, for n,m large enough P(dP (µ(j), µ(m)) > 4ϵ) < ϵ, which shoes
(
µ(j)
)
j∈N is Cauchy

in probability.

Since µ(j) is Cauchy in probability in complete space (P(ℓ1), dP ), we conclude µ(k) −−−→
k→∞

µ

in the Prokhorov metric for some measure µ in probability. Hence, there exists a measure µ
such that

iii) lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0,

which shows iii) of Proposition 2.4.3 and finishes this subsection.

5.2 Convergence of ν
(k)
n to νn

This section is dedicated towards showing iv) of Proposition 2.4.3. I.e. we show, for all ϵ > 0,
we have ,

lim
k→∞

lim sup
n→∞

P(dP (ν(k)n , νn) > ϵ) = 0.

For this, we follow similar reasoning to [2], pages 18-20. Due to our different definition
of Tn, we use a different derivation of equation 40 and do not use urn models to describe
the problem. Also the proof of Theorem 6.3.4 has been streamlined. After introducing some
notation, we start with the discrete analogue of Lemma 5.1.4. The paper [3] was of important
help in writing this section.
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Definition 5.2.1. Color A ⊂ T (k)
n red. Inductively, color branch j > k red if it is attached to

a red vertex. Let A↑ ⊂ Tn be all vertices colored red after adding all branches. Alternatively,
for A ⊂ T (k)

n , we see A↑ consists of A together with all vertices v ∈ Tn \ T (k)
n such that the

path from v to T (k)
n ends in v. Observe that A↑ does not have to equal the set of descendants

of A, as highlighted in Figure. 27.

We write cnj = Cn
j − Cn

j−1 for the number of vertices on branch j.

T (4)
n Tn

descendant of v ∈ A,
but not in A↑

Figure 27: On the left, A ⊂ T (4)
n is denoted in red. On the right, we constructed A↑ ⊂ Tn.

Lemma 5.2.2. Let A ⊂ T (k)
n . For j ≥ k, ν

(j)
n (A↑) is a martingale in filtration Fj = σ(T (j)

n ).

Proof. Condition on Gj = σ(T (j)
n , cnj+1, C

n
j+1). Branch j + 1 is attached to a vertex that is

already colored red with probability ν(j)(A↑). Thus we obtain,

ν(j+1)
n (A↑) =

{
(Cn

j ν
(j)
n (A↑) + cnj+1)/C

n
j+1, with probability ν

(j)
n (A↑),

Cn
j ν

(j)
n (A↑)/Cn

j+1, with probability 1− ν
(j)
n (A↑).

Using this, we get,

E
[
ν(j+1)
n (A↑) | Gj

]
= ν(j)n (A↑)

Cn
j ν

(j)
n (A↑) + cnj+1

Cn
j+1

+ (1− ν(j)n (A↑))
ν
(j)
n (A↑)Cn

j

Cn
j+1

= ν(j)n (A↑).

By the tower property of expectation, we get,

E
[
ν(j+1)
n (A↑) | Fj

]
= E

[
E
[
ν(j+1)
n (A↑) | Gj

]
| Fj
]
= E

[
ν(j)n (A↑) | Fj

]
= ν(j)n (A↑),

where the last step follows as ν
(j)
n is Fj-measurable. We conclude νjn(A

↑) is a martingale.

Remark 5.2.3. Given that ν
(j)
n (A↑) is a bounded martingale, we expect ν

(j)
n (A↑) to converge.

This convergence is trivial for any finite n as ν
(j)
n (A↑) = νn(A

↑) for j greater than the number

of sticks in Tn (which is bounded by n). To show lim supn→∞ ν
(j)
n (A↑), also converges almost

surely as j → ∞, we use a more quantitative tail bound given below.
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Lemma 5.2.4. Let A ⊂ T (k)
n . We have,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ Xk,n

C2
,

where Xk,n is a random variable measurable with respect to T (k)
n such that,

lim
k→∞

lim sup
n→∞

E[Xk,n] = 0.

By assuming the above lemma holds, we prove,

Theorem 5.2.5. For all ϵ > 0, we have,

lim
k→∞

lim sup
n→∞

P
(
dp(ν

(k)
n , νn) ≥ ϵ

)
= 0.

Proof. Fix ϵ > 0 and take K > 0 large enough so that P
(
dH
(
n− 1

2T (K)
n , n− 1

2Tn
)
> ϵ) < ϵ

uniformly in n, which is possible by Theorem 4.2.1. Condition on T (K) and let Nϵ be the
size of the smallest partition C1, . . . , CNϵ of n− 1

2T (K)
n where diam(Ci) < ϵ for all i. On the

event E =
{
dH
(
T (K)
n , Tn

)
< ϵ
}
, we have diam(C↑

i ) < ϵ+ 2dH(n
− 1

2T (K)
n , n− 1

2Tn) ≤ 3ϵ.

By Lemma 2.3.13 and union bounds, we obtain that for all δ > 0 and b > 0,

P
(
dp(νn, ν

(K)
n ) ≥ δNϵ + 3ϵ

∣∣ T (K)
n

)
≤ P

N(ϵ)∑
j=1

|ν(K)
n (C↑

j )− νnC
↑
j )| ≥ δNϵ

∣∣∣∣∣∣ T (K)
n

+ 1{Ec}

≤
Nϵ∑
j=1

P
(
|ν(K)
n (C↑

j )− νn(C
↑
j )| ≥ δ

∣∣∣ T (K)
n

)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec},

By setting δ = ϵ
N(ϵ)

, we obtain,

P
(
dp(νn, ν

(K)
n ) ≥ 4ϵ

∣∣ T (K)
n

)
,

≤
N(ϵ)∑
j=1

P
(
|ν(K)
n (C↑

j )− νn(C
↑
j )| ≥

ϵ

N(ϵ)

∣∣∣∣ T (K)
n

)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec}.

≤
b∑

j=1

P
(
|ν(K)
n (C↑

j )− νn(C
↑
j )| ≥

ϵ

b

∣∣∣ T (K)
n

)
+ 1{Nϵ>b} + 1{Ec}.

By taking expectations and using Lemma 5.2.4, we find,

lim sup
n→∞

P
(
dp(νn, ν

(K)
n ) ≥ 4ϵ

)
≤ b3

ϵ2
C

K − 1
+ P(N(ϵ) > b) + lim sup

n→∞
P
(
dH
(
Tn, T (K)

n

)
> ϵ
)
.

By choice of K, we have lim supn→∞ P
(
dH
(
Tn, T (K)

n

)
> ϵ
)
< ϵ. Recall that Nϵ is the number

of sets of diameter at most ϵ needed to cover n− 1
2T (K)

n . Since T (K)
n ⊂ Tn and n− 1

2Tn is
compact almost surely, we can choose b to make P(Nϵ > b) arbitrarily small. We conclude

lim supn→∞ P
(
dp(νn, ν

(K)
n ) ≥ 4ϵ

)
−−−→
K→∞

0 for all ϵ > 0.
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To finish this section, it only remains to verify Lemma 5.2.4. This is done in two steps,

Lemma 5.2.6. For A ⊂ T (k)
n , we have,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ Xn,k

C2
=

2n2

C2

N∑
j=k

E
[

1

(Cn
j − j)4

∣∣∣∣ T (k)
n

]
,

where N denotes the random number of branches of Tn. Note that Xn,k is a random variable

measurable with respect to T (k)
n .

Proof. We apply Markov’s inequality to obtain,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ 1

C2
E
[
(ν(k)n (A↑)− νn(A

↑))2
∣∣ T (k)

n

]
.

Let N be the number of repeats in Sn so νn(A
↑) = ν

(N)
n (A↑). Since (ν

(k)
n (A↑)− νn(A

↑))2 ≤ 2
is bounded for all k ∈ N, we apply the optional stopping theorem to obtain,

E
[
(ν(k)n (A↑)− νn(A

↑))2
∣∣ T (k)

n

]
= E

[
ν(k)n (A↑)2 + ν(N)

n (A↑)2 − 2ν(k)n (A↑)ν(N)
n (A↑)

∣∣ T (k)
n

]
,

= E
[
ν(N)
n (A↑)2 − ν(k)n (A↑)2

∣∣ T (k)
n

]
,

=
N−1∑
j=k

E
[
ν(j+1)
n (A↑)2 − ν(j)n (A↑)2

∣∣ T (k)
n

]
.

Where the second line follows from,

E
[
2ν(k)n (A↑)ν(N)

n (A↑)
∣∣ T (k)

n

]
= 2ν(k)n (A↑)2 = E

[
ν(k)n (A↑)2

∣∣ T (k)
n

]
,

which again uses the optional stopping theorem. Next, we bound,

E
[
ν(j+1)
n (A↑)2 − ν(j)n (A↑)2

∣∣ T (k)
n

]
= E

ν(j)n (A↑)

(
Cn
j ν

(j)
n (A↑) + cnj+1

Cn
j+1

)2

+ (1− ν(j)n (A↑)

(
Cn
j ν

(j)
n (A↑)

Cn
j+1

)2

− ν(j)n (A↑)2

∣∣∣∣∣∣ T (k)
n


= E

[
(cnj+1)

2ν
(j)
n (A↑)(1− ν

(j)
n (A↑))

(Cn
j+1)

2

∣∣∣∣∣ T (k)
n

]

≤ E
[

(cnj+1)
2

(Cn
j − j)2

∣∣∣∣ T (k)
n

]
,

For the last expectation, condition on T (j)
n . Then cnj+1 > x when Sn(C

n
j +1), . . . , Sn(C

n
j + x)

are unique. There are Cn
j − j unique entries in Sn(1), . . . , Sn(C

n
j ). Thus,

P(cnj+1 > x | T (j)
n ) =

x∏
i=1

(
1−

Cn
j − j + i

n

)
≤
(
1−

Cn
j − j

n

)x
.
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Hence cnj+1 is dominated by a Y ∼ Geom
(
Cn

j −j
n

)
random variable. In particular,

E
[(
cnj+1

)2 | T (j)
n

]
≤ E[Y 2] ≤ 2n2

(Cn
j − j)2

By using the tower property of expectation, we compute,

E

[ (
cnj+1

)2
(Cn

j − j)2

∣∣∣∣∣ T (k)
n

]
≤ E

[
1

(Cn
j − j)2

E
[(
cnj+1

)2 ∣∣∣ T (j)
n

] ∣∣∣∣ T (k)
n

]
≤ 2n2E

[
1

(Cn
j − j)2

∣∣∣∣ T (k)
n

]
.

Putting everything together, we obtain the desired statement.

Lemma 5.2.7. We have,

lim sup
n→∞

E[Xn,k] = lim sup
n→∞

E

[
N∑
j=k

E
[

2n2

(Cn
j − j)4

∣∣∣∣ T (k)
n

]]
−−−→
k→∞

0

Remark 5.2.8. This is heuristically clear. Indeed Cn
j ≈ n

1
2 j

1
2 , since n− 1

2Cn
j → Cj, the j’th

point of a PPP of intensity tdt so that Cj ≈ j
1
2 . Thus we expect 1

(Cn
j −j)4

≈ 1
(Cn

j )
4 ≈ 1

n2j2
. In

particular, lim supn→∞ 2n2E[Xn,k] ≈
∑n/e

i=k
2
j2

≈ 2
k
→ 0 as k → ∞.

Proof of Lemma 5.2.7. Recall Cn
j − j is the number of unique elements of Sn(1), . . . , Sn(C

n
j ).

Thus we have, Cn
j − j ≥ 1 and thus 2n2

(Cn
j −j)4

≤ 2n2. In particular for all 1 ≤ m ≤ n we have,

E

[
N∑
j=k

E
[

2n2

(Cn
j − j)4

∣∣∣∣ T (k)
n

]]
≤ E

[
m∑
j=k

E
[

2n2

(Cn
j − j)4

∣∣∣∣ T (k)
n

]]
+ E

[
(N −m)2n2

1{N>m}
]
,

≤
m∑
j=k

E
[

2n2

(Cn
j − j)4

]
+ 2n3P(N > m).

Note that N is typically of order n
e
(a well known fact coming from the birthday paradox

type problems). Hence, we set m = ⌊βn⌋ so that m is of the order n. Fix α > 1. Then,

βn∑
j=k

E
[

2n2

(Cn
j − j)4

]
≤

βn∑
j=k

(
E
[

2n2

(Cn
j − j)4

∣∣∣∣ Cn
j > αj

]
+ 2n2P(Cn

j > αj)

)
,

≤ 2α4

(α− 1)4

βn∑
j=k

(
E
[

n2

(Cn
j )

4

∣∣∣∣ Cn
j > αj

])
+ 2n2

βn∑
j=k

P(Cn
j > αj),

≤ C

βn∑
j=k

E
[

n2

(Cn
j )

4

]
+ 2n2

βn∑
j=k

P(Cn
j > αj)
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Hence we have shown limk→∞ lim supn→∞ E[Xk,n] = 0 if we find α > 1 and β > 1
e
so that,

i) lim
n→∞

2n3P(N > βn) = 0, ii) lim
n→∞

2n2

βn∑
j=k

P(Cn
j > αj) = 0, iii) lim

n→∞

βn∑
j=k

E
[

n2

(Cn
j )

4

]
−−−→
k→∞

0.

Statement i) and ii) follow directly from Lemma 4.2.14. (Statement i) since we have expo-
nential decay of the tail P(N > β) for β > 1

2
and ii) by choosing k ≥ 7). To show iii), recall

if X is a positive discrete random variable taking values 0 < x1 < x2 < . . . then,

E[X] =
∞∑
i=1

(xk − xk−1)P(X > xk−1).

Using this in our setting, together with Lemma 4.2.13, we obtain,

E
[

1

(Cn
j )

4

]
=

∞∑
k=1

(
1

k4
− 1

(k + 1)4

)
P
(

1

(Cn
j )

4
>

1

k4

)
≤

∞∑
k=1

(
1

k4
− 1

(k + 1)4

)
P
(
Cn
j < k

)
≤ 4e

M∑
k=1

k−5

(
k2e

2nj

)j
+

∞∑
k=M+1

(
1

k4
− 1

(k + 1)4

)
,

≤ 4e

(
e

2nj

)j M∑
k=1

k−5+2j +
1

M4
,

≤ 4e

(
e

2nj

)j
M2j−4 +

1

M4

Setting M =
(
2nj
e

) 1
2 shows that E

[
1

(Cn
j )

4

]
≤ C(nj)−2 for some constant C. In particular,

lim
n→∞

βn∑
j=k

E
[

n2

(Cn
j )

4

]
≤ lim

n→∞
C

∞∑
j=k

1

j2
≤ 1

k − 1
−−−→
k→∞

0.

This shows iii) and concludes the proof of Lemma 5.2.7.

In particular, this shows both iii) and iv) of Proposition 2.4.3 and finishes the proof of
Theorem 1.5.2.
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6 Generalization of Tn
We saw for Sn ∈u [n]n−1, the corresponding random tree constructed via the Foata–Fuchs
bijection Tn, converges to the continuum random tree T constructed via stick-breaking. The
tree T has two sources of randomness: the length of the sticks, determined by the PPP of
intensity tdt and the attachment points of the sticks, which was uniform over the already
existing tree. In this section, we construct a tree Tβ ⊂ ℓ1 with a different distribution for
the length of the sticks parametrized by β, and we show this object is also a scaling limit of
discrete random trees constructed by the Foata–Fuchs bijection.

The convergence of n− 1
2Tn to T was a consequence of the scaled repeat points n− 1

2Cn
1 in Sn

converging to a PPP of intensity tdt, and Bn
i being roughly uniform over {1, . . . , Cn

i − 1},
together with tightness arguments. For i on the scale n

1
2 , the probability that Sn(i) is a

repeat is roughly i
n
. This is a good starting point for a new model: what happens to trees

constructed from random sequences Sfn ∈ [n]n−1 where P(Sfn(i) is a repeat) = f
(
i
n

)
, for some

function f : [0, 1] → [0, 1]? In this section, we compute the finite dimensional distributions
for trees constructed from Sfn when f(x) = xβ + o(xβ) as x → 0 for parameter β > 0 and
show tightness for the specific choice f(x) = xβ. We formalize the definition of Sfn first.

Definition 6.0.1. Let f : [0, 1] → [0, 1] and define the random variable Sfn ∈ [n]n−1

as: Sn(1) ∈u [n] and for i ∈ {2, . . . , n− 1},

Sfn(i) ∼

{
Sn(j) with j ∈u {1, . . . , i− 1}, with probability f

(
i
n

)
,

Unif
(
[n] \ {Sn(1), . . . , Sn(i− 1)}

)
, with probability 1− f

(
i
n

)
.

Let Tn,f denote the random tree obtained by applying the Foata–Fuchs bijection to Sfn .

Remark 6.0.2. Conditional on Sfn(i) being a repeat, we let S
f
n(i) ∈u {{Sn(1), . . . , Sn(i−1)}}

(as multiset). This is different from the uniform case, where conditional on Sn(i) being a
repeat, Sn ∈u {Sn(1), . . . , Sn(i − 1)} (as set, i.e. we do not take multiplicity into account).
This change is made to simplify the proof corresponding to Lemma 4.2.11. In this proof, we
condition on {Sn(1), . . . , Sn(a)} having few repeats for all a ∈ [n − 1], else P

(
p(v) ∈ Tn(a)

)
could become too small. Proving P(An) → 0 as n→ ∞ was done in Lemma 4.2.14, however
this proof cannot immediately be generalized to the current case, it fails for β ≤ e

2
− 1.

Instead of adapting the proof, we simply change the sampling. This does not change the

finite dimensional distributions: as we will see, the first k repeats happen at a scale n
β

β+1 .

Thus, for any a > 0, the proportion of repeats in Sn(1), . . . , Sn
(
an

β
β+1
)
goes to zero and

sampling while taking multiplicities into account tends towards sampling uniformly on the
distinct values. This gives intuition why both choices of sampling repeats yield the same finite
dimensional distributions. Only when we prove compactness, and need properties of Sn(i)

with i on a scale larger than n
β

β+1 , does the choice of model impact the proofs. Sampling
repeats uniformly from the multiset {{Sn(1), . . . , Sn(i− 1)}} makes these proofs easier.

We continue with more definitions. We define,

Cn
i = index of i’th repeat in Sfn and Bn

i = min{l ∈ [n] s.t. Sn(l) = Sn(C
n
i )},
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to be the repeat and attachment indices. For notational clarity, we do not denote Cn
i and Bn

i

to depend on choice of f as throughout this section, it is clear that Cn
i , B

n
i refer to Sfn . We

define T (k)
n,f to be the tree obtained from {Sfn(1), . . . , Sfn(Cn

k −1)}. For the measures, let νn be

the uniform probability measure on Tn,f so that νn(A) =
|A|
n

for all A ⊂ Tn,f . Similarly, ν
(k)
n

denotes the uniform probability measure on T (k)
n,f .

In the continuous setting, let 0 < C1 < . . . be the ordered points of a PPP of intensity tβdt
and Bi ∼ Unif([0, Ci]). Let Tβ denote the tree obtained by applying the stick-breaking

construction to the points (Ci, Bi)i∈N and set T (k)
β = ρ([0, Ck]) and µ

(k) = ρ∗λ where λ is the

normalized Lebesgue measure on [0, Ck]. We will show µ(k) converges to some probability
measure µ on Tβ.

The first subsection is dedicated towards showing,

Theorem 6.0.3. For β > 0, let f : [0, 1] → [0, 1] be such that f(x) = xβ + o(xβ) as x → 0.
For any k ∈ N, we have convergence of finite dimensional distributions in the GHP-topology,(

T (k)
n,f , n

− β
β+1dn, ν

(k)
n

)
d−−−→

n→∞

(
T (k)
β , d, µ(k)

)
,

where dn is the graph distance on T (k)
n,f and d is the ℓ1 metric.

Remark 6.0.4. The only condition specified on f is f(x) = xβ + o(xβ) as x → 0. It is not
surprising this suffices to determine the finite dimensional distributions. Indeed, as will be

shown, repeats Cn
i happen at the scale n

β
β+1 . As n

β
β+1/n → 0 as n → ∞, we see that the

repeats Cn
1 < · · · < Cn

k , and thus the trees T (k)
n,f are determined by the behavior of f around 0.

However, it cannot be the case that convergence of the full tree,(
Tn,f , n− β

β+1dn, νn

)
d−−−→

n→∞

(
Tβ, d, µ

)
,

holds for any f with f(x) = xβ + o(xβ). As an example, take f(x) = x1x≤ 1
2
. Almost surely,

the set
{
Sfn(

n
2
), . . . , Sfn(n − 1)

}
does not contain any repeats. Assuming Theorem 6.0.3, we

must scale Tn,f by a factor n− 1
2 which means that the n

2
vertices

{
Sfn(

n
2
), . . . , Sfn(n− 1)

}
are

all on one stick approaching infinite length and n− 1
2Tn,f cannot converge to an almost sure

compact metric space.

In subsection 6.1, we prove Theorem 6.0.3. Then in subsection 6.2 and 6.3, we show that for

the choice f =
(
i
n

)β
, we have,(

Tn,f , n− β
β+1dn, νn

)
d−−−→

n→∞

(
Tβ, d, µ

)
,

In the GHP-topology.

6.1 The Finite Dimensional Distribution

In this section, we prove Theorem 6.0.3. We largely follow the same reasoning as Section 3.
To that end, we aim to show,
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Theorem 6.1.1. With notation as in Definition 6.0.1, we have for all k ∈ N,

n− β
β+1
(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

where C1, . . . , Ck are the first k points in a PPP of intensity tβdt and Bi ∼ Unif([0, Ci]).

To show this, we first prove the following lemma,

Lemma 6.1.2. With notation as above, we have for all 0 < s1 < · · · < sk,

n
kβ
β+1P

(
Cn

1 = ⌊s1n
β

β+1 ⌋, . . . , Cn
k = ⌊skn

β
β+1 ⌋

)
u.c.−−−→
n→∞

fC1,...,Ck
(s1, . . . , sk),

where the convergence is uniform over compact sets and fC1,...,Ck
(s1, . . . , sk) is the pdf of the

first k ordered points of a PPP of intensity tβdt.

Proof. Recall from Lemma 2.2.22 that fC1,...,Ck
(s1, . . . , sk) = sβ1 . . . s

β
ke

− sk
β+1 . We reason by

induction on k.

For the base case, observe Cn
1 = ⌊s1n

β
β+1 ⌋ exactly when index 1 to ⌊s1n

β
β+1 ⌋− 1 of Sn are not

repeats, while index ⌊s1n
β

β+1 ⌋ is a repeat. Since Sfn(i) is a repeat with probability f
(
i
n

)
, we

obtain,

n
β

β+1P
(
Cn

1 = ⌊s1n
β

β+1 ⌋
)
= n

β
β+1f

(
⌊s1n

β
β+1 ⌋
n

) ⌊s1n
β

β+1 ⌋∏
i=2

(
1− f

(
i

n

))
.

Recall f satisfies f(x) = xβ + o(xβ) as x→ 0. Since ⌊s1n
β

β+1 ⌋
n

→ 0, we obtain,

n
β

β+1f

(
⌊s1n

β
β+1 ⌋
n

)
= n

β
β+1

(
⌊s1n

β
β+1 ⌋
n

)β

+ o

n β
β+1

(
⌊s1n

β
β+1 ⌋
n

)β
 ,

= sβ1 + o(1) + o
(
n− β

β+1 ⌊s1n
β

β+1 ⌋
)
,

= sβ1 + o(1),

where the convergence is uniform for s1 in compact sets since ⌊s1n
β

β+1 ⌋
n

→ 0 is uniform over
compact sets. We continue with the product term. From the Taylor expansion of ln(1− x),
we see ln(1− x) = x+O(x2) for x around 0. We substitute x = f

(
i
n

)
, to get,

⌊s1n
β

β+1 ⌋∏
i=2

(
1− f

(
i

n

))
= exp

⌊s1n
β

β+1 ⌋∑
i=2

log

(
1− f

(
i

n

)) ,
= exp

− ⌊s1n
β

β+1 ⌋∑
i=2

f

(
i

n

)
−

⌊s1n
β

β+1 ⌋∑
i=1

O

(
f 2

(
i

n

))
70



We focus on the two sums above separately. For the first sum,

⌊s1n
β

β+1 ⌋∑
i=2

f

(
i

n

)
= −f

(
1

n

)
+

⌊s1n
β

β+1 ⌋∑
i=1

[(
i

n

)β
+ o

((
i

n

)β)]
,

= o(1) + n−β
⌊s1n

β
β+1 ⌋∑

i=1

iβ +

⌊s1n
β

β+1 ⌋∑
i=1

o

((
i

n

)β)
,

= o(1) + n−β

(
⌊s1n

β
β+1 ⌋β+1

β + 1
+O

(
⌊s1n

β
β+1 ⌋β

))
+ o

⌊s1n
β

β+1 ⌋∑
i=1

(
i

n

)β ,

= o(1) +
s1

β + 1
+O

(
n− 1

β

)
+ o

(
⌊s1n

β
β+1 ⌋β+1

nβ

)
,

= o(1) +
s1

β + 1
.

Where the above convergence holds uniformly for s1 in compact set. For the second sum,

⌊s1n
β

β+1 ⌋∑
i=1

O

(
f 2

(
i

n

))
=

⌊s1n
β

β+1 ⌋∑
i=1

O

((
i

n

)2β
)
,

= ⌊s1n
β

β+1 ⌋O

(⌊s1n
β

β+1 ⌋
n

)2β
 ,

= O
(
n− β

β+1

)
,

= o(1).

Again, convergence being uniform for s1 in compact sets. By substituting all intermediate
results, we obtain,

n
β

β+1P
(
Cn

1 = ⌊s1n
β

β+1 ⌋
)
= n

β
β+1f

(
⌊s1n

β
β+1 ⌋
n

) ⌊s1n
β

β+1 ⌋∏
i=2

(
1− f

(
i

n

))
,

=
(
sβ1 + o(1)

)
exp

[
− s1
β + 1

+ o(1)

]
,

which shows the base case of the induction proof. We continue with the induction step. To
ease notation, write,

Cn
k (x) =

{
Cn

1 = ⌊x1n
β

β+1 ⌋, . . . , Cn
k = ⌊xkn

β
β+1 ⌋

}
, where x = (x1, . . . , xl) for l ≥ k,

so the induction hypothesis reads n
kβ
β+1P(Cn

k (s))
u.c.−−−→
n→∞

sβ1 . . . s
β
ke

− sk
β+1 . Since,

n
(k+1)β
β+1 P

(
Ck+1 = ⌊sk+1n

β
β+1 ⌋, Cn

k (s)
)
= n

β
β+1P

(
Cn
k+1 = ⌊sk+1n

β
β+1 ⌋

∣∣ Cn
k (s)

)
n

kβ
β+1P (Cn

k (s)) ,
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it suffices to show,

n
β

β+1P
(
Cn
k+1 = ⌊sk+1n

β
β+1 ⌋ | Cn

k (s)
)

u.c.−−−→
n→∞

sβk+1 exp

(
−
s2k+1 − s2k
β + 1

)
.

The event
{
Cn
k+1 = ⌊sk+1n

β
β+1 ⌋

}
given Cn

k (s) occurs precisely when Sfn contains no repeats

between indices ⌊skn
β

β+1 ⌋ + 1 and ⌊sk+1n
β

β+1 ⌋ − 1, while index ⌊sk+1n
β

β+1 ⌋ is a repeat. We

write In = {⌊sk⌋n
β

β+1 + 1, . . . , ⌊sk+1n
β

β+1 ⌋ − 1}. Then,

n
β

β+1P
(
Cn
k+1 = ⌊sk+1n

β
β+1 ⌋ | Cn

k (s)
)
= n

β
β+1f

(
⌊sk+1n

β
β+1 ⌋

n

)∏
i=In

(
1− f

(
i

n

))
,

= (sk+1 + o(1)) exp

[
−
∑
i∈In

f

(
i

n

)
+O

(
f 2

(
i

n

))]
,

= (sk+1 + o(1)) exp

[
−
sβ+1
k+1 − sβ+1

k

β + 1
+ o(1)

]
,

where we omit computations as they follow the same reasoning as the base case. This
concludes the proof.

We continue with the proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. It suffices to show,

i) P
(
Cn

1 ≤ s1n
β

β+1 , . . . , Cn
k ≤ skn

β
β+1
)
−−−→
n→∞

P
(
C1 ≤ s1, . . . , Ck ≤ sk

)
,

ii) P(Bn
1 ≤ t1C

n
1 , . . . , B

n
k ≤ tkC

n
k | Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2 ),

−−−→
n→∞

P
(
B1 ≤ t1C1, . . . , Bk ≤ tkCk | C1 ≤ s1, . . . , Ck ≤ sk

)
Statement i) follows from identical reasoning as the proof of Lemma 3.1.5. Statement ii) is

shown by copying the proof of Lemma 3.1.7 and 3.1.5 but replacing n− 1
2 with n− β

β+1 .

Hence we see that the rescaled first k repeat and attachment points Cn
i and Bn

i converge to Ci
and Bi where 0 < C1 < · · · < Ck are the first k ordered points of a PPP with intensity tβdt.
The result of Theorem 6.0.3 is immediate.

Proof of Theorem 6.0.3. The result immediately follows from the convergence,

n− β
β+1
(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

together with the work in Section 3.2 and Section 3.3 as seen in Remark 3.3.4.

Thus we have shown that for any f : [0, 1] → [0, 1] with f(x) = xβ + o(xβ) as x→ 0, we have
convergence of finite dimensional distributions,(

T (k)
n,f , n

− β
β+1dn, ν

(k)
n

)
d−−−→

n→∞

(
T (k)
β , d, µ(k)

)
,
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in the GHP-topology. As seen in Remark 6.0.4, setting f(x) = xβ + o(xβ) as x → 0 is not

sufficient for tightness of
(
n− β

β+1Tn,f
)
n∈N. We will show that for the choice f(x) = xβ, we do

have tightness of
(
n− β

β+1Tn,f
)
n∈N. In particular,

Theorem 6.1.3. Let f(x) = xβ. Then,(
Tn,f , n− β

β+1dn, νn

)
d−−−→

n→∞

(
Tβ, d, µ

)
,

convergence being in the GHP-topology.

Remark 6.1.4. Throughout the following two subsections, we write Tn ≡ Tn,f for f(x) = xβ

and T ≡ Tβ. By analogous reasoning to the proof of Proposition 2.4.3, we have shown
Theorem 6.1.3 upon proving,

i) lim
t→∞

P (dH (T (t), T ) > ϵ) = 0, ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

β
β+1 ), Tn

)
> ϵn

β
β+1

)
= 0,

iii) lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0, iv) lim

k→∞
lim sup
n→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0

We show i) and ii) in the next subsection and iii) and iv) in Subsection 6.3.

6.2 Tightness of
(
Tn,f , n−

1
2dn
)
n∈N

6.2.1 compactness of Tβ
In this section, we show i), that is,

Theorem 6.2.1. We have,

lim
t→∞

P (dH (T (t), T ) > ϵ) = 0.

The proof will be mostly identical to Section 4.1. We focus on highlighting the differences
rather than proving this result from scratch. By following identical reasoning to that of the
proof of Lemma 4.1.2 and Corollary 4.1.3, we immediately obtain,

Lemma 6.2.2. Theorem 6.2.1 is proven upon finding ϵi(t) : [0,∞) → [0,∞) for which,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
= 0.

We aim to bound P
(
dH
(
T (a), T (2a)

)
> c
)
for which we first bound P

(
dH
(
T (a), ρ(s)

)
> c
)
,

for some s ∈ [a, 2a].

Lemma 6.2.3. Fix a, c > 0 and s ∈ [a, 2a]. Then,

P(dH(T (a), T (2a)) > c) ≤ exp

(
−ca

β

2

)
.
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Proof. Similar to the proof of Lemma 4.1.5, we sample the random variables (Ci, Bi) jointly
from one PPP on a subset of R2. In the original Lemma, we took a PPP of intensity 1 on the
wedge {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y ≤ x} as the point process can be written as

∑∞
i=1 δ(Ci,Bi)

with 0 < C1 < C2 < . . . ordered points of a PPP of intensity tdt and Bi ∼ Unif([0, Ci]).

In this proof, we set η to be a homogeneous PPP of intensity 1 in,

Tβ = {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y ≤ xβ}.

Write η =
∑∞

i=1 δ(Ci,B′
i)
with 0 < C1 < . . . It follows from Example 2.2.20 that 0 < C1 < . . .

are the ordered points of a PPP of intensity tβdt. However, note that B′
i ∼ Unif

(
[0, (Ci)

β]
)

has the wrong distribution to represent the attachment points. Thus we set Bi = (Ci)
1−βB′

i

so that Bi ∼ Unif([0, Ci]).

Observe that branch i is attached to T (2a) at point ρ(Bi) = ρ
(
B′
i(Ci)

1−β). In Figure 28,
we highlight in red the region where points of η in that region imply the corresponding stick
is attached to T (a). Note that the upper boundary of this shape is concave and decreasing
for β < 1 and concave increasing for β > 1.

y = xβ

y = xβ−1a

(a, aβ)

Figure 28: Attachment to T (a) for β > 1.

As in Remark 4.1.6, we may find the subset S ⊂ [a, 2a] such that ρ(S) corresponds to the
path from ρ(s) to T (a). We define,

Definition 6.2.4. Let η be a PPP of intensity 1 in Tβ, set η
′ = η+ δ(a,aβ). For s > a, define,

p1 ≡
(
p1x(s), p

1
y(s)

)
= argmax

(x,y)∈η′: x≤s
x, d1 ≡ d1(s) = s− p1x(s) and s2 ≡ s2(s) =

p1y(s)

(p1x(s))
β−1

.

where p1 is well defined as η contains no accumulation points almost surely and (a, aβ) ∈ η′.
Whenever si−1 > a, we set,

pi ≡ pi(s) = p(pi−1(s)), di(s) ≡ di = si − pix(s) and si+1 =
piy(s)

(pix(s))
β−1

.

74



Set N = min{i ∈ N : si+1 ≤ a} for the number of sticks on the path from ρ(s) to T (a) and
define S =

⋃N
i=1[p

i
x(s), si]. As in Lemma 4.1.8, we also have that the path from ρ(s) to T (a)

is given by ρ(S). We adjust Remark 4.1.9 to the new setting.

i) dH(T (a), ρ(s)) > c given η happens exactly when λ(S) = d1 + · · · + dN > c where λ is
the Lebesgue measure on R.

ii) By removing points from η in {(x, y) : a < x ≤ 2a, 0 ≤ y ≤ caβ−1}, we cannot decrease
dH(T (a), ρ(s)).

Set η∗ = {(x, y) ∈ η : x ≤ a or y > xβ−1a} and let S∗ be defined using Definition 6.2.4
but with η∗ instead of η and set S∗

j = {x ∈ S : x ≥ j}. Similar to Proof 4.1, we see

that dH
(
T (a), ρ(s)

)
> c implies that λ(S∗) > c. Furthermore, if η′ contains any point in the

region S∗
j × [0,minx∈[a,2a] x

β−1a], then dH
(
T (a), ρ(s)

)
< c. Note that minx∈[a,2a] x

β−1a ≤ 1
2
aβ,

and thus we find

P
(
dH
(
T (a), ρ(s)

)
> c
)
≤ 1{λ(S∗)>j}P

(
η
(
S∗
j × [0, min

x∈[a,2a]
xβ−1a]

)
= 0
)
≤ e−

cαβ

2 ,

where we may condition on λ(S∗) > c since otherwise dH(T (a), ρ(s)) < c. This concludes
the desired result. We give an illustration in Figure 29 where β < 1 and λ(S∗) > c.

x = s∗1x = s∗2x = s∗3

d∗1
d∗2

d∗3

Figure 29: Visualization of area where η should be void of points. In red, we denote the
area {(x, y) : x ∈ S∗

j and 0 ≤ y ≤ xβ−1a} and {(x, y) : x ∈ S∗ \ S∗
j and 0 ≤ y ≤ xβ−1a} is

denoted in green. In particular, if η were to contain any point in the red area, the distance
dH
(
T (a), ρ(s)

)
would be less than c. The height of this area is at least minx∈[a,2a] x

β−1a ≤ aβ

2

and the with of the sum of red rectangles is λ(S∗
j ) = c.

We upgrade the bound on P
(
dH
(
T (a), ρ(s)

))
> c to a bound on P

(
dH
(
T (a), T (2a)

)
> c
)

using the same trick as in Lemma 4.1.13.
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Lemma 6.2.5. Let a, c > 0. We have,

P
(
dH
(
T (a), T (2a)

)
> c
)
≤ 2a

c
exp

(
−ca

β

4

)
Proof. Analogous to that of 4.1.13

Lastly, we show that i) and ii) in Lemma 6.2.2 hold.

Proof of Theorem 6.2.1. By substituting a = 2it and c = ϵi in Lemma 6.2.5, we obtain,

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
≤

∞∑
i=0

2i+1t

ϵi
exp

(
−ϵi2iβ−2tβ

)
.

We set ϵi = (i+ 1 + iβ)22−iβt−
β
2 and simplify under the assumption that t

β
2 > ln(2).

∞∑
i=0

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
≤

∞∑
i=0

2(i+1+iβ)+iβt1+
β
2

(i+ 1 + iβ)
exp

(
−(i+ 1 + iβ)tβ−

β
2

)
,

≤ t1+
β
2

∞∑
i=0

exp
(
(i+ 1 + iβ)

(
ln(2)− t

β
2

))
,

≤ t1+
β
2

∞∑
i=0

exp
(
ln(2)− t

β
2

)i+1
,

≤ t1+
β
2

2 exp(−tβ2 )
1− 2 exp(−tβ2 )

−−−→
t→∞

0.

This verifies ii) of Lemma 6.2.2. To verify i), observe,

∞∑
i=0

ϵi = t−
β
2

∞∑
i=0

(i+ 1 + iβ)22−iβ ≤ t−
β
2
4(1 + β)

(1− 2−β)2
−−−→
t→∞

0.

This verifies condition i) and ii) and in turn proves Theorem 6.2.1 finishing this section.

6.2.2 Compactness of n− 1
2Tn,f

In this section, we aim to show ii) of Remark 6.1.4. That is,

Theorem 6.2.6. for all ϵ > 0 we have,

ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵn

β
β+1

)
= 0.

The proof of Theorem 6.2.6 closely mimics the reasoning in Subsection 4.2. However, the
proof of Lemma 4.2.11 heavily relied on the uniform sampling of sequence Sn. As S

f
n is not

uniform in [n]n−1, we have to use a new approach for proving the analogous lemma in the
current setting.

To ease notation, we write Sn ≡ Sfn throughout this section.
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Lemma 6.2.7. Theorem 6.2.6 is shown upon finding ϵi(t) : [0,∞) → [0,∞) such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

lim sup
n→∞

∞∑
i=0

P
(
dH
(
Tn(2itn

β
β+1 ), Tn(2i+1tn

β
β+1 )

)
> ϵin

β
β+1
)
= 0.

Proof. Analogous to the reasoning in Lemma 4.2.4 and Corollary 4.2.5.

Next, we bound the distance from a vertex vs ∈ Tn(2a)\Tn(a) to tree Tn(a).

Lemma 6.2.8. Fix a ∈ N and s ∈ {a + 1, . . . , 2a}. Let vs ∈ Tn(2a) be the vertex corre-
sponding to Sn(s). Then,

P
(
dH
(
Tn(a), vs

)
> c
)
≤ exp

(
− caβ

2nβ

)
.

Proof. Recall that pk(v) denotes the label of the k’th parent of vertex v ∈ Tn and,

dH
(
Tn(a), vs

)
≤ min

k∈N

{
pk(vs) ∈ {Sn(1), . . . , Sn(a)}

}
.

Instead of sampling their vertices pk(vs) ∈ T (2a), we iteratively sample their indices in Sn.
We define,

Q(s) =

{
s− 1 if Sn(s) is not a repeat,

mink∈N{Sn(k) = Sn(J)} with J ∈u {1, . . . , s− 1} if Sn(s) is a repeat,

and inductively set Qk(s) = Q(Qk−1(s)). Note that pk(vs)
d
= Sn(Q

k(s)), since Qk(s) is the
stochastic process of tracking the index of pk(vs). In particular, we have,

dH
(
T (a), vs

)
≤ min

k∈N

{
Qk(s) ≤ a

}
.

Fix k ∈ N, we aim to lower bound P
(
Qk(s) ≤ a

∣∣ s,Q(s), . . . , Qk−1(s)
)
. Assume Qk−1(s) > a

as otherwise Qk(s) ≤ a is deterministically true. We make two observation about the distri-
bution of Qk(s) conditional on if Sn(Q

k−1(s)) is a repeat or not.

i) If Sn(Q
k−1(s)) is not a repeat, then Qk(s) = Qk−1(s)− 1 > a (unless Qk−1(s) = a+ 1).

ii) If Sn(Q
k−1(s)) is a repeat, then deterministicallyQk(s) ≤ J where J ∈u {1, . . . , Qk−1(s)}.

Both the probability of Sn(Q
k−1(s)) being a repeat conditional on Qk−1(s) > a and the

distribution of J (which bounds qk(s) from below) only depend on. Specifically,

i) P
(
Sn(Q

k−1(s)) is a repeat
∣∣ s,Q(s), . . . , Qk−1(s)

)
=

(
Qk−1(s)

n

)β
≥
(a
n

)β
,

ii) P
(
Qk(s) ≤ a

∣∣ s,Q(s), . . . , Qk−1(s) and Sn(Q
k−1(s)) is a repeat

)
≥ a

Qk−1(s)− 1
≥ 1

2
,
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where the last inequality follows since a < Qk−1(S) ≤ 2a. We combine both bounds to
obtain,

P
(
Qk(s) ≤ a

∣∣ s,Q(s), . . . , Qk−1(s)
)
≥ aβ

2nβ
.

Putting all results together, we find,

P
(
dH
(
Tn(a), vs

)
> c
)
≤ P

(
min
k∈Z

{Qk(s) ≤ a} > c
)
,

≤
(
1−

(
aβ

2nβ

))c
,

≤ exp

(
− caβ

2nβ

)
,

which is the desired result.

We upgrade this result to a bound on P
(
dH
(
Tn(a), Tn(2a)

)
> c
)
using the exact same proof

as Lemma 4.2.12.

Lemma 6.2.9. Let a, c ∈ N. Then we have,

P
(
dH
(
Tn(a), Tn(2a)

)
> c
)
≤ 2a

c
exp

(
− caβ

4nβ

)
.

Now we are in a position to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. We substitute a = 2itn
β

β+1 and c = ϵin
β

β+1 into the result of Lemma
6.2.5 and simplify to obtain,

∞∑
i=0

P
(
dH
(
Tn(2itn

β
β+1 ), Tn(2i+1tn

β
β+1 )

)
> ϵin

β
β+1
)
≤

∞∑
i=0

2i+1t

ϵi
exp

(
−ϵi2iβ−2tβ

)
.

Thus the criteria in Lemma 6.2.7 are translated into finding ϵi(t) : [0,∞) → [0,∞) for which,

lim
t→∞

∞∑
i=0

ϵi = 0 and lim
t→∞

∞∑
i=0

2i+1t

ϵi
exp

(
−ϵi2iβ−2tβ

)
= 0.

These exactly coincide with the criteria in Lemma 6.2.2, which were shown to hold in Proof

6.2.1 by choosing ϵi = (i+ 1 + iβ)22−iβt−
β
2 .

6.3 Tightness of the Measures

In this section, we show iii) and iv) of Remark 6.1.4. We start with iii) which follows
identical reasoning to Section 5.1.
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6.3.1 Convergence Measures on the Continuous Tree

In this section, we aim to show,

Theorem 6.3.1. For all ϵ > 0, we have,

lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0.

Recall that (P(ℓ1), dP ) is Polish. Hence it is enough to show that µ(k) is Cauchy in probability.
Recall the definition of A↑.

Definition 6.3.2. For A ⊂ T (k), let A↑ = π−1
k (A)∩T , with πk : ℓ

1 → Rk the projection map.
Observe that A↑ consists of those points whose path to T (k) ends in A.

Lemma 5.1.4 carries directly over to our current more general setting. (Intuitively, the proof
only uses that branch j attaches to subset A ⊂ T (j) with probability µ(j)(A). This of course
is not changed by changing the distribution of the stick lengths).

Lemma 6.3.3. Let A ⊂ T (k). Then µ(j)(A↑) is a martingale for j ≥ k in filtration σ(T (j)).

In particular, this ensures that for j,m large enough, |µ(j)(A↑)−µ(m)(A↑)| < ϵ almost surely.
We now proof Theorem 6.3.1

Proof of Theorem 6.3.1. Fix ϵ > 0. From Theorem 6.2.1, we may takeK large enough so that
P
(
dH
(
T (K), T

)
> ϵ
)
< ϵ. Condition on T (K) and Let J1, . . . , JNϵ be the smallest partition

of T (K) of sets with diameter at most ϵ. On event E = {dH
(
T (K), T

)
> ϵ}, we have that

J↑
1 ∩ T (j), . . . , J↑

Nϵ
∩ T (j) forms a partition of T (j) of sets of diameter at most 3ϵ. Hence, via

the exact same reasoning as the proof of Theorem 5.1.6, we get for all δ, b > 0,

P
(
dP (µ

(j), µ(m)) ≥ δNϵ + 3ϵ
∣∣ T (K)

)
,

≤
Nϵ∑
i=1

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| > δ

∣∣∣ T (K)
)
1{Nϵ≤b} + 1{Nϵ>b} + 1{Ec}.

By taking expectations, and setting δ = ϵ
Nϵ
, this turns into,

P(dP (µ(j), µ(m)) ≥ 4ϵ) ≤
b∑
i=1

P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| >

ϵ

b

)
+ P(Nϵ > b) + ϵ.

Given thatNϵ is the least number of sets of diameter ϵ needed to partition T (K), and T (K) ⊂ T
is compact almost surely, we can make P(Nϵ > b) arbitrarily small with finite b. This in turn

means that P
(
|µ(j)(J↑

i )− µ(m)(J↑
i )| > ϵ

b

)
can be made arbitrarily small since µ(j)(J↑

i ) is a

bounded martingale. It follows that P(dP (µ(j), µ(m)) ≥ 4ϵ) is arbitrarily small for n,m large
enough. Hence

(
µ(j)
)
is Cauchy in probability, which shows Theorem 6.3.1.

79



6.3.2 Convergence Measure on the Discrete Tree

In this section, we show iv) of Remark 6.1.4. That is,

Theorem 6.3.4. For all ϵ > 0, we have,

lim
k→∞

lim sup
n→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0.

We follow largely the reasoning in Section 5.2. However, the reasoning in this section turns out
to be easier as the probability of Sfn(i) being a repeat is given by f

(
i
n

)
which is independent of

the number of repeats that occoured in Sfn(1), . . . , S
f
n(i−1). This was different in Section 5.2,

where uniform sampling of sequence Sn meant that P
(
Sn(i) is a repeat

)
= |{Sn(1),...,Sn(i−1)|

n

which depends on the number of repeats in Sn(1), . . . , Sn(i− 1).

Recall that for A ⊂ T (k)
n , we define A↑ ⊂ Tn to be A together with all vertices v ∈ Tn \ T (k)

n

for which the path from v to T (k) ends in A. We have,

Lemma 6.3.5. Let A ⊂ T (k)
n . For j ≥ k, ν

(j)
n (A↑) is a martingale in filtration Fj = σ(T (j)

n ).

Proof. This follows from the same reasoning used to prove Lemma 5.2.2.

Lemma 6.3.6. For A ⊂ T (k)
n , we have,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ Xn,k

C2
=

1

C2

N∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]
,

where N denotes the random number of branches of Tn. Note that Xn,k is a random variable.

Proof. This proof is largely the same as that of Lemma 5.2.6. We focus on the differences.
Via identical reasoning, we obtain,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ 1

C2

N∑
j=k

E
[
(cnj+1)

2

(Cn
j )

2

∣∣∣∣ T (k)
n

]
,

with N being the random number of sticks in Tn and cnj = Cn
j −Cn

j−1. Observe that cnj+1 > x

given T (j)
n happens precisely when Sfn(C

n
j + 1), . . . , Sfn(C

n
j + x) are all not repeats. This

happens with probability,

P
(
cnj+1 > x

∣∣ T (j)
n

)
=

x∏
i=1

(
1−

(
Cn
j + x

n

)β)
≤

(
1−

(
Cn
j

n

)β)x

,

and thus cnj+1 | T
(j)
n is dominated by a Y ∼ Geom

((
Cn

j

n

)β)
random variable. In particular,

this means,

E
[(
cnj+1

)2 | T (j)
n

]
≤ E[Y 2] ≤ 2n2β

(Cn
j )

2β
.
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By using the tower property of expectation, we obtain,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ 1

C2

N∑
j=k

E
[
(cnj+1)

2

(Cn
j )

2

∣∣∣∣ T (k)
n

]
,

≤ 1

C2

N∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]
,

as desired.

We continue with showing lim supn→∞ E
[
Xn,k

]
→ 0 as k → ∞.

Lemma 6.3.7. We have,

lim sup
n→∞

E

[
N∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]]
−−−→
k→∞

0.

Proof. We have N ≤ n as a tree with n vertices can have at most n branches. Thus,

N∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]
≤

n∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]
,

where we set Cn
j = n for j > N . Next, observe that,

P(Cn
j < x) ≤ P(X ≥ j) where X ∼ Binom

(
x,
(x
n

)β)
.

Indeed, Cn
j < x can only happen if Sfn(1), . . . , S

f
n(x) contains at least j repeats. The bound

follows since P(Sfn(i) is a repeat) ≤
(
x
n

)β
. By using a Chernoff bound for the binomial

distribution with µ = xβ+1

nβ and (1 + δ)µ = j, (valid for δ > −1), we obtain,

P
(
Cn
j ≤ x

)
≤ P(X ≥ j) ≤

(
eδ

(1 + δ)1+δ

)µ
≤
(
eµ

j

)j
=

(
exβ+1

jnβ

)j
.

Using this, we compute,

E
[

1

(Cn
j )

2β+2

]
≤

∞∑
k=1

(
1

k2β+2
− 1

(k + 1)2β+2

)
P(Cn

j < k),

≤ C
M∑
k=1

k−2β−3

(
ekβ+1

jnβ

)j
+

∞∑
k=M+1

(
1

k2β+2
− 1

(k + 1)2β+2

)
,

≤ C

(
e

jnβ

)j M∑
k=1

kj(β+1)−2β−3 +M−2β−2,

≤ C

(
e

jnβ

)j (
Mβ+1

)(j−2)
+
(
M (β+1)

)−2
.
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By choosing Mβ+1 = nβje−1, we obtain,

E
[

1

(Cn
j )

2β+2

]
≤ Cj−2n−2β,

for some constant C. By putting everything together, we obtain,

lim sup
n→∞

E

[
N∑
j=k

E
[

2n2β

(Cn
j )

2β+2

∣∣∣∣ T (k)
n

]]
≤ lim sup

n→∞

n∑
j=k

E
[

2n2β

(Cn
j )

2β+2

]
≤ C

∞∑
j=k

1

j2
.

This concludes the proof as the last sum goes to zero as k → ∞.

Theorem 6.3.4 can now be shown following identical steps as the proof of Theorem 5.2.5.
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7 A Threshold for Compactness

In Section 6, we saw that sampling Sn non-uniformly by setting P(Sn(i)) = f
(
i
n

)
for some f

allows for convergence to trees T where the stick lengths are determined by a PPP of in-
tensity tβdt. Importantly, the stick lengths obtained from these PPP’s still decrease quick
enough to be able to show tightness of

(
Tn, n− 1

2 , νn
)
n∈N in the GHP-topology (Section 6.2

and Section 6.3). In this section, we find where this tightness argument breaks down. We do
this by considering functions of the form fn(i) : {2, . . . , n} → [0, 1]. More specifically, we use

f(i, n) ≡ fγn (i) = lnγ(in− 1
2 + 1)n− 1

2 ,

parametrized by γ > 0 and we let,

Sn ≡ Sfn(i) ∼

{
Sn(j) where j ∈u {1, . . . , i− 1}, with probability f(i, n),

Unif
(
[n] \ {Sn(1), . . . , Sn(i− 1)}

)
, with probability 1− f(i, n).

Let Tn ≡ Tn,f be the random tree constructed by applying the Foata–Fuchs bijection to Sn.

On the continuous side, we let η be a PPP on R≥0 of intensity lnγ(t + 1)dt and let T ≡ Tγ
be the continuum random tree constructed from applying the stick-breaking construction to
sticks with the points in η as end points.

The definitions of Cn
i , B

n
i , Ci, Bi, T (k)

n , T (k), ν
(k)
n , µ(k), νn and µ are taken as in Definition 6.0.1

but applied to the trees Tn and T in the current setting. The aim of this section is to show.

Theorem 7.0.1. For γ > 1, we have convergence in the GHP-topology,(
Tn, n− 1

2dn, νn
) d−−−→

n→∞

(
T , d, µ

)
.

If γ ≤ 1, then T is not compact almost surely.

Remark 7.0.2. It should be noted that T not being compact automatically implies that we
cannot have convergence in the GHP-topology as the metric dGHP is defined on the space of
compact measure metric spaces (up to isometries).

We start this section by showing convergence of finite dimensional distributions.

Theorem 7.0.3. For all k ∈ N and γ > 0, we have convergence in the GHP-topology,(
T (k)
n , n− 1

2dn, ν
(k)
n

) d−−−→
n→∞

(
T (k), d, µ(k)

)
,

Remark 7.0.4. Observe that this result is independent of γ > 1. Intuitively, the convergence
of n− 1

2Tn to T fails for γ ≤ 1 because the sticks do not become short quick enough (in fact,
we will see they do not become short at all). Thus, the problem lies in showing tightness,
not the finite dimensional distributions.

Remark 7.0.5. By the same reasoning as Proposition 2.4.3, Theorem 7.0.1 is proven by
combining Theorem 7.0.3 together with the statements below.
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For all ϵ > 0 and γ > 1, we have,

i) lim
t→∞

P
(
dH(T (t), T ) > ϵ

)
, ii) lim

t→∞
lim sup
n→∞

P
(
dH(Tn(tn1/2), Tn) > ϵ

)
,

iii) lim
k→∞

P
(
dP (µ

(k), µ) > ϵ
)
, iv) lim

k→∞
lim sup
n→∞

P
(
dP (ν

(k)
n , νn) > ϵ

)
.

7.1 Finite Dimensional Distribution

In this Section, we prove 7.0.3. For this, we aim to prove the following result.

Theorem 7.1.1. Take Cn
i and Bn

i as above. For all k ∈ N, we have,

n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

where C1 < · · · < Ck are the first k points of a PPP with intensity lnγ(t + 1)dt on R≥0 and
Bi ∼ Unif([0, Ci]).

Before proving the above theorem, we introduce three lemmas. Throughout the following
lemmas, we write for t = (t1, . . . , tl) and x = (x1, . . . , xl), with l ≥ k,

i) Bk(t) for Bn
1 ≤ t1C

n
1 , . . . , B

n
k ≤ tkC

n
k and ii) Ck(x) for Cn

1 = ⌊x1n
1
2 ⌋, . . . , Cn

k = ⌊xkn
1
2 ⌋,

to lighten notation.

Lemma 7.1.2. For arbitrary k ∈ Z≥0, we have,

n
k
2P
(
Cn

1 = ⌊x1n
1
2 ⌋, . . . , Cn

k = ⌊xkn
1
2 ⌋
)

u.c.−−−→
n→∞

fC1,...,Ck
(x1, . . . , xk),

where fC1,...,Ck
(x1, . . . , xk) is the pdf of the first k points of a PPP of intensity lnγ(t+ 1)dt.

Remark 7.1.3. In Section 3 and 6.1, we used Taylor expansions for approximations. Here,
this also is the first step. Furthermore, f(i, n) is chosen such that we can use Riemann sums
to pass to the limit.

Proof. We know fC1,...,Ck
(x1, . . . , xk) =

∏k
i=1 ln

γ(xi + 1) exp
(
−
∫ xk
0

lnγ(t+ 1)dt
)
, as seen in

Lemma 2.2.22. We proceed by induction on k. For k = 1, we obtain,

n
1
2P(Cn

1 = ⌊x1n
1
2 ⌋) = n

1
2 lnγ

(
⌊x1n

1
2 ⌋n− 1

2 + 1
)
n− 1

2

⌊x1n
1
2 ⌋−1∏

i=2

(
1− lnγ(in− 1

2 + 1)n− 1
2

)
,

= lnγ(x1 + 1) exp

⌊x1n
1
2 ⌋−1∑

i=2

ln
(
1− lnγ(in− 1

2 + 1)n− 1
2

)+ o(1),

= lnγ(x1 + 1) exp

o(1)− ⌊x1n
1
2 ⌋−1∑

i=2

lnγ
(
in− 1

2 + 1
)
n− 1

2

 ,

= lnγ(x1 + 1) exp

(
o(1)−

∫ x1

0

lnγ(t+ 1)dt

)
+ o(1).
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with o(1) denotes being uniformly small on compact sets. We used a first order approximation

of ln(1−x) to go from the second to third line and used that
∑⌊x1n

1
2 ⌋−1

i=2 lnγ
(
in− 1

2 + 1
)
n− 1

2 is

a Riemann sum for
∫ x1
0

lnγ(t+ 1)dt with step size n− 1
2 . The terms i = 1 and i = ⌊x1n

1
2 ⌋ − 1

are missing, but both terms are o(1), and hence do not pose problems. Since lnγ(t + 1)
is continuous for t ≥ 0, the convergence to the integral is uniform on compact sets. This
establishes the base case.

We continue with the induction step. Using the induction hypothesis, we obtain,

n
k+1
n P
(
Ck+1(x)

)
= n

1
2P
(
Cn
k+1 = ⌊xk+1n

1
2 ⌋
∣∣ Ck(x)

)
· n

k
2P
(
Ck(x)

)
,

= n
1
2P
(
Cn
k+1 = ⌊xk+1n

1
2 ⌋
∣∣ Ck(x)

)( k∏
i=1

lnγ(xi + 1) exp

(
−
∫ xk

0

lnγ(t+ 1)dt

)
+ o(1)

)
.

with o(1) denoting uniformly small for (x1, . . . , xk) in compact sets. Thus it suffices to show,

n
1
2P
(
Cn
k+1 = ⌊xk+1n

1
2 ⌋
∣∣ Ck(x)

) u.c.−−−→
n→∞

lnγ
(
xk+1 + 1

)
exp

(
−
∫ xk+1

xk

lnγ(t+ 1)dt

)
.

This is verified by following the same steps as in the base case,

n
1
2P
(
Cn
k+1 = ⌊xk+1n

1
2 ⌋
∣∣ Ck(x)

)
,

= n
1
2 ln
(
⌊xk+1n

1
2 ⌋n− 1

2 + 1
)γ
n− 1

2

⌊xk+1n
1
2 ⌋−1∏

i=⌊skn
1
2 ⌋+1

(
1− ln

(
in− 1

2 + 1
)γ
n− 1

2

)
,

=
(
ln(xk+1 + 1)γ + o(1)

)
exp

o(1)− ⌊xk+1n
1
2 ⌋∑

i=⌊skn
1
2+1⌋

ln
(
in− 1

2 + 1
)γ
n− 1

2

 ,

= ln(xk+1 + 1)γ exp

(
−
∫ xk+1

xk

ln(t+ 1)γdt

)
+ o(1),

where convergence is uniformly small on compact sets. This concludes the proof.

Lemma 7.1.4. We have uniform convergence over compact sets,

P
(
Bn

1 ≤ t1C
n
1 , . . . , B

n
k ≤ tkC

n
k

∣∣∣ Cn
1 = ⌊x1n

1
2 ⌋, . . . , Cn

k = ⌊xkn
1
2 ⌋
)

u.c.−−−→
n→∞

k∏
i=1

ti.

Proof. This proof is identical to Lemma 3.1.6, with only a small modification for sampling
repeat Sn(i) uniformly in {{Sn(1), . . . , Sn(i− 1)}} instead of in {Sn(1), . . . , Sn(i− 1)}.

Proof of Theorem 7.1.1. It suffices to show,

i) P
(
Cn

1 ≤ s1n
γ

γ+1 , . . . , Cn
k ≤ skn

γ
γ+1
)
−−−→
n→∞

P
(
C1 ≤ s1, . . . , Ck ≤ sk

)
,

ii) P(Bn
1 ≤ t1C

n
1 , . . . , B

n
k ≤ tkC

n
k | Cn

1 ≤ s1n
1
2 , . . . , Cn

k ≤ skn
1
2 ),

−−−→
n→∞

P
(
B1 ≤ t1C1, . . . , Bk ≤ tkCk | C1 ≤ s1, . . . , Ck ≤ sk

)
85



Statement i) follows from identical reasoning as the proof of Lemma 3.1.5. Statement ii)
follows from a similar proof to that of Lemma 3.1.7.

As seen in Remark 3.3.4, having convergence of scaled repeat points,

n− 1
2

(
Cn

1 , . . . , C
n
k , B

n
1 , . . . , B

n
k

) d−−−→
n→∞

(
C1, . . . , Ck, B1, . . . , Bk

)
,

implies that the respective partial trees T (k)
n and T (k) and uniform measures ν

(k)
n and µ(k) must

also converge in distribution in the GHP-topology. Theorem 7.0.3 follows immediately.

7.2 Where Tγ Fails to Be Compact

In this section, we show that γ ≤ 1 implies that T is not compact almost surely, by showing
that T is constructed from an infinite number of sticks of length exceeding 1, or that T
contains a stick of infinite length.

Let η be a PPP of intensity lnγ(t+1) and for n ∈ N. Define event An =
{
η([n− 1, n)) = 0

}
.

Note that,

P(An) = exp

(
−
∫ n

n−1

ln(t+ 1)γdt

)
≥ exp (− ln(n+ 1)γ) .

Hence
∑∞

n=1 P(An) ≥
∑∞

n=2 exp(− ln(n)γ) diverges whenever γ ∈ (0, 1]. Given that the events
(An)n≥1 are independent, we may apply the Borel–Cantelli lemma, to obtain that infinitely
many events An must occur with probability 1. We conclude there must be a stick of infinite
length, or infinitely many sticks of length exceeding 1.

In the first case, T is clearly not compact. In the second case, let I = {i ∈ N : Ci−Ci−1 ≥ 1}
be the set of indices of the sticks with length exceeding 1. It follows that |I| = ∞ almost
surely. Define the sequence {ρ(Ci)}i∈I ⊂ T . For any i < j ∈ N, we see dH

(
ρ(Ci), ρ(Cj)

)
≥ 1

as the path from ρ(Cj) to ρ(Ci) must necessarily traverse all of ρ([Cj−1, Cj]). Hence {ρ(Ci)}i∈I
cannot have a convergent subsequence and T is not compact.

In particular, recall that limt→∞ P
(
dH
(
T (t), T

)
> ϵ
)
= 0 implies T is compact almost surely.

Hence, not all criteria in Remark 7.0.5 can be shown for γ ≤ 1. Furthermore, for γ ≤ 1,
tree T cannot be seen as limiting random variable using the GHP-topology as this topology
is defined on compact metric spaces.

The above argument fails for γ > 1 since
∑∞

n=1 P(An) <∞, and thus we may hope to show T
is compact when γ > 1.

Remark 7.2.1. One might think that we can do better than having a threshold at γ = 1
for ln(t+ 1)γ. An obvious example to try would be δ ln(t+ 1)dt, we explore this below.

Let η be a PPP of intensity δ ln(t + 1)dt and again, let An be the event η([n − 1, n]) = 0.
Then,

∞∑
n=1

P(An) =
∞∑
n=1

exp

(
−δ
∫ n

n−1

ln(t+ 1)dt

)
≥

∞∑
n=1

exp (−δ ln(n+ 1)) =
∞∑
n=1

(
1

n+ 1

)δ
.
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And thus, one could expect a threshold at δ = 1. However, we can sharpen this reasoning by
letting Bϵ

i be the event η([(i− 1)ϵ, iϵ) = 0). Following the computations above shows that,

∞∑
i=1

P(Bϵ
i ) =

∞∑
i=1

exp

(
−δ
∫ i

(i−1)ϵ

ϵ ln(t+ 1)dt

)
≥

∞∑
i=1

exp(−δϵ ln(i+ 1)) =
∞∑
i=1

(
1

i+ 1

)ϵδ
.

Thus for any δ > 0, we may choose ϵ = δ−1 and with probability 1, there will be either an
infinitely long branch, or infinitely many sticks of length exceeding ϵ. For any δ the CRT
constructed from a PPP of intensity δ ln(t+ 1) cannot be compact.

7.3 Tightness of
(
Tn,f , n−

1
2dn
)
n∈N

In this section, we show i) and ii) of Remark 7.0.5. That is, we aim to show,

i) lim
t→∞

P (dH (T (t), T ) > ϵ) = 0 and ii) lim
t→∞

lim sup
n→∞

P
(
dH

(
Tn(tn

1
2 ), Tn

)
> ϵ
)
= 0.

We start with i).

7.3.1 Compactness of Tγ
Theorem 7.3.1. For all ϵ > 0, we have,

lim
t→∞

P
(
dH
(
T (t), T

)
> ϵ
)
= 0.

Remark 7.3.2. We would like to follow the reasoning in Section 4.1 and Section 6.2.1.
However, we run into a problem when trying to generalize Lemma 4.1.5 respectively Lemma
6.2.3. In this lemma, we aim to bound P

(
dH
(
T (a), ρ(s)

)
> c
)
for a, c > 0 and s ∈ [a, 2a]. To

adapt the proof to the current setting, we would sample repeat/attachment points Ci, Bi via a
homogeneous PPP of intensity 1 on the region T = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ lnγ(x+1)}.
Identical reasoning yields that dH

(
T (a), ρ(s)

)
> c can only happen if η(S) = 0 where S is a

region of measure λ(S) = c ln
γ(a+1)
2

, and thus P
(
dH
(
T (a), ρ(s)

)
> c
)
≤ exp

(
− c lnγ(a+1)

2

)
.

This can be extended to P
(
dH
(
T (a), T (2a)

)
> c
)
≤ 2a

c
exp

(
− c lnγ(a+1)

4

)
via the trick used

in Lemma 4.2.12 and Lemma 6.2.9. Filling in a = 2it and c = ϵi as before yields,

P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
≤ exp

(
ln

(
2i+1t

ϵi

)
− ϵi ln

γ(2it+ 1)

4

)
.

Since we require
∑∞

i=1 ϵi(t) → 0 as t → ∞, we need ϵi to be of the order i−(1+δ) for δ > 0.

However, with such a choice of ϵi, we see ln
(
2i+1t
ϵi

)
− ϵi ln

γ(2it+1)
4

stays positive and hence we

have no hope of showing P
(
dH
(
T (2it), T (2i+1t)

)
> ϵi

)
is summable.

We aim to solve this issue by looking at dH
(
T (xit), T (xi+1t)

)
for some xi → ∞ as i → ∞,

instead of doublings dH
(
T (2it), T (2i+1t)

)
. By following identical computations, we obtain,

P
(
dH
(
T (xit), T (xi+1t)

)
> ϵi

)
≤ exp

(
ln

(
2xi+1t

ϵi

)
− ϵi

lnγ(xit+ 1)xi
2xi+1

)
.
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We explore if this is possibly below. For this, consider t fixed and remove all constants, we
see this quantity is summable in i only if ϵi ln

γ−1(xi) >
xi+1

xi
> 1. Given that ϵi must be of the

order i−(1+δ), this requires xi = exp(iα) with α(γ−1) = 1+δ, or a faster growing sequence xi.
However, with such a choice of xi, the fraction

xi+1

xi
grows much faster than ϵi ln

γ−1(xi) showing
that no choice of sequence xi salvages the reasoning from Section 4.1 and Section 6.2.1.

In the current section, we use a different technique for proving the analogous version of
Lemma 4.1.5 and Lemma 6.2.3, yielding a tighter bound. The new bound allows for proving
almost sure compactness of T .

We start with a generalization of Lemma 4.1.2.

Lemma 7.3.3. Fix ϵ > 0 and let
(
xi
)
i∈N0

be an increasing sequence such that x0 = 1 and

xi → ∞ as i→ ∞. Suppose ϵi ≡ ϵ(T ) > 0 exist such that
∑∞

i=1 ϵi < ϵ. Then for any t > 0,

P
(
dH
(
T (t), T

)
> ϵ
)
≤

∞∑
i=0

P
(
dH
(
T (xit), T (2xi+1t)

)
> ϵi

)
.

Proof. Identical to the proof of Lemma 4.1.2 upon replacing 2i with xi.

Corollary 7.3.4. Theorem 7.3.1 is shown upon finding ϵi(t) > 0 such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

∞∑
i=0

P
(
dH
(
T (xit), T (xi+1t)

)
> ϵi

)
= 0,

where xi is some increasing, diverging sequence with x0 = 1.

Throughout the remainder of this section, we fix xi = exp
(
iα
)
for parameter α ≡ α(γ) > 0

to be determined. We start with proving a tighter bound for P
(
dH
(
T (a), T (b)

)
> c

)
for

some 1 ≤ a < b and c > 0.

Lemma 7.3.5. Fix 1 ≤ a < b and let l ∈ [a, b], then for all c > 0 we have,

P (dH (T (a), ρ(l)) > c) ≤ 4

(
b

a

)2

exp

(
−c ln

γ(a+ 1)

4

)
.

Proof. Let U1, U2, · · · ∼ Unif([0, 1]) i.i.d. random variables, and let η denote a PPP of
intensity lnγ(t+ 1)dt. Set η′ = η + δa. Set t1 = l and define recursively:

p(ti) = max{x ∈ η s.t. x ≤ ti}, di = ti − p(ti), ti+1 = max{a, Uip(ti)},

so that p(ti) denotes the starting point of the stick on which ti lies and ρ(ti+1) ∈ T (2a) is
the location this stick gets attached to. Let N = mini∈Z{Uip(ti) ≤ a} denote the number of
sticks on the path from ρ(v) to T (a) and note that dN+1, dN+2, · · · = 0.

By construction, dH
(
T (a), ρ(l)

)
=
∑∞

i=1 di =
∑N

i=1 di. We aim to bound P
(∑j

i=1 di > c
)

and P(N > j) for some j ∈ N and then upgrade this to a bound on P(
∑N

i=1 di > c).
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To bound P(N > j), recall N = mini∈Z{Uip(ti) ≤ a} and thus ti ≤ U1 . . . Ui−1l ≤ U1 . . . Ui−1b
for all i. This implies P(N > j) ≤ P(U1 . . . Ujb > a). We obtain,

P(N > j) ≤ P (U1 . . . Ujb > a) = P

(
j∑
i=1

− ln(Ui) < ln

(
b

a

))
= P(Gj,1 < L),

where Gj,1 ∼ Gamma(j, 1) and L = ln
(
b
a

)
. Recall E

[
e−Gj,1s

]
=
(

1
1+s

)j−1
and thus for s > 0,

P(N > j) ≤ P (Gj,1 < L) = P
(
e−Gj,1s > e−Ls

)
≤ E

[
e−Gj,1s

]
eLs = eLs

(
1

1 + s

)j
.

To bound P
(∑j

i=1 di > c
)
, we first bound P (di > si | di−1, . . . , d1). We have,

P(di > c | d1, . . . , di−1) = 1{ti−c≥a}P(η([ti − c, ti]) = 0)

≤ 1{ti−c≥a} exp

(
−
∫ ti

ti−c
lnγ(t+ 1)dt

)
,

≤ exp (−c lnγ(a+ 1))

Define Sj =
∑j

i=1 di. Inductively, we obtain that Sj is stochastically dominated by
∑j

i=1Xi

where Xi ∼ Exp(λ) i.i.d. with λ = lnγ(a+ 1). Since etx is increasing in x for t > 0, we get,

E
[
exp

(
tSj
)]

≤ E

[
exp

(
t

j∑
i=1

Xi

)]
,

Recall that E[etXi ] = λ
λ−t , for t ∈ (0, λ). In particular, by Markovs inequality, we get,

P

(
j∑
i=1

di > c

)
= P

(
eSjt > ect

)
≤ e−ct

(
λ

λ− t

)j
.

We apply a union bound to get stochastic domination for d.

P(d > c) = P

(
N∑
i=1

di > c

)
= P

((
N∑
i=1

di > c,N ≤ j

)⋃(
N∑
i=1

di > c,N > j

))
,

≤ P

(
N∑
i=1

di > c,N ≤ j

)
+ P

(
N∑
i=1

di > c,N > j

)
≤ P

(
j∑
i=1

di > c

)
+ P (N > j) ,

≤ e−ct
(

λ

λ− t

)j
+ eLs

(
1

1 + s

)j
,

where the above inequality holds for all s > 0, t ∈ (0, λ) and j ∈ Z≥0. By taking the values,
s = e− 1, t = λ e−1

e
and j = ⌊cλ e−1

2e
⌋, we obtain,

P(d > c) ≤ e−ct
(

λ

λ− t

)j
+ eLs

(
1

1 + s

)j
≤

(
1 + e

(
b

a

)e−1
)
e−λc

e−1
2e ≤ 4

(
b

a

)2

e−
λc
4 ,

as desired.
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Lemma 7.3.6. For 1 < a < b, we have, P (dH(T (a), T (b)) > c) ≤ 8
(
b
a

)2 b
c
exp

(
−c lnγ(a+1)

8

)
.

Proof. Identical to the proof of Lemma 4.1.13.

We are now in a position to prove Theorem 7.3.1.

Proof of Theorem 7.3.1. We aim to show i) and ii) of Corollary 7.3.4. By making the sub-
stitutions a = xit, b = xi+1t and c = ϵi in Lemma 7.3.6 and simplifying, condition ii) is
translated into,

lim
t→∞

∞∑
i=0

1

ϵi
exp

(
3 ln(xi+1) + ln(t)− ϵi ln

γ(xit)

8

)
= 0.

We set ϵi =
8

lnγ(xit)
(3 ln(xi+1) + 2 ln(t) + ln(g(i))) for ansatz function g(i) with g(i) ≥ 1 for

all i ∈ N0. Recall that xi = exp
(
iα)
)
so that we obtain,

∞∑
i=0

1

ϵi
exp

(
3 ln(xi+1) + ln(t)− ϵi ln

γ(xit)

8

)
=

1

t

∞∑
i=0

1

ϵig(i)
,

so that it suffices to show 1
t

∑∞
i=0

1
ϵig(i)

→ 0 as t → ∞. For this, observe that ϵi ≥ 1
lnγ(xit)

for
t ≥ e and hence,

1

t

∞∑
i=0

1

ϵig(i)
≤ 1

t

∞∑
i=0

lnγ(xit)

g(i)
=

1

t

 ∑
{i:iα≤ln(t)}

(iα + ln(t))γ

g(i)
+

∑
{i:iα>ln(t)}

(iα + ln(t))γ

g(k)

 ,

≤ 1

t

2γ lnγ(t) ln
1
α (t) + 2γ

∑
iα>ln(t)

iαγ

g(i)

 −−−→
t→∞

0,

where in the last step, we chose g(i) = (i+1)2+αγ, so that
∑

iα>ln(t)
iαγ

g(i)
is finite. In particular,

this shows that,

lim
t→∞

∞∑
i=0

P
(
dH
(
T (xit), T (xi+1t)

)
> ϵi

)
= 0.

Lastly, we show
∑∞

i=0 ϵi → ∞ as t → ∞. For this, we set I1 = {i ∈ N0 : (i + 1)α ≤ ln(t)}
and I2 = {i ∈ N0 : (i+ 1)α > ln(t)}. We obtain,

∞∑
i=0

ϵi = 8
∞∑
i=1

3(i+ 1)α + 2 ln(t) + ln
(
(i+ 1)αγ+2

)(
iα + ln(t)

)γ ,

≤ 8
∑
I1

5 ln(t) + (αγ + 2) ln(ln(t))

lnγ(t)
+ 8

∑
I2

5(i+ 1)α + (αγ + 2) ln(i+ 1)

iαγ
,

≤ C1 ln(t)
1−γ+ 1

α + C2

∑
I2

iα−αγ,
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where the final bound holds for t large enough and positive constants C1 and C2 possibly
depending on α and γ. The final expression goes to zero when 1−γ+ 1

α
< 0 and α−αγ < −1.

Both conditions are satisfied when α(γ− 1) > 1. We pick α = 2
γ−1

which is positive precisely

when γ > 1. Also observe that the criteria α(γ− 1) > 1 coincides with the observation made
in Remark 7.3.2.

This completes the proof of Theorem 7.3.1. We continue in the discrete setting.

7.3.2 Compactness of n− 1
2Tn,f

Theorem 7.3.7. For all ϵ > 0, we have,

lim
t→∞

lim sup
n→∞

P
(
dH
(
Tn(t), Tn

)
> ϵ
)
= 0.

As seen in Corollary 4.2.5 and Lemma 6.2.7, Theorem 7.3.7 is proven upon showing,

Lemma 7.3.8. Theorem 7.3.7 is proven upon finding ϵi(t) : [0,∞) → [0,∞) such that,

i) lim
t→∞

∞∑
i=0

ϵi(t) = 0 and ii) lim
t→∞

lim sup
n→∞

∞∑
i=0

P
(
dH
(
T (xitn

1
2 ), T (xi+1tn

1
2 )
)
> ϵin

1
2

)
= 0.

We start with a tail bound on the distance of vertex v ∈ Tn(b)\Tn(a) to Tn(a), for some b > a.

Lemma 7.3.9. Let b > a be positive integers. Let l ∈ {a, a + 1, . . . , b} and vl the vertex
corresponding to l in Tn(b) \ Tn(a). Then,

P (dH (Tn(a), vl) > c) ≤ 2

(
b

a

)2

exp

(
−c ln

γ(an− 1
2 )n− 1

2

4

)
.

Proof. Let U1, U2, · · · ∼ Unif([0, 1]) i.i.d. and set t1 = l. Define recursively,

q(ti) = max{Cn
i , a : Cn

i ≤ ti}, Sn(q(ti)) = Sn(⌈Ui(q(ti)− 1)⌉),
di = q(ti)− ti, ti+1 = min{k ∈ N : Sn(k) = Sn(q(ti))}.

Observe that q(ti) corresponds to the start of the stick on which ti lies. Furthermore, notice
that ⌈Ui(q(ti) − 1)⌉ ∈u {1, . . . , q(ti) − 1} so that Sn(q(ti)) has the correct law. Also, ti+1 is
the index of the first appearance in Sn of the vertex to which this stick is attached to, so
that the parent vertex of Sn(q(ti)) is Sn(ti+1).

Set N = min{k : tk ≤ a} − 1 and observe
∑N

i=1 di = dH
(
Tn(a), vl

)
, see Remark 7.3.10. We

aim to stochastically dominate N . It deterministically holds that ti+1 ≤ ⌈Ui(q(ti)− 1)⌉ with
equality if q(ti) appears exactly once in Sn(1), . . . , Sn(q(ti)) and strict inequality otherwise.
Since q(ti) < ti we see ti+1 ≤ Uiti is deterministically true. We get ti+1 < Ui . . . U1t1 is
deterministically true by iteration. Hence,

P(N > j) ≤ P(tj+1 > a) ≤ P(Ui . . . U1b > a) = P(Gj,1 > L) ≤
(

1

1 + s

)j
eLs,
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where L = ln(b/a) and Gj,1 ∼ Gamma(j, 1). The last inequality is obtained with a Chernoff
bound and holds for s > 0. Next, for a ≤ ti ≤ b independent of Sn(ti + 1), . . . , Sn(b), we
have,

P (ti − p(ti) > y | d1, . . . , di−1) = 1{ti−a>c}

y∏
i=1

(
1− lnγ

(
tin

− 1
2 + 1

)
n− 1

2

)y
,

≤ 1{ti−a>c} exp
(
−y lnγ

(
tin

− 1
2 + 1

)
n− 1

2

)
,

≤ exp (−yλ) ,

where λ = lnγ
(
an

1
2

)
n− 1

2 . Hence di | d1, . . . , di−1 are stochastically dominated by i.i.d. Exp(λ)

random variables for. Thus,
∑j

i=1 di is stochastically bounded by a Gamma(j, λ) random

variable. From a Chernoff bound, we obtain P
(∑j

i=1 di > c
)
≤
(

λ
λ−t

)j
e−λc for all t ∈ (0, λ).

To bound P
(∑N

i=1 di > c
)
, we apply a union bound,

P

(
N∑
i=1

di > c

)
≤ P

(
j∑
i=1

di > c

)
+ P(N > j),

≤
(

1

s+ 1

)j
eLs +

(
λ

λ− t

)j
e−tc,

≤ 2

(
b

a

)2

e−
λc
4 .

where the last step follows from taking s = e − 1, t = λ e−1
e

and j = cλ e−1
2e

concluding the
proof.

Remark 7.3.10. The tree in Figure 30 corresponds to Sn = {8, 5, 23, 24, 22, 23, 20, 19, 18, 21,
14, 20, 22, 18, 18, 21, 16, 15, 30, 29, 25, 21, 22, 16, 16, 21, 19, 26, 30}. Take a = 5, b = 30, l = 29.
Then vl = 27 and q(t1) = 27 as Sn(27) is the repeat to the left of Sn(29) and d1 = 29−27 = 2.
Also, Sn(q(ti)) = 19 and 19 first appears in Sn(8), so that t2 = 8. Lastly, q(t2) = a = 5 as
there is no repeat in Sn with index smaller than 8. Thus d2 = 8 − 5 = 3 and N = 2 as we
reached a vertex in T30(a). Also note dH

(
v29, T30(a)

)
= 5 = d1 + d2 =

∑N
i=1 di.

Lemma 7.3.11. For integers 1 ≤ a < b, we have,

P (d (Tn(a), Tn(b)) > c) ≤ 4

(
b

a

)2
b

c
exp

(
−
c lnγ

(
an− 1

2

)
n− 1

2

8

)
.

Proof. Identical to the proof of Lemma 4.2.12.

Theorem 7.3.12. We have for all ϵ > 0,

lim
t→∞

lim sup
n→∞

P(d(Tn(t), Tn) > ϵ) = 0
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Figure 30: Tree T30

Proof. By substituting a = xitn
1
2 , b = xi+1tn

1
2 and c = ϵin

1
2 into Lemma 7.3.11 and simpli-

fying, we obtain that condition ii) of Lemma 7.3.8 is translated into,

lim
t→∞

∞∑
i=0

1

ϵi
exp

(
3 ln(xi+1 + ln(t)− ϵi ln

γ(xit)

8

)
= 0.

This condition also appeared in the proof of Theorem 7.3.1 and was shown to hold for the
choice ϵi =

8
lnγ(xit)

(
3 ln(xi+1) + 2 ln(t) + (αγ + 2) ln(i+ 1)

)
, concluding the proof.

7.4 Tightness Measures

In this section, we prove iii) and iv) of Remark 7.0.5. We start with iii).

7.4.1 Convergence of Measure on the Continuous Tree

Theorem 7.4.1. For γ > 1 and ϵ > 0, we have,

lim
k→∞

P
(
dP
(
µ(k), µ

)
> ϵ)

)
= 0.

Proof. This follows from identical reasoning to Section 6.3 and Section 5.1. Indeed, these
proofs use the following three properties of T :
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i) There exists a K such that with probability 1− ϵ, we have that dH
(
T (K), T

)
< ϵ.

ii) T is compact almost surely.

iii) Conditional on T (K), for A ⊂ T (K) we have µ(j)(A↑) is a martingale.

The first two statements are ensured by Theorem 7.3.1 and the second statement by the
uniform attachment of the sticks. Thus, the exact same reasoning also goes through for the
current tree T with γ > 1.

7.4.2 Convergence of Measure on the Discrete Tree

In this section, we show,

Theorem 7.4.2. For γ > 1 and all ϵ > 0, we have,

lim
k→∞

P
(
dP
(
ν(k)n , νn

)
> ϵ
)
= 0.

We follow identical reasoning to Section 6.3.2 and to lesser extend Section 5.2. Recall the
definition of A↑, see Definition 5.2.1. From identical reasoning to Lemma 5.2.2, it follows,

Lemma 7.4.3. Let A ⊂ T (k)
n . For j ≥ k, ν

(j)
n (A↑) is a martingale in filtration Fj = σ(T (j)

n ).

Next, we translate 6.3.6 to the current setting.

Lemma 7.4.4. For A ⊂ T (k)
n , we have,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ Xn,k

C2
=

1

C2

N∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

) ∣∣∣∣∣ T (k)
n

]
,

where N denotes the random number of branches of Tn. Note that Xn,k is a random variable.

Proof. By following identical reasoning to Lemma 6.3.6, we obtain,

P
(
(ν(k)n (A↑)− νn(A

↑))2 ≥ C2
∣∣ T (k)

n

)
≤ 1

C2

N∑
j=k

E
[
(cnj+1)

2

(Cn
j )

2

∣∣∣∣ T (k)
n

]
,

with N being the random number of sticks in Tn and cnj = Cn
j −Cn

j−1. Observe that cnj+1 > x

given T (j)
n happens precisely when Sfn(C

n
j + 1), . . . , Sfn(C

n
j + x) are all not repeats. This

happens with probability,

P
(
cnj+1 > x

∣∣ T (j)
n

)
=

x∏
i=1

(
1− lnγ

((
Cn
j + x

)
n− 1

2 + 1
)
n− 1

2

)
≤
(
1− lnγ

((
Cn
j

)
n− 1

2 + 1
)
n− 1

2

)x
.

This gives stochastic domination of cnj by Y ∼ Geom
(
lnγ
((
Cn
j

)
n− 1

2 +1
)
n− 1

2

)
. In particular,

E
[(
cnj+1

)2 ∣∣ T (j)
n

]
≤ E[Y 2] ≤ 2n2(

lnγ
((
Cn
j

)
n− 1

2 + 1
)
n− 1

2

)2 =
2n

ln2γ
((
Cn
j

)
n− 1

2 + 1
) .

The proof is finished by applying the tower property of expectations, identical to the proof
of Lemma 6.3.6.
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We continue by showing,

Lemma 7.4.5. We have,

lim sup
n→∞

E

[
N∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

) ∣∣∣∣∣ T (k)
n

]]
−−−→
k→∞

0.

Proof. This proof follows similar reasoning to the proof of Lemma 6.3.7. but we use a different
analysis of the final Chernoff bound. First, note that N ≤ n as a tree with n vertices can
have at most n branches. Thus,

N∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

) ∣∣∣∣∣ T (k)
n

]
≤

n∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

) ∣∣∣∣∣ T (k)
n

]
,

where we set Cn
j = n for j > N . Next, observe that,

P(Cn
j < x) ≤ P(X ≥ j), where X ∼ Binom

(
x, lnγ

(
xn− 1

2 + 1
)
n− 1

2

)
.

Indeed, Cn
j < x can only happen if Sfn(1), . . . , S

f
n(x) contains at least j repeats. The bound

follows since P(Sfn(i) is a repeat) ≤ lnγ
(
xn− 1

2 + 1
)
n− 1

2 . By using a Chernoff bound and
following the computations in the proof of Lemma 6.3.7, we obtain,

P(Cn
j < x) ≤

(
ex lnγ

(
xn− 1

2 + 1
)

jn
1
2

)j

.

Remark 7.4.6. It is heuristically clear that limn→∞
∑∞

j=k E
[

n

(Cn
j )

2 ln2γ
(
Cn

j n
− 1

2+1
)] −−−→

k→∞
0.

Indeed E[n− 1
2Cn

i ] −−−→
n→∞

E[Ci] ≈ i
ln(i)γ

. Thus, we may expect that

E

[
n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

)] ≈ ln(j)2γ

j2 ln
(

j
ln(j)γ

)2γ ≈ 1

j2
.

To show this formally, we define g(x) = x−2 ln−2γ(x+ 1). We write the expectation in terms
of the tail distribution,

E

[
n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

)] = E
[
g(n− 1

2Cn
j )
]
,

=
∞∑
k=1

(
g
(
(k + 1)n− 1

2

)
− g
(
kn− 1

2

))
P
(
g(n−1/2Cn

j ) > g(n−1/2k)
)
,

≤
∑

k≤h(j)n
1
2

(
g
(
(k + 1)n− 1

2

)
− g
(
kn− 1

2

))
P(Cn

j < k) +
∑

k>h(j)n
1
2

g
(
(k + 1)n− 1

2

)
− g
(
kn− 1

2

)
,

≤
(
e

j

)j ∑
k≤h(j)n

1
2

−g′(xk)n− 1
2 ln

(
kn− 1

2 + 1
)jγ

(kn− 1
2 )j +

∑
k>h(j)n

1
2

g
(
(k + 1)n− 1

2

)
− g
(
kn− 1

2

)
,
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for some cutoff point h(j) to be determined. Here g′(xk) comes from the mean value theorem

and xk ∈ (kn− 1
2 , (k + 1)n− 1

2 ). For ease of notation, define,

S1 =
∑

k≤h(j)n
1
2

g′(xk)n
− 1

2 ln
(
kn− 1

2 + 1
)jγ

(kn− 1
2 )j, S2 =

∑
k>h(j)n

1
2

g(kn− 1
2 )− g((k + 1)n− 1

2 ).

We work on S1 first. Note |kn− 1
2 − xk| ≤ n− 1

2 . Thus for all k ∈ {1, 2, . . . , ⌊h(j)n 1
2 ⌋} we see,

| ln(kn− 1
2 + 1)jγ(kn− 1

2 )j − ln(xk + 1)jγxjk| ≤ n− 1
2 max
x∈[0,h(j)]

d

dx
ln(x+ 1)jγxj ≤ Cn− 1

2 ,

for C some constant depending on j and γ but independent of n. Thus, we may write,∑
k≤h(j)n

1
2

g′(xk)n
− 1

2 ln
(
kn− 1

2 + 1
)jγ

(kn− 1
2 )j =

∑
k≤h(j)n

1
2

g′(xk)n
− 1

2

(
ln
(
xk + 1

)jγ
(xk)

j + Ek

)
,

where the error term Ek is O(n− 1
2 ). Note g′(x) ln(x+ 1)jγxj is continuous on [0, j] for j ≥ 3

since g′(x) has a pole of order 2γ + 2 at 0 which is removed by a zero of order j + jγ from
the term xj ln(x+ 1)jγ. Thus we may recognize S1 as a Riemann sum to obtain,

S1 ≤
∑

k≤h(j)n
1
2

g′(xk)n
− 1

2

(
ln
(
xk + 1

)jγ
(xk)

j + Ek

)
−−−→
n→∞

∫ h(j)

0

g′(x) ln(x+ 1)jγxjdx,

≤ ln(h(j) + 1)jγh(j)jg(h(j)).

Using this bound, we find,

lim sup
n→∞

(
e

j

)j ∑
k≤h(j)n

1
2

g′(xk)n
− 1

2 ln
(
kn− 1

2 + 1
)jγ

(kn− 1
2 )j ≤ e2

j2

(
e ln(h(j) + 1)γh(j)

j

)j−2

.

Thus, lim supn→∞ S1 is O
(

1
j2

)
precisely when e ln(h(j)+1)γh(j) ≤ j. We note h(j) = j

e ln(j)γ

works. With h(j) defined, we bound S2. By the telescoping nature of S2, we obtain,∑
k>h(j)n

1
2

g(kn− 1
2 )− g((k + 1)n− 1

2 ) ≤ g(⌈h(j)n
1
2 ⌉n− 1

2 )− lim
k→∞

g(kn− 1
2 ) −−−→

n→∞
g(h(j)),

=
e2 ln(j)2γ

j2 ln
(

j
e ln(j)γ

+ 1
)2γ

By combining the bounds on S1 and S2, we obtain,

lim sup
n→∞

E

[
1

(Cn
j n

− 1
2 )2 ln(Cn

j n
− 1

2 + 1)2γ

]
≤ e2 ln(j)2γ

j2 ln
(

j
e ln(j)γ

+ 1
)2γ +

e2

j2
= O

( 1

j2

)
.
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Hence we have,

lim sup
n→∞

E

[
N∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

) ∣∣∣∣∣ T (k)
n

]]
≤ lim sup

n→∞

n∑
j=k

E

[
2n

(Cn
j )

2 ln2γ
(
Cn
j n

− 1
2 + 1

)],
≤ C

∞∑
j=k

1

j2
−−−→
k→∞

0,

as desired.

We are now in position to prove Theorem 7.4.2.

Proof of Theorem 7.4.2. This follows from the exact same steps as the proof of Theorem
5.2.5 with Lemma 7.4.4 and Lemma 7.4.5 taking the position of Lemma 5.2.4.

7.5 Comparison to Existing Literature

In [6], Nicolas Curien and Bénédicte Haas constructed random tree T ⊂ ℓ1 by considering
sticks of fixed length a1, a2, · · · > 0 and constructed T (k) (Tn in their notation) inductively:
set T (1) = a1 and let T (k) ⊂ ℓ1 denote the random tree obtained from gluing stick ak to a
uniform point on T (k−1). As with the stick-breaking construction, each branch is attached
in the direction of a new basis vector of ℓ1 and T denotes the closure of

⋃∞
k=1 T (k). In other

words, T is built using the stick-breaking construction, but the lengths of the sticks are
deterministic. The only randomness comes from uniformly attaching new branches to the
already existing tree.

In [6, Theorem 1], they showed,

Theorem 7.5.1. Suppose there exists α ∈ (0, 1] such that,

αi ≤ i−α+o(1) and Ai = i1−α+o(1),

where Ai = a1 + · · ·+ ai. Then T is almost surely compact.

Throughout this thesis, we work with random stick lengths and thus cannot apply this
theorem directly. However, let η be a PPP on R≥0 of intensity f(t)dt and let N(t) = η([0, t])
be the number of points in η with value less than t. Then, the strong law for PPP’s states,

N(t)

Λ(t)
−−−→
t→∞

1,

almost surely. Here Λ(t) =
∫ t
0
f(s)ds. In particular, this implies that for large i the i’th point

of η happens at roughly Λ−1(i). That is, if 0 < C1 < . . . are the ordered points of a PPP of
intensity f(t)dt, we see Ci = Λ−1(i)(1 + o(1)) almost surely. In our case, f(x) = lnγ(x + 1)
and one can check Λ(t) = Θ(t lnγ(t)) so that Λ−1(i) = Θ

(
i

lnγ(i)

)
. In particular, if we want to

write Ci = i1−α+o(1) almost surely, we must choose α = 0, and hence our tree T constructed
from a PPP of intenstiy lnγ(t+ 1)dt is not covered by [6, Theorem 1].
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In [6] they also considered µ(k), the uniform measure on T (in the paper denoted µn). They

showed that when
∑∞

i=1
a2i
Ai
<∞, then µn converges to some measure µ on T . In particular,

a uniform point on T must hence be bounded. However, this is only a necessary condition
for T to be bounded, not sufficient.

We already saw that Ci = Θ
(

i
lnγ(i)

)
almost surely. Similar reasoning shows that ai = Θ

(
1

lnγ(i)

)
almost surely, and thus

a2i
Ai

= Θ
(

1
i lnγ(i)

)
almost surely. In particular, this gives that

∞∑
i=1

a2i
Ai

<∞ ⇐⇒ γ > 1.

This confirms that T constructed from a PPP of intensity lnγ(t + 1)dt cannot be compact
for γ ≤ 1. Section 7 partially answers the question at the bottom of [6, page 7], the maximal
height of T constructed from ai ∼ ln−γ(i) with γ > 1 stays stochastically bounded when
the ai’s are sampled through a PPP of intensity lnγ(t+ 1)dt.

It remains to be checked if the computations in Section 7 can be generalized to show a
variant of Theorem 7.5.1 that encompasses results when ai are of the order 1

lnγ(i)
for γ > 1.

Another natural generalization includes answering if any tree constructed from a PPP with
intensity f(t)dt with f = ω(ln(t + 1)) is compact. Furthermore, the Hausdorff dimensions
and local limits of all trees covered in this thesis are yet to be considered.
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