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Abstract

In this thesis, we study the scaling limit of uniform random labeled rooted trees T,
to the continuum random tree (CRT), realized via the stick-breaking construction, in
the Gromov—Hausdorff—Prokhorov topology. The discrete tree 7, is sampled using the
Foata—Fuchs bijection, which can be regarded as the discrete analogue of the stick-
breaking construction. We generalize existing results by introducing two families of
non-uniform random labeled trees 7, 3 and 7, , whose scaling limits are variants of the
CRT constructed from Poisson point processes with intensities t?dt and In?(t + 1)dt
respectively. In the latter case, we find a compactness threshold at v = 1: for v > 1,
the limiting tree 7, is compact almost surely, whereas for v < 1 the tree 7, is almost
surely non-compact.
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1 Introduction

The aim of the first part of this thesis is to describe the global structure of uniformly sampled
labeled rooted trees on n vertices as n tends to infinity. We start with some background and
basic definitions.

1.1 Background

Write T, for the set of all labeled rooted trees on n vertices and denote the root by r,. By
Cayley’s formula, we have |T,| = n"~!. We define random variable 7, to be the uniform
random labeled rooted tree on n vertices. Le. for each T, € T,,, we have, P(7, =T,) = nnl,l.

Note that (7;, dn) is a random metric space where d,, denotes the graph distance on 7,.

Figure [1] contains an example of T,, and Figure [2] contains a sample of 7,
Figure 1: The set T3, where the red vertex denotes the root.

Write v € 7T, to denote a vertex in 7, (opposed to v € V(7,)). Define ht(v) = d,(v,r,) to
be the height of v and ht(7,) = max,e7, ht(v) to be the height of T,,. Observe that ht(v) and
ht(7,) are random variables. For tree Ty in Figure [2, we have ht(10) = 6 and ht(Z5y) = 15.

Another random variable of interest are distances in 7,. Let U,V €, 7T, be two vertices,
where €, denotes a uniformly chosen element. Then d,(U, V) is a random variable corre-
sponding to the distance between two uniformly chosen vertices in 7,.

The random variables ht(v), ht(7,) and d,(U, V') have one thing in common: they depend
on the global structure of 7,. This is unlike, for example, the degree distribution of v €, T,
which only depends on the neighbors of v. Coincidentally, the degree distribution of v is easy
to study. Recall that Priifer codes form a bijection between [n]"? x n and T (where xn is
used to pick the root) such that the degree of v € 7, is given by deg(v) = 1 + [{S,(i) = v}
with S,, €, [n|""2. In particular, deg(v) ~ 1+ |[{S,(i) = v}| and it is well known that the
latter converges to a 1 4+ Poi(1) random variable as n — oco. This is an example of an easy
to study random variable depending only on the local structure of 7,,.

It is not obvious how the asymptotic global structure of 7, behaves by looking at Priifer
codes, as information on the global structure is not easily recovered from the bijection. To
describe the asymptotic global structure of 7,,, we turn to a different bijection.
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Figure 2: A sample of Tg9. The root is denoted in red

1.2 The Foata—Fuchs Bijection

Similar to Priifer codes, the Foata-Fuchs bijection is a bijection between [n|"~' and T,.
Whereas Priifer codes are usually seen as bijection between [n]"~% and non-rooted trees, the
Foata—Fuchs bijections always gives labeled rooted trees. To obtain a sequence in [n]*~! from
a tree T,, € T,,, we use an exploration process: start at the root and record the path from
the root to the lowest labeled leaf. Iteratively, record the path from the already explored
tree to the next lowest labeled leaf until all leaves are visited. The sequence S,, is obtained
by removing all leaf vertices from the recording. We formally introduce the reverse bijection.



Definition 1.2.1. Start with a sequence S,, = (vi, vy, ...,v,1) € [n]"7L.

i) Set Cf' = 0 and set C}' < CF < --- < C", to be the locations of S, that contain a
repeat. Lastly, set CI' = n.
ii) Let Iy <ly,--- <[; be the elements of [n] not appearing in S, in increasing order.
iii) For j = 1,2,...,4, define P; = (voﬁl,voﬁlﬂ, o ,vc]n,l,lj) to be the path containing
the vertices between C7; and C} and appending vertex [;.
iv) Define tree T,, as the tree with root vy, vertices [n| and edge set given by the union of
edges in the paths P;. That is,,

T,=(V.E)= ([n], _U E(Pﬂ) -

Theorem 1.2.2. The Foata-Fuchs bijection is a bijection between T,, and [n]"~.

Proof. Definition shows how to construct T}, € T,, from S,, € [n]""!. For a proof that
this construction is a bijection, we refer to [I, pages 2 and 3]. O]

Figure 3: Tree Ty, € T1» with associated sequence Si» = (8,11,11,10,9,8,4,6,4,2,12)

Definition 1.2.3. Let S, € [n|""! and i < n — 1. The vertex corresponding to S, (i) is:
i) The vertex with label S, (7) if S, (7) is not a repeat.
ii) The vertex l; if S, (i) = C7.

Let F' : S, — T, be the map associated with the Foata—Fuchs bijection. That is, for
each 1 <i<n—1, weset F(S,(i)) to be the vertex corresponding to S, (7).

Example 1.2.4. In Figure [3| we see F'(S12(4)) = 10 and F(S12(6)) = 3.

Remark 1.2.5. Certain global properties, like the distribution of the height of leaves in 7,
are easily obtained through the Foata—Fuchs bijection. Indeed, let v € 7T, be the leaf with
the smallest label and let C7' € [n]| denote the index of the first repeat in S, (if there are
no repeats, set C7' = n). It follows that F(S,(C")) = v and {S,(1),...,S,(C")} forms
the path from the root r, to v so that ht(v) = C}'. By vertex exchangeability of 7,, we
automatically obtain that for any leaf u € 7,,, we have ht(u) L CT. In Section , we show
that C7 = @(n%) in probability. Thus, the height of a typical leaf in 7, is of the order ne.



1.3 Tree 7, as Discrete Aggregation Tree

Using the Foata—Fuchs bijection, we construct 7, by gluing together the paths,
P; = (Sn(C’;?), e >Sn(UC]T’+1—1)7 lj).

This means that we may construct 7, iteratively by adding the paths one at a time: start
with T,\" = P,. Inductively, let 7. be the tree obtained from gluing the path P to 7D
at the vertex with label S,(Cy_,). We illustrate this in Figure [4]

) @) AL (W)
P P, Py Py
(&)
()
,771(1) 77-1(2)
(-

Figure 4: Trees T,y for i € {1,...,4} constructed from Sy, = (8,11,11,10,9,8,4,6,4,2,12).

Remark 1.3.1. Observe that ’ﬁl(k) is a random variable but inclusions ’771(1) - 7;(2) C--CTh
are deterministically true. Furthermore, note that (S,(1), ..., S,(Cy—1)) encodes the metric

structure of 771(]“) but not the labels of all vertices, as the leaves are labeled based on the
missing vertices in all of S,, not just (S,(1),...,S,(Cy —1)).

We call the paths P; sticks or branches and say 7.5 is constructed from T, by adding
a stick or branch. Before trying to understanding the asymptotic global structure of 7, we
give some intuitive reasoning what happens to the trees 7% when we take n to infinity.

We start with 7", Recall that 7,\") is the path from r, to the lowest labeled leaf, which
is the vertex corresponding to S,(C7). Thus, 7.V is a line graph of random number of
vertices C7. To compute the distribution of C]', we observe that CT > z happens pre-
cisely when S,(1),...,S,(z) are all unique. Note that S,(:) €, [n], and for i < C7,
we have (S,(1),...,5,(i — 1)) contains i — 1 distinct elements. Thus,

]P(C{‘>x):ﬁ(1—i_1)—>1.

n n—0o00
i=1
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We hence see that as n — oo, the height of a typical leaf in 7, goes to infinity. However,
how fast does the height of a typical leaf go to infinity? For this, let g(n) : N — R be some
function to be determined. Then, by the reasoning above, we see,

lg(n)z]

1
=exp | —— Zi—l +o(1),
n -

i=1

oo ()

Lg(n)z] i—1 lg(n)z] i
P(CY > g(n)zx) = H (1 - > = exp In (1 -

1
X X n
=1 =1

Here, we used first order expansion In(1 — z) = —x + O(z?). For a rigorous justification on
the error bounds, we refer to the proof of Lemma |3.1.3] From the above analysis we see,

1 if g(n) = o(n?),
P(CT > g(n)r) —— 40 if g(n) = w(n2),
exp (— %2) if g(n) = n2

In particular, n_%C{L SN Cy where C; ~ Rayleigh(1). Thus, the typical height of a leaf
n—oo

is on the order n2 and for large n, the rescaled partial tree (771(1), n’%dn) can be viewed as

‘approximating’ a line segment of random length C with vertices at equal distance n=z. We
illustrate this in Figure [f

n_%7;7,(1)................................................................................

L

Figure 5: n=s T, approximates line segment L of random length C'.
This gives intuition in the natural limit object of (7;(1), n*%dn), also simply denoted n~ 3 7;(1):
a line segment with random length C; ~ Rayleigh(1). The correct topology for this conver-
gence is the Gromov—Hausdorff topology, which is a metric on the space of compact metric
spaces up to isometries. A comprehensive overview of the Gromov—Hausdorff distance can

be found in Section 2.3.1]

We continue with understanding 7,2 Recall that T2 is created by gluing path P to the
vertex S,(CY) € T Let B} be the value in {1,...,C} — 1} for which S,,(B}) = S,(C}).
Note B} €, {Sn(1),...,5,(C? — 1)}, thus the second branch is glued to a uniform point
in 7,\Y. For the length of the second branch, similar reasoning shows that n_%C’Q -2, Cy

n—oo
where (5 is some random variable dependent on C to still be determined.

This gives a heuristic for the limiting object of T2 et Ly be a line segment of random
length C'y as above and L5 a line segment of random length Cy, — C}, for C5 to be determined.
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Attach L, to a uniformly random point on Ly. Let 7 be the resulting random metric space
(with induced path metric). This metric space can be seen as limiting object for T2,

n_%'ﬁp)

0000000000000 000000000000000000000000000

T(2)

Figure 6: n_%ﬁp) approximates 7 ()

We iterate this argument: construct 7}(“1) by attaching stick Py to ’E(k) at vertex S, (Cy).

First, let C7 < CF < --- < C} denote the indices of the first £ repeats in S,,. We aim to find
a heuristic for limiting distribution for n-2 (C’f, cee C,?) For this, we have,

, <1 a1, 5G] ”) |

P(Cp > O, + an? | Cr oy = [sn2]) = H

i=1 "
1
lzn2 | ( sn% —|—2) _sx_ﬁ
~ H 11— e z,
n n—00
i=1
where the approximation comes from |{S,(1), ..., S (C™ )} = |sn2 | — (k — 1) ~ sn? since

the fixed k repeats are negligible on scale n2. The limit is independent of k: that is, for large
n the distribution of the point n_%C’}j depends only on the location of the point n_%C’,’J_l, but
is independent of the number of prior points and their locations. This memoryless property
hints at the fact that n_%( NG ) approaches an inhomogeneous Poisson point process,

(inhomogeneous since the distribution of n_%C’,? depends on the location of n_%C,?_l). In
Section [3.1] this heuristic is worked out rigorously. We refer to Section for a formal
introduction to the Poisson point process.

We saw a heuristic for the limiting object for the scaled repeat points n’%C’}:. This determines
the distribution of the length of the branches of 7,,. Next, we understand how these branches
are attached to the partial trees T,\"). For this, define B = min{l : S,(I) = S,(Ck)} to be
the first time S, (C}) appeared in S,. This is the index corresponding to the attachment
point of stick P,4; in T Note By is almost uniform over {1,...,C} — 1}. Indeed, B} is
uniform if S, (1),...,S,(C;} — 1) contains no repeats. In our setting, S,(1),...,S,(C; — 1)
contains exactly k — 1 repeats. However, since C}' is on the scale n%, the proportion of
repeats becomes negligible, which explains n~2 B —— B; with B; ~ Unif([0, C;]). Section

. n—oo
3.1| contains a formal argument.

Informally, n=3T" consists of k branches of vertices at distance n~2 such that the length of
branch ¢ converges to C; — C;_1 for C, < Uy < ... the ordered points of some Poisson point



process and the branches are glued to a roughly uniform point on the already existing tree.
As limit, define 7®) to be the random metric space obtained from inductively gluing together
line segments of length C; —C;_; at a uniformly chosen point in the already constructed space,
together with the induced path metric. See Figure [7] for an illustration.

n~ 1T T

Figure 7: A sample of n37% and a sample of T,

Remark 1.3.2. It should be noted that we draw samples of n’%’]}(k) and 7® that sug-
gestively look alike. This way of representing the trees is not misleading: since the branch
length and attachment points converge in distribution, we may work on a probability spaces
where this convergence happens almost surely. See Section for details.

Lastly, we define measures on 7,, and T8

Definition 1.3.3. Let v, be the uniform probability measure defined on the vertices of 7,.
That is, v,(A) = % for all A C 7,. Similarly, U denotes the uniform probability measure

(k) (k) _ 1Al _ 1A (k)
on 7, so that vy, (A>_W_ PGy forall AcC T,".

1.4 The Continuum Random Tree

We informally defined 7 as gluing together line segment of random length. We formalize
this construction, leading to the definition of the Continuum Random Tree (CRT). The CRT
can be viewed as the scaling limit of 7, and was first introduced by Aldous in [2]. Tt should
be noted that the CRT has various definitions, we will be using the stick-breaking definition.

Definition 1.4.1. Let ¢! be the space of all absolute real sequences. That is,

51:{(x1,m2,...):x¢€]Rand Z|x,|<oo}

i=1
The space ¢! comes with basis vectors z; = (0,...,0,1,0,0,...): i—1 zeros followed by a one.
Let 1 be a Poisson point process of intensity tdt on R>y and let 0 < C; < (3 < ... denote
its ordered points. To each C;, associate B; ~ Unif([0, C;)). Define p(t) : R5og — ¢! piecewise
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on the intervals (C;_y, C;] by,

() = (¢,0,...,0) for z € [0, C4],
A= p(Bi_1) +tz;  for x € (Ci_1,C;] with ¢ > 2.

Define 7*) = p([0, Cy]) and T (t) = p([0,t]). Observe that T®*) and T (t) are compact for
each k € N and t € R. Lastly, we define,

T:DWW
k=1

to be the closure of the union of partial trees 7*). Observe that 7" c 7@ c ... C T is
deterministically true and (T, d) is a random metric space, where d denotes distance in ¢*.

Remark 1.4.2. The intervals [C;_;, C;] are called branches and 7®) is constructed by at-
taching a branch of length C} — Cy_; to a uniform point on the already constructed tree.
Hence 7™ is a formalization of the description of the limit objects of n=3T" as described

in Section [L.3]
T2

TG

Figure 8: Sample of tree 7 for i = 1,2,3 as subset of ¢*.

7

Remark 1.4.3. For k > 4, we draw (T(k),d) in R%2. Given that d is the ¢! metric, and
branches in 7®) are orthogonal in ¢!, we see that distances on 7 should be interpreted as
distances along the branches in 7®*) and not Euclidean distance in R2.

~J_

AT

Figure 9: A sample of 70,




Besides T being the scaling limit of 7,, as random metric spaces, we will also see that we can
pick points in 7 uniformly in a way that resembles picking uniform vertices in 7,. To this
end, we introduce measures on 7 ),

Definition 1.4.4. Let pu*) = p*\ where ) is the normalized Lebesgue measure on [0, Cy].
Here, p* denotes the push forward by p.

Remark 1.4.5. Observe that y¥) is a random measure such that p¥)(A) denotes the propor-

tion of A in 7™ in much the same way that u,(zk)(B) denotes the proportion of B in T, In
particular, u® and v are similar in the following sense: use a probability space where the
ﬁ-l.

branch lengths of = T and TW converge almost surely (see Remark [1.3.2)), and isomet-
rically embed n’%’ﬁfk) and 7 in a common space Z via embeddings ¢ and 1 respectively.
Let A C Z. Then, ¢*u®(A) and zb*w(lk)(A) are roughly identical as illustrated in Figure

a3 TR T

Figure 10: the proportion of red vertices in = T and T® is roughly equal.

1.5 Global Convergence and Proof Strategy

We have seen a heuristic that the length of the first & branches in n=3 T, converge in
distribution to the length of the first k sticks of 7*) and in both cases, attachment is roughly
uniform on the constructed tree. Furthermore, both u®)(A) and Vﬁk)(B) are similar in the
sense of Remark [[.4.5] Hence, the following result is not surprising.

Theorem 1.5.1. For k € N, we have,

(T(k),n—%dmy 5) _4. (T®, d, pu*)),

n n n—oo
in the Gromov—Hausdorff-Prokhorov topology.

The Gromov-Hausdorff-Prokhorov (GHP) distance is a metric on the space of compact
measure metric spaces, (up to isometries). We refer to Section for details. Section |3|is
dedicated to a formal proof of the theorem. Theorem is known as convergence of the
finite dimensional distribution. We aim to upgrade this to,



Theorem 1.5.2. There exists a probability measure p on 7 such that,
(Tosn ™2y, v) —— (T d, ),
n—oo

in the GHP topology.

To upgrade Theorem to Theorem we follow the reasoning used in [2]. For this, we
introduce the following standard result, which is obtained through the Portmanteau lemma.

Lemma 1.5.3. Suppose that X, ;, X,,, X and X are random variables living in the same
metric space and for all € > 0, we have,

i) Xk ﬁ Xp, ) lim lim sup P(d( X, Xi) > €) = 0 and 4ii) lim P(d(Xz, X) > €) =0,

k—oo 00 k—o0

then we have X, 4 X

n—oo

This is a standard result. We refer to Section for details. To use this result, we set,
X =(T,d,u), X, = <7;L,n’%dn,yn) , Xp = (T(k),d, ,u(k)) and X, = (ﬂk),n’%dn,yﬁf)> )

Theorem implies statement i) of Lemma is satisfied. By rewriting statement i)
and statement 7i7), we obtain that it suffices to show,

Corollary 1.5.4. We have shown (ﬁ,n_%dn,yn) SN (T, d, u) in the GHP topology, if
n—oo

we can show that for all € > 0, and some probability measure p defined on T, we have,
i) lim P (dyy (T(£),T) > €) =0, i) lim limsup P (dH (Tn(m%),m > e> —0,
t—o0 t—=00 5 seo
i11) kh_}rgOIP’ (dp (,u( ),,u) >¢€)) =0, w) lim limsup P (dp (V,,(L ), vn) > €) = 0.

k—=oo nsoo

The first and third statement combine into #i) of Lemma and the second and fourth
statement combine into i) of Lemma [I.5.3] Together with Theorem this shows all
criteria of [L5.3] are satisfied. We refer to Section 2.4] for the details.

This gives a clear guideline for the proof of Theorem [1.5.2l We state the results we have to
show, and in which sections the corresponding proofs can be found.

i) We show n-2 (C{“, OB B,?) BN (Cl, cos O, By, .. ,Bk). Section
n—oo
ii) We show (ﬁk),n_%dn,yr(f)) BN (T(k),d, ,u(k)). Section
n— oo
iii) For all € > 0, we have P (dy (T (t),T) >€) — 0, as t — 0. Section
iv) For all € > 0, we have limsup,_, ., P(dy (ﬁ(tn%),ﬁ) >¢€) —0,ast — oco. Section
v) For all € > 0, we have P (dp (u(’f),u) > e)) — 0, as k — oo. Section

vi) For all € > 0, we have limsup,,_, . P <dp (u,(lk), Vn) > e) — 0 as k — oo. Section

10



Remark 1.5.5. Convergence (ﬂ,n‘édn, I/n) BN (7'7 d, ,u) in the GHP topology allows us

n—oo
to deduce many asymptotic global properties of 7, from 7. An immediate example is that

almost surely ht(7,,) = O(n2), which follows from 7 being compact with probability 1 (see
Remark . Another example includes convergence of mass in e-balls. The short survey
[T4] contains some examples on showing which properties can be passed to the limit in GHP
convergence. A last example is convergence of distances of uniformly chosen points in n=:7,
and 7,, which is covered in [9].

1.6 Generalizations

Recall Definition [1.4.1] in which 7 was constructed by gluing sticks of lengths determined by
a Poisson point process of intensity tdt. We ask 2 questions: what if we consider Poisson point
processes of different intensities, is the corresponding tree T still compact almost surely? If so,

can we find random variable 7,, taking values in T,, such that (7;, g(n)d,, I/n) SN (T, d, u)
n—roo

in the GHP topology? Here g(n) is some scaling function and v, is the uniform measure on
the vertices of 7, and p is some probability measure on 7.

In chapter |§|, we construct random tree 7, s non uniformly by defining,
(i) SI(j) with j €, {1,...,i—1}, with probability f (1),
" Unif([n] \ {Sn(1),...,S.(i — 1)}), with probability 1 — f (),

for some function f : [0,1] — [0, 1] and letting 7, ; be the tree obtained by applying the
Foata—Fuchs bijection to S7. See Section @ for intuition behind this exact choice of S,. We
have the following result.

Theorem 1.6.1. Let f(z) = 2 for 8 > 0. Then, there exists a probability measure y on T3
such that,

__B_ d
(ﬁl,f?n At dn7Vn> w (7'ﬁ7d7 ,LL),

in the GHP topology. Here, T3 denotes the tree obtained from the stick-breaking construction
with Poisson point process of intensity t?dt.

In Section m, we construct 7, ; by applying the Foata—Fuchs bijection to,

s, = S/ () Sn(j) where j €, {1,...,i— 1}, with probability f(i,n),
v Unif([n] \ {Sn(1),...,S.(i —1)}), with probability 1 — f(i, n),
where f(i,n) = f7(i) = In”(in"2 + 1)n"2. We have the following result,
Theorem 1.6.2. For v > 1, we have convergence in the GHP-topology,
1 d
(7;l,f7n dnyyn) m (de»li)»

where T is the tree obtained from the stick-breaking construction with a Poisson point process
with intensity In"(¢ 4+ 1)dt. If v < 1, then 7, is not compact almost surely.

In particular, at v = 1 we find a threshold where 7, fails to be compact.

11



4
X
/;{

8=0.5 =1

—_

Hx~L

T 7 "'%'k/\\’l o

B=2 B=4

Figure 11: four trees constructed from a Poisson point process with intensity t°dt. The
1

trees are constructed from the interval [0, (100(8 + 1))ﬁ] so that the expected number of

branches of each tree equals 100.

Remark 1.6.3. One can sample trees 73 in a coupled manner: start with a Poisson point
process of intensity 1 on R% Let T = {(z,y) € R? : 0 < 2,0 < y < 2°}. Tt follows that
ng ={(X,Y) €n:(X,Y) €Tz} can be writtenasn = >_.°, §(¢, ) where 0 < Cy < Ch < ...
equal (in distribution) the k first ordered points of a Poisson point process of intensity t°dt
and B; ~ Unif([0, C;]). Thus, all 75 can be constructed from a single PPP such that 73 has
the correct law for each 8. On the bottom left of each page, we have drawn 73 sampled in
this manner. The intensity of the tree drawn on page number ¢ is approximately 1+ 4/1000.
The images can be turned into a video by using the thesis as a flipbook. Note that you start
on the last page, so that you watch the tree change from intensity 1.1 to 1.
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2 Theoretical Framework

This section aims to provide a rigorous background to the Poisson point process and the
Gromov-Hausdorff-Prokhorov topology as well as a formalization of the proof outline dis-
cussed in Section [I.5 We start with the introduction of basic measure theory.

2.1 Measure Theory

The Poisson point process is defined through measure theory. Hence, we introduce some
basic measure theory first.

Definition 2.1.1. A measurable space is a set X together with set of subsets F, where F is
a o-algebra, i.e. it satisfies,

i) X e F,
ii) if A€ F then X \ A € F,
111) if (An)nzl - F then UZO:1 An e F.

Definition 2.1.2. Let R be a family of sets. The o-algebra generated by R, denoted o(R),
is the smallest o-algebra containing R. Observe that o(R) always exists, since the power set
of X trivially is a o-algebra containing R.

Example 2.1.3. The Borel g-algebra on metric space (M, d), denoted B(M), is defined to
be the g-algebra generated by the open sets of M.

Definition 2.1.4. Let (X, Fx) and (Y, Fy) be two measurable spaces. A function f : X — Y
is called measurable if f~'(B) € Fx for all B € Fy.

Definition 2.1.5. Let (X, F) be a measurable space. A measure p : F — [0, 00] is a function
for which,

i) @) =0,
ii) If (A,)n>1 C F are pairwise disjoint, then p ()2, A,) =D 0 u(Ay).

The triple (X, F, ) is a measure space. If u(X) < oo, p is a finite measure. If u(X) = 1,
then p is a probability measure in which case (X, F, u) is called a probability space.

Definition 2.1.6. A measure p on (X, F) is,
i) o-finite if there exists (A, ),>1 C F so that X =J ~, A, and p(A,) < oo for all n.

ii) s-finite if u is a countable sum of finite measures. In other words, we can find (p;);>1 so
that p(A) = >0, pi(A) for all A € F and p;(X) < oo for all i.

Observe that every o-finite measure is automatically s-finite. The converse does not hold.

In a measurable space (X, F), the set of subsets F is often large and impractical to work
with directly. However, due to the structural properties of o-algebras it usually suffices to
work on a smaller generating subset of F. Carathéodory’s extension theorem and Dynkin’s
m — A lemma are two results using this line of reasoning. We introduce these results below.
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Theorem 2.1.7. Let R be a collection of sets for which,
A BeER = AUBeRand A\B € R.

Let po : R — [0,00] satisfy po(0) = 0 and po (U;2; 4i) = D ooy 1(A;) whenever A; are
pairwise disjoint and | J;°; A; € R. Then there exists a measure on o(R) which agrees with
o on R. Furthermore, the extension is unique whenever io(A;) < oo for all 7.

Proof. This is Carathéodory’s extension theorem. See [I1, Theorem 1.7.3] for a proof. [

Lemma 2.1.8. Let P, L C 2%, for X a set. If P is closed under intersection, and L satisfies,
i) Del,

ii) A,Be Lwith ACB — B\A€ L,

iii) Ay, Ao, ... disjoint implies | JI_, A; € L.

Then P C L, implies o(P) C L. Family P is known as a 7-system, L as a Dynkin-system.
Proof. This is Dynkin’s 7 — A Lemma, a proof can be found in [4, Theorem 3.2]. O]

Corollary 2.1.9. Let X be a set and P C 2% be closed under finite intersections. If 4 and /'
agree on P and are o-finite, then p and u' agree on o(P).

Proof. We first assume 1 and p’ are finite and define L = {A C X : u(A) = 1/(A)} to be the
sets of which pu, ¢/ agree. One may check L satisfies i) — iii) of Lemma and P C L. We
conclude o(P) C L and hence p, i/ agree on o(P).

In case p, i are only o-finite, let (A,),>1 be a measurable partition of X such that A, € o(P)
and p(A,), 1 (A,) < oo for all n. This is guaranteed possible since p, ¢’ are o-finite. Define 7r-
system P, = {BNA,, for all B € P} and define u,(F) = u(ENA,) and u (E) = p,(ENA,).
By the finite measure case, we know p,, and p/, agree on o(P,) for all n. Let B € o(P). Then,

u(B) = u( fj (Bn4,)) = iu(BmAn) = i;/(BmAn) =/ G (B A)) = 4(B),

n=1 n=1

which concludes the proof. O

We use Carathéodory’s Extension Theorem to define product measure spaces. Below, we give
the construction for finite products. We restrict our attention to the product of two spaces,
but any finite number products can be reached inductively. A similar, yet more technical
construction can be applied to achieve similar results for (countably) infinite product spaces.

Definition 2.1.10. Let (X;, 1), (X2, F2) be two measurable spaces. We define their product
measurable space as (X1, F1) X (Xa, F2) = (X1 x Xo, F1 @ Fa) = (Xy x X, 0(F) X F)).

Theorem 2.1.11. For two finite measure spaces (Xi, 1, i1), (Xa, Fa, io), there exists a
unique measure g on the product measurable space (X; x Xs, F; ® F3) for which,

,u(Al X Ag) = Ml(Al)MQ(AQ), for all A, € ./—"1,142 € Fo.

14



Proof. This follows directly from Carathéodory’s Extension Theorem. Define R = F; x Fj
and po : R — [0,00] as po(A; X Az) = p1(A1)p2(As). Then Carathéodory’s Extension
Theorem gives a unique extension u to o(R) = F; ® Fy such that p(A; x Ag) = p1(Aq)pa(As)
for all A; € Fi, Ay € F5. Uniqueness follows as g is o-finite on R. ]

Definition 2.1.12. Let (X1, Fi, pt1), (Xa, Fo, o) be two finite measure spaces. The product
measure space is defined as,

(X1, Fiy pun) X (Xa, Fo, pig) = (X1 X Xo, F1 @ Fo, 1),
where g is the unique measure so that p(A; x Ay) = pui(Aq)pe(Az) for all Ay € Fi, Ay € Fo.
This definition can be extended to countable products of probability measure spaces.

Definition 2.1.13. Let (X;, F;)32; be a sequence of probability spaces. Define,

X = HXi, and F = ®]:Z =0 ({HAZ : A; € F; and A; # X finitely often}) .
i=1

i=1 i=1
Then (X, F) denotes the product measurable space of (X;, F;)2,.
Remark 2.1.14. Note that the above definition for F is chosen precisely such that the

projection maps become measurable. In other words, this choice of o-algebra is the smallest
such that 7rj_1(A) € F for all A € X;. This is often taken as equivalent definition.

Theorem 2.1.15. Let (X, F;, 11:):2, be probability measure spaces with (X, F) their product
space. We can define a measure p on X such that for all finite J C {1,2,...}, we have,

U HAJ.HXZ» = H,uj(Aj), where A; € Fj for all j € J,

jel g jeJ
The triple (X, F, ) is called the product measure space of (X;, Fi, p:)2 ;.

Proof. Similar to the proof of the finite case, we define R and p : R — [0, 1] as,

R = {H A; - A; € F; and A; # X; finitely often} and o HAj HXi = H/L]’(Aj),

i=1 jed  j¢J jeJ

To apply Carathéodory’s Extension Theorem, one needs to check that R is closed under finite
unions and intersections, jg is well defined, and NO(U?; Ai) = > 2, to(A;) for pairwise
disjoint A; with (J;2; A; € R. Unlike the finite case, these statements are no longer trivial.
We outsource the details to [I5, Theorem 4]. O

2.2 The Poisson Point Process

This subsection aims to give a formal description of the Poisson point process (PPP). We
start with its definition and proceed by proving the existence of the PPP. The theory in this
subsection is largely based on work by Giinter Last and Mathew Penrose [12]. Throughout
this section, we write Ny = NU 0 and Ny = Ny U oo.
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2.2.1 Definition of the PPP

Definition 2.2.1. Let (X, F) be a measurable space. We define N to be the set of countable
sums of all nonnegative integer valued measures. That is,

N=N(X) = {Zm:ui(A) e Ny for allAEf},
i=1

where we write N instead of N(X) for brevity. We turn this set into a measurable space
with the following o-algebra,

N=oc({{peN:uB)=k}foral BeFand k€ Np}).

Example 2.2.2. Let (X, F) be a measurable space and let x € X. Then, the Dirac measure
defined as 0,(A) = Lyzecay is an element of N. For xy,2,,--- € X, the measure ) ;°, 0, is
also in N. One may think that any measure in N can be written as Zle 6., for some k € Ny.
This however is not the case.

Indeed, take X = [0,1] and F = {A C [0,1] : #A4 < oo or #A° < 00}. Set pu(A) = Lipa—oo}
for A € F. One may check that (X, F,u) is a measure space. Clearly p € {0,1} so u € N.
However, u({z}) = 0 for all z € [0,1] and thus u # d, for any x. This problem only came
about from the poor choice of g-algebra on [0, 1] as the o-algebra was too coarse.

This problem disappears if we work on a finer o-algebra such as ([0, 1], B([0, 1])). Suppose
p € N and p(A) = 1 for some A € B([0,1]). By a standard halving argument, we can
find measurable closed intervals I; € A such that (;2, I; = {z} and pu(I;) = 1 for all i. By
continuity from above for measures, we conclude pu({z}) = 1.

Remark 2.2.3. Throughout this thesis, we will be working with random elements in N,
where the measures in N are defined on (Rxsq, B(Rx¢). In this setting, every measure u € N
is locally finite and thus repeating the above argument at all A € B(Rx() where u(A) > 1,
we see i can be written as sums of Dirac measures. However, the theory presented in the
current section also works on a more general level.

We continue with the definition of a point process, informally a point process on (X, F) is a
random variable taking values in the space N. The formal definition follows below.

Definition 2.2.4. Let (X, F) be a measurable space. A point process on X is a measure
valued random variable 1 defined on probability space (€2, A, P), taking values in the space N.

Using shorthand notation, {n(B) = k} = {w € Q : n(w)(B) = k}, we see 7 is a point process

precisely when {n(B) =k} € A for all B € F and k = N,.

Example 2.2.5. Let (X, F) be a measurable space and let Y be a random variable defined
on (2, A, P) taking values in X. Then n = dy is a point process as for B € F and k € Ny,

W Y@ ¢B) k=0
(nB)=k}={{w:Y(w)eB}Y k=1
0 k> 1.
And {w:Y(w) ¢ B}, {w:Y(w) € B}, € A. Also note P(n(B) = 1) =P(Y € B).
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Example 2.2.6. Let (X, F) be a measurable space and p be a probability measure on X. Let
Y1, ..., Y, beiid. random variables with distribution . Then, n = dy, +- - -+ dy,, is a point
process, since {n(B) = k} is measurable. Indeed, P(n(B) = k) = (})u(B)*(1 — p(B))™*.

Next, we introduce the Poisson point process, a special type of point process.

Definition 2.2.7. Let (X, F,u) be a measure space with a s-finite measure p. A point
process n on X is a Poisson point process with intensity measure p if,

i) For all A € F with u(A) < oo, we have n(A) ~ Poi(u(A)).
ii) For mutually disjoint sets Ay,..., A, € F, n(A1),...,n(A,) are independent.

On R?, we make the distinction between homogeneous and inhomogenous measures. If 1 = v\
with A the Lebesgue measure and v > 0, we say n is a homogeneous PPP of intensity ~.
If 1(A) = [, f(t)dt, we say n is an inhomogeneous PPP of intensity f(t)dt.

Observe that the definition of a PPP only tells us how counts in finite disjoint sets are
distributed based on averaging an intensity measure p over sets. It is not obvious that this
uniquely determines a PPP. In principle, there could be a PPP with a different law that
produces the same average intensities. Below, we show that this is not the case. The proof
relies on the fact that the o-algebra N is generated by the events {n : n(A) = k} hence N
consists of events of the form {n : n(A;) = ki, ..., u(A,) = k,}, which is precisely determined
by the intensity measure of a PPP.

Lemma 2.2.8. Let n and 7 be two point processes on (X, F). We have,

n D = (A, 0(A0)) D (7(A), ..o (Ar)) for all k € Ny and A, € F

Proof. Suppose n and 1’ are two point processes with 7 @ n'. Then P(n € A) = P(n € A)
for all A € N. Note that {u : p(A4;) = ki,...,u(A,) = k,} € N for all n € Zso, A; € F.
Thus, P(n(Ay) = k1,...,n(4,) = k) =P (A1) = k1, ..., 7' (A, = ky)) follows immediately.

Assume (n(Ay), ..., 1(A)) L (0 (A1), ..., 1 (A)) for all k € Zso and A; € F. We define,
P={{p:w(A) =ky,...,u(A,) =k,} forn e N ky,... .k, e NJA, € F} CN.

Then P is closed under intersection and o(P) = N. Furthermore, P(n € A) = P(ry € A) for
all A € P. Hence by Corollary [2.1.9, 7 and " agree on o(P) = N. We conclude 7 @ n. O

Corollary 2.2.9. Let n and 1’ be two PPP’s with the same intensity measure. Then 7 @ n.

This finishes the formal introduction of the Poisson point process and shows that, if such a
measure valued random variable exists, is uniquely determined by its intensity measure. The
following sections proves the existence of PPP’s of arbitrary intensity measure.
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2.2.2 Existence of the PPP

Before rigorously proving the existence of the PPP, we give an outline of the proof strategy,
by first informally constructing a PPP of finite intensity measure 4 and then upgrading this
to arbitrary s-finite measures pu.

Let (X, F, 1) be a probability space and 7 > 0. To construct a PPP of intensity v on X, we
sample X1, ..., Xy ~ piid. where N ~ Poi(y). We claimn = 31| dx, is a PPP of intensity
measure yu. To see this, for A C X, we have n(A) ~ Binom(N, pu(A)) ~ Poi(yu(A)). Given
that Xy, ..., Xy are independent, and the Poisson thinning property, we may expect mutually
disjoint sets to have independent counts, making n a PPP of intensity measure yu on X.
This construction allows for PPP’s of arbitrary intensity measure p as long as pu(X) < oc.

If 41(X) = oo, we will use that p is s-finite. Indeed, suppose p = Y oo p; with p;(X) < oo.
Using the approach above, we may construct PPP’s 7, with intensity measure p;. It turns
out that n = > 7; is a PPP with intensity measure p. This last claim is known as the
superposition principle. In the remainder of this section, we formalize the reasoning in the
first paragraph, introduce the superposition principle and show how this ensures the existence
of PPP of arbitrary s-finite intensity measures.

Lemma 2.2.10. Let (X, F, ) be a probability space and fix v > 0. Suppose that N ~ Poi(7)
and Xi,..., Xy ~ piid. Thenn= ZZ]\LI 0x, is a PPP with intensity ypu.

Proof. Let By,...,B, € F be pairwise disjoint sets, and define B, = X\ ;- B; so
that By, ..., B4 forms a partition of X. Let ky,...,k,, € N>pand set k =k, +... + k.
Conditional on N =n, (n(Bi),...,n(Bms1)) follows a multinomial distribution. We obtain,

P(n(B1) = k1,...,0(Bu) = kn) = > PN =n)P(n(B1) = ky,...,0(Bys1) = n — k)
n=~k
_ — 1" n! ek T "
_Zke kalykm'(n_k)ﬂl(Bm—i-l) HM(BZ) )
11 (BRI i t(Bign)" "
— v n
‘ H k;! ;7 (n—k) ~’
— ¢/ (1=(Bmi1) 1 ((B)"
k;! )

=1

_ (w(]fl'))kl e~ VH(B1)
1!

hence n(B;) ~ Poi(yn(B;). By symmetry, we have n(B;) ~ Poi(yu(B;)) for 1 < i < m.
Independence of n(B;) follows from the fact that the product of marginals equals the joint
pmf as seen below,

H P(n(B;) = ki)

By setting m = 1 in the above expression, we get, P(n(B;) = k1) and

Y

k;!
= P(§(B1) = k1, ,0(Bu) = k).
We conclude that n is a PPP with intensity ~yu. u

ﬁ (’W(Bi))ki o (B — p(1(Bmt1)—1) o (’W(Bi))ki
k!
i=1

i=1
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This shows that for measurable space (X, F) and probability measure p, we can find a
PPP of intensity yu. Since yu(X) = v < oo, this construction can only construct PPP’s
of finite intensity measure. However, in practice this often is insufficient. For example
a PPP of intensity 1 on R already cannot be created using this construction, as A(R) =
oo. Next, we introduce the superposition principle for PPP’s and show how this mitigates
the above limitation.

Lemma 2.2.11. Let 7;,179,... be a sequence of independent Poisson point processes with
intensity measures Aj, Ag, ... taking values in (X, F). Then,

n(A)=> m(A) AeF
i=1
is a PPP with intensity measure A = Y °  \;.

Proof. Define v,(A) = > 7", pi(A). We have,

P(v,(A) <k)=P (i n;(A) < k:) =P (i Poi();(A)) < k) =P (Poi (i )\i> < k) .

Then, by continuity of probability of increasing sets and continuity of the Poisson distribution,
we obtain,

P(n(A) <k)= lim P(1,(A) < k)= lim P (Poi (i A,») < k;)

n—00 n—00 -
=1

—P (Poi (i )\Z-) < k) — P(Poi(\) < k),

and thus n(A) ~ Poi(A(A)) distributed. Next, let By,...,B,, € F be mutually disjoint.
Then n,(B;) are independent for all 1 < j < m and ¢ € N and thus by the grouping property
of independence, we obtain the independence of,

[e.e] [e.e]

> ni(B),.... Y n(Bn).

i=1 i=1
This finishes the proof. O
Now we are in a position to prove the general existence of the Poisson point process.
Lemma 2.2.12. Let 4 be an s-finite measure on measurable space (X, F). Then there exists

PPP on X with intensity measure u

Proof. Suppose (X)) < 0o. Let v = p(X) and A(-) = # so that A is a probability measure.
By Lemma [2.2.10 we obtain the existence of a PPP with measure v - A = pu as desired.

In the case pu(X) = oo, we use s-finiteness of p to write pp = > oo, p; with p;(X) < oo for
all 2. Then let 7; be a PPP on X with intensity y;. By Lemma [2.2.11] we obtain that > .-, 7
is a PPP of intensity >~ y; = p as desired. O
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This rigorously shows the existence of the Poisson point process on measurable space (X, F)
with s-finite intensity measure. Recall Example [2.2.2] in which we showed that not every
nonnegative integer valued measure can be realised as Dirac measure. We show this is not a
limitation for PPP’s. That is, a PPP of any intensity measure can be obtained as a random
sum of dirac measures located at random variables. We formalize this below.

Theorem 2.2.13. Let (X, F) be a measurable space, and p be an s-finite measure on X.
There exists a probability space (2, A,P) supporting random variables X, Xy, ... taking
values in X and random variable K taking values in Ny such that,

K
=20
i=1
is a PPP of intensity pu.

Proof. If u(X) < oo, then Lemma [2.2.10] gives us the desired result with N ~ Poi(u(X))
and Xy,..., Xy ~ ﬁ, which, using Theorem [2.1.15, can be defined on the countably

infinite product space,
- M
N072N07PN X (X7f7—>7
( ) 11 1(X)

— o—H(X) (u(ﬁ))"'

where Py is the Poisson probability measure. Ie. Py({n})

In case p(X) is infinite, we use that y is s-finite and decompose p = .2, p; with p;(X) < oo.
Define \; = For each i, we construct probability space,

(X)

o0

(Q, Ai, Py) = (No, 2%, Pre,) x [T (X, F.N)

i=1

on which K; ~ Poi(y;(X)) and X;1, Xjo, -+ ~ A; are all independently defined. Let,

(Q,AP) = ﬁ (D4 A Py)
=1

On this product space, define the random variable K = Y~ ° K; and n(i,j) = ;;i K; + 7,
which both are measurable (as countable sums of random variables are measurable). Lastly,
we relabel the random variables Y,; j) = Xj;. We see,

K oo K

YYi=> > ox, =D mi=n,
=1 =1 j=1 =1

where 7; is a PPP of intensity y; and 7 is a PPP of intensity > .~ p; = p1 as desired. O]

Remark 2.2.14. Although formally the Poisson point process is a measure-valued random
variable, the above theorem also justifies the common view that the PPP is a collection of
random points. Indeed, for a PPP of any intensity, we can find a countable collection of
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random points such that the sum of Dirac measures at those points share the same intensity
measure and thus by Lemma [2.2.8| are equal in distribution. This is not to say that any PPP
is actually a sum of Dirac measures, but if we talk on the level of distributions, there is no
difference.

2.2.3 The PPP as Renewal Process

Theorem [2.2.13| tells us that a PPP of arbitrary intensity can be realized as sum of Dirac
measures. In this section, we explore some implications of this, in particular when we work
with PPP’s on (Rsq, B(R>()). We first introduce some natural definitions.

Definition 2.2.15. Let (X, F) be a measurable space and let suppose there exist X-valued
random variables X, Xy, ... and Ny valued random variable K such that,

K
n= Z 6X¢
=1

is a PPP of intensity measure pu on (X, F). We call X;, Xs,... the points of n. Note that
the points are random variables. We also write x € n for the event that n({z}) > 0.

If (X,F) = (Rso, B(R>p)) and there are random variables 0 < C; < Cy < --- € R so that,

n=">dc
i=1

is a PPP of intensity p on (Rxg, B(R>)), then 0 < C < --- < Cy, are the first k points of 7.

In this section, we will find random variables 0 < C; < Cy < ... such that n = )"* d¢, is a
PPP of intensity 1 on (R>q, B(R>p)). We then generalize this construction to PPP’s of more
general intensity measure on (R>q, B(R>¢)) and use this to find the distribution of the first &
ordered points for PPP’s of intensity f(t)dt.

Lemma 2.2.16. Let T; ~ Exp(1) be i.i.d. and let C; =T + - -+ + T; for i € N. We have,

n= Z 502‘7
=1

is a PPP on (Rxg, B(Rxg)) of intensity 1.

Proof. We first define N, = #{C; s.t. C; < a} to count the number of points C; in the
interval [0, a]. For b > a, we have P(N, = m and N, = m + k) = &4~ . e ba)t Indeed,

m! k!

Cn <a,

G—CmSTerl Sb_cma

Toao+ + Toak <b— (Copo + Trns1),
b— (Cpo+Toy1+ -+ Toik) < Trnsiesr-

N,=mand Ny=m+k <—
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Recall that summing n i.i.d. Exp(1) random variables yields a Gamma(n, 1) random variable.
Thus C,, follows a Gamma(m, 1) distribution, and 7,42+ « -+ 71,1 follows a Gamma(k—1,1)
distribution. Also note that C,,, Tni1, Tinio+ - -+ Tmir and 1), 111 are independent. Thus,

b—t1 b—t1—t2
P(Ny =m +k, N, = / / / / [ty ta, t3, ty)dtsdtsdtydty,
b—t1—to—t3

—le—ty | tk=2.-t3
(m o€ t2 s R ~t4_ Some computations show,

where f(t1,t2,t3,t1) =

b—t1 b—t1—t2 tm 1 —t1 » t§72€—t3 .
e 2 e “dtydtsdtadt
\/CL / \/b t1—to— t3 - 1) (k - 2)' e
b t1 b—t1—t2 tT 1 t’?f 2 X
= “Pdtsdtadt
/// (m—1) (k=21 T
b— m—l k—1
b — 11—t
- / / b 1= t) ebdtydt,
0 a—t1 (k - 1)|

b— m—1 k—1
ty
/ Y le_bdudtl
o Jo (k—1)!

_ﬁ( b
B k‘

ame™® (b—a)ke -9
R k! '

This implies that,

bh— k,—(b—a)
B(Ny = m 4k | N, =m) = (L@

k!
Hence, n([a, b]) ~ Poi(b—a), this being independent of the number of points prior to the inter-
val [a, b]. Basic inductive reasoning implies that for independent intervals [aq, b1, ... [ay, b,]

we have that n([a1,b1]),...,n([a,,b,]) are independent.

This shows that i) and i) in Definition hold for all closed intervals in R>q. For 7 to be
a PPP, this needs to hold for all A € B(R).

To show this, one typically shows that given 7([0,7]) = n, the points Cj,...,Cy are the
order statistics of uniformly distributed in [0,T]. Once this is established, a proof identical
to that of Lemmal[2.2.10] can be used to obtain that n(A) ~ Poi(A(A)) and disjoint sets giving
independent counts. We leave the details to [13, Section 5.3.5]. O]

The above construction coincides with a PPP on R, with Lebesgue intensity measure. Next,
we show how we can obtain PPP on the positive real line with different intensity measures
by applying transformations to the above point process.

Lemma 2.2.17. Let (X, Fx), (Y, Fy) be measurable spaces and 1 be a PPP of intensity
measure g on (X, Fy). Let f: X — Y be measurable. Then f(n) = no f~!is a PPP of
intensity measure po f~1 on (Y, Fy).
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Proof. Let (X, Fx),(Y,Fy),n and f be as above. Fix A € Fy. Then,
Fm)(A) = n(f~(A)) ~ Poi(A(f'(A))) = Poi((Ao f71)(A)).
Lastly, Ay,..., A, mutually disjoint implies f~1(A;),..., f~'(A,) mutually disjoint, hence,
F)(A, s Fm)(An) = n(f7H(AD)), - on(fH(AR)),
are independent. This shows that f(n) is a PPP of intensity measure Ao f~! on (Y, Fy) [

Example 2.2.18. Let n be a PPP of intensity 1 on R>g and let f(z) = v/2x. Then f(n) is

a PPP with intensity td¢. Indeed, note that f~!(z) = 3. Hence,

()\ofl)(A)_/f_l(A) dt_/Atdt.

Thus the intensity measure of f(n) is indeed (Ao f1)(t) = tdt.

Remark 2.2.19. Let T; ~ Exp(1) be i.i.d. and C; =Ty + --- 4+ T;. Then, n =3 .2, d¢, is a

PPP of intensity 1 (Lemma [2.2.16). We have that f(n) @ Yooy 0pcyy and thus D22, drcy
is a PPP of intensity measure A o f~! for A\ the Lebesgue measure.

Example 2.2.20. Suppose f(t) : Rsg — R5( is measurable and set,
T={(z,y) €R*:2>0,0<y< f(z)}.

Let n be a PPP of intensity 1 on (T, B(T)) and let g : T' — R3¢ be given by g(z,y) = x. By
Lemma [2.2.17, g(n)(A) is a PPP of intensity A o g7! on (Rsg, B(Rs0)) for A the Lebesgue
measure. In particular g(n) is a PPP of intensity f(t)dt since,

()\og_l)(A)://g_l(A) da:dy:/Af(t)dt.

In particular, if we order the points of n as {(Cy, By), (Cs, By),...} with 0 < C; < Cy, ...
then (C4,...,C%) follow the same law as the first k£ ordered points of a PPP of intensity
f(t)dt and B; ~ Unif([0, f(C;)]). The last claim is intuitive but can be formalized using
Marked point processes. We link [12], Section 7.2].

We now proceed by giving the distribution of the first k& points of a PPP on (Rs¢, B(R>0)).
First for PPP’s of intensity 1 and later for arbitrary intensity measures.

Lemma 2.2.21. Let n be a PPP of intensity 1 on R>p and let 0 < C; < Cy < --- < (), be
the first &k points of . Then (C1,...,Cy) has pdf fo, ¢, (s1,...,56) = e ** forsg <--- < sp.

Proof. Recall from the construction of the homogeneous PPP on R that if ) < --- < Cj
denote the first k ordered points of a PPP, then we have C = AT where,

4 10 -+ 0 T,

B e 11 -0 I

c=1 .1, A=1|. . . A, T=1 .|, with T; ~ Exp(1).
Oy 11 -1 T
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This linear transformation is invertible with inverse,

1 0 0 0
-1 1 0 - 0
A1=-10 —-11 -0
0O 0 0 --- 1

Observe that fz = e~ "1+ %) thus we obtain,
fa(styeoosk) = fa(A (s, . ,8))det(A™H) = e . 1,

as desired. ]

We now upgrade this proof to the probability density function of the first k& ordered points
of PPP’s of intensity f(t)dt.

Lemma 2.2.22. Let n be a PPP of intensity f(¢)dt on (R>o, B(R>g)) for some increasing f
and let 0 < Cy < -+ < O} be the first k£ ordered points of 1. Then,

Proof. Using [2.2.17, we aim to find g such that (Ao g ')(A) = [, fdt as then g(n) is a
homogeneous PPP. We define F(x) = [ f(t)dt, which is invertible since f is increasing.

Then,
(AoF)(A):/F(A) dt:/AF’(t)dt:/Af(t)dt.

Thus we take g = F~1. If 0 < X; < --- < X}, are the first k points of a PPP of intensity 1,
then C; = F71(X}),...,C, = F71(X}) are the first k points of n with intensity f(t)dt. We
define g(X1,...,Xx) = (F71(Xy),... F7(Xy)) so g '(Ch,...,Ch) = (F(Ch),..., F(C)).
We get,

Og Hwy, ..., xp)
det
¢ ( (1, ..., xy)

as desired. ]

This concludes the section on Poisson point processes. We continue with a description of the
Gromov-Hausdorff-Prokhorov topology.
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2.3 The Gromov—Hausdorff-Prokhorov Topology

In essence, the Gromov—Hausdorff—~Prokhorov topology is a topology on the space of compact
measure metric spaces. More precisely, the Hausdorff distance compares distances between
two subsets in a common metric space. The Gromov-Hausdorff metric assign distances
between metric spaces by isometrically embedding them in an optimal common space and
then assigning distances using the Hausdorff metric. Lastly, the Prokhorov distance is a
metric on measures defined on a common metric space. Below, we formalize these notations.

2.3.1 The Gromov—Hausdorff Distance

We start with introducing the Gromov-Hausdorff distance, a metric that assigns distances
between compact metric spaces.

Definition 2.3.1. Let (X, d) be a metric space, and let A, B C X be two non-empty subsets.
The Hausdorff distance dy(A, B) between A and B is defined as:

dy (A, B) = max {Sup d(a, B), supd(A, b)} .

acA beB

Where the distance between a point a and set B is given by d(a, B) = infyep d(a, b).

4 B
sup d(A,b)
beB

sup d(a, B)
acA

Figure 12: Hausdorff distance

This notion is useful for comparing subsets inside a common metric space, but cannot be
used to compute distance between two metric spaces. To extend this definition to compute
distances between two metric spaces, we first embed them in an optimal common space, and
then compare them using the Hausdorff distance defined above.

Definition 2.3.2. Let (X,dx) and (Y,dy) be two compact metric spaces. The Gromov—
Hausdorff distance dgp(X,Y) between X and Y is defined as:

den(X.Y) = jnf df(0(X).0(Y)),

where the infimum is taken over all metric spaces Z and all isometric embeddings ¢ : X — Z
and ¢ : Y — Z. Here, d% denotes the Hausdorff distance in the space Z. If Z is clear from
context, we simply write dg instead of d%.
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Remark 2.3.3. We claim the Gromov—Hausdorff distance is a metric on the space of isometry
classes of compact metric spaces. However, first note that we define the Gromov-Hausdorff
distance using compact metric spaces. It is intuitive that we want totally bounded metric
spaces as unbounded metric spaces lead to infinite Gromov—Hausdorff distance. However,
completeness of the metric space is also important as is illustrated with the following example.
If we compare the metric spaces (0,1) and [0,1] (say, both with Euclidean distance) then
clearly dep((0,1),[0,1]) = 0. However, (0,1) and [0, 1] are not isometric. Restricting to
complete metric spaces removes this problem.

Theorem 2.3.4. The Gromov—Hausdorff distance is a pseudo-metric on the space of compact
metric spaces and is a metric on the space of isometry classes of compact metric spaces.

Proof. We refer to [5, Theorem 7.3.30] for a proof. ]

An equivalent definition of the Gromov—-Hausdorff distance can be stated in terms of corre-
spondences and distortions.

Definition 2.3.5. Let (X, dx) and (Y, dy) be two compact metric spaces. Wesay R C X xY
is a correspondence if for all x € X there exists at least one y € Y with (x,y) € R, and vice
versa.

The distortion of a correspondence R is defined as,

dis(R) = sup  |dx(z, ") —dy(y, )|,

(z.9),(z" v )ER
where the supremum is taken over all pairs of elements in the distortion.

Theorem 2.3.6. We have,
...
deu(X,Y) = 5 1%f dis(R).

where the infimum is taken over all correspondences R between X and Y.

Proof. This is a standard result and can be found in [5, Theorem 7.3.25]. O]

2.3.2 The Prokhorov Distance

Before continuing with the Gromov-Hausdorft-Prokhorov distance, we define the Prokhorov
distance between two measures defined on a common metric space.

Definition 2.3.7. Let (M, d) be a metric space and A C M. Then,
A ={x e M s.t. d(z,A) < €},
is called the e-thickening of A.

Definition 2.3.8. Let (M, d) be a metric space with associated Borel sigma algebra B(M).
Let P(M) denote the set of all probability measures on (M, B(M)). Then,

dp(p,v) =1inf{e > 0: p(A) < v(A°) +e€forall A e B(M)},

for u,v € P(M) is called the Prokhorov distance between u and v.
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Remark 2.3.9. To motivate this definition, suppose p is a metric in some measure metric
space. There are two ways we can perturb p: We can slightly change the sets to which pu
gives measure, and slightly change the mass size u gives to each set. The € enlarging of A
allows for the former, while adding € accounts for the latter.

This is different from total variation distance, which accounts for perturbations in measures
given to sets, but does not differentiate between distances of sets in the underlying metric
space. This makes total variation distance flexible, as it does not have to be defined on
metric spaces (after all, it does not need a notion of two sets being close). However, total
variation distance is not the right metric to go with Gromov-Hausdorff distance, precisely
since it cannot differentiate between sets that are close in terms of Hausdorff distance.

Theorem 2.3.10. The function dp is a metric on P(M).

Proof. Below, we check symmetry, positivity and the triangle inequality,

i) For showing symmetry, suppose that u(A) < v(A€)+e for some € > 0 and all A € B(M).
Then v(A) =1 —v ((A9)) <1 — p(Ae) +e=p(A) +e as A= (Af)e and A¢ € B(M).

ii) It is clear that dp(p,v) > 0 and dp(u, p) = 0 for all p, v € P(M). Suppose dp(u,v) = 0.
Then, for all A € B(M), u(A) < v(A°) + €. Taking A closed, and letting € — 0, we see
that p(A) < v(A) for all closed A € B(M). By symmetry, u(A) > v(A). Since B(M) is
generated by the open (and hence closed) sets, we may conclude pu = v.

iii) For the triangle inequality, suppose dp(u,v) < €; and dp(v,7) < €5. For all A € B(M),
PA) <v(AY) + e < ((AY)?) + e+ e =T(AT2) + 6 + €.
We conclude, dp(p, ) < dp(p,v) + dp(v, 7).
This shows that dp is a metric on P(M). O

If the metric space (M, d) is Polish (separable and complete), then (P(M), dp) inherits the
same property.

Theorem 2.3.11. Let (M, d) be a Polish metric space. Then (P(M),dp) is also Polish.
Proof. We reference [7, Appendix 2.5.111]. O

We introduce two useful lemmas that bound the Prokhorov distance between two measures.

Lemma 2.3.12. Let (M,d) be a metric space with p,v € P(M). If X ~ pu,Y ~ v are two
random variables defined on a common space such that P(d(X,Y") > €) < ¢, then dp(p, v) < €.

Proof. Let A € B(M). Then,

WA =P(X € A) =P(X € A,d(X,Y) < &) + P(X € A, d(X,Y) > e),
<P(Y € A9) + ¢,
= u(A) + €
Since this holds for all A € B(M), we conclude dp(u,v) < €. O
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Lemma 2.3.13. Let u,v be two measures, and suppose Ki,..., Ky is a partition of the
support of p such that diam(K;) < e for alli =1,..., N. We have,

dp(j1,v) < max {Z n(K,) - V(Ki)l} < e 3 i) = ()|

Proof. Let A be measurable, and define I = {i € {1,..., N} s.t. K;N A # (0}. We have,

u(A) <Y (i)

<D (K = v(K) + 3wl
< (K — (K| + v (U Ki>

< Z |u(KG) — v(K)| + v(A°).

Where )., v(K;) = v(U;e; K:) by disjointness of the K;’s and v(|J,.; K;) < v(A°) follows
since |J,.; Ki C A°. This shows dp(p, ) < max {e, SOV (), v(K;)|} as desired. O

2.3.3 The Gromov—HausdorfI-Prokhorov Distance

It remains to combine the Gromov—Hausdorff distance and the Prokhorov distance to obtain
a metric on the space of compact measure metric spaces.

Definition 2.3.14. Let (X, dx, ux) and (Y, dy, py) be two compact measure metric spaces.
The Gromov-Hausdorff-Prokhorov distance, or GHP-distance for short, is defined as,

donp(X,Y) = int {max (df (p(X), 6(Y)), dF(ux 067 oy 0 07) )

The infimum is over all metric spaces Z and isometric embeddings ¢ : X — Z, ¢ Y — Z
and d%,d% are the Hausdorff and Prokhorov distance in Z respectively.

Remark 2.3.15. Let (Y,d, uy), (X, d|x, tx) be two measure metric spaces for X C Y and
probability measures px, pty. Then dgyp(X,Y) < max(dy(X,Y),dp(px, py)). This follows
immediately by taking Z =Y and ¢ : X — Y ¢ : Y — Y to be the identity embeddings.

In the case X C Y, one might intuitively expect the identity embeddings to always be
optimal, which would turn the above inequality into an equality. This however is not true.
For example, take X = [0, 1] and Y = [0, 5], both with normalized Lebesgue measure. Then
dy(X,Y) = 4. To bound dgy(X,Y), take Z = [0,5],¢(x) = x + 2 and ¢(x) = x. This
shows, dgp(X,Y) < 2. Also, d4(ux o ¢~1, uy o ™) < 1 for any choice Z, ¢,1). Hence we
may conclude, dgyp(X,Y) = max(dy(X,Y),dp(ux, py)) cannot hold for all X C Y.

Similar to the Gromov—Hausdorff distance, we can restate the Gromov—Hausdorff-Prokhorov
distance in terms of correspondences.
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Definition 2.3.16. Let (X, Fx, pux), (Y, Fy, iy ) be two measure spaces, let 7 be a measure
on the product space (X x Y) and let p; be the projection to i’th coordinate. We define,

D(m; px, py) = ||mopi — px|lrv + ||m o st — pyl|rv,

where || —v||ry = sup{|pu(A) —v(A)| : A C X measurable} for u, v measures on measurable
space (X, Fx).

Theorem 2.3.17. Let (X, dx, ux), (Y, dy, py) be compact measure metric spaces. Then,

dopp(X,Y) = inf {max (%dis(R), D(m: pox, py ) + W(RC)) } |

R,

where the infimum is taken over all correspondences R between X and Y and all measures
on X x Y. Lastly, R® denotes the complement of R in X x Y.

Proof. A proof of the result can be found in [10, Theorem 3.6]. O

Remark 2.3.18. Note that D(7; ux, py) = 0 when 7(A,Y) = pux(A) and 7(X, B) = uy(B),
for all A € Fx, B € Fy. Such a measure m on the product space X x Y is called a coupling.

Example 2.3.19. Let L, = (V, E) with V = [n] and F = {{i,i+1} : i € [n— 1]} be the line
graph on n vertices and Let d,, be the graph distance. For A C V(L,), define u,(A) = #TA
to be the uniform probability measure on the vertices of L,. Define metric space ([O, 1], d)
with d Euclidean distance and let A be the Lebesgue measure on [0, 1]. Then,
(Lna n_ldna ,un) — ([07 1]7 d7 )\)7
n—oo

in the GHP topology. In Figure , we visualize how n™' L, approximates [0, 1] by n equally
spaced points.

1
16L16oooooooooooooooo

[0,1] —a— |

Figure 13: In red, we visualize the idea behind the correspondence R,,: we pair to each vertex
in L,, the corresponding segment in R,,.

We make the correspondence described in Figure [13| concrete as subset of L,, x [0, 1],

-1
Rn:{(x,y)ele[O,l]:xe[n] andeSyS%}.

Then for arbitrary (z,v), (2/,y') € R,, note that n~'d(x,2") — d(y,vy’) < 2n~! and thus we
found a correspondence with dis(R,,) — 0. Hence n~'L,, — [0, 1] in the GH-topology.

n—oo n—o0

We first give some intuition into the convergence of u, to A. Let A C [0,1] be an interval
and let B, = {z € L, : (v,y) € R, fory € A} be the set approximating A in L,. It is
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intuitive that u,(B,) — A(A) as the left side computes the proportion of B,, in L,, and the
right side the proportion of A in [0,1]. This is the intuition behind GHP-convergence. The
correspondence used for GH-convergence gives us a way to approximate sets in [0, 1] by sets
in n='L,. The measures p, converge to A since u, converges on approximations of sets.

Below we make this reasoning formal by finding a measure 7, on L, X [0, 1] such that we
have, D(m,; pux, ty) — 0 and m,(RS) — 0. For this, define,

(A, B)=X{y€[0,1] : y € B, (z,y) € R, for some z € A}),

where this is well defined since R" is measurable in the product space. Note that 7, (R%) =0
for all n since m,(RS) = A() by construction. Then,

n(Ln, B) = A{y € B : (x,y) € R,, for some x € L,}) = A\(B).
Then lastly,

(A, [0,1]) = A{y € [0,1] : (z,y) € R, for some z € A}),

T e

i€A

Thus, we have shown that D(7; p,, A) = 0 as 7 is a coupling of u,, and A. This concludes the
example and shows (L,,n 'd,, u,) — ([0, 1],d, \) in the GHP-topology.
n—oo

2.4 Formalization of Proof Strategy

In this section, we justify the proof outline as given in Section [I.5J, We formalize how
the convergence of finite dimensional distributions (Theorem [1.5.1)), together with tightness
arguments (Corollary [1.5.4) are sufficient to deduce our main result, Theorem [1.5.2]

Lemma 2.4.1. Let X, X5,... and X be random variables taking values on metric space M.
The following are equivalent,

i) X, converges in distribution to X,

ii) limsup,,_, .. P(X, € A) <P(X € A) for all closed sets A C M.
Proof. This is Portmanteua’s Lemma, we reference [§, Theorem 3.2.11]. O

We use Portmanteau’s lemma to prove the following,

Lemma 2.4.2. Suppose that X, 1, X,,, X, and X are random variables living in the same
metric space and for all € > 0,

Xpk —2 Xp,,  lim limsup P(d(X, 4, X,,) > €) =0 and lim P(d(X, X) > €) =0,
—00

n—00 k=00 no0o

then we have X, BN g

n—oo
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Proof. First observe that using Lemma [2.4.1} it suffices to show,

limsupP(X,, € A) <P(X € A) for all A closed.

n—oo

Now observe that for all € > 0, and A closed, we have,

limsup P(X,, € A) <limsupP(X,,; € A°) + limsup P(d(X,,, X 1) > €),

n—o0 n—o0 n—o0

< lim limsup P(X,,, € A°),

k—oo  nsoo

< lim P(X) € A°),
k—o00

where the last step follows from Lemma [2.4.1f together with the assumption X, j 4 x , and
the observation that A€ is closed. Similarly, for all B and all 6 > 0 we have,

lim P(X; € B) <P(X € B%) + Jlim P(d(Xy, X) > 6) =P(X € BY).
—00

k—o0

By using B = A€, we combine both bounds into,

limsupP(X,, € A) < P(X € A“™), for all A closed.

n—oo

Let r = € + §. Since the result holds for all €,6 > 0, we let r — 0 and thus A" | A (Recall
that A is closed, thus for all (ri)ieN with 7; — 0, we have ()72, A") = A). By continuity
of P from above, we find,

limsupP(X,, € A) <P(X € A), for all A closed,

n—oo
as desired. ]
Proposition 2.4.3. Suppose we have convergence (ﬁk),n_%dn,w(bk)) BN (T(’“),d, u(k))
n—oo

in GHP-topology, and for all € > 0, we have,

=00 p oo

i) lim P (dp (1™, 1) > €)) =0, iv) lim limsup P (dp (v, 1) > €) =

k—oo nsoo

i) tli,%lop(dH (T(t), T)>¢€) =0, it) lim limsup P <dH (E(tn%)jﬁ) > e) =0,
0

Then, <’7;L, n-2d,, 1/n> —— (T,d, i) in the GHP-topology.

n—o0

Proof. We aim to use Lemma To this end, we define,
X = (Todpt), X = (Toon v ) X = (T, d,1n®) and Xy = (T8, 07 4dy, ).
Thus we need to show that for all € > 0,

klim P(dgrp(Xk, X) >€) =0 and lim limsup P(dgrp(Xin, Xn) > €) = 0.
—00

—X  n—oo
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Observe T C T. Hence dgp(Xy, X) < max (dg(T®, T),dp(u®), 1)), (Remark [2.3.15)).
By an application of the union bound, we obtain,

P(dap(Xi, X) > €) < P(max(dy (T®, T, dp(u®, 1)) > €),

<
< P(du(T®,T) > €) + P(dp(p™, 1) > ).
By taking limits and substituting iii) we see,

lim P(deyp(Xe, X) > €) < lim P(dg(T®, T) > ).
k—o0 k—o0

Thus it suffices to show P(dy(T™®,T) > ¢) — 0 as k — oco. This statement follows from ).
Indeed, assuming i) we have that for any § > 0, we can pick 7" > 0 such that,

P(du(T(T),T) > ¢) < g

Let K be large enough so that P(n([0,7]) > K) < £ for n a PPP of intensity tdt. On the
event {n([0,7]) < K}, we have T(T) C T%¥) as Cx > T. Thus by another application of
the union bound,

P(dy (TYO,T) > €) <P(5([0,T]) > K) +P(dg(T(T),T) > €) < 6.

This shows that i) implies limy_ oo P(dg(T®,T) > €) = 0 for all € > 0. We conclude that
for all € > 0,

khm P(dGHP(Xk,X) > 6) =0.

—00

An analogous argument shows that for all € > 0,

lim limsup P(dgpp(Xkn, Xn) > €) = 0.

k=00 pnsoo

Thus we may invoke Lemma to get,

(7;7 niédm Vn) L> (7-7 d> /L),

n—oo

in the GHP-topology. This finishes the proof. O]

Remark 2.4.4. For now we consider 7 to be the tree constructed via stick-breaking where
the length of the sticks are determined by a PPP of intensity tdt. During this thesis, we also
consider various other intensities of PPP’s and their corresponding trees. The above proof
is sufficient in the more general cases as long as limg_,o, P(1([0,7] > k)) = 0. All PPP’s
considered in this thesis satisfy this criteria.

Proposition gives us the precise layout of the proof that the CRT is the scaling limit of
uniform labeled rooted trees, and justifies the proof layout given in Section [L.5]
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3 The Finite Dimensional Distribution

This section is aimed at proving Theorem [I.5.1]

3.1 Convergence of the Repeat and Attachment Points

Recall that for S, €, [n]""!, we write,

CT is the index of the i’th repeat and B! = min{l € [n] s.t. S,(I) = S,(CY)}.

In Section we saw a heuristic for the fact that the scaled repeat points n-2 (C{L, e ,C,’j)
jointly converge to the k first ordered points of a Poisson point process of intensity tdt. In
this section, we make this convergence formal. Furthermore, we saw a heuristic that B} is

almost uniform on {1,...,C{ — 1}. Thes we may expect ns —4 Unif([0, Ck]).
n—oQ

This section is dedicated to proving,

Theorem 3.1.1. For any k € N,

we have,

n2(CT,...,CBY,...,BY) —%5 (Cy,...,Ck, By, ..., By),

n—oo

where 0 < Cy < -+ < Cy are the first &k points of a PPP of intensity ¢dt and B; ~ unif([0, Cy]).

Remark 3.1.2. Tt suffices to show that for 0 < s; < --- < s and t1,...,t; € [0, 1], we have,

i) IP’(CIL < sn'? ...

i) P(Bf <HLOm.

—>]P’<31 <40y, ..

n—o0

Cf S sn'’?) — P(Cr < 51,0, Cr < ),

n—oo

CT < slnl/Q, L Op < sk_1n1/2>,

., By < 1,0y

Ch §$1,---701?§8k71)-

We start with i), for which we introduce the following result.

Lemma 3.1.3. For all k € Nand 0 < s; < --- < s, we have,

nﬁP(C{‘ = lenéj,

1 .C.
,01? = |_Sk77,2J> —)uc f(Cl,...,Ck)(Slv""Sk)7
n— o0

where feo,  c.(S1,...,5k) is the joint pdf of the first k points in a PPP of intensity tdt. Here
u.c. denotes that the convergence is uniform over compact sets.

Proof. Recall from Lemma|2.2.22

52
that fo, o (S1,...,8k) =81... spe” 2. We apply induction

on k. For k = 1, observe C™ = |syn2 | precisely when the first [s;n2 | — 1 entries of S, are

unique, and entry lenéj is a repeat. Note that,

]P’(Sn(i) is a repeat |

— 1
Sn(l)u ) Sn(l - 1) are not repeats) = ! - ,

since there are i — 1 distinct entries in S,(1),...,S,(i — 1).
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Thus,

|sinz | —1 Lsan?) -2 i
1 181 —
n2P(CY = [s1n?]) = n> " g (1 - ﬁ>7
1
[s1n2]—2
-1
= lenﬁ exp Z log (1 — —)
n2 i=1
Since % %4 54, it only remains to show that,
n n—oo
Lsm% 21 (1 > S%
Z 08 n—00 9"
=1
For this, we use the Taylor expansion log(1 —x) = =37 = 2 for |z| < 1 to obtain,

\»—‘

[s1n2]—2 1\_51”%J_1 len%J—l O i jl
> (=D Y - Y Z(g) ;

i=1 i=1 i=1  j=2

Usmg that ZZ 1= k(kH) , we obtain that the first sum converges uniformly over compacts

to —=. For the second sum, we have,

1
[s1n2]—1

— - S1n — = Sn E — = Sin —
§ n ] = °1 § : 1 1 1 1 1— —sll n—oo
n2

i=1 =2 j=2 \T? §=0

which concludes the base case of the induction proof. Before continuing we ease notation by
writing,

Ci(s)={C} = sméj LOp = Lsknéj}, where s = (s1,...,s) with [ > k,

s2
so that the induction hypothesis reads, nglP’(C’,?(s)) %y 51...s4e~ 2. Then, for the induc-

n—oo
tlon step, we see,

iP(CI?Jrl (5)> =

w\»—‘

P(ClL .y = |sinn?] | C(s))n2P(CR(s)),

s

By the induction hypothesis, nglP’(C’,?(s)) My 51 ... skpe” 2, so that it suffices to show,

n—oo

2 2
5 1 .C. _ Sk+1 "%k
P(Cry = Lskpanz] | CR(s)) % Sppie 2

For this, we follow identical steps to the base case. Observe {Cy,; = | Sean? | | Cp(s)} hap-
pens precisely when S, () is not a repeat for i = [sn2 | +1to |srin?] —1 and S,(|sps1n2 )
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is a repeat. There are precisely |sgn?| — 1 — k unique entries in S,(1),...,S,(|sxn2]) and

1 .
thus P(S,,(7) is a repeat) = Ls’cnffn—k’”” fori=Cy +1,...,C — 1. For notational clarity,
write I, = {i € N: |spnz] +1 <i < [spsin2 | — 1}. We compute,

) . M —1—k —k—1
BAB(CLy = [sennt] | Cp(s) = L2E07 IT(- =2,

=

n i€, "
1
— -1/2y _ = S
Skt1€XP (O(n ) " Z (i—k 1)> +o(1),
’LEIn
1
where we again used the Taylor expansion log(1 —z). Also note that Lesn2l=k=l v oo
n?2 n—oo
so that o(1) is uniformly small on compact sets,
lZ(i—k—n _! —|In|(1+k)+2i) :
n - n ,
leln ZEIn
) 1 lskn2]=1  [sin?]
—— | -0(n2 — ;
- (n ) + Zzl ? Zzl 1],
(Lskrinz) = Dlsepant]  Lspan?] (Lsennz] +1)
= O(l) —+ - )
2n 2n
52 —s2
_ k+1 k + 0(1)’
2
with all convergence being uniform over compact sets. This shows that,
1 1 s%«rl_s%
1 n 1 n u.c. _
n2P(Cpyy = [skpan?] | Ci(s)) o Seme
and concludes the induction proof. O

In order to use this result to prove i) in Remark we introduce the following lemma.

Lemma 3.1.4. Let K C R* be compact and A, A, C K be Borel measurable sets. Fur-
thermore, suppose A\(4,AA) — 0 as n — oo and assume g, : K — R is measurable and
converges uniformly over compact sets to measurable and integrable g : K — R. Then,

/ gn(z)de —— | g(x)dx

n—o0 A

Proof. Let A* be the closure of AUJ;Z, A,, so that A* is compact (here we use that A,, A
are bounded by a compact set K). We have,

35



Since A(A,AA) — 0, we have [, g(z)dz — [, g(x)dz. Similarly,

n—oo

[ lonte) = gtalde < [ loula) = glalde — 0.

n

since g, — ¢ uniformly on A*. Thus fAn (gn(z) — g(z))dz — 0, concluding the proof. O

Using the lemma above, we show,

Lemma 3.1.5. For 0 < 51 < --- < s, we have,

n—oo

P(Cr < s Cp S san?) — P(Cr< 51,0, Cp < 31,

Proof. Using Lemma together with Lemma [3.1.3], we get,

1 ! [sin?] [son? Lskn? |
P(CT <sin?,...,CR<smi)= Y > - Y P(Cy =, CF = 1),
x1=1 x9=x1+1 Tp=Tk_141
lenﬂ syﬁj Skn%J
/ / / (C’{L = |x1],...C} = [xkj)d:ck ...dxodxy,
1‘1-‘1—1 xk 1+1
81n2 n% |_82n2Jn 3 Lskn%Jn_% . )
:/ s / L / ) n2P(CY = [yn2],...Cy = Lyw?J)dyk - dyady,
no2 y no2 Yp—1F1 2

1+tn
_u
.LYye 2 dyk e ddeyl,
n—>oo Vo1

—]P)Cl<81,.. Ck<8k)

2
where we used the substitution x; = n%yi and recognize y; . . .yke_ka as the pdf of the first k
ordered points of a PPP of intensity tdt. This finishes the proof of ¢) in Remark [3.1.2l O

We continue with a proof of 7).

Lemma 3.1.6. For ty,...,t € [0,1] and 0 < s3 -+ - < s, we have,

P(Br < 6,CP,..., B <t,Cp | CF = [wnz], ... ,CF = [oyn2]) =5ty .1

n—0o0

Proof. We introduce new shorthand notation,
Bp(t) = {B} < t:C],..., By < ,Cp Y, where t = (t1,...1;) with [ > k.

To show P(Bp(t) | Cp(z)) —= t; ...tk we condition on the event that the first k repeats
n—o0
are unique. That is, we condition on P} = {S,(C") # S,(CP) = fori,j e {1,... k}, i # j}.

Conditional on P}, we have,

Sn(C) €4 S = {Sa(1),....Su(C = D)} \ {Su(CY), ..., Su(C1) },
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foralli e {1,2,...,k}. Since S (as multiset) does not contain repeats under P}, we conclude
that Bf is uniformly distributed on {1,2,...,C" =1} \ {C},...,C} and thus,

[6Cr) - #{5: Cp SHCTY

P(B! < t;,C | Cp(x), By (t), P) = Ci—i

Given that 0 < #{j : C} <t;,C'} <i—1and C] = |22 | we obtain,

- (i._ U P(B! < t,CP | C(x), Bl (t), P}') < W—”U

u

Thus we find, P(B!" < ¢,CP ’ Ci(z), B (1), P') —=> t; as both bounds converge to t;
n—oo

uniformly over compacts. We conclude,

k
P(Bi(t) | Ci(x), Pr) = [[P(B} < t:C" | Ci(x), BE4 (1), P St
=1

Thus it suffices to show ]P’(P,Z}) — 1 as n — oo. For this let € > 0 and apply a union bound,

P((Py)) <P ({cy <enz}ulJ {Hj € [K)\{i} : Su(C) = S, (CM),Cy > ené}) :

=1

P(C7 < en?) +ZIP’ 3j € K\{i} : Su(CF) = S,(CP) | CF > en?).

From Lemma [3.1.5] we have P(CT < enz) — P(C} < ¢). Furthermore, for any fixed i, j we
n—oo
get, P (S, (C1) = S,(C1),i # j) < 1171 as there are at least C} —j —1>C7 —1 > enz —1

distinct entries in S,(1),...,S,(C} —1) and we need S,,(C7) to be the unique value equaling
Sn(Cr). By another union bound we get,

) 1 1
P (Hj € [W\{i} : Su(CT) = Su(CTY | C7 > 6n2> < (k—1)—
en2 — 1
Hence for all € > 0, we have,
k
Jim P((FPY) < Jim B(CF < ent) + 3P ({Su(C) # 5(CP). 5 € BN} | CF > ent ),
P(Cy < ¢) + K lim (k — 1)~ = P(C) < ).

By letting € — 0, we see ]P’((P,?) ) —— 0 and thus P(P}') —— 1, concluding the proof. [

n—o0 n—oo

We are now in a position to prove ii) in Remark [3.1.2]
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Lemma 3.1.7. For t;,...,t; € [0,1] and 0 < s < -+ < g, we have,

P(BY <4iCY,.. By SBC | CF < sin'%, . G < syn )

—)]P’(Blgthl,,Bkgtka SSl,...,CkSSk).

n—o0

Proof. By using the total law for conditional probabilities followed by the same approach as
the proof of Lemma [3.1.5] we see,

P(Bg(t) | CT < Sln%,...,CZ < skn%)’

— Lafi_. Lska P(B(t) | CF = a1,...,Cf = 2)P(CF = 21,...,Cf = ;)

1 1 3
r1=1 Tp=Tr_1+1 ]P)(C{L S sinz,..., C]? S Skn2)
b e P(BR() | O ())na (O (x)
dxy, ... dxq,
n n 1
ax C < 81n2 L, Op < Skn2)

1

where a1 = n"2,a; = x; +n"2 for i € {2,...,k} and b; = n_%(Lsm%J +1) for i € [k].
Furthermore, by Lemma [3.1.3] [3.1.6| and |3.1.5, we have,

P(Bg(t) | C’}j(az))ngP(C’g(x)) u.c. tl .. -tkal ..... Ck (:El, P ,in)
IP)(C{‘ < sln%, NG skn%) n—00 P(C1 <s1,...,0 < Sk) '

By Lemma |3.1.4] we conclude,

]P’( } CT < sln% L O0p < skn%)

/ /s’c ti.. tefo,... Ck($1,~--;$k)dx d
o0 Cl <Sl’ Ck <Sk) koo 1,

—PB1<t101,.. Bk<tka‘Cl<51,...,ck§8k),

as desired. O
This shows that for all 0 < s < -+ < s and t1,...,t € [0, 1], we have

P(CF < sin,...Cp < syn?, B < H,C7,..., B < 4,CF)
— ]P)(Cl < 817"'>Ck < SkaBl < tlcla"'aBk < tka)7
n—oo

and hence finishes the proof of Theorem [3.1.1 O

Remark 3.1.8. We can visualize the points (Cj, Bi)ieN as a two dimensional point process.
Indeed, let n = >"°, 0(c;,5,)- By Example [2.2.20, we know that 7 is a PPP of intensity 1 on
the region T = {(z,y) € R? : 0 < 2,0 < y < z}. In particular, this means that for large n,

the points no2 (C’{L, B{L) are roughly distributed as a homogeneous PPP of intensity 1 on T
See Figure [I4]
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Figure 14: The points n2 (Cf, BZ”) for a sequence S,, with n = 5000.

3.2 Convergence of the Partial Trees T 5 k)

In the prior section, we saw,

n3(Cp,.. CP Bl BY) — (C1,....Ch, By,..., By).

n—oo

Since C' denotes the endpoint of the ¢'th stick in 7,, and C; denotes the endpoint of the
i’th stick in 77, this means that the length of the first k sticks in (7,,n 2d,) converge in
distribution to the length of the first & sticks in (7,d). Furthermore, in both cases the
attachment points are roughly uniform over the already constructed trees. Thus we should
expect that for any k, the trees ('ﬁl(k) , n_%dn) SN (7™, d) converge in distribution in the
Gromov—Hausdorff topology. In this section, Wqéz%oow this is indeed the case.

From Section , we know that it is enough to find a relation R, between T." and T®)

such that dis(R,) — 0 as n — oo. However, we can only define relations on metric spaces,
not on probability distributions. Thus we need to work with coupled realized 'values’ (i.e.

metric spaces) of the random variables 771(]“) and 7®) and show that on the coupling, the
Gromov—Hausdorff distance goes to 0 in probability or almost surely.

An easy coupling is obtained via Skorohod’s representation theorem. In short, this theorem
allows us to go from convergence in distribution of,

(Cr,...,Cc8 B, BY) — (Cy,...,Ck, By, ..., By),

n—oo

to almost sure convergence by defining the random variables on a common probability space,

IP’( lim n~2(CY,...,CPBY, ... BY) = ((Jl,...,Ok,Bl,...,Bk)> — 1

n—o0
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Figure 15: Trees T, (left) and T (right).

On this new probability space, we can then show ]P’( lim,, o dor (n*%’]}(k), ’T(k)) = O) =1,ie.
n=3 7% converges to 7*) almost surely in Gromov-Hausdorff topology. This immediately
implies the desired convergence in distribution.

We first state Skorohod’s representation theorem and then show, by constructing an explicit
correspondence, that the above almost sure convergence of repeat and attachment points also
leads to almost sure convergence of T8 to T®) in the GH-topology.

Theorem 3.2.1. Let (X,,) be a sequence of random vectors such that X, % s X. Then

n—oo
there exist a probability space with random vectors Y,,, Y, such that,

i) The distribution of Y,,,Y" is the same as the distribution of X,,, X respectively.
ii) We have convergence, Y,, =% Y as n — oo.

[.e. whenever we have convergence in distribution, we may change probability spaces to get
almost sure convergence.

Proof. We reference to [4][Theorem 25.6.] O

By Skorohod’s representation theorem, we may work in a probability space where,

]P’( lim (n"3C7,...,n2CP By,...,By) = (C,...,Ck, By, .. .,Bk)> — 1.

n—o0

We will show that whenever n=2 (C’{L, O BY L ,B}j) e (C’l, oy Cp, By, .o s Bk)

n—oo
and B; # C; for all 4,5 € [k], which is a probability 1 event, then the corresponding trees
T, (unique up to relabeling) converge to 7" (deterministic) in GH-distance. L.e. we show
the following,

Theorem 3.2.2. Suppose n~2 (C’f, Bf) e (C’i, BZ-) with B; # C; for all 4,5 € [k]. Then,

n—oo

den (T, TH) — 0.

n—o0
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To show convergence in the Gromov—Hausdorff topology, we first define a correspondence R,
1
between the metric (ﬁk),nfadn) and (T(k),d).

Remark 3.2.3. We could define the correspondence as follows: For s € [0, Ck], we pair p(s)
with vertex v, € T,") where v, has label Sn(Lsn%j), Le. R = {(p(s),v;) where s € [0,Cy]}.
However, let s = C1, so p(s) is on the second stick of 7. Then, |snz| = C+o(n?) and thus
we cannot prevent say Lsnéj < C7 — 1 for all n, in which case vy is on the first stick.

The problem is that this relation links vertices in 7, up to scale y/n: we have no control over
vertices within a distance o(y/n) of a repeat index and these vertices might be linked to the
wrong stick in 7. Since the distortion of a correspondence is based on the supremum over all
pairs in the correspondence, we need to make sure that the correspondence links all vertices
between C}'_; and C} to the vertices between Cj_; and C}. Below, we introduce a working
correspondence, based on an interpolation between the discrete and continuous sticks.

Definition 3.2.4. Let S, have at least k repeats and define ¢, : [0,C)) — T8 as,
onlw) = {F (|Cm+ 5 (er—cr)|)  foraclCinC)

to be the projection of the first k sticks of 7 (as subset of R) onto the first k sticks of TP,
Define correspondence R,, C (T(k) X ﬁk)) as,

R, = {(p(z), pn(z)) for z € [0,Cy)}.

For all n > 1, R, is a correspondence. Indeed, for all z € [0, Cy), we have (p(z), ¢,(z)) € R.
For the other direction, let v € T* be on stick i. Note f (x) =Cr', + g;%:l cr—-acry)
is continuous with f(C;_1) = C*, and f(C;) = CP. Hence, | f(z)] with z € [C;_1, C;) takes
every integer between C!'; and C]'. Unlike the naive correspondence from Remark

correspondence R, by definition only contains pairs of vertices on the same stick.

Lemma 3.2.5. Suppose lim,,_,o(C?", B!') = (C;, B;), with C; # B; for i, j € [k]. We have,

lim Dis(R,) = lim  sup |d(p(x), p(y)) — n~2du(¢(x), $(y))| = 0.

n—oo n—oo x,yE[QCk)

Proof. Let 0 < o < y < Cy, so that p(z), p(y) € T® and suppose p(z) and p(y) are on
stick 7, j respectively. Then for all n > 1, ¢, (x) and ¢,(y) are also on stick 4,7 in 75 To

1

ease notation, let Dis"(x,y) = |d(p(x), p(y)) — n~2d,(dn(x), dn(y))|. A simple computation
shows,

d(p(z), p(y)) = d(p(Cy), p(Cj)) — d(p(z), p(Ci)) — d(p(y), p(C})),
dn(¢n<x)a ?bn(y)) = dn(¢n<ci)v ¢H(C])) - dn(¢n(x)v ¢n<Xz)) - dn(¢n(cj>7 ¢n<y))a

and thus we obtain the bound,

Dis"(z,y) < Dis"(z, C;) + Dis"(C;, C;) + Dis"(C}, y).
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Since x and C; are on the same stick, we have d(p(x), p(C;)) = C; — z. Similarly, ¢, (z)
and ¢, (C;) are on the same stick, therefore,

Ci _ Ci* n n n L — Ci* n n
dn(Pn (), 90 (Cy)) = LCZQ + m(ci—l - )J - LCi—l + O_—O_ll(ci—1 -G )J :
&
_5+(Ci_$)0i—ci,1’

with § € (—1,1). We obtain,

-1 Cz'n—l_ozn
1 1Cn—cn_1
< mT2 — 1—n 2% =2
<n —i—‘(Cz x)( n Ci_Cil) ,
1 ICn_Cn_l
< m72 . (. S P At
<nz-+ 522856 (]CZ Ci1| (1 n cC. )) )

Observe that this bound is independent of x. Thus we have,

cn_ on
lim sup Dis"(z,y) < lim 20~ % + lim 2 max (\Ci — G (1 _ n—éz—z—l»

n—00 2,y€[0,Cx) n—00 n—oo 1<i<k Cz — Ci,1
+ lim max Dis"(C;,C;) = lim max Dis"(C;, C)).
n—o00 1<1,7<k n—oo 1<4,7<k

Hence, the lemma is proven upon showing lim,,_,,, max;<; j< Dis"(C;, C;) = 0. Note that,
Dis"(Ci, () = |d(p(C:), p(C)) = n™ 2 (F(C), F(CT))|.

We turn the assumptions limn%m(n_%C’f,n_%Bf) = (C;,B;) and B; # Cj for 1 < i,j <k
into: Ve € (O, %), there exists n large enough such that,

|n_%C'i" — G| <€, |n_%BZ»I — By| <, |n_%be,C¢| > 2e.

Thus, for large enough n, we have C’;‘ < B!'< C’J’-Zr1 if and only if C; < B; < Cj4;. Hence,
any path from C7' to C7 in 7, must follow the same segments as the path from C; to Cj in T
Given that i, j < k, we have that d,(C}, C7) equals the length of at most k branch segments,
which all take the form [C} — CF, |, |C} — B}| or | B} — B}|. Similarly d(Cj, C;) consists of
the corresponding branches with lengths |C; — C;_4|, |C; — Bj| or |B; — B,|. Since C}' — C;
and B — B; as n — 0o, we apply the triangle inequality to the at most k& branches to find
that for n large enough we have |n’%dn(0[‘, C?) —d(Cy, Cj)| < 2¢k for all 1 <4,j < k. We

obtain lim,,_,. max;<; j<x Dis"(C;, C;j) = 0. This concludes the proof. O
Theorem 3.2.6. We have (’ﬁfk), n_%dn) BN (T(k), d) in the Gromov—Hausdorff topology.
n—oo
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Proof. From Theorem [3.1.1} we know that (C7*, B!") —< (Cy, B;) for 1 <i < k. Then using

n—oo
Theorem |3.2.1, we may work in a probability space where this convergence is almost sure,

that is:

P <lim (C", B") = (Cy, B;) for 1 < i < k) ~1.
n—oo
Recall that each B; ~ Unif([0, C;]), hence P (B; # C; for all 1 <4,j < k) = 1. Combining
both events yields,

P ( lim (C", B") = (C;, B;) and C; # B, for all 1 < i, j < k) — 1.

n—oo

By Lemma [3.2.5] we obtain that almost surely,

lim sup |n"2d,(vs,va) — d(p(s), p(u))| = 0.

=00 5 uel0,]

Thus, we have found a relation R,, between (ﬂk),n_%dn) and (TW d) for which almost

surely Dis(R,) —— 0. Hence we obtain (ﬁ(k),n_%dn) 2% (T™ d) in the GH-topology,
n—oo

n—oo
which implies the desired convergence in distribution. O
3.3 Finite Dimensional Convergence of the Measures

In the prior section, we saw how we can construct a correspondence that shows

(% n~2d,) —= (T®,d),

n—oo

in the GH-topology. In the current section, we extend this to the GHP-topology by including
the measures 13" and 1®) . Using Skorohods representation Theorem we again work
in a probability space on which (CZ-”, B!") converges to (Ci, B;) almost surely and extend this

space to also include measures Vﬁk) and pu®. From Definition , it suffices to find a
measure T, : Tt x T® — [0,1] so that D(m; v, (k), n¥) — 0 and 7, (RS) — 0 as n — oo
where R, is the correspondence from Definition [3.2.4]

Definition 3.3.1. For A C 7?L(k), B c 7% and ¢, as in Definition , we define,

(A, B) =y ({x € B: ¢o(p ' (x)) € A}).

Lemma 3.3.2. With R, as in Definition [3.2.4] we claim,

i) ma(RE) =0 and i) D(mvP, ™) — 0.

n n—oo
Proof. We start with 7). Since {z : ¢,(p~(z)) € R%)} = 0, we find,
ma(RS) = ) () = 0, for all n.
We continue with #7). For this, let B € T®). Then,

B ({z e B:ou(p(2) € TH}) = u®(B).

Wn(,]:l(k)v B)
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Thus, |7, o p;' — u®||ry = 0 for all n. It remains to show that ||, o py* — l/T(Lk)HTV — 0
as n — oo. For this, let A C 7.5 We compute,

(A TW) =1 ({2 € TW : gu(p7 () € A}) =D uP({z € T® : ¢u(p~' () = a}).

acA

Let a € T.¥ be a vertex on the i’th branch and let s € {Cr,,...,C" — 1} be the index
corresponding to a. Recall that u®) is the pushforward by p of the normalized Lebesgue
measure on [0, Cy|, denoted . Hence,

9 €T 00 =0) = Ml{z € 0.0 5 00) =),
:A({a:: LCf_l ﬁ(cﬁ—cﬁlw :S})’

A({x O+ %(C" Cr,) €ls, s+ 1)}),

(o Gi=ar)

_ 1 G -Ciny
CGiCr—Cry
Observe that,
1 C;—Ciy 1 Ci—Ci 1 1 1 _1
—_— = —— — = 1—|—0n2 :—n+0n2.
Ce C7 = Cy Ckna(Cy — Ci_y) +o(n2)  Cyn2 (™) Cy (™)
We conclude,
) 9 ( #A (k)
WA T ="y ({2 e T : ¢,(2) =a }):WJr#Ao( =2) = B (A) + (1),
acA
Since ﬁ—? = ngk)(A) and #A4 < CP = O(nz). We conclude that D(Wn;yflk),u(k)) — 0.
This verifies i) and concludes the proof. O

This allows us to prove dGHp((’ﬁL(k), n’%, I/nk)), (T(’“), d, u(k)) — 0 asn — oo.
Lemma 3.3.3. For all £ € N, we have,

k) =3 1K) (k) (k) -
]ID(dGHP((’];L N2,V )7(7- :dalu )m) 1
Proof. Suppose lim,,_,.(C?", B!') = (C;, B;), with C; # B; for i, j € [k]. Then we have,
1 1
dGHP((’];L(k)7 n-z, Vﬁzk))’ (T(k)7 d, M(k))) - glf {max (EdiS(R)a D(m; VT(Lk)7 ,u(k)> + W(Rc>> } )

1
< max (édis(Rn), D(mn; v, Py + Wn(RZ)) ,

— 0.

n—oo
Given that lim,, . (CF, BY') = (C;, B;), with C; # B, for i,j € [k] holds almost surely, the
desired result follows. ]

44



Since almost sure convergence implies convergence in distribution, we find that,

(7,9, nz, () _d. (T, d, u®)),

n n
n—oo

which finishes the proof of Theorem [1.5.1]

Remark 3.3.4. The results in Section [3.2] and Section [3.3|relied only on the convergence of,
n=3(CY,...,CP Bl ... BY) = (Cy,...,Ch, By,..., By),

and the fact that C; # B; for all i, j € [k] is true with probability 1. In Section[f]and Section [7]

we consider finite dimensional convergence g(n)T,gk) — T®) for more general trees 7, and T
and scaling functions ¢ : N — [0, 00). In each of these cases, we will show,

g(n)(C,...,Cp By, ... BY) —2— (Cy,...,Ch, By, ..., By,

n—oo

for their respective repeat and attachment indices C*, B!, C;, B; and C; # B, for all i, j € [k]
is true with probability 1. This allows us to immediately apply the result in this section to
obtain convergence in the GHP-topology of the trees and uniform measures obtained from

the first k branches.
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4 Tightness of (ﬁ,n_%dn>

neN

This section is dedicated towards showing i) and i) from Proposition [2.4.3 That is, we aim
to show that for all € > 0,

i) lim P(dy (T(t),T) >¢)=0 and i) lim limsupP (dH (ﬁ(tn%),’ﬁg > e) = 0.

t—o00 t—00 300

Remark 4.0.1. Observe that ¢) implies that 7 is compact almost surely. This follows from
a diagonalization argument. To see this, ¢) implies that we can find a sequence t; such that,

ZP(dH(T(tz),T) > 6) < 2272 < 0.
i=1 =1
By the first Borel-Cantelli lemma, this yields,

P <lim supdy (T(t;),T) > e) =0.

1—>00

Since the metric space (’T(t), d) is compact for every ¢, we have T is compact almost surely.

4.1 Compactness of the Continuous Tree

Theorem 4.1.1. For all € > 0, we have,

lim P(dy (T (t),T) >¢€) = 0.

t—o00

The idea behind the proof is to bound the growth dg (7 (¢),7T) by controlling the growth of
infinitely many intermediate sections of finite length. That is, we bound the distances,

dir(T(t), T(2t)), dr (T (2t), T(4L)), dyr (T (48), T(8¢)), . . ..

Theorem is proven upon showing the combined growth on these infinitely many sections
is smaller than e with probability 1 as ¢t — oo. We illustrate this in Figure (16}

Figure 16: Ilustration of 7 (¢), 7 (2t) and T (4t).
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Before proving Theorem we first introduce various intermediate results.

Lemma 4.1.2. Fix ¢ > 0 and let ¢; = ¢,(T) > 0, for some 7' > 0 such that ) ° ¢ < e
Then for any ¢ > 0,

P(dy(T(1),T) >€) <Y _P(du(T(2'%), T(2)) > e).
i=0
Proof. By repeatedly applying the triangle inequality, we obtain,

dy(T(t),T) = lim dy (T(t), T(2%)) < lim Y " dp(T(2'), T(2'1)).

k—o0 k—o0

Observe that,
du(T(t),T)>e = dy(T(2't), T(2't)) > ¢ for some i € Ny.

Thus we apply a union bound to obtain,

P(du(T(t),T) >¢€) <P (G {du(T(2°t), T (2" ') > Q}) ,

=0

< i]P’(dH (T(2'), T(2%11)) > «),

as desired. ]

Corollary 4.1.3. Theorem is proven upon finding €;(¢) : [0,00) — [0, 00) for which,

o0 o0

i) tlim e;(t) =0 and ii)tlim IP(dH (T(?it>,T(2i+1t)) > ei) =0.
i=0 =0

Proof. Condition ¢) ensures that for all e > 0, there exists 7' > 0 such that > .~ €&(T) < ¢
and condition i7) ensures that lim; ., ]P’(dH (’T(t), T) > e) = 0. O

We aim to bound P(dy (T (a), T (2a)) > ¢) and substitute a = 2t and ¢ = ¢; for a suitable ¢;.
To bound dy (T (a), T (2a)), we first bound dy (7T (a), p(s)) for some s € (a, 2al.

Remark 4.1.4. We give intuition behind bounding P(dy (7 (a), p(s)) > c). As explained in

Figure |17, we may write dg (7 (a), p(s)) = S N, d;, where N is the random number of sticks
traversed on the path from p(s) to 7 (a) and d; denotes the length of the path traversed on
the 7’th stick. Note that d; > c is only possible if s — ¢ > a. Hence,

P(d; > ¢) = IL{S,CM}]P’(U([S —¢8]) = O) = I {s—c>a} €XP (—/ tdt) < exp(—ca),

where 7 is a PPP of intensity ¢dt. Thus d; is stochastically dominated by an Exp(a) random
variable. Similar reasoning shows that d; is also stochastically dominated by an Exp(a)
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random variable for ¢ € {1,...,N}. To dominate N, any stick p((C;,Cj11]) C T(2a) is
attached at p(B;) with B; ~ Unif([0, C}]). Since C; < 2a, we have p((C}, Cj41]) is attached
to T (a) with probability at least % This gives a heuristic why NNV is stochastically dominated
by a Geom(%) random variable. If we assume the stochastic domination of d; and N can be
done by independent random variables, we see,

P(du(T(a),p(s)) > c) =P (Z d; > C) <P (Z X; > c) < exp (_%> 7

=1 =1

where M ~ Geom(%) and X; ~ Exp(a) and the last inequality uses that Zf\il X; ~ Exp(%).
Unfortunately, we do not have independence between N and d;. However, negative correla-
tions (large number of sticks N implies d; smaller and vise versa) could allow us to formalize

this argument using couplings. This approach is taken in Section [7.4]

Figure 17: Hlustration of dy (7 (a), p(s)). Here p([0, a]) is drawn in black, while p((a, 2a]) is
gray. Red denotes the path from p(s) to T (a). This path can be divided into partial paths
along each branch in 7(2a) \ 7 (a) as indicated. We have d (T (a), p(s)) = di + da + ds.

In this section, we use an approach relying on sampling the repeat points 0 < C} < Cy < ...
and attachment points B; ~ Unif([0, C;]) using one PPP. Recall Example [2.2.20, where for,

T={(zv,y) €ER*: x>0,y <z},

and 7 a PPP of intensity 1 on T', we may write n = >~ d(c;,p,), where 0 < Cy < Cy < ...
are the ordered points of a PPP of intensity tdt on R>y and B; ~ unif([0, C;]). Thus, to
construct 7, we may take the ordered z-coordinates of n as endpoints of the sticks, and
the corresponding y-values as attachment point of the sticks. We illustrate this in a small
example in Figure [I8, where for readability, we scale up the constructed tree by a factor 2.

T4
Figure 18: Tree from PPP on wedge T
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By using this coupled sampling approach of 0 < €} < Cy < ... and By, Bs, ..., we show the
following.

Lemma 4.1.5. Fix a,c > 0 and let s € [a,2a]. Then,

P(du (T (a),p(s)) >c) <e .

Remark 4.1.6. Before proving this, we explain how to recover the path from p(s) to T (a)
from the PPP 5 on T For this, let ' = 174 d(4,4). The tree constructed from 7 and 7’ is the
same, only difference being that the stick added to exceed T (a) is broken in two. This means
that we always start the construction 7 (2a)\7 (a) with a new stick, ensuring the definitions
below are consistent.

The distance from p(s) to the start of the stick on which p(s) lies equals the distance between
the line x = s and the closest point in 7 to the left * = s. If the y-value of this point is
smaller than a, we attach this stick to 7T (a) and found dg (7T (a), p(s)). If the corresponding
y-value is larger than a, we attach to a stick in 7(2a)\7 (a) and need to look further down
the tree for the full path from p(s) to T (a). This description explains the definition below.

Definition 4.1.7. Let n = >~°, §(¢, 5, be a PPP of intensity 1 on T" and set ' = 1+ (4,4)-
We define,

pr = (pi(s)py(s)) = argmax @, di = di(s) = s —py(s) and sy = py(s).

(zy)en’: x<s
Note that p; exists as n has no accumulation points almost surely. Also p; > a as we added
the points (a, a) to the point process. Recursively, whenever s;_; > a, we set,
pi=pi(s) = p(pica(s)),  di=di(s) =si—pi(s) and  sp = p(s).

Set N = min{i € N: s;.; < a} for the number of sticks on the path from p(s) to 7 (a) and
let S = UN,[p’(s), si] to be the subset of [a,2a] corresponding to the parts of the sticks on
the path from p(s) to 7 (a) as stated in Lemma [4.1.8]

Lemma 4.1.8. Let  be a PPP of intensity 1 in 7. The path from p(s) to T (a) given n
equals p(S) and hence dy (T (p(s)), T(2a)) = A(S) with A the Lebesgue measure on R.

Proof. The result is immediate as Definition is a mathematical formalization from the
explanation in Remark [4.1.6| We also give a visual explanation in Figure 19| ]
Remark 4.1.9. We make two observations,

i) dy (T (a), p(s)) > c given n happens exactly when A(S) = di + -+ 4+ dy > ¢ where \ is
the Lebesgue measure on R.

ii) By removing points from 7 in (a,2a] x [0, a), we cannot decrease dg (T (a), p(s)).

We combine these observations to show dy (7 (a), p(s)) > c is possible only if n(R) = 0 for
R C T with A\(R) = ac for X the Lebesgue measure on R?.
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1
1
1
1
1
1
1
1
| - 1

} |
xr = pg '.'L'—‘: S

Figure 19: Explanation Definition m The red intervals on the z-axis is the set S C [a, 2a].
On the right, we see the tree constructed from this sample of 7.

proof of Lemmal[{.1.5 Define the point process n* = {(z,y) € 0’ : @ < a or y > a} for the
set of points in 7 in T\ ((a,2a] x [0,a)). Let S*, N* and p},d; for i € [N*] be as defined in
Definition but using n* instead of 1. Since n* is obtained from 1’ by removing points
only in (a,2a] x [0,a), we have, dg (T (a), p(s)) < A(S*) given n. We define,

S ={zx € S*:x>r}and r* = argmax{n'(S} x [0,a]) > 1}

a<r<2a

so that r* is the rightmost point in 7 inside S* x [0, a]. Observe S = S’ = {z € S* : 2 >
Indeed, suppose r* € [(pF)*, si] C S* for some k € [N*]. Then, p; = p} for i < k and p}
with s; < a. This shows S = {z € S* : & > r*}. See Figurefor an explanation with k£ = 3.

r*}.

el 7”*

To conclude, suppose A(S*) > ¢ and take j € [a,2a] such that A(S}) = ¢. Then,
P(dsr (T (a). p(s)) > ¢) < P(ASE) > ) < Liasy=aP(n(S] x [0,a]) = 0) < e,

as desired. -

We continue by upgrading P(dy (7 (a), p(s)) > ¢) < e to a bound P(dy (T (a), T(2a)) > c).
We will give two approaches. First a more standard reasoning, and then a trick-based proof.

Remark 4.1.10. For the standard reasoning, we observe,

P(du(T(a), T (2a)) >c) =P ( sup dy (T (a), p(s)) > c) <P U du (T (a), p(s)) > c .

s€la,2a] [a,2a]

20



dy,
o,
P

P3

r=r* r=s

Figure 20: Explanation relation n* and 1. Red denotes the region S* x [0, a].

We would like to use a union bound, but cannot apply this technique as we are taking the
union over an uncountable set. However, dy (7 (a),p(s)) must take its maximum value at
the endpoint of a stick, or at s = 2a. The number of sticks on the interval [a, 2a] follows a

Poi (faza tdt) = Poi (24?) distribution, so the number of s € [a, 2a] where dy (T (a), p(s)) can

attain its maximum value is nicely behaved. This can be turned into a bound, as seen below.

Lemma 4.1.11. Let a,c > 0. We have,

P(dg (T (a), T(2a)) > ¢) < @az + 1) e

Proof. Let K = {C; : C; € (a,2a]} U{2a} and note |K| ~ Poi <fa2a tdt) +1=Poi (3a?) + 1.
By the discussion in Remark 4.1.10] and the law of total probability, we obtain,

Pl (T(0). T(20) > o) = Y P (mac{d(T(@) o)} > ¢ | 1K] = k) B(K] =),

<3P (U {dn(T (@), p(@) > c} | 1] = k) P(|K| = k),

k=1 zeK
<e ) KP(K| =k).
k=1
This completes the proof as Y -, kP(|K| = k) = E[|K|] = (2a® + 1). O
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Remark 4.1.12. The second proof relies on
the fact that if there exists s € [a,2a] so that
dg(T(a), T(2a)) > ¢, then every point in a
segment of length at least § in 7(2a)\ 7T (a) is at |
distance at least § from 7 (a). This is illustrated
in Figure 21 where in black we draw 7 (a) and

T(2a) \ T (a) is drawn in gray. red denotes all p(o)
points that are at least half as far from 7 (a) as

the (furthest) point p(z). Using this, we obtain

the following bound. Figure 21: Distances in 7T (2a).

Lemma 4.1.13. Let a,c > 0. Then we have,

204 ac

P(du (T (a), T(2a)) > c) < 7677.

Proof. By Lemma [4.1.5) we get,
E [/\ ({x € [a,2a] : dy (T (a), p(z)) > E})] <ae 2.

2
Then if dy (T (a), T(2a)) > ¢, we have A ({z € [a,2a] : dy (T (a), p(z)) > £}) > £ as seen in
Remark [4.1.12| Using this, we obtain the bound,

C

E [A ({x € [a,2a] : dy (T (a), p(x)) > 5})} > §]P’(dH(T(a),T(2a)) > o).

Combining both inequalities yields P(dy (T (a), T (2a)) > ¢) < 22¢~ %, the desired result. O

Proof of Theorem[{.1. From Corollary [4.1.3] it is enough to find €;(¢) such that,

7) lim €(t)=0 and ii)tlim P(dy (T (2'), T(2%') > &) = 0.
=0 =0

Substitute a = 2t and ¢ = ¢; in Lemma [4.1.13| This yields,

2i+1t )
]P’(dH ('T ZIP’ dH (22+1t)) > 6,-) < exp (—QZ_ltei) )
Set €; = (z’—|—1)2—\;. Then ii) is satisfied. Indeed, assume ¢ is large enough so In(4) — v/t < —1.
Then,
- 0 gitlgi-1 , .
ZIF’ (du (T T(2 t))>el-):; 1 t2exp(—ﬂ(z+1)),

. 2 i+1
<t Z exp (111(4) - \/z_f> :
i=0

s dexp(—V1?)
1 —4dexp(—Vt)’

— 0.

t—o00

t

IN

52



Clearly, 7) is satisfied too as,

= 1 w=i+1
i 2 ilt) = fim 75 0 iy = fim 7 =0
This concludes the proof. O

Remark 4.1.14. In the above reasoning, we used the bound from Lemma[4.1.13| If instead
we used the bound from Lemma|4.1.11} a similar approach works with the same choice of ¢;.
We leave filling in the details to the interested reader.

4.2 Compactness of the Discrete Tree
In this section, we prove ii) of Proposition m That is, we aim to show,

Theorem 4.2.1. For all € > 0, we have,

lim limsup P (dH (ﬂ(tn%), 7;) > en%> = 0.

[2ds P INGSS

Due to the presence of both n and ¢, this result might seem more difficult to obtain. However,
we will see that we can follow similar reasoning to Section 4.1} with minor modifications to
various proofs to adapt them to the discrete setting. One such modification is immediately
made. We work with the event,

An:{C’f>ajforallje{l,...,N}},

where o > 1 is a constant to be determined and N denotes the random number of repeats
in 9,,. Instead, we try to show,

Lemma 4.2.2. For all € > 0, we have,

lim limsup P (dH (ﬁ(tn%), 7;) > (—:n%, An) = 0.

=00 p oo

Remark 4.2.3. To show that Lemma implies Theorem [4.2.1} it is enough to show
]P’(Afl) — 0 as n — o0, as,

P(d (To(tn2), To) > €) < P(dy (To(tn?),To) > ¢, A,) + P(AS).

We show this claim in Lemma at the end of this section. The reason for working on
A, will become clear later. We start with the discrete counterpart of Lemma [£.1.2]

Lemma 4.2.4. Let ¢ > 0 and let ¢; = ¢,(7) > 0, for some 7' > 0 such that > .~ € < .
Then, for any ¢ > 0,

IP’(dH(ﬁ(tn%),’E) > en%,An) < Z}P’(dH(ﬁ(Qitn%),ﬁ(2i+1tn%)) > em%,An).
i=0
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Proof. The proof is analogous to that of 4.1.2] O

Corollary 4.2.5. Lemma is shown upon finding ¢;(¢) : [0, 00) — [0, 00) such that,

o0 [e.e]

. . .. . . i 1 i1 1 1
i) tli>rg> 3 €(t) =0 and ii) tlggo hinﬁs:jpgﬂb(d}[ (T(2tn2), T (2 'tnz2)) > enz, A,) = 0.

Fix a,c € Nand s € {a +1,...,2a}. Let vs denote the vertex in 7, corresponding to S, (s).
We aim to bound P(dy (7, (a), T,(vs)) > ¢). For this, we introduce notation for the ancestral
line of a vertex in 7,,.

Definition 4.2.6. For s € [n — 1], let vy be the label of the vertex corresponding to S, (s).
Let p(vs) € [n] be the label of the parent of vy where the parent of the root is considered to
be the root itself. Inductively, set p*(v,) = p(p*~1(vs)).

Example 4.2.7. In Figure 22, we draw the tree corresponding to Ss = {1,8,4,4,8,1,7}.
We have vz = 4 and p(4) = 8. Similarly, v, = 3 and p*(3) = 1.

Figure 22: Tree Ty corresponding to S, = {1,8,4,4,8,1,7}.
Lemma 4.2.8. Let s € [n] and v, be the vertex corresponding to s. We have,

ﬁ lfk ¢ {’Usa'-'?pi_l(vs)}’

P(p(v)) =k | vy, 0 (0) and p(0,) £ Sa(1)) :{o if &€ {vg,. .., p (v}

Le. given that p*~!(v,) is not the root, p’(vs) is uniform over the vertices not yet seen on the
ancestral line of v,.

Proof. This follows from vertex exchangeability. Indeed, for aq, ..., a;_1,x € [n], define,

T, =A{T, : vs = ag,p(vs) = a1, ..., pi_1(vs) = a;_1, pi(vs) = x},

for the set of trees with ancestral line v, = aq, ..., p" (vs) = a;_; for which p‘(v,) = x. Note,
i _ _ i—1 — , _ %l
P(p'(vs) =z ‘ Vs = ag,...,p" (vs) = a;_1 and a;_1 # Sp(l)) = ,
Zyel ’Ty|
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where I = [n]\ {ao,...,ai—1}. Next, let y € I and define o : [n] — [n] to be the permutation
swapping = and y. Permutation o is its own inverse, and hence a bijection on [n] which leaves
ao, . . ., a;—1 untouched. Observe o(1,) = T, hence, |T,| = |T}|. In particular,

P(pi(vs) =z ! Vs = g, . . . ,pi_l(vs) =a;,_1 and a;,_1 # Sn(1)>,

is identical for all € [n] \ {ag,...,a;—1}. This proves the lemma as for any realization of
Vs, p(s), ..., pH(vs) with i1 (v,) # Sn(1), we see p'(vs) ~ Unif([n]\ {vs,...,p" 1 (vs)}). O

Lemma 4.2.9. We have dy (7, (a),vs) <m = mingen {p*(vs) € {Sn(1),...,Su(a)}}.

Proof. Observe that {vg, p(vs),...,p (vs)} is a path of length m from v to T,(a). Hence we
obtain dg(T,(a),vs) < mingey {p vs) € {Sn(1), }} O

Remark 4.2.10. In Lemma , we cannot in general have an equality. Indeed, if p*(v) is a
leaf of T,(a), then p*(v) ¢ {S,(1),...,S,(a)} and thus we need to look a step further before
finding an element in {S,(1),...,S5,(a)}. The Lemma explains why we work on A4,,: Event A,
ensures {S,(1),...,S,(a)} can have at most £ repeats and thus #{S,(1),...,Su(a)} > a®=2,
which lower bounds P(p(v) € {S,(1),...,Su(a)}).

Lemma 4.2.11. Let a,c € Nand fix s € {a+1,...,2a}. Let vy be the vertex corresponding
to S,(s). Then,

P(dy (To(a), Ta(vs)) > ¢, A,) < exp (—“—CO‘ - 1) .

n 0%

Proof. From Lemma {4.2.9, we get,

IP’(dH(ﬁ(a),vs) > ¢, An) < P(min {pk(vs) € {Sn(l), e Sn(a)}} > ¢, An>,

kEN
a—1
< in < p"
cr(afraclo 22} )
where working on A,, guarantees #{S,(1),...,S5,(a)} > a*=! and where we used vertex
exchangeability. Recall from Lemma [4.2.8 “ that p (vs) €, [n]\ {US, o, PP (vs) } for pETL(vy)

not the root (which is guaranteed since p*~1(v,) = S,(1) = Y(vs) € T(a)). Thus,
. k «
]P’(dH(E(a),US) > ¢, An) <P <Ig1€1£ {p (vs) € {1, e [aa — 1—‘ }} > c) ,

- (a5t

where we used (1 — z) < e™* in the last step. This concludes the proof. ]
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We upgrade this to a bound for IP’(dH (’7;(@), 7:l(2a)) > c) using the same trick used in the
proof of Lemma 4.1.13]

Lemma 4.2.12. Fix a,c € N. We have,

2n «

P(dpr (Ta(a), Ta(2a)) > ¢, A,) < 27%@ (‘%a . 1)

Proof. From Lemma {4.2.11] we immediately get,

E [# {5 ef{a+1,...,2a}: dH(ﬁ(a),vs)} > g,An} < aexp (—;—Ca_ 1) .

If vertex v € T,(2a) \ Tn(a) satisfies dy (Tn(a),v) > ¢, then all z € {v,p(v),...,pl* I+ (v)}
satisfy dy (T,(a),z) > . Hence,

E[#{s € {a+1,....20} 1 du(Tala),0)} > 5. Au| = SP(dur(Ta() Ta(20)) > . A).
Combining both bounds gives the desired result. O

We are now in a position to prove Lemma [4.2.2]

Proof of Lemmal[{.2.7 By substituting a = 2itn? and ¢ = e;n? into the above bound, we get

S . it1,, 1 1 > 2itl¢ns Qitn%ein%
ZP(dH(T(2 tn2>77—(2 th)) > 6inQuA%) S Z — eexXp|—mm——F— |,
=0

— en? 4dn
= i 2&175 exp (—2i72tei)
i=0
Thus, Corollary is transformed into finding ¢;(¢) such that,
NS N2 -
Z>tliglo 2 €(t)=0, and i) tlggo; i exp (—2"%te;) .

We choose ¢€;(t) = (i + 1)&\; Analogous computations to that of Proof |4.1{show this choice
of ¢; satisfies both i) and i), finishing the proof.

It remains to show Lemma [4.2.2| implies Theorem [4.2.1] It is enough to show P(A¢) —— 0.

n—oo

For this, we bound the lower tail of C7'.

Lemma 4.2.13. For z < n, we have,
z%e\’ z? z%e\’
P(CT <x) < — — ) < — ] .
( J x)_e<2nj> exp( 2n) _G(an>
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Proof. Observe that C} < x happens when 5,,(1),...,5,(z — 1) contains at least j repeats.
Also observe that,

1—1
—

P(Sn(i) is a repeat } Sn(1),...,Su(i — 1)) <

Hence, P(C} < z) < P(X > j) where X ~ Ber(2) + --- + Ber(%2) with independent
Bernoulli random variables. Recall the Chernoff bound for the sum of independent Bernoulli
random variables with mean p and where 6 > —1,

e H 6(5+1),u
>> DR

(1406
and (1 + d)u = j. Filling this in yields the bound,

() o (-15),

2n
J
(52 o
’ + 1) since x < n. This

)
—a) Sew (-5
[l

—p

P(X > (14 0)u) < (

x—1 i
=1 n

_ (z—1)z

In our case, u = > =

ZE26

2nj

{L‘2€

et <

P(CT < 2) <P(X > j) < (?)J

T

%j 2n

2

“7) 5t

38

where we used exp (— = exp ( —

gives the desired bound.

With this tool, we show the following lemma, from which it follows that P(AS) — 0.

Lemma 4.2.14. Let N be denote the number of repeats in S,,. Then, there exists § > %
and « > 1 such that for n large enough and k € N,

1B
and 1) ZP(C’? <aj)<n”s.

J=k

Wl

i) P(N > pn) < exp(—cin)

for ¢; a positive constant.

Proof. For i), Observe N > fn = C,,
before index n — 1 in S,,. By Lemma 4.2.13

) o

< n, as the |fn]’th repeat must happen at or
|, we obtain,

n2

Qn) < cexp (n(B(1 - n (29))

1

2

n’e
2npn

P<N>ﬁn) <P(C, <n) Se(

Since 6(1 — ln(2ﬁ)) — 4 <0 for § > 3, we have shown 7). For i) we use Lemma (4.2.13 to
get,
L8] Bn] . 9 \Jj 2 2
. , jafe —j%a’e
S RC e <Y (Bo0) en (L),
i=k =k
3] 5\ pn 2.\ J 2 9
jace Bae jrace
< _
<3 (5) X (%) = (-50),
= j=[n3]
< Clnfg + fBnexp (—an%) ,
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where C7,Cs > 0 are positive constants. Here we used (’BQTQE> < 1 in the last step. This is

possible for 5 > % and o > 1 as for example the choice f = 0.6 and o = 1.1 works. n
Corollary 4.2.15. We can find a > 1 such that P(A%) — 0 as n — oo.

Proof. By a union bound, we have,

|Bn)
P(A) <P(3j €{L,...,[8n]}: C} <ajor N> [Bn]) <P(N > Bn)+ Y P(C} < aj).
j=1
By Lemma [£.2.14] we can find 5 and o > 1 such that both terms go to zero. O

Thus we have shown criteria i) and #i) of Proposition are satisfied. Together with
convergence of finite dimensional distributions, Theorem [1.5.1] this shows that,

(Tontd,) — (T.d).

n—oo

in the Gromov-Hausdorff topology. In the next section, we will add the measures v,, and pu
to this convergence, and upgrade the result to Gromov-Hausdorff-Prokhorov convergence.

4 Sk

gzi« L

||r~ 1!][

Figure 23: Difference between 71 (left) and 7% (right).
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5 Tightness of the Measures

In this section, we show iii) and iv) of Proposition [2.4.3] That is, there exists a probability
measure g on T such that for all € > 0,

i17) ]}LIEOIP’ (dp (,u(k), p) >€) =0 and iv)lim limsupP (dp (Vflk), vn) > €) = 0.

k—=oo nooo

Recall that p® is the pushforward of the normalized Lebesgue measure on [0, Cy] by p, and

that v,(A) = % and 1) (A) = W'_’?,J)‘ are the uniform probability measure on the vertices of

7, and T,V respectively. We start with proving 7).

5.1 Convergence of u*) to 4

Recall Theorem . Since ¢! is Polish, we have that (P(¢'),dp) is Polish. As u® € P(£1),
it is enough to show (u(k))keN is Cauchy as then ;x® has a unique limit which we can take
as p. Thus our aim is to show that for all € > 0, there exists N > 0 such that k,m > N
implies P(dp (u(k),u(m)) <e€)=1.

By definition of the Prokhorov distance, it suffices to show that for large enough k, m and
for all measurable A C T,

pF(A) < pl™(A%) + e,
Here, we take A C T instead of A C ¢! since u(B) = u™(B) = 0 whenever BN T = .
We give some intuition why p®)(A) < u™(A€) 4 € holds true. For this, the measures p*)

and p™ may differ by € in two different ways: they should assign assign roughly the same
measure (i.e. allowed to differ by €) to roughly the same sets (can enlarge set by ¢).

Note that p¥)(A) is the proportion of A in 7). We will show that the expected proportion
of tree 7\ 7® attached to A C T®* is the same as the proportion of A in 7). We illustrate
this in Figure , where AT denotes A together with the branches attached to A.

TG) T (17)

I

s

T

Figure 24: Left: A € T®) drawn in red. Right: A" drawn in red.

This property will allow us to conclude that p*(A") converges as k — oo. Thus for large
enough k,m we have |u® (AT) — p(™(A")| < e. This shows that u*) and pu(™ are roughly
the same on sets of the form A", Lastly, we use that P(dg(T™,T) < ¢) = 1 as k — oo
to conclude that for k large enough, A C 7™ is such that AT C A¢. This will allow us
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to conclude dp(u®, u™) < e. Below we make this reasoning formal. We start with some
definitions and a result on martingales.

Definition 5.1.1. For A ¢ T® let AT = 7, (A)NT, with 7, : £* — R* the projection map.
Observe that AT consists of A together with points in 7\ 7" whose path to 7*) ends in A.

To shorten notation, we write ¢; = C; — C;_;.

Remark 5.1.2. Note that AT for A C T depends on k as seen in Figure . In both the
top and bottom figure, we have A = T(1). However, in the top case, we view A C T and
in the bottom case, we view A C T®?). We always write let A C T®*)’ to indicate that A" is
taken with respect to k.

AcTW AtcT®

AcT® AtcT®
Figure 25: A" depends on k
Theorem 5.1.3. Suppose (X1, Xo,...) is a martingale such that sup,, | X,| < oo, then there

is a random variable X such that lim,,_,,, X,, = X with probability 1.
Lemma 5.1.4. Let A C T®. Then pu(AT) is a martingale for j > k in filtration o(7").

Proof. Tt is clear that ') is o(7)) measurable and E[|u)(A")|] < oo as u)(AT) € [0,1].
It remains to show E[pU+V(A") | F;] = u@(A"). For this, define G; = o(F}, i1, Cji1)-
Observe that conditional on 7 the j + 1’th branch is part of AT with probability ;) (A").
Depending on weather branch j + 1 is added to A" or not, we see,

PO (AT) = (Cyu" + ¢j41)/Cj1 with probability ul)(AT),
Ciu9 /Cyy with probability 1 — p)(A").
By putting the two cases together, we obtain,

Cit (AN + ¢
G

O (AT
Cj

E [u(jﬂ)(AT) ‘ Gj} = uD(Ah +(1— #(j)(AT)) — ,u(j)(AT).

By the tower property, we obtain,
E [u(j“)(AT) ‘ O'(T(j))} — K [E [,u(jﬂ)(AT) | Gj:| } O'(T(j))} — u(j)(AT),

where we used that u0)(A") is (7)) measurable. This concludes the proof. O
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Remark 5.1.5. Since u)(A") € [0, 1], we apply Theorem to find that there must exists
some random variable p1(A") such that lim; o, u(AT) = u(A") almost surely. In particular,
this means that for sufficiently large k, m we have | (AT) — u(™(A")| < € almost surely.

Theorem 5.1.6. The sequence (u(j))jeN is almost surely Cauchy in (P(¢'),dp).

Proof. Fix e > 0 and let K be large enough so that P(dy (7)., T) > €) < ¢, which is possible
by Theorem [4.1.1l Condition on 7¥) and let Jy, ..., .y, be a measurable partition of 7 (%)
for which diam(J;) < € for all 7. Conditional on the event £ = {dH (T(K), T) < 6}, we have

diam(JZT) < 3e since for any z,y € JJ, we can bound,

d(z,y) < d(z, g (2)) + d(mg (), 7 (y)) + d(7x (), ),
< dy (T T) 4 diam(J;) + dy (T, T) = 3e,

where d denotes the distance in 7 and 7 is the projection map from ¢! — R*. The proof
is illustrated in Figure Be aware this is a two-dimensional representation of T C /!,
thus d(z,y) should not be interpreted as Euclidean distance but instead be seen as distance
traversed over the drawn branches.

___________
- ~o

Se

~

-
.
-

f" ~~\
4 ~
’ \s
i X ~
l' -~
k4 .
¢ Y
4 AY
4 A
’ - A
4 AY
’ \‘
----- Y
-~ hES / d(l‘,?‘(‘K(ZL’)) \
4 A 1 A}
¢ \‘ 1 [}
’ 1 1
] \‘ 1 y 1
1 1
1 : ,' e d 1
\ 1 : !
U
AN | 1 ’ 1 :
) ] 4 1
A Y ’, X 1
Sedloo- ' H
- \ |
1 e ——— A
)
1
\
')
\ dly, mx(y)) |
\ S
s 4
A Y
. TK (ZL’) J/
N S
,
. J; Tr(Y) %
~ 7
~

~ -
~ Pig
~ -
~. -
S _———

Figure 26: Ilustration diam(J]) < 3¢

Conditional on F, the family (JJ)iE[N]
From Lemma we get,

is a partition of 7 of sets of diameter at most 3e.

Ne
dp (), 1) < 37 () — p™ (D] + 36 + Ly
=1
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By applying union bounds, we get for all 6 > 0 and b > 0,

P (dp(p?, pt™) > 6N, + 3¢ | TH))

Ne
<P (Z () = p™ ()] > 6N,
=1

Tm) Line<oy + Linesoy + Lipey

Ne
< S P(IOUD = 1D > 8 | TO) Loy + Loy + L.
i=1
By setting 0 = - and taking expectations, we obtain for all b > 0,

P(dp(u", ™) > 4de),

Ne

. €

<& [P (100 - ") > 1
=1

T(K)) Linv.<oy + Tinesoy + Limey |

€

b
<>P <|u<j>(JJ) — ™ JN] > b) +P(N, > b) +P(dg (T, T) > ).
=1

By choice of K, we have P(dH (T(K),T) > 6) < €. Recall that N, is the minimal num-
ber of sets J; of diameter ¢ needed to partition 7U). Since TE) C T is compact al-
most surely, we can make P(N. > b) arbitrarily small with finite b. By Remark [5.1.5]
P (]u(j)(JiT) — ™ (Jh] > 1%) can be made arbitrarily small by taking n, m large enough. We

conclude, for n, m large enough P(dp(u'9), u(™) > 4€) < €, which shoes (u(j))jeN is Cauchy
in probability. [l

Since u) is Cauchy in probability in complete space (P(£'),dp), we conclude pu® —— pu

k—o0
in the Prokhorov metric for some measure p in probability. Hence, there exists a measure p

such that
i) i P (dp (4%, 1) > ) = 0

which shows iii) of Proposition and finishes this subsection.

5.2 Convergence of Vflk) to v,
This section is dedicated towards showing iv) of Proposition . I.e. we show, for all € > 0,
we have ,

lim lim sup P(dp(v¥), 1,) > €) = 0.

k—oo nsoo
For this, we follow similar reasoning to [2], pages 18-20. Due to our different definition
of T,, we use a different derivation of equation 40 and do not use urn models to describe
the problem. Also the proof of Theorem has been streamlined. After introducing some
notation, we start with the discrete analogue of Lemma m The paper [3] was of important
help in writing this section.
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Definition 5.2.1. Color A € 7, red. Inductively, color branch 7 > k red if it is attached to
a red vertex. Let AT C 7, be all vertices colored red after adding all branches. Alternatively,
for A C 771(19)’ we see AT consists of A together with all vertices v € 7, \ T such that the

path from v to T*) ends in v. Observe that AT does not have to equal the set of descendants
of A, as highlighted in Figure. 27

We write ¢} = C7 — C_; for the number of vertices on branch j.

descendant of v € A,
.~ but not in AT

7

Figure 27: On the left, A C T, is denoted in red. On the right, we constructed AT C 7,,.
Lemma 5.2.2. Let A C 7", For j > k, v{(A") is a martingale in filtration F; = o(T).

Proof. Condition on G; = a(ﬁj),c?ﬂ, C%.;). Branch j + 1 is attached to a vertex that is
already colored red with probability #)(A"). Thus we obtain,

S (AT) = (C}‘Vg)(AT) +c%.4)/C}yy,  with probability Véj)(AT),
" C’;Lyflj)(AT)/C’J”H, with probability 1 — V,(qj)(AT).

Using this, we get,
C?M(LJ)(AT) + i

C’I’L

Jj+1

y,(Lj)(AT)CJ” B

n
Cj+1

+ (1= (A1) v (AT).

E [v™(A) | Gj] = v (AT)

By the tower property of expectation, we get,
B[4 | B =E[B (AN | G)] | ] = E [(4) | ] = 94",
(4)

where the last step follows as v’ is Fj-measurable. We conclude vZ(A") is a martingale. [

Remark 5.2.3. Given that v )(AT) is a bounded martingale, we expect 1/ )(AT) to converge.
This convergence is trivial for any finite n as vy )(AT) = v, (A") for j greater than the number
of sticks in 7, (which is bounded by n). To show limsup,, ., vy )(AT), also converges almost

surely as 7 — 0o, we use a more quantitative tail bound given below.
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Lemma 5.2.4. Let A c T,¥. We have,

Xin
P ((n{?(4") = va(AN))? > O | V) < 5,

where X}, is a random variable measurable with respect to 7}5’6) such that,

lim limsup E[Xy ,] = 0.

k—=oo  nooco

By assuming the above lemma holds, we prove,
Theorem 5.2.5. For all € > 0, we have,
lim limsup P (dp(u,(f), Vp) > €) = 0.

k—oo  psoo

Proof. Fix ¢ > 0 and take K > 0 large enough SO that P(dH(n_%%(K n_%T) >€) < €

uniformly in n, which is possible by Theorem Condltlon on T and let N, be the
size of the smallest partition Cf,...,Cy,. of n™ 2771 where diam(C;) < € for all i. On the

event £ = {dH(’Y;(K),’E) < e}, we have diam(C;) <€+ 2dH(n’%7;(K),n’%7;) < 3e.
By Lemma [2.3.13] and union bounds, we obtain that for all § > 0 and b > 0,
P(d (U, VSE)) > 6N, + 3¢ | ’TK))

N(e)
<P Z|V —v,CN)| = 6N | T | + Lypey

Ne
Z (W€ = (@D 2 6 | TH) Ly + Loy + Lo,

By setting 6 = ) we obtain,

P(d, (l/n, v E)Y > 4e | T

€
< ZP <|V£K)(CJT) — v (C))| 2 N (O ‘ 7;(K)) Linve<hy + Lvesny + Ligey.

b
€
< ZP <|V,(LK)(C]T) - Vn(C]TH > b ’ n(K)> + Linvsoy + Ligey.
j=1

By taking expectations and using Lemma we find,

3
limsup P (d,(vy, vy > 4e) < o +P(N(€) > b) + limsup P(dp (Tn, LK) > 6).

n—00 T eK-1 n—00

By choice of K, we have limsup,,_, IF’(dH (E, %(K)) > e) < €. Recall that N, is the number

of sets of diameter at most € needed to cover n_%’ﬁfm. Since 771(K) C 7, and n_%ﬁ is
compact almost surely, we can choose b to make P(N, > b) arbitrarily small. We conclude

limsup,,_, . P (dp(un, e )) > 46) = 0 for all € > 0. O
—00
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To finish this section, it only remains to verify Lemma This is done in two steps,

Lemma 5.2.6. For A C 771(k), we have,

P ((V(k)(AT) — v, (AN)? > C? | T(k)) < Kok _ 2_712%1@ _
n n = n = (2 C2 ~ ((j? —-j)4

7]

where N denotes the random number of branches of 7,,. Note that X, ; is a random variable
measurable with respect to 771(]“)

Proof. We apply Markov’s inequality to obtain,

P ((4P(AT) — AN 2 €7 | T) < S [(49(AT) — w(AT)? | T

n

Let N be the number of repeats in S, so v, (A1) = vi™ (A1), Since (1 (AT) = v, (A1))% < 2
is bounded for all &£ € N, we apply the optional stopping theorem to obtain,

E [(n?(A") = wn(AD)? | TV] = E [ (A")? + 1M (AT)? — 20D (AN (A7) | TIVT

n

Where the second line follows from,

E 208 (AN M (A" | 0] = 208)(A1)? = E [y (AN)? | T,]

n n

which again uses the optional stopping theorem. Next, we bound,

[(J""l (AT)2 (J AT2|’T }

n,,J) (At 2 n T
=K J) AT Cvi (A1) +CJ+1> +(1— (AT) (C V" (A)> Vqu)(AT)Q 7;(16)

n
j+1 CE+1

g |G (AN -l An) |y
_ Cr. :
r n 2
< (CjJrl). 7;(k):| :
N (G )k
For the last expectation, condition on 7,"). Then iy > x when S, (CF +1),...,8,(C} +x)
are unique. There are CT — j unique entries in S,(1),...,5,(C}). Thus,
: N Cn— i O — j\*
b o170 = [T (1- T ) < (1 )
i=1
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j) random variable. In particular,

s [>3
|

: : c
Hence ¢}, is dominated by a Y ~ Geom < .

E [(C?H)Q | n(]] <E[Y?] < Ccr—j)2

By using the tower property of expectation, we compute,

n \2
e |l | 7| < [ [)” | 7] | 7] <o [ [ 7]
Putting everything together, we obtain the desired statement. O]

Lemma 5.2.7. We have,
al 2n?
lizrisolip E[X, k] = hfznjong ;E [m 7;(16)}] — 0

Remark 5.2.8. This is heuristically clear. Indeed C7 ~ ne Ji %, since n’%C]’-‘ — C}, the j'th
point of a PPP of intensity ¢dt so that C; ~ j2. Thus we expect (C”’_ll_j)4 ~ (c}?)4 ~ # In
J J

particular, limsup,,_, . 2n*E[X,, ;] ~ Z?:/Z ]% ~2—0ask— oo

Proof of Lemma[5.2.7. Recall C} — j is the number of unique elements of S, (1),...,S5,(C}).
Thus we have, C;-L — 7 > 1 and thus

)

(C?,ffj)4 < 2n?. In particular for all 1 < m < n we have,
J

k)‘|

i { C”—j) } +2n°P(N > m).

<E

= 2n? 9
Y E {—(m i +E[(N —m)2n°L{ysmy] »

j=k

n

Note that NV is typically of order 2 (a well known fact coming from the birthday paradox
type problems). Hence, we set m = |fn] so that m is of the order n. Fix a > 1. Then,

ol ] 5 e

i=k j=k

cr > Oéj} +2n°P(C} > aj)) ,

201 & n? , 9 o n ,
=k J =k
pn 2 Bn
<CY E {(g")‘l} +2n% ) "P(CF > aj)
j=k J ji=k
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Hence we have shown limy_, limsup,,_, . E[X},] = 0 if we find @ > 1 and > % so that,

Bn 2
i) lim 2n°P(N > Bn) = 0, 4i) lim 2n? ZIP’ (C} > aj) =0, dii) lim ZE [ } — 0.

n—o0 n— 00 n— 00 5 )4 k—o0

=k
Statement ¢) and i) follow directly from Lemma 4l (Statement i) since we have expo-
nential decay of the tail P(N > ) for > 3 and zz) by choosmg k > 7). To show iii), recall
if X is a positive discrete random variable taking values 0 < x7 < x5 < ... then,

[e.9]

E[X] =) (xx — 24—1)P(X > z41).

i=1

Using this in our setting, together with Lemma we obtain,

E{@%Jz}:<$“wkinap(«§%>£a

P (
M j [e's)
k%e\’ 1 1
e (5 5 ()
k=1 nJ k=M+1 k (k + 1)4
e\ & 540 1
<de| — ko=
< (o) 2w
e\’ . 1
<de|—) M¥H 4 —
_e<m> o
1
Setting M = (7) > shows that E [(02)4} < C(nyj)~? for some constant C. In particular

pn 2
n 1
i — < <
J%@ﬂ@ﬂ meszHWO
j:
This shows #77) and concludes the proof of Lemma [5.2.7] O

In particular, this shows both éii) and iv) of Proposition and finishes the proof of
Theorem [L.5.2]
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6 Generalization of 7,

We saw for S, €, [n|""!, the corresponding random tree constructed via the Foata-Fuchs
bijection 7,, converges to the continuum random tree 7 constructed via stick-breaking. The
tree 7 has two sources of randomness: the length of the sticks, determined by the PPP of
intensity tdt and the attachment points of the sticks, which was uniform over the already
existing tree. In this section, we construct a tree 73 C ¢' with a different distribution for
the length of the sticks parametrized by 3, and we show this object is also a scaling limit of
discrete random trees constructed by the Foata—Fuchs bijection.

The convergence of n=27, to T was a consequence of the scaled repeat points n’%C? in S,
converging to a PPP of intensity tdt, and B! being roughly uniform over {1,...,CI" — 1},
together with tightness arguments. For ¢ on the scale n%, the probability that S, (i) is a
repeat is roughly % This is a good starting point for a new model: what happens to trees
constructed from random sequences S € [n]"~! where P(S/ (i) is a repeat) = f(%), for some
function f :[0,1] — [0,1]? In this section, we compute the finite dimensional distributions
for trees constructed from S when f(z) = 2° + o(2?) as * — 0 for parameter 3 > 0 and

show tightness for the specific choice f(x) = 2”. We formalize the definition of S first.

Definition 6.0.1. Let f : [0,1] — [0,1] and define the random variable S} € [n]"!
as: Sp(1) €, [n] and for ¢ € {2,...,n — 1},

£(i) ~ Sn(j) with j €, {1,...,i =1}, with probability f (%),
T\ Uni([n] \ {S0(1), ., Sali — 1)}), with probability 1 — f ()

Let 7, ; denote the random tree obtained by applying the Foata-Fuchs bijection to S.

Remark 6.0.2. Conditional on S/ (i) being a repeat, we let S (i) €, {{Sn(1),...,S,(i—1)}}
(as multiset). This is different from the uniform case, where conditional on S, (i) being a
repeat, S, €, {Sn(1),...,S,(i — 1)} (as set, i.e. we do not take multiplicity into account).
This change is made to simplify the proof corresponding to Lemma [4.2.11] In this proof, we
condition on {S,(1),...,S,(a)} having few repeats for all a € [n — 1], else P(p(v) € T,(a))
could become too small. Proving P(A,) — 0 as n — co was done in Lemma [£.2.14] however
this proof cannot immediately be generalized to the current case, it fails for 8 < 5 — 1.

Instead of adapting the proof, we simply change the sampling. This does not change the
8
finite dimensional distributions: as we will see, the first k& repeats happen at a scale n?+1.

Thus, for any a > 0, the proportion of repeats in S, (1),...,5, (an%) goes to zero and
sampling while taking multiplicities into account tends towards sampling uniformly on the
distinct values. This gives intuition why both choices of sampling repeats yield the same finite
dimensional distributions. Only when we prove compactness, and need properties of S, ()

8
with ¢ on a scale larger than n5+1, does the choice of model impact the proofs. Sampling
repeats uniformly from the multiset {{S,(1),...,5,(i — 1)}} makes these proofs easier.

We continue with more definitions. We define,

O = index of 4'th repeat in SY and B = min{l € [n] s.t. S,(I) = S,(CM)},
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to be the repeat and attachment indices. For notational clarity, we do not denote C}* and B}
to depend on choice of f as throughout this section, it is clear that C*, B® refer to S{. We

(2

define 7;(]}) to be the tree obtained from {S/(1),...,S/(C? —1)}. For the measures, let v, be
the uniform probability measure on 7, s so that v,(A) = %l for all A C 7, ;. Similarly, vk
denotes the uniform probability measure on 7;(]})

In the continuous setting, let 0 < C} < ... be the ordered points of a PPP of intensity t’dt
and B; ~ Unif([0,C;]). Let T3 denote the tree obtained by applying the stick-breaking

construction to the points (C;, B;);en and set Tﬁ(k) = p([0,Cx]) and pu*) = p*X where X is the
normalized Lebesgue measure on [0, Cy]. We will show p®*) converges to some probability
measure [ on 7g.

The first subsection is dedicated towards showing,

Theorem 6.0.3. For 8> 0, let f:[0,1] — [0, 1] be such that f(x) = 2 + o(z%) as z — 0.
For any k € N, we have convergence of finite dimensional distributions in the GHP-topology,

__B_
(78,071, 9) = (T89,0,9).

n—oo
where d,, is the graph distance on 7;(’}) and d is the ¢! metric.

Remark 6.0.4. The only condition specified on f is f(x) = 2% + o(2?) as z — 0. It is not
surprising this suffices to determine the finite dimensional distributions. Indeed, as will be

8 8
shown, repeats CI" happen at the scale n#+1. As n#+1 /n — 0 as n — 0o, we see that the
repeats C7' < --- < C}, and thus the trees 7;(]}) are determined by the behavior of f around 0.

However, it cannot be the case that convergence of the full tree,
_B d
<7:1,f7 n A+l dn; Vn) — (7—67 d; :U’)J
n—oo

holds for any f with f(x) = 2° + o(2”). As an example, take f(x) = rl,cr. Almost surely,
the set {S/(%),...,5/(n — 1)} does not contain any repeats. Assuming Theorem |6.0.3| we
must scale 7, s by a factor n~2 which means that the 2 vertices {S7(2),...,Sf(n—1)} are

all on one stick approaching infinite length and n’%’ﬁl, ¢ cannot converge to an almost sure
compact metric space.

In subsection [6.1] we prove Theorem [6.0.3] Then in subsection [6.2] and [6.3] we show that for
the choice f = (i)ﬁ, we have,

__B_ d
(%,f?n ﬂJrldn;Vn) m (7167d7 ,u)v

In the GHP-topology.

6.1 The Finite Dimensional Distribution

In this section, we prove Theorem [6.0.3] We largely follow the same reasoning as Section [3]
To that end, we aim to show,
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Theorem 6.1.1. With notation as in Definition [6.0.1, we have for all £ € N,

n_%( {L,,O]?,B?,,Bl?) L> (017”'7Ck7B17"'7Bk)7

n—oo
where C,. .., Cy are the first k points in a PPP of intensity t’dt and B; ~ Unif([0, C}]).
To show this, we first prove the following lemma,

Lemma 6.1.2. With notation as above, we have for all 0 < 1 < --- < sy,

kB B B <.
nBHP <C{l = |snFH |, ..., CF = LsknBHJ) % for o815, Sk),
where the convergence is uniform over compact sets and fe, . ¢, (s1,. .., Sk) is the pdf of the

first k ordered points of a PPP of intensity t”dt.

Proof. Recall from Lemma [2.2.22) that feo, ¢, (S1,...,5) = sf . s,fe_ﬁsfl. We reason by
induction on k.

8 8
For the base case, observe C]' = | s1n?+1 | exactly when index 1 to |syn?+1] —1 of S,, are not

B . o . . :
repeats, while index |s;n 7+ | is a repeat. Since S/ (i) is a repeat with probability f (i), we
obtain,

| ﬂ%J [s1nPFT | )
5 5 5 $1n A+ i
oot T ()
" i=2 n
e
Recall f satisfies f(x) = 2% + o(2”) as z — 0. Since le"n 1 - 0, we obtain,

7 #\ A\
() o () (b))
n n n

_B8_ B8
= S? +o(l)+o (n EES! lenﬂHJ) 7
=51 +o(1),
AT
where the convergence is uniform for s; in compact sets since le"n 1 0 is uniform over

compact sets. We continue with the product term. From the Taylor expansion of In(1 — x),
we see In(1 — z) = z 4+ O(2?) for x around 0. We substitute z = f (%), to get,

K2
n

_B_ B
[sin A+l syn BT

J . L J .
1 7
(7))o | 5 (-0 (3))]
: Lsmﬁj . LSW%J .
[ E)E )
=2 n =1 n




We focus on the two sums above separately. For the first sum,

B

| i T )
2 f<ﬁ>:—f<%>+ i l<a>ﬁ+o<<a>ﬁ>l>
SR(O))]
:0(1)+n_5<%+0<t‘91”5i1ﬁ>)+0 LSlzj: ()B ,

. 77 (B+1
=o(1)+ L 10 (n_ﬁ) +o <%> :
S1

nﬁ
:0(1)+B+1.

Where the above convergence holds uniformly for s; in compact set. For the second sum,

[sin

..
[|

m‘m I
I,

LSl

||
Mi M

S|

L _B_
n B+ B

5ol ()5 o(6)),

)

B lenﬁj ”
= |snF |0 | | ——— :

-0 (n—%) ,
=o(1).

Again, convergence being uniform for s; in compact sets. By substituting all intermediate
results, we obtain,

v e = o)~ (220) T (1 (2)

=2

B 51
= (s] +o(l )ex — 1)1,
(58 o)) exp |- 525 + ot
which shows the base case of the induction proof. We continue with the induction step. To
ease notation, write,

Ci(z) ={CT = xlnﬁij L CF = [xkn%j}, where x = (z1,...,x) for [ > k,

kg S
so the induction hypothesis reads nF1P(C(s)) —— s- ... sfeiﬁ*ffl. Since,

n—oo

(k+1)B _B_ B

_B_ _B_
P (Conn = Lsin®1 ], C(s)) = n#1P (Cityy = Lspran 1] | Ci(s) ) no TP (CR(s))
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it suffices to show,

2 2
, s . Spiq — S
nA+P (C;?}Ll = |Skn?] | Cl?<5)> nu_:)o’ 5§+1 oXp <_ kgl—i— 1 k) '

B , : :
The event {Cp,, = |sp41nP+1]} given Cp(s) occurs precisely when S contains no repeats
5 B o B
between indices |sgn?+1 | + 1 and |sgy1n?+ | — 1, while index |spy1n?+1 | is a repeat. We

write I, = {Lskjnﬁ +1,..., Lskﬂn%J — 1}. Then,

W (= senn®] | CL(s)) = ni f (w) 11 (1 -/ <‘>)

n -1, n
= (sep1+o(1))exp [= > f (%) 10 <f2 (%))] 7
L el
[ BT _ Bl
= (Sp41+o(1)) exp —% +o(1)],

where we omit computations as they follow the same reasoning as the base case. This
concludes the proof. O

We continue with the proof of Theorem [6.1.1}

Proof of Theorem 6.1.1]. It suffices to show,

B B
i) P(C} < sinft,. .., Cp < spnfit) —— P(Cy < s1,...,Cp < 53),
n—oo
ii) P(BY < ,C7, ..., By <0 | CF < sint,...,Cp < syn?),
—>P(Bl <t,Ch,..., B <t.Ci | Ch §817-~-a0k§8k)
n—oo

Statement ¢) follows from identical reasoning as the proof of Lemma Statement i) is
shown by copying the proof of Lemma |3.1.7| and |3.1.5| but replacing n=% with n= B O]

Hence we see that the rescaled first £ repeat and attachment points C}* and B} converge to C;
and B; where 0 < C; < --- < C}, are the first k ordered points of a PPP with intensity t’dt.
The result of Theorem [6.0.3] is immediate.

Proof of Theorem[6.0.3 The result immediately follows from the convergence,

n F (O CPBY, .. BY) — (Cy,...,Ch, By,..., By),

n—oo

together with the work in Section [3.2] and Section [3.3] as seen in Remark [3.3.4] O

Thus we have shown that for any f : [0,1] — [0, 1] with f(z) = 2° 4+ o(2”) as * — 0, we have
convergence of finite dimensional distributions,

n
n—oo
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in the GHP-topology. As seen in Remark [6.0.4] setting f(z) = 2° + o(z”) as # — 0 is not
sufficient for tightness of (n_%%, 7). o We will show that for the choice f(z) = 2#, we do

B .
have tightness of (n_ﬁ+1 E’f)neN' In particular,

Theorem 6.1.3. Let f(z) = 2°. Then,
__B_ d
<7;7f,n /3+1dn,yn> —)nﬁoo (7/‘3,d,,u),

convergence being in the GHP-topology.

Remark 6.1.4. Throughout the following two subsections, we write T, = T,  for f(z) = 2
and 7 = 7T3. By analogous reasoning to the proof of Proposition , we have shown
Theorem [6.1.3| upon proving,

i) lim P (dy (T(1), T) > ¢) =0, i) lim limsupP (dH (ﬁ(tn%)ﬂw > en%) —0,

=00 p oo

122) lim P (dp ,u(k),,u >e€)) =0, ) lim limsupP (dp (¥, 1,,) > €) =0
—00

k=00 noeco

We show i) and i) in the next subsection and iii) and ¢v) in Subsection [6.3]

6.2 Tightness of (ﬁl»f’n_%dn)neN
6.2.1 compactness of 73
In this section, we show ), that is,

Theorem 6.2.1. We have,

lim P (dy (T (1), T) > €) = 0.

The proof will be mostly identical to Section 4.1 We focus on highlighting the differences
rather than proving this result from scratch. By following identical reasoning to that of the
proof of Lemma and Corollary [£.1.3] we immediately obtain,

Lemma 6.2.2. Theorem is proven upon finding €;(t) : [0, 00) — [0, 00) for which,
D lim > () =0 and ii)}HggZP(dH (T(2it), T(214)) > &) = 0.
i=0

t—o00
i=0

We aim to bound P(dy (T (a), T(2a)) > ¢) for which we first bound P(dy (T (a), p(s)) > ¢),
for some s € [a, 2a.

Lemma 6.2.3. Fix a,c¢ > 0 and s € [a, 2a]. Then,

ca®
P(du(T(a), T(2a)) > c¢) < exp (—7) :
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Proof. Similar to the proof of Lemma , we sample the random variables (C;, B;) jointly
from one PPP on a subset of R%. In the original Lemma, we took a PPP of intensity 1 on the
wedge {(z,y) € R* : 0 < 2,0 < y < x} as the point process can be written as Y o, dc;.5:)
with 0 < Cy < Cy < ... ordered points of a PPP of intensity tdt and B; ~ Unif([0, C]).

In this proof, we set 1 to be a homogeneous PPP of intensity 1 in,
Tp={(v,y) €ER*:0< 2,0 <y <2}

Write n = 221 5(01.73;_) with 0 < C] < ... It follows from Example|2.2.20/that 0 < C} < ...
are the ordered points of a PPP of intensity t’d¢t. However, note that B, ~ Unif([0, (C;)"])

has the wrong distribution to represent the attachment points. Thus we set B; = (C;)'? B}
so that B; ~ Unif([0, C}]).

Observe that branch i is attached to T(2a) at point p(B;) = p (Bj(C;)*7). In Figure ,
we highlight in red the region where points of 7 in that region imply the corresponding stick
is attached to T (a). Note that the upper boundary of this shape is concave and decreasing
for § < 1 and concave increasing for g > 1.

Figure 28: Attachment to 7 (a) for § > 1.
As in Remark [4.1.6] we may find the subset S C [a, 2a] such that p(S) corresponds to the
path from p(s) to 7 (a). We define,

Definition 6.2.4. Let ) be a PPP of intensity 1 in T}, set 7' = 1+ (445). For s > a, define,
1 1 1 pgl,(5>
p1 = (py(s),py(s)) = argmax x, di =di(s) =s—p,(s) and sy = sy(s) = — 5T
(z,y)en': z<s (px<5))

where p; is well defined as 7 contains no accumulation points almost surely and (a,a”) € /.
Whenever s; 1 > a, we set,

= pils) = p(pi-1(s (s)=d;, =s; —p.(s) and s; _—p;(s)
pi = pi(s) = p(pi_i(s)), di(s) =d; = s; — p'(s) and 1= (g

x
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Set N = min{i € N : s;,1 < a} for the number of sticks on the path from p(s) to 7 (a) and
define S = |\, [p%(s), s;]. As in Lemma 4.1.8 we also have that the path from p(s) to T (a)
is given by p(S). We adjust Remark to the new setting.

i) dg(T(a),p(s)) > c given n happens exactly when A(S) = d; + -+ + dy > ¢ where A is
the Lebesgue measure on R.

ii) By removing points from n in {(x,y) : a < x < 2a,0 < y < ca®1}, we cannot decrease
du (T (a), p(s)).

Set n* = {(x,y) € n: 2 < aory > 2’ ta} and let S* be defined using Definition
but with n* instead of  and set S7 = {z € S : x > j}. Similar to Proof , we see
that d (T (a), p(s)) > c implies that A(S*) > ¢. Furthermore, if 7/ contains any point in the
region S x [0, mingcq,24] 2’~ta], then dy (T(a), ,0(5)) < c. Note that mingepq 24 P 1la < %aﬁ,
and thus we find
caf
]P(dH(T(a),p(s)) > c) < IL{/\(S*)>]-}IP)(7](S; X [O,xér[laiga] xﬁ_la]) = 0) <e 2,
where we may condition on A(S*) > ¢ since otherwise dy (7 (a), p(s)) < c¢. This concludes
the desired result. We give an illustration in Figure [29| where 5 < 1 and \(S*) > c. [

*
81

Figure 29: Visualization of area where n should be void of points. In red, we denote the
area {(z,y) : x € Sy and 0 < y < 2”7 'a} and {(z,y) : x € S*\ S; and 0 < y < 27 'a} is
denoted in green. In particular, if n were to contain any point in the red area, the distance
di (T (a), p(s)) would be less than c. The height of this area is at least minge 24 2°'a < %
and the with of the sum of red rectangles is A(S}) = c.

We upgrade the bound on P(dy (T (a),p(s))) > ¢ to a bound on P(dy (T (a), T (2a)) > c)
using the same trick as in Lemma [4.1.13]
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Lemma 6.2.5. Let a,c > 0. We have,
2a ca®
P(dH (T(a), T(Qa)) > c) < ~ exp [ ——

Proof. Analogous to that of 4.1.13 n
Lastly, we show that ¢) and i7) in Lemma hold.

Proof of Theorem[6.2.1. By substituting a = 2't and ¢ = ¢; in Lemma we obtain,

o0 ©  Gitl
SO P(dn (T2, TEH1) > 6) 3 2L exp (—e2725)
i=0 i=0

We set ¢; = (i + 1+ iﬁ)22_wt_§ and simplify under the assumption that ¢3 > In(2).

2 o(i+1+i)+iByl+5

;P(dH(T(zit),T@”lt)) >€) < D )

exp (—(i Y14 zﬂ)tﬁ’g) ,

< A+5 iexp <(z +1+ zﬂ)(ln(Q) - t§)> ;

=0
o0

Z exp (In(2) — tg)iﬂ,

=0
B
< 148 2exp(—t2)ﬂ
1 — 2exp(—t3)

This verifies 7i) of Lemma[6.2.2] To verify i), observe,

i@':t_

=0 7

N1y

<ttt

o0

(i 41+ i8)220 < 3 20+H)
=0

(1—-29)2 e

[¥]ie

7

This verifies condition ¢) and i) and in turn proves Theorem finishing this section. [

6.2.2 Compactness of n_%ﬁl,f
In this section, we aim to show ii) of Remark [6.1.4. That is,

Theorem 6.2.6. for all ¢ > 0 we have,

i7) lim lim sup P <dH <7;(tn%), ’7;) > en%) = 0.

=00 n_yeco

The proof of Theorem closely mimics the reasoning in Subsection [£.2] However, the
proof of Lemma heavily relied on the uniform sampling of sequence S,. As S/ is not
uniform in [n]""!, we have to use a new approach for proving the analogous lemma in the
current setting.

To ease notation, we write S,, = S/ throughout this section.
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Lemma 6.2.7. Theorem is shown upon finding €;(¢) : [0,00) — [0, 00) such that,

[e.9] o0

i) lim » ¢(t) =0 and 4i) lim lim supZ]P’(dH (ﬁ(2itn%),ﬁ(2i+ltn%)) > em%) = 0.
t—o0 P t—0 5 _v00 0
Proof. Analogous to the reasoning in Lemma and Corollary m

Next, we bound the distance from a vertex v, € T, (2a)\T,(a) to tree T,(a).

Lemma 6.2.8. Fix a € Nand s € {a+1,...,2a}. Let vs € T,(2a) be the vertex corre-
sponding to S,(s). Then,

B(dn (To(a),vs) > ¢) < exp <_%) |

Proof. Recall that p*(v) denotes the label of the k’th parent of vertex v € 7, and,

dy (Tn(a),vs) < 1%1611{% {pF(vs) € {Sa(1),...,Su(a)}}.

Instead of sampling their vertices p*(v,) € T(2a), we iteratively sample their indices in S,,.
We define,

O s—1 if S,,(s) is not a repeat,
S) =
mingen{Sn(k) = S,(J)} with J €, {1,...,s =1} if S,(s) is a repeat,

and inductively set Q*(s) = Q(Q*1(s)). Note that p*(vy) < S,(Q"(s)), since Q*(s) is the

stochastic process of tracking the index of p*(v,). In particular, we have,
d < mi F(s) < al.
H(T(a),vs) < min {Q (s) < a}

Fix k € N, we aim to lower bound P(Q*(s) < a | 5,Q(s),...,Q"'(s)). Assume Q*"!(s) > a
as otherwise Q*(s) < a is deterministically true. We make two observation about the distri-
bution of Q*(s) conditional on if S, (Q*!(s)) is a repeat or not.

i) If S, (Q*1(s)) is not a repeat, then Q*(s) = Q¥ "1(s) — 1 > a (unless Q*1(s) = a + 1).
ii) If S,(QF1(s)) is arepeat, then deterministically Q*(s) < J where J €, {1,...,Q* 1(s)}.

Both the probability of S, (Q* !(s)) being a repeat conditional on Q*7'(s) > a and the
distribution of J (which bounds ¢*(s) from below) only depend on. Specifically,

i) P(S.(Q"'(s)) is a repeat | 5,Q(s),..., Q" '(s)) = (Qk_l(s))ﬁ > <2>ﬂ,

n n
a

= i(s) 1

bl

DN | —

i) P(Q%(s) < a ! $,Q(8),..., Q" (s) and S,(Q*'(s)) is a repeat) >

7



where the last inequality follows since a < Q**(S) < 2a. We combine both bounds to

obtain, ;
P(Q*(s) < al s Q(s),...,Q"(s)) > 2‘#

Putting all results together, we find,

P(du (Ta(a),vs) > ¢) < (min{Qk(s) <a} > c),

kEZ

<(1- ()
)

which is the desired result. O

We upgrade this result to a bound on P(dy (7,(a), 7.(2a)) > ¢) using the exact same proof
as Lemma [£.2.72]
Lemma 6.2.9. Let a,c € N. Then we have,

2a ca®
P(du (Ta(a), Ta(2a)) > ¢) < — exp (_W> .

Now we are in a position to prove Theorem [6.2.6

LB B,
Proof of Theorem [6.2.6. We substitute a = 2'tn?+1 and ¢ = en 7+ into the result of Lemma

6.2.5] and simplify to obtain,

> s : 8 8 =, 2itlg ,
Z]P(dH (T0(2tn7+), T, (2 tnF+ 1)) > en+1) < Z —— exp (—e277%t7)
i=0 i=0 !

Thus the criteria in Lemma are translated into finding ¢;() : [0, 00) — [0, 00) for which,

o o 2i+1t
lim €, =0 and lim

t—o0 4 t—o00 4 €;
1=0 =0

exp (—ei2w—2tﬂ) =0.

These exactly coincide with the criteria in Lemma [6.2.2] which were shown to hold in Proof
by choosing € = (i + 1 + 3)22~¥¢=%. O

6.3 Tightness of the Measures

In this section, we show iii) and iv) of Remark [6.1.4, We start with 4ii) which follows
identical reasoning to Section [5.1}

78



6.3.1 Convergence Measures on the Continuous Tree
In this section, we aim to show,

Theorem 6.3.1. For all € > 0, we have,

kh_)rgoIP) (dp (,u(k), ,u) > 6)) =0.

Recall that (P(¢'),dp) is Polish. Hence it is enough to show that u*) is Cauchy in probability.
Recall the definition of AT,

Definition 6.3.2. For A ¢ T® let AT = 7, (A)NT, with 7, : £* — R* the projection map.
Observe that AT consists of those points whose path to 7®*) ends in A.

Lemma carries directly over to our current more general setting. (Intuitively, the proof
only uses that branch j attaches to subset A C 7 with probability x()(A). This of course
is not changed by changing the distribution of the stick lengths).

Lemma 6.3.3. Let A C T®. Then u9(A") is a martingale for j > k in filtration o (7).
In particular, this ensures that for j, m large enough, | (A") — u(™(A")| < € almost surely.
We now proof Theorem 6.3.1

Proof of Theorem [0.53.1. Fix e > 0. From Theorem|[6.2.1, we may take K large enough so that
P(dH (T(K),T) > e) < e. Condition on 7 ) and Let J;,...,Jy, be the smallest partition
of TH) of sets with diameter at most e. On event E = {dy (T"),T) > €}, we have that

JlT N7, ..., J]T\,e N TY forms a partition of 7 of sets of diameter at most 3e. Hence, via
the exact same reasoning as the proof of Theorem [5.1.6] we get for all §,b > 0,

P(dp(u?, ™) > 6N, + 3¢ | TH),

Ne
<P (\u”)(Jf) — @I >0 ’ Tm) Lin,<b) + Lnesoy + Lime).

By taking expectations, and setting § = +-, this turns into,

b
P(dp (), u™) > de) < Z < P CIT TS g) FP(N. > b) + e

Given that N, is the least number of sets of diameter € needed to partition 7U), and 75 ¢ T
is compact almost surely, we can make P(NN, > b) arbitrarily small with finite b. This in turn

means that P (|,u(j)(JZT) pm (| > —> can be made arbitrarily small since p@(.J}) is

bounded martingale. It follows that P(dp(u), (™) > 4¢) is arbitrarily small for n,m large
enough. Hence (,u(j)) is Cauchy in probability, which shows Theorem . O]

79



6.3.2 Convergence Measure on the Discrete Tree
In this section, we show iv) of Remark That is,

Theorem 6.3.4. For all € > 0, we have,

lim llmsupIP(dp( (k) Vn) > 6) =0.

k=00 nooco

We follow largely the reasoning in Section However, the reasoning in this section turns out
to be easier as the probability of S7(4) belng a repeat is given by f ( ) which is independent of
the number of repeats that occoured in S/ (1),...,S/(i—1). This was different in Section|5.2}
where uniform sampling of sequence S,, meant that P(Sn(i) is a repeat ) = HSn@)sSna-1
which depends on the number of repeats in S, (1),...,S,(@ — 1).

Recall that for A C 'ﬁl(k), we define AT C T, to be A together with all vertices v € Ty, \ T
for which the path from v to 7®*) ends in A. We have,

Lemma 6.3.5. Let A C 7", For j > k, v{/(A") is a martingale in filtration F; = o(T).

Proof. This follows from the same reasoning used to prove Lemma [5.2.2] O

w] |

where N denotes the random number of branches of 7,,. Note that X, ; is a random variable.

Lemma 6.3.6. For A C 7}(k), we have,

k 2 2 k Xk 1« 2n*
P ((V )(AT) - Vn(AT» >C } ( )) < 02’ - o2 ZE {(C”)%“
j=k J

Proof. This proof is largely the same as that of Lemma [5.2.6, We focus on the differences.
Via identical reasoning, we obtain,

2 2 1 o (C?—H)Q

with N being the random number of sticks in 7, and ¢} = C} — C}_ ;. Observe that c7,, >
given 7,%) happens precisely when SHCH +1),...,5/(C} + x) are all not repeats. This
happens with probability,

(e, > o | T9) :11( cnﬂ ) < )B>

and thus ¢f,, | 7.9) is dominated by a Y ~ Geom(( ) ) random variable. In particular,

this means,

on2s

E ()" | 7] < BV < (Cy)?
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By using the tower property of expectation, we obtain,

N n 2
1 (cf41)
P (A — (AN > C? | TW) < 23 R [ s s 7;5’“)] :
2=y
N
1 2n??
N E
= 2 ny2p+2 | ‘n |
j=k (CJ) i
as desired. O
We continue with showing lim sup,,_, E[Xnk} — 0 as k — oo.
Lemma 6.3.7. We have,
2028
i I o))
T ZE [(Cy)ww " H o

Proof. We have N < n as a tree with n vertices can have at most n branches. Thus,

> ] = 22 s | 7).

where we set C7' = n for j > N. Next, observe that,
x\ B
P(C} <x) <P(X > j) where X ~ Binom (x, <—) ) :
n

on2P
Cn Tm\28+2

Indeed, Cf < = can only happen if SJ(1 SJ(x) contains at least j repeats. The bound

); -
follows since P(SZ (i) is a repeat) < (%) By using a Chernoff bound for the binomial
distribution with p = m:i and (1 +d)p = 7, (valid for § > —1), we obtain,

piey <) <o < () < (2) = ()

Using this, we compute,

E { On 2,8+2}

IN

o 1 .

M 00

Z k- 28-3 ekﬁ—;l 1 Z 21 B 1 ’
jn k268+2 (k’+ 1>2B+2

1 k=M+1

k=
i M
]n

IN
Q

IN
Q

k=1

IA
Q

) (Mﬁ“ (5-2) (M(B+1))—2
Jn
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1

By choosing M?+! = nfje~!, we obtain,

1 -2, —23
® gy = 00"

for some constant C'. By putting everything together, we obtain,

N
on?b
ZE[W 7;@” <11msupZ]E{On 26+2} CZ

limsupE

n—oo

This concludes the proof as the last sum goes to zero as k — oo.

Theorem [6.3.4] can now be shown following identical steps as the proof of Theorem [5.2.5|
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7 A Threshold for Compactness

In Section @, we saw that sampling S, non-uniformly by setting P(S,(i)) = f (%) for some f
allows for convergence to trees 7 where the stick lengths are determined by a PPP of in-
tensity t?dt. Importantly, the stick lengths obtained from these PPP’s still decrease quick
enough to be able to show tightness of (7;, n’%, l/")neN in the GHP-topology (Section
and Section . In this section, we find where this tightness argument breaks down. We do
this by considering functions of the form f, (i) : {2,...,n} — [0,1]. More specifically, we use

N

fli,n) = f1(6) =In"(in"% + 1)n" 3,
parametrized by v > 0 and we let,

Sn(j) where j €, {1,...,i—1},  with probability f(i,n),

Sn = SH(i) ~ {Umf([n] \ {Sn(1),...,8,(i = 1)}), with probability 1 — f(i,n).

Let 7, = 7T, be the random tree constructed by applying the Foata—Fuchs bijection to .S,,.

On the continuous side, we let  be a PPP on R of intensity In”(t + 1)dt and let 7 = T,
be the continuum random tree constructed from applying the stick-breaking construction to
sticks with the points in 7 as end points.

The definitions of C7*, B, C;, B;, 7#;), T®), Vy(Lk), ) v, and p are taken as in Definition m
but applied to the trees 7, and T in the current setting. The aim of this section is to show.

Theorem 7.0.1. For v > 1, we have convergence in the GHP-topology,

(’E, n_%dn, I/n) 4, (’T, d, u).

n—oo
If v <1, then T is not compact almost surely.

Remark 7.0.2. It should be noted that 7 not being compact automatically implies that we
cannot have convergence in the GHP-topology as the metric dggp is defined on the space of
compact measure metric spaces (up to isometries).

We start this section by showing convergence of finite dimensional distributions.

Theorem 7.0.3. For all £ € N and v > 0, we have convergence in the GHP-topology,

(9,02, ) = (T®,d,u®),

n
n—oo

Remark 7.0.4. Observe that this result is independent of v > 1. Intuitively, the convergence
of n=2T, to T fails for v < 1 because the sticks do not become short quick enough (in fact,
we will see they do not become short at all). Thus, the problem lies in showing tightness,
not the finite dimensional distributions.

Remark 7.0.5. By the same reasoning as Proposition [2.4.3] Theorem is proven by
combining Theorem together with the statements below.
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For all € > 0 and v > 1, we have,

i) lim P(dH(T(t),'T) > e), ii) lim limsupIP’(dH('ﬁL(tnlp)ﬂ;) > e),

t—o0 t—=00 5 _veo
iii) klgn ]P(dp(u(k),p) > e), iv) klgn lim sup]P’(d (¥ 1, > e).
oo X n—oo

7.1 Finite Dimensional Distribution

In this Section, we prove For this, we aim to prove the following result.
Theorem 7.1.1. Take C}' and B}' as above. For all £ € N, we have,

TL_%(C{L,7C£,B?,,B’?) L} (Cl,...,Ck,Bh...,Bk),

n—oo

where Cy < -+ < C}, are the first k points of a PPP with intensity In” (¢ 4+ 1)dt on R>q and

Before proving the above theorem, we introduce three lemmas. Throughout the following
lemmas, we write for ¢t = (¢1,...,) and x = (xq,...,2;), with [ > k,

i) B*(t) for By < t,C7,..., B} < t,C7 and ii) C*(z) for C7 = |zin2|,...,CP = |apn?],
to lighten notation.

Lemma 7.1.2. For arbitrary k& € Z>(, we have,
nsP (C{‘ = [xlnéj, ,OF = [kaj) j for o1, .., xp),
where fe, . c.(21,...,x) is the pdf of the first & points of a PPP of intensity In” (¢ + 1)dt.

Remark 7.1.3. In Section [3| and we used Taylor expansions for approximations. Here,
this also is the first step. Furthermore, f(i,n) is chosen such that we can use Riemann sums
to pass to the limit.

Proof. We know fe, o (x1,...,2,) = Hle In”(z; + 1) exp (— f3* In? (¢t + 1)dt) , as seen in
Lemma [2.2.22] We proceed by induction on k. For k = 1, we obtain,

1
Lmlnﬁj—l
2P(CT = Lxlnéj) =n2 I (Lxlnéjn’% + 1) nz H (1 — In7(in “2 4 1)n %
=2
Lwlnéj—l
=In"(x; + 1) exp In <1 —In"(in"~ 3 )n %) + of
i=2
\_a:ln%J—l
=In"(z1+ 1)exp | o(1) — In” (z’n’% + 1)71’%
=2

=In"(z1 + 1) exp

VR
—~
=

|
o\&
=3
5}
=N
+
=
QL
~
~~_
+
=
—_
N~—



with o(1) denotes being uniformly small on compact sets. We used a first order approximation
1
of In(1—x) to go from the second to third line and used that Z}igﬂj*l In” <in_% + 1) n=3 is

a Riemann sum for [ In"(¢ + 1)dt with step size n~z. The terms i = 1 and i = |znz | — 1
are missing, but both terms are o(1), and hence do not pose problems. Since In”(¢ + 1)
is continuous for ¢ > 0, the convergence to the integral is uniform on compact sets. This
establishes the base case.

We continue with the induction step. Using the induction hypothesis, we obtain,

k1 10 m 1 k
nonw P(C*(2)) = n2P(Cpyy = |zpsin?] ‘ C*(z)) - n2P(C*(x)),
k -
= n%IP’(C’ZH = ka+1n%J | C*(z)) (H In”(z; + 1) exp <—/ In"(t + 1)dt) + 0(1)).
i=1 0
with o(1) denoting uniformly small for (z1,...,z;) in compact sets. Thus it suffices to show,

n%IP’(C,?H = |zpan? | | C*(2)) == In" (2441 + 1) exp (—/ " In"(t + 1)dt) .

n—oo Tk
This is verified by following the same steps as in the base case,
nAP(Cy = Lanan® | | CH(a)),
|2psin? ] -1
1 Y 1
H (1—111 (2’7f5 +1) n’ﬁ) ,

i= [skn%J—s—l

N

N
= n2ln (kaﬂn%jn’% + 1> n-

1
[zr41m2 ]
1 Y
= <ln($k+1 + 1) + o(l)) exp | o(1) — E In (in_i + 1) ne |,

i:[skn%+1j
Tk+1
= In(zp41 + 1) exp (—/ In(t + 1)7dt> +o(1),
T
where convergence is uniformly small on compact sets. This concludes the proof. O

Lemma 7.1.4. We have uniform convergence over compact sets,
k
n 1 n 1 u.c.
Cy = |znz|,...,C} = kamJ) — Ht,;.
n—oo

i=1

P(BY <CY,... By <60}

Proof. This proof is identical to Lemma [3.1.6, with only a small modification for sampling

repeat S, (i) uniformly in {{S,(1),...,5.(¢ — 1)}} instead of in {S,(1),...,S,(i—1)}. O

Proof of Theorem |7.1.1]. It suffices to show,

i) IP’(C{‘ < slnﬁ,...,C,? < sknﬁ) —>IP’(Cl <s1,...,C, < sk),

n—o0
i) P(BY < H,C7, ... BF < 4,07 | CF < sin2,...,C0 < spn?),
—— P(B1 <410, ..., By <t4Cr | Cy < s1,...,C) < s)

n—o0
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Statement 7) follows from identical reasoning as the proof of Lemma [3.1.5, Statement i)
follows from a similar proof to that of Lemma [3.1.7] n

As seen in Remark having convergence of scaled repeat points,

_1 d
n"3(CP,...,Cp By, .. BY) ——

n—oo

(Ch.....CoBy..... By,

implies that the respective partial trees 7}5“ and 7® and uniform measures I/T(Lk) and *) must

also converge in distribution in the GHP-topology. Theorem follows immediately. [

7.2 Where 7, Fails to Be Compact

In this section, we show that v < 1 implies that 7 is not compact almost surely, by showing
that 7 is constructed from an infinite number of sticks of length exceeding 1, or that 7T
contains a stick of infinite length.

Let 7 be a PPP of intensity In"(¢ + 1) and for n € N. Define event A, = {n([n —1,n)) = 0}.
Note that,

P(A,) = exp (— / : In(t + 1)7dt> > exp (= In(n + 1)7).

Hence Y 2 | P(A,) > > 07, exp(—In(n)?) diverges whenever v € (0, 1]. Given that the events
(An)n>1 are independent, we may apply the Borel-Cantelli lemma, to obtain that infinitely
many events A, must occur with probability 1. We conclude there must be a stick of infinite
length, or infinitely many sticks of length exceeding 1.

In the first case, 7 is clearly not compact. In the second case, let [ = {i e N: C;—C;_; > 1}
be the set of indices of the sticks with length exceeding 1. It follows that |I| = oo almost
surely. Define the sequence {p(Ci)}ie; C T. For any i < j € N, we see dy (p(Ci), p(C;)) > 1
as the path from p(C}) to p(C;) must necessarily traverse all of p([C;;_1, C}]). Hence {p(C;) }ier
cannot have a convergent subsequence and 7 is not compact.

In particular, recall that lim;_,, P(d " (T(t), T) > 6) = 0 implies T is compact almost surely.
Hence, not all criteria in Remark can be shown for v < 1. Furthermore, for v < 1,
tree T cannot be seen as limiting random variable using the GHP-topology as this topology
is defined on compact metric spaces.

The above argument fails for v > 1 since >~ | P(4,) < oo, and thus we may hope to show T
is compact when v > 1.

Remark 7.2.1. One might think that we can do better than having a threshold at v = 1
for In(¢ 4+ 1)7. An obvious example to try would be 0 In(t + 1)dt, we explore this below.

Let  be a PPP of intensity 0 In(¢ + 1)dt and again, let A, be the event n([n — 1,n]) = 0.
Then,

gP(An)—gexp(—(S/n:l(t+1dt) Zexp —6In(n+1 i(n+1)6-

n=1
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And thus, one could expect a threshold at § = 1. However, we can sharpen this reasoning by
letting Bf be the event n([(i — 1)e, i€) = 0). Following the computations above shows that,

iP(BE) = if;exp (—5/( eln(t + 1)dt) > iexp(_&ln(H ) = i <Z i 1)55'

%

Thus for any § > 0, we may choose ¢ = §~! and with probability 1, there will be either an
infinitely long branch, or infinitely many sticks of length exceeding e. For any § the CRT
constructed from a PPP of intensity 6 In(¢ + 1) cannot be compact.

7.3 Tightness of (E,f, n_%dn)neN
In this section, we show 7) and ii) of Remark That is, we aim to show,

i) lim P (dyr (T(t),T) > €) =0 and i) lim limsup P (dH (Tn(m%),ﬁ) > e) ~0.

=00 p_yeo

We start with 7).

7.3.1 Compactness of 7T,

Theorem 7.3.1. For all € > 0, we have,

lim P(dy (T(£),T) > €) =0.

Remark 7.3.2. We would like to follow the reasoning in Section [4.1] and Section [6.2.1]
However, we run into a problem when trying to generalize Lemma 4.1.5| respectively Lemma
. In this lemma, we aim to bound P(dy (T (a), p(s)) > ¢) for a,c¢ > 0 and s € [a, 2a]. To
adapt the proof to the current setting, we would sample repeat /attachment points C;, B; via a

homogeneous PPP of intensity 1 on the region T' = {(z,y) e R : 2 > 0,0 < y < In”(x +1)}.
Identical reasoning yields that dy (7 (a), p(s)) > ¢ can only happen if 7(S) = 0 where S is a

region of measure A(S) = c%, and thus P(dy (7 (a), p(s)) > ¢) < exp ( _ cln”(2a+1)>.

This can be extended to P(dy (T (a), T (2a)) > ¢) < 22exp < — w> via the trick used
in Lemma [4.2.12] and Lemma [6.2.9] Filling in @ = 2°t and ¢ = ¢; as before yields,

P(ds (T(21), T(2711) > &) < exp (m (zi:t) ¢ W(f:t - ”) .

Since we require Y o0, €;(t) — 0 as t — 0o, we need ¢ to be of the order i~1+% for § > 0.

. . i+1 SInY (2041 o
However, with such a choice of ¢;, we see In (2 - 1t) — &2 (4 +1) stays positive and hence we
1

have no hope of showing P(dy (T (2°t), T(2'*'t)) > ¢;) is summable.

We aim to solve this issue by looking at dy (T(xz-t), T(xﬂ_lt)) for some z; — 0o as i — 00,
instead of doublings dy (T (2't), T(2"*'¢)). By following identical computations, we obtain,

P(dy (T (x:t), T(xi1t)) > ) < exp (m (2“”'%“> et 1)3‘”) .

€ 2wiqy
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We explore if this is possibly below. For this, consider ¢ fixed and remove all constants, we
see this quantity is summable in i only if €; In" " () > x;—“ > 1. Given that ¢; must be of the
order i~U+9)  this requires ; = exp(i®) with a(y—1) = 146, or a faster growing sequence ;.
However, with such a choice of x;, the fraction % grows much faster than ¢; In7 ! (z;) showing
that no choice of sequence x; salvages the reasc;ning from Section and Section [6.2.1]

In the current section, we use a different technique for proving the analogous version of
Lemma and Lemma [6.2.3] yielding a tighter bound. The new bound allows for proving
almost sure compactness of 7T .

We start with a generalization of Lemma [4.1.2]

Lemma 7.3.3. Fix € > 0 and let (xi)ieN

x; — 00 as § — 0o. Suppose €; = €(T) > 0 exist such that > ;° €; < e. Then for any ¢ > 0,

. be an increasing sequence such that xo = 1 and

Proof. Identical to the proof of Lemma upon replacing 2! with ;. O

Corollary 7.3.4. Theorem is shown upon finding ¢;(t) > 0 such that,

[e.o]

i) lim > e(t)=0 and i) lim ;P(d}; (T (xit), T (zi41t)) > &) =0,

where z; is some increasing, diverging sequence with zy = 1.

Throughout the remainder of this section, we fix x; = exp (zo‘) for parameter a = a(y) > 0
to be determined. We start with proving a tighter bound for P(dy (7 (a), T(b)) > ¢) for
some 1 <a<bandc>0.

Lemma 7.3.5. Fix 1 < a < b and let [ € [a,b], then for all ¢ > 0 we have,

cln”(a + 1)) .

P(du (T(a),p(l)) > c) <4 (S)ZGXP (‘ 4

Proof. Let Uy, Uy, --- ~ Unif([0,1]) ii.d. random variables, and let n denote a PPP of
intensity In”(¢ + 1)dt. Set ' =n+ d,. Set t; =1 and define recursively:

p(t;) = max{x € ns.t. x <}, d; =t; — p(t;), tiv1 = max{a, Up(t;)},

so that p(¢;) denotes the starting point of the stick on which ¢; lies and p(t;11) € T(2a) is
the location this stick gets attached to. Let N = min;ez{U;p(t;) < a} denote the number of
sticks on the path from p(v) to 7 (a) and note that dyy1,dyi2, -+ = 0.

By construction, dy (7 (a),p(l)) = Y00, d;i = SV, di. We aim to bound IP’( I d; > c)
and P(N > j) for some j € N and then upgrade this to a bound on ]P’(Zi]il d; > c).
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To bound P(N > j), recall N = min;ez{U;p(t;) < a} and thust; < Uy ... Uil < U;...U;_1b
for all 7. This implies P(N > j) < P(U;...U;b > a). We obtain,

=1

" and thus for s > 0,

J
eLs( 1 )
1+s

To bound P ( le d; > c), we first bound P (d; > s; | di_1,...,d1). We have,

where Gj; ~ Gamma(j, 1) and L = In (). Recall E [e~%1%]

I
—~
-
2
»
~—

<

P(N > j) <P(Gj1 <L) =P (e > e7") <E [e 1] "

P(dz >cC | dl, . adi—l) = :H-{ti—CZa}]P)(T/([ti c, t; ]) 0)

t
< Lg—c2a) €XP (—/ In"(t + 1)dt> :
ti—c

<exp(—cln”(a+1))

Define S; = Z:l d;. Inductively, we obtain that S; is stochastically dominated by 25:1 X
where X; ~ Exp(\) i.i.d. with A =1In”(a + 1). Since €'* is increasing in z for t > 0, we get,

exp (tlz];Xz>] 5

Recall that E[eXi] = ﬁ, for t € (0, A). In particular, by Markovs inequality, we get,

J J
P (Z d; > c) =P (esjt > e“) <e (%) )
i=1

E [exp (tSj)] <E

We apply a union bound to get stochastic domination for d.

P(d > c) = (Zd >c>:]P’<<§1:di>c,]\f§j)U(ZN:di>c,N>j>>,

i=1

N J
_P(Zdi>c,N§j> +P<Zdi>c,]\7>j) gp(dec) +P(N > j),

i=1 =1 =1

Ay 1\’
< —ct Ls
< ()~ (4s)

where the above inequality holds for all s > 0,t € (0,\) and j € Z>(. By taking the values,
s=e—1,t= )\% and j = LCA%J, we obtain,

)\ J 1 J b el e—1 b 2 Ac
< e Ls < — At 2¢ < — T4
P(d>c)<e <)\—t) +e <1+S) _<1+e<a> )e _4(@) e+,

as desired. O
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Lemma 7.3.6. For 1 < a < b, we have, P (dy (T (a),T(b)) >c¢) <8 (3)2 Y exp <M)
Proof. Identical to the proof of Lemma [4.1.13] O

We are now in a position to prove Theorem [7.3.1}

Proof of Theorem [7.3.1. We aim to show i) and ii) of Corollary [7.3.4] By making the sub-
stitutions a = x;t, b = x;.1t and ¢ = ¢ in Lemma and simplifying, condition i) is
translated into,

[e.9]

1 A (24t
lim — exp (3 In(x;11) + In(t) — %) = 0.
=0

We set ¢; = 7( 5 (3In(zi41) +2In(t) + In(g(é))) for ansatz function g(i) with g(i) > 1 for
all 7 € Ny. Recall that x; = exp ( )) so that we obtain,

=1 elln z;t) I 1
— 31n(z; In(t) - —>"2) = =
Z iexp( n(zi1) + In(t) — ) tlZezg

so that it suffices to show 1 D for

t > e and hence,

g~ 1 I In(@t) 1 (i 4 In(t)) (i + In(t))
tze' /) = t Z g(i) —t Z 9(d) + Z O

{#:1<In(¢)} {#:s2>In(t)}

im0 = g(l) — 0 as t — oo. For this, observe that ¢; > m

1 1 27
<= oy L v L
1@>1n(t)
where in the last step, we chose g(i) = (i+1)*™, so that >
this shows that,

josIn(t ( ) is finite. In particular,

(e 9]

lim > P(du (T (zit), T (zis1t)) > ) =0.
Lastly, we show > % € — 0o as t — oo. For this, we set I; = {i € Ny : (i +1)* < In(¢)}
and I = {i € No: (1 +1)* > In(¢)}. We obtain,

- © 3+ 1) + 2In(t) + In (i + 1)*7+2)
z; 8 (i + Int ))7 |

i=1
Z + (ay + 2) In(In(?) 82 5(1+ 1) ozv—i—?)ln(z—l—l)’
(o) -
I
< 1n( ) 1—y+1 + O Z Zoz—a’Y’
Ip)
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where the final bound holds for ¢ large enough and positive constants C; and C5 possibly
depending on o and . The final expression goes to zero when 1—7—1—% <0Oand a—ay < —1.
Both conditions are satisfied when a(y—1) > 1. We pick o = % which is positive precisely

when v > 1. Also observe that the criteria a(y —1) > 1 coincides with the observation made
in Remark [7.3.2] O

This completes the proof of Theorem [7.3.1] We continue in the discrete setting.

7.3.2 Compactness of n_%ﬁWc

Theorem 7.3.7. For all € > 0, we have,

lim limsup P(dp (7.(t), T) > €) = 0.

=00 pyoo

As seen in Corollary and Lemma [6.2.7] Theorem is proven upon showing,
Lemma 7.3.8. Theorem is proven upon finding €;(¢) : [0, 00) — [0, 00) such that,

o

. N = 1 1 1
i) tlggo 3 €(t) =0 and ii) tlggo hiriscgp;P(dH (’T(a:itnz),T(:cHltm)) > emz) =0.

We start with a tail bound on the distance of vertex v € T, (b)\T.(a) to T,(a), for some b > a.

Lemma 7.3.9. Let b > a be positive integers. Let | € {a,a + 1,...,b} and v; the vertex
corresponding to [ in 7, (b) \ T,(a). Then,

P(dy (Ta(a),v) >¢) <2 (g) exp (—Clnw(az_ﬂnH) |

Proof. Let Uy, Us, - -+ ~ Unif([0, 1]) i.i.d. and set ¢; = [. Define recursively,

q(ti) = max{C}",a : C]" < t;}, Sulq(ts)) = Su([Us(q(t:) — 1)1),

Observe that q(t;) corresponds to the start of the stick on which ¢; lies. Furthermore, notice
that [U;(q(t;) — 1)] €4 {1,...,q(t;) — 1} so that S, (q(t;)) has the correct law. Also, ;1 is
the index of the first appearance in S,, of the vertex to which this stick is attached to, so
that the parent vertex of S, (q(t;)) is Sn(tit1)-

Set N = min{k : ¢, < a} — 1 and observe Zf\il d; = dH(ﬁL(a),vl), see Remark m We
aim to stochastically dominate N. It deterministically holds that ¢;11 < [U;(q(t;) — 1)] with
equality if ¢(¢;) appears exactly once in S, (1),...,S,(q(t;)) and strict inequality otherwise.
Since q(t;) < t; we see t;v1 < Ust; is deterministically true. We get ;11 < U;...Ujt; is
deterministically true by iteration. Hence,

1 J
]P(N>])§P(%+1>G)§P(UZU1b>a>:I[D(GJ,1>L)§ (1—|—S> eLS,
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where L = In(b/a) and G, ~ Gamma(yj, 1). The last inequality is obtained with a Chernoff
bound and holds for s > 0. Next, for a < t; < b independent of S, (t; + 1),...,5,(b), we
have,

Y

P(tz _p(tz) >y | d17 SRR di—l) = ]]-{ti—a>c} H (1 —In” (tln_% + 1) n_%)y7

i=1
< Lti—axc oXP <—yln7 (tm*% + 1) n*%) 7
<exp (—yA),

where \ = hﬂ(an%)n‘%. Hence d; | di, ..., d;—; are stochastically dominated by i.i.d. Exp(\)

random variables for. Thus, Y 7_, d; is stochastically bounded by a Gamma(j, \) random
variable. From a Chernoff bound, we obtain P (Zle d; > c) < (&) e forallt € (0,)).

A—t

To bound P ]\; d; > c¢), we apply a union bound,
i=1
N J
P (Zdi > c> <P (Zdi > c) +P(N > j),
i=1 i=1

1\’ Y
< Ls —tc
_<3+1> © +()\—t> >
2
SZ(Q) e*%.
a
1

where the last step follows from taking s = e —1,t = )\% and j = cA%> concluding the

proof. O

Remark 7.3.10. The tree in Figurecorresponds to S, = {8,5,23,24,22 23,20, 19, 18, 21,
14,20,22,18, 18,21, 16, 15, 30, 29, 25, 21, 22, 16, 16, 21, 19, 26, 30}. Take a = 5,b = 30,1 = 29.
Then v; = 27 and ¢(t1) = 27 as S,,(27) is the repeat to the left of S,,(29) and d; = 29—-27 = 2.
Also, Sn(q(t;)) = 19 and 19 first appears in S, (8), so that to, = 8. Lastly, ¢(ts) = a =5 as
there is no repeat in S,, with index smaller than 8. Thus do =8 —5 =3 and N = 2 as we
reached a vertex in T3p(a). Also note dy (Ugg, 730(a)) =5=dy+dy= Zfil d;.

Lemma 7.3.11. For integers 1 < a < b, we have,

b\’ b cIn” (an~2)n"z
P (d(To(a), To(0)) > ¢) < 4 (_) b o <_ (an~%) )
a) c 8
Proof. Identical to the proof of Lemma 4.2.12] 0

Theorem 7.3.12. We have for all € > 0,

lim lim sup P(d(7,(t), T,) > €) =

=00 pn_yeo
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Figure 30: Tree T}

Proof. By substituting a = xitn%, b= xiﬂtn% and ¢ = €n? into Lemma [7.3.11] and simpli-
fying, we obtain that condition i) of Lemma is translated into,

€; In"(z;t)
———= ] =0.
)

o0

1
lim — exp <3 In(z;41 +In(t) —

t—o0 - E,L'
=0

This condition also appeared in the proof of Theorem and was shown to hold for the
choice € = o (3In(zi41) + 2In(t) + (y + 2) In(i + 1)), concluding the proof. O

In" (z;t)

7.4 Tightness Measures
In this section, we prove iii) and iv) of Remark [7.0.5 We start with 4i7).

7.4.1 Convergence of Measure on the Continuous Tree

Theorem 7.4.1. For v > 1 and ¢ > 0, we have,
. k
]}LIEOIP’ (dp (,u( ),,u) >¢€)) =0.

Proof. This follows from identical reasoning to Section [6.3] and Section [5.1} Indeed, these
proofs use the following three properties of T
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i) There exists a K such that with probability 1 — ¢, we have that dy (T(K), T) < €.

ii) T is compact almost surely.

iii) Conditional on T for A ¢ T¥) we have ul¥)(A") is a martingale.
The first two statements are ensured by Theorem and the second statement by the
uniform attachment of the sticks. Thus, the exact same reasoning also goes through for the
current tree 7 with v > 1. O
7.4.2 Convergence of Measure on the Discrete Tree
In this section, we show,
Theorem 7.4.2. For v > 1 and all € > 0, we have,

lim P(dp( n) > 6) =0.

k—o0

We follow identical reasoning to Section [6.3.2| and to lesser extend Section [5.2l Recall the
definition of AT, see Definition [5.2.1] From identical reasoning to Lemma [5.2.2] it follows,

Lemma 7.4.3. Let A C T, For j > k, v (A") is a martingale in filtration F; = o (T,
Next, we translate to the current setting.
Lemma 7.4.4. For A C 7?L(k), we have,

N
2n
P((v®AN — v, AN)? > 2 Tk) T®
(R (A7) = v (AT))? } = C’ Zk C’”?anV(C’"nW%—l)‘ " ]
£

Note that X, ; is a random variable.

(k)} ,

with N being the random number of sticks in 7, and ¢} = C}' — C7_;. Observe that ¢, >

where N denotes the random number of branches o

Proof. By following identical reasoning to Lemma |6.3.6, we obtain,

P ((v* (A" — v, (AN)2 > 02 | T, <5 ZE l J“

given 7,7 happens precisely when SHCr+1),.. Sf; (CF + z) are all not repeats. This
happens with probability,
P(cfr > o | T9) = [T (1= (G + )~ + )

i=1

[

) < (1= ((C)n 4 )0t

1

This gives stochastic domination of ¢} by ¥ ~ Geom(ln7 ((C’]”)n_% + 1)n_§>. In particular,

4 o2n? 2n
E[ ()’ | 79] < B < _ N
N S (e v de AT By

The proof is finished by applying the tower property of expectations, identical to the proof
of Lemma [6.3.6] O
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We continue by showing,

Lemma 7.4.5. We have,
N

_E

j=k

limsup E

n—o0

on TE|| — 0.
Cn 2 1n2’Y (Cnn 7+ 1) n k—o0

Proof. This proof follows similar reasoning to the proof of Lemmal6.3.7l but we use a different
analysis of the final Chernoff bound. First, note that N < n as a tree with n vertices can
have at most n branches. Thus,

N 2n

|| <3
(Cr)2In* (Crn~z + 1) ‘ Z

=k

2n (k
j=k (CpPw® (Cpn=2 1) | " |

where we set CJn =n for j > N. Next, observe that,
P(C} < 2) <P(X > j), where X ~ Binom(z,In’ (a:n’% I 1)n’%)_

Indeed, Cf < x can only happen if SJ(1),...,5](x) contains at least j repeats. The bound

follows since P(S/ (i) is a repeat) < In” (xn_% + 1)n_%. By using a Chernoff bound and
following the computations in the proof of Lemma we obtain,

exIn” (xn_% + 1)>j

an

P(C} <) < (

N

Remark 7.4.6. It is heuristically clear that lim,,_, Z;’ik]E |:(C”)21n2'y (nc;n—%ﬂ) k_m\ 0.
Indeed E[n~2C"] —— E[C)] ~ ln() Thus, we may expect that
n—oo
n In(5)* 1

~
~

~

() 7

(C7)2 I (CPn~7 + 1)

To show this formally, we define g(x) = 272In"?"(z 4 1). We write the expectation in terms
of the tail distribution,

k<h(g)n% k>h(j)
J .
< (-) Yo —dn z (k2 + 1) (k72 + ) g((k+1)n77) — g(kn"7),
J kgh(])n% k>h(j)n 3
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for some cutoff point A(j) to be determined. Here ¢'(x)) comes from the mean value theorem
and zj, € (kn~2, (k+ 1)n"2). For ease of notation, define,

1

S = Z g’(xk)n’% In (k;nﬁ + 1)ﬂ(kn’§)j, Sy = Z g(k;n’%) —g((k+ 1)n’%).

k<h(j)n? k>h(j)n?

We work on S; first. Note |[kn~2 — ;| < n~2. Thus for all k € {1,2,...,[h(j)nz ]|} we see,

. . o d o
|ln(lm_% + 1)”(kn_%)] —In(x, + 1)z <n 2 max —In(z+1)72/ < Cne,
z€0h(5)) d

I

for C' some constant depending on j and v but independent of n. Thus, we may write,

Z ¢(zx)n 2 In (kn_% + 1)j7(k‘n_%)j = Z g (z)n 2 <ln (z1 + 1)j7(xk)j + Ek>,

1 1
k<h(j)n2 k<h(j)n2

where the error term Ej is O(n~2). Note ¢/(z) In(z + 1)7727 is continuous on [0, j] for j > 3
since ¢'(z) has a pole of order 2y + 2 at 0 which is removed by a zero of order j + jv from
the term 27 In(x + 1)77. Thus we may recognize S; as a Riemann sum to obtain,
1 , . h() o
S < Z g (xp)n~2 (ln (zp + 1) (z1) + Ek) — ¢ (z)In(z + 1)"72’ dx,
n—oo 0

< In(h(5) + 1)7h(j) g(h(j))-

Using this bound, we find,

J 1 1 ; 1. 2 In(h(7 DYh(4 =2
lim sup (E) Z g (zp)n 2 In (lm*? + 1)]7(/€n75)J < e.—2 (e a( (])+ ) (‘]>> .
n—o00 J L J j
k<h(j)n2

Thus, limsup,,_,, S1 is O (J%) precisely when eln(h(j)+1)"h(j) < j. We note h(j) = eanW

works. With A(j) defined, we bound S;. By the telescoping nature of Sy, we obtain,

D~ glkn™2) = g((k+ Dn3) < g(Th(j)nx]n"2) = lim g(kn™2) — g(h(j))

k—00

2 In(j)*

i2] J 1 2
J71n +

eln(j)7
By combining the bounds on S; and Sy, we obtain,

1

1 1 S
(C’]’WF?)2 ln(C’;.‘nﬁ +1)»

limsup E

n—o0
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Hence we have,

N n
2n 2n
lim SupE E E S n(k) S lim sup E :E i 7
nvee (S0 LGP0 (CnE 1) noo = | (CP)2In® (Cn7 2 41)
=1
<C D) — 0,
j=k
as desired. =

We are now in position to prove Theorem

Proof of Theorem [7.4.3. This follows from the exact same steps as the proof of Theorem
5.2.5] with Lemma [7.4.4] and Lemma taking the position of Lemma [5.2.4] O

7.5 Comparison to Existing Literature

In [6], Nicolas Curien and Bénédicte Haas constructed random tree 7 C ¢! by considering
sticks of fixed length ay,as,--- > 0 and constructed 7®) (7, in their notation) inductively:
set T = a; and let T*) C ¢' denote the random tree obtained from gluing stick a; to a
uniform point on 7* 1. As with the stick-breaking construction, each branch is attached
in the direction of a new basis vector of ¢! and T~ denotes the closure of [ J;°, 7. In other
words, 7 is built using the stick-breaking construction, but the lengths of the sticks are
deterministic. The only randomness comes from uniformly attaching new branches to the
already existing tree.

In [6, Theorem 1], they showed,
Theorem 7.5.1. Suppose there exists a € (0, 1] such that,

a; < i—a-i—o(l) and Az _ Z~1—o¢-i—o(1)7

where A; = a; + -+ 4+ a;. Then T is almost surely compact.

Throughout this thesis, we work with random stick lengths and thus cannot apply this

theorem directly. However, let 7 be a PPP on Rsq of intensity f(¢)dt and let N(¢) = n([0,¢])

be the number of points in 1 with value less than ¢. Then, the strong law for PPP’s states,
N(t)

— 1
A(t) t—oco

almost surely. Here A(t) = fot f(s)ds. In particular, this implies that for large ¢ the ¢’th point
of n happens at roughly A~'(i). That is, if 0 < C} < ... are the ordered points of a PPP of
intensity f(t)dt, we see C; = A~'(i)(1 4 o(1)) almost surely. In our case, f(x) = In”(x + 1)
and one can check A(t) = ©(tIn(t)) so that A71(z) = @(ﬁ) In particular, if we want to
write C; = i'~*+°() almost surely, we must choose o = 0, and hence our tree 7 constructed
from a PPP of intenstiy In”(¢ + 1)dt is not covered by [6, Theorem 1].
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In [6] they also considered u(*), the uniform measure on 7 (in the paper denoted s,). They
2
showed that when -7, Z— < 00, then u, converges to some measure g on 7. In particular,

a uniform point on 7 must hence be bounded. However, this is only a necessary condition
for 7 to be bounded, not sufficient.

We already saw that C; = @(lmv(Z )
2

almost surely, and thus A—? = @(m) almost surely. In particular, this gives that

almost surely. Similar reasoning shows that a; = @(ﬁ)

ij? <o <= v>1.

This confirms that 7 constructed from a PPP of intensity In(¢ 4+ 1)dt cannot be compact
for v < 1. Section [7| partially answers the question at the bottom of [6, page 7], the maximal
height of 7 constructed from a; ~ In"7(¢) with v > 1 stays stochastically bounded when
the a;’s are sampled through a PPP of intensity In” (¢ + 1)dt.

It remains to be checked if the computations in Section [7] can be generalized to show a
variant of Theorem that encompasses results when a; are of the order W for v > 1.
Another natural generalization includes answering if any tree constructed from a PPP with
intensity f(t)dt with f = w(In(t + 1)) is compact. Furthermore, the Hausdorff dimensions
and local limits of all trees covered in this thesis are yet to be considered.
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