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Abstract

Symmetry breaking in Grand Unified Theories (GUTs) is governed by the structure of sub-
algebras of the Lie algebra of the unified gauge group and the Vacuum Expectation Values
(VEVs) that realise specific breaking chains. This thesis develops a systematic framework
for understanding such breaking patterns, classifying the regular and special subalgebras of
the SO(10) Lie algebra and determining the corresponding VEV textures. Next, we con-
sider discrete symmetries emerging from the breaking of global continuous symmetry groups,
focusing on Ay C SU(3), motivated by the role of A, in explaining neutrino mixing struc-
tures. We demonstrate that specific VEVs in SU(3) representations break the symmetry
to As. We discover that the order of the application of these VEVs matters. The meth-
ods and frameworks obtained here provide practical tools for constructing and justifying
symmetry-breaking patterns in Beyond-the-Standard-Model physics.
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Chapter 1

Introduction

Symmetry principles and group theory lie at the heart of modern theoretical physics, pro-
viding a unifying language for understanding the fundamental structures of nature. Beyond
the Standard Model (BSM) theories often rely on large symmetry groups whose spontaneous
breaking gives rise to the observed structure of the Standard Model (SM). One of the most
studied frameworks in this context is Grand Unified Theories (GUTs), which aim to unify
the strong, weak and electromagnetic forces into a single gauge group. The GUTs are typ-
ically based on large, simple Lie groups, such as SU(5) and SO(10), which contain the SM
gauge group, SU(3), x SU(2), x U(1)y, as a subgroup.

Despite decades of progress, the full landscape of possible symmetry-breaking patterns
within large gauge groups remains only partially explored. This has important physical
consequences: different breaking chains predict different proton decay rates, gauge coupling
unification scales, and intermediate symmetries. The literature predominantly focuses on
specific chains to the Standard Model, such as SO(10) — SU(5) — SU(3).xSU(2), xU(1)y
and SO(10) — SU(4) x SU(2) x SU(2) — SM. This emphasis is well-motivated as SO(10)
is able to provide a minimal extension of the Standard Model, where all fifteen fermions plus
a right-handed neutrino fit into one single 16-dimensional spinor representation. However,
this perfect fit does not uniquely determine which symmetry-breaking path SO(10) actually
follows. As we illustrate in section 3.3.2, different scalar field representations lead to different
breaking patterns. This work was done by Magnus Petz in [32], based on the work by Held
et al. in [23]. Here it is seen that even after choosing a specific scalar representation, the
resulting breaking chain depends on the values of parameters in the scalar potential. The
structure of the vacuum is determined by minimising this potential, but most commonly
studied chains may not even correspond to the global minimum as this has never been fully
researched. Different chains correspond to different vacuum energies and we cannot simply
assume the commonly studied patterns correspond to the global minimum, without proper
verification.

Beyond gauge unification, GUT groups do not address another puzzle: the origin of
flavour structure. Fermion masses span from ~ 1072 eV for neutrinos to ~ 173 GeV for the
top quark—thirteen orders of magnitude [15]. Moreover, fermion mixing shows a striking
contrast between sectors. In the lepton sector, neutrino oscillations reveal two mixing an-



gles near maximal, corresponding to angles near 45° and so to an almost equal mixture of
flavour states, while the third angle remains small. This pattern is drastically different from
the hierarchical quark mixing angles, where all angles are small and very hierarchical. This
contrast demands different underlying structures.

A global SU(3) flavour symmetry acting on three fermion generations provides a frame-
work to explain these hierarchies. At high energies, SU(3) treats families as a triplet; break-
ing at lower scales generates hierarchical mass textures. However, exact continuous flavour
symmetry cannot survive to low energies, as this would predict equal masses for all genera-
tions. Instead, a discrete residual symmetry must emerge, with different breaking patterns
in quark and lepton sectors explaining their contrasting mixing.

This thesis systematically maps out this landscape, developing tools for identifying all
possible subalgebras and symmetry-breaking chains within GUT groups, and understanding
how discrete subgroups emerge. This creates a framework for future researchers to clearly
show which textures they need and why—explanation often missing in current work.

This work is organised around three key objectives:

1. Subalgebra Classification: Identify all maximal subalgebras of a given Lie group
using Dynkin diagrams and root systems. We focus on SO(10) as a representative
GUT and on SU(3) for discrete subgroup formation.

2. VEV Texture Analysis: For each breaking pattern, determine the minimal VEV
configurations achieving the desired reduction. We identify the minimal scalar repre-
sentation containing a singlet under the desired subgroup and construct explicit VEV
configurations.

3. Discrete Symmetry Emergence: Investigate conditions under which discrete sub-
groups, specifically Ay C SU(3), arise from continuous symmetry breaking. Unlike
continuous cases, discrete symmetries require verifying that finite group elements leave
the VEV invariant.

Parts of the Mathematica code developed in this thesis was assisted by the Al language
models, Claude [4] and ChatGPT [30]. All mathematical analysis, interpretations and vali-
dations were of course performed independently.

We focus specifically on A4, the alternating group on four elements, because it is the
smallest finite group with a three-dimensional irreducible representation, making it minimal
for treating three generations as a triplet. The phenomenological motivation comes from neu-
trino physics. Experimental results are approximately consistent with tri-bimaximal mixing
(TBM): 015 = 35, 63 = 45, and 613 = 0 [15]. While modern experiments, particularly Daya
Bay (2022) have precisely measured sin?(260;3) = 0.0851 4 0.0024 [3]. This corresponds to
013 ~ 8.5, ruling out exact tri-bimaximal mixing. However, the observed pattern remains
close to this form and A4 models with appropriately broken symmetry remain viable [2, 15,
33].



Understanding how A4 emerges from SU(3) breaking connects flavour physics to the
spontaneous symmetry breaking mechanism governing electroweak breaking and grand uni-
fication.

To summarise, this research provides a framework enabling systematic exploration of
which breaking patterns are possible before determining which are realized. For SO(10),
we catalogue all possible breaking chains so dynamical studies can determine which route
minimises the potential. For SU(3) flavour symmetry, we demonstrate how A, emerges
from continuous breaking and reveal that the order of VEV application matters, which is an
unexpected result.



Chapter 2

Lie groups and their structures

Symmetry is crucial in modern theoretical physics and forms the foundation of fundamental
interactions. Group theory provides a mathematical framework to describe these symmetries.
In particular, Lie groups and their corresponding Lie algebras are essential tools in Quantum
Field Theory and particle physics. These groups form the backbone of gauge theories and
Grand Unified Theories (GUTSs). The following section will give an overview of the necessary
mathematical structures, starting with a brief introduction to group theory. We then move
on to Lie groups and Lie algebras, which describe the continuous symmetries, followed by
an introduction to their representations, weight and root systems and subalgebras, which
are essential for understanding the classification and breaking of symmetries in high-energy
physics.

2.1 Lie Groups

To understand the content of this thesis, a basis of group theory is necessary. Here we will
briefly cover the basics as discussed by [11], [34] and [24].

A group G is a mathematical structure consisting of a set of elements together with a group
multiplication o that satisfies the following axioms for all elements g; € G-

Closure: g;09; € G

Associativity: (g; 0 g;) © gx = gi © (g; © gk)

Identity: There exists e € GG such that eo g; = g;oe = g;

Inverse: For each g; € G, there exists g; * € G such that g;og; ' =g;'og; =e

The set of elements of the group is either discrete or continuous. If they are the latter,
we are talking about Lie groups. Formally, a Lie group is a differentiable manifold which
also acts as a group, with the group multiplication o : G x G, and the maps that send g
€ G to its inverse g~! € G, are differentiable maps. Some important examples we will be
using are SO(N) and SU(N). The SO(N) groups are the special orthogonal groups that
consist of orthogonal matrices with a determinant equal to 1. The SU(N) groups are the



special unitary group that consists of unitary matrices with a determinant equal to 1. In
this research project we will primarily focus on the groups SO(10), SU(3) and SU(5).

Lie groups can be analysed locally by looking at their respective Lie algebras. A Lie algebra
g is a vector space equipped with a binary operation [-,] : g X g — g called the Lie product
satisfying:

1. Bilinearity: The bracket is linear in both arguments
2. Antisymmetry: [X,Y] = —[YV, X] for all XY € g
3. Jacobi identity: [X,[Y,Z]| +[Y,[Z, X]]+ [Z,[X,Y]]=0forall X|Y,Z € g

In this thesis, we focus on a specific class of Lie groups that are relevant for particle
physics, namely compact and simple Lie groups. These groups underlie the structure of gauge
theories and GUTs and their mathematical properties allow for well-behaved representation
theory and symmetry breaking patterns. A Lie group is called compact if the parameters
range over a closed and bounded set, i.e. compact set. Examples of compact Lie groups are
SU(N) and SO(N). A Lie group is simple if it has no proper invariant Lie subgroup. A
subgroup H C G is invariant if for all elements h € H and g € G: ghg™' € H.

2.1.1 Representations and Irreducible Representations

Representations of a group offer a way of describing the elements of the group as matri-
ces, acting on a space of vectors, such that group multiplication corresponds to matrix
multiplication. Formally, we describe representations of a group G as a homomorphism
D :G — GL(V), where GL(V) is the group of invertible linear transformations on a vector
space V. A representation is said to be irreducible, or irrep for short, if there is no non-
trivial invariant subspace under all group actions. This means it cannot be decomposed into
smaller representations. Irreps are the building blocks of all other representations and any
finite-dimensional representation of a compact Lie group can be decomposed into irreducible
ones.

2.1.2 Schur’s lemma

An important part of representation theory is Schur’s lemma, which states the following for
compact Lie groups:

A unitary rep D : G — GL(d, k) of a Lie group G is an irrep iff the only matrices commuting
with D(g),Vg € G, are (complex) scalar multiples of the unit matrix.[11]

This lemma tells us that the only operators, which are matrices for this thesis, that commute
with all group actions in an irrep are multiples of the identity.

2.1.3 Roots, Weights and the Cartan Subalgebra

The structure of Lie algebras can be studied via their characteristic root systems, which
determine the structure and the irreps of the Lie algebras. To understand these, we will
review all relevant concepts, including roots and weights.



A fundamental structure of Lie algebras is the Cartan subalgebra. This is a maximal
diagonalisable Abelian subalgebra that is composed of the maximal set of commuting gen-
erators [H;, H;] = 0,i,5 = 1,...,r, where the total number of commuting generators r is
equal to the rank of the algebra. This means that the dimension of the Cartan subalgebra
is equal to the rank of the algebra. The remaining generators of the Lie algebra satisfy
eigenvalue equations of the form: [H;, E,] = «;F,,i = 1,..,r. For each operator E,, there
are r eigenvalues oy, ..., ;.. The solution to the eigenvalue equation is called the root vector
(e, ..., ), or root for short. The set of roots forms a root system, which determines the
structure of the algebra. Roots have some important properties. First, if a is a root then —«
is also a root. Secondly, the roots are non-degenerate which means that they all correspond
to a unique generator. Lastly, the roots can be used to classify the Lie algebra using Dynkin
diagrams.

The Dynkin diagram is a graphical tool to represent the roots of a Lie algebra and is built
up of simple roots. Simple roots form a basis for all roots, where the simple roots are not
linearly dependent on other roots. We often describe the simple roots as either negative or
positive, depending on the convention we use. For this thesis we define the simple roots as
positive roots, that again cannot be decomposed into sums of other positive roots. These
simple roots are represented as circles and the lines connecting the roots represent the an-
gles between the roots. In the cases where the roots have different lengths, the open circle o
represents the longer simple roots and the filled circle e represents the shorter simple root.
To see how the angle between the simple roots determines the Dynkin diagram, see table
2.1.

012 | |a1|/|ae| | Dynkin
90° O O
120° 1 o—O
135° V2 | O—e
150° V3 | =@

Table 2.1: Dynkin diagrams corresponding to the relative angles and lengths of two simple
roots ay and am, assuming || > |az|. Adapted from [34].

Using the table 2.1, we can represent all Lie algebras by a Dynkin diagram. It is impor-
tant to emphasise that the classification is given for complex Lie algebras. Each complex
algebra admits multiple real forms. This means that a single Dynkin diagram corresponds
not to one real Lie algebra but rather to a finite set of real Lie algebras obtained from the
complexified algebra.

The classification of complex, simple Lie algebras, or equivalently of connected Dynkin
diagrams, is divided into four infinite families, known as the classical series, A,,, B,,, C,, and
D,,, and five exceptional cases, denoted as Gs, Fy, Fg, F7 and Eg.

While roots describe the structure of the Lie algebra itself, the weights describe the alge-
bra in representation space. Consider a representation D of a Lie algebra, with H; denoting



Category Lie group Dynkin diagram

A, su(n+1), forn >1 O--0—0—0—0—o0

B, so2n+1),forn>1| O+ O0—0—0—0—®

Ch sp(2n), forn > 1 o 06—0—0—8—O
N O .....

D, so(2n), forn > 3 2

G o=

F, o—O0—e—=0

Table 2.2: The Lie algebras and their corresponding Dynkin diagrams

the representation of the Cartan subalgebra generators. A vector |m) in the representation
space is a weight vector if it is a simultaneous eigenvector of all H;:

Hjlm >= mj|m >, (2.1)

where the weight vector m = (my, ..., m,) is called the weight that is associated with |m)
and r is the rank of the algebra.

The set of all these eigenvectors {|m) }then forms a complete basis of the representation,
since the remaining non-diagonal generators E, act as ladder operators. These ladder op-
erators connect the weight states according to: E,|m) o« |m + «). Each pair of the ladder
operators, (Ey,, E_,), together with the corresponding Cartan element forms an su(2) sub-
algebra. The representation theory of these su(2) subalgebras ensures that, starting from
the highest-weight state, repeated action of the ladder operator generates all other states in
the irreducible representation.

Since every state can be obtained from the highest-weight state by applying these low-
ering operators, and the lowering operators always produce new weights, the full irreducible
representation is spanned by its weight vectors. This means that the weight vectors form
the basis of any irreducible representation.

The procedure to find weights is very similar to that of roots. The difference is that
roots can be seen as weights of the adjoint representation. A weight m can be written in
terms of simple roots as m = ) u;a;, where p; are real and rational coefficients. If the first
non-vanishing coefficient p; is positive, the weight is positive. The highest weight M is such
that M > m for all other weights of the representation. Irreps are uniquely specified by their
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Figure 2.1: Weight diagram of the fundamental representation of su(3), with the highest
weight M.

highest weight. Fundamental weights, M;, satisfy
2Mz - QG

CYj'Oéj

= dij) (2.2)

for all simple roots ;. The fundamental weights can be seen as the natural basis vectors for
the weight space in the same way as simple roots are the basis vectors for the root system.
The fundamental weights can be used to find the highest weight, following: M ="' n;M;.
Here, n; are non-negative integers called Dynkin labels. By using these Dynkin labels,
the values for roots and weights all become integers, meaning that calculations are more
simplified. The Dynkin label n; of a weight vector «; is determined with the following
formula:

2M'C¥j
nj:

0o (2.3)

To make this more concrete, consider SU(3), whose root system lives in a two dimensional
plane. The two fundamental weights M; and M, are dual to the two simple roots a; and
aa, and every weight can be written as M = nyM; + nyMs. As an example, the defining, or
fundamental, representation of SU(3) has Dynkin labels (1,0). The anti-fundamental on the
other hand has the Dynkin labels (0,1). The weight diagram of these representations can
then be drawn explicitly. The weight diagram for the fundamental representation forms an
equilateral triangle in the plane, with the weights at positions M7, M; —aq and M —a; — as.
This is visualised in figure 2.1. Similarly, other representations can be visualised as sets of
points in the plane, labelled by their weights.
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2.2 Subalgebras

Subalgebras play an important role in studying the symmetry-breaking mechanisms and
model-building in GUTs. By identifying the subalgebras of a given Lie algebra, we can
understand how a larger symmetry group can be decomposed into smaller parts. Mathemat-
ically, a proper subalgebra L’ of the Lie algebra L’ C L is defined as the set of elements in
L, with the same Lie product as L, and if for each pair of elements in L', a,b € L, their Lie
product is also in the subalgebra [11]:

[a,b] € L' (2.4)

We are dealing with an invariant subalgebra of the Lie algebra L, it is a subalgebra and
if foralla’ € L’ and all b e L,[d,b] € L'.

For this research, we are interested in two types of subalgebras, the regular and special
subalgebras. In the following paragraphs, we will discuss these, but first we will discuss a
handy tool for decomposing irreps of an algebra into irreps of a subalgebra, the projection
matrix.

2.2.1 Projection Matrices

To understand how different subalgebras embed into different algebras at the level of rep-
resentations, it is useful to work with projection matrices. The projection matrix relates
the fundamental weights of the subalgebra to those of the parent algebra. The information
covered here is based on [18] , [34] and [38].

For regular embeddings, the projection matrix can often be read off from the Dynkin
diagram by considering which simple roots are kept and how they relate to the roots of the
subalgebra. In the case of regular embeddings, this procedure is especially straightforward,
as the subalgebra corresponds to a subset of nodes in the Dynkin diagram. This means
that we pick certain simple roots from the original root system and these then correspond
directly to the subalgebra’s Dynkin diagram nodes. For special embeddings, the projection
can be determined using these root correspondences, but they have an extra characteristic:
an irreducible representation of a larger algebra remains irreducible under restriction to the
subalgebra.

There is a projection matrix for any subalgebra, whether they are special or regular. To
construct the projection matrix, a simple matrix calculation is needed. Suppose we want
to find the projection matrix that takes the roots and weights of GG, with rank rs onto the
roots and weights of H, with rank ry. We can then project any weight of a representation
of GG onto the corresponding weight of H, by a matrix acting as

PGHH)-T=1 (2.5)

11



The projection matrix acts on weights, but also the roots of G that are viewed as weights
of the adjoint representation. After projection, they become weights of representations of
H. In equation 2.5, P(G D H) is the rg X r¢ projection matrix, q = (a1, .., a,.)" a weight
of G and ? = (b1, ..., b, )T the projected weight in H. In the specific cases covered in this
thesis, the projection matrices will be explicitly calculated, however, programmes such as
LieArt also offer a way to determine the projection matrix without calculations by hand.

More information on this can be found in the LieArt literature [18].

2.2.2 Regular Subalgebras

Regular subalgebras, or R-subalgebras as they are also called in literature, are easily obtained
by looking at the extended Dynkin diagram. This diagram consists not only of simple roots,
which are all linearly independent, but there is an extra root added, the so-called lowest
root. This root cannot be chosen at random, but has to be the negative of the highest root.
This is because the difference between the roots in the diagram cannot be another root. The
negative of the highest root makes sure that this, and the other criteria of the Dynkin dia-
gram, are upheld, except for the linear independence [34]. Most extended Dynkin diagrams
are listed in [34]. After adding this lowest root, often labelled with an x or a zero, we can
obtain the regular subalgebras by removing one of the roots, or nodes, from the diagram.
By removing a root like this from the diagram, the angle between the remaining roots can
also change. This needs to be reflected into the Dynkin diagram by adding or removing a
line between the two relevant roots, per the rules in table 2.1.

2.2.3 Special Subalgebras

A subalgebra b C g is special if there exists at least one nontrivial irreducible representation
of g that remains irreducible when restricted to h. This definition follows the classification
introduced by Dynkin and later summarised by Slansky [16], [34]. To obtain the special sub-
algebras, we need more knowledge of the representations of the Lie algebra. A first method
is to look into the exact generators in a given representation. Another method is to use the
structure of the Dynkin diagram, and manipulate it to reveal the special subalgebra.

Before identifying candidate subalgebras, two facts must hold:

1. The dimension of the subalgebra must be equal to or smaller than the parent algebra

2. The rank of the subalgebra must be equal to or smaller than that of the parent algebra

While these conditions are trivial, they are necessary, as they restrict the algebra types
possible.

When we want to know the special subalgebra of a certain group, there are a few steps
to follow.

1. Use the Dynkin diagram of the Lie algebra to identify possible subalgebras

12



2. Once a candidate subalgebra is identified, its embedding can be verified using projection
matrices, which map a weight of the parent algebra onto the weight of the subalgebra.
This allows one to check directly whether the subalgebra acts irreducibly on the relevant
representations.

3. Finally, the Weyl dimension formula can be used to confirm that the dimensions of the
restricted irreps match the original irreps. This provides a final check of the special
embedding.

To explain the steps of this guide, let us go through them in order. The first step is to
use the Dynkin diagram of the Lie algebra. The Dynkin diagram of the parent algebra can
be manipulated in several ways, each giving rise to a different subalgebra. There are the
following algebraic operations to manipulate the Dynkin diagram:

e Node deletion: Removing one or more nodes of the Dynkin diagram. While removing
one node of the extended diagram leads to a regular subalgebra, removing one or more
nodes from the original Dynkin diagram itself could lead to different structures.

e Diagram folding: If the Dynkin diagram has a symmetry, an outer automorphism,
nodes related by this symmetry can be identified. When a diagram is folded, these
nodes collapse into a single node whose label respects the combined length and mul-
tiplicity of the original roots. As an example, folding D, along its triality symmetry
produces the exceptional algebra G,. This is how Dynkin diagram folding produced
special embeddings [40].

e Combining the two operations above.

By manipulating the Dynkin diagram using these algebraic operations, special subal-
gebras can be found. In this thesis, we verify the candidate embeddings using projection
matrices, which maps the weight vectors of g to weight vectors of h. This makes it possible
to explicitly verify irreducibility and branching rules for specific representations, which is
essential when confirming that a subalgebra is indeed special.

Now, to finally verify whether this subalgebra is special, the dimension of the irreps must
be equal. To check dimensionality of the representations, we can use the Weyl dimension
formula [18]:

(o, A +0)

dim(A) = H (@.0)

acAt

(2.6)

Here, the dimension of the irrep is given in terms of its highest weight A, the positive
roots a € AT and the Weyl vector 4, defined as:

5= % > o (2.7)

aceAt

This is the half-sum all positive roots. When expressed as coefficients of the fundamental
weights, the Weyl vector is of the simple form: § = (1,1, .., 1), where the rank of the algebra

13



determines the number of 1’s.

To calculate the dimensions of the irreps in this paper, the function WeylDimension-
Formula[Algebra] in LieArt is used, which gives the explicit Weyl dimension formula
for the chosen algebra, as a function of the Dynkin labels (Ay, ..., A,) of the highest weight [17].

In the next chapter we will look at the specific cases SU(5) and SO(10) but first we will
closely investigate the case of SU(3).

2.3 SU(3)

The special unitary group SU(3) is a Lie group that consists of 3 x 3 unitary matrices with
a determinant equal to one. It is a compact, simple Lie group of rank 2 and dimension 8.
As with all compact Lie group, the generators of SU(3) satisfy the commutation relations:

[Ta; Tb] = Z-fabcjja (28)

where fu. are the structure constants of the Lie algebra su(3).

The Lie algebra su(3) is spanned by eight generators, often represented by the Gell-Mann
matrices, so t, = % These are all hermitian and traceless.

010 0 —i 0 1 0 0
M=[100], =i 0 o], =0 -1 0],
00 0 0 0 0 0 0 0
00 1 00 —i 000
M=(000], xs={00 0], x=100 1],
100 i 0 0 010

00 0 L (100

M=100 —i], =—101 0

0 i 0 V3o 0 —2

To form the Cartan subalgebra, we need commuting generators. Typically, A3 and \g are
chosen as they are already diagonal. The Cartan generators are then often defined as:

A
Cl_ 702__8

= 2.9
5 5 (2.9)

The weights of su(3) can then easily be determined to be the components of the Cartan
generators on the diagonal, since the Cartan generators themselves are diagonal. This then
gives the weights the following form: p; = (Ci;;, Cai;). This then gives us the following three
weights of the su(3) Lie algebra in the fundamental rep 3,

1 V3 1 V3 V3

H1 = (57 ?)7 Ho = (__ _)7 H3 = (07 __) (210)



In the SU(3) fundamental representation, these weights then give the following roots,
which are the difference between two of the weights.

+a; = £(1,0), +ay = :I:(—l, \/—g), tas = :}:(1, \/_5)

27 2 27 2

The fact that the difference between the weights corresponds to a root is not a general rule,
but is the case here since the fundamental representation is fully connected by the algebra’s
raising and lowering operators. These operators are the six leftover generators after forming
the Cartan subalgebra with two of the eight generators that span SU(3). These raising and
lowering operators E, then are those with one non-zero off-diagonal component and can be

defined using the Gell-Mann matrices as:

(2.11)

1 , 1 , 1 ,
E:I:al = 5(/\1 + Z)\Q) E:I:ag = 5()\6 + 2)\7) E:I:ag, = 5()\4 + ’L)\5> (212)

The roots can thus be found using the difference in weights in this specific case and
generally by using the raising and lowering operators.

We can now arrange these roots in a diagram, creating the root diagram of SU(3), which
consists of six nonzero roots arranged in a hexagonal pattern as can be seen in figure 2.2.

a2

Figure 2.2: Root diagram of SU(3). The two circles at the centre of the diagram corresponds
to the two Cartan generators. These are two zero roots.

Now, to draw the Dynkin diagram, we need to find the simple roots, so the roots that are
positive and not linearly dependent on other roots. The set of simple roots is however not
uniquely determined as it depends on the choice of positive root system. For this thesis, we
take all positive roots to be the ones that have a positive x-coordinate. This means that as
and ag are simple roots, since they are positive and linearly independent, while oy = as + a3,
which means that this is not a simple root. Since the rank of SU(3) is 2, it is correct that

15



there are 2 simple roots, as the rank is equal to the amount of simple roots. This then means
that the Dynkin diagram of SU(3) consists of two nodes connected by a single line:

Oo—0O

Each node corresponds to a simple root, and the connection between them indicates the
angle between the simple roots. There is only a single line between the nodes, as there is an
angle of 120° between the simple roots, as can be seen from the root diagram.

Now that we have an understanding of the structure of the algebra su(3), we can move on
to its subalgebras.

2.3.1 Subalgebras of SU(3)

As has been explained before, the regular subalgebra of an algebra can simply be determined
by removing a node from the Dynkin diagram. As determined before, the Dynkin diagram
of SU(3) is the following:

o—O0

Now, by removing a node from the Dynkin diagram, does not matter which one in this
case, we are simply left with one node, which corresponds to SU(2). By removing a simple
root from the diagram, we obtain a U(1) factor, so we have found the regular subalgebra
SU(2) x U(1).

While this seems easy enough, a lot is happening on the algebraic level. By deleting one
simple root we omit the raising and lowering operators that are associated with that root
and its multiplicities. Suppose, as is done in [36], we remove the simple root a3. Then, only
the Cartan generators H;, Hs survive, and the raising and lowering operators corresponding
to ag, Fi,,, survive.

These remaining generators are:

oo oo
Hio=-10 -1 0|, Ho=——1lo1 0],
210 0 o 23 o 0 —2
(2.13)
000 000
Fi=10 01|, Eo=1000
000 010

At first, the SU(2) x U(1) structure might not be clear, but after performing the following
change of basis, it will be clear:
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1
b = _(E-i-az + E—O@)v

2
—1
lo = 7(E+Oé2 - E—Ocz)v
2.14)
1 V3 (
ts=——H, + —H.
3 5 1+ 5 112
V3 1
ty = —H, +-H,.
4 5 1+2 2
In this new basis, the generators are:
1 0 0O 1 00 O 1 00 O 1 2 0 0
t1:5001,t2:§00—i,t3:§010,t4:—0—10
010 0 i 0 00 —1 2v3\op o0 -1
(2.15)

Here, t1, to, and t3 span the Lie algebra of SU(2), satisfying the usual relations, while
t4 is a generator of the U(1) component, commuting with all three SU(2) generators. This
construction then explicitly shows how the three dimensional irrep of SU(3) becomes the
reducible three dimensional representation of SU(2) x U(1) and what happens when we re-
move a node from the Dynkin diagram. This process is relatively simple and straightforward.
This works differently for special subalgebras.

There are multiple methods to finding a special subalgebra, and it often is a matter of
trial and error. The first method is to look very closely at the structure of the Lie algebra
itself and investigate whether we can recognise familiar structures there. This was done by
[36] in detail and shall be repeated here.

To see the special subalgebra of SU(3), we need to consider the three-dimensional repre-
sentation 3.

1 010 1 0 —i O 10 0
Ji=— |10 1|, Ji=—1|i 0 —i|, J2=100 0 (2.16)
V2 010 V2 0 ¢« O 00 —1
This representation can be written in terms of raising and lowering operators in the

following way:
JE+ i J? JE —iJ?
S L W P el L (2.17)
V2 V2
In the spin-1 representation, these operators can be written as matrices in the following
way:

Iy

010 000 1 0 0
JF=+v210 0 1|, J =v2|1 0 0{,H=10 0 0. (2.18)
000 010 00 —1
This set of generators satisfies the commutation relations:
H,JE] = £2J%, [JF,J7] = A, (2.19)
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which define the abstract algebra s[(2). If one further imposes the Hermiticity conditions
H" = H and (J*)! = J~, this corresponds to the compact real form su(2).

These generators satisfy the su(2) algebra and act irreducibly under the SU(3) triplet.
This irreducibility is the defining feature of the special subalgebra. In contrast, under the
regular subalgebra SU(2) x U(1) C SU(3), the triplet reduces to 3 — 2 @ 1. Here, a
one-dimensional singlet subspace is preserved, that carries U(1) charge. For the special em-
bedding, there is no invariant subspace like that, as the entire triplet transforms under SU (2)
alone. Hence, the embedded SU(2) C SU(3) forms a special subalgebra as it emerges from
examining the internal structure of the representations of the Lie group.

An alternative verification method is the one we discussed in section 2.2.3. Here we follow
the steps to confirm that SU(2) is indeed a special subalgebra of SU(3) by examining the
behaviour of irreducible representations. We know that SU(3) has a dimension of 8 and
rank 2. SU(2) has dimension 3 and rank 1. This means that SU(2) is indeed a potential
special subalgebra as it has a smaller dimension and rank than SU(3). The next step is to
see whether there is a projection matrix that projects the weights of SU(3) onto the weights
of SU(2).

Specifically, we will examine the fundamental representation 3 of SU(3). To show that
SU(2) is indeed a special subalgebra, we want to show that this 3 irrep of SU(3) remains a
three dimensional irrep for SU(2). By demanding that this is the case, we can now attempt
to construct and integer-valued projection matrix that maps the weights of the 3 of SU(3)
onto those of the SU(2) representation of the same dimension.

To find the projection matrix, we need to know the weights of SU(2) and SU(3) of the
relevant representation. We write the weights here in the Dynkin basis. The weights of
the SU(2) irrep of dimension 3 are +1, —1,0 and the weights of the 3 irrep of SU(3) are:
(1,0),(—1,1),(0,—1). Since both representations contain three weight vectors and since the
rank of SU(3) is 2, while that of SU(2) is 1, the projection matrix must have dimensions 1 x 2.
If we can construct such a matrix with integer entries that maps the SU(3) weights to the
SU(2) weights, this will provide evidence that the SU(3) fundamental remains irreducible
under SU(2), and hence that the subalgebra is special. Now, to calculate the projection

matrix, we use:
1
P(SU(3) D SU(2 < O>

P(SU(3) > SU(2 ( 11) (2.20)
P(SU(3) 5 SU(2 ( 0 >

Now, we solve the linear system to solve the 1 x 2 projection matrix, and we find:
P(SU(3) > SU(2)) = (1 0) (2.21)

This is an integer projection matrix, as it should be. This mapping demonstrates that
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the three weights of the SU(3) fundamental representation align precisely with those of the
three dimensional irrep of SU(2), with no splitting or multiplicities. Since the SU(3) rep-
resentation remains irreducible under this restriction, SU(2) is confirmed to be a special
subalgebra of SU(3).

Now, we know that SU(2) is definitely a special subalgebra, we only need to confirm
that the dimensions remain the same, as a final test. To do that we use the Weyl Dimension
Formula as given in section 2.6. This can be calculated by hand, but by using LieArt it
was found that both representations have a dimension equal to 3, meaning that SU(2) is
indeed a special subalgebra of SU(3) and the branching rule 3gy 3y — 3su(2) is justified.
This method not only works for the fundamental representation of the parent algebra, but
also works for the other representations of these special cases. To show this, we will look at
the following branching rule:

8su@) — dsu2) D 3su(2),

We find the weights of the 8 representation of SU(3) using LieArt, written in Dynkin
notation, to be the following:

(,1), (-1,2), (2,-1), (0,0), (0,0), (=2,1), (1,-2), (—1,-1).

The weights of the 5 representation of SU(2) are (2, 1,0, —1, —2) and those of the 3 of SU(2)
again are (1,0, —1). To find the projection matrix here, we again investigate the projection
of the weights. In this case, when we look at the projection:

1
P(SU(3) D SU(2)) (1) =1, (2.22)
we already see that a possible solution for the projection matrix is
P=(11),

Continuing with this projection matrix and applying it to all SU(3) weights, we find
that it correctly projects the 8 weights of SU(3) to the combined weights of the 3 + 5
representation of SU(2).

Since this integer-valued projection matrix correctly maps the SU(3) weights to those
of SU(2), the decomposition is consistent with the embedding. However, unlike the case of
the fundamental representation, here the SU(3) representation does not remain irreducible
under SU(2) as it splits into two irreducible SU(2) representations. This means that the
8 of SU(3) becomes reducible under SU(2), which is typical for most representations and
is precisely what makes the earlier case, where the 3 stays irreducible, a sign of a special
subalgebra.

The structure of the subgroups of SU(3) is given in figure 2.3. Here, a dashed and straight
line is drawn between SU(2) x U(1). This is because SU(2) x U(1) does not correspond
to a strictly regular subalgebra in the traditional Dynkin diagram sense, since the U(1)
factor cannot be represented by a simple root. However, at the same time, some irreps
remain irreps under this embedding, giving reason to believe there are hints for a special
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Figure 2.3: The subgroups of SU(3), where the dashed line corresponds to a special subgroup
and the straight line to a regular subgroup.

relationship. Since the boundary between regular and special is not this sharply defined in
literature, as it is unclear whether special subalgebras are subset of regular ones or a distinct
set, we treat this embedding as neither regular nor special, but some mix. This justifies the
mixed line notation in the figure.

2.4 SU(5)

The special unitary group SU(5) is a rank-4 Lie group with 24 generators and plays a big part
in GUTSs, particularly in the minimal SU(5) GUT model, proposed by Georgi and Glashow
[21]. This was the first proposal for a GUT, but however experimentally disproven, as it
predicts proton decay, which has not been observed experimentally. Despite that this theory
was proven incorrect, this first proposal made many researchers believe that there must be
some Grand Unified Theory realised in nature. SU(5) is a rank-4 group, su(5) contains a
4-dimensional Cartan subalgebra.

w0 O——O——O—0

Figure 2.4: Dynkin diagram of SU(5) including its 4 simple roots.

From this Dynkin diagram, the regular subalgebras can easily be obtained by systemati-
cally removing nodes from the diagram and recognising these subalgebras. As found by [34],
these regular subalgebras are:

e SU(4)xU(1)
e SU(2) x SU(3) x U(1)

Now, to find the special subalgebras, we again need to use the structure of the algebra
itself. By following the guide to find special subalgebras and looking at literature, we find
that Sp(4) is a potential special subalgebra. From the function WeightSystem[Algebra]
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in LieArt, we find the weights of SU(5) and Sp(4) in the 5 representation are:

A = (1,0, 0, 0) - w®=(0,1)
AP = (=1, 1,0, 0) - w® =(2, -1
AG) = (0, —1, 1, 0) - w® =(0, 0)
A8 =0, 0, -1, 1) —  w®=(-2,1)
A% = (0, 0, 0, —1) - w® =(0, -1)

Here, the \; are the SU(5) weights and the w; are the Sp(4) weights. Using these weights, it
is found using simple calculations that the projection matrix then is:

P(SU(5) > Sp(4)) = ((1) s i’) (2.23)

This is indeed an integer projection matrix as is expected from a subalgebra. Lastly, to
test whether this is indeed a special case, we investigate the dimension of both groups. Using
the function WeylDimensionFormula[Algebra] from LieArt for both groups and the
function HighestWeight [Algebra] and combining these, we find that for both groups
the dimension is 5. Since the dimension is equal, this must be a special subalgebra.

2.5 SO(10)

Another interesting group to investigate is SO(10), which also contains the standard model,
as: SO(10) c SU(5) C SU(3) x SU(2) x U(1). What makes it more attractive than
the SU(5) model is the fact that a single 16-dimensional spinor representation of SO(10)
contains all fermions of one generation, including the right-handed neutrino which is not
included in the SU(5) models. SO(10) is a special orthogonal group consisting of all 10 x 10
real orthogonal matrices with determinant 1, meaning that R’ R = I and det R = 1. This
group represents rotations in ten-dimensional space and plays a key role in Grand Unified
Theories (GUTSs). The SO(10) GUT was first proposed by Fritzsch and Minkowski in 1975
[20], making it one of the earliest unified theories beyond SU(5). Unlike SU(5), SO(10) has
not been experimentally ruled out.

The group SO(10) is compact, simple, and of rank 5, with a total of dim(SO(10)) =
w = 45 generators. These generators form the Lie algebra s0(10), which consists of
real, antisymmetric 10 x 10 matrices.

SO(10) is of rank 5, with a Cartan subalgebra consisting of five commuting generators
Hy, ..., Hs. The root system of §0(10) is formed by the eigenvalues of the adjoint action of

these generators on the other elements of the Lie algebra [24].

The Dynkin diagram of SO(10) consists of 5 simple roots as can be seen in figure 2.6.
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SO(10)

Figure 2.5: Dynkin diagram of SO(10), containing 5 simple roots.

The regular subgroups can now easily be obtained by removing nodes from the diagram.
The following ones are named in [34]:

e SU(5) x U(1),

e SU(4) x SU(2) x SU(2) The Pati-Salam group provides an alternative symmetry-
breaking route to the Standard Model, where the SU(4) treats leptons as the fourth
colour [7],

e SO(8) x U(1),

Now, for special subalgebras, a similar method as discussed in section 2.3 can be per-
formed where we follow the guide from section 2.2.3. By doing this and finding the possible
subalgebras with representation equal to that of the representation of the algebra, we find
the special subalgebras, as found by [34]. These are the following:

Sp(4),

50(9),

Sp(4) x Sp(4),
o SU(2) x SO(7).

Figure 2.6, summarises all these regular and special subalgebras of SO(10) up until

SU(2).
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Chapter 3

VEVs of Continuous Groups

Now that we have discovered how to find all continuous subalgebras, it is time to move onto
the next step, which is assigning the VEVs to the breaking of the continuous symmetries.
The Vacuum Expectation Value (VEV) is the average value of a quantum field in its vacuum
state: (¢) = v. A zero VEV means that the vacuum state respects the full symmetry of
the Lagrangian, meaning that there is no spontaneous symmetry breaking. A non-zero VEV
indicates that the vacuum state does not share the full symmetry of the Lagrangian and thus
that the symmetry is spontaneously broken [31]. To show how this happens, we will look
into the example of the Higgs doublet for the breaking of SU(2), x U(1)y. Here, L stands
for "left”, referring to the fact that the SU(2), acts only on left-handed fermions. The Y
stands for hypercharge, the quantum number associated with the U(1)y gauge group. The
generator of electromagnetism, denoted as (), will emerge as a specific combination of the
electroweak generators. We will derive this relation when studying the effect of the VEV on
the gauge symmetry.

3.1 SU@2) x U(1)

3.1.1 Higgs doublet

In the following example, we want to introduce a single scalar field ¢ with a vacuum expec-
tation value (¢) such that we obtain the following symmetry breaking pattern:

SU©2). x ULy "2 UQ)par (3.1)

For this symmetry breaking, we need a complex scalar doublet to break the SU(2) sym-
metry. Besides this, we also need one part of the doublet to be neutral to have a possibility
to obtain a U(1)gy symmetry. So, we need the following complex doublet:

o = (§Z>’Y(¢) =1. (3.2)

The theory must then be constructed in such a way that the vacuum is invariant under
a U(1)g gauge, but not under SU(2), x U(1)y. An example of such a scalar potential is the
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so-called Mexican hat potential:

V(9) = 120" + A(69)° (3.3)
Here, 1 and \ are real constants. Now, to determine ¢, we need to find the minimum for
V(¢). While for A < 0 the potential is unphysical, for A > 0, it obtains a minimum for,

U2

2

0 =5 ()= (35)

The specific form of (¢) is a gauge choice, which means that we can always rotate any
solution of this form using SU(2) symmetry, but this form is usually picked. With this VEV,
the SU(2);, x U(1)y is spontaneously broken into U(1)g.

2
o=t = (3.4)

Then, the VEV is:

To understand the consequences of this VEV on the gauge fields, we examine the covariant
derivative term in the Lagrangian:

Ekinetic = (Du¢)T(DM¢)7 (36)

where the covariant derivative is defined as:

9 aira 19
Dugﬁ = (8M — ET WM — 73")¢’ (37)

with g and ¢’ the gauge couplings of SU(2);, and U(1)y respectively, 7 the Pauli matrices,
Wi the gauge bosons for SU(2) and B, the gauge boson for U(1). Substituting the VEV
into this expression gives rise to mass terms for the gauge fields:

2
v .
(Du(@)'(D(#) = 3 [6°IW, = iWE* + [gWi = g'Bu[] (3:8)
To identify the physical fields, we define the charged combinations of the vector bosons:
1
W= _—
V2

which yield the W-boson mass term: my = %. The remaining neutral fields Wi’ and B,
mix to form the massive state:

(W, FiW}), (3.9)

1 /
7y = ——=(gW, — ¢'B,.), (3.10)

which obtains the Z-boson mass term: mz = §/¢? + g”.
Besides the Z boson, the mixing of the neutral fields also form the massless vector boson:

— g' W, + 9B,
/g2 +gIZ

25
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This boson corresponds to the photon.

Thus, out of the original four generators of SU(2);, x U(1)y, three are broken and give
mass to the W* and Z bosons, while one unbroken generator gives rise to the massless
photon of U(1)gp-

This structure also reveals the presence of Goldstone bosons. According to the Goldstone
theorem, for each broken generator of a continuous global symmetry, a massless scalar par-
ticle, a Goldstone boson, should appear. In the case of gauge theories such as the Standard
Model, these Goldstone bosons are ’eaten’ by the gauge bosons, becoming their longitudinal
components and giving them mass. This is the essence of the Higgs mechanism.

We can determine the unbroken generator after spontaneous symmetry breaking by ex-
amining which linear combination of the original generators leaves the Higgs vacuum invari-
ant. Consider a general infinitesimal transformation under the continuous symmetry group
SU(2):

¢ — ¢ =(1+ia*T*+ipY) ¢, (3.12)

where T = %J“ are the generators of SU(2)r, Y is the hypercharge generator of U(1)y, and

a®, 8 € R are infinitesimal parameters. We want to find a linear combination of generators

~

O = a"T" + BY (3.13)

such that

A

Qo) =0, (3.14)

such that the VEV is invariant under this transformation.
We again use the Higgs doublet from before:

(¢) = - (0) : (3.15)

We now apply each generator to (¢):

o =3 (o). T0=-5(;) T0=-3(,) ve-())

So a linear combination Q = a%T* 4+ BY acts as:
3
Qo) = (o'T" + 0T + T + BY) (0) = (g(al —ia’) (é) +v (‘% + B) @) '

For this to vanish, both components must be zero. This gives:
al—id =0 = a'=a*=0,

and
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Hence, the only infinitesimal transformation that leaves the VEV invariant is:

. 3 Y
O = a’T + %Y = o (T3 + 5) . (3.17)
Therefore, the unbroken generator is:
Y
Q=T+, (3.18)

which defines the electromagnetic charge operator in the electroweak theory.

3.1.2 Different VEVs

Having established the Higgs doublet mechanism for SU(2);, x U(1)y, we now explore alter-
native choices for the scalar field representation and VEV. These choices can lead to different
patterns of spontaneous symmetry breaking, potentially leaving other subgroups unbroken
or fully breaking the original symmetry.

Studying such alternative VEVs is not only of theoretical interest, but also relevant in
the context of Beyond the Standard Model (BSM) physics and (GUTSs), where scalar fields
in different representations may be used to trigger more complex breaking patterns. In
particular, we will investigate the consequences of assigning VEVs to scalar fields in other
representations of SU(2), x U(1)y, such as the triplet (3,0) or the singlet (1,1), and deter-
mine the resulting unbroken subgroups.

This analysis allows us to understand how the structure of the scalar representation and
the direction of the VEV determine which generators are preserved, and whether any U(1)
subgroup survives.

e ¢~ (3,0)
Here, we are dealing with a triplet representation, which is the adjoint representation
of SU(2), and the hypercharge Y = 0. In the triplet representation, the generators L,
are 3 X 3 matrices defined in the following way:

00 O 0 0 4 0 — 0
Li=({0 0 —t]),Le=[0 0 O0),Lz=1]7 0 O (3.19)
0 ¢ O -1 0 0 0 0 O
0
Suppose now we choose the VEV (¢) = | 0 | and act with the infinitesimal transfor-
v
mation:
¢ — ¢ = (1+ia, L") ¢. (3.20)

Now, we want to see again which generator remains unbroken.
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0 0 0
Li {0 =|—-w]| #|0] = broken
v 0 0
0 w 0
Ly O] = 0] # | 0] = broken (3.21)
v 0 0
0 0
L3 |10 =10] = invariant
v 0

So, there is again only one unbroken generator, L3, meaning that the only symmetry
that remains is generated by L3 and that is U(1). This means that SU(2), x U(1)y —
U(1)rs and for the electric charge operator ) = T3, since Y = 0.

¢~ (3’ 1)
In this case we are dealing with a similar case as before but now with a hypercharge
Y = 1. This gives us the following infinitesimal transformation:

¢ — ¢ = (1+ia,L" +ifY)¢

where we can use the results of equation 3.21. When we multiply the hypercharge with
the VEV, we find

0
Yig)= {0
v
We must now solve
(asL® + BY){¢) = 0. (3.22)
However,
L¥¢) =0
so we get:
o) =0= 5 =0. (3.23)

This means that again only 7° is the unbroken generator and the residual symmetry
is U(l)Td

¢~ (L1)

In this case we are dealing with a singlet under SU(2);, and a hypercharge Y = 1. We
choose the VEV (¢) = v. Since we are dealing with a singlet, 7%¢ = 0, so the only
action comes from the hypercharge:

(aT* + BY){(¢) = BY (¢) = fv (3.24)

This only vanishes for § = 0. So, in this case, all T* are unbroken generators, meaning
that the symmetry that remains is SU(2).
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° ¢~ (2,0)
Here, we are dealing with a doublet again and a hypercharge Y = 0. We choose the

VEV 8 and let it act on the matrices T,, as before with the Higgs doublet case,

but without the hypercharge. This means that there is no non-trivial combination
of SU(2) generators to leave the VEV invariant, so all o, = 0. This means that all
generators are broken and the residual symmetry is simply the trivial group {e}.

After having seen how different VEVs give different results for the breaking of the group
SU(2) x U(1)y, we can look at the VEVs of other groups.

3.2 SU(3)

The logical next group to investigate is SU(3), which has two possible maximal subgroups,
SU(2) x U(1) and SU(2), as we have established in section 2.3. In what follows, we will
analyse several scalar representations of SU(3) — such as the fundamental 3 and adjoint 8
— and determine how different VEV choices affect the symmetry breaking pattern. We will
again make use of infinitesimal transformations to identify which generators leave the VEV
invariant and thereby identify the unbroken subgroup. The logic will mirror our approach
in the SU(2), x U(1)y case: by explicitly acting with the generators of SU(3) on the chosen
VEV and checking which combinations annihilate it, we determine the residual symmetry.

In order to break the Lie group G to a subgroup H via a VEV, the scalar field acquiring
said VEV must transform in a representation of G' that contains an H-singlet. This in turn
ensures that the VEV is invariant under the action of H and then makes sure to preserve
the subgroup. If there is no singlet in the decomposition of the representation under H, the
VEV breaks the whole parent group, including the subgroup H. So, keeping this criterion
in mind, we continue our investigation into the VEVs for breaking the SU(3) symmetry into
subgroups.

By using LieArt, we have found that the 6-representation of SU(3) is the smallest rep-
resentation that contains an SU(2) singlet, as can be seen in table 3.2 [18].

SU(3) rep. SU(2) decomposition

3 3
6 145

8 3+5

10 3+7

15 3+5+7

21 3+7+11

27 14+2(5)+7+9

Table 3.1: Branching rules of SU(3) D SU(2) [17].
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Using another Mathematica extension, GroupMath [19], we can also very easily find
the generators of these representations. By simply using the function MatrixForm /@
RepMatrices[Algebra, representation] and filling in the relevant algebra and
representation, we find the generators of the representation. For the 6 representation, these

are the following:

1
01 -5 0 01 0 0
-5 0 0 -5 00
m_| 0 0 0 0 -3 0
- 1
0 -5% 0 0 0 0
0 0 -3 0 0 0
0 0 0 0 0 o0
0 -5 0 0 0 0
7 7
%5 0 0 -5 00
m_|0 0 0 0 -5 0
1 )
0 5 0 0 0 0
o 0 L& 0 0 0
L0 0 0 0 0 o0
—1 0 0 0 0 0]
00 0 000
_ |0 0 -3 000
10 0 0 1 0 Of’
00 0 0110
(00 0 0 0 0]
— 1 -—
0 0 -5 0 0 0
o 0 0 0 -3 0
1 1
p_ |~ 0 0 0 0 -
0O 0 0 0 0 0
0 -3 0 0 0 0
1
| 0 0 —5% 0 0 0|
- ,L' -
00 -5 0 0 0
00 0 0 -5 0
p_|vs 0 0 0 0 -7
oo 0 0 0 0|
0 & 0 0 0 O
7
(000 5 0 0 0|
0 0 0 0 0 0]
0 0 -3 0 0 0
s |0 -3 0 0 0 0
T® = L
0 0 0 01 i 01
00 0 - 01 -7
o0 0 0 -5 0]
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00 0 0 0 0
00 -3 0 0 0
o 0% 0 0 0 0
—00 0 0 -7 0 |
00 0 G 0
oo 0 0 o 0 |
‘—% o1 0 0 0 0]
0 - (1) 0 0 0
— 0 0 55 01 0 0
0 0 0 -7 (1) 0
0 0 0 0 55 (2)
0 0 0 0 U

With these generators and the branching rule
6 —1d5,

from table 3.2, we can figure out which unbroken groups and generator this representation leads
0

to. We choose the VEV and apply this VEV to the 6 generators.

S O O OO

The results, obtained in Mathematica, are:

0 0 0
0 0 0
0 0 0
Tl <¢> = 0l° T2<¢> = ol T3<¢> = ol
0 0 0
0 0 0
0 0 0
0 0 0
_ v _ v 0
THe) = | 22| ) = | @ =1, |
0 0 _%
0 0 0
0 0
0 0
0 0
T7<¢> = 0 ) T8<¢> = 0
0 V3
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We observe that the first three generators 7', T2, T2 annihilate the VEV. Here we are con-
sidering only the real Hermitian generators 7' themselves. We do not permit the linear complex
combinations such as 7% 4+ ¢7°. This implies that the VEV is invariant under the action of these
three generators. These are precisely the generators of the Lie algebra su(2) embedded inside su(3).

Physically, this means that the symmetry associated with T, T2, T2 is unbroken. The remaining
five generators do not annihilate the VEV and thus correspond to broken symmetries, generating
five Goldstone bosons.

Conclusion: The VEV in the singlet direction of the 6 representation breaks the symmetry as:
SU(3) — SU(2),

with SU(2) generated by the unbroken generators T, T2, T3.

Now, we can do the same for the generators of 27. This has the branching rule

27 5 9070205) @1

For this representation we will choose the VEV | : |, where the v is at the last position of

0

v

the vector. When multiplying the generators of the 27 representation with this VEV, we find that
the only unbroken generators are TV, 72, T3 and T®. The generators T', T2, T3 form the SU(2)
subgroup and annihilate the VEV. The generator T, the second Cartan generator of SU(3), also
annihilates the VEV and and corresponds to U(1). This means that the VEV preserves the sub-
group generated by {T%, T2 T3 T8} corresponds to SU(2) x U(1). This confirms the breaking
pattern we discussed in section 2.3.

Now, that we have the VEVs of the SU(3) maximal breaking patterns, we can move on to the
next group of our interest, SO(10).

3.3 SO(10)

The breaking patterns of SO(10) are particularly of interest to us, as this group is a possible GUT.
Since the Standard Model alone is not able to explain all the physical phenomena we see in nature,
we need a larger symmetry, a GUT, to explain these missing parts of the Standard Model. The first
GUT put forth by Glashow and Georgi in [21] was SU(5). However, SU(5) has been experimentally
ruled out as a GUT, because of its proton decay prediction. This GUT predicts a proton lifetime
much shorter than we see in nature.

The next possible smallest, simple Lie group to contain the Standard Model is SO(10). This
group offers the advantage that all fermions of one generation fit into a singlet 16-dimensional spinor
representation. The critical question here is whether the commonly assumed breaking chains such
as SO(10) — SU(5) — SM or SO(10) — SU(4) x SU(2) x SU(2) — SM, actually minimise the
vacuum energy. Researchers typically assume this breaking pattern without verification, but the
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actual symmetry-breaking chain is determined by whichever scalar field minimised the potential.
As we will see in this subchapter, there are many other breaking paths in SO(10) to follow, besides
the one to the Standard Model. All of these are allowed in group theory and may be energetically
preferred for certain parameter values.

In this research, we calculate the VEVs of all maximal subgroups of SO(10) and provide a
clear framework on how to calculate them. This way, future researchers are able to determine all
the VEVs of all of the SO(10) symmetry breaking chains, such that they can calculate all of their
energy minima. This way, it can be decided which breaking pattern is preferred. Our classification
of VEVs enables future researchers to do comprehensive numerical scans of the whole parameter
space, such as the ones done by Magnus Petz, which are discussed in section 3.3.2.

For the VEVs of SO(10) we look at the work found in literature [8], [9], [10], [25], [39]. In the
work done by Held, Kwapisz and Sartore we find the VEVs of multiple breaking chains of SO(10)
[23]. In this work, group-theoretical analysis is combined with a study of the scalar potential.
Besides the VEVs found in this work, we will also use Mathematica. In table 3.2, for each maximal
subgroup of SO(10) we list, first the smallest irreducible representation of SO(10) that contains a
singlet under that subgroup, and secondly an explicit form of the vacuum expectation value in that
representation. To determine these smallest irreps, we use the SO(10) branching rules found in
table 41 of [34] and in [17]. These branching rules could also be derived using projection matrices,
however since they are readily available in literature, we simply reference these findings.

Suppose you were interested in a subgroup that is not easily found in literature, such as the
non-maximal subgroups, the projection matrix can be found using the method described in 2.2.1.
Using this method, we build a projection matrix P that maps the weights of the SO(10) representa-
tion onto those of the subgroup we are interested in. By applying P to all the weights of the original
SO(10) representation we fiend the projected weights. These projected weights then fall into sets
that you can recognise as certain representations of the subgroup. This way the branching rules can
be found algebraically. Programs such as Lie Art [18] and GroupMath [19] can also be used for this.

Up until now we have only presented VEVs as vectors, but in table 3.2, there are also matrices
used. This is because the form of the VEV depends on the representation space of the group. The
fundamental representation (10) of SO(10) acts on vectors in R!?, meaning that the representation
space is made of 10-component vectors. In this case, the VEV is a vector as can be seen for the
SO(9) subgroup.

The adjoint representation (45) however, is given by the Lie algebra, which consists of skew-
symmetric 10 x 10 matrices. This means that the VEV corresponding to this representation
must also be an skew-symmetric matrix. The 54 representation arises in the decomposition:
10 ® 10 = 1/ @ 45 @ 54. Here the 54 corresponds to the symmetric, traceless part of the tensor
product. Since the tensor product of 10 ® 10 consists of rank-2 tensors, the 54 field is represented
by a symmetric and traceless 10 x 10 matrix. Its VEV must therefore take matrix form.

In these cases where the representations of SO(10) consists of matrices, the VEV can be sim-
plified by an appropriate SO(10) basis transformation. In [32] it is shown that any skew-symmetric

2n X 2n matrix can be transformed under SO(2n) into a block-diagonal form, given by

¢ = diag(lJ, ..., 1), (3.25)
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where

J— <_01 (1)> - (3.26)

The real parameters I; are the independent invariants of the antisymmetric matrix under con-
jugation. The same work shows that this block-diagonal form is equivalent to an antidiagonal
skew-symmetric matrix through another change of basis. Since VEVs related by any SO(10) trans-
formation are physically equivalent, we choose this antidiagonal block form for the 45 as can be
seen in table 3.2.

On the other hand, the 54 transforms as symmetric, traceless 10 x 10 matrices. Any symmetric
matrix can easily be diagonalised by an orthogonal transformation, so an SO(10) transformation.
This is why in table 3.2, the VEVs for the 54 are diagonalised.

Subgroup of SO(10) Representation VEV

SO(9) 10 (0,0,0,0,0,0,0,0,0,v)

SO(8) x U(1) 45 Antidiag(—ws, 0,0,0,0,0,0,0,0, ws)
SO(7) x SU(2) 54 Diag(f,%,1,-1,-1,-1,-1,—1,—1,-1)
SU(5) x U(1) 45 Antidiag(v, v, v,v,v, —v, —v, —v, —v, —V)
Sp(4) x Sp(4) 54 Diag(v,v,v,v,v, —v, —v, —v, —v, —0)
SU(4) x SU(2) x SU(2) 54 Diag(3,%,3,3,-2 -2 2 2 2 _2)
Sp(4) 120 Diag(O,...,O,F,U,v,v,v,v,v,qi,o,...,O)

~
positions 57-64

Table 3.2: VEVs corresponding to different subgroup embeddings of SO(10). The rep-
resentation column corresponds to the lowest representation where the relevant subgroup
obtains a singlet when breaking SO(10). The VEVs for the subgroups SO(8) x U(1) and
SU(5) x U(1) were found in [23]. In this work by Held et al. an SO(10) model is studied
with scalar content 165 ®45y. The listed VEVs are for the 455 alone, which is sufficient to
break SO(10) to these intermediate symmetries. The 16y representation can then acquire
additional VEVs to break further to the Standard Model. The VEVs for SO(7) x SU(2)
was found in [13] and the VEV for SU(4) x SU(2) x SU(2) was found in [7]. The others

were found using Mathematica [37].

The VEVs not found in literature were found using Mathematica, which code will be explained
here. The VEVs found in literature were used to check the validity of proper functionality of the
code. To find the VEVs for the different subgroups of SO(10), we will go through the method used.

3.3.1 Methodology for finding VEV textures

First of all, we construct the generator matrices of s0(10) in the fundamental (10) representation.
To do this, we make use of the fact that this algebra consists of all real, antisymmetric 10 x 10
matrices. The full set of generators can then be systematically defined by creating for each distinct
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index pair (a,b) (where a < b) a matrix whose (a, b)-entry is —i, each (b, a)-entry is ¢ and the other
entries are zero. This process can then be implemented in Mathematica by looping over all entry
pairs (a,b). The exact code can be found below. This produces a list of 45 matrices, which forms a
basis of the fundamental representation of the so(10) Lie algebra. Higher-dimensional representa-
tions like the 45 and 54 are then obtained from the fundamental generators by using the relevant
tensor-products.

Listing 3.1: Initialisation of SO(10) generators
n=10
(x Initialise list of generators )
s0l0Generators =
Table [Module [{gen = ConstantArray[0, {n, n}]}, gen([[a, b]] = -I;
gen[[b, all = I;
genl, {a, 1, n}, {b, a + 1, n}] // Flattenl[#, 1] &;

In the previous subchapter we used GroupMath to find the generators of the representations.
While this worked well for SU(3), it did not give the right generators for our VEVs. GroupMath
chooses a basis in which as many generators as possible are diagonal. This is convenient for com-
plex representations, but not ideal for our thesis. In this work we represent s0(10) in the usual
Hermitian convention by imaginary antisymmetric matrices. In such an imaginary antisymmetric
basis, there can be no nontrivial diagonal generator. So, the matrices produced by GroupMath do
not match the basis in which we construct our VEVs.

Now that we have the necessary generators, we will define a candidate VEV. To do this we
combine trial and error and critical thinking. First we take a look at the relevant representation.
For SO(9), the relevant representation is the fundamental one (10), as this results in a singlet for
this subgroup according to the SO(10) branching rules in [18]. This means that for this subgroup,
our VEV will live in the vector representation and must therefore be an ordinary 10-component
vector. For SO(7) x SU(2), Sp(4) x Sp(4) and SU(4) x SU(2) x SU(2), 54 is the relevant represen-
tation at which all these subgroups attain a singlet in the symmetry breaking. The SO(10) relation
10® 10 = 1’ @ 45 & 54 shows that the 54 corresponds to the symmetric traceless part of the rank-2
tensor product 10 ® 10. Any symmetric matrix in SO(10) can be diagonalised by an SO(10) basis
transformation. Therefore, a VEV in the 54 can always taken to be a diagonal traceless matrix.

We have a similar case for the 45, which is relevant for SU(5) x U(1) and SO(8) x U(1), which
are covered in [23]. This representation corresponds to the antisymmetric part of 10 ® 10. VEVs
in the 45 can therefore be written as antisymmetric matrices and can be simplified to antidiagonal
form, as explained earlier.

This means that except for Sp(4), we can simply use 10 x 10 traceless, diagonal matrices for the
VEV. Now, we need to propose trials VEVs, that are consistent with the group’s representation
structure. To do this, we need to look at the branching rules of each individual subgroup. Let’s take
the subgroup SU(4) x SU(2) x SU(2) as our example. Under this subgroup, 10 = (1,2,2)+(6,1,1).
Now, the label (1,2,2) means that the dimension of this subspace is four, as 1 x 2 x 2 = 4. The
label (6,1, 1) means that the dimension of the subspace is six. From the traceless condition, we can
then immediately obtain the following VEV:

()= ding(3.2,3.3, 2,222 1 2 (327)
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Now, to prove that this VEV is indeed correct, we need to confirm that the VEV leaves the
correct amount of unbroken generators associated to the subgroup. To do this, we implement a
simple code into Mathematica in which we use the commutator relation to find the amount of
unbroken generators. In the case of SU(4) x SU(2) x SU(2), the unbroken group has dimension:

dim[SU(4)] + dim[SU(2)] + dim[SU(2)] = 15+ 3+ 3 = 21 (3.28)

So there should remain 21 unbroken generators, which is correct for the VEV we defined.
To determine which generators remain unbroken, we use the commutator test. For a VEV ¢
transforming under an SO(10) representation, its infinitesimal transformation under the Lie algebra
generator T, is given by

6¢ = i[Tq, ), (3.29)

when dealing with matrix-valued representation like the 45 and 54. Similarly for vector represen-
tation:

5 = iT,¢. (3.30)

A generator T, is unbroken under the VEV if and only if the VEV is invariant under its action:

(T, 8] = 0. (3:31)
Any group element of a continuous group can be written as an exponential of generators:
a 1
g=¢"To =1 40T, + i(ia“Ta)(ioszb) +e (3.32)

The condition that the VEV is invariant under the full group element, g{¢) = (¢), becomes:

(1 +ia®T, + %(ia“Ta)(iabTb) R > (¢) = (). (3.33)

Solving order-by-order:
e First order (O(«)): T,(¢) = 0 for all unbroken generators.
e Second order (O(a?)): T,Ty(¢) = 0 for all unbroken generators.

We can decompose the second-order term using:
1
1Ty = 5 ({Tm Tb} + [Tav Tb]) ’ (334)

where [Ty, Ty] = i fapcTe by the Lie algebra structure. This commutator gives another generator that
can be satisfied by the first-order condition. So, for the second-order equation, to see which gener-
ators are unbroken besides the first-order solutions, we need to solve the anti-commutator:{T,, T;}.
Together, these two highest orders give all unbroken generators. Higher orders are automatically
satisfied by these two highest orders.
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To make sure the unbroken generators that are found in this process do form the right sub-
group, it is important to check that the amount of unbroken generators equals the dimension of
the subgroup of interest, and that the commutation of the found unbroken generators give linear
equations of unbroken generators only. This is to verify that the unbroken generators form a closed
algebra.

This process can then be repeated for all other subgroups. The Mathematica code in this thesis
was made with the help of the large language models Claude by Anthropic [4] and ChatGPT by
OpenAi [30]. These were used for debugging, syntax optimisation and implementation suggestions.
All mathematical derivations, physical interpretations and final code validation were performed
independently.

So, to summarise the taken steps:

e 1. Construct the generator matrices of SO(10) in the relevant representation.
e 2. Define a candidate VEV based on the characteristics of the representation.
e 3. Compute the commutators with all the generators.

e 4. Count the number of generators that annihilate the VEV and make sure the subgroup of
interest matches the dimension.

The amount of unbroken generators can simply be found by counting the dimensions of the
relevant subgroup(s). These can be found in table 3.3.

Subgroup ‘ Unbroken generators

SO(9) 36

SO(8) x U(1) 29
SO(7) x SU(2) 24
SU(B) x U(1) 25
Sp(4) x Sp(4) 20
SU(4) x SU(2) x SU(2) 21
Sp(4) 10

Table 3.3: Amount of unbroken generators per subgroup of SO(10).
This way, the VEVs of the subgroups of SO(10), and other groups, can be determined.

The last subgroup that we have not yet discussed is Sp(4). This group obtains a singlet for the
120-representation; 120 = 1 + 5 + 14 + 30 + 35 + 35’. For this case, very little literature is found,
so a different method was implemented. In [38], the following projection matrix was found:

2,2,4,1,1
P = <O, 1.0.1, 1) (3.35)
With the LieArt function WeightSystem[Irrep [S010][120]] we find the full weight
system of the 120 representation of s0(10). These weights are then multiplied with the projection

matrix to find the weights of the 120 representation of Gp(4). The next step was to identify the
Sp(4)-singlet directions, so the weights that project to the zero vector under the projection matrix.
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This then yields 8 weights that project to a (0,0). This does not suggest eight different singlets,
these eight SO(10) weights project to the same Sp(4) weight. These eight weights all span a one-
dimensional subspace, as they are linearly dependent, meaning that there is only one independent
singlet direction.

Now, to finally construct the VEV, we assign a free parameter v to each independent singlet
direction. This means that our VEV has 8 nonzero components. This way we obtained the VEV
as can be seen in table 3.2. This method is not as straightforward as the one we used earlier, but it
allows us to systematically check all candidate VEVs, ensuring that the correct unbroken subgroup
is preserved, even when the representation is large and nontrivial, such as 120.

3.3.2 Connection to other research

In this chapter we have found the methods that allow us to systematically determine the VEVs
that correspond to the symmetry-breaking patterns of SO(10). While this analysis seems math-
ematical, it is very relevant to physical applications: by identifying all possible subalgebras and
their corresponding VEVs, we can determine which symmetry-breaking chain corresponds to the
global minimum of the scalar potential. The framework developed here provides the foundation for
systematic studies of SO(10) breaking patterns. Held et al. [23] pioneered a method to compare
different breaking chains by evaluating their vacuum energies, which was subsequently implemented
numerically by Magnus Petz [32]. Petz performed large-scale numerical scans of the SO(10) scalar
potential parameter space for a specific model with VEVs in the 16 (spinor) and 45 (adjoint)
representations. His analysis demonstrated that:

e The residual symmetry is parameter-dependent. He found that different coupling constants in
the scalar potential lead to different symmetry breaking patterns. The regions of parameter
space that break to the SM are only part of the full parameter space. Choosing different
parameters, leads to different symmetries. This is visualised in Figure 3.1, which is an
analogue of figure 7.2 in [32]. These plots show on the axes the parameters used ();) and
with colours the breaking results. The green areas show the parameter space where there is
an allowed VEV texture, so there is a viable breaking pattern. Red on the other hand shows
where there the VEV texture is not allowed and thus where there is no viable breaking. In
Figure 3.2, analogue of figure 7.4 of [32], we see where specific cases of the VEV texture lead
to breaking and to which symmetry it breaks to for those parameters. Here, the Standard
Model is only a part of this parameter space.

e The breaking scale varies. Even in the regions where SO(10) breaks to the Standard Model,
the energy scale at which this breaking occurs varies. For some parameters this breaking
occurs at 10'°GeV, but for others it could be near the Planck scale at 10'°GeV. This matters
in this research as well as this is an experimental constraint on which scales are allowed based
on Higgs mass, top quark mass, and other qualities.

So, while our research gives the framework on the possible subgroups and VEVs of SO(10),
Petz’s work shows (for a specific case) which of those VEVs really minimises the energy for different
parameters. These works together give future researchers the complete picture on what symmetry
breaking chain will give the true energy minimum.
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Figure 3.1: Parameter scan for SO(10) symmetry breaking, from [32]. The axes represent
coupling constants ); in the scalar potential for an SO(10) model with 165 @ 455 scalars.
Green regions indicate parameter combinations where viable VEV textures exist. Red regions
correspond to unphysical /unstable configurations.
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Figure 3.2: Specific VEV texture parameter regions, from [32]. A detailed parameter space
scan showing regions where specific VEV configurations lead to particular breaking patterns.
The colour coding identifies which residual symmetry groups survive for different coupling
constant combinations.
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Now that we have established systematic methods for determining VEVs that break SO(10) to
its maximal continuous subgroups, we turn to a different question: can continuous symmetries break
to discrete residual subgroups? In the next chapter, we investigate how VEVs in representations
of the continuous group SU(3) can break the symmetry down to the discrete group Ay, leaving no
continuous symmetry unbroken.
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Chapter 4

Residual discrete symmetries from

SU(3)

Having seen how VEVs work for continuous groups, it is now time to expand our knowledge to
discrete groups. For this thesis we will look into the breaking SU(3) — Ay specifically. The reason
for this is up until now we have only discussed the local symmetry SO(10). While SO(10) unifies
gauge interactions, it does not explain the origin of flavour structure. The observed fermion masses
span a great range, from about 1072eV for neutrinos, to about 173GeV for the top quark. In
the same way, the quark mixing angles are small relative to the large neutrino mixing angles. To
understand these hierarchies, we need an additional ingredient: a global symmetry acting on the
three fermion generations.

Such a group must have a triplet representation, to unify the three families. It needs to act
unitarily, so we can write kinematic terms, and it needs to be connected and continuous at high
energies to match the expectation that near the Planck scale all symmetries are restored. The
minimal choice that satisfies these requirements is SU(3)gi0bq;. When this global symmetry breaks
via VEV textures, the breaking pattern determines fermion mass matrix structures, naturally gen-
erating the hierarchies we observe. The breaking also produces Goldstone bosons contributing
to the effective theory at lower energies. When breaking to a finite group, as we will do in this
chapter, these Goldstone bosons acquire a small mass. These Goldstone bosons are actually called
pseudo-Goldstone bosons, or pNG bosons. For the present analysis however, we focus mostly on
the residual symmetry structure rather than the detailed Goldstone phenomenology.

The continuous group SU(3) cannot survive unbroken at low energies, since this would predict
equal masses for all three generations. Instead, it must break to a discrete residual symmetry.
Neutrino oscillation experiments reveal large mixing angles for leptons, compared to quark mixing,
suggesting a discrete flavour symmetry. The minimal group with a three-dimensional irreducible
representation capable of producing such mixing patterns is A4. A4 was originally put forth as
an ideal symmetry for this issue as it explained the mathematical structure of the tri-bimaximal
mixing (TBM) matrix very well [1].
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4.1 A, leading to Tri-bimaximal Mixing

In 2005, it was proposed by Altarelli and Feruglio in [1] that the A4 symmetry group leads to TBM.
The tri-bimaximal mixing we refer to here is the specific pattern that the neutrino mixing matrix
seems to have:

2/3 \/1/3 0
|Upmns| = 1/6 /1/3 /1/2|. (4.1)
1/6 /1/3 /1/2

To show this, they assign leptons to the four representations of A4. The left handed lepton doublets
transform as a triplet 3. The right-handed charged leptons transform as the singlet representations.
The scalar fields take the form ¢ = (¢1, ¢2, ¢3) ~ 3 and £ ~ 1, assigned to the Ay triplet and singlet
respectively. These fields acquire the VEVs: (¢) = (v,v,v) and (£) = u. The neutrino mass matrix
that is obtained from these VEV is then of the form:

2A+B —-A -A
—A 24 B-A|. (4.2)
~A B-A 24

This mass matrix leads to exact tri-bimaximal mixing in this model. The intricacies of this Altarelli-
Feruglio model are very well discussed in [15] by Wouter Dekens. This model is based on [1] and
[2] by Alterelli and Feruglio. This model was very promising and did seem to clearly indicate that
Ay is a good choice as a residual symmetry after breaking SU(3) fiavour, since it leads to the exact
neutrino mixing we saw in experiments, namely the mixing angles 010 = 35°, 623 = 45°,0153 = 0°.
The prediction of these mixing angles has however been falsified experimentally. It was found
that the angle 013 = 8.5° and not zero [29], [3]. However, Ay is still a group of interest as it is
still able to describe the current mixing matrices with deviations [33, 28]. This is why it is im-
portant to understand the breaking of SU(3) to A4, as it could be able to complete our GUT theory.

Ay, or A(12), is a tetrahedral group. The group contains the even permutations of four objects,
meaning it consists of 12 elements. A4 has a presentation with two generators a, b, as:

Ay:a® =0 = (ab)® = ¢ (4.3)

As mentioned in the introduction, we are interested in A4 as a subgroup of SU(3). To under-
stand this breaking we first need to know for which representations the breaking of SU(3) gives a
singlet state of Ay.

As can be seen in table 4.2, the smallest representations for which the A4 obtains a singlet are
6, 10 and 15, meaning that these representations can be used to break SU(3) to A4, or a group
that has A4 as a subgroup. Our goal here is to find the VEV for the lowest representation that
breaks SU(3) to A4, where is A4 is the maximal unbroken symmetry, meaning that there are no
larger symmetries that remain after breaking SU(3). In [26], it was found that the combination of
the VEV of the 6 and 10 representations breaks SU(3) down to A4 as a maximal subgroup. To
test this ourselves we have used the code that is explained here.
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SU(3) rep. A, decomposition
3 3
6 1+1+1+3
8 +1+2-3
10 1+3-3
15 1+1+1+4-3

Table 4.1: Branching rules of SU(3) D Ay [27].

In this code, we have defined the generators of su(3) in the 6 representation and in the 10
representation. These are defined using the Gell-Mann matrices: F; = % Here, first the six
dimensional representation was constructed using the tensor product of SU(3): 3®3 = 6® 3. This

means that the 6 representation corresponds to the symmetric product of the two triplets.

Listing 4.1: Constructing the 6-dimensional SU(3) matrices.

MakeSixRep [T3x3_] := Module[{T6},
T6 = Table[0, {6}, {6}];
T6[[1, 1]] = 2*xT3x3[[1, 1]]; T6[[1, 4]1]
[[1, 6]] = Sqrt[2]*T3x3[[1, 3]]1;
T6[[2, 2]] = 2xT3x3[[2, 2]]; T6[[2, 4]]
[[2, 5]] = Sqrt[2]*T3x3[[2, 3]];
Te [[3, 311 = 2%xT3x3[[3, 3]1; T6[[3, 5]]
[[3, 6]] = Sqrt[2]1*T3x3[[3, 11];
T6[[4, 111 = Sqrt[2]1*T3x3[[2, 11]1; T6[[4, 2]]1 = Sqrt[2]1*T3x3[[1,
2]11;

T6[[4, 4]] = T3x3[[1, 1]] + T3x3[[2, 2]]; T6l[[4, 511 = T3x3[[1,
3]11; T6[[4, 611 = T3x3[[2, 3]1;

T6[[6, 2]] = Sqrt[2]1*T3x3[[3, 2]1]; T6[[5, 311 = Sqrt[2]1*T3x3[[2,
31];

T6 [[5, 4]1] = T3x3[[3, 1]]; T6[[5, 511 = T3x3[[2, 2]] + T3x3[I[3,
311; Tell5, 611 = T3x3[[2, 11];

T6[[6, 111 = Sqrt[2]1*T3x3[[3, 11]1; T6[[6, 311 = Sqrt[2]1*T3x3[[1,
311;

Te[[6, 411 = T3x3[[3, 2]]; T6[[6, 511 = T3x3[[1, 2]1]1; Te[[6, 611 =
T3x3[[1, 1]] + T3x3[[3, 3]]1;

Return [T6];

Sqrt [2]1*T3x3[[1, 2]1]1; T6

Sqrt [2]1*T3x3[[2, 1]]; T6

Sqrt [2]*T3x3[[3, 2]]1; T6

1

Using these generators, the VEV that was found in [26] ¢ = {1,1,1,0,0,0} was multiplied with
all the generators to find the generators and linear combination of generators that left the VEV
invariant. it was found that the second, fifth and seventh generator, or equivalently, As, A5 and
A7, leave the VEV invariant. These three generators form the Lie algebra of s0(3). So, this VEV
breaks su(3) to so(3).
Next, we see whether the VEV of the 10 indeed breaks so(3) to A4. For this we need the generators
of the 10 representation. The 10 of SU(3) is the completely symmetric part of 3 ® 3 ® 3, so we
start again with the generators of the 3 , F; = % . For each generator Fj, the action on the triple
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tensor product is:

Fi(27):Fi®I®I+I®Fi®I+I®I®Fi’ (44)

giving an explicit 27 x 27 matrix.

Listing 4.2: Construction of 27-dimensional 3 ® 3 ® 3 representation.

MakeTensor27 [T3x3_] := Module[{I3, T271},

I3 = IdentityMatrix[3];

T27 = KroneckerProduct[T3x3, I3, I3] +
KroneckerProduct [I3, T3x3, I3] +
KroneckerProduct [I3, I3, T3x3];

Return [T27];

1;

Now, we need to build an orthonormal basis of symmetrised states, covering all ten symmetric
combinations.

Listing 4.3: Construction of the symmetric projection operator.

(* Function to convert (i,j,k) -> flat index, \
where mathematica indexes from 1x%)
FlatIndex[i_, j_, k_] := (i - 1) + 3%(j - 1) + 9%x(k - 1) + 1;

(* list all (i,j,k) combinations *)
allTriples =
Flatten[Table [{i, j, k}, {i, 1, 3}, {j, 1, 3}, {k, 1, 3}, 21;

symBasis = {
{{1, 1, 1}}, (* 1 permutations *)
{{2, 2, 2}}, (*x 1 permutations *)
{{3, 3, 3}}, (x 1 permutations *)
{1, 1, 23, {1, 2, 1}, {2, 1, 1}}, (¥ 3 permutations *)
{1, ¢, 3}, {1, 3, 1}, {3, 1, 1}}, (¥ 3 permutations *)
{1, 2, 23, {2, 1, 2}, {2, 2, 1}}, (¥ 3 permutations *)
{{2, 2, 3}, {2, 3, 2}, {3, 2, 2}}, (* 3 permutations *)
{{1, 3, 3}, {3, 1, 3}, {3, 3, 1}}, (¥ 3 permutations *)
{{2, 3, 3}, {3, 2, 3}, {3, 3, 2}}, (% 3 permutations *)
{{t, 2, 3%, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2,
1}} (* 6 permutations *)

};

(* Normalised basis vectors in 27-dim space *)
symBasisVectors = Tablel[
Module [{vec, perms, norm},
vec = Table[0, {273}];

perms = symBasis[[i]];
norm = Sqrt[Length[perms]];
Do [

vec[[FlatIndex @@ perm]] = 1/norm,
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{perm, perms}

1;

Then to find the 10-dimensional generators, we project the 27-dimensional matrices onto the
defined symmetric tensors by;

00 _ (e T®)e;) (4.5)

Listing 4.4: Project 27-dimensional generators on 10-dimensional subspace.

F10 = Table[
Table [
symBasisVectors [[i]] . F27[[gen]] . symBasisVectors[[j]],
{i, 1, 10}, {j, 1, 10}
1,
{gen, 1, 8}
13

This method then yields us eight Hermitian 10 x 10 matrices that satisfy the SU(3) algebra.

Now, that we have obtained the explicit matrices of the 10 of SU(3), we can apply the VEV
found in [26]: ¢ = {0,0,0,0,0,0,0,0,0,1}. We apply this VEV to the generators that remain
unbroken after applying the VEV of the 6, so the 10 generators corresponding to Ao, Asand 7.
This action yields the following:

X2 -{0,0,0,0,0,0,0,0,0,1} = {0,0,0,0, — ,0,0,0}, (4.6)

ff

s - {0,0,0,0,0,0,0,0,0,1} = {0,0,0,——,0,0,0,0, —, 0}, (4.7)
f ﬂ

A7-{0,0,0,0,0,0,0,0,0,1} = {0,0,0,0,0, — f \f L0} (4.8)

This means that all of the unbroken generators that were left after applying the 6 VEV are broken
after applying the 10 VEV, and that the continuous symmetry is completely broken. Now, there
can only be a discrete symmetry leftover, or no symmetry at all.

To see whether a discrete subgroup survives, we multiply all the generators of the discrete
subgroups of SU(3) with the two VEVs. The finite subgroups and their generators can be found
in table 4.2.

The explicit group generators matrices of these finite groups can be found in chapter6 and are
from [22]. These matrices are all 3-dimensional, meaning that we still need to make them 6- and 10-
dimensional to apply the VEVs. For this, we use the same method as before for the SU(3) matrices.

When multiplying the group generators with the 6 VEV, only A(2), B, E,W, and Z survive.

These correspond to the groups; 3(60), A(12), and A(24), meaning that these finite groups survive
the 6 VEV.
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Subgroup Order | Generators
¥(60) 60 A EW
¥(168) 168 Y E Z

(36 x 3) 108 C,E\V

%(72 x 3) 216 | C,E,V, X

(216 x 3) 648 | C,E,V,D

¥(360 x 3) 1080 | A, E, W, F

A@Bn*)(n>2)| 3n? A(n), E
A(6n*)(n>1)| 6n* | A(n),E,B

Table 4.2: The finite subgroups of SU(3) with their respective generators. From [22].

Subgroup 6-VEV 10-VEV
¥(60) ¥(60)
Y(168) X

(36 x 3) X

X(72 x 3) X

¥(216 x 3) X

X
(1
(2

X X X X X X

(360 x 3)
ABn*(n>2) | A
A(6n*)(n>1)| A

2) | A(3n?)
4) X

—~

n > 2)

Table 4.3: The finite subgroups of SU(3) and which survive the respective VEVs
{1,1,1,0,0,0} and {0,0,0,0,0,0,0,0,0,1}. An X means that the generators of that sub-
group do not survive the VEV of interest.

After multiplying the group generators with the 10 VEV, only A(n), D, E, and Y survive. These
correspond to the A(3n?) groups for n > 2 . This means that only these groups survive the 10
VEV. This is shown in table 4.3.

Combining these results, we find that only A(12), or A4 as these are the same, survives both
VEVs. This means that the combination of the 6 VEV ¢ = {1,1,1,0,0,0} and the 10 VEV
{0,0,0,0,0,0,0,0,0,1} gives rise to an A4 symmetry, and no larger symmetry.

Since the 6 VEV breaks SU(3) — SO(3), we should understand which discrete subgroups
SO(3) possesses. The complete classification is given in table 4.4. Importantly, A4 = T (both have
order 12), so the residual A4 symmetry corresponds to tetrahedral symmetry.

4.3 Different order of VEVs

Up until now we have only looked at applying the 6 VEV and then the 10 VEV to the SU(3) group
generators. However, what happens when we switch the order, so when we apply the 10 VEV first?
When multiplying the VEV {0,0,0,0,0,0,0,0,0, 1} with the 10-dimensional SU(3) generators, we
find that only the generators corresponding to A3 and Ag survive. These generators form the Lie
algebra of u(1) x u(1). From multiplying the generators of the finite subgroup of SU(3) with the 10
VEV, we know that the finite group A(3n?) also survives. This is not a subgroup of U(1), so needs
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Finite subgroup | Description | Order | Generators

Cyclic k R
Dihedral 2k x,y
Tetrahedral 12 T, T,

Octahedral 24 01,045,03
Icosahedral 60 I, 15, I3

RESEE SRS

Table 4.4: Finite subgroups of SO(3), from [12], [5], [6], [14]. The matrix generators can be
found in the appendix, chapter 6.

to be coupled to the continuous symmetry. This means that the complete surviving symmetry after
applying the 10 VEV is U(1) x U(1) x A(3n?) for n > 2. We will now apply the 6 VEV and see
for what «; the generators survive:

elesds . giesds . 10 0.0,0,0,0,0,0,0,1} = {0,0,0,0,0,0,0,0,0,1} (4.9)

This is only the case for a3 = m(n —m) and ag = v/37(n + m), where n,m € Z. This means that
the continuous symmetry is broken, as there is only a discrete set of solutions, not a continuous
curve or region. With this we get the following group elements:

U1 -1 U2 — eiﬁ)\;geiﬂ')\g U3 — ei27r)\3 U4 — 6i27r\/3>\8

So, we find a group of order 4. This can only be Z4 or Zo X Zsy. Since our U;’s are commutative
and non-cyclic, we are dealing with Zs X Zs, also called the Klein four group. From breaking the
generators of the finite subgroups of SU(3) we know that the A4 finite group must also survive
the VEV breaking of both VEVs. The remaining question here is then, is the found Klein four
group part of A4 or is it a separate discrete symmetry? To investigate this, Mathematica was again
used to see whether the explicit generators of the Klein four group that we found after applying
the 6 VEV, are the same as the generators of the A4 group. When comparing these generators,
we do indeed find they are the same. Specifically, the found Klein four group consists of the iden-
tity plus three elements of the order 2, which are precisely the generators we had for A4. The
fact that our Klein four group form A3 and Ag matches part of the generators of A4 means that
this is not an independent symmetry but rather a natural subgroup that is already contained in Ay.

Therefore, the final residual symmetry after applying both VEVs is:

6-VEV

LVEV U (1) x U(1) x A(3n2) VY, 4, (4.10)

SU(3)

While we do end up with our A4 symmetry again, as we wanted, the order does make a dif-
ference in the resulting symmetry. With the 6 VEV first, we had the continuous symmetry SO(3)
left, but with the 10 VEV first we found U(1) x U(1) x A(3n?). This means that the ordering
of the VEV makes a difference in what symmetry we find. This is interesting as in most sources,
like [26] where we found our VEVs, there is no notion of a certain order the VEVs should be applied.

Now, to summarise, a schematic of the breaking of SU(3) can be seen in figure 4.1. Here, the

amount of Goldstone and pseudo-Goldstone bosons are added. As can be seen, the total amount
of bosons for both breaking chains is equal to 8, as SU(3) has 8 generators.
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After applying the 6 VEV first, three generators survive, Az, A5 and A7. These three generate
SO(3) but also the discrete group Ay. This can be seen explicitly when we exponentiate the
generators of A4 in the 3 representation. In matrix form, these are:

1 0 0 010
sS={o -1 o], 7=(0 0 1]. (4.11)
0 0 -1 100

When exponentiating these matrices, we find that these give the following values:

§ = ™ T = v P2 s th) (4.12)

This shows that the generators of the 3 representation of A4 can indeed be made out of the
unbroken generators Az, A5 and Ar7.

Now, since we found that three generators survive, while the other five break to SO(3), we
must have five Goldstone bosons. When we now break these three generators further, using the 10
VEV, we find that the continuous group breaks to a discrete group, A4. To generate A4 we need
two generators. This means that we have only one completely broken generator, which becomes a
massless Goldstone boson and two generator combinations that still generate the discrete symmetry
A4 and become pseudo-Goldstone bosons. These two get mass because the continuous symmetry
is not entirely broken. There is still a discrete symmetry left.

For the other path, we apply the 10 VEV first. Two generators are necessary to produce
A(3n?). Since we break a continuous symmetry to a discrete one, this means we obtain two
pseudo-Goldstone bosons. Two continuous generators survive for U(1) x U(1). These are A3 and
Ag as we saw before. This means that we obtain four Goldstone bosons too, since 8 — 2 — 2 = 4.
Then, when we apply the second VEV, the 6, we are only left with a discrete group, meaning that
our remaining continuous generators must be broken completely, giving us two Goldstone bosons.
This explains figure 4.1 and the Goldstone bosons in our theory.

In this chapter, we have found that A4 is indeed a subgroup of SO(3). To prove this we have
used the 6-dimensional VEV {1,1,1,0,0,0} and the 10-dimensional VEV {0,0,0,0,0,0,0,0,0,1}.
According to [26] these are the lowest dimensional VEVs that break SU(3) exclusively to A4. This
is indeed the case, no matter the order we apply the VEVs. We did find however that when we
switch the order, we obtain a different intermediate symmetry, SO(3) vs. U(1) x U(1) x A(3n?).
This is not expected and is an interesting result, as the importance of order is not mentioned in
existing literature.

Most works, such as [26], present VEV configurations without specifying any sequence, or
preferred order. They implicitly assume order-independence. Our explicit calculation shows this
assumption is incorrect: the intermediate symmetry depends crucially on VEV ordering. As we
have also seen in figure 4.1, the distribution of Goldstone bosons also differs between breaking
stages. Again, a feature that affect physics at low energies.

Now that we have this final result, we move on to discuss all our findings and their consequences.
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SU(3)

& VEV 10 VEV
5NG 4 NG+
2pNG
SO(3) U(1)xU(1)xA3n2
10 VEV 2pNG & VEV
v v
Aq_ A4

Figure 4.1: Schematic breaking of SU(3), using both VEV orderings. The amount of Nambu
Goldstone bosons (NG) and pseudo-Nambu Goldstone bosons (pNG) we obtain with each
breaking are listed in red.
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Chapter 5

Conclusion

This thesis developed a systematic framework for understanding symmetry breaking in Grand
Unified Theories and flavour physics. We addressed two main questions: what breaking patterns
exist for SO(10) beyond the standard route to the SM, and how can discrete flavour symmetries
like A4 emerge from continuous group breaking?

5.1 Main Results
5.1.1 SO(10) Breaking Patterns

In the first part of our research, we classified all maximal subalgebras of SO(10) and determined
the minimal VEV configurations for each breaking pattern. The literature typically assumes
SO(10) — SU(5) — SM, but this is only one of many mathematically allowed routes. Alter-
native routes are equally valid according to group theory.

The key point is that the actual breaking pattern depends on which configuration minimises the
scalar potential. We cannot assume the SM corresponds to the true energetic minimum without
explicit calculations. Crucially, the approach of finding the absolute minimum, as developed by
Held et al. in [23] and extended by Magnus Petz in [32], can only be complete if one can check all
possible minima. This in turn requires a complete classification of all breaking chains and VEVs
that can exist. The systematic classification in this thesis provides exactly this. By identifying all
the maximal subgroups and their VEV configurations, we establish the complete set of possible
breaking patterns that must be compared energetically. This enables the approach of Held and
Petz to be fully implemented, such that future work can now compute the potential depth for each
classified texture.

For our framework in this thesis, we first identified each maximal subgroup. For each of these,
we identified the minimal scalar representation containing a singlet and constructed explicit VEV
textures. Using Mathematica, we developed methods for building the generators of the relevant
representations and systematically checked which generators remain unbroken. This method can
be implemented for all subgroups, not just the maximal ones we focused on in this research.
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5.1.2 SU(3) — A, breaking

Beyond gauge unification, we also investigated discrete flavour symmetries emerging from SU (3) giopai-
The fermion mass hierarchies and the contrast between the small quark mixing angle and large lep-
ton mixing angle are not explained by only a local symmetry. The global symmetry SU(3) provides
a framework for generating these structures through breaking patterns. At high energies, SU(3)
treats the three fermion generations as a triplet. By breaking the continuous symmetry at lower
scales, it produces hierarchical mass matrices. At low energies, the continuous symmetry should be
broken, as it would otherwise predict equal masses for all generations. Instead, a discrete residual
symmetry must remain.

In this thesis, we focused on A4, the minimal non-abelian group with a three-dimensional irrep,
which reproduces large neutrino mixing angles. Using VEVs in the 6-dimensional representation
{1,1,1,0,0,0} and 10-dimensional representation {0, 0,0,0,0,0,0, 0,0, 1}, we showed explicitly how
SU(3) breaks to Ay.

5.1.3 Order dependence

The most surprising result of this thesis is that the order of VEV application matters. Apply-
ing both VEVs indeed gives the discrete group A4 as the maximal residual symmetry. However,
reversing the order produces a different intermediate symmetry, SO(3) for first the 6 VEV and
U(1) x U(1) x A(3n?) for first the 10 VEV. This is not widely discussed in literature, where mul-
tiple VEVs are used without specifying their order.

This means future researchers must carefully specify not just which VEVs break symmetries,
but also their hierarchy and the resulting intermediate symmetries.

5.2 Future Research

This research still leaves a lot of questions for future research.

First of all, is the question which SO(10) breaking pattern has the lowest energy minimum. This
question can now be answered by combining the VEV and subalgebra framework provided in
this work with the numerical methods provided by Petz in [32]. Then, they can answer whether
SO(10) — SU(5) — SM indeed has the lowest energy minimum for some region in parameter
space, of all the other breaking patterns. This could strengthen our current work on the Standard
Model if this path indeed has the energy minimum, but it could also mean that we need to rethink
our GUT theories.

Secondly, we need to find a way to couple SO(10);pcq; and SU(3)1o¢q;- In this research we treated
the gauge and flavour symmetries independently, but to create the complete GUT theory we have
talked about, there needs to be a way to couple these symmetries.

Thirdly, what does it mean that the order of applying the VEV matters? It is not necessar-
ily unexpected that breaking a symmetry using different steps, leads to different (intermediate)
symmetries. Different VEVs lead to different symmetry-breaking chains, so applying the VEVs in
different orders does that too. However, how do we know what path nature takes? It should be
investigated which order of VEVs is truly realised in nature and based on what characteristics of

92



the potential. To answer this, one would have to study the whole scalar potential and all relevant
parameters. The work by Magnus Petz will be a great help in studying all this, but needs to be
extended to all VEVs and symmetry-breaking paths that are possible. Only then can we see the
whole picture and see what path nature takes, so either the 6 first, or the 10 VEV first. So, future
physicists working on this area should address what conditions on the scalar potential enforce a
particular VEV ordering and whether these different orderings can be distinguished phenomenolog-
ically, through their predictions for particle masses, or mixing angles, or proton decay rates. While
both VEV orderings in this research reach the same residual symmetry Ay, the intermediate sym-
metry structure differs, which can leave observable affects on the effective theory at lower energies.

Lastly, future researches might need to look into alternative discrete groups. In this research,
we only looked into A4 as a subgroup of SU(3). As experiments improve, our A4-model might
be ruled out. Other subgroups as Sy or As; might prove to give mixing angles closer to what we
observe. The method on how to break SU(3) presented in this research can be applied to these
other subgroups as well.

5.3 Broader Implications

Besides the open questions, the research done here has quite some (possible) implications for physics.

5.3.1 Phenomenological implications of VEV ordering

The order-dependence we discovered in the breaking of SU(3) — A4 has implications beyond
just mathematical curiosity. Different intermediate symmetries lead to different effective opera-
tors at intermediate energy scales. For the path with SO(3) as intermediate symmetry versus
U(1) x U(1) x A(3n?), different generators are broken at different stages, which affects which op-
erators appear in the effective theory below the GUT scale.

Consider for example proton decay predictions. The operators that mediate proton decay de-
pend on which intermediate symmetry is preserved. If nature follows the 6- VEV first, through
SO(3), certain decay chains are suppressed by the residual SO(3) symmetry until the second break-
ing. The same for the 10-first path through U(1) x U(1). Again different breaking chains dominate.
This directly impacts our predictions for proton lifetime and branching rules.

5.3.2 Implications for Model Building

The findings in this thesis also demands that GUT model builders must specify both which scalar
representation acquire VEVs dnd their hierarchy. Which VEV develops first is not arbitrary, but
is determined by the structure of the scalar potential. The minimum of this potential dictates the
VEV ordering and this in turn fixes the breaking chain and intermediate symmetries.

This adds a constraint to the construction of GUT models, that is often overlooked. Many re-
searchers present their VEV textures without addressing their order, implicitly assuming that this
does not matter. We have shown that this assumption is incorrect for the breaking of SU(3) to Ay.
The same logic must be applied to other breaking paths. Whenever multiple VEVs are used, their
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hierarchy must be justified by the potential structure, not chosen by preference or convenience.

So, while this research still gives us many open questions, we have taken a step forward in this
research-chain, following Wouter Dekens [15], Jelle Thole [35] and Magnus Petz [32] in figuring out
whether SO(10) is indeed nature’s perfect GUT and whether A4 indeed governs flavour. The frame-
work developed here helps future researchers to construct realistic models, test different breaking
paths, and ultimately expose the symmetry principles that form the basis for particle physics.
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Chapter 6

Appendix

6.1 Generators of finite groups of SU(3)

The group generators of the finite subgroups of SU(3) from [22] are listed here, with the following

definitions:

W= 627”/3, €

_ 647rz/97

B = eQm’/?

)
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M2 = 5(—1 -

V5).

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

(6.1f)
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6.2 Generators of finite groups of SO(3)

The group generators of SO(3) from [12], [5], [6], [14], are listed here. We use the following

definition:
1
cos(2r/k) —sin(2rw/k) O
R = | sin(2n/k) cos(2nw/k) O (6.2a)
0 0 1
1 0 0
x= |0 cos(2n/k ) —sin(27/k) (6.2b)
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