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CHAPTER 1

Introduction and Definitions

In general, geometric properties of a manifold are not determined by topological in-
variants of this manifold. Starting in the 1960’s, however, a number of fascinating results
have been proved that show that, under certain conditions, the topology of a manifold can
determine its geometry. In this case, one often speaks of rigidity.

The prototype rigidity theorem is due to Mostow [1]. This result, also known as the
strong rigidity theorem, can be stated as

Theorem 1.1 (Mostow’s Rigidity Theorem, 1968). Suppose M and N are closed
manifolds of constant sectional curvature −1 with the dimension of M is at least 3. If
π1(M) ∼= π1(N), then M and N are isometric.

In this thesis we study the rigidity of the focal decomposition of the flat 2-torus, as
introduced and studied in [2]. We show that the focal decomposition determines the torus
up to conformal equivalence.

First we need a number of definitions. A lattice Λ is a discrete subgroup of R2 generated
by two linearly independent vectors ω1, ω2 ∈ R2, i.e.

(1.1) Λ = {nω1 +mω2 | n,m ∈ Z} = ω1Z⊕ ω2Z.
We define two elements x, y ∈ R2 to be equivalent, x ∼ y, if and only if x − y ∈ Λ.

The flat 2-torus TΛ = R2/Λ is the quotient space of R2 under the equivalence ∼. We
identify TΛ with the fundamental parallellogram of the lattice centered at 0 ∈ R2. Let
π : R2 −→ TΛ be the canonical projection π : x 7→ [x] that sends x to its equivalence
class [x] and let d(x, y) = |x− y| be the standard Euclidean metric on R2. Locally π is an
isometry and induces the covering metric d̃ defined by π∗d̃ = d on the torus.

Suppose we are given a flat two-dimensional torus TΛ with its geodesic flow. We will
consider the focal decomposition on the tangent plane T0, which we identify with R2, at
the base point 0. It describes arithmetic properties of the geodesic flow. Namely, the
number of geodesics of the same length starting at the base point with the same endpoint.

According to the original study in [2], the focal decomposition is characterized by
Brillouin lines.

Definition 1.2 (Brillouin line). A Brillouin line Lg ⊂ R2 is defined as the perpendic-
ular bisector of the line connecting the origin 0 and g ∈ Λ, i.e.

Lg = {x | g ∈ Λ and |x| = |x− g|}
For 0 ∈ Λ, we define L0 = {0}.

Definition 1.3. Let MΛ ⊂ R2 be the set of all Brillouin lines relative to the lattice
Λ, i.e.

(1.2) MΛ =
⋃
g∈Λ∗

Lg,

7



8 1. INTRODUCTION AND DEFINITIONS

where Λ∗ = Λ− {0}.

In the case the flat torus, the focal decomposition can be identified with the set MΛ,
because the exponential map exp : T0 → T can be identified with the projection map π.
Therefore we call MΛ the focal decomposition of the torus. These Brillouin lines were
used by Brillouin in the quantum study of wave propagation in crystals and give rise to
the Brillouin zones, as follows.

Let `x be the open line segment connecting the origin 0 and x and let ¯̀
x be the closure

of `x also containing 0 and x.

Definition 1.4. Let ι, χ, µ : R2 → N be the indices defined by

ι(x) = # {g ∈ Λ | Lg ∩ `x 6= Ø}(1.3)

χ(x) = #
{
g ∈ Λ | Lg ∩ ¯̀

x 6= Ø
}

(1.4)
µ(x) = # {g ∈ Λ | Lg 3 x}(1.5)

where # means the cardinality of the set. The index µ(x) is referred to as the multiplicity
of x.

It follows that χ(x) = ι(x) + µ(x) + 1.

Definition 1.5 (Brillouin zone). The n-th Brillouin zone relative to a lattice Λ is the
set

(1.6) Bn = {x ∈ R2 | ι(x) ≤ n and χ(x) ≥ n+ 1}.

Notation 1. Although the Brillouin zones B and the torus T are defined relative to a
lattice Λ, we omit the subscripts referring to the lattice. The results will hold for any (but
fixed) lattice Λ, unless explicitly stated otherwise.

Example 1.6. In figure 1.1, we see the first 9 Brillouin zones, 0 through 8, relative to
Z2. The consecutive Brillouin zones are alternately shaded and unshaded.

Figure 1.1. The first 9 Brillouin zones relative to Z2 of Example 1.6.
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The topology of the decomposition MΛ contains information about the geometry of
the underlying torus. The main content of the rigidity theorem we prove here is that it
actually uniquely determines the geometry of the torus.

We say that the focal decompositions associated to two flat tori are equivalent if
there exists a homeomorphism between the corresponding tangent planes that maps the
decomposition associated to the one torus homeomorphically onto the decomposition of
the other.

Theorem 1.7. The focal decomposition of two tori are equivalent if and only if the
tori are conformally equivalent.

The idea to study the rigidity of 2-tori through focal decompositions is inspired by
Mostow’s rigidity theorem. An important ingredient in the proof of theorem 1.7 is the
asymptotic shape of Brillouin zones which, independent of the lattice, is a circle. This was
shown by Jones in [4]. Using a result from analytic number theory [5], we give bounds
on the distance of Bn from the origin and show that Bn is contained in an annulus with
decreasing modulus.

A classical result by Bieberbach [3], states that each zone is a fundamental domain
for the covering transformation. That is, each Brillouin zone gives rise to a tiling of the
torus, which we call a torus puzzle. To every torus, we can associate a sequence of these
torus puzzles. We show that, arbitrarily close to a given lattice, there exists a lattice such
that the sequence of torus puzzles of the associated tori will be distinct, in the sense that
there exists at least one pair of torus puzzles that are not homeomorphic.

We define an equivalence relation between torus puzzles, which in addition to requiring
the puzzles to be homeomorphic, involves a fixed-point condition. We show that under
this equivalence, generically, the torus puzzles relative to two tori are pairwise equivalent
if and only if the tori are conformally equivalent. We use theorem 1.7 to prove this result.





CHAPTER 2

Torus Puzzles

In this chapter, we study the topological properties of Bn and show that the projection
of every Bn tiles the torus. Such a tiling of the torus is called a torus puzzle. Our special
interest lies in determining what combinatorial information about the set MΛ is encoded
in these torus puzzles.

Lemma 2.1. Let x ∈ R2, then

(2.1) ι(x) = #
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
.

Figure 2.1. Proof of Lemma 2.1

Proof. Let x ∈ R2 with index ι(x). We let D1 = D(0, |x|), be the open disc with
center 0 and radius |x| and similarly D2 = D(x, |x|) see figure 2.1.
We show that for g ∈ Λ the following are equivalent:

1) `x ∩ Lg 6= Ø,
2) g ∈ Λ ∩D2,
3) yg = x− g ∈ D1.

1) ⇔ 2). Suppose `x∩Lg 6= Ø for some g ∈ Λ. Let `x∩Lg = {xg}, then |xg| < |x|. Let Cg
be the circle centered at 1

2xg and radius ρg = 1
2 |xg|. Let lg be the line segment connecting

the origin O and g and let zg = 1
2g. Since Lg is perpendicular to lg, zg ∈ lg ∩ Cg. Since

|xg| < |x| and ρg <
1
2 |x|, by congruence, g ∈ D2 ∩ Λ. Reading the previous arguments

backwards yields the other direction.
2) ⇔ 3). By symmetry, α ∈ D2 if and only if x− α ∈ D1.

11



12 2. TORUS PUZZLES

Hence, there is a one-to-one correspondence between the set of points{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
and the set of Brillouin lines Lg such that `x ∩ Lg 6= Ø and this proves the lemma. �

Definition 2.2. For x ∈ R2, let

(2.2) O(x) =
{
y ∈ R2 | π(x) = π(y), |x| = |y|

}
.

and σ : R2 → N, σ(x) = #O(x).

Lemma 2.3. Let x ∈ Bn and v = π(x). Then σ(x) = µ(x) + 1 and ι, σ, χ and µ are
constant on O(x). Moreover,

(2.3) π−1(v) ∩Bn = O(x).

Proof. In the notation of the proof of lemma 2.1, let Ci = ∂Di for i = 1, 2. If x ∈ Lg,
then g ∈ C2 and yg = x − g ∈ C1. Hence yg ∈ O(x). Moreover, if Lg 6= Lg′ , i.e. g 6= g′,
then yg 6= yg′ . Conversely, every y ∈ O(x) gives rise to a Lg such that x ∈ Lg; because
π(x) = π(y), x − y = g for some g ∈ Λ and it is easily seen that x ∈ Lg. So σ(x) equals
the number of points yg plus x itself, hence σ(x) = µ(x) + 1.

Since σ(x) = σ(y) for all y ∈ O(x), µ is constant on O(x). From lemma 2.1 it is easy
to see that ι(x) (and hence χ(x)) is constant on O(x).

To prove (2.3), first note that |x′| = |x| for all x′ ∈ π−1(v) ∩ Bn. For suppose that
x, x′ ∈ π−1(v) ∩ Bn but |x| 6= |x′|, say |x| > |x′|. Then, by lemma 2.1, ι(x) ≥ χ(x′) > n,
a contradiction. And since the indices ι(x) and χ(x) are constant on O(x), it follows that
y ∈ Bn for all y ∈ O(x). �

Example 2.4. Let Λ = Z2 and N ∈ N with prime factorisation

N = 2α
k∏
i=1

pβi
i

l∏
j=1

q
γj

j ,

where pi ≡ 1 mod 4 and qj ≡ 3 mod 4. Denote R(N) be the number of solutions in Z2

of n2 + m2 = N . If all γj are even, which is the case for N = |g|2 for g ∈ Z2, then
R(N) = 4

∏k
i=1(1 + βi). See for instance [6] for this result. Thus we have σ(g) = R(|g|2).

Lemma 2.5. Bn is closed.

Proof. Let x ∈ Bc
n, the complement of Bn. Then either ι(x) ≥ n + 1 or χ(x) ≤ n.

The latter is equivalent to ι(x)+σ(x) ≤ n. In both cases, because Λ and hence π−1(v) with
v = π(x) is discrete, there exists an open neighbourhood around x for which ι(x) ≥ n+ 1
or ι(x)+σ(x) ≤ n respectively, which shows that the complement of Bn is open and hence
Bn is closed. �

Lemma 2.6. Let x ∈ Bn, then x ∈ Int(Bn) if and only if σ(x) = 1. Consequently,

(2.4) MΛ =
⋃
g∈Λ

Lg =
⋃
n∈N

∂Bn.

Proof. If σ(x) = 1, then ι(x) = n and µ(x) = 0. Therefore, there exists a small
neighbourhood around x such that ι(y) = n and µ(y) = 0. Thus y ∈ Bn for all y in this
neighbourhood, so x ∈ Int(Bn). Conversely, if σ(x) ≥ 2, then µ(x) ≥ 1. Let y = tx with
t = 1 + ε. Then ι(y) ≥ χ(x) ≥ n+ 1 for all ε > 0, hence y ∈ Bc

n and thus x ∈ ∂Bn.
Since σ(x) = µ(x) + 1, x ∈ ∂Bn if and only if µ(x) ≥ 1, hence (2.4) follows. �
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If x ∈ Int(Bn), then ι(x) = n and χ(x) = n+ 1. This yields that the zones tile R2 in
the sense that

(2.5)
⋃
n∈N

Bn = R2 and Int(Bn) ∩ Int(Bm) = Ø if n 6= m.

Definition 2.7. Define

(2.6) ∂−n = Bn ∩Bn−1 and ∂+
n = Bn ∩Bn+1.

If x ∈ ∂Bn, then since σ(x) ≥ 2 (or equivalently µ(x) ≥ 1), either ι(x) ≤ n − 1
and χ(x) ≥ n + 1 or ι(x) = n and χ(x) ≥ n + 2, corresponding to x ∈ Bn ∩ Bn−1 and
x ∈ Bn ∩Bn+1 respectively. It follows that

(2.7) ∂Bn = ∂−n ∪ ∂+
n

We denote ∂n = ∂−n ∪ ∂+
n and (2.4) rewrites as

(2.8) MΛ =
⋃
n∈N

∂n =
⋃
n∈N

∂+
n ,

since ∂+
n = ∂−n+1 and ∂−0 = Ø.

Topological properties of Brillouin zones are given in the next proposition, see for
instance [4].

Proposition 2.8 (Topology of Bn). For every Brillouin zone Bn, the following holds:
(i) Bn is compact and,
(ii) ∂±n ' S1 and Bn is path-connected.

Although Bn is connected, the interior of Bn is in general not connected. Let {bjn}j∈Jn

be the set of connected components of Int(Bn), then

(2.9)
⋃
j∈Jn

bjn = Int(Bn).

The set Bj
n = bjn ∪ ∂bjn is called a subzone1 and we have

(2.10) Bn =
⋃
j∈Jn

Bj
n.

Lemma 2.9. Bn is a finite union of convex polygons.

Proof. Because Λ is discrete only finitely many Brillouin lines can meet Bn because
Bn is bounded. This yields that every Bn consists of finitely many subzones and that the
boundary of a subzone is comprised of finitely many edges, so every subzone is a polygon.

To prove convexity, notice that every Brillouin line Lg divides R2 into two half planes
H i
g, i = 1, 2. Since MΛ =

⋃
g∈Λ∗

Lg =
⋃
n∈N ∂n, every subzone is the intersection of finitely

many convex half planes and thus is convex. �

A point x ∈ MΛ is called a vertex if µ(x) ≥ 2. The connected components of {x ∈
MΛ | µ(x) = 1} are the edges of MΛ.

Let Pn =
⋃
j∈Jn

Pjn with Pjn = π(Bj
n). Moreover, let ∂±Pn = π(∂±n ) and ∂Pn = π(∂n).

We define ẽ ⊂ T to be an edge if e ⊂ MΛ is an edge and ẽ = π(e). Similarly, we
say a region P̃ ⊂ T is a convex polygon on the torus, if P ⊂ R2 is a convex polygon and
π(P ) = P̃ and π injective on Int(P ).

1Subzones are also referred to as Landsberg subzones.
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Let {Pi}i∈I be a finite family of polygons on R2 and v ∈ T such that v ∈ P̃i = π(Pi)
for all i ∈ I. Then v is called a vertex if π−1(v) ∩ Pi is a vertex of Pi for every i ∈ I. We
call an edge ẽ ⊂ ∂Pn a plus edge if ẽ ⊂ ∂+Pn and a minus edge if ẽ ⊂ ∂−Pn.

Definition 2.10 (Torus Puzzle). A torus puzzle is a finite family of convex polygons,
{P j}j∈Jn with P j ⊂ T, such that

(i) the union of the polygons covers the torus,
(ii) if i 6= j, then the intersection P i ∩ P j is either empty, or a single vertex of both

P i and P j or a single edge of both.

When the polygons are all triangles, the notion of a torus puzzle coincides with that
of a triangulation.

Theorem 2.11. Every Pn is a torus puzzle.

Proof. By lemma 2.1, {Bj
n}j∈Jn is a finite family of convex polygons on R2, hence

{Pjn}j∈Jn is a finite family of convex polygons on T. To show that π : Bn → T is surjective,
let v ∈ T and consider π−1(v). Because Λ is discrete, π−1(v) is discrete. Hence, there
exists an x ∈ π−1(v) such that

#
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
≤ n

and
#

{
y ∈ R2 | π(y) = π(x) and |y| ≤ |x|

}
≥ n+ 1.

We have shown this to be equivalent to ι(x) ≤ n and χ(x) ≥ n + 1, hence x ∈ Bn. This
shows that {Pjn}j∈Jn satisfies property (i) of definition 2.10.

To prove Pn satisfies part (ii), π : Int(Bn) → T is injective since π−1(v) ∩ Bn = O(x)
and σ(x) = 1 if and only if x ∈ Int(Bn). This shows that Int(P in)∩ Int(Pjn) = Ø if i 6= j for
i, j ∈ Jn. Let x ∈ ∂n and π(x) = v. A point x ∈ ∂n is a vertex if and only if µ(x) ≥ 2. By
lemma 2.3, for all points y ∈ O(x), µ(y) = µ(x) and these are exactly all the points in ∂n
that are mapped to v, hence v is a vertex. Conversely, if x is not a vertex then µ(x) = 1
and µ(y) = 1 for the other y ∈ O(x) so y is not a vertex and this proves {Pjn}j∈Jn satisfies
part (ii) of definition 2.10. �

It particular, this shows that Bn is a fundamental domain for Λ. That is, Bn is closed
by proposition 2.8 (i) and, moreover,⋃

g∈Λ

gBn = π−1(π(Bn)) = π−1(Pn) = R2

and
Int(gBn) ∩ Int(g′Bn) = Ø if g 6= g′.

The first equality follows from surjectivity of π : Bn → T and the second by injectivity
of π : Int(Bn) → T. This result was first shown by Bieberbach in [3] and later by Jones
in [4]. It also follows that

Corollary 2.12. The measure of Bn is equal for all n ∈ N.

Proof. Since π is an isometry on every element of {Int(Bj
n)}j∈Jn and since the mea-

sure of ∂n and hence ∂Pn is zero, the measure of Bn equals the measure of Pn which in
turn is equal to the measure of T. �

Example 2.13. Figure 2.2 shows the puzzle P4 (right figure) relative to Z2. The left
and middle figure shows the decomposition of ∂P4 into ∂−P4 and ∂+P4 respectively.
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Figure 2.2. The puzzle P4 of Example 2.13.

See Appendix A for the puzzles Pn, n = 1, ..., 8 relative to Z2, cf. example 1.6.

Let x ∈ ∂−n ∩ ∂+
n , or equivalently, x ∈ Bn−1 ∩ Bn ∩ Bn+1. Then ι(x) ≤ n − 1 and

χ(x) ≥ n+ 2. Hence, µ(x) ≥ 2. Every x ∈ ∂−n ∩ ∂+
n is a vertex.

Definition 2.14. Let

(2.11) In = {x ∈ R2 | x ∈ ∂−n ∩ ∂+
n },

the set of intermediate vertices of ∂n and let γ±n = ∂±n − In. The vertices of γ±n are called
plus and minus vertices respectively, see figure 2.3.

Since the union of In and γ±n is ∂n, every vertex of ∂n is either a plus, minus or
intermediate vertex.

Figure 2.3. An intermediate vertex (left) and a plus/minus vertex (right)
of ∂n.

Lemma 2.15. Let x ∈ ∂n a vertex. If x is a plus, minus or intermediate vertex, then
y is plus, minus or intermediate vertex respectively for all y ∈ O(x).

Proof. For x ∈ In we have ι(x) ≤ n − 1 and χ(x) ≥ n + 2. If x ∈ γ+
n , then

x ∈ Bn ∩ Bn+1 but x /∈ Bn−1, hence ι(x) = n and χ(x) ≥ n + 2. For a vertex we must
have µ(x) ≥ 2 hence a vertex in γ+

n satisfies ι(x) = n and χ(x) ≥ n + 3. Similarly, if
x ∈ γ−n , then ι(x) ≤ n− 1 and χ(x) = n+ 1. So a vertex in γ−n satisfies ι(x) ≤ n− 2 and
χ(x) = n+ 1.

Since these conditions are mutually exclusive, and, by lemma 2.3, ι(x) = ι(y) and
χ(x) = χ(y) for all y ∈ O(x), the result follows. �

Definition 2.16. Let v be a vertex of Pn, then v is a vertex of type I if all edges
incident to v are plus edges and v is a vertex of type II if all edges incident to v are minus
edges. Finally, a vertex v is a vertex of type III, if the edges incident to v are alternately
plus and minus edges.



16 2. TORUS PUZZLES

Definition 2.17. Let x ∈ ∂n and v = π(x) ∈ ∂Pn. We define µ̃(v) to be the number
of edges that are locally incident to v. If x lies on the interior of an edge, we define
µ̃(v) = 1.

By locally in definition 2.17 we mean the number of edges incident to a vertex in a
small neighbourhood, since an edge can have its vertices identified on the torus, see for
instance the puzzles P1,P6 and P7 relative to Z2 in Appendix A.

If we set Ĩn = π(In), then

Lemma 2.18.

(2.12) ∂−Pn ∩ ∂+Pn = Ĩn

Proof. We need to show that π(γ−n ) ∩ π(γ+
n ) = Ø. Let v ∈ T and x ∈ γ+

n such that
π(x) = v. Since π−1(v) ∩Bn = O(x) by lemma 2.3 and y ∈ γ±n for all y ∈ O(x) if x ∈ γ±n
by the proof of lemma 2.15, we have π(γ−n ) ∩ π(γ+

n ) = Ø and hence (2.12). �

The following proposition relates the combinatorial properties of Bn to that of the
torus puzzles Pn on the torus T.

Proposition 2.19. Let x ∈ ∂n be a vertex and v = π(x). If x is a plus, minus or
intermediate vertex, then v is of type I, II or III respectively and

µ̃(v) = µ(x) + 1 if v is of type I or II,(i)

µ̃(v) = 2µ(x) + 2 if v is of type III.(ii)

Proof. By lemma 2.15, if x is a plus or minus or intermediate vertex, then all vertices
in O(x) are plus or minus vertices respectively. If x is a plus or minus vertex, it is clear that
the corresponding vertex v is of type I or II respectively. So consider the case where O(x)
consists of all intermediate vertices. For every subzone Bj

n sharing the intermediate vertex
y ∈ O(x), the two edges contained in ∂Bj

n incident to y consists of one edge contained
in ∂−n and one edge contained in ∂+

n , cf. figure 2.3. Hence, for every Pjn that shares the
common vertex v, there is one minus edge and one plus edge incident to v. By lemma 2.18,
∂−Pn ∩ ∂+Pn = Ĩn, so the minus edge incident to v of one subzone P in is identified to the
minus edge incident to v of the neighbouring subzone Pjn for certain i, j ∈ Jn. Similarly,
plus edges are mapped to plus edges, thus the edges incident to v are alternately plus and
minus edges, so v is of type III.

To prove the second statement, note that if v is of type I or II, then to every vertex
y ∈ O(x) there are exactly two plus or minus edges of ∂Bj

n for of some j ∈ J incident to y.
Exactly 2σ(x) = 2(µ(x) + 1) plus or minus edges are mapped to T and are incident to v.
For any edge ẽ ⊂ ∂−Pn, π−1(ẽ) ∩ ∂−n = e ∪ e′ for certain edges e, e′ ⊂ ∂−n by theorem 2.11
and this yields that µ̃(v) = σ(x) = µ(x) + 1 which proves (i). If v is of type III, then
incident to every vertex y ∈ O(x) are exactly two plus edges and two minus edges of ∂n.
By similar reasoning, we have that µ̃(v) = 2σ(x) = 2µ(x) + 2 and proves (ii). �

Definition 2.20. A lattice Λ is in general position if the Brillouin lines of MΛ inter-
sect at most pairwise.

Almost all lattices are in general position, in the sense that the set of lattices in general
position has full measure in the set of all lattices. However, lattices not in general position
are also dense in this set, see [4].
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Example 2.21. Consider the following family of lattices

Λ(θ) = (1, 0)Z⊕ (cos θ, sin θ)Z,
with θ ∈ (0, π). It is clear that L(2,0) intersects (1, 0). Consider the points g1, g2 ∈ Λ(θ),

(2.13) g1 = (1 + cos θ, sin θ) and g2 = (1− cos θ,− sin θ).

An easy computation shows that both lines Lg1 en Lg2 intersect (1, 0). Hence, this family
of lattices is not in general position. In particular, the set of lattices not in general position
is uncountable.

We can write Λ = BZ2 with B ∈ GL(2,R). This matrix B gives rise to a (positive
definite) quadratic form induced by the positive definite matrix BtB. The Brillouin lines
relative to the Euclidean metric and the lattice Λ = BZ2 are identical to the Brillouin
lines relative to the lattice Z2 with the metric induced by the matrix BtB.

An interesting result, proved by Kupka, Peixoto and Pugh in [9], is the following
relation between the coefficients of a quadratic form and the notion of general position.

Theorem 2.22. If the coefficients a, b, c of the positive definite quadratic form Q are
rationally independent, then no three of its Brillouin lines meet at a common point.

It is understood that the Brillouin lines in theorem 2.22 are the Brillouin lines relative
to the metric induced by the quadratic form Q.

So if B =
(
a b
c d

)
∈ GL(2,R), then MΛ with Λ = BZ2 is in general position if the

coefficients a2 +c2, ab+cd and b2 +d2 are rationally independent. It is not known whether
the converse of theorem 2.22 holds.

Definition 2.23. Two puzzles Pn and P ′
n are homeomorphic if there exists a homeo-

morphism hn : T → T′ such that hn(∂Pn) = ∂P ′
n.

Proposition 2.24. Let Λ be in general position and Λ′ not in general position. Then
there exists an n ∈ N such that Pn and P ′

n are not homeomorphic.

Proof. By assumption, µ(x) = 2 for every vertex x ∈ MΛ, hence µ̃(u) = 2 + 1 = 3
or 2(2 + 1) = 6 for u = π(x) of type I/II or III respectively, for every vertex u of every
Pn by proposition 2.19. On the other hand, there exists at least two (antipodal) vertices
y ∈ MΛ′ for which µ(y) ≥ 3. For a certain n, y ∈ ∂′n is an intermediate vertex. Thus
µ̃(v) ≥ 2(3 + 1) = 8 for v = π′(y) ∈ P ′

n. Hence, these puzzles can’t be homeomorphic. �

Hence, arbitrarily close to a given lattice, there exists a lattice such that the torus
puzzles of the associated tori are not pairwise homeomorphic.





CHAPTER 3

Asymptotic Behaviour of Bn

In this chapter we study the behaviour of Bn for n → ∞. More precisely, we derive
bounds on the distance of Bn from the origin and show that Bn is contained in a circular
annulus with decreasing modulus. Consequently, Bn always becomes circular shaped,
independent of the underlying lattice.

If we let G be the set of all lattices in R2, then we define two lattices Λ,Λ′ ∈ G to be
conformally equivalent, Λ ∼ Λ′, if there exists a conformal matrix A,

(3.1) A = λ

(
cos θ − sin θ
sin θ cos θ

)
,

where λ > 0 and θ ∈ [0, π), such that Λ′ = A(Λ). We denote G = G/ ∼.

Remark 3.1. Note that A is orientation preserving and that A(Lg) = LA(g), hence

(3.2) A (MΛ) = MA(Λ).

Every lattice Λ ∈ G can be written as Λ = B(Z2) where

(3.3) B =
(

1 α
0 β

)
with (α, β) ∈ H = (−∞,∞)× (0,∞) ⊂ R2, the upper half plane. In other words, a lattice
in G has the form

Λ = (1, 0)Z⊕ (α, β)Z.
By modular symmetry, this representation is not unique. That is, if two lattices Λ,Λ′ are
generated by the vectors (ω1, ω2) and (ω′1, ω

′
2) then Λ = Λ′ if(

a b
c d

) (
ω1

ω2

)
=

(
ω′1
ω′2

)
,

with
(
a b
c d

)
∈ SL(2,Z). For Λ,Λ′ ∈ G, we have Λ = Λ′ if (and only if) the associated

matrix has the form
(

1 0
n 1

)
with n ∈ Z. Hence, the points (α + n, β) ∈ H for n ∈ Z all

represent the same lattice.

If x ∈ Int(Bn), then ι(x) = n and by lemma 2.1,

ι(x) = #
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
= n,

which we proved to be equivalent to

(3.4) # {g | g ∈ Λ ∩D(x, |x|)} = n.

The following (classical) result is essential in this respect, the proof of which can be found
in [5].
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Theorem 3.1 (Van der Corput, 1920). Let D be a region bounded by a convex simple
closed curve, piecewise twice differentiable, with radius of curvature bounded above by R.
The discrepancy ∆ of D, the difference between the number of integer points in D and the
area of D, satisfies

(3.5) ∆ = O(R2/3)

Theorem 3.1 gives rise to the following bounds on the distance of a point x ∈ Bn from
the origin.

Theorem 3.2. Let Λ = B(Z2) where B =
(

1 α
0 β

)
, (α, β) ∈ H. Then there exists a

constant KΛ > 0 depending only on the lattice Λ such that for x ∈ Bn and n ≥ 1,

(3.6) |x| ∈

[(
βn

π

)1/2

− KΛ

n1/6
,

(
βn

π

)1/2

+
KΛ

n1/6

]
.

Proof. First let x ∈ Int(Bn). Since det(B) = β 6= 0, B is invertible. Let Cx =
∂D(x, |x|), then Ex := B−1(Cx) is an ellipse and the region bounded by this ellipse satisfies
the requirements of theorem 3.1. The radius of curvature of an ellipse with major and
minor axes given by a and b respectively is bounded from above by R = a2

b . Let Rx
denote the upper bound on the radius of curvature of Ex and let tn(x) = (πβ )1/2|x|. The
(semi)axes of Ex are proportional to |x| and hence to tn(x), thus Rx is proportional to
tn(x) where the constant of proportionality depends only the lattice Λ and

(3.7) |B−1(D(x, |x|))| = det(B−1)π|x|2 =
π

β
|x|2 = tn(x)2.

From equation (3.4), it follows that

(3.8) #
{
g | g ∈ Z2 ∩B−1(D(x, |x|))

}
= n,

so by theorem 3.1 and (3.7)

(3.9) n = |B−1(D(x, |x|))|+O(tn(x)2/3) = tn(x)2 +O(tn(x)2/3).

Put tn(x) =
√
n (1 + zn(x)), with zn(x) the error term. Since tn(x) > 0, 1 + zn(x) > 0

and by (3.9),

(3.10) |n− n (1 + zn(x))
2 | ≤ CΛ(

√
n (1 + zn(x)))2/3,

for some constant CΛ > 0 depending only on the lattice Λ. Then (3.10) for n ≥ 1, after
some manipulation, reads

(3.11) |zn(x)| ≤
CΛ

n2/3

(1 + zn(x))2/3

zn(x) + 2
.

For zn ∈ (−1,∞), 0 < (1+zn)2/3

zn+2 ≤ 22/3

3 , so (3.11) reduces to |zn(x)| ≤
C′

Λ

n2/3 , where

C ′
Λ = 22/3

3 CΛ yielding

(3.12) |zn(x)|
√
n ≤

C ′
Λ

n2/3

√
n =

C ′
Λ

n1/6
.

Since tn(x) = (πβ )1/2|x| the result follows for all x ∈ Int(Bn) with KΛ = (βπ )1/2C ′
Λ. Letting

x approach ∂n, we see that these bounds are in fact valid for all x ∈ Bn. �

Remark 3.2. Note that det(B) = β is independent of the representation of the lattice,
so the statement of the theorem 3.2 is well-defined.



CHAPTER 4

Rigidity of MΛ

In this chapter we prove our main result that the focal decomposition MΛ is rigid in
the sense that MΛ and MΛ′ are homeomorphic if and only if Λ and Λ′ are conformally
equivalent.

Definition 4.1. We define MΛ 'MΛ′, if there exists an orientation preserving home-
omorphism

(4.1) ϕ : R2 −→ R2 such that ϕ(MΛ) = MΛ′ .

Notation 2. In order to distinguish between the Brillouin zones relative to Λ and Λ′,
we denote these Bn and B′

n respectively.

Theorem 4.2 (Rigidity Theorem). MΛ 'MΛ′ if and only if Λ and Λ′ are conformally
equivalent.

For the proof of the theorem, we need the following lemmas.

Lemma 4.3. Let ϕ be as in definition 4.1. Then ϕ induces a bijection ψ : Λ∗ → Λ′
∗,

defined by

(4.2) ϕ(Lg) = Lψ(g) = Lg′ .

Proof. Because ϕ is a homeomorphism, µ(x) = µ(x′) where x, x′ ∈ R2, ϕ(x) = x′. In
particular, ϕ maps vertices to vertices. Consider a vertex x that is the intersection point
of m Brillouin lines Lgi , gi ∈ Λ for i = 1, ...,m, so µ(x) = m.

If ϕ(x) = x′, then x′ is the intersection point of n Brillouin lines Lg′j , g
′
j ∈ Λ′, j =

1, ...,m. Let g = gi for some i = 1, ...,m. The plane minus Lg divides R2 into two
connected half-planes H1

g and H2
g , i.e. R2\Lg = H1

g ∪H2
g . Locally, there are exactly m−1

edges e1k incident to x such that e1k ⊂ H1
g and m− 1 edges e2k incident to x with e2k ⊂ H2

g .
Hence, ϕ(H1

g ) contains m − 1 edges ẽ1k = ϕ(e1k) incident to x′ and ϕ(H2
g ) contains m − 1

edges ẽ2k = ϕ(e2k) incident to x′. So locally the image ϕ(Lg) goes across x′ as a straight
line segment. Since this holds for every vertex, ϕ(Lg) ⊆ Lg′ for some g′ = g′j ∈ Λ′

∗. The
same arguments show that ϕ−1(Lg′) ⊆ Lg, thus ϕ(Lg) = Lg′ .

Since ϕ is a homeomorphism, it is seen that the map ψ : Λ∗ → Λ′
∗ defined by (4.2) is

a bijection and this concludes the proof. �

Lemma 4.4. Given ϕ as in definition 4.1. There exists a uniform N ∈ N such that, if
x ∈ Int(Bn), i.e. ι(x) = n, then n−N ≤ ι(x′) ≤ n+N

Proof. Let x ∈ Int(Bn), then ι(x) = n, i.e. there are n lines Lg such that Lg∩`x 6= Ø.
Let x′ = ϕ(x). By lemma 4.3, ϕ(Lg) = Lg′ , with g ∈ Λ∗ and g′ ∈ Λ′

∗. Let γ = ϕ(`x),
then γ is a continuous curve between ϕ(0) and x′. Every Lgi , gi ∈ Λ∗, i = 1, ..., n has
exactly one point of intersection with `x and is transversal to `x. Hence there are exactly
n Brillouin lines Lg′j , g

′
j ∈ Λ′

∗, j = 1, ..., n and every such line has exactly one point of
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22 4. RIGIDITY OF MΛ

intersection with γ. Moreover, because Lgi are transversal to `x for all i = 1, ..., n, Lg′j are
transversal to γ for all j = 1, ..., n.

Let D be the disc D(O,R) with R = |ϕ(0)| < ∞. The curve γ can have (multiple)
intersection points with `x′ and γ meets `x′ at the point x′, see figure 4.1.

Figure 4.1. Proof of Lemma 4.4.

Suppose γ has intersection points with `x′ and let a, b be two consecutive intersection
points. Let S be the Jordan domain enclosed by `x′ and γ between a and b. If a Brillouin
line Lg′1 , g

′
1 ∈ Λ′

∗, enters S by crossing γ, then it has to leave S through `x′ , since Lg′1
has only one point of intersection with γ. Suppose however that a line Lg2 intersects `x,
but that the image Lg′2 does not intersect `x′ . In this case, the line Lg′2 has to escape
through the disc D. But because at most finitely many Brillouin lines can meet any
bounded subset of R2, the number of Brillouin lines that can escape through the disc D
is uniformly bounded by a certain N ∈ N. Conversely, there are lines that could intersect
with `x′ , but not with γ. Again, since ι(ϕ(0)) ≤ N , this number of lines is uniformly
bounded by N . Hence ι(x′) = n + ι(ϕ(0)) ≤ n + N . Hence, if ι(x) = n and ϕ(x) = x′,
then n−N ≤ ι(x′) ≤ n+N . �

Let Bg be the bundle of Brillouin lines consisting of all Brillouin lines parallel to Lg.
The Brillouin lines in a bundle are parallel, so by lemma 4.3 and injectivity of ϕ, we see
that bundles are mapped to bundles,

(4.3) ϕ(Bg) = Bg′ where g′ = ψ(g).

We call an element g that is the generator of the subgroup formed by all lattice points
on the line through 0 and g the generator of the bundle Bg.

Lemma 4.5. Let ϕ be as in definition 4.1, then

ϕ(x) = Q(x) + δ(x),

with Q linear and |δ(x)| ≤ K for all x ∈ R2 for some K > 0.

Proof. Label the Brillouin lines in a bundle Bg 1, 2, 3, ... where the two (on either
side of the origin) Brillouin lines closest to the origin are labeled 1, the lines second closest
to the origin 2 and so forth and then let B̃g denote the bundle with all even-labeled lines
deleted.

The union of two such bundles B̃g1 ∪ B̃g2 , with g1, g2 ∈ Λ∗ independent, tile R2 into
identical parallellograms. Now, ϕ maps these bundles B̃gi , i = 1, 2 bijectively onto two
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bundles B̃g′1 and B̃g′2 with g′i = ψ(gi) ∈ Λ′
∗, i = 1, 2 independent. These two bundles

tile R2 into parallellograms with certain diameter D. Without loss of generality, we may
assume that the the lattice points g1 and g′1 lie on the x−axis and that if g2 lies in the
upper half plane, then g′2 lies in the upper half plane. Since ϕ is a homeomorphism, it
sends these parallellograms to the corresponding parallellograms. Moreover, because ϕ
is orientation preserving, it sends the left and right (vertical) edges of a parallellogram
to the left and right (vertical) edges of the image parallellogram. Similarly, it sends the
upper and lower edges to the corresponding upper and lower image edges. There exists a
non-singular linear map Q such that Q(B̃g1 ∪ B̃g2) = B̃g′1 ∪ B̃g′2 .

If we write ϕ(x) = Q(x)+(ϕ(x)−Q(x)) = Q(x)+δ(x), then, up to the fixed translation
ϕ(0), δ(x) is uniformly bounded by D. Setting K = D+|ϕ(0)|, we have that |δ(x)| ≤ K. �

Proof of theorem 4.2. The if part easily follows, because if Λ′ = A(Λ) with A
conformal, then A(MΛ) = MΛ′ , hence MΛ 'MΛ′ with ϕ = A.

To prove the only if part, by lemma 4.5, the linear part |Q(x)| → ∞ for |x| → ∞.
Since δ(x) is bounded, |δ(x)|

|Q(x)| → 0 for |x| → ∞. Thus for |x| → ∞, the behaviour of ϕ is
completely determined by Q. By theorem 3.2, Bn converges to a large circle, for n→∞.
This implies in turn, by lemma 4.4, that ϕ(Bn) converges to a large circle for n → ∞.
Hence Q maps circles to circles. The only possible non-singular linear map that maps
circles is to circles is a rotation or reflection combined with dilatation. A reflection reverses
orientation, and ϕ is orientation preserving if and only if Q is orientation preserving. So
Q cannot be a reflection. Hence, Q is a combination of a rotation and dilatation, that is,
Q is conformal.

We show that ϕ(MΛ) = Q(MΛ) by showing that ϕ(Bg) = Q(Bg) for every bundle.
There exists a conformal map A = λR(θ) with λ 6= 0 and R(θ) a rotation, such that
ϕ(Bg) = A(Q(Bg)). We claim that θ = 0 (mod 2π) and λ = 1, i.e. A = Id. First suppose
that θ 6= 0. Then Q(Lg) and ϕ(Lg) with Lg ∈ Bg are non-parallel lines in R2 and hence
|ϕ(x) −Q(x)| > K for x ∈ Lg and |x| sufficiently large, contradicting the uniform bound
on δ(x) we found in lemma 4.5. To show that λ = 1, consider the points xk = 1

2gk ∈ Lgk,
k ∈ Z∗. By what we just showed, Q(g) a multiple of the vector g′ and since Q is linear,
Q(xk) = 1

2kQ(g). The Brillouin lines in a bundle are mapped by ϕ in a bijective and order
preserving manner to the image bundle Bg′ , hence ϕ(xk) ∈ Lg′(k+m) for some fixed m ∈ Z.
Now, if λ 6= 1, we may assume that λ = 1 + ε with ε > 0. Let K = |φ(x1)−Q(x1)| ≤ K,
then |φ(xk) − Q(xk)| ≥ |K + kε| > K for |k|, or equivalently |xk|, large enough again
contradicting the uniform bound on δ(x).

Hence A = Id and it follows that

ϕ(MΛ) = Q(MΛ) = MQ(Λ) = MΛ′ .

Thus Λ′ = Q(Λ), so Λ ∼ Λ′ and this proves the theorem. �





CHAPTER 5

Rigidity of Torus Puzzles

Next we study the rigidity of torus puzzles. We define an equivalence relation on torus
puzzles and show that, for almost all lattices, the torus puzzles relative to two lattices
are pairwise equivalent if and only if the lattices are conformally equivalent. We use the
rigidity of MΛ to prove this result.

Let τ : R2 → R2, τ(x) = −x be the antipodal map. By symmetry, τ(MΛ) = MΛ. Let
τ̃ : T → T be the map that satisfies π ◦ τ = τ̃ ◦ π. Let Λ = (1, 0)Z⊕ (α, β)Z ∈ G. Denote
symbolically the points 0, 1, 2, 3 ∈ T defined by i = π(xi), i = 0, 1, 2, 3 with

(5.1) x0 = (1, 0), x1 =
1
2
(1, 0), x2 =

1
2
(α+ 1, β), x3 =

1
2
(α, β).

A straightforward computation shows that the points 0, 1, 2, 3 are the only fixed points
of τ̃ .

Example 5.1. Figure 5.1 depicts P1 for Λ = (1, 0)Z ⊕ (1
4 ,

3
4)Z. The associated fixed

points 0, 1, 2, 3 discussed above are indicated with dots.

Figure 5.1. Puzzle P1 of Example 5.1.

Remark 5.1. The points 0 and 1 are independent of the representation of the lattice,
but the the points 2 and 3 are not. If (α, β) represents Λ, then so does (α + n, β) with
n ∈ Z. The points 2 and 3 flip according to n being even or odd.

Lemma 5.2. Let Λ be in general position, then 0, 1 ∈ ∂Pn but the points are not
vertices, for all n ≥ 1. In addition

0 ∈ ∂−Pn and 1 ∈ ∂+Pn if n is even,(i)

0 ∈ ∂+Pn and 1 ∈ ∂−Pn if n is odd.(ii)

Proof. Let x ∈ π−1(0) or π−1(1). Because 0 and 1 are the fixed points of τ̃ , σ(x) is
always even. This yields that σ(x) = 2. Because if σ(x) > 2, i.e. σ(x) ≥ 4, then µ(x) ≥ 3,
contradicting the assumption that Λ is in general position. Hence, µ(x) = 1, hence these
points always lie on the interior of an edge of MΛ.
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26 5. RIGIDITY OF TORUS PUZZLES

We have that ∂−P0 = Ø and ∂+P0 = ∂P0. Since g ∈ L2g, ∂0 = ∂+
0 can’t contain a

lattice point, so 0 /∈ ∂P0. Since 1 6= 0 and 1 ∈ ∂P0, 1 ∈ ∂+P0. For n = 1, we have that
0 ∈ ∂+P1 and 1 ∈ ∂−P1. Repeating this argument shows, since these points always lie on
the interior of a edge and since ∂+Pn = ∂−Pn+1, that 0 and 1 are alternately and exactly
oppositely contained in ∂−Pn and ∂+Pn. By induction one finishes the argument. �

Definition 5.3 (Equivalence of Puzzles). Let Λ,Λ′ ∈ G. Two puzzles Pn,P ′
n are

equivalent, Pn ∼ P ′
n, if there exists an orientation preserving homeomorphism hn : T −→

T′ such that
a) hn(∂Pn) = ∂P ′

n and
b) hn(0) = 0′ and hn(1) = 1′.

Comparing P1 relative to Λ = (1, 0)Z ⊕ (1
4 ,

3
4)Z of example 5.1 and P1 relative to

Λ = Z2 of Appendix A, it is clear that these two puzzles are not equivalent (or even
homeomorphic).

Theorem 5.4. Let Λ,Λ′ ∈ G in general position, then Λ = Λ′ if and only if Pn ∼ P ′
n

for all n ∈ N.

The proof of theorem 5.4 will be preceded by the following two lemmas.

Notation 3. In what follows, if a map on R2 or T has the property that it maps
plus/minus or intermediate vertices (for a map on R2) or vertices of type I, II, or III (for
a map on T) to vertices of the same type, we say for short that the map preserves the
types of vertices.

Lemma 5.5. Let Λ,Λ′ in general position and Pn ∼ P ′
n, then

(5.2) hn(∂±Pn) = ∂±P ′
n.

Consequently, hn preserves the types of vertices.

Proof. Since µ̃(v) = 3 if v is of type I or II and µ̃(v) = 6 if v is of type III, hn maps
vertices of type III to vertices of type III, i.e. hn(Ĩn) = Ĩ ′n. Hence, hn(∂+Pn)∩hn(∂−Pn) =
∂+P ′

n ∩ ∂−P ′
n.

Suppose that e ∈ ∂+P ′
n is a plus edge and e′ = hn(e) ∈ ∂+P ′

n. Let ∂e = {u, v} and
∂e′ = {u′, v′} and suppose that hn(v) = v′. Then either

(i) v and v′ are of type I, hence every edge incident to v and v′ is a plus edge. Because
hn maps edges incident to v to edges incident to v′, hn(e) ⊂ ∂+P ′

n if (and only
if) e ⊂ ∂+Pn incident to v.

(ii) v and v′ are of type III, hence alternately 3 plus and 3 minus edges are incident to v
and v′. Label these edges ei, i = 1, .., 6 in clockwise order with e1 = e. Then e1, e3
and e5 are plus edges and e2, e4 and e6 are minus edges. Since hn(e1) = e′1 = e′

and hn is an orientation preserving homeomorphism, it preserves the order of
these edges, i.e. hn(ei) = e′i, where e′i, i = 1, ...6 are the edges incident to v′

labeled in clockwise order. Because e1 and e′1 by assumption are plus edges, we
see that e′i = hn(ei) ⊂ ∂+P ′

n if and only if ei ⊂ ∂+Pn.
In both cases the image under hn of the plus edges incident to v are plus edges incident

to v′. Because ∂+
n ' S1 is path-connected, ∂+Pn is path-connected. Taking a path through

∂+Pn, traversing every plus edge at least once (possibly some edges more than once), the
above arguments show that hn(∂+Pn) ⊆ ∂+P ′

n. Similarly, h−1
n (∂+P ′

n) ⊆ ∂+Pn. This
yields we have in fact hn(∂+Pn) = ∂+P ′

n and hence also hn(∂−Pn) = ∂−P ′
n.
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To finish the proof, we need to show that we indeed have a pair of plus edges e and
e′ = hn(e) to start with. If n is odd, then the edge e through 0 on T and e′ through
0′ on T′ is a plus edge by lemma 5.2. Since hn(0) = 0′, hn(e) = e′. Let ∂e = {u, v}
and ∂e′ = {u′, v′}. Since every torus puzzle is pointsymmetric with respect to 0, we may
assume that hn(v) = v′.

The proof for n is even is analogous; one replaces ∂+Pn by ∂−Pn and repeates the
above proof. �

Lemma 5.6. Let Λ,Λ′ ∈ G in general position and Pn ∼ P ′
n. Then there exist an

orientation preserving homeomorphism ϕn : Bn → B′
n such that

Bn B′
n

Pn P ′
n

ϕn

hn

π π′

-

-
? ?

Consequently, ϕn(∂±n ) = ∂′±n and ϕn preserves the types of vertices.

Proof. Write Bn =
⋃
j∈Jn

Bj
n and B′

n =
⋃
j′∈J ′

n
Bj′
n and let ϕn : Bn → B′

n a map.

Since Pn ∼ P ′
n, |Jn| = |J ′n|. Let hjn = hn|Int(Pjn) and ϕjn = ϕn|Int(Bj

n) with hjn(Int(Pjn)) =
Int(P ′

n
j′). By relabeling the indices, we may assume that the zones are indexed in clockwise

order and that j = j′. Since π : Int(Bn) → T is a bijection, the map

ϕjn : Int(Bj
n) → Int(B′

n
j), x 7→ π′

−1 (
hjn(π(x))

)
∩ Int(B′

n
j)

is a homeomorphism. We can extend ϕjn uniquely to a homeomorphism on the boundary
∂Bj

n, which we denote again ϕjn. Hence ϕjn : Bj
n → B′j

n is a homeomorphism for every
j ∈ Jn that by construction commutes with the given diagram. To show that ϕ : Bn → B′

n

is a homeomorphism, it suffices to show that, if ϕjn(B
j
n) = B′j

n, then ϕj+1
n (Bj+1

n ) = B′j+1
n .

That is, that ϕ preserves the clockwise ordering of the subzones. Orient ∂+
n and ∂′n

+

clockwise and consider a vertex x ∈ In; since µ(x) = 2 it is the intersection of two lines.
Consider the plus edge e of ∂Pjn incident to v = π(x).

Given the induced orientation of ∂+
n on ∂Pn, the

plus edge e′ of ∂+Pj+1
n incident to v is the first plus

edge clockwise to e, see the figure on the right1. Since
hn is orientation preserving and maps plus edges to
plus edges, it sends e to ẽ and e′ to ẽ′, with ẽ the plus
edge of ∂+Pn′j incident to v′ = hn(v) and ẽ′ the first
plus edge clockwise to ẽ incident to v′. By the induced
orientation on ∂P ′

n, ẽ
′ ⊂ ∂+P ′j+1

n incident to v′. So, hn(Pj+1
n ) = P ′

n
j+1 if hn(Pjn) = P ′

n
j .

Hence, ϕj+1
n (Bj+1

n ) = B′
n
j+1, if ϕjn(B

j
n) = B′

n
j . Thus ϕn : Bn → B′

n is a homeomorphism
and is orientation preserving since hn is orientation preserving. By lemma 5.5, hn(∂±Pn) =
∂±P ′

n, hence ϕn(∂±n ) = ∂′±n and it follows that ϕn preserves the types of vertices. �

Proof of theorem 5.4. If Pn ∼ P ′
n for all n ∈ N, then lemma 5.6 gives us a se-

quence of orientation preserving homeomorphisms {ϕn}n∈N, ϕn : Bn → B′
n, satisfying the

1We have indicated the plus and minus edges with solid and dashed lines respectively.
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properties as stated in the lemma. Since ∂+
n = ∂−n+1,

(5.3) ϕn(∂+
n ) = ϕn+1(∂+

n ).

We may assume that hn is piecewise linear on ∂Pn, i.e. linear on every edge of ∂Pn, for
all n ∈ N. This makes the maps ϕn piecewise linear on ∂n for all n ∈ N. Assume that n is
even, the case where n is odd is identical. Then 0 ∈ ∂+Pn and {±g} = π−1(0) ∩ ∂n and
{±g′} = π−1(0′) ∩ ∂′n for certain g ∈ Λ∗ and g′ ∈ Λ′

∗.
Since τ(Bn) = Bn, τ̃(Pn) = Pn. Hence, if hn satisfies definition 5.3, then so does

h̃n = hn ◦ τ̃ . The map ϕ̃n = ϕn ◦ τ is the homeomorphism that commutes with the
diagram of lemma 5.6 when one replaces hn by h̃n, so we may assume that if ϕn(g) = g′,
then ϕn+1(g) = g′. Combining this with piecewise linearity of ϕn on ∂n for all n ∈ N
and (5.3) we have that

(5.4) ϕn|∂+
n = ϕn+1|∂+

n .

This holds for all n ≥ 1. In fact, it also holds when n = 0, because ∂−0 = Ø thus
∂0 = ∂+

0 = ∂−1 . Hence, the homeomorphisms {ϕn}n∈N glue to a global homeomorphism
ϕ : R2 → R2, with the property that ϕ(MΛ) = MΛ′ , since MΛ =

⋃
n∈N ∂n =

⋃
n∈N ∂

+
n .

Hence MΛ 'MΛ′ . Since Λ,Λ′ ∈ G, Λ = Λ′ by theorem 4.2. �

In effect, theorem 5.4 states that, generically, the torus is uniquely determined by the
combinatorics of its puzzles {Pn}n∈N.



CHAPTER 6

Concluding Remarks

In this thesis, we completely focused on the focal decomposition of the tangent plane
R2 at the base point 0 of the torus T. The decomposition in this case is exactly described
by the Brillouin zones in R2 relative to the lattice group Λ, which is the deck group of
the torus, because the exponential map on the tangent plane can be identified with the
projection map on R2.

Closely related to the concept of focal decomposition, is the so-called spectrum of
a lattice. The spectrum of a lattice is a countable sequence of numbers {λνi}i∈N with
νi ∈ R+, νi+1 > νi and

λν = #{g ∈ Λ | |g| = ν},
if #{·} > 0. Two lattices are isospectral if λνi = λ′νi

for all i ∈ N. Milnor [10] showed in
1964, that in R16, there are non-isometric lattices that are isospectral.

The focal decomposition completely determines the spectrum of a lattice, but the con-
verse does not hold. Namely, the spectrum does not give information on the position of
the lattice points on the circles, whereas this information is encoded in the focal decom-
position of a lattice. In fact, this information strongly influences the shape of the set
MΛ.

The definition of the set MΛ can in a natural way be generalised for a lattice Λ of
rank n in Rn, as well as the notion of equivalence between two such sets. We make the
following

Conjecture 6.1. The rigidity theorem (theorem 4.2) generalizes to Rn. That is,
MΛ 'MΛ′ if and only if Λ and Λ′ are isometric.

Next we discuss how we can generalise the rigidity theorem to Riemannian manifolds.
First, we describe how to construct Brillouin zones in Riemannian manifolds. In [8],
it is shown that, under certain conditions, the construction of Brillouin zones can be
carried out with any discrete set S in a path-connected, proper metric space N1. Under
these conditions, the Brillouin zones are the closure of their interior and tile the space
N . Moreover, if S is a discrete group acting by isometries, then the Brillouin zones
form a k−fold cover of the fundamental domain for S. A manifold N and set S having
such properties is called Brillouin over S. Let Γ be a group acting on N . If Γ acts
discontinuously, then the orbit Sx of every x ∈ N is a discrete set. We say that N is
Brillouin over Γ is N is Brillouin over Sx for every x ∈ N .

Open Problem 6.2. Suppose we are given a Riemannian manifold (N, g) Brillouin
over Γ and Γ′. Suppose that, for every x ∈ N , the corresponding set of Brillouin ”lines”
relative to Sx and S′x are homeomorphic. What does this say about the groups Γ and Γ′?
And the corresponding spaces N/Γ and N/Γ′?

1The word proper here means that the metric d(x, ·) is a proper map for every x ∈ N .

29
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The focal decomposition of a Riemannian manifold (N, g) is defined as follows. Let
TN be the tangent bundle of N and exp : TN → N be the exponential map. Let v ∈ N
and x ∈ TvN . Define

σv(x) = #{y ∈ TvN | expv(y) = expv(x) and ‖y‖ = ‖x‖}
and

Σi = {(v, x) ∈ TN | σv(x) = i}.
The decomposition of TN into the sets {Σi}∞i=0 is the focal decomposition of N . Given
two Riemannian manifolds M and N , we say two decompositions are equivalent, if there
exists a homeomorphism ϕ : TN → TM such that ϕ(Σi) = Σ′

i, i = 1, 2, 3, ...,∞.

In the case of a flat torus, the focal decomposition is independent of the base point.
Hence, the decomposition of the tangent bundle in this case is completely determined by
the decomposition of the tangent plane at one base point.

Open Problem 6.3. Given two Riemannian manifolds M and N with equivalent focal
decompositions. What can we say about the manifolds M and N?

Theorem 4.2 provides an answer to both open problems stated above in a specific
case.
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APPENDIX A

Puzzles relative to Λ = Z2

In figure A.1 we see the first 8 puzzles Pn relative to Z2. The left and middle pictures
are the minus and plus boundaries ∂−Pn and ∂+Pn respectively and the right pictures the
puzzles Pn.

Figure A.1. The first 8 puzzles relative to Z2.
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