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1 Introduction

1.1 Elliptic Curves

In general, an elliptic curve is an algebraic curve of genus one with a distin-
guished point O on it. Here, it will be enough to think of an equation

v =23 +axr+b

with a, b in a field k of characteristic not 2 or 3, such that 16a> + 27b% # 0.
Such an equation defines a set E(K) over any field extension K of k, namely
the set of (z,y) € K? that satisfy the equation, together with a point O at
infinity.

The main tool for analyzing the arithmetic of such curves, i.e. the existence
of points other than O in E(K) for different K, is the fact that the set of
points on E forms an abelian group. The group law is defined geometrically,
as illustrated in the following picture:

Figure 1: The group law on an elliptic curve.

Given two points P and @ on the elliptic curve, we can consider a straight
line through them, which will intersect the curve in a third point. Then we
take the reflection of that point in the z-axis as the sum of P and @). To get
P+ P, we do the same for the tangent line at P, which will also intersect the
curve in one other point. Finally — P is the reflection of P in the z-axis. In
this way we get a group law, with the point at infinity as the zero element.
It has the property that if P and @ are in E(K), then so are P + @ and
—P, making every F(K) into a group.

Most of the research on elliptic curves has focused on the algebraic structure
of this group, called the Mordell-Weil group. The name comes from the most
important result on it:



Theorem 1 (Mordell-Weil). For any elliptic curve E defined over a number
field K, the Mordell-Weil group E(K) is finitely generated.

This implies that E(K) & Z" @ E\oy, where Ei, is the finite group of

all points of finite order, and r is called the rank of the group E(K). The
structure of Fi,, is usually easy to determine. Over Q, for instance, Mazur
proved that its order is at most 16, and the torsion points can be efficiently
determined by the Nagell-Lutz theorem [Si0].
The free part, specifically the rank r, has proved to be a tougher nut to
crack. The rank is conjectured to be unbounded, but at the time of writing
the highest known rank of an explicit example over Q is 28, recently found
by Elkies (May 2006). Furthermore, no finite algorithm or method is known
which can determine the rank for every elliptic curve (say, over Q), much
less for finding explicit generators. In short, determining ranks of elliptic
curves is a big open problem in number theory today.

1.2 Elliptic Curves over Function Fields

We now counsider elliptic curves over, for instance, Q(¢). Then an equation
like
y? =2 — P+ t*

defines an elliptic curve over Q(t). Its points are pairs (x(t),y(t)) with
x(t),y(t) rational functions in Q(t) satisfying the equation. In this case we
have for example the point (t,t).

The proof of the Mordell-Weil theorem can also be extended to elliptic curves
over function fields (see [Si2, Ch. III}):

Theorem 2 (Mordell-Weil over function fields). Let E be an elliptic curve
defined over k(t), with k a finite extension of its prime field. Assume there
is no elliptic curve Ey over k such that E = Ey ® k(t).

Then E(k(t)) is finitely generated.

It is also conjectured that the rank of E(k(t)) can be arbitrarily high,
and an example over Q(¢) has been found with rank 68 (see [Sh2]). When
such curves are defined over Q(¢), they can be helpful in finding elliptic
curves over Q of high rank.

1.3 Elliptic Surfaces

There is another way to look at an elliptic curve over a function field. Since
its equation contains three variables, it defines a surface in three-dimensional
space. We call this an elliptic surface, a notion we will define exactly in the
next chapter. For now, the point is that the geometry of the surface can be
used to investigate the arithmetic structure of the elliptic curve, in particu-
lar the rank.



For instance, algebraic surfaces are classified by their geometric genus pg,
and per class the Mordell-Weil rank is known to satisfy » < 10p, + 8. If
pg = 0, the surfaces are called rational, and the upper bound for the rank
is 8. For all r < 8, explicit examples with that rank can easily be found.
For p, = 1, the surfaces are called K3 surfaces and finding such examples is
already harder.

In 1982, Cox [Cox] proved that examples exist for all » < 18, but his proof
was not constructive. In 2000, Kuwata [Kuw]| gave explicit examples for
all » < 18, except for the case r = 15. In his thesis [Kl1], Kloosterman
constructed a family of elliptic K3 surfaces with generic rank 15. After this,
in [K12] he proved the rank of one member of this family to be exactly 15,
thereby completing the list of Kuwata. In his proof he used the difficult
Artin-Tate conjecture, which has been proved for K3 surfaces, but is still
a conjecture for most other classes of varieties. It is this I seek to improve
upon, by redoing his proof using more elementary, though somewhat length-
ier, computations. This could prove useful for cases in which the Artin-Tate
conjecture is not known to hold.

1.4 Outline

In chapter 2 I will define elliptic surfaces and most of the tools I will need.
Chapter 3 will explain the method used to determine the rank. The method
stems mostly from Kloosterman and is based on work of Van Luijk [Lul],
but is made more elementary, and hopefully more general. Chapter 4 will
then apply the method to a family of elliptic surfaces of rank 2. The result
was already known and can be proved in an easier way, but I could not find
it in the literature. Therefore it seemed useful to record it here, especially
since it provided a good test case for this method, and a practice case for
me. In chapter 5 I finally apply the method to a member of Kloosterman’s
family, to show that it has rank 15.



2 Elliptic Surfaces

2.1 Definitions
Let k be a perfect field of characteristic not 2 or 3, and let P* = P*(k).

Definition 1. An elliptic surface is a smooth projective surface £, such
that:

e There is a morphism m : €& — P, such that for all but finitely many
points t € P, the fiber & = 7~ 1(t) is a non-singular curve of genus
1.

o There is a distinguished section to 7, i.e. a map oo : P! — £ such that
moog=1idpi. We call this the zero section.

o The surface £ is minimal with the properties above.

For example, the equation y? = x3 — t?z + % defines an elliptic surface
&, by first taking the Zariski closure of the set

{([X,Y, Z],t) € P> x P! | t # 00,Y?Z = X® — X 7% + 1273},

and then resolving the two singular points, by repeatedly blowing them up.
From now on, when we talk about an elliptic surface given by some equation,
we will mean the variety resulting from taking the affine surface defined by
the equation, projectivizing it, and resolving the singular points.

The morphism 7 : £ — P! in the example then corresponds to the projection

(z,y,t) —t,

and the zero section is
oo: t— ([0,1,0],¢t).

We call this the zero section because it is the zero element in the group of
sections, defined as

E(PYk) := { k-morphisms o: P! — & such that 7 oo = idp1 }.

To define the addition of this group, we can use the fact that almost every
fiber & = 7 1(¢) is an elliptic curve, so we can add sections fiber-by-fiber.
Let 01,09 € £(P') be sections. Then for all ¢ such that & is non-singular,
we can define

(o1 + 02)(t) := o1(t) + 02(t),

where the '+’ on the right is addition on &. Defined this way, o1 + o3 is a
rational map P! — £. Since P! is non-singular and & is projective, this is a
morphism, hence an element of &(PY/k).

Note that this does not define a group structure on the set of points of the



surface, but on the set of sections. In fact, a section ¢ — (z(t),y(t),t) could
just as well be viewed as a point (z(t),y(t)) on the elliptic curve over k(t)
defined by the same equation. See [Si2, p. 210] for an exact proof of the
isomorphism £(PYk) = E(k(t)). So actually this group of sections is just
another instance of a Mordell-Weil group, and it follows from the Mordell-
Weil theorem for elliptic curves over function fields (Theorem 2) that it is
finitely generated.

2.2 An example

Let’s look at the example y? = 23 — t2z + % in more detail.

In the picture on the left you see the affine surface defined by this equation,
with the t-axis oriented vertically. The horizontal contour lines are the fibers
771(t), for t an integer. On the right you see the surface with several sections
drawn on it.

2P+Q

Figure 2: The surface y? = 23 — t2x + t2.

Two of those sections are easy to find right away:
P=(1,1) and Q = (¢,1).

In the picture, P is the vertical line down the middle, and @ is the line going
from the top left to bottom right corner. Both of these are straight lines,
but by applying the group law we obtain sections mP + n@, most of which
will be rational functions of higher degree. For instance,

3+ 22 — 3t t4—fﬁ—%2+t)

2P = -
+Q (ﬁ+%+1’thﬂﬂ+&+1

Below we will see that the Mordell-Weil group of this surface has rank 2. It
seems plausible to guess that P and () are generators, since they are linear,
and the addition usually increases degree. To prove this, we will have to
look more closely at the geometry of the surface.



Figure 3: Three singular fibers on y? = x3 — t2x + t2.

2.3 Singular fibers

First of all, consider the fibers on the surface. We know that almost all
are elliptic curves, but which ones are not? In other words, which ones are
singular curves? Visually, we can make out that & is a cusp, and that above
and below that there are two nodes.

To determine these exactly, we look at the discriminant of the equation.
Since an elliptic curve y? = 2% + ax + b is singular if and only if its discrim-
inant 4a> + 27b% vanishes, the singular fibers of our surface are given by the
t for which

Ay = t1(—4t* +27)

vanishes, i.e. t = 0 and t = +v/27/2. But we must not forget to check
the fiber at ¢t = oo! To inspect that one we first change coordinates to
s = 1/t, so that the equation becomes, after substituting ¢ = s?z, n = s3y
and multiplying by s°:

=& — s+ st
which has discriminant

A, = 55(—4 4 275%).

Hence there is also a singular fiber at ¢ = oo, where s = 0.

Each of the singular fibers contains a point that is singular on that fiber.
However, those points are not necessarily singular points on the surface. In
fact, only the points (z,y,t) = (0,0,0) and (£,7n,s) = (0,0,0) are singular



points on the surface; the other two are smooth.

It is these singular points on the surface that are blown up to make the
surface smooth. The minimality then means that the surface is not blown
up too far, i.e. after any blow-down the surface would be singular, or 7
would no longer be a morphism. We will just look at the resulting surface
set-theoretically: £ consists of the set of points on the affine surface defined
by the equation, except that all singular points on singular fibers are replaced
by certain curves.

This may seem a bit mysterious, but the good thing is that the possible
structures that can occur for the blown-up singular fibers on such a model,
have been completely classified by Kodaira [Kod], and Tate [Tat] has given
an algorithm to determine the structure in any given case. The results of
Tate’s algorithm are summarized in table 1.

type Iy I II II7 1A% I Iy Iv* IIr: Ir*
! ! V1 1 1 l1 E 22 | MR, 'EI'TE ¥

2 11—t — 3

1 . ! X 1 1l 1! 28] L I—z_ll_ ° )

#components 1 k 1 2 3 5 5+k 7 8 9
v(A) 0 k 2 3 4 6 6+k 8 9 10
j-invariant v(1)>0 | v(j)=—Fk | j=0 | j=1728 j=0 v(1)>0 | v(j)=—k j=0 j=1728 j=0

Table 1: All possible singular fiber structures with their properties.

Determining the structure of a singular fiber at t now comes down to com-
puting the order of vanishing of the discriminant ¢ and seeing which structure
in the table matches that. If there are more possibilities, the order of van-
ishing of the j-invariant will solve that.
Let’s work this out for our example. We see that the discriminant vanishes
to order 1 if we take t = £+/27/2, which only happens for a fiber of type
I, i.e. a node. That makes sense, because the singular points on the fibers
771 (£+/27/2) were smooth points on the surface, so didn’t have to be blown
up.
The fiber 7=1(0) could be of type IV or I. So we have to look at the
j-invariant, which is

, so3  a(t)’ §o3_ 1

I =23 o~ 2 o
Since at ¢ = 0 this vanishes to order 2, we have a fiber of type I'V.
Finally, for the fiber at t = oo the discriminant vanishes to order 6, so we
could have type Is or Ij. The j-invariant does not have a pole there, so we
have type 1.




2.4 The Néron-Severi Lattice

Following Shioda [Shi], we will introduce a larger group related to the
Mordell-Weil group, called the Néron-Severi group, for which some very
useful theorems hold.

Definition 2. The Néron-Severi group NS(E) of a surface £ is the group
of divisors on € modulo algebraic equivalence.

This definition is not so easy to understand, but luckily we will not need
it explicitly here. We will just state the results that Shioda derived, and
work from those. To at least explain what the words mean: a divisor on a
surface is a finite Z-linear combination of irreducible curves on S. For an
exact definition of algebraic equivalence, see [Har, exercise V.1.7].

In [Shi], the following properties of the Néron-Severi group NS(E) of an
elliptic surface are proven:

e Let T be the subgroup of NS(€) generated by the zero section, one
smooth fiber and all the irreducible components of singular fibers that
do not meet the zero section. Then

NS(E)/T = E(P'/k) =2 E(k(t)).

o The rank of T'is 2+ >, g(m; — 1), where S is the set of ¢ such that
the fiber 7~1(¢) is singular, and m; is the number of components of
771(t). Tt follows that

rank E(k(t)) = rankNS(€) =2 — Y (my — 1). (1)
tesS

This formula is called the Shioda-Tate formula.

As the title of this section already gives away, the Néron-Severi group has
a lattice structure. Since there are several variants of the definition of a
lattice, we give the appropriate one here:

Definition 3. A lattice is a free Z-module L of finite rank, together with a
symmetric non-degenerate bilinear pairing

(wy: LxL—Q.

Since we already know NS(E) to be a finitely generated abelian group
without torsion, all we need is a pairing of this kind. It turns out that the
intersection pairing will do.

Definition 4. The intersection pairing is the unique symmetric bilinear
pairing

Div(€) x Div(€) — Z (2)

(D1, D2) — (D1 - Ds), (3)

where (Dy - Dy), called the intersection number, is such that



o [fT'1 and 'y are irreducible curves on € that meet everywhere transver-
sally, we have
(I'1 - Ta) = #(T'1 NTo).

e If Dy is linearly equivalent to Do, then (D - Dy) = (D - Dg) for any
divisor D.

If the two divisors D1, D2 meet in a single point P the intersection paring
can be computed as

(D1 - Dy) = dimy, O¢ p/(f1, f2),

where O¢ p is the local ring at P, and f1, f2 are local equations for Dy resp.
Dy (see [Si2, II1.7]).

It can be proven that (D; - D2) depends only on the algebraic equivalence
classes of Dy and Da, so that this pairing on Div(€) induces a well-defined
pairing on NS(&). By [Shi, Th. 3.1], it is non-degenerate, so that it makes
NS(€) into a lattice.

Shioda goes on to show that

E(k(1))/ E(k(t))1or = NS(E) © Q.

This means that we also have a lattice structure on the Mordell-Weil group
modulo torsion (which explains the title of Shioda’s article, “On the Mordell-
Weil lattices”).

We will denote the resulting pairing on E(k(t)), multiplied by —1, by (-, ).
It is called the height pairing and is related to the arithmetic height funtion
on an elliptic curve. The important thing for us is that Shioda ([Shi, Th.
8.6]) gives an explicit formula for the height pairing.

Theorem 3. For P,Q € E(k(t)),

(P,Q)=x+(P-0)+(Q-0) - (P-Q) = contry(P,Q) (4)
tesS
(P,P)=2x+2(P-0)~> contr;(P,P), (5)
tesS

where S is the set of t € P! such that & is singular.

Here x is the arithmetical genus of the surface (see next section), and
the contr; are contributions of the singular fibers, which can be determined
as follows. For each singular fiber &, if P or @ intersects & in the same
component as the zero section intersects, then contry(P, Q) = 0. Otherwise,
see if P and @ intersect the same component (or P = @), or different
components, and read off contr,(P, Q)) from table 2 (where we only show the
cases that we will need in this text).

10



fiber type: | I11 | I1I* | IV | I
same: % % % 1
different: | — — % %

Table 2: The contributions at some singular fibers.

We could use this, for instance, to determine if a number of points { P; };cr
are independent in the Mordell-Weil group of an elliptic surface. That is
equivalent to the points being independent in the lattice, which is true if
and only if their discriminant

D = det({P;, P}))ijer

is non-zero.
Let’s apply this to our example y? = 23 — t2x 4 t2. To show that the points
P =(1,1) and Q = (t,t) are independent, we have to show that

(P.P) (P,Q)
d“Q@P>«z@>*Q

Now we have to compute several things.
e x = 1, see the next section
e (P-0)=0,(Q-0)=0
o (P-Q)=dimk[t]_y/t =1
e The contributions (the I; fiber always has contribution 0):

— contr(P): At t =0, we have a fiber of type IV, and P intersects
& away from the singular point, so in the same component as
the zero section, which gives a contribution 0. At t = oo, we
have a fiber of type I, and there P does intersect the fiber in
the singular point, so that we get a total contribution of 1.

— contr(Q): At both ¢t = 0 and ¢ = oo, @ intersects the fiber in its
singular point, which gives a total contribution of 5/3.

— contr(P, Q): The total contribution is 1/2.

This give us the following results

(P,P)=2+0-1=1 (6)
@Q)=2+0-° =2 (7
<P,Q>:(Q,P>:1+0+0—1—%:—%, 8)

11



with which we can compute the determinant:

1 -1 1
D—det<_% §>—12

Therefore P and () are independent. In the next section we will see that the
Mordell-Weil group has rank 2 in this example, so we have almost proven
that P and @ form a basis, except that the subgroup generated by P and
Q@ could be of finite index.

Suppose the subgroup generated by P and @ has index n in E(k(t)). Since
its determinant is 1/12, it follows from basic lattice theory that F(k(T')) has
determinant ﬁ But if we look more closely at the formulas (4) and (5),
we see that all terms are integers, except for the contributions. In Table 2
we can see that the only possible denominators (in this example) are 2 and
3. It follows that the denominator of a determinant of two points in E(k(t))
could be at most 36. That means that the only index that can occur is
n = 1. We can conclude:

Theorem 4. The points P = (1,1) and Q = (t,t) form a basis for the
Mordell-Weil group of the elliptic surface defined by y* = x3 — t?x + 2.

2.5 Classification of Surfaces

We will quickly introduce some invariants of elliptic surfaces that will be
useful in this text.
Let € be defined by an equation

y? =2 +a(t)x + b(t), a(t),b(t) € k[t] not both constant,

which is minimal, i.e. there is no non-constant f € k[t] such that f* | a(t)
and f% | b(t) (otherwise we could make the equation simpler by putting

z(t) = f22'(t), y(t) = f3y/(t) and dividing by f°).
Let N be the minimal integer such that

deg(a(t)) < 4N and deg(b(t)) < 6N.

Fact. The surface £ is called rational if N = 1, and it is called a K& surface
if N =2.

Fact. The Euler characteristic x of £ equals N, and the geometric genus p,
equals N — 1.

Our example has a(t) = —t? and b(t) = t2, so that N = x = 1, p, = 0, and
the surface is rational.

Recall that in the introduction we gave a relation between the geometric
genus and the highest possible rank of an elliptic surface; we can expand a

12



little on that now. A general cohomology argument shows that the Néron-
Severi rank of an elliptic surface is 10, so that the Shioda-Tate formula (1)
gives us the Mordell-Weil rank

7‘:8—2(771,5—1),

where the sum is over the singular fibers. In the example, the fibers of type
IV, I§ and I have m; equal to 3, 5, and 1. So we get

r=8-2-4=2,

as we desired.

13



3 Strategy

We will outline our method for determining the rank of an elliptic surface
in certain cases.

Let &€ be the elliptic surface over k and E the corresponding elliptic curve
over k(t). Since we will be looking at the lattice structure of E(k(t)), we
will have to disregard the torsion subgroup. We will do this by tensoring
with Q, and abbreviating as follows:

Ey = E(k(t)) ® Q.

Clearly the rank of Ej equals that of E(k(t)).
First of all we need the following lemma, true for every prime p where F
has good reduction:

Lemma 1. The reduction map E@ — EFP 18 injective.
Proof. See [Lul, Proposition]. O

If we can determine the rank n of Ef for a prime p of good reduction,
this lemma says that n is an upper bound for the rank of Eg- Suppose we
can also prove n — 1 to be a lower bound. This could be done by finding
n — 1 independent points on E@, or it could simply be zero if n = 1. Then
consider the following lemma:

Lemma 2. IfE has the same rank as F= " then the determinants of the
lattices Ey and E dzﬁer only by a square.

Proof. If E has the same rank as EIF , then the injection E — Fg makes
Eg into a sublattlce of Ef Basic lattice theory then tells us that it has a
finite index [Eﬁp 1 By and that

det(Eg) = By, : Egl” - det(Ef),
which proves the lemma. ]

The first thing to try would be to compute both these determinants, see
if they differ by a square, and if not, conclude that Eg and Ef do not have
the same rank. However, to compute the determmant of Eg we would have
to know its rank, which is what we are trying to find. We can work around
this as follows.

Suppose we have two primes p, ¢ of good reduction, such that both Ex
and Ei have rank equal to the upper bound n, and suppose we can ﬁnd
n 1ndependent points for both. Then we can calculate the determinant of
each, and see if they differ by a square. If they do not, they cannot both
differ by a square from the determinant of E@. Hence by Lemma 2, the rank
of E@ is not n, so must be n — 1.

14



Note that it is enough to find independent points on E]F and E]F , instead
of a basis, since the determinant of n independent points will differ from the
determinant of a basis by a square, which we can ignore, since we consider
the determinants modulo squares anyway.

15



4 The curve f(t)y* = f(x)

We will now apply the method from the previous chapter to a specific ex-
ample.

4.1 The curve

Let f(x) = 23+ ax+ b for a,b € Q, and let E'/Q be the elliptic curve given
by a Weierstrass equation y2 = f(x). We can consider it as a curve over the
function field Q(t), but also as a curve over the extension Q(¢,s), obtained
by adjoining s satisfying s = t> + at + b.

Over Q(t,s), we can make a coordinate change n = ¥, which gives y? =
s2n? = (3 + at + b)n?, to get a new elliptic curve (replacing n by y again):

E:+at+by’=23+ax+b
defined over Q(t). Writing f(u) = u® + au + b, we can shorten it to

E: f()y* = f(x).

Over Q(t, s), the two curves E' and E are isomorphic, since there is a co-
ordinate change between them. However, because the coordinate change
involves s, they are not isomorphic over Q(¢). In the following we will try
to determine some of the structure of E over Q(t), in particular the rank.
We have chosen this curve because its structure can be determined in an
elementary way, using an isomorphism

E(k(t))/E[2](k(t)) = Endg(E"),

where k is any field of characteristic not 2 or 3.

We will try to calculate the rank of £ by our method from chapter 3, which
will actually be harder to work out. Nevertheless, we will use it as a test
case, with the comfort of being able to check the result via the isomorphism.
The isomorphism follows from the following proposition:

Proposition 1. Let o and (8 be the maps

E(k(t) - Mory(E', E') 2, Endy(E')
(@(t),y(®) — ((u,v) = ((u),v-y(u)))
w — T_¢(O)w.

The map ¢ = Boa is an onto group homomorphism with kernel E[2](k(t)).

The main idea here is the definition of . It would be very convenient
if @ would just map to Endg(E’), and it almost does. However, the points
of order 2 in E(k(t)), i.e. the points (¢;,0) with ¢; a root of f, are sent
to the maps (u,v) — (z(t;),0), which do not map O to O, so are not

16



endomorphisms. Because of this little problem, the proof requires a lot of
detail, so we will work it out separately, in section 4.5.

Now we state our main theorem, and give a relatively simple proof of it,
using the isomorphism from the proposition.

Theorem 5. The rank of E(Q(t)) is 1.

Proof. We will show that Endg(E’) has rank 1, so that the theorem follows
from the proposition.

The identity on E’ is in Endg(E’) and has infinite order, so we have inclu-
sions

Z C Endg(E') C End@(E').

By Silverman (1986, Th.VI.6.1b, p.165), Endg(E") is either Z or an order
in a quadratic imaginary extension of Q. In the first case we are done,
in the second case we have Endg(E’) C Zla] with a € C — R satisfying
a? —ta+d=0.
Now the morphisms in Endg(£") that are in Endg(£") are precisely the ¢
that satisfy ¢*w = Ayw with Ay € Q, where w = dz/2y is the invariant
differential on E’. But «, and similarly any multiple of «, has a*w = A,
with Ay & R. Therefore Endg(E’) does not contain any multiple of «, so
has rank 1.

O

As we said, we will ignore this proof, and try to reach the result by our
method from chapter 3.
We will use the following two propositions, true for every prime p such that
E’ has good reduction at p:

Proposition 2. The rank of E(F,(t)) is 2.

Proof. We again use the isomorphism from above, now for £ = IF;,, so that
we only have to show that Endr,(E’) has rank 2.

On the one hand, Endp,(E’) contains the module Z[¢], generated by the
identity on E’ and the Frobenius morphism ¢ : (z,y) — (2P, y?). This has
rank 2 since ¢ satisfies ¢? —t¢+p-id = 0. On the other hand, it is contained
in Endg_ (E"), so we have:

Z[¢) C Endg, (E') C Endg (E').

From Silverman (1986, Th.. V.3.1, p. 137) we know that Endg (E') is an
order in either a quadratic imaginary field, or in a quaternion algebra In the
first case it has rank 2, which would imply that Endp, (£’) has rank 2 as well.
In the second case, we observe that the morphisms of Endg (E') that are in
Endp, (E') are precisely the ones that commute with ¢. Now, in a quaternion
algebra, there are at most two independent elements that commute with
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one another. Hence Endp,(E’) cannot contain an element independent from
id and ¢, for that would give three commuting independent elements in a
quaternion algebra. Therefore Endp,(£’) must have rank 2 in this case as
well, finishing our proof.

O

Remark. We can also use the isomorphism to pinpoint two independent
elements of E(F,(t)), by finding inverse images for the two independent
elements idg and the Frobenius ¢ in Endg,(E’). The first is clearly ¢(P)
for P = (t,1) € E(Fp(t)). The second is given by (¢, s) — (tP, sP), so suppose
o(x(t),y(t)) = (t*, sP). Then z(t) =t and sy(t) = sP, so

y(H) =" = ()T = f0)"T

The point @ = (7, f(t)pT_l) is indeed in E(Fp(t)) since

p

FOEDT)? = F@F = (F +at +b)? = () +at? + b= [(t7).

It follows that P and @) are independent points of infinite order. However,
it is not necessarily true that P and @ form a basis for E(F,(t)), because
Z[$] might have a finite index in Endg, (E").

For example, consider the curve y?> = 23 — z over F5. Then 2 € Fj is a
square root of -1, and there is an endomorphism

i (z,y) = (=2, 2y)
which is not in Z[¢]. In fact, the Frobenius ¢ satisfies
¢ =[=1] +[2] o4,
which can be proven with some (computer) algebra. It follows that Z[¢] has
index 2 in Z[i], so it also has index greater than two in Endp, (£’).
Since E(Q(t)) injects into E(F,(t)), it follows that
rank E(Q(t)) < 2.

Furthermore, in the remark after Proposition 2 we saw the point P = (¢,1)
in E(F,), which can easily be checked to be in E(Q(t)), and that its image
under the group homomorphism

E(Q(1)) — E(Fy(t)) — Ends, ('
is idpy. It follows that (¢,1) is a point of infinite order, so that
rank F(Q(t)) > 1.
Our goal in this chapter will be to prove the following claim, which will

complete the argument:
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Proposition 3. The rank of E(Q(t)) is not 2.

We will explicitly calculate the determinant of E(FF,(t)) for two prime
numbers p1, p2 not equal to 2 or 3. We hope to see that these determinants
do not differ by a square, for then by chapter 3 it would follow that E(Q(t))
has rank 1.

4.2 Calculating the intersection numbers
4.2.1 The intersection number of P and O

As sections, we will write P as ([t,1,1],t), and O as ([0,1,0],t), with ¢ € PL.
For t # oo, these two will clearly not intersect, since their third homogeneous
coordinates are never equal. To see what happens at ¢ = oo, we have to
change variable to s = % Setting g(s) = 1 + as? + bs® = s3f(%), we get
gs(f)y = f(z), which we multiply by s> to get

g(s)y? = s°2® + as’z + bs®.

In the new variables s = %, u = sx and y we have

Foy : g(8)y? = u® + as’u + bs>.

Here we will use a notation like Eo (or later E and E") to represent the
curve E in different variables, and write for instance P, for a point P in
those variables.

On E, we have P, = ([s-t,1,1],s) = ([1,1,1],s) and O« = ([0, 1,0], ).
Hence the points P and O do not intersect at t = oo either, so their inter-
section number is 0, i.e.

(PO) =0.
4.2.2 The intersection number of () and O
As sections, Q = ([t?, f(t)p2;1, 1],t) and O = ([0, 1,0],t). So again for t # oo,
they do not intersect. However, for t = co we have O = ([0, 1,0], s) and

Qe = ([s-(1/s), f(1/5)"7 ,1],5)
= (s~ ® D, (g(s)/s*)"7 1], 9)

p—1 p—1

= (57 .9(s)7 .87 ],s).

So since p # 2, these two intersect for s = 0 in the point R = ([0, 1,0],0).
To calculate the intersection number we homogenize the equation for Eo,

g(8)y?z = 23 + as®x2® + bs323
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and then dehomogenize it again with respect to y, by dividing by ¥ and

setting u = f, v = 5, giving us

E: g(s)v = u® + as®uv + bs*v?

and the sections O and ) become

O (0.0).5) and O — (((())(())))

Viewing 9] locally as P!, the coordinate ring there is Fp[s](), so that inter-
secting with @ gives the ring

5]/ ((g()) , (9(3))> — (551",

using that g(s) is a unit in Fy[s] gy, since g(0) = 1.
Then the intersection number is

(QO) = dims, (Fy[s)/(s"%)) @) = 2ot

4.2.3 The intersection number of P and @

First of all, for t = oo they do not intersect, since we have already seen that
for t = oo, Q intersects O, but P does not. Since () has only one point on
the fiber at { = 0o, P and @) cannot also meet there.
As sections we have P = ([t,1,1],t) and Q = ([tp,f(t)p%l,l},t). So these
will intersect if )

t=1t" and f(t)'zT =1.

t—t= ] t-u),

z€F,

Since we know that

P and @ will intersect for all t = z € F), satisfying f(m)% = 1. This
happens if and only if f(z) is a nonzero square in Fy, i.e. if and only if there
is a y € F}; such that f(x) = y®. In other words, P and @ intersect for ¢ = =
if and only if there is a point (z,y) € E'(F,) — E'[2](F,).

For each such x, the local intersection index is

dimp, Fy[t] 4z /(1 —t, fHF —1) = dimp, Fy[t]¢—p)/(t — ) = 1,

using that (7 —t)/(t — x) is a unit in Fp[t];_,), since x is a simple zero of
(tP —t).
It follows that

_ #E(Fy) — #E'[2](Fy)
(PQ) =) 1= 5 ,
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where we divide by 2 because for y # 0 the points (z,y) and (z,—y) in
E'(F,) give the same x.
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4.3 Calculating the contributions
4.3.1 Preparations

Next we want to determine the contributions contr,(P), contr,(Q) and
contry, (P, Q) for v € S := {t1,ta,t3,00}, where the t; are roots of f. For
this we will first have to determine the structure of the singular fibers on
the surface £ over k corresponding to the curve E over k(t).

To do this we need the discriminant of the elliptic curve. For an elliptic
curve in Weierstrass form (in characteristic not 2 or 3),

y? =’ + A(t)z + B(1),

the discriminant is given by A; = —16(4A(¢)>+27B(t)?), and the j-invariant
by ji = —1728(4A(t))3/Ay.
In our case we first need to bring f(t)y? = 23+ ax +b into Weierstrass form,
which we can do by multiplying by f(¢)3, and then applying the transfor-
mation u = f(t)x, v = f(t)%y. This gives

EY 0% =ud + af(t)’u+bf(t).
The discriminant and j-invariant are then
4-1728 - a?
4a3 + 27b%
Here 4a3 + 27b? is the discriminant of the original elliptic curve, hence is
not zero. It is also (up to sign) the discriminant of f(z), so f(t) has three
distinct zeroes, which we will call t1, t2 and t3. It follows that there are three
singular fibers F}, = 7=1(¢;), and for each the valuation of the discriminant
is 6 and the valuation of the j-invariant is non-negative. From Table 1 it
follows that all three are of type Ijj.
We also have to check the fiber at infinity, for which we have to change
variable to s = % Setting g(s) = 1 + as® + bs® = s3f(%), we get

g(s)? 9(s)
G u—+b &

Ay = —16(4a® +270*) f(1)° and j; =

3
v2:u3+a ,

which we multiply by 512,

s120% = 1243 + asOg(s)%u + bs>g(s)?,

6

and then transform by ¢ = s*u, n = s%v, which finally gives

EY :n? =&+ as’g(s)?¢ 4+ bsPg(s)>.
In these variables, the discriminant and j-invariant are
4-1728 - a?
4a3 + 27b% "
This tells us that the fiber at infinity, where s = 0, is singular, the valuation

of its discriminant is again 6 (since g(0) = 1), and the valuation of the
j-invariant is 0. So this fiber, which we will call F, is also of type I.

Ay = —16(4a® + 276%)g(5)%s® and j, =
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4.3.2 The contributions of P and of () at Fj,

First we look for the points of intersection of the sections P and () with the
singular fibers F},, i =1,2,3.

We need to do this on the curve in Weierstrass form, E%, where P and @
are given respectively by

(). O 1,8)  and  ([F(8), F(O)"5 1), 1).
These will both intersect the curve EjZ, , which is given by v? =3, in the
point U = ([0, 0, 1],%;), since f(¢;) = 0. Now U is the singular point on the
fiber that is blown up when £ is constructed, so P and () intersect F}, in
one of the components that is created in the blowing up, while O intersects
it in the component existing before the blowup. Using that the fiber is of
type 1§, it follows from Table 2 that

contry, (P, P) = contry, (Q, Q) = 1.

4.3.3 The contributions of P and of () at F,

Now for the other fiber, F.

We have to consider the curve EY,
p+3

and Q by ([g(s)s"7 . g(s)"% ,s*'F

where P is given by ([g(s), g(s)?,1], s)
2 |,5). The fiber 771(00) is given by s = 0,
so P intersects it in ([1, 1, 1],0) and @ intersects it in ([0, 1,0],0), using that
g(0) = 1. Viewing 7 !(00) as the curve y?> = 23, we see that P and Q
intersect it away from its cusp. Therefore P and () intersect Fo, on the

same component as O. Table 2 then tells us that

controo (P, P) = contro (@, Q) = 0.

4.3.4 The contributions of P and () together

Finally we consider contr,(P, Q). Let ©¢ be the component of F, that O
intersects, and let ©;, ¢ > 1 be the other components. Then we have the
following values for this contribution:

contr, (P, Q) = if P or (Q intersect F, in ©g
if P and @ intersect F, in the same ©; ,for i > 1

if P and @ intersect F, in different ©; ,for ¢ > 1.

Il
N = O

For F,, we have already seen that both P and @ intersect it in O, so
contreo (P, Q) = 0.

For the F;,, we know that P and ) do not intersect it in ©g so we can
exclude the first case. However, we do not know yet if they intersect it in
the same or in different ©;. One way to do this would be by going through
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the steps in Tate’s algorithm and see what happens to the sections after
each blowup. But we will use the following trick.

We will look at the curve over an extension of F,(t) such that the fiber
771(#;) is smooth. The different components of 7=1(#;) will then correspond
to distinct points of order 2 on this fiber. To see which components P and
@ intersect, we only have to see which of the corresponding points over
the extension the corresponding sections intersect, and in particular if they
intersect in the same point or in different points.

Fix a t;, let us say t1, and consider f(t)y? = f(x) over the extension F,(s) =
Fp(t,s) of Fy(t) given by s = \/ — t1, so t = s% 4+ t;. Then the equation for
the curve can be written

fla) = f()y? = (t=t)(t—t2) (t—t3)y* = (s> +t1—ta) (s> +t1—t3)y” | Fy(s),
so by transforming with v = sy we get
(s> + 11— ta)(s* +t1 —t3)v? =2 +ax +b ) Fy(s).

Here the fiber over by s = 0 is non-singular, since t1, to and t3 are distinct.
The point P = (t,1) is transformed to (s> + t1,s) and Q = (7, f(t)%) to
Q = ((s> +t1)P,sf(s> + tl)p%l). Hence they intersect the fiber given by
s = 0 at respectively (¢1,0) and (#],0). It follows that P and @ intersect
the fiber in the same point if and only if ¢; € [F).

But zeroes of f(t) lying in I, correspond exactly to points of exact order 2
on the curve E’ : y? = f(x), i.e. points in E'[2](F,) — O. For those zeroes
the contribution is 1, while for the others it is %, ie.

> contry, (P,Q) = 1-(#E'[2)(F,) 1)+ % (3= (#E[2)(Fp) — 1))

|y #ERE),
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4.4 Putting everything together

Recall that we wanted to calculate the pairings (P, P), (P,Q) = (Q, P) and
(@, Q), using the following formulas:

(P,P) = 4+2(PO)-_contry(P,P),
tesS

(P,Q) = 2+ (PO)+(Q0)— (PQ)— > contry(P,Q).

tesS

In the two preceding sections we have calculated the following:
o (PO)=0, (QO) =3+,
o (PQ) = 5(#E'(Fp) + #E'[2)(Fp)),
e contry, (P, P) = contr, (Q,Q) =1, i=1,2,3,
e contro(P) = contre (Q) = contro (P, Q) = 0,
o >, contry, (P,Q) = 1+ S#E'[2](Fp).

Putting these into the formulas we get:

(PP) = 440-3=1,
<QaQ> = 4+p_]-_3:p7
(P.Q) = 240+ 0%~ LREF,) - #EDIF,) - 1 - #EPIF,)
_ 1 p_} /
= §+§ 2#E(Fp)
_ 14+ p—#E'(F,)
#EE,),

As an aside, we observe that deg(id) = 1 = (P, P) and deg(¢) = p = (Q, Q),
so that we have proven the following:

Proposition 4. Consider the lattice A = Ende(E’ ), with quadratic form
defined by (¢, | = deg(p). Then E(F,(t)) and A are isomorphic as lattices.

We have shown that the determinant of the lattice E(IF,(t)) will be (up
to multiplication by squares, which does not matter)

/ 2
det, = p — (1 +p—#E (Fp)) .

2

We wanted to use this by, given an elliptic curve, finding two p’s such that
the corresponding det,’s do not differ by a square. For a given case, this
will not be very hard.

For instance, take E’ : y?> = 23+ 2+ 1. Using a computer algebra system, or
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even by hand, it is easily checked that #E’(F,) has 9 points for p = 5, and
11 19

5 points for p = 7. Then we can calculate that det; = < and det; = 7.
These clearly do not differ by a square, so for this £’ we have proved that
E(Q(t)) has rank 1.

To prove this in general by the same method, however, is not easy at all. All
we can do is bring out the big guns and use a theorem of Elkies [Elk], which
says that for any elliptic curve over QQ, there are infinitely many p such that
#E'(Fp,) = p+ 1. Thus for every elliptic curve there are two primes such
that det, = p, and of course these do not differ by a square. With that our

main theorem is proven.

4.5 Proof of Proposition 1

Because of its length we relegated the elementary proof of Proposition 1 to
this section. We restate it here:

Proposition. Let E : f(t)y?> = f(x) be an elliptic curve over k(t), and
E' :v? = an delliptic curve over k.
Let o and B be the maps

B(k(t) % Mor,(E', E") L Endy(E)
(@(t),y(t) > ((u,0) = (2(u),v - y(u)))
(0 — T_y0)¥s

where ([0, 1,0]) is the map P — O.
Then the map p = (o« is a surjective group homomorphism with kernel

ER](k(?)).

Proof. First we will show that o and 3 are well-defined group homomor-
phisms, and then that 3 o « is surjective with kernel E[2](k(t)).

To show that « is a well-defined group homomorphism, we observe that z(u)
and v - y(u) are rational functions on E’ since

Hence (u,v) — (z(u),v-y(u)) defines a rational map E' — E’, which is then
a morphism since E’ is smooth and projective.

Now fix P = (u,v) € E'. Then ap : (z(t),y(t)) — (z(u),v-y(u)) is a
morphism from E — E’ that maps Op to O%. From Silverman (1986,
Th.II1.4.8, p.75) it then follows that ap is a group homomorphism for each
P. Hence « itself is a group homomorphism.

To see that (3 is well-defined we observe that (1) is in Endg(E’) (which
consists of all morphisms E' — E’ mapping O to itself), since

(T—y(0) © ¥)(O) = ¥(0) = (0) = O.
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It is a group homomorphism since

Bt +92)(P) = (T—y,(0)—ps(0) © (V1 + ¥2))(P)
= (P )‘H/Jz( ) P1(0) — 92(0)
= (B(¥1) + B(¥2))(P)

for all P € F'.
The kernel of § consists of the ¢ such that

O = 7_y(0)(W(P)) = (P) — $(0)

for all P € F’, i.e. of all constant morphisms 1.
The kernel of ¢ is
ker(Boa) = {P e E(k(®)la(P) € ker(3)}
= {(z(t),y(t)) | (u,v) — (x(u),v - y(u)) is constant} U O
{(z,0) € E(k(t)) | x € k} UOg
= E[2|(k()).
Finally we show that ¢ = (o « is surjective. The map g is surjective, since

it is the identity on
Endk(E') - Mork.(E/, E/).

We can write any ¢ € Mory(E’, E') as
Y (u,v) = (a(u) +v-b(u), c(u) +v-du)).

Suppose that ¢ € Endg(E’), so that 1 is a homomorphism. Then we have
Y(u, —v) = —1p(u,v), which implies

(a —bv,c —dv) = (a + bv, —c — dv),
so that b = ¢ = 0 and ¥ (u,v) = (a(u),v - d(v)). Hence ¢p = a(a(t),d(t))

and it follows that Endg(E’) is contained in the image of «, so that ¢ is
surjective. ]
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5 An elliptic surface of rank 15

5.1 Introduction

Our aim in this chapter will be to show that the K3 surface
YV :y? =2+ (90° — 14v* + 9)z + 40%(30® — 10v* + 3)

has Mordell-Weil rank 15 over Q.
The first step will be reducing this problem to showing that the K3 surface

X =23 +830t+3)t+1)2t+40%z+ 50t +1)3(1t+4)°

has rank 0 over Q. We will show that X mod p has rank 1 over F, for two
primes of good reduction, find a point of infinite order for each of those
primes, and calculate the determinants of the corresponding lattices. If the
determinants do not differ by a square, we will know by chapter 3 that the
rank of X is 0, from which it will follow that Y has rank 15.

5.2 The surfaces
Theorem 6. The ranks over Q of Y and X satisfy

rankY = 15+ rank X,

Hence the surface Y has rank 15 if and only if X has rank 0.

Proof. We will build Y from X in several steps, and show that there is a
rational map X — Y of finite degree. Then we use a lemma from [Ino, Kuw]
which says that if V' and W are K3 surfaces together with a rational map
V' — W of finite degree, then their Néron-Severi groups have the same rank.
Applying the Shioda-Tate formula twice gives

rankY + Z (my —1) =rank X + Z (my — 1),
teSy teSx

where Sz is the set of singular fibers on the surface Z.

The theorem then follows from the fact that >, ¢ (m¢ — 1) = 15 while
Y tesy (me — 1) = 0. In fact, the surfaces were constructed with that in
mind: the singular fibers of X have a lot of components, and in each step
towards Y we try to break those singular fibers up into ones that have fewer
components.

We will walk through the construction to show that a rational map of finite
degree exists, and keep track of the singular fibers to illustrate what happens.
We start with X, which has one fiber of type I11* with m; = 8, two fibers
of type Ij with m; = 5, and three of type I1 with m; = 1. Hence

D mi—1)=0B8-1)+2x(5-1)=15.
teSx
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name | equation
X [P =23+830+3)t+4)>2t+ 122+ 0t +4)31t+1)3
Wi | 2 =23+t +3)z+1°
Wo | y? =2+ 53(9s% — 145 + 9)x + 45°(3s2 — 105 + 3)
y?
y?

W3 = 23 + u?(9u* — 14u® + 9)z + 4ut(3u* — 10u? + 3)
Y = 2% 4+ (908 — 140* + 9)z + 40%(30% — 10v* + 3)

Table 3: Surfaces used in the proof and their equations.

Let W be the twist of X by (t41)(t+4), and let W3 be the surface obtained

from Wi by putting
16s

t= =

1) = 35 0553
Inspecting the determinant of W5 tells us that it has 2 I11* and six I; fibers,
which means

d mi—1)=2x(8-1)=14,

tESW2

Let W3 be obtained from W5 by putting s = u?. Then it has 2 fibers of type
I5 and 12 of type Iy, so

d mi—1)=2x(5-1)=8

tESW3

Finally we put u = v? in W3 to reach Y, and see that it only has 24 I; fibers,

so that
> (my—1)=0.
teSy

Since each step consisted of a rational map of finite degree, there is also a
rational map of finite degree between X and Y, finishing our proof. O
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5.3 Calculating the determinants

First we will have to find points on X over two primes of good reduction.
A simple computer search over the lowest primes gives the following points
over 11 and 17:

Piy= (10(t+ 1)(#* + Tt +2)(t +4) ,
8(t+ 1)(t* + 5t + 10)(t + 4)*) over Fyy
P = ((t+2)(t+4)(#* + 3t + 8),
6(t* + 13t° + 7t* + 12t + 11)(¢ + 4)%) over Fi7

Both primes are easily checked to be of good reduction.

In the next section we will show that X mod 11 and X mod 17 have rank 1
over F,, so that their determinants are just (Pi1, Pi1) and (Pi7, Pi7). We
calculate these by working through the terms in the formula from chapter 2:

(Pg, Py) =2x+ (P, - O) — Z contry(Fy).
We’ll do this step-by-step again.
e The genus x = 2 since X is a K3 surface.
e We easily compute (P11 -0) =0, (Pi7-0) =0.
e The contributions at the singular fibers:
e [IT* fiber = contr = 3/2
e two I fibers = contr = 0

0 if P meets Og;

e two [} fibers = contr = .
1 otherwise.

e Py |4=—4=(0,0), Py |t=—1=(0,0) = 2 x contr = 1;
e Pi7|=—4=(0,0), Pi7[=—1=(1,8) = contr =1,

Together these give

3 1
P, P)y=4—--2=-
(P11, Pr1) 5 5
3 1
P, Pi7y=4—-—-1=1=
< 17, 17> 2 2a
and
(Pr7, Prz)
(Pi1, Py 7
so they do not differ by a square. By chapter 3 this implies that
rank X(Q) =0

and by section 2 we have that

rank Y (Q) = 15.
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5.4 The ranks of X mod11l and X mod 17

The only loose end left to tie is proving that X mod 11 and X mod 17 have
rank 1 over F,. The method used in this section is perhaps more difficult
than the techniques above, but has been used in the literature several times
before [K12, Lul, Lu2].

The crucial theorem is this:

Theorem 7. Let S be a smooth projective surface over ¥, and p,, the action
of Frobenius on Hgt(SFp,Ql). Then the rank of NS(S) is bounded from above
by the number of eigenvalues \ of ¢* for which \/p is a root of unity, counted
with multiplicity.

Proof. See [Lul, Cor. 6.4]. O

The Tate conjecture, which predicts equality in the theorem above, is
known for K3 surfaces, but here we will only need the inequality.
Let X = X mod p be the surface defined above modulo p, let p be the rank
of NS(X) and r the Mordell-Weil rank of X over F,. Since

p:2+r+2(mt—1):17+r,

we would like to show that for p = 11,17 there are 18 or less eigenvalues A
for which \/p is a root of unity, because then

18>p=17+r

implies 7 < 1. We have already found points on X mod 11 and X mod 17,
which were non-torsion since their determinants were non-zero, so this means
that » = 1 in each case, as we desired.

So we want to determine the eigenvalues of ¢, i.e. the roots of its charac-
teristic polynomial 1,(X). By the Weil conjectures, 1,(X) is in Z[X] and
its roots have absolute value p. We can determine its coefficients by using
the Lefschetz Trace Formula. This will enable us to compute Tr((y)™) for
enough m to allow us to find the coefficients of ,(X) with basic algebra.
However, H? has dimension 22, so this would be impractical to compute.
Luckily, we can split it up into

H>=VaWw,

with V' the 18-dimensional subspace generated by the zero section, a smooth
fiber, the 15 components of singular fibers and the one section we have found
above. Since we want to show that p < 18, it will be enough to show that
none of the eigenvalues coming from W are p times a root of unity.

This reduces the problem to computing the degree 4 characteristic polyno-
mial of |y, which we will write as

fp:X4+61X3+02X2+63X+C4. GZ[X]
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Since we already know that all roots have absolute value p, we know that
cy = £p*. The Weil conjectures also give a functional equation p*2hy(z) =
+2%24,(p?/z). From the Tate algorithm it can be seen that the generators
of V' are all defined over F 2, which means that the roots of v,/ f, are all p
or —p, so that the functional equation is also true for v,/ fp. It follows that
the functional equation holds for f,, so

P fp(z) = 22t f(p? /).

Writing this out, we get
C3 Cy
fo(X) = £(p* + c1p® X + e X% + P)(3 + Zﬁxﬁ‘),
from which we deduce that

c3 = sign(ca)p®er.

Furthermore, we see that if ca # 0, then sign(cs4) = +1.
Finally, we can compute ¢; and ¢y by

Cc1 = —tl (9)
1
cop = 5(ﬁ —ty), (10)
where t,, = Tr((,)™|w) is computed by the Lefschetz Trace Formula. In
this case that gives

#X (Fpm) =1+ p*™ + Tr(e3)™ v + Tr(e)™ |w
=1+p* + (k+3)p™ + tm, (11)

where k is the number of components of singular fibers not meeting the zero
section that are defined over IF,», and the 3 comes from the zero section,
fiber and found section, which are all rational. On the other hand, we can
explicitly count the points on X (F,m) by

#X (Fpm) = #{affine pts on X before blow-up} + #{pts at oo}
+ #{pts over t = oo} + #{pts on blown-up singular fibers}
= #Xaff(IFpm) + #A(Fpm) + pm + kpm (12)

Here X, is the affine part of the not-blown-up surface, i.e. the number
of (z,y,t) € Fzm satisfying the defining equation of the surface. Further
A is the fiber over ¢ = oo and the last term counts the new points on the
blow-ups of singular fibers. In total there are k new components defined
over [F,m, each containing p™ + 1 points, and there are k intersection points
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we have to subtract again, giving kp”*.
Putting (11) and (12) together, we get

tm = #Xag(Fpm) + #AFpm) + p™ + kp™ — 1 — p*™ — (k + 3)p™

= # X (Fpm) + #AFpm) — 2p™ — p*™ — 1.
So for 11 and 17 we use the computer to do the following counts:

#Xag(F11) =120
#Xo(Fpp2) = 14488
#X,a(F17) =318
#Xon(Fir2) = 83540,

and each time the curve A becomes y? = 2% + z, giving

(F11) =12
(Fllz) = ].44

#A(Fr7) =16

#A(F”z) - 320

For p = 11 the traces and coefficients are then

t1=1204+12—-2-11 - 11> -1 = —12,

ty = 14488 + 144 — 2112 —11% — 1 = —252,
c1 =12,

co = (12% 4 252)/2 = 198,

and for p = 17

tp=3184+16—2-17—172 -1 =10,

to = 83540+ 320 — 2- 172 — 174 — 1 = —240
c = —10,

ca = (10% 4 240)/2 = 170.

Since ¢ # 0, we know from above that c3 = p?c; and ¢4 = p?, so the

polynomials are:

fi1=X*+12X3+198X2 +12-112X + 11*
fir = X* —10X3 +170X2 —10- 172X + 17%.

To apply theorem 7 we have to see if these polynomials have roots of the
form p¢ with ¢ a root of unity. Therefore we change variable to Y = X/11
resp. Y = X/17, and divide by 113 resp. 173. Then we want to show that

the roots of
11V4 +12Y3 +18Y2 + 12V + 11,
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17Y% —10Y2 + 10Y?2 + 10Y + 17

are roots of unity. That follows from the fact that both are irreducible over
Z, and are clearly not cyclotomic. Irreducibility of the second polynomial
can be proved by reducing modulo 7. For the first it can be shown by
checking that it has a prime value for Y = —12, -8, —6,—2,0, 2,4, 6, 10, and
then arguing that if it factors as g(Y)h(Y'), at each of those nine values
either g or h must be +1. However, if g and h were nonconstant they could
attain —1 or 1 at most 2 x (degg + degh) = 8 times.

This finishes our proof that p < 18, and that

rank X =1

over Fp for p =11,17.
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