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Introduction

In this master’s thesis, we will explore the theory and practice of the mathemat-
ical constructions called dessins d’enfants. The first two chapters will provide
all the theoretical background that is needed to understand what dessins are
and why they are interesting, while the third chapter will show how dessins are
calculated with in practice.
Consider a pair (XC, fC), where XC is a smooth, projective and irreducible
curve over C, and fC is a non-constant morphism XC → P1

C unramified above
P1
∗ = P1

C − {0, 1,∞}. Due to a theorem of Belyi (for which see chapter 3), the
XC that occur in such pairs are exactly the (smooth, projective) curves that can
be defined over Q, and the morphisms fC can also be defined over Q. Therefore,
the absolute Galois group GQ = Gal(Q/Q) acts on isomorphism classes of such
pairs (XC, fC). This action is faithful, giving us a new approach to understand-
ing the complicated group GQ.
In his Esquisse d’un Programme (an official version of which can be found in
[SL97i]), Alexander Grothendieck introduced a new and comparatively simple
invariant of such pairs (XC, fC), called a dessin d’enfant (or simply, and less
derogatively, dessin). Quickly put, a dessin d’enfant is a scribble drawn on a
topological surface with a single stroke of a pencil. As we shall see in chap-
ter 1, it can be interpreted as a connected covering of the topological surface
associated to the Riemann sphere that is ramified above 0,1 and ∞ only. It
induces a complex structure on the space on which it is drawn by pulling back
the holomorphic structure of the Riemann sphere, so a dessin can be identified
with a pair (Xan, fan), where Xan is a Riemann surface and fan : Xan → P1

C

is an analytic map unramified above P1
∗ = P1

C − {0, 1,∞}. Via a categorical
equivalence (for this, see chapter 2), it can be shown that this pair (Xan, fan)
can, in turn, be identified with a pair (XC, fC) of the first paragraph. In other
words, dessins are topological encodings of these complicated pairs. So GQ can
also be made to work on dessins.
Finding the dessin corresponding to a pair (XC, fC) is relatively easy: this is
(roughly said) just the inverse image of [0, 1] under f . So, for example, the
dessin associated to the map z 7→ zn is the union of the straight lines between
0 and ζi

n, where ζn = e2πi/n. This is a star with n rays. The other direction,
finding the pair (XC, fC) corresponding to a dessin, is more difficult, and in-
volves solving large equations of polynomials. It is discussed in section 3.1, at
least in the case where XC has genus 0. Incidentally, this discussion can be read
without reading the other chapters.
As might be guessed from its inception, the theory of dessins focuses mostly on
finding good topological or combinatorial invariants of dessins under the Galois
action, and finding visualisations of that action. Some have been found, but it
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vi INTRODUCTION

appears to be hard to find invariants that are only readily visible in the cate-
gory of dessins, and not already by considering the pairs (XC, fC) of the first
paragraph. One of the reasons for this is the fact that almost all elements of
GQ do not act continuously with respect to the Euclidean topology of C. More
about this is told in chapter 2.
As promised, we will also concern ourselves (in chapter 3) with actual calcu-
lations relating to dessins. We will mostly concentrate on the genus zero case.
The following problems will also be discussed:

1. explicitly seeing how Gal(Q/Q) acts on some dessins (section 3.3);

2. finding all the genus zero Galois dessins, i.e. the maximally symmetric
dessins corresponding to genus zero coverings (section 3.4);

3. calculating a few dessins in the Miranda-Persson list (section 3.5).

Notation and conventions

- All (Riemann) surfaces are presumed compact, connected and oriented
unless otherwise stated.

- All algebraic curves are presumed smooth, projective and (geometrically)
irreducible unless otherwise stated.

- All algebraic and analytic morphisms are non-constant unless otherwise
stated.

- As in the introduction, we put P1
∗ = P1

C − {0, 1,∞} for the complex an-
alytic, the algebraic, and the topological versions of the Riemann sphere
P1

C.

- Often, when we talk about an object, not the object per se but its isomor-
phism class is meant. For example, “dessin” mostly means “isomorphism
class of dessins”, and “a pair (X, f)” means “an isomorphism class of pairs
(X, f)”.

- Finally, the cardinality of a finite set S is always denoted by |S|.



Chapter 1

Covering Theory and

Dessins d’Enfants

This chapter consists of a brief recapitulation of covering theory (phrased in a
Galois-theoretic way), along with the topological definition of a dessin and an
explanation of the relations between dessins and coverings.

1.1 Galois theory for coverings

For a continuous map f : Y → X between surfaces (topological Hausdorff spaces
locally homeomorphic to the unit disc in R2), there exists a notion of the local
degree or ramification index of that map at a point p ∈ Y , denoted by ep(f).
This is defined as the winding number around f(p) of the image of a small
circle winding once, counterclockwise, around p. In general, local degrees can
be negative (e.g. orientation-reversing maps) or infinite. One might wonder
whether the local degree characterizes the map locally: in general it does not.
But now let X and Y be (compact) Riemann surfaces, and let f : Y → X
be an analytic map between them. Then one can change the local coordinates
on Y and X in such a way that f becomes the map z 7→ zep(f) in the new
coordinates, and also ep(f) ≥ 1. The proof (which can for example be found in
[FO91]) rests on the fact that every convergent power series g on the unit disc
with g(0) 6= 0 locally admits a k-th root for any k. From this characterization,
one also sees that the set of points with ep(f) 6= 1 is a discrete subset of Y ,
hence finite. These points are called the branch points, and their images in X
are called the ramification points. We have now entered the realm of covering
theory and fundamental groups.

Definition 1.1.1 A covering of a connected topological space X is a pair (Y, p),
where Y is a topological space and p : Y → X is a map with the following
property: for every point x ∈ X there exists a neighbourhood U of x such that
p−1(U) is homeomorphic to a topological space of the form U × S, where S is
a discrete topological space, and that under this homeomorphism, p becomes the
canonical projection from U × S to U . In other words, we have a commutative

1



2 CHAPTER 1. COVERING THEORY AND DESSINS D’ENFANTS

diagram

p−1(U)
∼ //

p

²²

U × S

πcan

yytttttttttt

U

A morphism of coverings between coverings (Y, p) and (Y ′, p′) is a map ϕ : Y →
Y ′ with p′ϕ = p. This means that we have a commutative diagram

Y
ϕ //

p
ÃÃ@

@@
@@

@@
@ Y ′

p′

~~}}
}}

}}
}}

X

The set of covering automorphisms of a covering (Y, p) is denoted by Aut(Y/X)
(note the abuse of notation).
Finally, isomorphism classes of coverings are also called coverings.

Coverings can be composed in the obvious manner to yield a new covering. A
covering (Y, p) is called connected if Y is connected. For any connected cover-
ing (Y, p), the fibers p−1(x) have the same cardinality, called the degree of the
covering, and denoted by deg(p). The covering is called finite if its degree is
finite. For a fuller view, consult [FU91].
The relation between covering theory and analytic maps between Riemann sur-
faces is as follows. By the above, every holomorphic map between Riemann
surfaces locally looks like the map z 7→ zn between complex unit discs. Using
the fact that every finite covering of the punctured disc is, up to changing co-
ordinates, of the form z 7→ zn with n > 0 (this follows from the fact that the
fundamental group of the punctured disc is isomorphic to Z), one can show that
such a map can be identified with a so-called finite branched covering map.

Definition 1.1.2 A branched covering of a connected topological space X is a
covering of X−D, where D is some discrete subset of X. As before, isomorphism
classes of branched coverings are also called branched coverings.

[FO91] shows that any branched covering (Y, f) of the topological space associ-
ated to a Riemann surface X induces a unique complex strucure on Y such that
f becomes an analytic map between the Riemann surfaces Y and X. Hence, it
is equivalent to give a branched covering (Y, f) of X or to give a pair (Yan, fan),
with Yan a Riemann surface and fan an analytic map from Yan to X. Of course,
it is still not true that any branched covering map between Riemann surfaces is
analytic.
There is a theory that completely classifies coverings, and it strikingly resembles
classical Galois theory. As we shall see in chapter 2, this is no coincidence. The
rest of this section is devoted to this theory. The reader is invited to translate
the proofs from classical Galois theory in the same way that these statements
were translated.
Before beginning with our statements, we need the definition of subcoverings
and of the fundamental group.

Definition 1.1.3 Let (Y, p) be a covering of a connected topological space X.
A subcovering of (Y, p) is a pair ((Z, q), p̃), with p̃ a lift of p through q: i.e. p̃



1.1. GALOIS THEORY FOR COVERINGS 3

is a covering map with qp̃ = p. In a diagram:

Y
p //

p̃ ÂÂ@
@@

@@
@@

X

Z

q

>>~~~~~~~

A morphism of subcoverings from a subcovering ((Z, q), p̃) to a subcovering
((Z ′, q′), p̃′) is a covering map m : Z → Z ′ such that q′m = q and mp̃ = p̃′.
This means we have a commutative diagram

Z

m

²²

q

ÃÃ@
@@

@@
@@

Y

p̃
??~~~~~~~

p̃′

ÂÂ@
@@

@@
@@

X

Z

q′

>>~~~~~~~

Isomorphism classes of subcoverings are also called subcoverings.

Two subcoverings can be isomorphic as coverings of X, yet not isomorphic as
subcoverings. This is the covering-theoretic analogue of the fact in group theory
that isomorphic subgroups need not be conjugated and of the fact in field theory
that isomorphic subfields of a given field can be distinct.

Definition 1.1.4 Let X be a topological space, and let x be a point of X. De-
note by I the unit interval [0, 1] in R. The fundamental group π1(X,x) of X at
x is the set of maps f : I → X with f(0) = f(1) = x, modulo homotopy.
Two maps f, g : I → X are called homotopic if there exists a map h : I×I → X
with h(x, 0) = f(x) and h(x, 1) = g(x).

A map of topological spaces f : X → Y induces a map from π1(X,x) to
π1(Y, f(x)) by postcomposing representatives with f ; this induced map is de-
noted by f∗.
From now on, we make the assumption that X to be path-connected and locally
path-connected. Galois theory for coverings of X is then as follows. Correspond-
ing to extending monomorphisms is the following on subcoverings:

Proposition 1.1.5 Let (Y, p) and (Z, q) be coverings of X, and let p(y) =
q(z) = x. Then a covering map p̃ : Y → Z with qp̃ = p and p̃(y) = z exists if
and only if p∗(π1(Y, y)) ⊆ q∗(π1(Z, z)) in π1(X,x).

This means that we should interpret the element of the fiber of p as roots of
some sort. Changing the point z in the proposition corresponds to changing the
group q∗(π1(Z, z)) by conjugation, so if the criterion is valid for a certain value
of z, it doesn’t mean that it is valid for all z. In fact, one might wonder for which
(Y, p) this implication does always hold, and could then define those coverings
to be normal, as in classical Galois theory. It turns out that because there are
no problems of separability for coverings, these are exactly the coverings with
maximal symmetry, called the Galois coverings.
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Definition 1.1.6 A Galois covering of a topological space X is a connected
covering (Y, p) such that Aut(Y/X) acts transitively on the fiber of p.

Because a morphism of coverings is determined by where it sends a single point,
this condition is equivalent to |Aut(Y/X)| = deg(p) for finite coverings. As in
classical Galois theory, we have a descent criterion for the Galois property.

Proposition 1.1.7 Let ((Z, q), p̃) be a subcovering of a Galois covering (Y, p)
of X. Then (Z, q) is Galois if and only if every σ ∈ Aut(Y/X) induces a
σZ ∈ Aut(Z/X) such that p̃σ = σZ p̃: that is, if we have an induced map σZ

making the following diagram commute:

Y
σ //

p̃

²²

Y

p̃

²²
Z

σZ //

q
ÃÃ@

@@
@@

@@
Z

q
~~~~

~~
~~

~

X

.

So far, we have only considered coverings of a fixed bottom space. However,
one can also choose a fixed top space and then construct coverings. This is
done as follows: let Y be a topological space, and let G be a subgroup of the
group of topological automorphisms of Y . Then, under some mild conditions,
the quotient map Y

πG→ Y/G is a covering, and all coverings with top space Y are
obtained in this way. In all generality, these conditions are a bit complicated,
but for finite subgroups, they reduce to demanding that all elements of G except
the unit element act without fixed points. We will use this later to find all genus
zero Galois coverings of P1

∗.
Clearly, if (Y, p) is a covering, and G is a subgroup of Aut(Y/X), then p factors
through πG: that is, there exists a covering map pG : Y/G → X with pGπG = p.
In this context, one obtains the analogue of the characterization of the Galois
extensions of a field K as those extensions with LAut(L/K) = K: a covering
(Y, p) is Galois if and only if Y/Aut(Y/X) ∼= X as coverings.
The analogue of the main theorem of Galois theory is as follows:

Theorem 1.1.8 Let X be a path-connected and locally path-connected topolog-
ical space, and let (Y, p) be a Galois covering of X. Then we have:
(i) The mappings H 7→ ((Y/H, pH), πH) and ((Z, q), p̃) 7→ Aut(Y/Z) are mutu-
ally inverse correspondences between subgroups of Aut(Y/X) and subcoverings
of (Y, p). Also, the mappings [H] 7→ (Y/H, pH) and [((Z, q), p̃)] 7→ Aut(Y/Z)
are mutually inverse correspondences between conjugacy classes of subgroups of
Aut(Y/X) and classes of covering-isomorphic subcoverings of (Y, p).

(ii) All maps Y
πH→ Y/H are Galois coverings with automorphism group H. H

is normal in Aut(Y/X0) if and only if (Y/H, pH) is a Galois covering of X0.
(iii) If a subcovering ((Z, q), p̃) is Galois over X0, then there is a natural ho-
momorphism from Aut(Y/X0) to Aut(Z/X0) ( cf. proposition 1.1.7). This ho-
momorphism has kernel Aut(Y/Z), implying that Aut(Y/X0)/Aut(Y/Z) and
Aut(Z/X0) are naturally isomorphic.

In the case where (Y, p) is not Galois, our theorem only gives information about
subcoverings of Y as a covering of X0 = Y/Aut(Y/X).



1.1. GALOIS THEORY FOR COVERINGS 5

If X fulfills some special properties, we obtain in this way a full classification of
connected coverings of X in terms of the fundamental group:

Theorem 1.1.9 Let X be a connected, locally pathwise connected and semilo-
cally simply connected topological space (for instance, a manifold). Then there
exists a simply connected Galois covering (X̃, p̃) of X, called the universal cov-
ering. Such a covering has the following properties:
(i) The mappings [H] 7→ (X̃/H, πH) and (Y, p) 7→ [Aut(X̃/Y ) ∼= p∗(π1(Y, y))]
are mutually inverse correspondences between conjugacy classes of subgroups of
Aut(X̃/X) ∼= π1(X,x) and isomorphism classes of connected coverings (Y, p) of
X.
(ii) All mappings X̃

πH→ X̃/H are Galois coverings. H is normal in Aut(X̃/X)
if and only if (X̃/H, pH) is a Galois covering of X.
(iii) If (Y, p) is Galois over X, then there is a natural homomorphism from
Aut(X̃/X) to Aut(Y/X). This homomorphism has kernel Aut(X̃/Y ), implying
that Aut(X̃/X)/Aut(X̃/Y ) and Aut(Y/X) are naturally isomorphic. Alterna-
tively, one can, by lifting paths, prove that π1(X,x)/p∗(π1(Y, y)) ∼= Aut(Y/X).

In the situation of Theorem 1.1.9, it is equivalent to give a covering of X or
to give a π1(X,x)-set (i.e. a set with an action of π1(X,x) on it). Indeed, a
given covering of X is a disjoint union of connected coverings, hence corresponds
by the theorem to a π1(X,x)-set

∐

i∈I π1(X,x)/Hi, where the Hi are uniquely
determined up to conjugacy. Conversely, a given π1(X,x)-set is a disjoint union
of orbits, say

∐

i∈I Oi. Since orbits are transitive π1(X,x)-sets, the Oi are
isomorphic as π1(X,x)-sets to the π1(X,x)-sets π1(X,x)/Stab(oi), where oi ∈
Oi. So to our original π1(X,x)-set

∐

i∈I Oi, we can associate the covering

∐

i∈I X̃/Stab(oi)

‘

i∈I pStab(oi) // X.

Clearly, these associations are mutually isomorphic. A consequence of this
(which can also be derived using Proposition 1.1.5) is that if we are given a
covering (Y, p) of X, and U ⊆ X is simply connected, then the covering trivi-
alizes above U : that is, the covering (p−1(U), U) is (up to isomorphism) of the
form (U × S, πcan), where πcan is the canonical projection. In other words, the
disjoint components of p−1(U) project homeomorphically onto U by p. We will
use this a few times later on.
From now on, we will only consider finite π1(X,x)-sets. It is the same to give a
π1(X,x)-set of cardinality n as it is to give a conjugacy class of homomorphisms

π1(X,x)
ϕ→ Sn. Indeed, interpreting Sn as AutSet({1, . . . , n}), we directly see

what the action of an element σ of π1(X,x) on {1, . . . , n} is: it is the permutation
of {1, . . . , n} corresponding to ϕ(σ). The relations between a homomorphism
π1(X,x) → Sn and its associated covering are as follows.

Proposition 1.1.10 Let π1(X,x)
ϕ→ Sn be a homomorphism, and let (Y, p) be

the covering of X associated to it. Then we have:

1. deg(p) = n;

2. Y is connected if and only if ϕ(π1(X,x)) is a transitive subgroup;

3. Aut(Y/X) ∼= C(ϕ), where C(ϕ) = {σ ∈ Sn : σ · ϕ · σ−1 = ϕ} denotes the
centralizer of the homomorphism ϕ in Sn.
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By some elementary group theory, this proposition implies |Sn|/|C(ϕ)| = |Cl(ϕ)|,
where Cl(ϕ) denotes the conjugacy class of ϕ (its orbit under conjugation).
We call the subgroup ϕ(π1(X,x)) of Sn dessin the monodromy group of the
covering; it is, by abuse of notation, denoted by MY . A monodromy group can
also be naturally interpreted as a group of covering automorphisms:

Proposition 1.1.11 Let (Y, p) be a covering of a space X satisfying the con-
ditions of Theorem 1.1.9. Then there exists a Galois covering (Y , p) of X such
that the monodromy group MY of Y is naturally isomorphic to Aut(Y /X).

Proof Our covering corresponds to a subgroup H of π1(X,x). Let N be the
smallest normal subgroup of π1(X,x) contained in H: in a formula, N =
⋂

g∈π1(X,x) gHg−1. But this is just the kernel of the homomorphism π1(X,x) →
AutSet(π1(X,x)/H) ∼= Sn induced by left multiplication, which is our homo-
morphism ϕ. By definition, the image of this homomorphism is equal to MY .
An isomorphism theorem from group theory now tells us π1(X,x)/N ∼= MY . So
if we let (Y , p) be the Galois covering of X associated to the normal subgroup N ,
we have Aut(Y /X) ∼= π1(X,x)/N by Theorem 1.1.9, whence the Proposition.
¤

Our covering (Y , p) = (Y/N, pN ) is the smallest Galois lift of (Y, p). This means
that if a Galois covering lifts through (Y, p), then it also lifts through (Y , p). In
our earlier verbiage, if (Y, p) is a subcovering of a Galois covering (Z, q), then
so is (Y , p). Or in a commutative diagram:

Y
p̃ // Y

p // X

Z

OO
q̃

??ÄÄÄÄÄÄÄÄ

.

In general, a covering (X̃, p̃) as in Theorem 1.1.9 will not exist, and worse,
there will no longer be a correspondence between subsets of π1(X,x) and con-
nected coverings. However, it can be shown that there still exists a group
π̂1(X,x) (which should be thought of as the profinite completion of our π1(X,x))
such that the analogue of the correspondence we just discussed, between finite
π̂1(X,x)-sets and connected coverings of X, is still almost true: the only extra
demand is that the action of π̂1(X,x) acts continuously with respect to some
profinite topology. The proof rests on a lot of heavy categorical machinery, and
can be found in [LE85].

1.2 Dessins d’enfants and coverings

We shall now, finally, give the definition of a dessin, taken from [SC94]. After
that, we will explore how dessins correspond to coverings.

Definition 1.2.1 A dessin d’enfant (or dessin for short) is a triple X0 ⊂ X1 ⊂
X2, where X2 is a connected, compact and oriented surface, X0 is a finite set of
points (called the vertices), X1 − X0 is a finite disjoint union of subsets of X2

homeomorphic to the unit interval (0, 1) in R (called the edges), and X2−X1 is
a finite disjoint union of sets homeomorphic to the unit disc D in C, such that
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Figure 1.1: A sketch of P1
C.

a bipartite structure can be put on the elements of X0; i.e., every vertex can be
marked with a symbol ◦ of ∗ such that no vertex can be connected by an edge to
an element with the same marking.
A morphism from a dessin X0 ⊂ X1 ⊂ X2 to another dessin X ′

0 ⊂ X ′
1 ⊂ X ′

2 is
an orientation-preserving continuous map from X2 onto X ′

2 mapping X0 to X ′
0

and X1 to X ′
1. By abuse of language, we call an isomorphism class of dessins a

dessin as well.

Thus, a small scratch on the torus is not a dessin, because its complement is not
homeomorphic to a disc. In fact, one can read off the genus of the surface X2

from the cardinality of X0 and X1, since (X0,X1−X0) is a triangulation of X2.
More precisely, Euler’s formula tells us that if we denote the number of vertices
by v, the number of edges by e, and the number of connected components of
X2 − X1 by c, we have g(X2) = (e − v − c + 2)/2.

Theorem 1.2.1 We have the following:

1. Every finite connected branched covering of P1
C unramified above P1

∗, gives
rise to a dessin.

2. Conversely, to every dessin we can associate a (finite and connected)
branched covering of P1

C, which is unramified above P1
∗.

3. The associations in 1) and 2) induce mutually inverse associations be-
tween isomorphism classes of finite connected branched coverings and iso-
morphism classes of dessins. In fact, they give us a categorical equivalence
between the category of isomorphism classes of dessins and the category of
isomorphism classes of branched coverings of P1

C unramified above P1
∗.

Before embarking on the proof, we need to fix some notation concerning the
Riemann sphere, which is best explained using a picture, included above. The
Riemann sphere P1

C contains the projective real line P1
R: this can be seen as an

equator or meridian of sorts. We split up this projective line into the intervals
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[0, 1], [1,∞], and [∞, 0]. The complement of the projective real line consists
of the upper half plane H and the lower half plane −H. As can be seen from
the picture, these are homeomorphic to the unit disc. In fact, they are even
analytically isomorphic to the complex unit disc, via the conformal map D → H

given by z 7→ 1
i

z−1
z+1 .

Proof of Theorem 1.2.1.
1) Suppose we are given a finite connected branched covering (Y, f) of P1

C: then
take X2 = Y , X1 = f−1([0, 1]), and X0 = f−1({0, 1}). The bipartite structure
on X0 is defined as follows: mark the points above 0 with a ◦, and the points
above 1 with a ∗. Points above 0 are never connected by an edge, because
edges, as inverse images of the simply connected unit interval (0, 1), project
homeomorphically to their images. This proves part 1). But before continuing
with the next part, it is convenient to inspect the relations between (Y, f) and
its associated dessin a bit: this will make it easier to see how to go back in 2).
First of all, reading off the ramification index of a point above 0 or 1 is easy:
indeed, these are just the number of edges emanating from such a point (this
follows, for instance, from the fact that every finite branched covering locally
looks like z 7→ zn). Next, we consider the points above ∞. Let p be such a
point, and let ep(f) be its ramification index. Then (again because of the local
characterization of finite branched coverings) this points has ep(f) intervals
emanating from it that project homeomorphically to (∞, 0): at the end of such
an interval is a point marked with ◦. In the same way, it has ep(f) intervals
emanating from it that project homeomorphically to (1,∞), and at the end of
such an interval is a point marked with ∗. These intervals show up alternately
when walking around p in a small enough counterclockwise circle. We claim that
the endpoints of intervals that consecutively show up are connected by a single
edge. This follows because the consecutive intervals we are considering have
an area between them that is the inverse under f of H or −H. These two sets
are simply connected, so the areas we are considering project homeomorphically
onto them. The boundary of this area therefore projects homeomorphically to
P1

R (the common boundary of H and −H), so we see that the edge we have
to take is the complement of our two intervals in this boundary. A picture
probably elucidates things, and has therefore been added on the next page.
We can now immediately see how to find the points above infinity and their
ramification indices: there is one in every connected component of X2−X1, and
it ramification index is half the number of edges one encounters while walking
around the boundary of that component.
2) From what we did above, it is easy to see how to associate a covering of
the Riemann sphere to a dessin. Choose a point in every disjoint component of
X2 −X1 (which will become the points above ∞), connect these to the vertices
on the boundary of that component by some subsets homeomorphic to the unit
interval: this gives a triangulation of X2. When walking counterclockwise along
the boundary of these triangles, one either encounters first a point above 0,
then a point above 1, and then a point above ∞ (call the triangles with this
property positively oriented), or first a point above ∞, then a point above 1, and
then a point above 0 (call these triangles negatively oriented). By construction,
adjacent triangles have different orientation. Now our map to P1

C is more or less
forced: for i = 0, 1,∞, we map the points above i to i; for i, j = 0, 1,∞, i 6= j,
we map the intervals connecting points above i with points above j to [i, j]; we
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Figure 1.2: Lifting the intervals (∞, 0) and (1,∞) from p.

Figure 1.3: Filling in H and −H (forced by the orientation).

Figure 1.4: Conclusion: our points above 0 and 1 are connected by edges.
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map the positively oriented triangles to H (this is forced if we want to preserve
orientation); and we map the negatively oriented triangles to −H.
3) Using what we did above, this check is relatively straightforward, though
laborious. ¤

We can carry over the terminology from the category of connected coverings to
the category of dessins. That is, we can talk about the degree of a dessin, which
is the degree of the corresponding covering or, alternatively, the number of edges
of the dessin, et cetera. From our construction, it can also be seen that the group
of covering transformations of a given branched covering of P1

C unramified above
P1
∗ is isomorphic to the group of orientation-preserving graph-automorphisms of

its associated dessin.

1.3 Dessins d’enfants and permutations

The final part of the first section of this chapter told us how n-sheeted connected
coverings of a connected topological space X correspond to conjugacy classes
of homomorphisms from π1(X,x) to Sn whose images generate a transitive
subgroup. As said, our branched coverings correspond bijectively to ordinary
coverings of P1

∗. By an application of the theorem of Seifert and Van Kampen
(for this, see for instance [SE88]), one sees that the fundamental group π1(P

1
∗,

1
2 )

of this space is a free group on two generators γ0 and γ1, the equivalence classes
of single counterclockwise loops around 0 and 1, respectively. Giving a a con-
jugacy class of homomorphisms from this group to Sn of which the image is
transitive therefore corresponds to giving a (simultaneous) conjugacy class a
pairs of permutations generating a transitive subgroup of Sn. This means that
there exist bijections







Conjugacy classes
of transitive pairs

σ0, σ1 ∈ Sn







↔
{

Connected coverings
of degree n of P1

∗

}

↔
{

Dessins of
degree n

}

We shall make the composed bijections more explicit, by describing how to read
off permutations corresponding to a given dessin, and, conversely, how to con-
struct a dessin given a transitive permutation pair. For this, we will have to fix
one further notation: we let γ∞ = (γ0γ1)

−1 denote the equivalence class of a
single counterclockwise loop around ∞.
From dessins to permutations Given a dessin corresponding to an n-sheeted
cover, one can mark the edges as {1, . . . , n}. We want to read off the permu-
tation pair associated to the covering, so we need to see how π1(P

1
∗,

1
2 ) acts on

this set. Recall that this was done by lifting paths. But because of the local
characterization of finite branched coverings, this lifting can easily be read off
from the dessin: given an edge, γ0 acts by rotating it counterclockwise around
the point above 0 connected to this edge, and γ1 acts by rotating the component
counterclockwise around the point above 1 connected to this edge. This implies
that the points above 0 correspond bijectively to the orbits of the action of γ0

on {1, . . . , n}. Equivalently, if we denote the image of γ0 in Sn by σ0, the points
above 0 correspond to the number of cycles, say c0 in the decomposition of σ0

as a product of disjoint cycles. Henceforth, this decomposition of a permutation
will be called the canonical decomposition of that permutation. Analogously, the
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points above 1 correspond to the number of cycles, say c1, in the canonical de-
composition of σ1, the image of γ1 in Sn, and the points above ∞ correspond to
the number of cycles, say c∞, in the canonical decomposition of σ∞ = (p0p1)

−1,
the image of γ∞ in Sn. Note that this allows us to read off the genus of the
covering associated to the dessin from the permutations alone, since we can
read off the number of vertices (equal to c0 + c1), the number of edges (equal
to n), and the number of connected components of X2 −X1 (equal to c∞) from
the permutations associated to our dessin. By the discussion in the previous
paragraphs, the genus of our covering will then equal (n − c0 − c1 − c∞ + 2)/2.
From permutations to dessins Going in the opposite direction is a bit less
straightforward, but the previous paragraph shows us what to do. Suppose we
are given two permutations p0, p1 generating a transitive subgroup of Sn. Read
off the genus g that the covering space should have by the procedure above.
Then take a topological surface of genus g and draw n disjoint edges labelled
{1, . . . , n} on it. One can now glue these edges along the orbits of p0 and p1, be-
ing careful to induce the correct orientation. This will give the requested dessin.

Examples Let us look at a few examples of this method; these shall also illus-
trate the importance of orientation. Suppose we want to find the dessin asso-
ciated to the permutations p0 = (1234) and p1 = (12)(34). First we calculate
p∞ = (p0p1)

−1 = (13) = (13)(2)(4). Now c0 = 1, c1 = 2 and c∞ = 3. The genus
of the associated covering will be (n−c0−c1−c∞+2)/2 = (4−1−2−3+2)/2 = 0.
So we take a topological sphere, and we draw four lines on it, labelled 1,2,3,4.
Then, we connect all four lines to a point v1, around which they show up in the
order 1,2,3,4 when walking around P counterclockwise: this is the gluing above
0. Next, we glue above 1: this time, we take two points w1 and w2. We connect
lines 1 and 2 to w1 in such a way that they show up in the order 1,2 when walk-
ing around w1 counterclockwise: this condition will always be fulfilled. In the
same way, we connect lines 3 and 4 to the point w2: the condition on orientation
is again empty. A picture in the plane has been added on the next page. When
dealing with genus zero dessins, we can always work in the plane, because we
may translate our dessin over the Riemann sphere to assure that none of our
vertices are ∞, and none of our edges pass through ∞. After all, X2 − X1 will
never be empty.
Of course, we could also have started with the points, as to later glue the lines
emanating from these together correctly. As sketch of this method has also been
added on the next page.
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Figure 1.5: Begin with the edges...

Figure 1.6: and connect them with vertices.

Figure 1.7: Or begin with the vertices...

Figure 1.8: and connect them with edges.
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Figure 1.9: Changing orientation above 0 can change the genus.

Figure 1.10: Decomposing the torus with our dessin.

Next, we construct the dessin associated to the permutations p0 = (1423)
and p1 = (12)(34). We compute p∞ = (1423). We have c0 = 1, c1 = 2, and
c∞ = 1, so we will work on a surface of genus (n − c0 − c1 − c∞ + 2)/2 =
(4 − 1 − 2 − 1 + 2)/2 = 1. We see that changing the orientation around p0

changes the genus of the dessin. Again, we construct the dessin. This time, it is
most convenient to draw the points first, and then connect the lines. A sketch
has been added above. We see that this dessin corresponds to decomposing the
torus a disjoint union of a disk and two “meridians” intersecting in one point.
In section 3.3, we will determine rational functions that have these dessins as
their inverse image.

1.4 An application in group theory

The following proposition gives an upper bound on the number of disjoint cycles
in the canonical decomposition of a product of two permutations in Sn. It seems
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to be quite difficult to prove without a detour through covering theory.

Proposition 1.4.1 Let p0 and p1 be two permutations in Sn generating a tran-
sitive subgroup, whose canonical decompositions consist of c0 and c1 cycles, re-
spectively. Let c∞ be the number of disjoint cycles in the canonical decomposition
of their product p0p1. Then

c∞ ≤ n − c0 − c1 + 2.

Proof As we have seen, we can construct a homomorphism from π1(P
1
∗,

1
2 ) to Sn,

sending σ0 to p0, σ1 to p1,and σ∞ to (p0p1)
−1. We also know that associated to

this homomorphism is a covering (X, p) of P1
∗ such that for i ∈ {0, 1,∞}, ci is the

number of points above i: for i = ∞, this follows from the fact that the number
of disjoint cycles in the canonical decomposition of p0p1 is of course equal to that
in the canonical decomposition of (p0p1)

−1. This covering is connected because
our permutations generated a transitive subgroup (cf. Proposition 1.1.10). Now
the Riemann-Hurwitz formula gives us 2g(X)− 2 = −2n +

∑

(ep − 1) = −2n +
n− c0 + n− c1 + n− c∞, so c∞ = n− c0 − c1 − 2g(X) + 2. Since g(X) ≤ 0, our
estimate follows. ¤



Chapter 2

The Galois action

In the first section, we will state a lot of categorical equivalences, which should
drive home the point that the category of dessins has a very rich structure.
After that, we shall explore Belyi’s theorem and the action of GQ = Gal(Q/Q)
on dessins.

2.1 Categorical equivalences

Before starting, we need a bit of nomenclature. A function field over C is a
finitely generated extension of C of transcendence degree 1. Equivalently, a
function field is a field of the form C(t)[x]/(h), where t is a transcendental and
h is a polynomial in t and x, with the natural inclusion C ↪→ C(t)[x]/(h). We
now have the following.

Theorem 2.1.1 The following categories are equivalent:

1. Compact Riemann surfaces with analytic maps;

2. The opposite category of function fields over C with C-homomorphisms;

3. Smooth projective curves over C with algebraic morphisms.

“Proof” The functor from 1) to 2) is given by sending a Riemann surface to its
field of meromorphic functions M(Y ), and sending an analytic map f : X → Y
to the C-homomorphism f∗ : M(Y ) → M(X) defined as precomposition with
f . For details, see [FO91].
The functor from 3) to 2) is given by sending a curve X to its field of C-rational
functions C(X), and by sending a morphism of curves f : X → Y to the
C-homomorphism f∗ : C(Y ) → C(X), again defined by precomposition. For
details, see [HA77]. ¤

Going from 1) to 3) directly is a bit more involved. For a description of a
functor that does this, see [PU94]. In fact the analogy between complex analytic
structures and algebraic structures over C is valid in much greater generality:
for more on this, see [SE56].
In the category of curves over C, there exists a notion of ramification, which uses
discrete valuation rings. Details on this can be found in [HA77] or [HE99]. Under
our equivalences in the theorem above, pairs (Xan, fan) of Riemann surfaces

15
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and non-constant analytic morphisms fan : Xan → P1
C unramified above P1

∗ are
transformed into pairs (XC, fC) of curves and non-constant algebraic morphisms
fC : XC → P1

C unramified above P1
∗.

The notion of ramification also exists in the category of function fields over
C. It involves decomposing prime ideals in discrete valuation rings; details
can be found in any book on algebraic number theory. Under our equivalences,
pairs (Xan, fan) of Riemann surfaces and non-constant analytic morphisms fan :
Xan → P1

C unramified above P1
∗ are transformed into extensions of C(t) that are

unramified above t, t − 1 and 1/t.
In fact, we have the following:

Theorem 2.1.2 The following categories are equivalent:

1. Isomorphism classes of dessins with morphisms of dessins;

2. Isomorphism classes of finite connected branched coverings (X, f) of P1
C

unramified above P1
∗ with morphisms of coverings;

3. Isomorphism classes of finite transitive π1(P
1
∗,

1
2 )-sets with morphisms of

π1(P
1
∗,

1
2 )-sets;

4. Isomorphism classes of pairs (Xan, fan), where Xan is a Riemann surface
and fan is an analytic map from Xan to P1

C unramified above P1
∗, with

analytic maps that commute with the fan;

5. Isomorphism classes of pairs (F, i), where F is a function field unramified
everywhere except above t, t − 1 and 1/t and i is an inclusion of C(t) in
F , with C-homomorphisms commuting with the C(t)-inclusions;

6. Isomorphism classes of pairs (XC, fC), where XC is a curve over C and
fC is an algebraic morphism from XC to P1

C unramified above P1
∗, with

algebraic morphisms that commute with the fC;

7. C[t, 1
t(t−1) ]-isomorphism classes of finite étale extensions of C[t, 1

t(t−1) ],

with C[t, 1
t(t−1) ]-homomorphisms that commute with the extension-homomorphisms.

8. One of the last three categories, but with C replaced by Q.

“Proof” We have already seen the equivalence of 1) and 2) in section 1.2 and
the equivalence of 2) and 3) and of 2) and 4) in section 1.1. The equivalence of
4) and 5) and of 4) and 6) follows from the discussion above. The equivalence
of 6) and 7) can be derived by methods found in [LE85], using the fact that
P1
∗ = Spec(C[t, 1

t(t−1) ]). The last equivalence is due to Grothendieck, and is also

a corollary of Belyi’s theorem. It will be treated in the next section. ¤

So from now on, we can call all these objects dessins; we will quite often do
this. For a fuller view of possible equivalences, see [OE02]. Incidentally, these
equivalences are also very useful in inverse Galois theory: for this, see [MA80]
or [SE88].
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2.2 Belyi’s theorem

The following theorem gives us a very strong statement on the pairs (XC, fC)
of the previous section: it tells us that for any curve X defined over Q, there is
such a pair (XC, fC), with XC = X.
Before starting, we recapitulate a few definitions. First we look at the general
definition of a curve, over more general fields than algebraically closed fields.

Definition 2.2.1 Let k be a field. A variety over k is a pair (X, sX), where
X is an integral scheme, and sX is a separated morphism of finite of schemes
X → Spec(k) which does not factor through any scheme of the form Spec(l)
with l a finite extension of k. A one-dimensional variety over k is also called a
curve over k.
A morphism of varieties curves over k (X, sX) → (Y, sY ) is a morphism of
schemes f : X → Y which commutes with the structural morphisms, i.e. with
sY ◦ f = sX .

Note that this coincides with the usual definition when k = k. Another way
to phrase the last clause in the definition of a variety is by saying that k is
algebraically closed in the induced field extension k ↪→ Q(X), where Q(X) is
the function field of the scheme X, that is, the localization of X at the generic
point. Intuitively, the definition means that X is defined by equations with
coefficients in k. The morphism sX is called the structural morphism, and is
usually tacitly omitted. However, it will be crucial for our later considerations.
Up next is the definition of “defined over”.

Definition 2.2.2 Let k ⊆ l be a field extension. A curve X over l is said to
be defined over k (or to have a model over k) if there exists a curve Xk over k
such that Xk ×Spec(k) Spec(l) = X. A morphism of curves f : X → X ′ is said
to be defined over K if both X and X ′ are defined over K and there exists a
morphism of curves over K fK : XK → X ′

K with fk ×Spec(k) idSpec(l) = f .

This definition is a bit abstract. However, on the level of function fields, it
becomes easier. Indeed, suppose that C(X) = C(t)[x]/(h). Then X is defined
over K if and only if h can be chosen to be an element of K[t, x], that is, if we can
choose the coefficients of h to lie in K. As for morphisms of curves f : X → X ′,
these are defined over K if and only if the corresponding C-homomorphism
of function fields f∗ : C(t)[x]/(h′) = C(X ′) → C(X) = C(t)[x]/(h) sends the
classes of t and x in C(t)[x]/(h′) to classes in C(t)[x]/(h) that can be represented
by an element of K(t)[x].
We will also frequently use the phrase “can be defined over K” for a curve,
morphism, or covering. This means that this curve, morphism, or covering is
isomorphic to a curve, morphism, or covering that is defined over K: in other
words, this means that a representative of its isomorphism class is defined over
K.
Belyi’s theorem is now as follows:

Theorem 2.2.3 An algebraic curve X is defined over Q if and only if there
exists a morphism f : X → P1

C unramified above P1
∗. This morphism is then

also defined over Q.
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“Proof” The if-part is part of the mathematical canon: it follows from Gro-

thendieck’s isomorphism π
alg/Q

1 (P1
Q
− {0, 1,∞}) ∼= π

alg/C

1 (P1
C − {0, 1,∞}) of al-

gebraic fundamental groups, which can be found in [GR71]. The other direction
follows from a highly surprising combinatorical argument which can be found
in, for instance, [SC94]. ¤

The Galois action proper Grothendieck also tells us that if we consider a
fixed “base space” B defined over Q, we have an exact sequence

1 −→ π
alg/Q

1 (B) −→ π
alg/Q

1 (B) −→ Gal(Q/Q) = GQ −→ 1,

which on the level of function fields corresponds to te exact sequence

1 −→ Gal(ΩB/Q(B)) −→ Gal(ΩB/Q(B)) −→ Gal(Q(B)/Q(B)) = GQ −→ 1.

Here Q(B) (respectively Q(B)) denotes the field of Q-rational (respectively Q-
rational) functions of B, and ΩB denotes the maximal unramified algebraic
extension of Q(B).
For our base curve B = P1

Q − {0, 1,∞}, we have Q(B) = Q(P1
Q) = Q(t), and

Q(B) = Q(P1
Q) = Q(P1

Q
) = Q(t), where t is a transcendental. Our ΩB (which

we shall just call Ω) is now the maximal algebraic extension of Q(t) unramified
above t, t − 1, and 1/t. Our sequence

1 −→ Gal(Ω/Q(t))
ι−→ Gal(Ω/Q(t))

π−→ GQ −→ 1

defines an inclusion GQ ↪→ Out(Gal(Ω/Q(t))) by conjugation. This induces an
action of GQ on category 5) in Theorem 2.1.2, as follows.
A pair (F, i) as in Theorem 2.1.2 corresponds to a subgroup H of finite index
in Gal(Ω/Q(t)). Given a σ ∈ GQ, we denote its lift in Gal(Ω/Q(t)) by σ
as well. Then the action of σ transforms the subgroup ι(H) into σι(H)σ−1,
which can be identified with a subgroup σH of finite index in Gal(Ω/Q(t)) since
π(σι(H)σ−1) = π(σ)π(H)π(σ)−1 = π(σ){e}π(σ)−1 = {e}. This subgroup σH
corresponds to a new extension σ(F ) of Q(t), related to the old extension by
the following diagram:

Q(t) //

idQ(t)

²²

Q(t)
i //

σ

²²

F

σ

²²
Q(t) // Q(t)

σiσ−1
// σ(F )

Here, the leftmost horizontal arrows denote the canonical inclusions. The con-
jugate of our pair can now be defined as the isomorphism class of the extension
(σ(F ), σiσ−1) or, equivalently, as the isomorphism class of the extension (σF,σi),
where σF is the same field as F , but with the inclusion of Q precomposed with
σ−1, and σi = iσ−1. These extensions are the same up to isomorphism, as the
diagram shows.
The action can be made more concrete as follows. Let σ ∈ GQ be given. Extend
σ to a Q-automorphism of Q(t)[x] by having σ fix t and x, and denote this
new automorphism by σ as well. For every h ∈ Q[t, x], we have an induced
Q-isomorphism, again denoted by σ,

F = Q(t)[x]/(h)
σ−→ Q(t)[x]/(σ(h)).
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Now consider a pair (F, i) = (Q(t)[x]/(h), i) in category 5) of Theorem 2.1.2. We
can define a Q-isomorphism Q(t) → Q(t)[X]/(σ(h)) by the following diagram:

Q //

σ

²²

Q(t)
i //

σ

²²

Q(t)[x]/(h)

σ

²²
Q // Q(t)

σiσ−1
// Q(t)[x]/(σ(h))

By the diagram, (σF,σi) is isomorphic to (Q(t)[x]/(σ(h)), σiσ−1). The morphism
σiσ−1 sends t to σ(i(t)) and fixes the constants. So, with maximal concreteness,
one could say that σF differs from F by conjugation of the coefficients of the
defining equation, and σi differs from i by conjugating the coefficients of i(t).
The action on our pairs (F, i) also induces an action on all the other categories
in Theorem 2.1.2. In general, these actions are complicated; indeed, one of the
reasons of the interest in dessins is the non-triviality of the action of GQ on them
(see the final section of this chapter). The action in category 6) of the theorem is
as follows: a morphism of curves (XC, fC) is defined over Q by Belyi’s theorem.
Postcompose the structural morphism of XQ with Spec(σ−1) to get a new curve
σXQ with the same underlying scheme, and postcompose fQ with the canonical

extension of σ to P1
Q

to get a new morphism σfQ from the underlying scheme

of σXQ to P1
Q
. This morphism commutes with the new structural morphism by

construction, and hence gives a morphism of curves σXQ → P1
Q
. Extend the

base field from Q to C to get the new pair (σXC,σfC). This approach is much
more abstract than the previous one, but we shall see that it makes proofs much
easier.
Note that the Galois action is truly an action since στX =σ (τX), and στf =σ (τf),
and that the action is functorial. The latter statement means that given a mor-

phism (X, f)
ϕ→ (Y, g), there is an induced morphism (σX,σf)

σϕ→ (σY,σg), and
that we have σf ◦ g =σ f ◦σ g. On the level of schemes, σϕ is just ϕ. In con-
crete terms, it is again given by having σ act on coefficients. Again, we have
στϕ =σ (τϕ).
The action respects a lot of structure. For example, it preserves the degree of X,
since there is a Q-isomorphism between X and σX, or, arguing in terms of sub-
groups of Gal(Ω/Q(t)), because conjugation does not change index. It also pre-
serves automorphism groups. Indeed, arguing in field-theoretic terms, the map-
ping g 7→ σgσ−1 gives an isomorphism from Aut(F/Q(t)) to Aut(σ(F )/Q(t)):
it is welldefined because σgσ−1 clearly fixes Q(t) and σgσ−1σiσ−1 = σgiσ−1 =
σiσ−1, while it is clearly invertible. The proof which uses the abstract machinery
of the previous paragraph is easier: a diagram chase proves that if g : X → X
is an automorphism (over C) of the covering (XC, fC), then that very same g
is also an automorphism (over C) of the covering (σXC,σfC). This claim makes
sense, since XC and σXC are isomorphic as schemes (though not as varieties).
The well-behavedness of the action will allow us to track down a few invariants
in the next paragraph.

Faithfulness It so happens that the action of GQ on dessins is faithful. The
easiest way to see this is the following. We consider pairs (E, i) in category 5)
of Theorem 2.1.2 which correspond to elliptic curves defined over Q. By Belyi’s
theorem, there exists such a pair for every elliptic curve defined over Q. For
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such pairs, E is of the form

E = Q(t)[x]/(x2 − 4t3 + g2t + g3).

As we have seen, the Galois action sends this field to

σE = Q(t)[x]/(x2 − 4t3 + σ(g2)t + σ(g3)).

We know that elliptic curves are parametrised by their j-invariant, which is a
Q-rational expression in g2 and g3. But this means that j(σE) = σ(j(E)). From
this, we directly see how, given a σ ∈ GQ which is not the identity, we can
construct a pair (E, i) which is not isomorphic to its conjugate (σE,σi) under σ.
Choose an algebraic number α with σ(α) 6= α, then pick an elliptic curve Eα,
defined over Q, with j-invariant α (this is always possible). By construction,
j(σEα) 6= j(Eα), so Eα is not isomorphic to σEα. Belyi’s theorem gives us an
inclusion iα such that (Eα, iα) is a pair in category 5) of Theorem 2.1.2. Now,
certainly (Eα, iα) is not isomorphic to (σEα,σiα), since this would imply that
Eα were isomorphic to σEα. Hence the faithfulness of our action.
Incidentally, Lenstra has proved that the action is also faithful on trees. These
are the genus 0 dessins for which (in our earlier notation) X2 −X1 has a single
connected component, which in turn correspond to polynomial functions P1

C →
P1

C ramifying only above 0 and 1. The proof of this statement can be found in
[SC94], and is not hard to follow.
It is this faithfulness of the Galois action that, in principle, makes dessins useful
in inverse Galois theory. For more on this, see 2.5.

Field of definition and field of moduli Note that if a pair (K, i) from
category 5) in Theorem 2.1.2 is defined over Q, then it is automatically defined
over a number field K, since we only have to consider a finite amount of data in Q

(namely, in the notation used above, the coefficients of h and the representative
of f∗([t])). A natural question to ask is the following: is there such a thing
as the smallest field of definition? In general, the answer is “no”. There is a
natural candidate for the answer to our question, and this is the field of moduli,
the fixed field (in Q) of all the σ in GQ that fix our pair (F, i) up to isomorphism.
It is the intersection of all the fields of definition (see [DD97]). But this field of
moduli need not be a field of definition. The obstruction is explained by Oesterlé
in [OE02], and is roughly as follows. If a pair (X, f) is defined over a number
field K, then we have isomorphisms σu : (σX,σf) → (X, f) that satisfy a cycle
relation στu = σu σ

τ u. Conversely, we can construct a model of (F, i) over K
as long as we have such a system of isomorphisms satisfying this cycle relation.
On the level of schemes, this just means στu = σu τu, but the general cocyle
condition is of course what one works with in practice. The cocycle relations
can quite often be fulfilled (for instance, trivially in the case of a dessin without
automorphisms, not-so-trivially for a Galois dessin), but they form a significant
obstruction. All of this can also be phrased in terms of group cohomology: for
this, again see [DD97].
A way to get around this difficulty is to introduce a little extra structure by
considering dessins with a marked point instead of merely dessins: this kills all
non-trivial automorphisms of the dessin, so the field of moduli will equal the
field of definition, but of course this field will be larger than that of the dessin
without the marked point.
In the next chapter, we will give an example of a dessin which has its field of
moduli contained in R, but is not defined over R. See also section 2.4.
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2.3 Invariants under the Galois action

Invariance of the ramification indices First, we would like to know what
happens to the ramification indices of the dessin. We consider points above 0
only: the cases for 1 and ∞ can then be proved analogously, or by a linear
change of coordinates. To give the first proof (which is due to Jones and Streit
in [SL97i]), we consider category 5) of Theorem 2.1.2: that is, we see consider
certain pairs (K, i), where K is a function field and i is an inclusion of Q(t) in
K. The field Q(t) has a subring R0 consisting of those rational functions with
no pole at 0: this is the discrete valuation ring of Q(t) corresponding to te point
0. This subring has a single maximal ideal m0 = tR0 consisting of those rational
functions that vanish at 0. Consider the integral closure S0 of R0 in K. We
have a decomposition

tS0 =
∏

i

n
epi
pi ,

where the pi are the points above 0 on the curve corresponding to K, the npi
are

the maximal ideals in S0 consisting of those elements of S0 that vanish in the
pi, and the epi

are the ramification indices of the dessin. Applying the Galois
action, we get a new decomposition in Kσ:

tSσ
0 = (

∏

i

n
epi
pi )σ =

∏

i

n
epi

σ(pi)
,

where the nσ(pi) are now prime ideals of the discrete valuation rings of S0 corre-
sponding to the functions vanishing in the conjugates σ(pi) of the pi. We have a
new decomposition, from with we can read off the ramification indices above 0
of the conjugated dessin: but we see that these are just the same. So the Galois
action does not change ramification indices.
The proof using the scheme-theoretic formulation is nicer. For this, we consider
the fiber F 1

2
of f : XC → P1

C above 1
2 . The conjugated covering is given by

σf : XC → P1
C

σ−1

→ P1
C. This covering has fiber F 1

2
above σ−1( 1

2 ) = 1
2 , where the

last equality follows from the fact that σ fixes Q. But since σ is an automor-
phism, it does not change ramification indices. So the fibres of f and σf are
the same above 1

2 , also taking ramification indices into account. This certainly
implies that the ramification indices are invariant under the action of σ.
Note that the invariance of ramification indices also implies that our action
preserves genus, since the genus is a function of the ramification indices.

Invariance of the monodromy group A stronger invariant is the mon-
odromy. In fact, not only is it invariant, but we have the following, somewhat
stronger, statement:

Proposition 2.3.1 Let (X, f) be a dessin of degree n, and let (σX,σf) be its
conjugate under the action of σ ∈ GQ. Then MX and MσX are conjugate
subgroups of Sn. Alternatively, we have an isomorphism MX

∼= MσX under
which the fibers of (X, f) and (σX,σf) become isomorphic MX-sets.

Proof It is evident that if (X, f) is the smallest Galois lift of (X, f), then
(σX,σf

σ
) is the smallest Galois lift of (σX,σf) (conjugate the diagrams). We

now have our isomorphism MX
∼= MσX by the discussion in 2.2. Furthermore,

we have also seen that if {x1, . . . , xn} is a fiber of (X, f) above 1
2 , then the very
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same set {x1, . . . , xn} is a fiber of (σX,σf) above 1
2 . It is quite clear that the

map xi 7→ xi between these fibers commutes with the actions of MX and MσX :
this proves the proposition. ¤

The isomorphism of the fibers of (X, f) and (σX,σf) as MX -sets need of course
not lift to an isomorphism of π1(P

1
∗,

1
2 )-sets, since this would make all conjugated

dessins isomorphic, and we know that this is not the case.
The invariance of the monodromy group gives us quite a bit leverage on the
Galois action: the monodromy group is relatively easily calculated, and gives us
a nice necessity criterion for conjugated dessins. This will be used in the next
chapter. Sadly, the monodromy group does not distinguish all non-conjugate
dessins: a counterexample is Schneps’ flower, which can be found in [SC94].

2.4 Visualisations of the Galois action

In general, the action of an element of GQ on dessins is defined only via the
algebraic fundamental group. There is one exception to this rule: the action of
complex conjugation on dessins is still relatively easily to interpret, because it
has an easy topological interpretation. The following is due to Couveignes and
Granboulan in [SC94].
Complex conjugation and dessins We have seen that the action of GQ on
pairs (XC, fC) is obtained by postcomposing the morphism fC with an algebraic
automorphism σ of P1

C, and changing the structural morphism of X accordingly.
Usually, this σ does not correspond to an automorphism of P1

C with respect to
the Euclidean topology, but if σ is complex conjugation, it does. In fact, this is
the only non-trivial automorphism of Q over Q that is continous with respect
to the Euclidean topology. In this exceptional case, postcomposing with σ in
category 6) corresponds to postcomposing with a topological automorphism of
P1

C in category 2). This automorphism is given by reversing orientation. So we
see that the action of complex conjugation changes a dessin into its mirroring.
Therefore, the field of moduli of the dessin is contained in R (the fixed field on
complex conjugation) if and only if the dessin is isomorphic to its mirroring.
Couveignes and Granboulan also show that the condition for R to be a field of
definition is that this automorphism can be chosen to have order 2. Clearly,
this is necessary, but sufficiency uses cohomological techniques that we will not
treat here. But we do not need these techniques for the following example of a
dessin of degree 20 whose field of moduli does not equal its field of definition:

◦

◦

◦

◦

∗
∗◦

∗ ∗
◦

∗
∗ ◦

∗∗
◦

∗

∗

∗

∗

OO
oo

²² //

OOoo

²²
//

oo

// oo

//

There are now two ways of proving that the field of moduli of this dessin does
not equal its field of definition. The first is to calculate the associated per-
mutation pair (σ0, σ1), and to prove that, although (σ0, σ1) is conjugate to
(τσ−1

0 τ−1, τσ−1
1 τ−1) for some τ , which means that the dessin is invariant under

complex conjugation, this τ cannot be chosen to have order 2, so the dessin is
not defined over R. This is done by Couveignes and Granboulan. Another way
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is to argue geometrically: draw this dessin on the Riemann sphere, making the
circle the equator. Then the dessin is isomorphic to its mirroring, hence has
field of moduli contained in R, but the automorphisms of P1

C which induce this
isomorphism are given by rotations of 90 degrees clockwise or counterclockwise.
Such automorphisms do not become the identity when applied twice, so again
R is not a field of definition.

The general profinite case For the sake of completeness, an explicit compu-
tation of the outer action of GQ on the profinite algebraic fundamental group
πC

1 (P1
C − {0, 1,∞}) has been included. More details can be found in [OE02].

A given σ ∈ GQ acts on the primitive n-th roots of unity ζn by raising them to a
certain power χn(σ), well-defined up to multiples of n; in other words, we have

numbers χn(σ) ∈ Z/nZ∗ such that ζ
χn(σ)
n = σ(ζn). These numbers χn(σ) define

a profinite number χ(σ) ∈ Ẑ∗, called the Teichmüller character of σ. Further-
more, let fσ denote the class in πC

1 (P1
C − {0, 1,∞}) of the path (c−1)σc, where

c : [0, 1] → P1
C is given by sending t to t. Now let x and y be the generators

of πC
1 (P1

C − {0, 1,∞}) corresponding to counterclockwise loops around 0 and 1,
respectively. Then the outer automorphism of πC

1 (P1
C−{0, 1,∞}) corresponding

to σ is represented by the automorphism given by

(x, y) 7→ (xχ(σ), f−1
σ yχ(σ)fσ).

Of course, the number χ(σ) will rarely be finite, since Z∩Ẑ∗ = Z∗ = {±1}. And
even if this number is finite, fσ need not belong to πtop

1 (P1
C −{0, 1,∞}). So the

outer action of GQ is almost always only readily visible on πC
1 (P1

C − {0, 1,∞}),
and not already on πtop

1 (P1
C − {0, 1,∞}).

2.5 Dessins and inverse Galois theory

bla cartographic?

2.6 Weak isomorphism

We close the chapter with a less soaring subject. We have already seen that
dessins are only determined up to automorphisms of the top space. However,
there are still a number of automorphisms of the bottom space which we have
not considered yet. More precisely, the group S3 acts on dessins by permuting
the points 0, 1,∞ in the base space P1

C. These permutations have associated
fractional linear transformations on P1

C. On the level of rational functions, we
get our S3-action by postcomposing with these transformations.
We determine what this action does to the permutation pair (σ0, σ1) associated
to the dessin. For the permutation (01), this is easy: the permutation pair asso-
ciated to the new dessin, call it (σ′

0, σ
′
1), is given by (σ1, σ0). We will be finished

if we can determine the action of (1∞), since (01) and (1∞) generate the S3.
To see this, we recall from section 1.3 that the permutation pair associated to a
dessin were the permutations of the edges under the action of γ0, γ1 ∈ π1(P

1
∗):

here, γ0 worked by rotating an edge counterclockwise around the point above
0 attached to it, and γ1 rotated this edge counterclockwise around the points
above 1 attached to it. Also recall from the proof of Theorem 1.2.1 that an edge
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is a boundary of both a positively oriented “triangle” (mapping homeomorphi-
cally to H) and a negatively oriented “triangle” (mapping homeomorphically
to −H). The action of γ0, respectively γ1, is given by rotating the positively
oriented triangles counterclockwise around the point above 0, respectively the
point above 1, on their boundary. One quickly sees that γ∞ = (γ0γ1)

−1 there-
fore acts by rotating a positively oriented triangle around the point above ∞
on its boundary. Now note that the action of γ0, repectively γ1, can also be
described as rotating the negatively oriented triangles around the points above
0, respectively 1, on their boundary, but that the action of γ∞ does not have
the analogous property that it rotates a negatively oriented triangle around the
point above ∞ on its boundary. This asymmetry makes the S3 action a bit less
straightforward than one would think at first sight. But still, the action of (1∞)
is now easy enough to calculate. Indeed, consider a positively oriented triangle
T in the original dessin. Under the action of (1∞), this triangle is transformed
into a negatively oriented triangle T ′. Now, because we have seen that for γ0

and γ1, we can neglect orientation, γ0, respectively γ1, acts by rotating this
triangle T ′ counterclockwise around points above 0, respectively above 1, on its
boundary. These points are just the old points above 0 and ∞ in T , which was
positively oriented, so the permutations associated to γ0 and γ1 are just given
by σ0 and σ∞, respectively. So (σ′

0, σ
′
1) = (σ0, σ∞). Note, however, that the

new σ∞ does not equal σ1 because of the asymmetry noted above.
We can now calculate the entire S3-action to get the following table:

Permutation LFT (σ′
0, σ

′
1)

trivial x 7→ x (σ0, σ1)
(01) x 7→ 1 − x (σ1, σ0)
(0∞) x 7→ 1/x (σ∞, σ1)
(1∞) x 7→ x/(x − 1) = 1 + 1/(x − 1) (σ0, σ∞)
(01∞) x 7→ 1/(1 − x) (σ∞, σ0)
(∞10) x 7→ (x − 1)/x = 1 − 1/x (σ1, σ∞)

Definition 2.6.1 Let the S3-action on dessins be as above. (Isomorphism
classes of) dessins that are in the same orbit under this action are called weakly
isomorphic.

Introducing the notion of weak isomorphism class is very natural thing to do, as
we have just seen that a given dessin in a weak isomorphism class determines the
other dessins in this class by straightforward operations, like changing points
on the topological level or postcomposing with certain fractional linear trans-
formation on the algebro-geometric level. Weak equivalence therefore saves us
some work in representing dessins.



Chapter 3

Calculations with dessins

This chapter is devoted to some concrete calculations with dessins. We will
still use the abstract material of the previous chapters, but we shall see that
in a concrete context, everything is more straightforward. The first and third
section, especially, are notably free of abstraction, and is accessible to anyone
with a little knowledge of polynomials and ramification of polynomials.

3.1 Finding rational functions in genus 0

Given a genus 0 dessin, we want to find a rational function from P1
C to P1

C that
realizes the associated covering. In the following paragraph, we sketch a method
to find such a rational function. This method only needs the ramification indices
of the dessin as input. Since a dessin is not determined by its ramification
indices, not all the solutions found below will correspond to the original dessin,
but at least one will: this we know by the general theory.
Finding such a rational function (call it P/Q) proceeds as follows. We want P/Q
to be ramified above 0 in the prescribed way. This means that P is of the form
a

∏

i(X − pi)
ei , where a 6= 0 and the ei are the prescribed ramification indices.

By looking above ∞, one sees that Q is of the form Q = b
∏

j(X − qj)
fj , where

b 6= 0 and the fj are the prescribed ramification indices above ∞, and by looking
above 1, one sees that P − Q has to be of the form P − Q = c

∏

k(X − rk)gk ,
where c 6= 0 and the gk are the prescribed ramification indices above 1. So in
fact we are looking for solutions (a, b, c, (pi)i, (rj)j , (qk)k) of the equation

a
∏

i

(X − pi)
ei − b

∏

j

(X − qj)
fj = c

∏

k

(X − rk)gk ,

up to C-multiples of a, b, c. A slight subtlety is that there might be coverings
with one of the pi (or the qj , or the rk) equal to ∞: these correspond to solutions
of our equation with the factor corresponding to that pi (or qj , or rk) left out.
Our equation, which is essentially just a large system of polynomial equations,
will have many solutions, because P1

C has a lot of automorphisms. But we know
that an automorphism of P1

C is determined by where it sends three points, so
if we fix three of the pi, qj or rk, there will be a finite number of solutions,
one for every isomorphism class of coverings with the prescribed ramification.
Incidentally, it is quite remarkable that covering theory can be used to say

25
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something about such equations.
There is a small problem with fixing points in the top space, since one often
wishes to see whether there are solution with rational coefficients, that is, with
P and Q in Q[X]. Fixing the wrong points in the top space might force the
solutions P/Q to become non-rational. However, if there is a ramification index
that is taken on only once above its corresponding point, then rational solutions
have the property that the point corresponding to this ramification index is
rational. Indeed, consider such a point, say above 0. Were it not rational,
its minimal polynomial would have another root. But then, if the given root
occurs e times in P , then so does the other root, since P is rational. This is in
contradiction with the hypothesis. So if one is after rational solutions, and there
are ramification indices that are taken on only once above their corresponding
points, one may without risk fix up to three rational points corresponding to
these indices in the top space. In fact, this generalises to arbitrary genus. In
general, however, it is wise to fix points in the top space only after all solutions
have been found already, as not to risk missing out on rational functions. This
will make the equations harder to solve, however.
Concrete examples of this method can be found in section 3.3. But first, we
discuss a calculatory tool that is of great use.

3.2 Estimating the number of dessins

One is often interested in knowing the n-th degree dessins with fixed ramification
indices above 0, 1 and ∞. Of course, it is rather undoable to try and find
all of these by hand. We use the equivalence explored in 1.3. Trying to find
degree n dessins with fixed ramification above 0,1, and ∞ corresponds to finding
simultaneous conjugacy classes of permutations p0, p1 and p∞ of prescribed
conjugacy class that generate a transitive subgroup, and such that p0p1p∞ = 1.
An estimate for the number of such permutations is provided by the following
proposition in [SE88]:

Proposition 3.2.1 Let G be a group, and let C1, . . . , Ck be conjugacy classes
in G. Let N(C1, . . . Ck) be the number of solutions of the equation z1 · · · zk = 1
with the zi ∈ Ci. Then one has

N(C1, . . . , Ck) =
|C1| · · · |Ck|

|G|
∑

χ irred

χ(C1) · · ·χ(Ck)

χ(1)k−2
,

where the sum runs over the characters of the irreducible representations of G.

Proof Let ρ be an irreducible representation, and let x ∈ G. Then it can be
checked that 1

|G|

∑

g∈G ρ(gxg−1) is a morphism of representations from ρ to ρ,

hence by Schur’s Lemma

1

|G|
∑

g∈G

ρ(gxg−1) = λid =
χρ(x)

χρ(1)
id,

where λ =
χρ(x)

dim(V ) =
χρ(x)
χρ(1) follows by taking traces. Choose an xi ∈ Ci for

i = 1, . . . , k. Then multiply the equations one obtains by setting x = xi,
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i = 1, . . . , k, to get

1

|G|k
∑

gi∈G

ρ(g1x1g
−1
1 . . . gkxkg−1

k ) =
χρ(x1) · · ·χρ(xk)

(χρ(1))k
id.

Taking traces, one obtains

1

|G|k
∑

gi∈G

χρ(g1x1g
−1
1 · · · gkxkg−1

k ) =
χρ(x1) · · ·χρ(xk)

χρ(1)k−1
.

Hence, if ϕ is a class function with ϕ =
∑

χ cχχ its decomposition as a sum of
irreducible characters, we get

1

|G|k
∑

gi∈G

ϕ(g1x1g
−1
1 · · · gkxkg−1

k ) =
∑

χ irred

cχ
χ(x1) · · ·χ(xk)

χ(1)k−1
,

Now take ϕ to be the class function that takes the value 1 at the unit element
of the group and 0 elsewhere. It is known that this function decomposes as

ϕ =
∑

χ
χ(1)
|G| χ. The left side of the equation is now just 1

|G|k
times the number

of solutions (g1, . . . , gk) of the equation g1x1g
−1
1 · · · gkxkg−1

k = 1. Call this
number N ′(x1, . . . , xk), then we have that

N ′(x1, . . . , xk) = |G|k−1
∑

χ irred

χ(x1) · · ·χ(xk)

χ(1)k−2
.

Now, the number of solutions (z1, . . . , zk) of the equation z1 · · · zk = 1, with zi ∈
Ci, is found as follows. Since we have fixed the conjugacy classes, every solution
is of the form (g1x1g

−1
1 , . . . , gkxkg−1

k ). The number of tuples (g1, . . . , gk) that
give rise to solutions of this equation is given by n′(z1, . . . , zk). The only problem
is that not all the tuples (g1x1g

−1
1 , . . . , gkxkg−1

k ) that these solutions give rise to
will be distinct. To be precise, we have to divide by the orders of the centralizers

of the xi. But from group theory, we know this order is just equal to |G|
|Ci|

. This

gives the formula. ¤

In our special case, the proposition tells us that if C0, C1 and C∞ are the
congujacy classes in Sn corresponding to the ramification above 0, 1 and ∞,
then the number of solutions of the equation x0x1x∞ = e with xi ∈ Ci equals

N(C0, C1, C∞) =
|C0||C1||C∞|

n!

∑

χ irred

χ(C0)χ(C1)χ(C∞)

χ(1)
.

There are some slight complications. First of all, note that the proposition does
not guarantee that the permutations found generate a transitive subgroup of Sn,
so not all solutions will correspond to actual dessins. However, the proposition
does narrow down the range of possibilities considerably.
Secondly, recall that we are interested in solutions up to simultaneous conju-
gation only. To get a rough indication of the number of conjugacy classes of
solutions, we can divide n(C0, C1, C∞) by n!, but this is only an estimate, not
only because of the remark in the previous paragraph, but also because solu-
tions of x0x1x∞ = e that correspond to dessins with non-trivial automorphisms
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will have a number of conjugates less than n! under simultaneous conjugation.
To be precise, if we denote the automorphism group of the dessin associated
to our triple (x0, x1, x∞) by Aut(Y/X), we have that the number of triples in
the orbit under conjugation equals n!/|C({x0, x1, x∞})| = n!/|Aut(Y/X)|, us-
ing the remark after Proposition 1.1.10. This does suggest a neat procedure for
determining all dessins with given ramification indices: first, we consider the
“estimate”

E(C0, C1, C∞) =
N(C0, C1, C∞)

n!
=

|C0||C1||C∞|
n!n!

∑

χ irred

χ(C0)χ(C1)χ(C∞)

χ(1)
.

If this estimate is smaller than 1/n, there are no dessin with these ramification
indices. For a dessin has a simultaneous conjugacy class of triples of solu-
tions associated to it which by the remark just made is at least of cardinality
n!/n = (n − 1)!, since an n-th degree dessin can have at most n automor-
phisms. This would give a contribution of at least (n − 1)! to N(C0, C1, C∞),
and therefore a contribution of at least (n − 1)!/n! = 1/n to E(C0, C1, C∞),
contradicting the hypothesis. If the estimate is larger, we start determining
solutions of the equation x0x1x∞ = e, and determine their contribution to
E(C0, C1, C∞). We have seen above that if we denote the (simultaneous) cen-
tralizer of the triple (x0, x1, x∞) by C(x0, x1, x∞), then this contribution equals
(n!/|C(x0, x1, x∞)|)/(n!) = 1/|C(x0, x1, x∞)|. This centralizer is isomorphic to
the automorphism group of the covering associated to this permutation, allow-
ing us to read off its cardinality quite quickly. As said, not all of the solutions
need correspond to dessins: they can also correspond to coverings with multi-
ple components, and for these coverings, the cardinality of the automorphism
group can exceed the degree. But we can still quickly check which solutions do
correspond to dessins.
Summarizing our discussion above, we have

Proposition 3.2.2 Let D(C0,C1,C∞) be the set of dessins whose ramification
indices above the point p correspond to the conjugacy class Cp (p ∈ {0, 1,∞}).
Then we have

∑

d∈D(C0,C1,C∞)

1

Aut(d)
≤ E(C0, C1, C∞).

Corollary 3.2.3 With notation as above, we also have

|D| ≤ nE(C0, C1, C∞).

The third complication is that we still have to calculate the values χ(Ci), which
is of course not completely trivial. However, it turns out that this is not as
problematic as it seems. Indeed, we can use the Frobenius character formula,
proved for instance in [FU91]. This formula goes as follows. Suppose we have
a partition λ of n, say of the form λ1 + . . . + λk = n, with λ1 ≥ . . . ≥ λk. The
general theory on Young tableaux tells us that this λ has an irreducible character
χλ associated to it, and, conversely, that every irreducible character arises in
this way. Now suppose we want to know the value of χλ on the conjugacy class
Ci, where i = {ij}j is a set of numbers summing to n, and Ci is the conjugacy
class naturally associated to this set. Then consider the polynomial expressions

∆ =
∏

0≤i<i′≤n

(xi − xi′)
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and
Pj =

∑

0≤i≤n

xj
i ,

and construct the stricly decreasing chain of numbers l1 = λ1 + k − 1, l2 =
λ2 + k − 2, . . . = λk + k − k = λk. Finally, denote the coefficient of xa1

1 · · ·xak

k

in a polynomial f by [f ](a1,...,ak). The formula now tells us

χλ(Ci) =



∆
∏

j

P
ij

j





(l1,...,lk)

This is very useful for finding the dessins corresponding to a single list of ramifi-
cation values: we only have to evaluate three polynomials (namely, the ∆

∏

j P
ij

j

for our three values of i), and then determine some of their coefficients. It seems
hard to improve on this.
In section 3.5, we will be interested in finding a special collection of dessins of
fixed degree n. In such a case, it is of course more expedient to calculate the
whole character table of Sn before beginning the calculations. This can again
be done by the formulas above.
A possible Maple implementation is as follows. Suppose we want to calculate
some dessins in degree 12. First we define the group S12 and calculate its char-
acter table, together with all possible conjugacy classes. We also include the
partitions themselves as p in order to be able to use the chartable that Maple
has calculated.

ord := 12;

with(group); with(combinat);

n := numbpart(ord);

chartable := character(ord);

pg := permgroup(ord, {[[1,2,3,4,5,6,7,8,9,10,11,12]], [[1,2]]});

p := partition(ord);

Suppose we want to estimate the number of dessins with list of ramification
indices ((1, 3, 3, 5), (1, 3, 8), (2, 5, 5)). Then we first look up at which positions
in p these partitions appear. These turn out to be 42, 69, and 47, respectively.
We calculate the estimate with

a := 5; b := 6; c := 7;

SnConjugates(pg, p[a])*SnConjugates(pg, p[b])*SnConjugates(pg, p[c])

*(sum(chartable[k, a]*chartable[k, b]*chartable[k, c]

/chartable[k, 1], k = 1 .. n))/factorial(ord)^2;

This gives outcome 4496, which is an amazing amount of coverings. Ridiculous
outcomes like this happen more often in large degree.
Let us calculate the estimate for another list of ramification indices, say
((3, 3, 3, 3), (2, 2, 2, 2, 2, 2), (1, 1, 1, 1, 4, 4)). These have positions 19, 7 and 30 in
p. Now we set a:= 5; b:= 6; c:= 7 for the estimate 3. However, this estimate
turns out to be widely off the mark: the correct answer is 72. For some reason,
Maple thinks that SnConjugates(pg, [1,1,1,1,4,4]) equals 14968800, while
SnConjugates(pg, [4,4]) equals 623700. The latter is the correct number of
elements of the conjugacy class corresponding to the partition (1, 1, 1, 1, 4, 4) of
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12, the former differs by a factor of 24. This twisted behavior only seems to
show up for partitions for multiple 1’s in them.
It should be added here that Maple already has quite some trouble calculating
the full character table for ord := 24.

3.3 Examples aplenty in low degree

Let us first determine all (isomorphism classes of) dessins of degree up to 5.
For a few of these dessins, we will explicitly determine their associated rational
functions. At first, we will explicitly write down every dessin, but later on, we
will give only weak isomorphism classes (see section 2.6) and leave it to the
reader to determine all of the dessins in this weak isomorphism class. Through-
out, we use the special case of the Riemann-Hurwitz formula for dessins: let
f : X → P1

C be a morphism of curves of degree n that represents a dessin, then
we have

2g(X) − 2 = −2n +
∑

p∈f−1{0,1,∞}

(ep − 1) = n − b,

where g(X) is the genus of the curve X, the ep are the ramification indices above
p, and b is the number of points above 0, 1 and ∞ (these points need not all be
true ramification points, but writing things down this way makes our formula
easier).

Degree 1 Here, there is of course only one dessin, given by the identity on P1
C,

which is Galois. A drawing in the plane representing it is as follows:

∗ ◦

Degree 2 Degree 2 has three dessins, all of genus zero, which are all in the
same S3-orbit and are all Galois. Drawings representing our dessins:

∗ ◦ ∗ ◦ ∗ ◦ ∗ ◦

The associated rational functions P1
C → P1

C of these dessins are equal to x 7→ x2,
x 7→ 1 − x2, and x 7→ x2/(x2 − 1), respectively.

Degree 3 is less trivial. First the genus 0 dessins (which can be determined by
drawing by hand). These consist of two orbits. The first is the following Galois
orbit: ∗ ∗

◦

∗

??
?

ÄÄ
Ä ◦ ◦

∗

◦

??
?

ÄÄ
Ä

∗ ◦

Associated to these dessins are the rational functions x 7→ x3, x 7→ 1 − x3, and
x 7→ z3/(z3−1), respectively. The second is a (non-normal) quotient of a Galois
dessin (for more on this, see section 3.4), and is given by the drawings

◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗

The associated rational functions are x 7→ (x3−3x+2)/4, x 7→ 1+4/(x3−3x−2),
and x 7→ 4/(x3 − 3x + 2), as is easily verified.
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Figure 3.1: Two drawings representing the genus 1 dessin of smallest degree

These need not be all dessins of degree 3: there might also a few in genus 1.
These necessarily have only one point above 0, 1 and ∞. So up to simultane-
ous permutation, their two associated permutations are either (123) and (123)
or (123) and (321); only the first is possible as the second has no ramification
above ∞ (since (123)(321) = (1)(2)(3)). So in fact, there is exactly one dessin
in genus 1 of degree 3, which is also Galois, and its equivalence class consists
of only one element. Now to determine its associated elliptic curve and rational
function. Our map is of degree 3, so maybe it could be the projection (x, y) 7→ y
from a certain elliptic curve. This works: take E to be the elliptic curve with
equation y2 = x3 + 1, then one sees that the projection (x, y) 7→ y has only one
element in the fiber above −1, 1 and ∞. So we need only postcompose with
a fractional linear transformation mapping {−1, 1,∞} to {0, 1,∞} to get our
dessin. We take this transformation to be x 7→ (1 + x)/2, so we get the map
(x, y) 7→ (1 + y)/2. A few drawings of this dessin have been added.
In higher genus, there are no dessins of degree 3 because of the Riemann-Hurwitz
formula.

Degree 4 First we look for dessins that continue the pattern of the previous
degrees. For example, our first orbit is again given by a Galois dessin: the star
with 4 rays. In a picture:

◦ ∗∗

∗

∗

∗ ◦◦

◦

◦

∗ ◦

Associated rational functions: x 7→ x4, x 7→ 1 − x4, and x 7→ x4/(x4 − 1),
respectively.
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The second orbit is represented by a line with 5 dots on it, and the dessins in
this orbit are the following:

◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗ ◦ ∗ ∗

∗ ◦ ◦ ∗ ◦ ∗ ∗ ◦ ∗ ◦ ◦

The associated rational functions are x 7→ (4x2−x4)/4, x 7→ 1− (4x2−x4)/4 =
(4 − 4x2 + x4)/4, x 7→ 4/(4x2 − x4), x 7→ 1 − 4/(4x2 − x4) = (−4 + 4x2 −
x4)/(4x2 − x4), x 7→ 4/(4 − 4x2 + x4), and x 7→ (x4 − 4x2)/(x4 − 4x2 + 4),
respectively. As promised before, we will later see how to systematically derive
the rational functions for these dessins.

The third orbit is the first new one, and consists of a single Galois dessin, namely
the following:

◦

∗

◦

∗
??

??
?

ÄÄ
ÄÄ

Ä?????

ÄÄÄÄÄ

In section 3.4, we will look at such dessins in greater generality; there, we
will also determine the rational functions of these dessins. So referring to that
section, we state here that the rational function of this dessin is given by x 7→
(x2 − 2 + x−2)/(−4).

The fourth orbit consists of the following dessins:

◦ ∗ ◦

∗

∗

∗ ◦ ∗

◦

◦

∗

∗
◦ ∗

??
?

ÄÄÄ

◦

◦
∗ ◦

??
?

ÄÄÄ
◦ ∗ ◦ ∗ ◦ ∗

Determining the rational functions associated to these dessins illustrates an
important technique that saves a lot of time, called the Atkin/Swinnerton-Dyer
differentiation trick. So let us determine the rational function corresponding to
be the first dessin (the one at the upper left in the previous picture). For this,
we need to solve the polynomial equation

a(x − p0)
3(x − p1) − b(x − q0)

4 = c(x − r0)
2(x − r1)(x − r1)

We can without risk fix three points by setting p0 = 0, q0 = ∞ and r0 = 1 since
the ramification indices of those points are only assumed once above 0,∞ and
1, respectively. Then we get the equation

ax3(x − p1) − b = c(x − 1)2(x − r0)(x − r1)
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We directly see from this that a = c, so we set both equal to 1, since they are
uniquely determined up to C-multiplication anyway. Then, we differentiate our
equation to get

x2(4x − 3p1) = (x − 1)(4x2 − (3r1 + 3r2 + 2)x + 2r1r2 + r1 + r2)

The crucial step now is the realization that because of unique factorization,
4x − 3p1 is a multiple of x − 1 and x2 is a multiple of 4x2 − (3r1 + 3r2 + 2)x +
2r1r2 + r1 + r2. This is because x2 does not vanish in 1 while x − 1 does. This
gives the equations

4x − 3p1 = 4x − 4

4x2 = 4x2 − (3r1 + 3r2 + 2)x + 2r1r2 + r1 + r2

which are easily solved: we get p1 = 4/3, and r1 and r2 are roots of the quadratic
polynomial 3t2+2t+1. Finally, we can use the original equation to get b = −1/3.
So our rational function is equal to x 7→ x3(x − 4/3)/(−1/3) = 4x3 − 3x4.
In general, the b-term will of course not disappear, but we can still eliminate
that term using the original equation and its derivative; quite often, the resulting
equation can again be solved easily by appealing to unique factorization. We
can illustrate this with our next orbit of dessins. So we will now calculate those,
leaving it to the reader to calculate the rational functions four the other dessins
in the fourth orbit: this should be pretty standard by now.

A picture of the fifth orbit is as follows:

◦ ∗ ◦ ∗ ∗ ◦ ∗ ◦ ◦ ∗ ∗ ◦

It may seem that interchanging ◦ and ∗ in the last dessin gives a new dessin,
but in fact, it is isomorphic to that dessin. The reader is invited to check this,
either by working with the permutations associated to the dessins or by using
a topological argument (hint: interpret the two curved lines as the equator on
P1

C). This then also proves that these are all dessins in the orbit. Indeed, since
these three elements certainly are distinct and interchanging ◦ and ∗ does not
change the third dessin, there are less than six elements in the orbit: however,
the number of elements in the orbit certainly divides |S3| = 6, so it has to equal
3. Now to calculate the corresponding rational functions. We will only calculate
that of the dessin on the left, the others are then easily found.
So we have to solve

a(x − p0)
2(x − p1)

2 − b(x − q0)
3(x − q1) = c(x − r0)

3(x − r1)

We fix q0 = ∞, q1 = 1, and r0 = 0. In that case, we can again set a = c = 1, so
when we also set f = (x − p0)(x − p1), our equation becomes

f2 − b(x − 1) = x3(x − r1).

Differentiate this to get

2ff ′ − b = x2(4x − 3r1).

Now eliminate b by multiplying the second equation by x − 1 and subtracting
it from the first: this gets us

f(f − 2(x − 1)f ′) = x2(−3x2 + (2r1 + 4)x − 3r1)
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Since f does not vanish at 0, this means that we have

−3f = −3x2 + (2r1 + 4)x − 3r1

f − 2(x − 1)f ′ = −3x2.

These equations imply that r1 = −8, which also determines f . Our original
equations then give b = −64, so our rational function is x 7→ f2/b(x − 1) =
(x2 + 4x − 8)2/(64 − 64x) = (x4 + 8x3 − 64x + 64)/(64 − 64x). This is not a
very nice result: we would like the coefficients to be a bit smaller. However, this
can be arranged: if we had chosen q1 = 1/4 instead of q1 = 1, we would have
obtained the function x 7→ (2x2+2x−1)2/(1−4x) = (4x4+8x3−4x+1)/(1−4x).
This shows the importance of fixing the points in the top space in the right way.
Note that we can also obtain these functions from one another by precomposing
with the automorphism x 7→ 4x of P1

C.

The sixth orbit only has a single dessin in it, namely the following:

∗ ◦ ∗ ◦

Obtaining the rational function associated to this dessin is straightforward: we
do not even need the differentiation trick. After fixing a few points and choosing
a = c = 1 as usual, we see that we have to solve

x3(x − p1) − b(x − q1) = (x − 1)3(x − r1).

Comparing the coefficients of the polynomials on the left and right, one imme-
diately sees r1 = −1, p1 = 2, b = −2 and q1 = 1/2. Our rational function
therefore becomes x 7→ x3(x − 2)/(−2(x − 1/2)) = x3(x − 2)/(1 − 2x).

One can check manually that these are all genus 0 dessins. This can also be
argued by using Serre’s formula from the previous section. Indeed, our dessins
has associated permutations p0, p1 and p∞ = (p0p1)

−1 in S4, whose conjugacy
classes correspond to partitions of 4, that is, to (1, 1, 1, 1), (1, 1, 2), (1, 3), (2, 2)
or (4). But the variant of the Riemann-Hurwitz formula above tells us in this
case that 2·0−2 = −2·4+b, where b is the number of points above 0, 1 and ∞. So
there are 6 of these points, which means that the sum of the number of disjoint
cycles in the canonical decompositions of p0, p1 and p∞ equals 6. We are not in-
terested in the ordering of these triples since we only look at weak equivalence,
so this leaves us with the following triples of partitions: ((1, 1, 1, 1), (4), (4)),
((1, 1, 2), (2, 2), (4)), ((1, 1, 2), (1, 3), (4)), ((2, 2), (2, 2), (2, 2)), ((2, 2), (2, 2), (1, 3)),
((2, 2), (1, 3), (1, 3)) and ((1, 3), (1, 3), (1, 3)). We can now use Serre’s formula.
For example, it tells us that E((1, 1, 1, 1), (4), (4))/4! = 1/4 (note the self-
explanatory abuse of notation). According to the previous section, this means
that if there exists a dessin corresponding to these partitions at all, its au-
tomorphism group has order 4. Clearly, this corresponds to our first orbit.
There are no more dessins of this type because our first orbit already gives
contribution 1/4. Of course, we could have seen all of this without using the
formula, but this will become less clear in higher degree. Continuing, we also get
E((1, 1, 2), (2, 2), (4)) = 1/2, which corresponds to our second orbit. Since these
dessins have an automorphism group of order 2, they give a contribution of 1/2,
so they are all dessins of this type. Similarly, we see that E((1, 1, 2), (1, 3), (4)) =
1, E((2, 2), (2, 2), (2, 2)) = 1/4 and E((2, 2), (1, 3), (1, 3)) = 1 correspond to our
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third, fourth and fifth orbit, and we can once more argue that these are all
dessins with those types of ramification. The remaining to cases are a bit more
fun. First of all, E((2, 2), (1, 3), (1, 3)) = 0, meaning that there exist no dessins
with ramification ((2, 2), (2, 2), (1, 3)). The reader can also convince himself of
this by trying to draw the dessin or doing the calculation in S4. We see here
that Serre’s formula rules out cases that might a priori be possible according
to Riemann-Hurwitz. It will also do this in the section 3.5, with even more suc-
cess. Secondly, we also have E((1, 3), (1, 3), (1, 3)) = 4/3, which seems a strange
outcome. Clearly, the dessin in our sixth orbit gives a contribution of 1, but
what does the remaining 1/3 mean? It cannot correspond to a dessin since the
cardinality of the automorphism group of a connected covering always divides
the degree of that covering. So this contribution has to correspond to solutions
of the equation x0x1x∞ = 1 with all the xi of type (1, 3) that do not generate
a transitive subgroup. Equivalently, such solutions correspond to a product of
multiple connected coverings corresponding to dessins. A logical choice would
be a product of the degree 1 dessin and the genus 1 dessin in degree 3: this prod-
uct indeed corresponds to the non-transitive solution x0 = x1 = x2 = (123),
which has an automorphism group of order 1 · 3 = 3. This accounts for the
missing 1/3. Situations like this will occur more often, but they can also quite
often be ruled out (for example, if one of the permutations is transitive itself).

There are also a few dessins of degree 4 in genus 1: the Riemann-Hurwitz
formula tells us that for such dessin, 0 = 4 − b, so these dessins consist of only
four points above 0, 1 and ∞. Then, there are necessarily either two points
that have ramification index 4, and two points with ramification index 2, or
two points that have ramification index 4, one with index 3, and one with
index 1. There might be multiple dessins corresponding to these ramification
indices, but in fact one can check that all pairs of 4-cycles in S4 whose canonical
decomposition consists of two disjoint cycles are simultaneously conjugate to
either (1234), (1234) (with product (13)(24)) or (1234), (1324) (with product
(142)(3)). So once we specify above which points ramification index 4 occurs,
our dessin is determined by its associated partitions. We could alternatively
have checked this using Serre’s formula again.
Schematic pictures of these dessins (that is, drawings in the plane where the
sides should be identified to get the torus) are the following. The first orbit is
given by

◦ ∗

∗

∗

∗

∗ ◦

◦

◦

◦

◦

∗

∗

∗

∗

ÄÄÄÄÄÄÄ

??
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We know be the above that this orbit consists of three dessins, since fixing the
two points above which the dessin branched quadruply determined the dessin.
By the way, we have of course already seen the second dessin in chapter 1.
We now determine the rational function corresponding to a dessin in this orbit,
say to the dessin on the left (with two points above 1). First note that the dessin
is Galois with Galois group of order 4 (in fact, its Galois group is isomorphic to
the Viergruppe), so we can try to write the function associated to the dessin as
a composition of two degree 2 functions. This works: the projection (x, y) 7→ x
from the elliptic curve y2 = x(x−1)(x+1) clearly ramifies doubly above 0, 1,−1
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and ∞, while being unramified elsewhere; composing with the map z 7→ z2 on
P1

C, which has 0 and ∞ as its branch points and 1 and −1 in the same fiber, we
get a rational function which does the trick: (x, y) 7→ x2 from the elliptic curve
y2 = x(x − 1)(x + 1).
The second orbit is given by

∗

◦ ∗
OOOOOO

OOOOOO

◦

∗ ◦
OOOOOO

OOOOOO

∗

◦
OOOOOO

OOOOOO

The rational functions associated to these dessins are probably the ones that
are hardest to find in degree 4. Let us calculate the one corresponding to the
dessin on the left. It comes from an elliptic curve, which we will want to write
in standard form, so as y2 = x3 + ax + b. We can also arrange that the point at
infinity of the curve is mapped quadruply to ∞ ∈ P1

C. This leaves us with little
choice for the rational function: it has to be of the form (x, y) 7→ cy+fx2+gx+h.
Clearly, there is no solution for c = 0, so because we can scale (see below), there
is a solution for any non-zero c. It should be noted that this is not the canonical
way to find solutions, since it is more logical to look at the coefficient of the
term with the higher pole order at ∞, namely f . But it turns out that working
with c makes our exposition a little bit easier.
First we try c equal to 1: if there is a solution for this value of c, we can find
solutions for arbitary c by scaling, as we will do later. We want four points in
the fiber above 0, so there must exist a p ∈ C such that

(fx2 + gx + h)2 − x3 − ax − b = f2(x − p)4.

Above 1, we want a triple and a single point in the fiber, meaning the there
exist q and r distinct in C such that

(1 − fx2 − gx − h)2 − x3 − ax − b = f2(x − q)3(x − r).

These equations can be solved using a computer: it turns out that there is
a solution, namely a = 47/243, b = 4718/19683, f = 3/4, g = 1/18, and
h = −505/972. This is not very beautiful, so we try to polish this solution a bit
by scaling. Multipling the equations by d6, we get

(fd3x2 + gd3x + hd3)2 − d6x3 − ad6x − bd6 = d6f2(x − p)4,

(d3 − fd3x2 − gd3x − hd3)2 − d6x3 − ad6x − bd6 = d6f2(x − q)3(x − r).

Observe that if we put x′ = d2x, y′ = d3y, f ′ = f/d, g′ = dg, h′ = d3h, a′ = ad4

and b′ = bd6, we have in this way found a solution for the equations

(f ′3x′2 + g′x + h′)2 − x′3 − a′x′ − b′ = (f ′)2(x′ − p′)4,

(d′3 − f ′x′2 − g′x′ − h′)2 − x′3 − a′x′ − b′ = (f ′)2(x′ − q′)3(x′ − r′).

And this means that we have found a new rational function corresponding to
our dessin, namely the mapping

(x, y) 7→ y′ + f ′x′2 + g′x′ + h′

d3
=

1

d3
y′ +

f

d4
x′2 +

g

d2
x′ + h
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from the elliptic curve y′2 = x′3 + a′x′ + b′ = x′3 + ad4x′ + bd6: indeed, for
this mapping to have the requested ramification above 0 and 1 is equivalent
to finding a solution to the two equations we just wrote down, as is quickly
checked. Of course, this scaling procedure can be done with any dessin from
an elliptic curve, just as a dessin from P1

C can be “polished” by precomposing
with a suitable fractional linear transformation. We use this with d = 3 to get
a somewhat more decent rational function associated to our dessin: we get the
function

(x, y) 7→ 1

27
y +

1

108
x2 +

1

162
x − 505

972

from the curve y2 = x3 + 47
3 x + 4718

27 , which is a bit more decent.
A few three-dimensional pictures of the genus 1 dessins we have not seen before
have been added below, without markings for the points above 0, 1 and ∞.
As in degree 3, genus two dessins do not occur in this degree because of the
Riemann-Hurwitz formula.

Degree 5 The number of dessins keeps growing. To keep this thesis within
bounds, we will not give rational functions for all of them here: the reader
should by now be able to find such functions on his own, either by hand or by
using a computer, and the functions can always be found in the article by Bryan
Birch in [SC94]. However, we can still determine all dessins in degree 5 per se,
again by using Serre’s formula. For a few dessins that are a bit more amusing
than the others, we determine the rational functions.

Let us first determine the dessins in degree 5 of genus 0. These have associated
permutations p0, p1 and (p0p1)

−1 whose conjugacy classes correspond to on of
the following partitions of 5: (1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 4),
(2, 3) or (5). This time, the Riemann-Hurwitz formula tells us that the total
number of points above 0, 1 and ∞ equals 7. We have written down all triples
of permutations up to ordering in the table below, along with the estimate that
Serre’s formula gives for the number of dessins.

Triple of partitions Estimate
((1, 1, 1, 1, 1), (5), (5)) 1

5
((1, 1, 1, 2), (1, 4), (5)) 1
((1, 1, 1, 2), (2, 3), (5)) 1
((1, 1, 3), (1, 1, 3), (5)) 1
((1, 2, 2), (1, 1, 3), (5)) 1
((1, 2, 2), (1, 2, 2), (5)) 1
((1, 1, 3), (1, 4), (1, 4)) 2
((1, 2, 2), (1, 4), (1, 4)) 9

4
((1, 1, 3), (2, 3), (1, 4)) 2
((1, 2, 2), (2, 3), (1, 4)) 1
((1, 1, 3), (2, 3), (2, 3)) 7

6
((1, 2, 2), (2, 3), (2, 3)) 1

We now discuss these triples a give drawings in the plane representing them. We
will now only be interested in these up to weak isomorphism: the reader should
be able to determine the ordinary isomorphism classes by using the S3-action.
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Figure 3.2: The new genus one dessins drawn on the torus



3.3. EXAMPLES APLENTY IN LOW DEGREE 39

The triple ((1, 1, 1, 1, 1), (5), (5)) has the star with 5 rays associated to it:

◦ ∗∗

∗

∗

∗

YYYYYeeeee

®®®®®

33333

The triple ((1, 1, 1, 2), (1, 4), (5)) corresponds to the following picture:

◦ ∗∗

∗

∗

◦

It is the only drawing of this sort because it contributes 1 to the estimate by
virtue of its automorphism group having order 1.

The same reasoning shows that the following drawings represent all dessins cor-
responding to the triples of partitions ((1, 1, 1, 2), (2, 3), (5)), ((1, 1, 3), (1, 1, 3), (5)),
((1, 2, 2), (1, 1, 3), (5)), and ((1, 2, 2), (1, 2, 2), (5)), respectively:

◦ ∗ ◦ ∗

∗

∗

◦ ∗ ◦ ∗ ◦ ∗

∗ ◦
∗

∗

◦

◦

llllll
RRRRRR

llllll

RRRRRR
∗ ◦ ∗

◦ ∗ ◦
To the triple ((1, 1, 3), (1, 4), (1, 4)) corresponds the dessin

∗

∗
◦ ∗ ◦OOOOOO

oooooo

This gives a contributions of 1, since it has no non-trivial automorphisms (recall
that morphisms of dessins have to preserve orientation). The other part of the
estimate corresponds to the product of the dessin of degree 1 and the genus 1
dessin of degree 4 with associated triple of partitions ((1, 3), (4), (4)). Both have
no non-trivial automorphisms, so neither has their product, so it contributes 1.

The triple ((1, 2, 2), (1, 4), (1, 4)) has two dessins associated to it:

∗ ◦
∗
∗

◦
rrr
LLL

rrr

∗ ◦
∗
∗

◦

rrr
LLL

LLL

The final contribution of 1/4 corresponds to the product of the dessin of degree
1 and the genus 1 Galois dessin of degree 4 with associated triple of partitions
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((2, 2), (4), (4)). The first dessin sketched corresponds to the pair of permuta-
tions ((1234)(5), (12)(45)), and the second to ((1234)(5), (12)(35)): these pairs
are clearly not conjugate, so we see that in degree 5, it happens first that a
dessin is not determined by its associated partitions. Since (1, 4) occurs twice
in our triple of partitions, we also need to check whether these dessins might
in fact be in the same orbit: this is not the case, since then we would have to
have simultaneous conjugacy of ((1234)(5), (12)(45)) and ((12)(35), (1234)(5)):
a quick calculation shows that this is not the case.
We will now calculate the rational function associated to this dessin. For this,
we have to solve

a(x − p0)
4(x − p1) − b(x − q0)

4(x − q1) = c(x − r0)
2(x − r1)

2(x − r2).

As usual, we can set p0 = 0, q0 = ∞, q1 = 1/5 (this will make the end result
a bit nicer) and a = c = 1. Adding the derived equation and writing f =
(x − r0)(x − r1), we then have

x4(x − 1) − b(x − 1

5
) = (x − r2)f

2

x3(5x − 4p0) − b = f(f + 2(x − r2)f
′).

We eliminate b by multiplying the second equation with x − c and subtracting
it from the first. This gets us

x3(−4x2 + (3p0 + 1)x − 4

5
p0) = f((c − r2)f − 2(x − 1

5
)(x − r2)f

′).

Since f does not vanish at 0 while x3 does, unique factorization tells us that we
have

−4f = −4x2 + (3p0 + 1)x − 4

5
p0

−4x3 = (
1

5
− r2)f − 2(x − 1

5
)(x − r2)f

′.

These equations are easily solved; the problem is that they have multiple solu-
tions. It turns out that all that is demanded of r2 is that it is a root of 5z2+2z+1.
Depending on the choice of a root, we can determine the rest of the coefficients,
giving us the two rational functions x 7→ (41−38i)(x+3+4i)x4/(5x−1) and its
complex conjugate, x 7→ (41+38i)(x+3−4i)x4/(5x−1). The reader may want
to find out which one corresponds to which dessin. Our dessins are defined over
Q(i) and not over Q. Their field of moduli of the dessin is therefore contained
in Q(i). In fact, it equals Q(i), since the two solutions we just found have to
correspond to different dessins. Alternatively, one could argue that since these
dessins have no automorphisms, their field of moduli is a field of definition. But
clearly the field of moduli is not contained in R, since the two dessins are not
isomorphic to their mirrorings. Therefore Q can not be a field of definition.
Since we have seen that the Galois action can only conjugate the monodromy,
this also means that we have showed that the subgroup of S5 generated by
(1234)(5) and (12)(45) and the subgroup generated by (1234)(5) and (12)(35)
are conjugated by an element of S5. Such things are usually not proved using
calculations with polynomials, but this unconventional detour through covering
theory appears to work too.
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The triple ((1, 1, 3), (2, 3), (1, 4)) also has two dessins associated to it:

∗ ◦ ∗ ◦ ∗ ◦ ∗ ◦
∗

∗

oooooo

OOOOOO

These drawings represent different dessins, since a quick check shows that the
pair of permutations ((12)(543), (234)) associated to the first dessin is not simul-
taneously conjugate in S5 to the pair of permutations ((12)(345), (123)) associ-
ated to the second dessin. Both dessins have no non-trivial automorphisms, so
these are all dessins corresponding to our triple. These dessins look much more
different than the previous two (which were obtained from each other through
mirroring). So it might seem that we have found two dessins with the same
associated triple of partitions which are not conjugate. This guess is mistaken,
however. Let us, for instance, try to calculate the function associated to the
dessin on the left. For this, we have to solve the equation

a(x − p0)
3(x − p1)(x − p2) − b(x − q0)

4(x − q1) = c(x − r0)
3(x − r1)

2.

We can set p0 = 0, q0 = ∞, r0 = 1, and a = c = 1: again, the first section tells
us that if there are any solutions of this equations defined over Q, we will find
one in this way. Now we use the differentation trick. The calculations have not
been included (they are a bit more elaborate than usual), but the conclusion is
that the rational function associated to the dessin is one of the following (which
one is it?)

x 7→ x3(3x2 + (−3 ± 2
√

6)x − 4 ± 4
√

6)

(−9 ∓ 4
√

6)x + 5 ± 2
√

6
.

The other solution has to correspond to the dessin on the right. Again, we
have found two different dessins that are conjugate under the Galois action.
This is not easy to see from the shape of the drawings, which goes to show
how complicated the Galois action is. Incidentally, we have once more proved
a group-theoretical fact by a detour: namely, by the invariance of monodromy
under the Galois action, the subgroup of S5 generated by (12)(543) and (234)
is conjugate to the subgroup generated by (12)(345) and (123).

There are a few dessins left. The reader may want to check that the fol-
lowing drawings correspond to the triples of partitions ((1, 2, 2), (2, 3), (1, 4)),
((1, 1, 3), (2, 3), (2, 3)), and ((1, 2, 2), (2, 3), (2, 3)), respectively, and he or she
might also want to figure out where the contribution 1/6 in the estimate for
((1, 2, 2), (2, 3), (2, 3)) comes from.

∗ ◦ ∗ ◦ ∗ ◦

∗

∗

◦ ∗
ÄÄÄÄÄ

??
??

?
??

??
?

ÄÄÄÄÄ

◦ ∗ ∗ ◦ ∗

The genus 1 dessins of degree 5 have 5 points above 0, 1, and ∞. For these, we
get the following table:

Triple of partitions Estimate
((1, 1, 3), (5), (5)) 2
((1, 2, 2), (5), (5)) 1
((1, 4), (1, 4), (5)) 3
((2, 3), (1, 4), (5)) 2
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Figure 3.3: The dessins associated to the triple ((1, 1, 3), (5), (5)).

Let us examine all of these triples: we will determine all dessins up to weak
isomorphism and calculate a few corresponding rational functions. Some pic-
tures have been added, but without markings: the reader is invited to fill these
in himself. In these cases, our table is a very effective tool. Indeed, there can
be no questions of “fake” solutions, that is, solutions which do not generate a
transitive subgroup, since the table above tells us that every solution we find
will generate a 5-cycle.

((1, 1, 3), (5), (5)): The pairs of permutations corresponding to this triple of par-
titions are simultaneously conjugate to either ((123), (12345)) or ((123), (15423)):
indeed, these pairs are clearly not simultaneously conjugate, and they have triv-
ial centralizer, so they correspond to two different dessins without non-trivial
automorphisms on the torus, both giving a contribution of 1. Schematic draw-
ings in the plane follow (again, identify the sides):

∗

◦ ∗∗
OOOOOO

OOOOOO

∗

◦∗
∗

OOOOOO

OOOOOOll
RR

Now, although these solutions correspond to different dessins, both of these
dessins are in the same weak isomorphism class: indeed, if σ0 = (123) and
σ1 = (12345), then (σ0σ)−1 = (12543), and the pair (σ0, σ∞) is simultaneously
conjugate to ((123), (15423)). This somewhat strange phenomenon can happen
because the partition (5) occurs twice in our triple of ramification indices: in a
sense, we get a doubly counted solution.
Our solutions could still be conjugate, since, by the above, they generate the
same subgroup of S5. However, a calculation shows that both are defined over
Q, so they cannot be conjugate. Note that the monodromy group does not
notice that the dessins are not conjugate. This always happens for dessins in
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Figure 3.4: The dessin associated to the triple ((1, 2, 2), (5), (5)).

the same S3-orbit that are defined over Q, of course. But except in these trivial
cases, monodromy is still a quite nice invariant, as we shall see.

((1, 2, 2), (5), (5)): We find a solution ((14)(25), (12345)). This pair has trivial
centralizer, hence gives contribution 1. A corresponding drawing:

◦ ∗

∗

∗

∗

∗ÄÄÄ

Note that we do not get a “doubly counted solution” in this case: the product
of (14)(25) and (54321) equals (12435), so the candidate for a double solution in
the same orbit is ((14)(25), (12435)), which is simultaneously conjugate to the
original pair.

((1, 4), (1, 4), (5)): This triple is much more exciting. One finds solutions ((1234), (1235)),
((1234), (1253)) and ((1253), (1234)), all with trivial centralizer. Pictures are as
follows:

∗

◦

◦

∗
OOOOOO

OOOOOO

∗

◦

◦

∗
OOOOOO

OOOOOO

◦

∗

∗

◦
OOOOOO

OOOOOO

One immediately sees that the middle and right solution are in the same orbit.
The first solution is in a different orbit. Of course, we want to know whether
some of these dessins are conjugated. For this, we first calculate the cardinalities
of the monodromy groups. Naturally, we are not surprised that these numbers
are the same (namely 20) for the second and third solution, since these lie in
the same orbit. But it also turns out that the first solution has the complete
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Figure 3.5: The dessins associated to the triple ((1, 4), (1, 4), (5)). The dessin
on the right also admits a mirroring.

S5 as monodromy group, so only the second and third dessin might be conju-
gated. Note that this is the first time that we have two dessins with the same
ramification indices which are not weakly isomorphic.
When we mirror the second dessin, we get something that resembles the third
dessin a bit: maybe these dessins are conjugate via complex conjugation? To
confirm this suspicion, we use the criterion of section 2.4, which tells us that
a permutation pair (p0, p1) has moduli field contained in R if and only if it is
simultaneously conjugate to the pair (p−1

0 , p−1
1 ). Now, the pair ((1234), (1235))

is not conjugate to ((4321), (5321)), so mirroring the second dessin has to trans-
form it into the third dessin. It is quite remarkable that dessins in the same
weak equivalence class are related through Galois conjugation: it means that
the S3-action lifts through the covering map, which is very unlikely. Explicit
computation yields that both the second and the third dessin are defined over
Q(i). Indeed, let us perform this calculation.
We have to find an elliptic curve E given by a Weierstrass equation y2 =
x3 + ax + b with a degree 5 morphism E → P1

C, such that we get a quadruple
and a single point above 0 and 1, and a quintuple point above ∞. Precomposing
with a translation if necessary, we may assume that the point at infinity of E
maps to ∞. Since it has degree 5, it then has to be of the form

(x, y) 7→ cxy + dy + fx2 + gx + h,

where c 6= 0. This function is zero when y = −fx2−gx−h
cx+d . We want a quadruple

point and a single point in the fiber of 0, so the equation

(
−fx2 − gx − h

cx + d
)2 − (x3 + ax + b) = 0

should have a quadruple and a single root. This means exactly that there exists
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p and q for which

(−fx2 − gx − h)2 − (cx + d)2(x3 + ax + b) = c2(x − p)4(x − q).

Analogously, by looking above 1 we see that there have to exist r and s for
which

(1 − fx2 − gx − h)2 − (cx + d)2(x3 + ax + b) = c2(x − r)4(x − s).

As before, we can scale a solution. Indeed, suppose the previous two equations
are satisfied. Multiply the equations by k10 and set x′ = k2x, y′ = k3x to get

(−fkx′2−gk3x−hk5)2− (cx′ +dk2)2(x′3 +ak4x′ + bk6) = c2(x′−pd)4(x′−qd),

(k5−fkx′2−gk3x′−hk5)2−(cx′+dk2)2(x′3+ak4x′+bk6) = c2(x′−rd)4(x′−sd).

These equations imply that the rational function

(x, y) 7→ cxy + dk2y′ + fkx3 + gk3 + hk5

k5
=

c

k5
xy +

d

k3
y +

f

k4
x2 +

g

k2
x + h

from the curve y2 = x3 + ad4x + bd6 gives the same dessin: we have merely
precomposed with an isomorphism of elliptic curves. Again, we will make com-
plicated solutions a little bit easier by using this technique.
Now the actual calculation. First we try c = 1. We get more that three solu-
tions. This is because we haven’t taken all automorphisms of E into account yet
(only the translations). Up to the remaining automorphisms, the first solutions
is

a =
5

16
, b =

5

32
, c = 1, d =

−5

4
, f = 0, g = 0, h =

1

2
.

This solution can be scaled with k = 2, but the outcome is not much better.
The other two solutions are

a =
25

384
5
√

8, b =
1475

13824
5
√

4, c = 1, f = ±5

4
5
√

4i, g = ± 5

48
5
√

2i, h =
1

2
∓ 139

2304
i.

Scaling this by k = 5
√

8, we get the new, nicer, solution

a =
25

48
, b =

1475

864
, c =

1

8
, f = ± 5

16
i, g = ± 5

96
i, h =

1

2
∓ 139

2304
i.

So, summing up, the first dessin in our equivalence class has as associated
rational function the morphism

(x, y) 7→ xy − 5

4
y +

1

2

from the curve y2 = x3 + 5
16x+ 5

32 . This dessin is therefore defined over Q. The
other two dessins correspond to the morphisms

(x, y) 7→ 1

8
xy − 35

96
y ± 5

16
ix2 ± 5

96
ix +

1

2
∓ 139

2304
i

from the curve y2 = x3 + 25
48x + 1475

864 . We see that these dessins are indeed
defined over Q(i).
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Figure 3.6: The dessins associated to the triple ((2, 3), (1, 4), (5)).

((2, 3), (1, 4), (5)): We get the solutions ((1234), (531)(42)) and ((1234), (134)(25)),
which are not in the same orbit, as can already be seen by considering the ram-
ification indices. The associated schematic drawings are:

∗

◦∗◦
OOOOOO

OOOOOO

∗

∗

◦ ∗
◦

There are also a couple of dessins of genus 2 in degree 5. These have 3 points
above 0, 1 and ∞, so they necessarily correspond to the triple ((5), (5), (5)).
Serre’s formula now gives us 8/5 as estimate. By simultaneous conjugation,
we may assume that the first permutation in the permutation pair is given by
(12345). It is then quickly checked that the pairs ((12345), (12345)), ((12345), (13524)),
and ((12345), (14253)) give solutions which correspond to Galois coverings, and
hence contribute 1/5, whereas the pair ((12345), (14235)) is not Galois. Because
the order of the automorphism group always divides the degree and 5 is prime,
this means that the corresponding covering has no automorphisms, so this pair
gives a contribution of 1. This finishes the classification of all degree 5 dessins.
Note that the final dessin gives an example of a covering which is not Galois,
even though the orbits in Sn of the corresponding permutations σ0, σ1 and σ∞

all have the same length.

Patterns We can already see a few patterns from the previous small-degree
examples. For instance, it appears that there is a dessin given by a star with
n rays for a degree n, which has the rational function x 7→ xn associated to it,
and which has two other dessins in its orbit, with associated rational functions
x 7→ 1 − xn and x 7→ xn/(xn − 1). This dessin is Galois (with Galois group
Cn = Z/nZ), so there is a Galois dessin in every degree. Also, there is, for any
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degree n, the dessin represented by a line with n + 1 points on it, with ◦ and
∗ alternately showing up. This dessin is in fact always a quotient of a Galois
dessin, as will be seen in the section 3.4, where we will also see how to determine
the rational functions corresponding to these dessins.
The examples also hint at a relation between genus and degree. As we have
seen, the first genus 1 dessin showed up in degree 3, while a genus 2 dessin
was almost possible in degree 4. In degree 5, we first saw a genus 2 dessin.
It can in fact be argued with a few trivial remarks that, in general, a dessin
of genus g first shows up in degree 2g + 1. Indeed, no such dessin is possible
if the degree n is smaller than 2g + 1, since the maximal value for the term
∑

p∈f−1{0,1,∞}(ep − 1) in the Riemann-Hurwitz formula is attained when all ep

are n. So the formula gives us the estimate 2g − 2 ≤ −2n + 3(n − 1), which
implies n ≥ 2g + 1. And in degree 2g + 1, there exists genus g dessins, since we
can then consider the pair of permutations ((12 . . . 2g+1), (12 . . . 2g+1)), which
have product (135 . . . 2g + 124 . . . 2g): using the Riemann-Hurwitz formula, we
see that the genus of the associated surface equals g. Topologically, we can
imagine this dessin by generalizing the sketch on the left in Figure 3.1: one
inductively adds “handles” to the lower right part of this sketch, and one adds
two lines, one going from the point on the inside of the original handle (of
Figure 3.1) to the point on the outside of the original handle by travelling over
the inside of the new handle, and another line which makes the same journey,
but which travels over the outside of the new handle. One can quickly convince
oneself that this method indeed gives a dessin with associated permutation pair
((12 . . . 2g + 1), (12 . . . 2g + 1)). An explicit covering that realizes these dessins
is given by taking the projective completion of the affine curve y2 = x2g+1 + 1,
and composing the projection on the y-coordinate, which ramifies above −1, 1
and ∞, with the function z 7→ (1+z)/2 on P1

C. Because of the invariance of this
equation under the transformation y 7→ −y, the rational function corresponds
to our pair of permutations ((12 . . . 2g + 1), (12 . . . 2g + 1)). Of course, when
g > 1, there will be more than one dessin of genus g in degree 2g + 1, even up
to weak isomorphism.

It should be fun to calculate the rational function associated to the dessin in
chapter 2 whose field of moduli was not a field of definition. Unfortunately, this
seems to be out of our reach. It is perfectly possible to write down the equations,
but once a few numerical approximations are calculated, they seems to have a
very large number of solutions. This is as it should be, because the estimate
E for this dessin equals 345! And although there might still be a lot of dessins
among these solutions whose field of moduli is not a field of definition, it seems
quite impossible to determine which of these rational functions corresponds to
our original dessin. This illustrates how hard it becomes to work with dessins
in high degree.

3.4 Dessins and symmetry

An interesting question is how to determine all of the Galois dessins. In general,
this is beyond our grasp: it would entail finding all normal subgroups of finite
index of the free group on two generators. Recall from chapter 1, however, that
there was another way of constructing Galois dessins, namely by starting with a
curve and dividing out a subgroup of the automorphism group. This is of course



48 CHAPTER 3. CALCULATIONS WITH DESSINS

much more amenable to calculations, but the problem is now that for a fixed
curve of genus greater than 1, the group of automorphisms is finite, so for a
fixed curve, we will obtain only a finite amount of Galois coverings. So only the
Riemann sphere and the elliptic curves can yield infinitely many Galois dessins
for which they are the top space. For the former, the Galois dessins have been
determined explicitly:

Theorem 3.4.1 The following groups are the only ones that occur as automor-
phism groups of genus 0 Galois dessins: Cn, Dn, A4, S4, and A5. Furthermore,
for any of these groups there is only one weak isomorphism class of genus 0
Galois dessins with that Galois group.

Proof By the analogue of a result mentioned after Proposition 1.1.7, the genus
0 Galois coverings are obtained as projections P1

C

π→ P1
C/G ∼= P1

C for some
finite G ⊆ AutAlg(P

1
C), determined up to conjugacy. A priori, not all of these

coverings need correspond to dessins, but it turns out that they do. Moreover,
they have already been calculated more than a century ago by Felix Klein in
his masterpiece ([KL56]). To see this, we use a result by Lyndon and Ullman
([LU67]).
The argument proceeds as follows. First note that the group SO(3) of rotations
of the sphere embeds in AutAlg(P

1
C). To see this, consider a rotation R in SO(3).

This rotation fixes at least two points, determined by spherical angles ϕ ∈ [0, π)
and ϑ ∈ [0, 2π). The only other ingredient that determines the rotation is now
the angle α around which it rotates. With this notation fixed, the inclusion
SO(3) ↪→ AutAlg(P

1
C) is then given by

R 7→
(

cos(α
2 ) + i sin(α

2 ) i sin(α
2 )eiϑ sin(ϕ)

i sin(α
2 )e−iϑ sin(ϕ) cos(α

2 ) − i sin(α
2 )

)

.

By an explicit computation (which can be found in [LU67]), it can be shown
that every finite subgroup of AutAlg(P

1
C) is conjugate to a finite subgroup of (the

inclusion of) SO(3). This is already very nice, because in this way we can
reduce to the case of rotations, seeing as how the covering P1

C → P1
C/G depends

only on the conjugacy class of G. So we need only consider the conjugacy classes
of finite subgroups of SO(3). Classical group theory (see for instance [TO95])
tells us that these are determined by their isomorphism class, and are given by
the list in the theorem. However, we do not know yet if all the projections

π : P1
C −→ P1

C/G

correspond to dessins. We are lucky, however, since all these projections are
ramified above only three points only, and can therefore be postcomposed with
a fractional linear transformation sending these ramification points to 0, 1 and ∞
to yield a dessin. To see this, note that the points in which π ramifies correspond
to points of P1

C which are fixed by a non-trivial element of G. The points above
which ramification occurs therefore correspond to the orbits of points fixed by a
non-trivial element of G. The action of our subgroups of SO(3) on P1

C is fairly
explicit, and one can see that in each case, there are at most three orbits.
For Cn, there is one such orbit, containing a single point fixed by n rotations.
An associated dessin is clearly the star with n rays. For Dn, there are three
orbits of fixed points, namely one orbit with two points fixed by n elements of
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Dn, and two orbits with n points fixed by 2 elements of Dn. A corresponding
dessin is given by a regular n-gon with the vertices marked by ◦ and the edges
marked by ∗: the two points fixed by n elements of the group are then the
points at infinity. Analogously, one sees that a dessin corresponding to A4 is
given by a tetrahedron with the vertices marked by ◦ and the edges marked by
∗. For S4 and A5, something funny happens: the weak isomorphism class of
dessins associated to these groups contain two regular polyhedra in both cases.
For example, for A5 one can either obtain a dessin with 20 points ramifying
thrice above 0, 30 points ramifying doubly above 0, and 12 points ramifying
quintuply above 0, which gives a dodecahedron with the vertices marked by
◦ and the edges marked by ∗, or a dessin with 12 points ramifying quintuply
above 0, 30 points ramifying doubly above 0, and 20 points ramifying thrice
above 0, which gives a icosahedron with the vertices marked by ◦ and the edges
marked by ∗. This is of course familiar from our first experience with regular
polyhedra: the dodecahedron and the icosahedron can be obtained from each
other by exchanging vertices and faces. In the case of A4, we of course get no
new regular polyhedra. The reason is that the corresponding dessin has only
three elements in its weak isomorphism class, instead of six.
For a different, ingeneous and somewhat ad hoc proof of the theorem, see the
article by Couveignes and Granboulan in [SC94]. ¤

A nice perquisite of looking at the problem in the way we did, is that Klein
has explicitly determined the associated rational functions of these coverings,
together with the action of the Galois group, in [KL56]. The calculation is of
a quite involved, so we will omit it here and merely refer again to [KL56]. Al-
though Klein does mention all the transformations leaving the rational function
invariant (in fact, he constructs the coverings from these transformations), he
doesn’t give isomorphisms of these groups of rational transformations to the
groups mentioned in the theorem. However, we will be able to find such iso-
morphisms using just a little bit of group theory. Here are Klein’s solutions.

- Cn: π is given by z 7→ zn. We have an isomorphism

Cn
∼→ Aut(π), 1 7→ (z 7→ ζnz).

- Dn: π is given by

π : z 7→ zn − 2 + z−n

−4
.

Under the classical representation of Dn as < σ, τ |σn = τ2 = e, στστ >, we
have an isomorphism

Dn
∼→ Aut(π), σ 7→ (z 7→ ζnz), τ 7→ (z 7→ 1/z).

- A4: Klein gives

π : z 7→
(

z4 −
√
−3z2 + 1

z4 +
√
−3z2 + 1

)3

,

which is not defined over Q. Now to find an automorpism A4
∼→ Aut(π). We

use a trick. Up to an isomorphism of A4, every pair of elements of order 3
and 2, that is, every pair consisting of a 3-cycle and a 2×2-cycle, is of the form
((123), (12)(34)). Since this pair of elements generates all of A4, this means that
if we can find a pair (g1, g2) of elements of Aut(π) of order 3 and 2, respectively,
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we can define our isomorphism by sending (123) to g1 and (12)(34) to g2. Klein
tells us that z 7→ i z+1

z−1 and z 7→ −z are two such elements, so we have an
isomorphism

A4
∼→ Aut(π), (123) 7→ (z 7→ i

z + 1

z − 1
), (12)(34) 7→ (z 7→ −z).

Another mapping, now defined over Q, is given by Couveignes and Granboulan
in [SC94] as

π : z 7→
(

4(z3 − 1)

z(z3 + 8)

)3

.

For this map, we find an isomorphism in the same way:

A4
∼→ Aut(π), (123) 7→ (z 7→ ζ3z), (12)(34) 7→ (z 7→ z + 2

z − 1
.

- S4: π is given by

π : z 7→ (z8 + 14z4 + 1)3

108(z(z4 − 1))4
.

We now use the same technique as with A4 above. Up to an isomorphism of
S4, every pair of elements of S4 which are not powers of each other is given by
((1234), (2134)). In Aut(π), the mappings z 7→ iz and z 7→ z−1

z+1 from exactly
such a pair. So noting that (1234) and (2134) generate all of S4, we see that we
have an isomorphism

S4
∼→ Aut(π), (1234) 7→ (z 7→ iz), (2134) 7→ (z 7→ z − 1

z + 1
).

- A5: Klein’s solution is

π : z 7→ (−(z20 + 1) + 228(z15 − z5) − 494z10)3

1728(z(z10 + 11z5 − 1))5
.

In this case, finding an isomorphism A5
∼→ Aut(π) is not so straightforward.

But we can still use essentially the same technique. Every pair of elements of
order 5 and order 2 in S5 is up to isomorphism of the form ((12345), (12)(34)),
((12345), (12)(35)) or ((12345), (13)(24)). A pair of elements of order 5 and 2,
respectively, in Aut(π) is given by

z 7→ ζ5z, z 7→ −(ζ5 − ζ4
5 )z + (ζ2

5 − ζ3
5 )

(ζ2
5 − ζ3

5 )z + (ζ5 − ζ4
5 )

.

To which pair in S5 does it correspond? We use a trick: of the three pairs above,
only ((12345), (12)(34)) has the property that the product of its elements has
order 3. A quick check shows that the composition

z 7→ ζ5
−(ζ5 − ζ4

5 )z + (ζ2
5 − ζ3

5 )

(ζ2
5 − ζ3

5 )z + (ζ5 − ζ4
5 )

has order 3, so we now know what to do: we can define an isomorphism

A5
∼→ Aut(π), (12345) 7→ (z 7→ ζ5z), (12)(34) 7→ (z 7→ −(ζ5 − ζ4

5 )z + (ζ2
5 − ζ3

5 )

(ζ2
5 − ζ3

5 )z + (ζ5 − ζ4
5 )

).
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Note that z 7→ − 1
z is also of order two in Aut(π). In fact, the pair ((z 7→

ζ5z), (z 7→ − 1
z )) can be made to correspond to the pair ((12345), (12)(35))

in S5. However, we cannot use this simpler pair to define an isomorphism
A5

∼→ Aut(π), since these elements do not generate all of S5.

We will determine some rational functions corresponding to (covering-isomorphism
classes of) subcoverings of these Galois coverings. Since we have already deter-
mined all dessins of degree up to 5, we will only be interested in subcoverings of
degree greater than or equal to 6. Determining such subcoverings goes as follows.
As we know from Theorem 1.1.8, covering-isomorphic subcoverings of a cover-

ing Y
p→ X correspond to conjugacy classes of subgroups H of G = Aut(Y/X).

Given such an H, the subcovering is given by the following factorization of p:

Y
πH−→ Y/H

pH−→ X.

Here, the rightmost arrow pH gives us a new covering of X. It is these coverings
that we are interested in. Note that deg(pH) = deg(p)/|H|. In our special case,
this means that we consider the following factorizations of πG:

Y ∼= P1
C

πH−→ Y/H ∼= P1
C

pH−→ X = Y/G ∼= P1
C,

we can determine our subcoverings as follows. The map πH is given by sending z
to degree |H| rational function invariant under the subgroup H ⊆ G = Aut(πG),
so to obtain our subcovering, we have to express our original rational function
πG in terms of the rational function πH . We will do this in a few specific
cases, and also leave a few cases to the reader. Again, note that deg(pH) =
deg(pG)/|H| = |G|/|H|.
- Cn has no interesting subcoverings: we only get other Cm back, as is easily
checked.

- Dn has only one interesting subcovering, given by the subgroup < τ > cor-
responding to mirroring. Indeed, any other subgroup is of the form < σd > or
< σd, τ > for some d|n. The former group clearly has associated rational func-

tion z 7→ z
n
d −2+z−

n
d

−4 , while the latter can then be reduced to the case < τ >

in Dn
d

because < σd > is a normal subgroup. A degree 2 invariant rational

function under the automorphism z 7→ 1
z corresponding to τ is of course given

by z + 1
z , so all we have to do is to express π(z) = zn−2+z−n

−4 in terms of this
rational function.
Let us first do this for the case n = 3. We try to eliminate the highest power 3
of π(z), so first we determine (z + 1

z )3 = z3 + 3z + 3
z + 1

z3 . Now we see that

π(z) − (z + 1
z )3

−4
=

−3z − 2 − 3
z

−4
=

−3(z + 1
z ) − 2

−4
,

so

π(z) =
(z + 1

z )3 − 3(z + 1
z ) − 2

−4

Therefore, switching our variable to z + 1
z , we see that our subcovering is given

by the rational function

pH : z 7→ z3 − 3z − 2

−4
.
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We can similarly derive the case n = 4. We calculate (z + 1
z )4 = z4 + 4z2 + 6 +

4
z2 + 1

z4 and (z + 1
z )2 = z2 + 2 + 1

z2 . Therefore

π(z) =
z4 − 2 + 1

z4

−4
=

(z + 1
z )4 − 4z2 − 8 − 4 1

z2

−4
=

(z + 1
z )4 − 4(z + 1

z )2

−4
.

So, again switching variables, we get the rational function

pH : z 7→ z4 − 4z2

−4
.

We have seen these rational functions in the previous section. So, as promised
there, we have indicated a general method to derive the rational functions of
dessins corresponding to lines. Indeed, a drawing quickly convinces one that
modding out mirroring from a dessin given by a regular polygon gives a line.

- A4. Recall that we were only interested in subcoverings of degree ≥ 6, so the
only interesting subgroup are those of index ≥ 6. For A4, these subgroups are
generated by 2×2-cycles, and these are all conjugate. So we need only consider
one automorphism of order 2. For Klein’s solution, one such automorphism is
z 7→ −z, which easily gives the rational function

z 7→
(

z2 −
√
−3z + 1

z2 +
√
−3z+1

)3

.

The solution of Couveignes and Granboulan has an automorphism of order 2
given by z 7→ (z + 2)/(z − 1). It has z + (z + 2)/(z − 1) = (z2 + 2)/(z − 1) as an
invariant rational function. Expressing π in terms of this function, we get the
subcovering

z 7→
(

4z + 4

z2 − 4

)3

.

A corresponding dessin is plaatje

- S4. We have to find subgroups of S4 of order ≤ 4. Such subgroups are either
generated by a 2-cycle, generated by a 3-cycle, generated by a 4-cycle, generated
by a 2×2-cycle, or given by a Viergruppe. Of thesegroups, the Viergruppe
is not interesting, because it is normal, hence the associated subcovering is
Galois (with Galois group D3), and we had already determined the rational
functions for Galois covers. For the other cases, there is only one subgroup up
to conjugacy. Of course, we try to find subgroups in Aut(π) that are as easy
as possible. For instance, a very easy element of order 4 is given by z 7→ iz. It
should be clear what the associated subcovering is. Also, one can calculate that
the permutation (13)(24) corresponds to the automorphism z 7→ −z, for which
it is also clear what to do. So only the 2-cycles and the 3-cycles remain. An
element of order 3 in Aut(π) is given by z 7→ i z−1

z+1 . This transformation has as
invariant form

z +
i(z − 1)

z + 1
+

−z − i

z − i
=

z3 − 3iz − 1 − i

(z + 1)(z − i)
.

This is not defined over Q, and in fact, no invariant rational function for z 7→
i z−1

z+1 is. Expressing π(z) in terms of this form, we get another unappealing
function:

z 7→ z8 + 24iz6 − (40 + 40i)z5 + 6z4 + (48 − 48i)z3 + 8iz2 + (24 + 24i)z2 + (24 + 24i)z + 9

(z + (−1 + i))4
.



3.4. DESSINS AND SYMMETRY 53

Our intuition tells us that, since π has only one subcovering of index 3, this
dessin can be defined over Q. This is indeed true. For instance, if we change
the variable to z

1+i − (−1 + i), our covering map becomes

z 7→ z8 + 16z7 + 64z6 + 32z5 − 184z4 − 64z3 + 256z2 − 128z + 16

−432z4
,

which is defined over Q. A dessin corresponding to this is given by plaatje
It turns out that this dessin is still too complicated. Straightforward calculation
gives that another rational function is given by

z 7→ (z2 + 1)3(z2 + 9)

64z2
.

Still, our calculation shows something funny. Because even when we obtain a
subcovering defined over Q, the invariant rational function in which this sub-
covering is expressed will still not be defined over Q. Conversely, we can define
the invariant rational function over Q because it corresponds to a Galois dessin,
but if we do that, the subcovering will not be defined over Q any longer. In
other words, our example shows that a factorization

Y
πH−→ Y/H

pH−→ X,

of a covering Y
π−→ X need not be defined over Q.

Only the 2-cycles remain. Recall that by our isomorphism S4
∼→ Aut(π), the

element (14) = (1234)2(2134) corresponds to the transformation z 7→ i2 z−1
z+1 =

−z+1
z+1 . So this transformation corresponds to a 2-cycle. It has invariant rational

function z + −z+1
z+1 = z2+1

z+1 , which yields the subcovering

p(14) : z 7→ (z4 + 4z2 + 8z − 4)3

108(z4 − 2z3 + z2)2
,

with dessin plaatje

- A5. This time, we will leave a lot to the reader, as including the calculations
eats up space and is not very instructive any longer. However, we will still
determine all subgroups up to conjugacy, and give some easy generators. We
only consider subgroups of order ≤ 10.

- For order 2, we get subgroups generated by an element of order 2, that
is, a 2×2-cycle. In A5, all such elements are conjugated. One element of
order 2 in Aut(π) is of the form z 7→ − 1

z , with invariant function z − 1
z .

This yields the subcovering

z 7→ (z10 + 10z8 + 35z6 + 228z5 + 50z4 + 1140z3 + 25z2 + 1140z − 492)3

1728(z5 + 5z3 + 5z + 11)5
.

The degree 30 dessin that goes with this is the following: plaatje

- A subgroup of order 3 is generated by a 3-cycle, and these are all conjugate.
One such 3-cycle is (12345)(12)(34), which under our isomorphism A5

∼→
Aut(π) corresponds to the transformation

z 7→ ζ5
−(ζ5 − ζ4

5 )z + (ζ2
5 − ζ3

5 )

(ζ2
5 − ζ3

5 )z + (ζ5 − ζ4
5 )

.
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We leave it to the reader to find the associated rational function and
subcovering.

- Subgroups of order 4 in A5 are all conjugate, and isomorphic to a Vier-
gruppe. One such subgroup is generated by (12)(34) and (14)(23), which,
as a long and rather involved calculation for the second element shows,
correspond to the following elements of Aut(π):

z 7→ −(ζ5 − ζ4
5 )z + (ζ2

5 − ζ3
5 )

(ζ2
5 − ζ3

5 )z + (ζ5 − ζ4
5 )

, z 7→ −1

z
.

- Subgroups of order 5 are generated by a 5-cycle. Of course, there is the
easy 5-cycle (12345) with associated transformation z 7→ ζ5z, for which the
quotient is determined easily enough, but not all 5-cycles are conjugate in
A5. To be precise, all 5-cycles are conjugate to either (12345) or (21345).
The latter has a harder transformation associated to it, namely

z 7→ −ζ5
(ζ2

5 − ζ3
5 )ζ3

5z + (ζ5 − ζ4
5 )

−(ζ5 − ζ4
5 )ζ3

5z + (ζ2
5 − ζ3

5 )

Again, the reader is invited to find the associated rational function and
subcovering.

- Subgroups of order 6 are of course generated by a 3-cycle and a 2×2-
cycle. One can check that, up to conjugation, all the pairs of such cy-
cle are of the form ((123), (12)(34)), ((123), (12)(35)), ((123), (12)(45)),
((123), (14)(25)), or ((123), (14)(35)). Of these pairs, only ((123), (12)(45))
generates a subgroup of order 6. The pair transformations associated to
this pair is a bit complicated. Note, however, that our pair is conjugate
to the pair ((145), (14)(23)), which has somewhat easier transformations
associated to it, namely

z 7→ −ζ4
5

(ζ2
5 − ζ3

5 )ζ4
5z + (ζ5 − ζ4

5 )

−(ζ5 − ζ4
5 )ζ4

5z + (ζ2
5 − ζ3

5 )
, z 7→ −1

z
.

Once more, the reader is invited to finish things off.

- By analogous methods as the previous case, one again checks that all pairs
of elements of order 5 and 2, respectively, which generate a subgroup of
order 10, are simultaneously conjugate to two special pairs. The first of
these pairs is given by ((12345), (14)(23)). These elements correspond to
the automorphisms

z 7→ ζ5z, z 7→ −1

z
.

Now the quotient is of course easy enough to determine, using the first
case. The second pair is given by ((21345), (13)(24)). This couple has diffi-
cult transformations corresponding to it: the conjugate pair ((15423), (14)(23))
has the somewhat better associated transformations

z 7→ −ζ3
5

(ζ2
5 − ζ3

5 )ζ3
5z + (ζ5 − ζ4

5 )

−(ζ5 − ζ4
5 )ζ3

5z + (ζ2
5 − ζ3

5 )
, z 7→ −1

z
.

The final challenge for the reader is to determine the associated subcov-
ering. He or she might also want to find out to which dessins these sub-
coverings correspond.
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Note that all the coverings of Theorem 3.4.1 are defined over Q. In general,
curves are of course not defined over Q, and in this way, we can obtain Galois
dessins which are not defined over Q. For example, it is quite often possible
to take an elliptic curve (say in Weierstrass form) with non-rational j-invariant
and then divide out a group of automorphisms G such that E/G ∼= P1

C and the
projection is E → E/G ramified above three points only. This is not as easy as
it seems. For example, modding out automorphisms that fix the zero element of
the elliptic curve will not give such a dessin. Indeed, we may assume that only
the involution (x, y) 7→ (x,−y) fixed the zero element, since if the automorphism
group is bigger, the elliptic curve is defined over Q. But this automorphism has
four (orbits of) fixed points, so we do not get a dessin in this way. But examples
of a Galois coverings not defined over Q exists anyway, for instance given by

zargnz

from . So, at any rate, we see that, for a dessin, to have a maximum amount
of automorphisms does not mean that it is defined over Q, although this does
hold in genus 0.

As the final item of this section, we shall examine the relation between the
symmetry of dessins and their field of definition for a family of dessins. These
dessin are generalization of a dessin from the Beauville-list, namely the one with
list of ramification indices ((3, 3, 3, 3), (2, 2, 2, 2, 2, 2), (9, 1, 1, 1)). We shall use a
different way of representing dessins in this special case, since otherwise drawing
them becomes quite a hassle. For the rest of this section, we will no longer mark
the points. However, they can be determined back from our drawing: the points
above 1 correspond to the edges, and the points above zero are the points where
3 of these edges coincide. A ◦ will be used to denote a loop in the drawing, not
to mark points above 0.
We continue the following list of dessins, where the left drawing is the new
drawing of the dessin in the Beauville-list:

◦◦

◦

wwwwww

GGGGGG

◦

◦

◦

◦

◦◦

wwwwww

GGGGGG
GGGwww

www GGG

These dessins have a lot of symmetry, although not al of this symmetry is
visible from the automorphism group Z/3Z. They are certainly genus 0 dessins,
so might they be defined over Q? For the first and second dessin, this is true,
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but not in general. In fact, the next dessin is the following:

◦
◦

◦
◦

◦◦◦ ◦

◦◦
◦◦

wwwwwwwww

GGGGGGGGG

GG
GG

G

ww
ww

w

ww
ww

w
GG

GG
G

GGww

wwGG

GGww

wwGG

It is in the same Galois orbit as the two following dessins (which are clearly
related by complex conjugation):

◦

◦

◦

◦

◦

◦

◦ ◦

◦
◦

◦
◦

wwwwwwwww

GGGGGGGGG

GG
GG

G
ww

ww

ww
ww

w
GG

GG

ww

GG www

GGG

GGww

GG

ww

◦

◦

◦

◦

◦

◦

◦◦

◦
◦

◦
◦

GGGGGGGGG

wwwwwwwww

ww
ww

w
GG

GG

GG
GG

G
ww

ww

GG

ww
GGG

www

wwGG

ww

GG

An explicit calculation that shows that is given in bla, but it is a bit involved. A
heuristic argument why it might be true is as follows. A calculation (which the
reader may or may not want to check by filling in the markings and labelling
the edges) shows that the dessin on the left has associated permutations

(1 2 3)(4 5 6) · · · (64 65 66)

and

(1 4)(2 7)(3 10)(5 13)(6 16)(8 19)(9 22)(11 25)(12 28)(14 31)(15 34)(17 37)
(18 40)(20 43)(21 46)(23 49)(24 52)(26 55)(27 58)(29 61)(30 64)(32 33)(35 36)

(38 39)(41 42)(44 45)(47 48)(50 51)(53 54)(56 57)(59 60)(62 63)(65 66)
,

while the dessin on the right has associated permutations

(1 2 3)(4 5 6) · · · (64 65 66)

and

(1 4)(2 7)(3 10)(5 13)(6 16)(8 19)(9 22)(11 25)(12 28)(14 15)(17 31)(18 34)
(20 21)(23 37)(24 40)(26 27)(29 43)(30 46)(32 33)(38 39)(44 45)(35 49)(36 52)

(41 55)(42 58)(47 61)(48 64)(50 51)(53 54)(56 57)(59 60)(62 63)(65 66)
.

Maple tells that the subgroups of S66 generated by these dessins, that is, the
monodromy groups, have the same number of elements, and in fact they are



3.5. THE MIRANDA-PERSSON LIST 57

conjugate, which is a strong indication that these dessins are in the same Galois
orbit. An all-out calculation can indeed show that this is the case. Since the
two dessins are not isomorphic, neither is defined over Q. Note that the dessin
on the right is not a dessin that one would expect to be in the same orbit as
the very symmetric dessin on the left. So the relation between symmetry and
field of definition is not very straightforward.

3.5 The Miranda-Persson list

Now is probably the best time to state the general form of the Atkin/Swinnerton-
Dyer differentiation trick.

Proposition 3.5.1 Let

a
∏

i

P ei

i − b
∏

j

Q
fj

j = c
∏

k

Rgk

k

be a relation of polynomials corresponding to a genus 0 dessin of degree n. Here,
the Pi, Qj and Rk are monic separable polynomials whose zeroes do not coincide,
and with the ei distinct, the fj distinct, and the gk distinct.
Then we have up to (common) scalar multiplication that

a
∏

i

P ei−1
i =

∏

j

Qj(
∑

k

gkR′
k

∏

k′ 6=k

Rk′) −
∏

k

Rk(
∑

j

fjQ
′
j

∏

j′ 6=j

Qj′)

b
∏

j

Q
fj−1
j =

∏

i

Pi(
∑

k

gkR′
k

∏

k′ 6=k

Rk′) −
∏

k

Rk(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′)

c
∏

k

Rgk−1
k =

∏

i

Pi(
∑

j

fjQ
′
j

∏

j′ 6=j

Qj′) −
∏

j

Qj(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′).

Before starting on the proof, we note that we can always write the equation
for a dessin in the form considered above, by taking for the Pi the product of
factors (x− pi)

ei for the points pi branching ei times above 0, and defining the
Qj and Rk analogously.

Proof We will only derive the second equation: the others then follow by
symmetry. Differentiating the original equation, one obtaines

a
∏

i

P ei−1
i (

∑

i

eiP
′
i

∏

i′ 6=i

Pi′) − b
∏

j

Q
fj−1
j (

∑

j

fjQ
′
j

∏

j′ 6=j

Qj′)

= c
∏

k

Rgk−1
k (

∑

k

gkR′
k

∏

k′ 6=k

Rk′).

We now eliminate terms terms with a in front by subtracting the original equa-
tion multiplied by

∑

i eiP
′
i

∏

i′ 6=i Pi′ from the derived equation by multiplied by
∏

i Pi. This eventually yields

b
∏

j

Q
fj−1
j (

∏

j

Qj(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′) −
∏

i

Pi(
∑

j

fjQ
′
j

∏

j′ 6=j

Qj′))

= c
∏

k

Rgk−1
k (

∏

i

Pi(
∑

k

gkR′
k

∏

k′ 6=k

Rk′) −
∏

k

Rk(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′)).
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Now we use unique factorization: since the zeroes of the Qj and the Rk do not

coincide, b
∏

j Q
fj−1
j has to divide

C := c(
∏

i

Pi(
∑

k

gkR′
k

∏

k′ 6=k

Rk′) −
∏

k

Rk(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′).

We claim that in fact deg(b
∏

j Q
fj−1
j ) = deg(C): once we have this, the Propo-

sition is proved. First note that the Riemann-Hurwitz formula gives

−2 = −2n +
∑

p∈f−1{0,1,∞}

ep

= −2n +
∑

i

(ei − 1)degPi +
∑

j

(fj − 1)degQj +
∑

k

(gk − 1)degRk

= −2n + n −
∑

i

degPi + n −
∑

j

degQj + n −
∑

k

degRk

= n −
∑

i

degPi −
∑

j

degQj −
∑

k

degRk,

whence
n =

∑

i

degPi +
∑

j

degQj +
∑

k

degRk − 2.

The degree of b
∏

j Q
fj−1
j equals

∑

j(fj − 1)degQj = n −
∑

j degQj , and the
degree of C is bounded by those of its terms. These all have degree

∑

j degQj +
∑

k degRk − 1, which by the relation just derived equals n − ∑

j degQj + 1.
However, the terms of degree

∑

j degQj +
∑

k degRk − 1 in C annihilate each
other, since both

c
∏

i

Pi(
∑

k

gkR′
k

∏

k′ 6=k

Rk′)

and
c
∏

k

Rk(
∑

i

eiP
′
i

∏

i′ 6=i

Pi′)

have leading coefficient
∑

k gkdegRk =
∑

i eidegPi = n. This means that the

degree of C is at most the degree of b
∏

j Q
fj−1
j , so we are done if we can show

that C is not zero. But if this were the case, the derivative of
∏

i P ei

i /
∏

k Qgk

k

would be zero, and we know that this function is not constant since it was given
that our original equation corresponded to a dessin. ¤
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