ASCENT, DESCENT, NULLITY AND DEFECT:
A BACHELOR THESIS ON LINEAR RELATIONS

JACOB VOSMAER

ABSTRACT. For a linear operator 7' : §) — £) it is always the case that ker 7™ C
ker T**1 and ranT™*! C ranT™. If the growth (shrinkage) of the kernel
(range) ceases for some nonnegative power of T', we call the lowest such power
the ascent (descent) of T'. In case no such number exists, the ascent (descent)
of T is said to be infinite. Nullity and defect of a linear operator are the
dimensions of its kernel and the complement of its range, respectively. These
concepts can be generalized to linear relations. In this paper, theorems from a
paper by A.E. Taylor about the aforementioned concepts in the case of linear
operators [5] have been re-stated and “re-proved” in the parlance of relations.
It turns out that the property of (partial) functionhood is fairly redundant here
and that if we restrict ourselves to linear relations A such that R.(A4) = {0},
there are not many bumps on this particular road leading from operator to
relation.

1. INTRODUCTION

In order to outline the statements made in this report, we first need several
definitions. Throughout this report A will denote a linear subspace of $?2, §) being
some complex linear space (i.e. H? is a cartesian product space). We call A a linear
relation (as it is a subset of a cartesian product). We write {f, g} € A to indicate
that the ordered pair f, g is an element of A.! We define the domain, range, kernel
and multivalued part of A (all of which are subspaces of §)) as follows:

domA:={f €$H:thereisage Hst. {f,g} €A},
ranA:={g € H:thereisa f € Hs.t. {f, g} € A},
ker A:={f e€9:{f, 0} € A},
muld:={ge€H:{0,9} € A}.
Note that if we define A=t := {{f, g} : {g, f} € A}, we obtain dom A = ran A~}

and mul A = ker A~!. For two linear relations A and B, we define their product
AB and sum A + B as

AB :={{f,g} € $H* : thereis an h € $: {f,h} € B,{h,g} € A},

A+B:={{f,g+h}€H*:{f g} € A,{f,h} € B}.

Note that the relational product follows the notation of function composition, i.e.
the relations are “applied” from right to left, in contrast with certain other areas of
mathematics, where relational composition goes from left to right. In light of our
(yet to be revealed) agenda, sticking to the functional notation is more convenient.
Let A := Iy, where I is the ’identity relation’ on § (i.e. Iy := {{z,z} : 2z € 9},
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most of the time the subscript will be omitted). For any nonnegative integer n let
Al .= AA™ = A" A be inductively defined, then for any r € Z we define

A if r >0,
Tl A7HT ifr<o.

It can be easily seen that
(1.1) (A" = (@A™

for any r € Z. If v € C, then by A — v we denote A — vI, where I denotes
{{z,vz} : z € H}. As a consequence, {z,y} € A —y means that {z,y + vz} € A.

Lemma 1.1. Let A be a linear relation and let n be a nonnegative integer. The
following statements hold:

(a) dom A™+! C dom A™ and ran A"t! C ran A™;

(b) ker A1 D ker A™ and mul A"t D mul A™.

Proof. (a). Suppose that f € dom A"*!, so {f,g} € A"*! for some g. Because
At = AA™ we have {f,h} € A™ for some h, whence f € dom A™.

If g € ranA™, so {f,g} € A" for some f, then {g,f} € (A1)~ =
(A=)t (by (1.1)), so g € dom (A~1)"*!. By the above, this implies that
g € dom (A71)" = dom (A™)~! = ran A™.

(b). Suppose that f € ker A", so {f,0} € A™. Because {0,0} € A as Ais a
linear subspace, {f,0} € A", whence f € ker A™+1.

If g € mul A", then g € ker (A71)" C ker (A=1)"*! = mul A"+1. O

Now we are ready to define the notions allured to in the title of this report.

Lemma 1.2. Let A be a linear relation. If for some nonnegative integer k we have
ker A* = ker A*¥t1 then ker A™ =ker A* for all n > k.

Proof. Assume ker A"t = ker A™. If we can show that ker A"+2? = ker A™t! the
statement will follow by induction. We have already established that ker A"*! C
ker A”*2, so only the reverse inclusion remains to be proved. Let f € ker A™t2,
then {f,0} € A"*2 = A" 4 so {f,h} € A and {h,0} € A" for some h. Now
h € ker A"t = ker A" (by our induction hypothesis) so that {h,0} € A™. But
then f € ker A™+1L, O

Definition 1.3. If there is some n > 0 for which ker A"*! = ker A™ then we denote
by a(A) the smallest such integer. If no such integer exists we write a(A4) = oc.
We call a(A) the ascent of A. By a.(A) := a(A™!) we denote the co-ascent of A.

Lemma 1.4. Let A be a linear relation. If for some k > 0 we have ran AF =
ran A¥t1 then ran A" = ran A* for all n > k.

Proof. We assume that ran A" = ran A"*!. What needs to be shown to proof the
lemma, inductively is that ran A"*2 = ran A"*!. Suppose g € ran A"t!. Then
{h,g} € A for some h € ran A". However, since ran A™ = ran A" we know that
{f,h} € A" for some f, which leads us to conclude that g € ran A"*2 so that
ran A"t C ran"*2. The reverse inclusion holds because of Lemma 1.1 (a). O

Definition 1.5. If there is some n > 0 for which ran A™*! = ran A™ then we denote
by d(A) the smallest such integer. If no such integer exists we write §(A) = co. We
call §(A) the descent of A. By 6.(A) := §(A~!) we denote the co-descent of A.

As it happens, a(4) = 0 if and only if ker A = {0} and that §(A) = 0 if and
only if ran A = §). There are but two key words remaining for this subsection to
tackle.
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Definition 1.6. By n(A4) := dimker A we denote the nullity of A. Likewise,
n.(A) := n(A~1) denotes the co-nullity of A.

Definition 1.7. d(4) := dim ($/ran A) is called the defect of A. Analogously,
d.(A) := d(A™!) denotes the co-defect of A.

Note that the nullity and defect of a linear relation are not necessarily finite
either, and that n(4) = 0 and d(A) = 0 are also logically equivalent with ker A =
{0} and ran A = §), respectively. What we call “defect” is sometimes also called
“deficiency”.

The reader may have noticed that words like kernel, range and domain also
appear in functional analysis. In fact for any linear operator T' : S — § (with
S C §) the graph of T (i.e. the set of all {z,Tz} € $H? with z € S) is a linear
relation. Now the relation-domain of the graph of T is the same set as the operator-
domain of T' and the same correspondence exists for the range and the kernel.
Readers may therefore find the above definitions to be perfectly compatible with
their operator-siblings, in fact the latter can be regarded as special cases of the
former. This is the principle at the heart of the research presented in this report:
it is an attempt to prove the dual statements to established results in the theory of
linear operators, thus generalizing them. The source material is a paper by Angus
E. Taylor [5] on theorems relating the ascent, descent, nullity and defect of an
operator.

We define the root manifolds of A at 0 and oo as Ro(A) := ;o ker A’ and
Roo(A) 1= U2, mul A*. By Lemma 1.1 (b), Ro(A) and R (A) are linear subspaces
of $), whence their intersection

R (A) = Ro(A) N Roo (A)

is also a subspace. We call R.(A) the singular chain manifold of A. Suppose
x € R.(A), then for certain n,m > 0, we have x € ker A” Nmul A™. This means
that there exist yg, ..., yx such that

{07y0}7 {yO;yl}; ey {yiax}a {mayi+1}7 tey {ykao} € A;

for some 0 < i < k < n+ m — 2, provided that n,m > 1 (otherwise we would
immediately have z = 0). We call such a sequence of pairs a chain, and when it
begins and terminates in 0, we call it a singular chain. The singular chain manifold
of a relation is related to its point spectrum: in [3], Sandovici, De Snoo and Winkler
show that R.(A) # {0} implies o,(A) = CU {o0}: see [3], Proposition 3.2. The
converse is shown to hold in finite-dimensional spaces, see Theorem 4.4 in said
paper.

One may regard the condition RR.(A) = {0} as a reduct of function-hood. When
A is the graph of an operator, we have mul A = {0} for all n > 0, whence
R.(A) = {0}, and as it turns out, almost every result from the first 4 sections of [5]
generalizes from operators to relations, if we retain the condition that R.(A) = {0}.
Without this restriction, simple counterexamples can be found for some of the core
results of this report.

Interestingly enough, it appears that there is something about the style of Tay-
lor’s proofs which makes it relatively easy to generalize them from operators to
relations. A paper on the same subject by M.A. Kaashoek [2] offers much more
resistance. The author claims that his methods “differ considerably” with those of
[5], and the author concurs: the foundations of Kaashoek’s results make heavy use
of isomorphisms, which are constructed using a typical isomorphism-theorem from
(linear) algebra: first show that a homomorphism (linear operator) is surjective and
then turn it into an isomorphism by factoring out its kernel. In my experience, this
technique does not apply to relations that well.
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Linear relations are sometimes also called multivalued linear operators: see the
book by that very name by Ronald Cross [1], for instance. There they are defined
as mappings from $) to 29 \ @ (i.e. assigning sets of vectors to vectors) satisfying
certain linearity conditions: a natural example is the inverse of a linear opera-
tor. When generalizing results about operators, retaining the operator notation
has its aesthetical merits. It also invites a host of “classical” intuitions, some of
which are useful, some of which are not. Anyway, the choice for the present no-
tation/definition was not so much made by the author as by his supervisors, who
also use it in their paper [3].

The results presented in this report are the fruits of research I conducted under
the supervision and guidance of Henk de Snoo, Henrik Winkler and Adrian San-
dovici, the latter of whom contributed several proofs presented in this report. Due
to the nature of the research presented here and the frequent ease of generalization,
certain results have almost been copied verbatim from [5]. However, in some cases
simplification was possible. In section 2, we will lay down a few preliminary re-
sults. Section 3 contains a rudimentary lemma about relations between the nullity
(defect) of a relation and that of its powers. Section 4 provides some basic results
about the ascent and descent of a relation, most notably Theorem 4.4, which states
that a(A4) < d(A), provided that both quantities are finite — and that R.(A4) = {0}.
Section 5 contains results relating ascent and descent to nullity and defect, and fi-
nally section 6 concerns itself with shifted relations, i.e. relations of the form A —
with v € C. As an appendix, a table translating the present theorem numbers back
to those of [5] is provided.

2. PRELIMINARIES

In [5] we find two lemmas and some remarks about quotient spaces and com-
plementary subspaces which we will also need in this paper. These results will be
summarized only: for their proofs the reader is referred to [5].

Two linear subspaces MMy, M, of some linear space §H are called complementary
(in f)) if M oMy = 9, i.e. M NI, = {0} and Ny + M = H. If M is a
subspace of §) we denote by /9 or 5% the quotient space of all cosets [z] = 2+ 9N
(with z € £). Note that if for some 21, N, both subspaces of ), we have MEN = §
then $/9 and N are isomorphic as linear spaces.

Lemma 2.1. Suppose that My, My are subspaces of a linear space H and My C Mo.
Then

dlmf_]/ﬂnl = dlmf)/EDQ + dlmgﬁz/gﬁl
(In case 0o pops up, we embrace the following convention: co+p=p+ 00 =00 =
00 + 00 for any nonnegative integer p.)

Lemma 2.2. Suppose that M and M are subspaces of H such that NN M = {0}
and dim /M < dim N < co. Then H =N M.

See Lemmas 2.1 and 2.2 in [5] for proofs.

Lemma 2.3. Let I, N be linear spaces, at least one of which is finite-dimensional.
Then dim 9 < dim N if the following implication holds for any nonnegative integer
p:

If there ezist p linearly independent vectors in 9N, then p < dimN.

Proof. If dim9t = oo then dim9M < dim D becomes a formality. On the other
hand, suppose that dim9t < oo and that the above implication holds but that
dim 9t > dim 9. Then for any p > dim 9N take p linearly independent vectors in 90t
and we obtain a contradiction. a
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Lemma 2.4. Let A, B be two linear relations on $) such that A C B. Then for
any n > 0 we have

(a) A™ C B";

(b) ker A™ C ker B™, whence also mul A™ C mul B";

(c) ran A™ C ran B" and dom A™ C dom B".

Proof. (a). If {f,g} € A™, then there exist hy,...h, 1 € $ such that

{f7 h1}7 {h17h2}7 .- -:{hn—lag} €AC B:

whence {f,g} € B".
(b). If f € ker A™ then {f,0} € A™ C B", so that f € ker B”. As A C B implies
A=' € B!, we have mul A" = ker (A")"! = ker (A=) C ker (B~!)" = mul B™.
(c). If g € ran A", then {f,g} € A™ C B" for some f, whence g € ran B". As
with (b) above, dom A™ = ran (4")~! =ran (A71!)" Cran (B~!)" =dom B"”. O

Lemma 2.5. Let A and B are two linear relations on ) such that A C B and
R.(B) = {0}. Then a(A) < a(B).

Proof. The case a(B) = oo is trivial, so assume that a(B) = p for some nonnegative
integer p. Let x € ker AP*! be arbitrary, so for some y, we have {z,y} € AP and
{y,0} € A. Because x € ker AP*! C ker BP*! = ker B?, we have {z,0} € BP?,
whence {0,y} € BP. Because R.(B) = {0}, we conclude that y = 0, whence
x € ker AP. |

The above lemma does not hold if we merely demand that ker A™ C ker B™ for
all n > 0, as the example below shows. In order to preserve legibility, we use the
following notation: {{e1} := span{e;i}.

Example 2.6. Let $§ = {{e1,e2}} with e;, ey linearly independent. Define B =
{{e1,0},{e2,0}} and A = {{e2,e1},{e1,0}}. Now ker B = {{eq,e2}}, so a(B) = 1.
However, ker A = {e;} and ker A? = {e;,ex}, so ker B™ D ker A™ for all n > 0,
but a(A) = 2.

3. NULLITY AND DEFECT

The following lemma, relates the nullity (defect) of a linear relation to that of its
pOwers.

Lemma 3.1. (a) If n(A) < oo then n(A¥F) < kn(A) for k=0,1,2,...;
(b) If d(A) < oo then d(A¥) < kd(A) for k=0,1,2,....

Proof of (a). We know that ker AF C ker A**! for any nonnegative integer k. Let
M be a subspace of ker A”t! such that ker A”t! = ker A” ® 0N for some n > 0.
If we can show that dimOM < n(4) then n(A™*!) < n(A™) + n(4) so that the
statement follows by induction (remember that n(A°) = 0). The case dim9t = 0 is
trivial, so assume that dim9 > 0. Let z1,z>,...,2, € N be linearly independent
(1 < p < dimN). Then (because N C ker A™+1) there exist y1,y2,...,yp € ker A
such that {z1,y1}, {®2,92},....{zp,yp} € A™. Suppose that Y ?  c;y; = 0 for
certain ¢y, ca,...,cp € C. Then

P P P P

Zci{xi;yi} = { Zcixi,zcz‘yi} = { Zcz’wi;o} € A"

i=1 i=1 i=1 i=1
or in other words, Zle c;r; € ker A" NNM. But because N and ker A™ are com-
plementary spaces, their intersection is {0} so that > >_, ¢;#; = 0 which in turn
implies that ¢; = ¢ = --- = 0. This means that for any p linearly independent
vectors in 1 there exist p linearly independent vectors in ker A. Using Lemma, 2.3
we conclude that dim 91 < dimker A = n(A4). O
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Proof of (b). Because d(A°%) = 0 we will assume k > 0. Define
My, := ran A1 /ran A*.
Then it follows from Lemmas 1.1 (a) and 2.1 that
d(A%) = d(4* 1) + dim My, = d(A*2) + dim My _; + dim My, =
=...=dimM; +dim Ny + - - - + dim N,

(Note that dim9t; = dim (ran A°/ran A') = dim ($/ran A) = d(4).) If we can
now show that dim9,,; < dim 9N, for any n > 1, the statement will follow by

induction. Let [y1],[y2]),. -, [Yp] € Mnt1 be linearly independent cosets. Then
y; € ran A" for 1 < i < p so there must exist z1,2s,...,2, € ran A"~! so that
{z1, 91}, {z2,92}, .., {Tp,yp} € A (even if n = 1, because dom A C § = ran A°).
Now if 3-8, ¢;[zi] = [>oF_, cizs] = [0] in 9, for certain complex numbers ¢;, then

> ciw; € ran A™. Consequently, > 7| ¢;y; € ran A" so that

ici[yi] = [ici?]i] =[0].

i=1
But then ¢1 = ¢3 = --- = ¢, = 0. Because dim 9t = d(A) < oo we can repeatedly
apply Lemma 2.3 to see that dim 9,11 < dim 9,,. O

4. ASCENT AND DESCENT

Lemma 4.1. (a) If there exists a nonnegative integer p such that ker ANran AP =
{0} then a(A) <p.

(b) Let A be a linear relation with R.(A) = {0}. If a(A) < p for some nonneg-
ative integer p then ker AF Nran AP = {0} for k =0,1,2,....

Proof. Let ker ANran A7 = {0}. Take any z € ker AP*1. Now take any y such
that {z,y} € AP and {y,0} € A. Then y € ranA? Nker A = {0}, so y = 0 and
therefore x € ker AP, proving that a(A) < p.

Now let R.(A) = {0} and a(A) < p. Take y € ker A* Nran AP, i.e. let {z,y} €
AP and {y,0} € A* for some z. (Note that if ¥ = 0 then necessarily y = 0.) Then
z € ker APF = ker AP (because a(A) < p) so {z,0} € AP. But then

{z,y} —{z,0} = {0,y} € A7,
so that y € R.(4) = {0} proving that ker A* Nran AP = {0}. a

If we allow non-trivial singular chains, it is easy to falsify Lemma 4.1 (b).

Example 4.2. Let 9 := {{e; } with e; # 0, and let A := {{e1,0},{0,e1}}. We
have ker A = {e1} = 9, whence a(A4) = 1. However, ker A' Nran A! = {e;}} #
{0}
Lemma 4.3. (a) Suppose that for some q > 0, k > 1 there exists a subspace My,
such that My, C ker A2, M Nran A? = {0} and dom A? = (dom ANran A*) ® M.
Then 6(A) < q.

(b) Suppose that 6(A) < q. Then for every k > 1 there exists a subspace My, such
that My, C ker A7, M, Nran A¥ = {0} and dom A? = (dom A? Nran A¥) © M.

Proof of (a). In order to prove that §(4) < g we will show that ran A9 C ran A97*,
Take y € ran A?. Then {z,y} € A? for some z € dom A?. By hypothesis, there
exist u € ran AF and v € M, C ker A? such that z = u + v. Now

{may} - {’U,O} = {U+Uay} - {’U,O} = {U,y} € Aq,
but then y € ran AIHk, O
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Proof of (b). Let §(A) < gq. For some fixed k > 1 choose a subspace N}, such that
dom A? = (dom A? Nran A¥) ® Ny.

Let H be a Hamel basis? for 9. Then for any v € H there exists a v’ such that
{v,v'} € A4. But because ran A7 = ran A?t* there also exists some w € ran A¥
such that {w,v'} € A%. Now {v,v'} — {w,v'} = {v —w,0} € A?. Since for each
v € H such a w € ran A* exists, we can let M, be the linear manifold generated
by these differences v — w.

First of all, My, C ker A?. Secondly, let us see if also 9 Nran A* = {0}. Take
y € My Nran AF. Then y = Y1 | ¢;i(v; — w;) for certain ¢; € C, v; € H, w; €
ran A¥, 1 <4 < n for some n. But then

n n

Zcivi =y+ Zc,-w,- € ran A* N9y, = {0}.

=1 =1
Because the v; are linearly independent it follows that ¢; = ¢ = -+ = ¢, =
0 so that y = 0. Thirdly and finally, we should determine whether dom A9 =
(dom A% Nran A%) @ 9. Because My, C ker A? C dom A¢ it is certainly true that
dom A9 O (dom A? Nran A*¥) © My, so the only remaining question is whether the
reverse inclusion holds. Take any x € dom A%, then = u + v for some u € ran A*
and v € M. We can write v = Y | a;v; for certain a; € C, v; € H, 1 <i <n for
some n. For every v; choose a w; € ran A such that v; — w; € M. Then

n n n n
r=u+v :u+2a,~(v,~ — w;) +Zaiwi :u+2aiwi+2ai(vi — w;)
=1 i=1 i=1

=1
with u+) 1, a;w; € ran A* and Y"1, a;(v; —w;) € My, completing our proof. O

Theorem 4.4. Let R.(A) = {0}. If a(A),d(A) < oo, then a(A) < §(A). If also
dom A = §), then a(A) = §(A).

Proof. Let p = a(4), ¢ = §(4). To show that p < ¢ we will assume p > ¢
and deduce a contradiction. Assume p > g. Then ker AP \ ker A? # @. Let
x € ker AP \ker A?. Because z € ker A? C dom AP C dom A? we can apply Lemma
4.3 (b), so that = =1 + z2 with z; € dom A7 Nran AP and z» € 9M,. Then

T1 =x — 29 € ker AP Nran AP

(because z2 € M, C ker A7 C ker AP). But then 2; = 0 by Lemma 4.1 (b) and
x = x2 € M, C ker A? contradicting our choice of z.

To show that p = ¢ if dom A = §), we will show that domA # § if p < ¢
and ¢ > 0. Assume domA = § and 0 < ¢, p < ¢. Then ran A? \ ran A? # @.
Let z € ran AP \ ran A?. By Lemma 4.3 (b) $ = dom A7 = ran A7 & M, with
M, € ker A9. So x = 1 + z» with z; € ran A? and z, € M,. But

Zo =z — 1 € ran AP Nker A7 = {0}

(the latter equivalence courtesy of Lemma 4.1 (b)) so = x; € ran A? contradicting
our choice of z. This leaves us to conclude that domA # § if p < g and ¢ < 0
which proves the second half of the theorem’s statement. |

Again, the condition R.(A) = {0} prohibits the construction of very simple
counterexamples.

Example 4.5. Let § := {e1,ex} with e1, ez linearly independent, and let A :=
{{0,e1},{e2,0},{e1,e2}}. We have ker A = {e2} and ker A2 = {er,e2}}, so
a(A) = 2. However, ran A = {e1,e2}} = ran A°, whence §(A) = 0.

2In general, the existence of such a basis depends on Zorn’s Lemma. For further reading on
these topics, see §1.72 and §1.7 of [4], or §1.9 and §I.11 of [6], for instance.
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Theorem 4.6. (a) Suppose that for some r > 0 the following equalities hold:
ker A" Nran A" = {0} and dom A" = (dom A" Nran A") @ ker A". Then a(A) <r
and §(A) <.

(b) Suppose that a(A),d(A) < co and that R.(A) = {0}. Let ¢ = 6(A). Then
ker A?Nran A? = {0} and dom A? = (dom A? Nran A7) & ker A?.3

Proof of (a). Because ker A C ker A" we have ker A Nran A” = {0}, so we can
apply Lemma 4.1 (a) which tells us that a(A4) < r.

Now we will show that ran A™ C ran A?" so §(A) < r. Take any y € ran A", then
there must exist some z € dom A" such that {z,y} € A" and by our hypothesis
T =21+ 22 with ; € ran A” and z5 € ker A”. Now

{.Z’,y} - {$270} = {xl + 'Z.QJy} - {.Z'Q,O} = {$17y} € Ar7
S0 y € ran A%, O
Proof of (b). Let p= a(A). Note that because of Theorem 4.4, p < q. Now we can
already conclude that ker A? Nran A? = {0} using Lemma 4.1 (b).
Now let us consider the second half of the statement. First observe that dom A? D

(dom A?Nran A?) @ ker A? clearly holds. As for the reverse inclusion, we shall con-
sider the cases ¢ = 0 and ¢ > 1. Suppose ¢ = 0, then

dom A° =dom I =$ C (HNranl) @ ker I.
If on the other hand ¢ > 1 we can apply Lemma 4.3 (b) so that
dom A? = (dom A? Nran A?) & M,
which proves the desired inclusion because (by definition) 9, C ker AY. O

5. RELATING NULLITY AND DEFECT TO ASCENT AND DESCENT

First we present some elementary relations between nullity and ascent and defect
and descent, respectively.

Lemma 5.1. Suppose there exists some nonnegative integer N such that n(A*) <
N for k=0,1,2,.... Then a(A) < N.

Proof. If a(A) = oo then for any nonnegative integer k¥ we have ker A¥*1 D ker A*.
But then the premise of our statement must be false. We can therefore assume that
a(A) = p for some integer p. In case p = 0 the statement is trivial so what remains
to be shown is that p < N if p > 0. Note that {0} = ker A° C ker A C --- C
ker AP~! C ker AP (by Definition 1.3). Then

0=n(4%) <n(4) <--- <n(4P7') < n(A4P),
so that (p— 1) < n(4P) < N, leaving us to conclude that p < N.

A O

Lemma 5.2. Suppose that there is some nonnegative integer N such that d(AF)
N for k=0,1,2,.... Then 6(A) < N.

Proof. If §(A) = oo then ran A¥*! C ran AF for all k¥ > 0 and consequently
d(A*+1) > d(A*), again contradicting our premise. We therefore assume 6(4) = q
for some nonnegative integer ¢q. Just as in the proof of Lemma 5.1 the case ¢ = 0
is obvious so let ¢ > 0. It follows from Lemmas 1.1 (a) and 2.1 that

0=d(4% <d(4) <---<d(AT1) < d(4?)

(because dim (ran A /ran A¥*1) > 0 for k < ¢). This implies that ¢ — 1 < d(A4?) <
N so that ¢ < N. a

3In [5], part (b) of the theorem contains an additional claim which we will not pursue here.



ASCENT, DESCENT, NULLITY AND DEFECT 9

Let 91 be a linear subspace of § and A a linear relation on §). Then the invariant
restriction of A to 9 is a linear relation on 9 which is defined as follows:

Alon = AN (9 x M)

(Because it is the intersection of two subspaces of one larger linear space (viz. $?)
Alon is well-defined.) M is called exactly invariant under A if ran Alsgy = M. Note
that ran A|sgyr C 21 holds by definition.

Theorem 5.3. Assume n(A) < oo and R.(4) = {0}. Then a(A) < oo if and
only if for every subspace M of $H which is exactly invariant under A we have
a(Alm) = 6(Alam) = 0.

Proof. Assume a(A) < co. Let 9 be exactly invariant under A. By Lemmas 2.4
(b) and 2.5, a(Alm) < a(A) < oo, as Alogy C A and because we may embed Algp
in $2 (which makes no difference for the ascent). Because ran Algy = 90 by our
hypothesis, also §(A|sm) = 0 (here it does matter that A|gg is a relation on 91, not
on §). But then by Theorem 4.4, a(A|osm) = 0.

Conversely, assume that for any exactly A-invariant subspace 90, it is the case
that a(Alom) = 6(Alor) = 0. Consider the sequence of subspaces {ker ANran A"}, cn.
Notice that ker A Nran A"*! C ker A Nran A™ because ran A1 C ran A" so

0 < -+ < dim (ker ANran A" < dim (ker ANran A") < --- <n(4) < co.

This means that there must be some nonnegative integer r such that ker A N
ran A" = ker ANran A" if n > r. Let

oo
M= ﬂ ran A™t¢,
=0
Observe that M = 2, ran A+ = (72, ran A™** for any j > 0 and that ker AN
M = ker ANran A". Is 9 exactly invariant under A, i.e. is it the case that
M C ran A|gy? Take y € M. Then there exists a sequence {x;};>1 of elements in
$ such that {z;,y} € A" For every z; choose an z! such that

{.’L‘Z,iE;} € A1 and {$;7y} €A

Let u; = zj — ] (so that {u;,0} = {z},y} —{z},y} € A), then u; € ker ANran A" =
ker ANran A% 1. But then, since z} € ran A" 1,

o) =u; +x; €ran A" for all i > 1,

so xf € M, ie. {z},y} € ANIM? so that y € ran A|gy proving that M is indeed
exactly A-invariant. Now by our hypothesis a(A|ogx) = 0 and therefore ker A N
ran A" = ker AN M = ker A|sx = {0} which implies a(A) < r by Lemma 4.1
(a). O

Theorem 5.4. Suppose that R.(A) = {0}, a(A) < oo and that either n(A) or
d(A) is finite. Then n(A) < d(A).

Proof. * The logical disjunctive in our hypotheses makes that they comprise of three
cases. If d(A) = oo, by our assumptions n(A) must be finite and there is nothing
for us to prove. So henceforth let d(A) < oc. There are now two possible cases left,
viz. n(A) = oo and n(A) < oo. As it turns out, the former is an impossibility. Let
a(A) = p, then by Lemma 4.1 (b) ker ANran A? = {0}. From this we will conclude
that n(4) < d(AP). Take z;,%a, ...,z linearly independent in ker A, then their
corresponding cosets [21],[z2],. .., [zx] In H/ran AP are also linearly independent.
For if we suppose that ci[z1] + - - - + cx[zx] = 0 for certain ¢; € C, 1 <14 < k, then

1y + -+ cpxp € ran AP Nker A = {0}

4This is a minor adaptation of a proof by Adrian Sandovici.
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and therefore ¢; = --- = ¢ = 0. By Lemma 2.3 we find that n(A) = dimker A <
dim (9/ran AP) = d(AP), so by Lemma 3.1 (b), n(4) < pd(4) < co. If p=0or
p =1, we are now done. Henceforth let p > 2.

Let My := ker ANranA*, k = 0,1,...,p. Then M C M1 (for k > 0),
Mo = ker A and M, = {0}. Observe that dim N, /M, = dim M, (for 0 < k < p)
so that when we apply Lemma 2.1:

dimf)ﬁkfl/f)ﬁp = dimﬂﬁkfl/mk + dimf)ﬁk/f)ﬁp,
we get:
(5.1) dim M1 = dim M1 /My + dim DY,, 1<k <p.

If we write my, = dim 9, /My41 (with 0 < k < p — 1) and combine the equations
which result from (5.1) then we find that

(5.2) n(A) =mo+my + - +mp_1.

Now,for 0 < k<p-—1,let y(k), .. ,yﬁ,’fl € My, such that their corresponding cosets

(k) (k)
[wi] -5 [ymi]
space. Because My, C ran A¥, there exist :v(-k) € dom A* such that

€ My, /M1 are linearly independent as elements of the quotient

{of",4"} e ¥, 1<j<m

Consider the elements

(0)

2! 2© 20 g e )

yee e bmgo e dmia s vy, g

(of which there are n(A)) and their corresponding cosets [wgk)] in §/ran A. If we can
prove that the latter are linearly independent, we can conclude that n(A4) < d(A)
which, of course, is what we want. To do this, we will show that if

p—1 m;

ZZC” 0] € H/ran A,

=0 j=1

then ¢;; =0for 0 <i <p—1and 1< j<m,. Suppose that Zf;ol ZTZI Cij [g:;’)} =
[0], i-e. for some u
p—1 m; )
{u, > c,-jmg-’)} € A.
i=0 j=1

Let w; := Y71, cuxg) and @; = Y7, c,]y](z), 0<i<p-—1,then

(5.3) {wi,w;} € AT, 0<i<p-—-1

and {u Ep 0 w,} € A. Because M; C ker A we have w; € ker A, that is
(5.4) {w;,0} e 4, 0<i<p-1,

and therefore

(5.5) w; € ker A Cker AP, 0<i<p-—1,

so that w := " w; € ker A? and u € ker AP+! = ker AP (the latter equivalence
courtesy of the fact that p = a(A4)). Let u®, ... u®= D wl  wr-D c ¢ such
that

{0, DY, (0D, 4@}, (u® @), {u@=D ue-D} {u-D 0} € A,

{u,w} € A,

{w, W(l)}7 {w(l),w(2)}, o {\,\,(17—3)7\,\,(17—2)}7 {W(p—2),w(p—1)}7 {W(p—l)7 0} € A.
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We now combine these elements in a cunning manner:

{0,11) - u(l)}a
{w —u®, W — 4@,
(wh) —u® W@ _ @Y,

w9 _ 4(-2) -2 _ 13,

{W(p—2) — u(19—1)7\,\,(19—1)}7

{wP=1 0} € A4
But then because R.(4) = {0} it must be the case that w(?~1) = 0 whence w €
ker AP~1  so that (remember (5.5)!)

wp—1 =w — (wo + - - - + wp—_2) € ker AP 4 ker AP !
and therefore (because of (5.3))
{wp—1, Wp—1} — {wp—1,0} = {0, w1} € APt

Using the fact that R.(4) = {0} once more in conjunction with (5.4) we can

conclude that
Mp—1

~ -1
Wp—1 = Z cp—l,jyy) )= 0,
=1
SO Cp_1,1 = Cp_12 = *** = Cp_1,my_, = 0. Continuing this way, we are able to
nullify the remaining c;; as well. O

Despite its relative complexity, the theorem below generalized from operators to
relations without the restriction on the singular chains.

Theorem 5.5. Suppose that either n(A) or d(A) is finite, and that 6(A) = q is
finite. Then
d(4) < n(4) + do(49).

In particular, d(A) < n(A) if dom A = 9.
Proof. If ¢ = 0, then ran A = § and hence d(4) = 0 so there is nothing left to
prove. Therefore, we assume g > 1. Let

Qi=ker Al 4+ranAd, 0<i<gqg-—1.
Observe that 9Q; C ;1. We shall show that

ker At!
. ; =dim ——— <1 <qg-—1.
(5.6) Di dlmQ,~ﬂkerA'+1<oo’ 0<i<gq
Choose numbers ng, ...,ny—1 so that we can let :Ugi),a:gi), .. ,;c,(f) € ker A1 such

that their corresponding cosets [xgz)] in ker A1 /(9Q; Nker At1) are linearly inde-

pendent for every 0 < i < g—1. We will show that the cosets of the :cgi) in §/ran A
are also linearly independent, so that

(5.7) ng+mny+---+ng_1 < d(A)

Suppose Y77, PRy Cijm‘g-i) € ran A for certain ¢;; € C. Note that
q—2 n; )
3 cyal? e ker A"+ -+ 4 ker A9 C ker AT,
i=0 j=1

So, if we take the last term of the outer summation,
Ng—1 q—1 n; q—2

Z cq_l,jxg-q_l) = Z 2cz~ja¢§-i) — Zicﬁx?) cranA +ker A7 = Ng-1,
j=1

i=0 j=1 i=0 j=1
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it turns out that it is in the 0-coset of ker A7/(Q,_1 Nker A9) so by the choice of
(9

our z;°, it must be so that ¢g—1,1 =--- = ¢g-1,n,, = 0. We now have
q—2 n;
i
E E cijxg-) €ranA,
=0 j=1
Ng—2

Z cq,Q,ngq_Q) €ranA+ker AT2=9, 5
j=1

and the argument can be continued to show that all ¢;; are 0, which proves (5.7).
Let y](.z) € ker A such that

(5.8) {29,471 e A%, {47 0} e 4

(these elements exist because xg-i) € ker A™1). We shall now prove

. ker A
(59) n0+n1+---+nq_1 Sdlmm (SH(A))

First of all, observe that y§0) = mgo) for all 1 < j < ng and remember that for any
aj € C(1<j <mny)

[alxgo) +aszl® + -+ angt® € Qo] = [a1 =+ = ap, = 0].

Forany 1 <m < ganda;; € C(with0<i <m—1,1<j < n;) we define
proposition P, as follows:

m—1 n; .

Py i [Zzaijy§’) €ranA™ = q; =0, 0<i<m-—1,1 Sjgni]

i=0 j=1
Because Qo = ran A, we already know that P; holds. If we can also establish that
P,, implies P11 (for any 1 < m < g — 1) then we can conclude that P, is true,
which would prove (5.9). Assume P, and 377" 377", aijyj(-i) = u € ran A™*t1,
Then

m—1 n; Nm
Z Z aijyj(-z) =u— Z amjyj(-m) €ran A™*! 4 ran A™ C ran A™,
=0 j=1 =

soa;; =0for0<i<m—1,1<j<n; by P, and therefore

Nm
u = Z amjy§m) .
Jj=1

Because u € ran A™+! there exists some @ € ran A such that
(5.10) {u,u} € A™.
Also (because of (5.8))

(5.11) { Zamj:cgm), Zamjyj(-m)} €A™,
j=1 j=1
Subtracting (5.10) from (5.11) we find
{ Zamjmgm) — 17,0} €A™
j=1

and hence

m m
> amiz™ = (D amgal™ @) + i € ker A™ + ran A = D,
Jj=1 Jj=1
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SO Gm1 = *** = Gm,pn,, = 0, whence indeed [P, = Pp41] and therefore P, and
(consequently) (5.9) are true.

Our assumption is that either n(A) or d(A) is finite. Hence, (5.6) is true for
every i (using either (5.9) or (5.7) respectively). So let us choose the numbers n;
maximally (i.e. n; = p;). This gives us
(5.12) Po+p1 + -+ g1 < min{n(A), d(4)}.

Next, we shall prove that

. ker A9
(5.13) Pot oot pemn = dim o
To prove that
ker A9

ran A Nker A7’
we can re-use the argument that proved (5.7) if we replace its initial supposition
with

po+ -+ pg—1 < dim

q—1 p;
“Suppose z z cijmg-z) eranANker A2 CranAfor...”
i=0 j=1
S-i) are elements of ker A?) and replace all instances of n; with
p;. To prove the opposite inequality, observe that any element of ker A*! is

expressible as a linear combination of mgi), . ..,xé? and an element of ;. Be-

cause 9; = ker A’ 4+ ran A the latter can be expressed as a linear combination of

xgi_l), .. .,a:,(,ij), an element of Q;_; and an element of ran A C £;_;. Applying

(because all the

this procedure repeatedly with i =q— 1, — 2,...,0 we see that we can write any
x € ker A7 as
q—1 p;
T = Za”xgl) + w,
=0 j=1

where w € ran A. In fact, w = z — 307 Al aijxgi) € ran A Nker A7, so that
[z] = [Zf:_é y aijxgi)] and
. ker A?
dlmranAﬁker Ag SPotF Pt
And now at last the conclusion of this proof is drawing nigh. Since ranA N
dom A? C dom A9 C $), we see by Lemma 2.1 that

dim # = dim 9 + dim dom A7
ran ANdom A9 dom A4 ran A Ndom A¢°
Similarly, since also ran A Ndom A? C ran A C $:
. ) . ® . ran A
dim ran ANdom A9 dim ran A +dim ran A N dom A?

and therefore

.9 : ran A _ q , dom A1
(5.14) dim ran A +dim ran ANdom A9 de(A") + dim ran A Ndom A9’
(Recall that dim $)/dom A? = d.(A?).) By Lemma 4.3 we know that
(5.15) dom A? = (ran A Ndom A9) & M,
where
(5.16) My C ker A? and M Nran A = {0}.
Consequently,

A4

(5.17) di dom = dim M, .

m ran A N dom A?
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From (5.16) we see that

ker A
ran A Nker A¢°
By (5.17), (5.18), (5.13) and (5.12) we find that

dom A“
im———— < .
dim ran A Ndom A4 — n(4)

So if we then drop the (nonnegative) term dimran A/(ran A N dom A?) from (5.14)
we find that

(5.18) dim <M, < dim

dom A?
ran A N dom A4

= < d (A9) + di
-~ d(4) < d.(A%) + dim
< d.(A?) +n(A).
O

Corollary 5.6. If R.(A) = {0}, both a(A) and 6(A) are finite and if either n(A)
or d(A) is finite, then
n(A4) < d(4) <n(A) +d.(A49),

where ¢ = §(A). Hence, if dom A = 9, we have d.(A?) = d.(A) = 0 and therefore
n(4) = d(4).

This is simply a combination of Theorems 5.4 and 5.5.
Theorem 5.7. (a) Suppose R.(A) = {0} and n(A) and p = a(A) are finite.
Suppose also that

. dom AP

Then §(A) = a(A). Furthermore, we actually have equality, rather than inequality,
in (5.19). As a consequence, if follows that n(A) = d(A) if dom A = §.

(b) Suppose n(A) and q = §(A) are finite. Suppose also that

ker A?

ran A Nker A¢

Then a(A) < g. Furthermore, we actually have equality, rather than inequality, in
(5.20). Also,

(5.20) n(A) < dim

. dom A4

In case dom A = ) we can conclude that n(A) = d(A).

(c) Suppose that R.(A) = {0}, that a(A) is finite and that n(A) = §(4) < co.
Then 6(A) = a(A).

(d) Suppose that R.(A) = {0}, that dom A = §, that §(A) is finite and that
n(A) =d(A4) < co. Then a(A) =6(A).
Proof of (a). We see that the hypotheses of Theorem 5.4 are satisfied. Consider
the elements xgi) €Eker A (0<i<p-—1,1<j < my) introduced in the proof
of said theorem, of which there are n(A) (recall (5.2)). Their corresponding cosets
[.zg’)] are linearly independent in $)/ran A. If we let

M :=span{z{’ :0<i<p—1,1<j<myl,

then M Nran A = {0} and dim 9t = n(A). This enables us to conclude from (5.19)
and Lemma 2.2 that

(5.22) dom AP = (ran A N dom AP) & M.
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This in turn allows us to appeal to Lemma 4.3 (a) (since 9 C ker AP) and conclude
that 6(A) < p. But then both a(A) and §(A) are finite so a(A) < §(A), by Theorem
4.4. Hence a(A) = §(A).
Since (5.22),
dom AP
ran A N dom AP’
which leads to equality in (5.19). Also, in case dom A = §),

dim M = dim

. dom AP . 9
dim ran ANdom AP dim ranA d(4).
Hence n(A) = d(A) in this particular case. O

Proof of (b). Here we see that the hypotheses of Theorem 5.5 are satisfied and we
consider the elements yy) €kerAd (0<i<qg-1 1< j < p) introduced in
its proof. There are pg + --- + pg—1 of them and their corresponding cosets in
ker A/ran A7 are linearly independent (remember proposition P, from the proof of
said theorem). In view of (5.13) and our present hypothesis (5.20), it then follows

that these elements yj(.i) generate ker A and therefore ker ANran A7 = {0}. Hence,
by Lemma 4.1 (a), a(A) < ¢q. Moreover pg + --- + pg—1 = n(A) so that (5.20)
becomes an equality. Now (5.21) is a consequence of (5.17) and (5.18). Finally,

in case dom A = §, (5.21) implies that d(4) < n(A) but then by Corollary 5.6,

d(4) = n(4). O
Proof of (c). Let p= a(A), then
. dom AP . B
dim ran A N dom AP < dim ranA d(4),
merely because dom A? C §). Now as a consequence of the hypothesis that n(4) =
d(A), (5.19) holds and by Theorem 5.7 (a) we conclude that a(A) = §(A). O

Proof of (d). Let ¢ = §(A). Since dom A = §, dom A? = § also which (by Lemma
4.3 (b)) allows us to partition the whole space as ) = ran AN, where MNran A =
{0} and Mt C ker A?. Therefore

ker A4
ran A Nker A7’

Now our current hypotheses allow us to pluck results from the proof of Theorem
5.5 and by (5.23), (5.12) and (5.13) we can conclude that

. ker A7
d(4) = dim ran A Nker A¢°

Since n(A4) = d(A), it follows from Theorem 5.7 (b) that a(A) < §(A). But then
a(A) = 6(A) by Theorem 4.4. O

(5.23) d(A) = dim M < dim

6. SHIFTED LINEAR RELATIONS

In this section we will deal with shifted relations, i.e. relations of the form A —~
with v € C.

Lemma 6.1. Let \,u € C. Then A—X=(A—p)+ (u—A).

Proof. ® Let {z,y} € A— )\, ie. {2,y + Az} € A. Then we shift by u to get
{z,(y + Az) — px} € A — p which we regroup to {z,y — (u — Az} € A — u. To
cancel out the last term we shift by —(u — A): {z,y — (u — Nz + (p — Nz} =
{z,y} € (A—p)+(up—A). Because each step taken here can be reversed the reverse
inclusion is also true, so that A — X = (A — p) + (u — A). O

5Due to Adrian Sandovici.
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Lemma 6.2. Lety € C, v #0. Then R (A) = {0} if and only if R.(A—~) = {0}.

Proof. It will suffice to show that R.(A —~) = {0} if R.(A) = {0} for the reverse
implication would in that case follow if we considered R.((A —v) — (—=7)). Assume
that R.(A) = {0}. Towards a contradiction, assume that R.(A — ) # {0}. Then
there exist z1,%2,%3,...,z, € $ (which we may assume to be different from zero)
such that

{0,z1}, {z1, 22}, .., {zp—1,2p}, {2, 0} € A — 7.
This means that
{03 '771}5 {.1'1,.732 + 73:1}; {.%'2,.733 + 73:2}5 R {mp—2axp—1 + pr—Z}a

{zp—1,2p + vTp1}, {2p, Tpy1 + 72y} € 4,

where 2,1 = 0. We define the following coefficients z,, ,, € Cfor 0 <n < m < p+1:
Zmon 1= (—1)m+"vm—”(p B ")
m—n

which (as can be easily verified) have the following properties:

Zpt1m =0 0<n<p+1
(6.1) Zmm =1 0<m<p
Zm,n + YZm,n+1 = Zm+1,n+1 0 <n<m<p

Now for any k such that 1 < k < p+1 we add up

{07 .'El} ° zk,O:
{z1,22 +y21} - Zk,15

{Tr—2,Th—1 + YTh—2} - Zk,k—2,
{Th—1, 2k + Y2R-1} - Zh k=1,
{SL‘k,:L'k+1 + ’YCL'k} “ 2k € A

to find
k

k
(6.2) { Z 2k,iTi, Z(Zk,i—l + vzR,i) T + Zk,k$k+1} €A
i—1

i=1

where z,41 = 2py2 = 0. Define y;, := Zle 2k,i%; (where 1 < k < p+1). Then it
follows from (6.2) and (6.1) that

{Yr,ye+1t €A, 1<k<p
and y; = z1 and yp41 = 0. Therefore

{07 Z/l}; {y17 y2}7 T {yp7 0} € A7
contradicting our assumption that R.(A) = {0} (because y; = z1 # 0). O

Lemma 6.3. Let M be a subspace of . Then R.(A|am) = {0} if R.(A) = {0}.

Proof. Suppose R.(A|r) # {0}, i.e. there exist z1,...,z, € 9 (all non-zero) such
that {0, 21}, {z1,22},...,{zn, 0} € A|asr C A, whence R.(A) # {0}. O

Lemma 6.4. Let A\, u € C, X\ # p, let j, k be positive integers and let R (A) = {0}.
Then

ker (A — \)? Nker (A — p)* = {0}.

%Based on a proof by Adrian Sandovici.
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Proof. " If we take n = max{j, k} and proof that ker (4 —X)"Nker (4 —pu)" = {0}
the statement will follow, because ker (4 — X)7 C ker (A — X)™ and ker (A — p)* C
ker (A — p)™. If n = 0 the proof is trivial, so assume n > 1. First we choose a few
more convenient names: we define B:= A—Xandvy:=A—pusothat A—py=B—v
(by Lemma 6.1). Note that Lemma 6.2 tells us that R.(B) = {0}. What we now
want to show is that ker B” Nker (B — )" = {0}. Let z € ker B Nker (B —v)",
so there exist 1,%2,---,Tn_1,Y1,Y2,---,Yn_1 € H such that

{Z7x1}7{x17w2}7 ) {xTL*l:O} € B:
{Zayl}a {ylayZ}a ey {yn—l;o} € B - v
the latter of which unravels to

{z7y1 +72},{y17y2 + 7y1}7 ey {yn—I;O + 7yn—1} € B.

We will show that z = 0. Let z¢ := yo := 2z and z,, := y, := 0. We define the
following coeflicients:

) ) o fm—1—3
ayi = (—1)@*’*17’”’(‘0" ) and by,; := (~1)"+y7! (n ' )
- p—i
with 0 < 4,p < n. Note that for ¢ > p and p = n, we have b,; = 0. We claim
without proof that these numbers have the following properties:

(63) ap,i = Gp—1,i-1,

(6.4) bpi = Ybp—1,i + bp—1,i—1,
ao,0 + bo,o =0,

(6.5)

ap,0 +bp,o = vbp—1,0,

for 1 <i < p<mn,and also

(6.6) bp; =0 fori>pandp=n.
Let 0 < p <n—1, then

P P
> api{mimica} + D bpidvi yisr + it =
i=0 =0

P P P P
{ Z ap,iTi + sz,i?/ia Z ap,iTit1 + Z bp,i(Yi+1 + Vil/z)} € B.
=0 =0 =0 =0
Let
P P
Up = Zap,i:ci + pr,iy,-, 0<p<n.
=0 =0

We claim that Upt1 = Zf:o Qp,iTit1 +Zf:0 bp,z'(yz'+1 +’sz'), so that {u,,, u,,H} €B
for all 0 < p <n—1. After all,

p+1 p+1
Upp1 = Z Apy1,iT; + Z bp+1,iYi
i=0 i=0
p+1 p+1
= Gpi1,0%0 + Y Gpi1,i%i + bpy1,0%0 + D bpi1,ili-
i=1 i=1

We perform a substitution j =i — 1 to find
P P

Upt1 = pt1,0%0 + Y Gpr1, 418541 + Dpi1,0%0 + Y Dpr1 g1
j=0 j=0

"Based on a proof by Adrian Sandovici.
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We apply (6.4) and the fact that zo = yo to find

p V4
Upt1 = Gpr1,0%0 + D Gpi1,j118j41 + bpr1oto + D (Vbp.jst + bp.j)¥js
=0 =0

p P p
= aprit®ien + (@pr0 +bpr1,0)%0 + D Vopin1¥ien + Y bpiyist
=0 =0 =0

We locally revert our index back to 4 = j + 1 and apply (6.5) and find

p P 14
Upt1 = D Apr1 1@t +70p,080 + Y V0p,iYi + WppriYprr + Y byt

§=0 i=1 =0
p P p
=D apiTipi + Y Wpti+ D byt
=0 =0 =0

=]

using (6.3) and (6.6), thus proving that upt1 = >0 api®iy1 + 2 1o bp,i(Yit1 +
’Yyi)- By (6-5), up = ao,0To + bo,0yo = 0, so we now have

(67) {O,U]_},{'U/]_,UQ},...,{Unfl,un} € B.
If we define
n—r—1
Vp 1= Z Gn,iTitr, 0<r<n-—1,
i=0

then u,, = vo (as z,, = 0). Now

n—r—1 n—r—1 n—(r+1)—1
jz: anﬁ{xi+r;$i+r+1} ::{ ZE: An,iTitr, j{: anﬂxi+r+1} €B
=0 =0 =0

for 0 <r <n—2 as z, = 0. Furthermore, because v, 1 = ap0zn_1 € ker B we
also have {v,,_1,0} € B, whence

(6.8) {vo,vl},...,{vn,l,O} € B,
so because of (6.7), the fact that u, = vg and R.(B) = {0}, we have v, = vj_2 =
--- =y =0, whence z,_; = 0. However, because also vp,_2 = an,0Tp—2+an1Tn-1,

we also have z,_» = 0. Continuing this way, we conclude that z = ¢ = 0, whence
ker B" Nker (B — )" = {0}. O

Lemma 6.5. Let y€ C, v# 0. Then
(6.9) ker (A —v)F C ran A™
for any integers n,k > 0.8

Proof. ° If either kK = 0 of n = 0, the desired inclusion is trivial, so let n,k > 1.
Our proof will be by induction on n. For the basis, we consider two cases: k =1
and k > 2.

Incasek =1, zy € ker (A—+) implies that {zg,0} € A—r, so that {zg,vzo} € A
and therefore z¢ € ran A, as v # 0. If, on the other hand, k > 2, we can also show
that (6.9) holds for n = 1. Let zo € ker (A — v)*. Then there exist elements
T1,%2,---,Tk_1 such that {xo,ml},{xl,wz}r..,{xk,g,xk,l},{wkfl,O} € A-_'77
which means that

(6.10) {zo,z1+7Z0}, {71, 22+721}, .. ATk—2,Th—1 +YTh—2}, {Th—1, 771} € A.

8This is a stronger claim that the one found in the dual result in [5], for there the case is
restricted to n = §(A) < oo.
9An adaptation of a proof due to Adrian Sandovici
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Now we take a suitable linear combination of these elements,

{0, 1 + o} - (—7)*1,
{:Ele? + ’y:l"l} ) (_’Y)k727

{@h—2,Tk—1 +vTh_2} - (=)',
{op—1,v26-1} - (—7)° € 4,

so that

k—1
{E e~k e 4

=0
which shows us that zo € ran A (as v # 0).

For the induction, we assume k > 1 and we let (6.9) be our induction hypothesis.
Take any zo € ker (A — ), then it is now for us to show that zo € ran A"*!.
Consider elements z1,...,2r—1 defined in the same manner as above (note that
this is also possible if ¥ = 1). Define x := 0. We take a linear combination of the

first 4 lines of the resulting table (where 1 <14 < k):
{20, 21 + 2o} - (Z:i)’Y’:_%
{x17$2 + ’le} ) (;:;)71_27

{x27$3 + 7‘752} : (::é)71—37

{a:i_1,$,~ + ’7.’171'—1} : (i_ol)’}’o € A.

This gives us

i1 i1
- i—1=j,, - i—1=j(, .
{Z(i_1_j)7 ”””Z@—l—j)” (“””“1”””’)}6‘4
7=0 7=0
So, if we define z; := Z;;E (igl)'iji,l,j, it can be seen that
(6.11) {zi,zi1} €A (1<i<k).

Observe that zp41 is well-defined and that all z; € ran A™. After all, xg € ran A™
(by our induction hypothesis) and {zo, z1 +7v20} € A together imply that zy = z; +
vy — Yxo € ran A™. In the same vein it can be demonstrated that all z; € ran A™.
Even our tag-along xj complies, because trivially 0 € ran A™. Define

i i= (—1)Fiyk—i (kk ) 1<i<k.

—1

Note that these coefficients have been purposefully chosen so that
k
Zcizi—i-l — (_1)k+1,yk$0 + = (—1)k+1’7kl'0.
i=1

But as by (6.11), Y% ¢i{zi, 2141} € A, this means that (—1)*+1ykz € ran An+1,
which implies zo € ran A"t as y # 0. O

Lemma 6.6. Suppose dom A = §) andy # 0. Also let 1 =ran A and Ay := Alg,.
Then:

(a) a(A—X) =a(A; — A) and n(A — A) =n(4; — N).

(b) If M is a subspace of H1 such that H; = ran (41 — \) ® M, then also H =
ran (A — \) ® M. Therefore d(A — X) = d(A; — N).

(c) Suppose that R.(A) = {0}. If n(4; — X) = d(41 — X) < o0 and if either
a(Ay — ) or §(A1 — )) is finite, then a(A — )) =d(A4 — )) < oo.
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Proof of (a). We shall show that ker (41 —A)™ =ker (A—\)™ form =0,1,2,....
Clearly this is true for m = 0, so assume m > 1. To show that ker (4; — \)™ C
ker (A —\)™, take any z1 € ker (41 — A)™. Then:

{@1, 22} {1, 22+ Az }
{.’EQ,SL’g} {.'172,.’53 +)\.’EQ}
: ceA-\ = : €A
{mm—hxm} {xm—lamm + )\mm—l}
{zm,0} {Zm, ATm }
And because A; is merely a restriction of A,
{z1, 22 + Az1} {z1,22}
{z2, 3 + Ax2} {z2, 3}
: €A = : €eA-),
{xmfl;mm + Aai'mfl} {xmfl;mm}
{Tm, AT } {*m,0}
so that z; € ker (A — )\). Now for the reverse inclusion, let z; € ker (A — A)™ so
that, by the previous argument, for certain xs, x3, ..., T, € H we have:

{z1, 22 + Ax1}, {x2, 23 + Az}, .. {Tm—1,Zm + A1}, {Tm, AT } € A

The last pair tells us that Az,, € ranA so that also z,, € ranA (recall that
A # 0). Because also &, + Az;,—1 € ran A by the penultimate pair, Az,,—1 € ran A.

Repeating this argument we can conclude that all the elements zi,...,z,, are
in ran A = $)1, whence all the pairs listed above are also in A; so that z; €
ker (A; — A)™. The truth of (a) follows at once. O

Proof of (b). First of all, ran (A; —\) = ran (A—A)N$H;. For, let y € ran (A—A)N$H;.
Then for some z € 9, {z,y+ Az} € A, i.e. y+ Az € $H, =ran A. But then \z € §;
so that {z,y + Az} € A; and therefore y € ran (4; — X). The reverse inclusion is
now also evident. Secondly, we see that M Nran (A —A) =MNH; Nran(A—)) =
P Nran (A; — A) = {0}, since M is a subspace of H; which is complementary to
ran (A; — A). Thirdly and finally, we shall show that $ C ran (4 — \) ® M. Let
x € §, then because dom (A — A) = dom A = § there is some y € ran (A — A) such
that {z,y} € A— X\ i.e. {z,y+ Az} € A. Then y + Az € $; and by our hypothesis
there exist u € ran (A; — ) C ran(4 — \) and v € M such that y + Az = u + v.
Now
mzuAy+§€mﬂA—M+WL

which proves (b). O

Proof of (¢). Observe that by Lemmas 6.3 and 6.2 R.(A1 — ) = {0} soif 6(A1 — A)
is finite, we can apply Theorem 5.7 (d) to 4; — A to show that a(4; — ) =
0(A; — )). Then by part (a) of the present lemma, a(A — X) is finite. Moreover,
as a consequence of both parts (a) and (b), n(A — \) = d(4 — A) < co. Because
by Lemma 6.2 also R.(A — X) = {0}, we can now use Theorem 5.7 (c) to conclude
that §(A — X) = a(4 — N).

If on the other hand a(A; — A) is finite, we apply Theorem 5.7 (c) to A; — X to
see that §(A; —A) = a(A; —A). The previous argument now shows that a(4A—\) =
0(A - ) < 0. O

Theorem 6.7. Suppose R.(A) = {0}, domA = §H, A # 0 and dimran A < oo.
Thenn(A—X) =d(A —X) < oo and a(A —)X) =6(A — ) < o0.
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Proof. Let A; and $; be as in Lemma 6.6. Because in our present case dim £; <
00, it must necessarily be so that n(A; — A) and d(4; — A) are finite (for they
cannot ’grow’ or ’shrink’ indefinitely in a finite-dimensional space, to put it in rather
unprecise words). Also a(A; — A) and (A1 — A) are finite. Then, by Corollary 5.6,
n(4;—X\) = d(A;—A). It now follows from Lemma 6.6 that n(A—)\) = d(A—)\) < oo
and a(A—)) =354 - )) < 0. O

APPENDIX: THEOREM TRANSLATION

In this section the reader can find which of the theorems and lemmas in this
report are dual to which results in [5].

TAYLOR THIS REPORT TAYLOR THIS REPORT
Lemma 2.1 Lemma 2.1 Lemma 3.8 Lemma 6.4
Lemma 2.2 | Lemma 2.2 Lemma, 3.9 Lemma, 6.5
Lemma 3.1 Lemma 5.1 Theorem 4.1 | Theorem 5.3
Lemma 3.2 Lemma 5.2 Theorem 4.2 | Theorem 5.4
Lemma 3.3 Lemma 3.1 Theorem 4.3 | Theorem 5.5
Lemma 3.4 | Lemma 4.1 Corollary 4.4 | Corollary 5.6
Lemma 3.5 | Lemma 4.3 Theorem 4.5 | Theorem 5.7
Theorem 3.6 | Theorem 4.4 Lemma 4.6 Lemma, 6.6
Theorem 3.7 | Theorem 4.6 Theorem 4.7 | Theorem 6.7
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