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Chapter 1

Introduction

The ride behavior and stability of vehicles carrying liquid cargo may be af-
fected by the liquid motion. In a partially filled tank the liquid is allowed
to move from side to side, affecting for example cornering and rollover be-
havior. Also, liquid motion may become exaggerated due to driver inputs
or excitations generated by the road surface, which in turn can have sub-
stantial effects on the motion of the vehicle.

The main objective of this thesis is to investigate the dynamical interac-
tion between the liquid dynamics and the vehicle dynamics using simulation
studies. Of most interest are simulations of realistic maneuvers. Simulation
results of a cornering maneuver (rollover performance) and a bumpy road
(exaggerated liquid motion) are presented in this thesis, enabling us to study
the effects of the sloshing liquid on the motion of the vehicle.

In order to be able to perform these simulations, a simple vehicle model
is developed in Matlab/Simulink, based on the conservation of linear and
angular momentum of a solid body. For simulating the liquid dynamics the
computer program ComFlo is used. ComFlo is capable of simulating slosh-
ing liquids. The model for the fluid dynamics used in ComFlo is based on
an equation for conservation of mass (continuity equation) and an equation
for conservation of momentum (Navier-Stokes equation). These equations
are solved for the fluid pressure and velocity field. To account for the vehicle
motion, the liquid velocity is considered with respect to a moving reference
frame (fixed with respect to the vehicle).
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The vehicle is modeled in Matlab/Simulink, whereas ComFlo is a Fortran
computer program. To execute this Fortran code from Simulink, the vehicle
model is expanded with a block containing an adapted version of the Com-
Flo program. The force and torque that the fluid exerts on the tank are
computed in ComFlo and used as input for the vehicle model. The vehicle
motion in turn is used as input for ComFlo.

The actual vehicle model (based on dynamical interaction) is developed in
chapter 3, followed by simulation results in chapter 4. Before that, the
necessary rigid body dynamics are explained in chapter 2. As an example,
the free rotation of a rectangular plate is modeled and simulated in Mat-
lab/Simulink.

At the National Aerospace Laboratory NLR, Collaborative Engineering Sys-
tems department, the work on coupled solid-liquid vehicle dynamics is con-
tinued by Marc van den Raadt. The discussions with Marc van den Raadt
at NLR are acknowledged.
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Chapter 2

Rigid Body Dynamics

2.1 Equation for Linear Momentum

To describe the motion of a rigid body, we use two coordinate systems: An
inertial frame x′ and a coordinate system x fixed with respect to the body
(figure 2.1). The center of mass of a rigid body moves as if it were a single
particle, of mass equal to the total mass of the body, acted on by the total
external force [4]. Newton’s equation for the motion of a particle of mass m
reads

F = maf (2.1)

where af is the acceleration vector of the particle with respect to the inertial
(fixed) reference frame (Newton’s equation is valid only in an inertial frame
of reference) and F is the force acting on the particle. The velocity relative
to the fixed coordinate system of a particle fixed in the body system (figure
2.1) is given by

vf = q + ω × r (2.2)

where q is the linear velocity of the origin of the body system, ω is the
angular velocity of the body system and r is the constant radius vector of
the particle in the body system. The radius vector of the particle in the
fixed system is denoted by r′. Differentiating equation (2.2), we have

af =

(

dvf
dt

)

f
=

(

dq

dt

)

f
+

(

dω

dt

)

f
× r + ω ×

(

dr

dt

)

f
(2.3)

The subscript f (fixed) is included to indicate that the time rate of change
is measured in the fixed coordinate system. The time rates of change of q,
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Figure 2.1: Fixed coordinate system x′ and body coordinate system x. The particle
is fixed in the body coordinate system.

r and ω as measured in the fixed system are given by

(

dq

dt

)

f
=

(

dq

dt

)

b
+ ω × q (2.4)

(

dr

dt

)

f
=

(

dr

dt

)

b
+ ω × r = ω × r (2.5)

(

dω

dt

)

f
=

(

dω

dt

)

b
+ ω × ω =

(

dω

dt

)

b
= ω̇ (2.6)

In these equations the subscript b (body) indicates that the time rate of
change is measured in the body system. Substituting equations (2.4), (2.5)
and (2.6) into equation (2.3), we obtain

af =

(

dq

dt

)

b
+ ω × q + ω̇ × r + ω × (ω × r) (2.7)

Combining equations (2.1) and (2.7), the final equation for a particle of mass
m fixed in the body coordinate system becomes

F = m

((

dq

dt

)

b
+ ω × q + ω̇ × r + ω × (ω × r)

)

(2.8)
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2.2 Equation for Angular Momentum

To obtain the equation for angular momentum, it is advisable to view the
rigid body as a system of particles {i} of masses mi. The radius vectors ri
and r′

i are measured from O and O′ respectively (figure 2.1). According to
Newton’s equation, mir̈

′

i is equal to the force applied to the mass mi, and
its cross product with ri is the moment about O:

N =
∑

N i =
∑

ri ×mir̈
′

i (2.9)

Using equations (2.7) and (2.4), the acceleration of particle i can be written
as

r̈′

i =

(

dq

dt

)

f
+ ω̇ × ri + ω × (ω × ri) (2.10)

Substituting equation (2.10) into equation (2.9), we obtain

N =
∑

[miri ×

(

dq

dt

)

f
+ ri× (ω̇ ×miri) + ri × (ω ×mi(ω × ri))] (2.11)

The first term can be written as:

∑

(

miri ×

(

dq

dt

)

f

)

=
(

∑

miri

)

×

(

dq

dt

)

f
= msrs ×

(

dq

dt

)

f
(2.12)

where ms is the total mass of the system and rs is the vector defining the
position of the system’s center of mass in the body system. The second and
third term of (2.11) can be written as [6]

∑

ri × (ω̇ ×miri) = Isω̇ (2.13)

∑

ri × (ω ×mi(ω × ri)) = ω × Isω (2.14)

where Is is the inertia tensor of the body in the body coordinate system.
Substituting equations (2.12), (2.13) and (2.14) into (2.11), the final equa-
tion becomes

N = msrs ×

(

dq

dt

)

f
+ Isω̇ + ω × Isω (2.15)
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2.3 Orientation of Body Coordinate System

To determine the orientation of the body coordinate system, we now intro-
duce a series of rotations, which transforms the x′ system into the x system
(except for a translation). The rotation matrix λ describes the relative
orientation of the two systems:

x = λx′ (2.16)

The first rotation is through an angle φ about the x′3-axis (figure 2.1) to
transform the fixed coordinate system x′ into x′′. Positive angles are given
by the right hand rule. The transformation matrix is

λφ =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 (2.17)

x′′ = λφx
′ (2.18)

The second rotation is through an angle θ about the x′′2-axis to transform
x′′ into x′′′. The transformation matrix is

λθ =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 (2.19)

x′′′ = λθx
′′ (2.20)

The third and final rotation is through an angle ψ about the x′′′1 -axis to
transform the x′′′ system into the body coordinate system x. The transfor-
mation matrix is

λψ =





1 0 0
0 cosψ sinψ
0 − sinψ cosψ



 (2.21)

x = λψx′′′ (2.22)

The complete transformation from the x′ system to the x system is given
by

x = λψx′′′ = λψλθx
′′ = λψλθλφx

′ (2.23)

and the rotation matrix λ is

λ = λψλθλφ (2.24)
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The components of this matrix are

λ11 = cosφ cos θ
λ21 = cosφ sin θ sinψ − sinφ cosψ
λ31 = cosφ sin θ cosψ + sinφ sinψ

λ12 = sinφ cos θ
λ22 = sinφ sin θ sinψ + cosφ cosψ
λ32 = sinφ sin θ cosψ − cosφ sinψ

λ13 = − sin θ
λ23 = cos θ sinψ
λ33 = cos θ cosψ

(2.25)

The angular velocities φ̇, θ̇ and ψ̇ are directed along x′3 = x′′3, x
′′

2 = x′′′2

and x′′′1 = x1 respectively. The relationship between these angular veloci-
ties and the angular velocity vector ω can be determined by collecting the
components of φ̇, θ̇ and ψ̇ along the body coordinate axes:





ω1

ω2

ω3



 =





ψ̇
0
0



 + λψ





0

θ̇
0



 + λψλθ





0
0

φ̇



 (2.26)

This equation can be written as

ω = µ−1ȧ (2.27)

where a is the vector containing the angles φ, θ and ψ. The matrix µ−1 is
given by

µ−1 =





− sin θ 0 1
sinψ cos θ cosψ 0
cosψ cos θ − sinψ 0



 (2.28)

The inverse of equation (2.27) is

ȧ = µω (2.29)

and

µ =





0 sinψ
cos θ

cosψ
cos θ

0 cosψ − sinψ
1 sinψ tan θ cosψ tan θ



 (2.30)
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In equation (2.29) a singularity occurs for θ = ±π/2. This condition only
occurs when the vehicle is heading in the vertical direction (the rotation is
about the x′′2-axis). Such a situation will not be included in our simulation
studies.

The angles φ, θ and ψ are Yaw-Pitch-Roll angles. We find it convenient
to use these angles because the projection of the x1-axis on the horizontal
(inertial) plane is completely determined by the first rotation through the
angle φ about the x′3-axis (figure 2.1). This way, it’s easy to determine the
heading of the vehicle.

2.4 Free Rotation of Rectangular Plate

Consider a rectangular plate of mass ms fixed in the body coordinate system
(figure 2.2). We let the origin of the body coordinate system coincide with
the center of mass of the plate (rs = 0). The axes of the body coordinate
system are chosen to coincide with the principal axes for the plate (figure
2.2). Hence, the moment of inertia tensor I consists only of diagonal ele-
ments I1, I2 and I3.

x3

x2

a

x1b

Figure 2.2: Rectangular plate in body coordinate system (principal axes). The
origin of the body coordinate system coincides with the center of mass of the plate.

Because rs = 0, the equation for angular momentum (2.15) simplifies to

N = Isω̇ + ω × Isω (2.31)

Because we have chosen the axes of the body coordinate system to coincide
with the principal axes of the body, the components of this equation (along
the body axes) simplify to

I1ω̇1 − (I2 − I3)ω2ω3 = N1

I2ω̇2 − (I3 − I1)ω3ω1 = N2

I3ω̇3 − (I1 − I2)ω1ω2 = N3

(2.32)
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Equations (2.32) are the Euler equations for the rotational motion of a rigid
body. These equations can be written as

ω̇1 = (N1 + (I2 − I3)ω2ω3)/I1
ω̇2 = (N2 + (I3 − I1)ω3ω1)/I2
ω̇3 = (N3 + (I1 − I2)ω1ω2)/I3

(2.33)

To determine the orientation of the body coordinate system (and of the
body itself), equation (2.29) is used. The translational motion (the motion
of the center of mass of the plate) is described by Newton’s equation (2.1):

F = msaf (2.34)

The Simulink model for numerically solving equations (2.33), (2.34) and
(2.29) is shown in appendix B.1.

As an example the torque N is set to 0 (free rotation). The Euler equations
(2.32) then read

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2

(2.35)

According to these equations, if two components of the angular velocity vec-
tor ω are 0, the third component is constant. A constant angular velocity
vector directed along a principal axis corresponds to permanent rotation
about that axis. These permanent rotations are stable about the axes of
maximum and minimum moments of inertia, and unstable about the axis of
intermediate moment of inertia. Stability here means that if a small pertur-
bation is applied to the system, the motion will either return to its former
mode or will perform small oscillations about it [4]. This is demonstrated
in the following example.

Consider a plate with dimensions a = 0.3 m and b = 0.2 m (figure 2.2).
The mass of the plate is set to ms = 1 kg. From these parameters the three
principal moments of inertia can be computed, namely

I1 =
1

12
mb2 =

0.04

12
kg·m2

I2 =
1

12
ma2 =

0.09

12
kg·m2 (2.36)

I3 =
1

12
m(a2 + b2) =

0.13

12
kg·m2
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Figure 2.3: Free rotation of rectangular plate around the x1-axis (the principal axis
corresponding to the smallest moment of inertia). Time evolution of the angular
velocity vector ω for perturbed initial condition ω0 = (6 0.06 0.06). The motion
performs small oscillations about its initial condition.

We start with rotation around the x1-axis (the principal axis correspond-
ing to the smallest moment of inertia) and apply a small perturbation, for
example

ω0 = (6 0.06 0.06) (2.37)

The time evolution of the angular velocity vector ω for initial condition
(2.37) is displayed in figure 2.3. The motion performs small oscillations
about its initial condition. Similar results are obtained for rotation around
the x3-axis (the principal axis corresponding to the greatest moment of
inertia). When the rotation takes place around x2 (the axis corresponding
to the intermediate moment), however, the results are quite different (figure
2.4). The motion goes into a tumble! For more (analytical) information on
this subject, see [6].

2.5 Rigid Body Motion

In this section, the axes of the body coordinate system do not necessarily
need to coincide with the principal axes of the body. Hence, the moment of
inertia tensor may also contain off-diagonal elements. However, the origin
of the body coordinate system still is chosen to be the center of mass of the
rigid body (rs = 0). The equation for angular momentum (2.15) therefore
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Figure 2.4: Free rotation of rectangular plate around the x2-axis (the principal
axis corresponding to the intermediate moment of inertia). Time evolution of the
angular velocity vector ω for perturbed initial condition ω0 = (0.06 6 0.06). The
motion goes into a tumble!

simplifies to
N = Isω̇ + ω × Isω (2.38)

The center of mass of the body moves as if it were a single particle, of mass
equal to the total mass of the body, acted on by the total external force [4].
Thus for the linear momentum of the body we may use equation (2.8) with
r = rs = 0 and m = ms:

F = ms

((

dq

dt

)

b
+ ω × q

)

(2.39)

The equations for linear momentum (2.39) and angular momentum (2.38)
can be written as

(

dq

dt

)

b
=

1

ms
F + q × ω (2.40)

ω̇ = I−1
s (N − ω × Isω) (2.41)

To determine the orientation of the body coordinate system (and of the body
itself), equation (2.29) is used. The Simulink model for numerically solving
equations (2.40), (2.41) and (2.29) is shown in appendix B.2. In this model,
gravitational force is included. The rotation matrix λ is used to compute
the components of the gravitational field vector g along the body coordinate
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axes. The force and torque due to gravity are

F =
∑

F i =
∑

mig = msg (2.42)

N =
∑

N i =
∑

ri × F i =
∑

ri ×mig

=
(

∑

miri

)

× g = msrs × g (2.43)

In this section, the torque due to gravity vanishes because rs = 0. Therefore,
only equation (2.42) is included in the Simulink model.
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Chapter 3

Vehicle Model

3.1 Introduction

The sloshing liquid induces an extra force and torque on the vehicle, thereby
influencing the motion of the vehicle. On the other hand, the motion of the
liquid is influenced by the motion of the tank in which it is contained. In
other words, we are dealing with dynamical interaction between the solid
body dynamics and liquid dynamics, i.e. coupled solid-liquid dynamics. The
vehicle model consists of a model for the solid body dynamics S and a model
for the liquid dynamics L. The model for the solid body dynamics takes the
form of a relation between force and motion:

S[b, k] = 0 (3.1)

where k represents the force exerted by the fluid on the vehicle and b rep-
resents the motion of the vehicle. The force k and motion b are also related
by the model for the liquid dynamics:

L[b, k] = 0 (3.2)

In this chapter the model S for the solid body dynamics is developed and
combined with the model L for the liquid dynamics to obtain a model for
the coupled solid-liquid vehicle dynamics:

{

S[b, k] = 0
L[b, k] = 0

(3.3)
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3.2 Mathematical Model

3.2.1 Geometry

The vehicle is modeled as a solid body (figure 3.1) consisting of a rectangu-
lar plate (dimensions a × b, mass mp) and a rectangular tank (dimensions
a× b× c, mass mt) with a uniform mass density. The mass of the solid body
is given by ms = mp + mt. The plate and tank are fixed with respect to
the body coordinate system. We let the origin of the body system coincide
with the center of mass of the plate. The position of the center of mass of
the tank is defined by the vector rt, measured from the origin of the body
coordinate system and directed along the x3-axis. The solid body (tank +
plate) center of mass vector rs = mtrt/ms is also directed along the x3-axis.

x1

rs

rt

b

c

x3

x2

a

Figure 3.1: Solid body (tank + chassis) fixed in body coordinate system x. The
position of the center of mass of the solid body is defined by the vector rs. The center
of mass of the chassis coincides with the origin of the body coordinate system.

The moment of inertia about the x3-axis of the rectangular tank is given by

I33 =
mt[ab(a

2 + b2) + c(a+ b)3]

12(ab + ac+ bc)
(3.4)

Using Steiner’s theorem, the moments of inertia of the tank about the x1-
and x2-axes are

I11 =
mt[bc(b

2 + c2) + a(b+ c)3]

12(ab+ ac+ bc)
+mt|rt|

2 (3.5)

16



I22 =
mt[ac(a

2 + c2) + b(a+ c)3]

12(ab+ ac+ bc)
+mt|rt|

2 (3.6)

Adding to these the moments of inertia of the rectangular plate, the moments
of inertia of the solid body (tank + plate) become

I11 =
mt[bc(b

2 + c2) + a(b+ c)3]

12(ab + ac+ bc)
+
mpb

2

12
+mt|rt|

2 (3.7)

I22 =
mt[ac(a

2 + c2) + b(a+ c)3]

12(ab+ ac+ bc)
+
mpa

2

12
+mt|rt|

2 (3.8)

I33 =
mt[ab(a

2 + b2) + c(a+ b)3]

12(ab + ac+ bc)
+
mp(a

2 + b2)

12
(3.9)

The products of inertia vanish because the axes of the body coordinate
system are the principal axes for the solid body (the body is symmetrical
under reflections through the x1x3- and x2x3-planes).

3.2.2 Solid Body Dynamics

The model for the solid body motion consists of an equation for linear mo-
mentum and an equation for angular momentum. The center of mass of the
body moves as if it were a single particle, of mass equal to the total mass of
the body, acted on by the total external force [4]. Thus for the linear mo-
mentum of the body we may use equation (2.8) with r = rs and m = ms:

ms

(

dq

dt

)

b
+ ω̇ ×msrs = −msω × q − ω × (ω ×msrs) + F + F l (3.10a)

and using equation (2.15) for the angular momentum of the body, we have

msrs ×

(

dq

dt

)

b
+ Isω̇ = −msrs × (ω × q) − ω × Isω + N + N l (3.10b)

In these equations F l and N l are respectively the force and torque that
the fluid, via pressure (normal stress) and viscous effects (tangential stress),
exerts on the boundary of the solid body [2]. Direct discretization of the
system (3.10) would result in a method that is not stable for arbitrary liq-
uid/solid mass ratios [2]. In particular it will become unstable when the
liquid mass exceeds the solid body mass, i.e. when ml > ms. Therefore, the
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system for the solid body dynamics is rewritten first. In [2] it is explained
that F l and N l can be written as

F l = −ml

(

dq

dt

)

b
−mlω × q − ω̇ ×mlrl − ω × (ω ×mlrl) − Al (3.11)

N l = −mlrl ×

(

dq

dt

)

b
−mlrl × (ω × q) − I lω̇ − ω × I lω − Bl (3.12)

where rl is the center of mass vector of the liquid and I l is the moment of
inertia tensor of the liquid. Al and Bl are integrals over the volume V of
the tank:

Al =

∫

V

ρ

(

Du

Dt
+ 2ω × u − g

)

dV (3.13)

Bl =

∫

V

ρrv ×

(

Du

Dt
+ 2ω × u − g

)

dV (3.14)

In these equations u is the velocity of a liquid particle with respect to the
moving body coordinate system, rv is the position of the liquid particle in
the body system and the vector g represents acceleration due to gravity.
Substituting the expressions for F l and N l in the system (3.10) and com-
bining solid and liquid terms gives an alternative form of the model for the
solid body dynamics, namely

mc

(

dq

dt

)

b
+ ω̇ ×mcrc = −mcω × q − ω × (ω ×mcrc) − Al + F (3.15a)

mcrc ×

(

dq

dt

)

b
+ Icω̇ = −mcrc × (ω × q) − ω × Icω − Bl + N (3.15b)

In these equationsmc = ms+ml is the total mass, Ic = Is+I l is the moment
of inertia tensor of the coupled system, and rc = (msrs +mlrl)/mc is the
center of mass of the coupled system. The latter two quantities are time
dependent because of the fluid motion with respect to the body coordinate
system. The crucial point for numerical stability is that now in the left-hand
side of (3.15) the total mass of the system appears, instead of only the solid
body mass as in (3.10). In matrix form the system (3.15) reads

M

(

(dq/dt)b
ω̇

)

=

(

h1

h2

)

(3.16)

where

M =

(

mcE H

−H Ic

)

(3.17)
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and

H =





0 mcrc,3 −mcrc,2
−mcrc,3 0 mcrc,1
mcrc,2 −mcrc,1 0



 (3.18)

In system (3.16) h1 and h2 refer to the right hand sides of equations (3.15a)
and (3.15b). The matrix E in equation (3.17) is the identity matrix. To
determine the orientation of the body coordinate system (and of the body
itself), equation (2.29) is used.

3.2.3 Liquid Dynamics

The motion of a Newtonian, incompressible fluid with density ρ and molecu-
lar viscosity µ is governed by an equation for conservation of mass (continuity
equation)

∇ · u = 0 (3.19)

and an equation for conservation of momentum (Navier-Stokes equation)

Du

Dt
= −

1

ρ
(∇p− (∇ · µ∇)u) + g + f (3.20)

where u is the velocity of a liquid particle relative to the body coordinate
system, p denotes the liquid pressure and g represents acceleration due to
gravity. The material derivative in equation (3.20) is given by

Du

Dt
=
∂u

∂t
+ (u · ∇)u (3.21)

The extra term f in the Navier-Stokes equation (3.20) represents (virtual)
acceleration due to the motion of the body coordinate system:

f = −

(

dq

dt

)

f
− ω̇ × rv − ω × (ω × rv) − 2ω × u (3.22)

In this equation rv is the position of the liquid particle in the body coor-
dinate system. Equation (3.22) is similar to equation (2.7). The last term
however is a totally new quantity that arises from the motion of the liquid
particle in the body coordinate system (in equation (2.7) the particle was
fixed in the body system). This term is called the Coriolis acceleration [4].
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3.2.4 Suspension Model

The terms F and N in system (3.15) represent the force and torque due
to gravity and vehicle suspension. The force and torque due to gravity are
given by msg and msrs × g respectively (equations (2.42) and (2.43)). For
modeling the suspension of the vehicle, spring and damper combinations
are used. The four vertices of the plate are connected to the ground contact
points. The ground contact points are the ground points directly beneath
the vertices of the plate.

ASSUMPTION A
The total mass of the wheels is uniformly distributed across the plate.

Assumption A implies that we are simply connecting the vertices to the
ground contact points via massless spring and damper combinations.

ASSUMPTION B
The forces exerted by the spring and damper combinations on the vertices of
the plate are directed vertically (in the x′3 direction, figure 2.1).

The restoring force is a linear function of the displacement, the damping
force is a linear function of the velocity of the displacement. Because the
forces exerted by the spring and damper combinations are assumed to be
directed vertically, they can be computed from the vertical positions and
velocities of the vertices and ground contact points. In this section the
expressions for the absolute positions and velocities of the vertices are de-
termined. The ground contact points are considered in section 4.3.

Consider the vertex located at rV = (±a/2, ±b/2, 0) in the body coordinate
system. The radius vector r′

V (measured from the origin O′ of the inertial
coordinate system) is given by

r′

V = r′

O + λ−1rV (3.23)

where r′

O is the vector defining the position of the origin O of the body
coordinate system. Using equation (2.2), the velocity relative to the fixed
(inertial) coordinate system of the vertex is

vV = λ−1(q + ω × rV ) (3.24)

The components of the velocity vector vV are directed along the inertial
axes (the rotation matrix λ−1 transforms the velocity vector q + ω × rV
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into the inertial coordinate system). The magnitude of the force exerted by
the spring and damper combination on the vertex is given by

FV = −k(h− ξ − l) − d(v − ζ) (3.25)

where h and v are the x′3-components of r′

V and vV (i.e. the vertical position
and velocity of the vertex), ξ and ζ are the vertical position and velocity of
the ground contact point, k and d are the spring and damper constants and
l is the rest length of the springs. The vector representation of this force
(directed vertically and expressed in the body coordinate system) is given
by

F V = λ





0
0
FV



 (3.26)

The corresponding torque:

NV = rV × λ





0
0
FV



 (3.27)

Finally, the total force F and torque N due to suspension are obtained by
summing these expressions over the four vertices.

3.2.5 Constraint Equation

In this section the constraint equation is formulated: The linear velocity
vector q is constrained to lie in the vertical (inertial) plane through the x1-
axis of the body coordinate system and φ̇ is given by an input function to
steer the vehicle in the desired direction.

The projection of the x1-axis on the horizontal (inertial) plane is completely
determined by the first rotation through the angle φ about the x′3-axis. The
direction of this projection is given by the vector

d =





cosφ
sinφ

0



 (3.28)

Using equations (2.29) and (2.30), the time derivative of φ can be written
as

φ̇ =
sinψ

cos θ
ω2 +

cosψ

cos θ
ω3 (3.29)
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Consider the constraint φ̇ = z, where z is a time-dependent input function.
Using equation (3.29), this constraint can be written as

ω2 sinψ + ω3 cosψ = z cos θ (3.30)

The projection qh of the linear velocity vector q on the horizontal (inertial)
plane is given by the first two components of the vector λ−1q = λtq, where
λt is the transpose of λ (the transpose and the inverse of the rotation matrix
λ are identical):

qh =





λ11q1 + λ21q2 + λ31q3
λ12q1 + λ22q2 + λ32q3

0



 (3.31)

Next, consider the constraint qh = kd, where k is an unspecified time-
dependent function. The components of this constraint equation are

λ11q1 + λ21q2 + λ31q3 = k cosφ
λ12q1 + λ22q2 + λ32q3 = k sinφ

(3.32)

Multiplying the first and second of these equations with sinφ and cosφ
respectively, we obtain

(λ11q1 + λ21q2 + λ31q3) sinφ = k sinφ cos φ
(λ12q1 + λ22q2 + λ32q3) cosφ = k sinφ cos φ

(3.33)

Combining these equations and rearranging terms, we have





λ11 sinφ− λ12 cosφ
λ21 sinφ− λ22 cosφ
λ31 sinφ− λ32 cosφ



 ·





q1
q2
q3



 = 0 (3.34)

Using the expressions for the components of the rotation matrix λ (equation
(2.25)), equation (3.34) simplifies to

(

0 − cosψ sinψ
)





q1
q2
q3



 = 0 (3.35)

Combining the constraints (3.35) and (3.30), the final constraint equation
becomes

L

(

q

ω

)

= y (3.36)
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where

L =

(

0 − cosψ sinψ 0 0 0
0 0 0 0 sinψ cosψ

)

(3.37)

and

y =

(

0
z cos θ

)

(3.38)

Because the motion of the vehicle is constrained, certain forces must exist
that maintain the constraint condition. Therefore, an extra term γ is added
to the inverse of system (3.16):

(

(dq/dt)b
ω̇

)

= M−1

(

h1

h2

)

+ γ (3.39)

The expression for γ is derived in section 3.3.3.

3.3 Numerical Model

3.3.1 Coupled Solid-Liquid Dynamics

System (3.10) is of the form

S[b, k] = 0 (3.40)

where k represents the force exerted by the fluid on the vehicle and b repre-
sents the motion of the vehicle. Note that in the rewritten system (3.16) the
force F l and torque N l are replaced by Al and Bl. Moreover, the center
of mass and inertia matrix refer to the coupled system. The model for the
solid body dynamics (3.16) is still of the form S[b, k] = 0, but now k repre-
sents Al and Bl as well as rl and I l. Therefore, the model for the coupled
solid-liquid dynamics is defined as

{

S[b, k] = 0
L[b, k] = 0

(3.41)

where
k = {Al,Bl, rl, I l} (3.42)

and
b = {q,ω, (dq/dt)b, ω̇} (3.43)

We will solve this system iteratively. First we choose the order in which to
do this. In reality, the interaction between S and L is a continuous process.
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The choice of an order therefore is somewhat artificial, based on algorithmic
considerations. The model for the liquid dynamics L is applied first, calcu-
lating k and passing it to the model for the solid body dynamics S. Then the
model for the solid body dynamics is applied, calculating the motion b and
passing it to the model for the liquid dynamics (figure 3.2). This iterative
method is stable because the combined solid-liquid mass mc = ms +ml is
always larger than the liquid mass ml (see section 3.2.2 and [2]).

’force’ k

Model for the liquid dynamics L.

Model for the solid body dynamics S.
The liquid load is seen as part of the
solid body!

motion b

Figure 3.2: Iterative method for solving the coupled solid-liquid dynamics. At each
time step the liquid load is combined with the solid body to form the alternative solid
body to which the numerically stable equations of motion apply.

3.3.2 Solid Body Dynamics

Let’s assume the linear and angular velocity vectors q and ω as well as the
position and orientation of the body coordinate system are known at time
level n and are to be calculated at the new time level n + 1. The model
for the liquid dynamics is applied first, resulting in new values for rc, Ic
(and thus M ), Al and Bl. Then, the model for the solid body dynamics
is applied. The force F and torque N are computed and the matrix M is
inverted to solve for (dq/dt)b and ω̇ at the new time level n+ 1:

(

(dq/dt)b
ω̇

)n+1

= (M−1)n+1

(

h1

h2

)n

+ γn (3.44)

where

hn1 = −mcω
n × qn − ωn × (ωn ×mcr

n+1
c ) − An

l + F n (3.45)

hn2 = −mcr
n+1
c × (ωn × qn) − ωn × In+1

c ωn − Bn
l + Nn (3.46)
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and

An
l =

∫

V

ρ

(

Dun+1

Dt
+ 2ωn × un+1 − gn

)

dV (3.47)

Bn
l =

∫

V

ρrn+1
v ×

(

Dun+1

Dt
+ 2ωn × un+1 − gn

)

dV (3.48)

From equation (2.29), the angular velocities φ̇, θ̇ and ψ̇ are computed as

ȧn = µnωn (3.49)

The position and orientation of the body coordinate system are computed at
time level n+1 by integration of (λ−1)nqn (linear velocity expressed in fixed
coordinate system) and ȧn respectively. The linear and angular velocity
vectors qn+1 and ωn+1 are obtained by integration of (dq/dt)n+1

b and ω̇n+1.
The Simulink model for solving system (3.44) is shown in appendix B.3.

3.3.3 Constraint Equation

System (3.39) is solved using the forward Euler integration method:
(

q

ω

)n+1

=

(

q

ω

)n

+ ∆t[(M−1)n+1

(

h1

h2

)n

+ γn] (3.50)

The constraint equation (3.36) is discretized as

Ln

(

q

ω

)n+1

= yn (3.51)

Insert (3.50) into (3.51) to obtain

Ln

[(

q

ω

)n

+ ∆t[(M−1)n+1

(

h1

h2

)n

+ γn]

]

= yn (3.52)

This equation can be written as

∆tLnγn = −Ln

[(

q

ω

)n

+ ∆t(M−1)n+1

(

h1

h2

)n]

+ yn (3.53)

We seek a solution in the form γn = (Lt)npn, for some vector pn. Substitute
this form of γn into equation (3.53) and use Ln(Lt)n = E to obtain

pn = −Ln

[

1

∆t

(

q

ω

)n

+ (M−1)n+1

(

h1

h2

)n]

+
1

∆t
yn (3.54)

From this, the vector γn = (Lt)npn can be computed. For more information,
see [1].
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3.3.4 Stability Analysis

The integration of system (3.39) is done using the first order forward Euler
method (further adaptations to the vehicle model are necessary for higher
order integration methods to work). In this section we investigate stability
for the Euler method using system (3.15) in which q, ω, rc and Ic are
replaced with scalars and Al, Bl, F and N are omitted:

mcq̇ +mcrcω̇ = −mcqω −mcrcω
2

mcrcq̇ + Icω̇ = −mcrcqω − Icω
2 (3.55)

This system is equivalent to

q̇ = −qω
ω̇ = −ω2 (3.56)

Note that we now have a decoupled equation for ω. When solving a differ-
ential equation ẋ = f(x) with forward Euler, the amplification factor g is
given by

g = 1 +
df

dx
∆t (3.57)

For the equations in system (3.56) the amplification factors are 1−ω∆t and
1− 2ω∆t. For absolute stability we need |g| ≤ 1. Since ω can be positive as
well as negative, absolute stability is out of the question. The Euler method
is zero stable however, since |g| ≤ 1 +O(∆t). Zero stability guarantees that
for sufficiently small ∆t the discrete solution becomes a good approximation
of the continuous solution [7].

The integration of the Navier-Stokes equations and the iterative process of
solving system (3.41) are stable also. The stability of the numerical coupling
has been accomplished by rewriting the equations for linear and angular
momentum in section 3.2.2 (see [2] for more information on this subject).
Information on (the stability of) the discretized Navier-Stokes equations can
be found in [2] and [7].
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Chapter 4

Results

In this chapter the results of four different simulations are presented. The
main goal of the simulations ’vertical motion’ and ’inclined free surface’ is to
validate the model for the coupled solid-liquid dynamics. The simulations
’bumpy road’ and ’cornering maneuver’ are included to demonstrate the
effects of dynamical interaction in realistic situations. The simulations are
performed on a grid of 40 × 20 × 20 cells (the computational grid used in
ComFlo), except ’inclined free surface’, for which we use a finer grid of
60×30×30 cells. Integration in Simulink is done using the first order Euler
method, with time step ∆t = 0.0005 (further adaptations to the vehicle
model are necessary for higher order integration methods to work).

4.1 Vertical Motion

First we set the vehicle parameters. Consider a tank with dimensions a = 6
m, b = 2.5 m, c = 2 m (figure 3.1) and mass mt = 10000 kg. The center
of mass of the (empty) tank is located at rt = (0, 0, 1.5), i.e. the distance
between the chassis and the bottom of the tank is equal to 0.5 m. The mass
of the chassis is set to mp = 15000 kg. The lower half of the tank is filled
with liquid having a density of ρ = 1000 kg/m3. Hence, the liquid mass is
equal to ml = 15000 kg.

Suspension parameters (restoring and damping) are set to k = 500000 N/m
and d = 20000 N·s/m respectively for each of the four spring and damper
combinations. The natural spring length is set to l = 0.5 m. In equilibrium
position (the position at which the spring force equals the gravitational
force), the spring length is reduced to 0.304 m.
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Figure 4.1: Vertical position of the chassis for initial condition r′

O
(3) = 0.5. The

equilibrium position is at x′
3

= 0.304.

We start with simulating vertical motion on a flat ground surface. The flat
ground surface is modeled by simply setting ξ and ζ (the vertical position
and velocity of the ground contact points) to 0 for all of the four ground
contact points. The vehicle is initialized with zero linear and rotational ve-
locity. We set the initial position to r′

O = (0, 0, 0.5) (above the equilibrium
position which is at x′3 = 0.304). Damped oscillatory motion is expected
in the vertical direction due to gravitational, restoring and damping forces.
This is confirmed in figure 4.1, where the vertical position of the origin O of
the body coordinate system is shown.

Since the acceleration of the tank does not exceed the gravitational acceler-
ation, the fluid remains at rest with respect to the body coordinate system.
Under these circumstances, the effects of the liquid on the motion of the
vehicle are the same as those of a solid of equal mass and volume. Indeed,
the vertical motion is simply that of a particle of mass mc = mt +mp +ml,
acted on by the total force. The analytical solution is given by

x′3(t) = e−t[0.196 cos(7t) +
0.196

7
sin(7t)] + 0.304 (4.1)

The error in the numerical solution is plotted for various time steps in figure
4.2. When the time step is reduced by a factor two, the error in the numerical
solution becomes twice as small due to the first order Euler time integration.
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Figure 4.2: Error in the vertical position for various time steps.

4.2 Inclined Free Surface

In this test case the vehicle is initially at rest in its equilibrium position. The
ground surface is flat. For the initial fluid configuration we select ’liquid on
side of a plane’: At t = 0 the fluid is on the lower side of the plane defined

0

0.5

x3

x1

x2

2

1

2.5

2.5 m

6 m

Figure 4.3: Initial fluid configuration.

by the equation x1 − 6x3 = −9 (figure 4.3). Gravity sets the fluid into
motion and the vehicle accelerates due to the force exerted by the fluid.
The liquid moves from side to side. This can be seen in figure 4.4, where
the liquid height at the rear side of the tank is shown. The x′1-component
of the position r′

O of the vehicle and its pitch angle θ are shown in figures
4.5 and 4.6.
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Figure 4.4: Liquid height at the rear side of the tank

Let’s predict the frequency of the motion by looking at the sloshing motion
of the liquid in a fixed tank. Then, the natural (angular) frequency ω for
the oscillation of the liquid is given by [5]

ω2 =
πg

l
tanh

πh

l
(4.2)

where l is the length of the tank and h is the equilibrium position of the
free surface. With l = 6 m, h = 1 m and g = 9.8 m/s2, the natural period
2π/ω for the oscillation of the liquid is approximately 4.0 s. The period of
the vehicle motion is expected to be roughly the same. This is confirmed by
the simulation results (the period is approximately 3.4 s).
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Figure 4.5: Horizontal (forward) position of the chassis center of mass O.
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Figure 4.6: Pitch motion of the vehicle (rotation about the x2-axis).
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4.3 Bumpy Road
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Figure 4.7: Sinusoidal road surface. Note that the axes have different scales!

In this section we let the vehicle drive straight ahead along a sinusoidal road
surface of wavelength 40 m and height between 0 and 0.2 m (figure 4.7).
The corresponding ground surface function is given by

ξ(x′1) =

{

1

10
[1 + sin( π

20
(x′1 + 20))] x′1 ≥ 10

0 x′1 < 10
(4.3)

and its time derivative

ζ(x′1,
dx′1
dt

) =

{

π
200

dx′
1

dt
cos( π

20
(x′1 + 20)) x′1 ≥ 10

0 x′1 < 10
(4.4)

The vertical positions and velocities of the ground contact points are ob-
tained by evaluating these functions in the x′1-components of r′

V and vV
(the absolute positions and velocities of the vertices, equations (3.23) and
(3.24)). We are interested in the effects of the sloshing liquid on the ride
behavior of the vehicle. Therefore, simulations are repeated without the
solid-liquid interaction. In order to be able to make a fair comparison the
liquid is replaced with a solid beam of equal mass and volume. A separate
Simulink model has been developed: The solid-liquid interaction is removed
and the beam is included. The moments of inertia of the beam with dimen-
sions a× b× d and mass mb are given by

I33 =
1

12
mb(a

2 + b2) (4.5)

and, using Steiner’s theorem

I11 =
1

12
mb(b

2 + d2) +mb|rb|
2 (4.6)

I22 =
1

12
mb(a

2 + d2) +mb|rb|
2 (4.7)
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where rb is the center of mass vector of the beam. We start with simulations
for initial velocities 10, 11, 12 and 13 m/s. For these velocities the frequency
of the excitation generated by the road surface is roughly the same as the
natural frequency for the oscillation of the liquid, resulting in significant
liquid slosh (the fluid responds in the excitation frequency). This can be
seen in figures 4.8, 4.10, 4.12 and 4.14 where the liquid height at the rear
side of the tank is shown (results for the front side are similar). Figures 4.9,
4.11, 4.13 and 4.15 show the pitch angle θ for both the rigid cargo and liquid
cargo simulations.

As can be seen, the effects of the sloshing liquid on the ride behavior are
opposite for the velocities 10, 11 m/s (increase in pitch motion) and 12, 13
m/s (decrease in pitch motion). For a velocity of 12 m/s the frequency of
the excitation generated by the road surface is approximately the same as
the ’natural’ frequency for the vehicle motion as experimentally found in
section 4.2. We would normally expect a resonance peak to occur for this
frequency. The largest (steady response) amplitude of the liquid height is
indeed found in figure 4.12, for a velocity of 12 m/s.

Simulation results for an initial velocity of 20 m/s are included to demon-
strate that the liquid motion not always becomes as exaggerated as in the
previous simulations, where the road excitation frequency and the natural
liquid frequency were roughly the same. In figure 4.16 can be seen that for
a velocity of 20 m/s the liquid height is almost unaffected by the excitation
generated by the road surface. The pitch angle θ is shown for both rigid
cargo and liquid cargo simulations in figure 4.17. As expected, the liquid
has little effect on the motion of the vehicle.

We conclude this section with a simulation for initial velocity 23 m/s. The
excitation frequency is now approximately twice as large as the natural
frequency for the oscillation of the liquid. Subharmonic resonance effects
are clearly visible in figures 4.18 and 4.19, which show the liquid height at
the rear side of the tank and the pitch angle θ. It takes about 80 seconds
for the fluid to reach a steady response. Moreover, whereas the fluid starts
to respond in the excitation frequency, the final response is in the basic
eigenfrequency. Since the excitation frequency (and thus the frequency of
the pitch motion) is twice as large, the sloshing liquid has an alternating
increasing and decreasing effect on the amplitude of the pitch motion, as
can be seen in figure 4.19. For similar results, see [8].
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Figure 4.8: Liquid height at the rear side of the tank for a velocity of 10 m/s.
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Figure 4.9: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 10 m/s.
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Figure 4.10: Liquid height at the rear side of the tank for a velocity of 11 m/s.
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Figure 4.11: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 11 m/s.
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Figure 4.12: Liquid height at the rear side of the tank for a velocity of 12 m/s.
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Figure 4.13: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 12 m/s.
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Figure 4.14: Liquid height at the rear side of the tank for a velocity of 13 m/s.

0 20 40 60 80 100
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

time (s)

pi
tc

h 
an

gl
e 

θ 
(r

ad
)

rigid cargo
liquid cargo

Figure 4.15: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 13 m/s.
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Figure 4.16: Liquid height at the rear side of the tank for a velocity of 20 m/s.
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Figure 4.17: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 20 m/s.
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Figure 4.18: Liquid height at the rear side of the tank for a velocity of 23 m/s.
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Figure 4.19: Influence of the liquid cargo on the pitch motion of the vehicle for a
velocity of 23 m/s.
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4.4 Cornering Maneuver

First we have to make an adaptation to the constraint equation because it
prevents the centrifugal force from having an effect on the roll motion of the
vehicle (rotation about the x1-axis, figure 3.1). Until now, the centrifugal
forces were small. When taking a bend however, the resulting centrifugal
force is a very important quantity. Therefore, we have to find a way around
this.

Note that γ in equation (3.39) represents acceleration. The corresponding
force and torque are given by

Mγ =

(

F γ

Nγ

)

(4.8)

The first three components of Mγ, denoted by F γ , can be seen as forces
acting on the origin O of the body coordinate system. The last three com-
ponents, denoted by Nγ , represent torque. Since the angular velocity φ̇ is
directed along the x′3-axis (fixed coordinate system), we want the torque Nγ

to be directed along the x′3-axis also. However, the vector γ produces large
amounts of additional torque about the x1-axis (body coordinate system),
in effect counteracting the centrifugal force. To circumvent this problem we
omit the x′1- and x′2-components of Nγ , i.e. we replace the torque Nγ by
its projection (Nγ)x′

3
on the x′3-axis:

(Nγ)x′
3

= λ





0
0

(λ13 λ23 λ33) · Nγ



 (4.9)

The force F γ and torque (N γ)x′
3

are applied to the inverse of system (3.16).

Instead of keeping φ̇ = 0 to prevent a change of direction we will now force
the vehicle to take a bend. The initial velocity is set to 15 m/s and during
the first second of the simulation we steer the vehicle straight ahead by
setting φ̇ = 0 rad/s. After the first second, φ̇ is changed to 0.2 rad/s and
the vehicle takes a bend. For these parameters, the radius of the curve is
equal to r = 75 m. At the bend the centrifugal force causes the vehicle to
rotate around the x1-axis and the fluid is moving outwards. The roll angle
ψ is shown for both rigid cargo and liquid cargo simulations in figure 4.20.
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Figure 4.20: Influence of the liquid cargo on the roll motion of the vehicle for a
velocity of 15 m/s.

The effects of the sloshing liquid on the motion of the vehicle are clearly
visible (an increased, oscillating roll angle). The increase of the roll angle is
caused by the lateral shift of the liquid load. Let’s predict the frequency of
the motion by looking at the sloshing motion of the liquid in a fixed tank.
Using equation (4.2), now with l = 2.5 m, the natural period 2π/ω for the
oscillation of the liquid is approximately 1.9 s. We expect the period of the
vehicle motion (the liquid induced oscillatory roll motion) to be roughly the
same. This is confirmed by the simulation results.

The angle α between the free surface and the horizontal (inertial) plane can
also be predicted. Since the centrifugal and gravitational acceleration are
approximately φ̇2r and −10, the angle α becomes

α ≈ arctan
φ̇2r

10
= arctan 0.3 ≈ 0.29 (4.10)

Since the roll angle ψ is approximately 0.04 rad (figure 4.20), the angle be-
tween the free surface and the bottom of the tank is estimated to be 0.33
rad. This means that the difference in liquid height at the left and right side
of the tank should eventually become 0.86 m. Considering the difference
graph in figure 4.21, this looks to be a reasonable estimate.

The simulation is repeated for a velocity twice as large (q1 = 30 m/s, φ̇ = 0.4
rad/s) to demonstrate effects on rollover performance. The centrifugal ac-
celeration now exceeds the gravitational acceleration and the angle between

41



0 5 10 15 20 25 30
0

0.5

1

1.5

time (s)

liq
ui

d 
he

ig
ht

 d
iff

er
en

ce
 (

m
)

Figure 4.21: Difference in liquid height at the left and right side of the tank for a
velocity of 15 m/s.
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Figure 4.22: Influence of the liquid cargo on the roll motion of the vehicle for a
velocity of 30 m/s.

the free surface and the horizontal (inertial) plane is approximately 0.9 rad.
The roll angle ψ is shown for both rigid cargo and liquid cargo simulations
in figure 4.22. As can be seen, the roll angle ψ is increased by the liquid
load. Although the vehicle is assumed to stay in contact with the road (the
vertices of the chassis are connected to the ground contact points via spring
and damper combinations), it is clear that the liquid increases the chance
of rollover.
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Appendix A

Adaptations to ComFlo

The main program of ComFlo consists of three parts: The program setup,
the time cycle and the termination. From these parts numerous subroutines
are called:

PROGRAM COMFLO

C

C Program setup

C

T = 0.0

C

CALL SETPAR

CALL SETCSA

CALL BNDLAB

CALL SETFLD

IF (SLOSH .EQ. 0) CALL COEFL

IF ((DTAVS .LE. TMAX) .AND. (T .EQ. 0.0)) CALL AVS

IF ((DTMATL .LE. TMAX) .AND. (T .EQ. 0.0)) CALL MATLAB

IF ((DTM3D .LE. TMAX) .AND. (T .EQ. 0.0)) CALL MATL3D

IF ((DTPLIC .LE. TMAX) .AND. (T .EQ. 0.0)) THEN

CALL PLIC

CALL MLPLIC

ENDIF

IF ((DTVTK .LE. TMAX) .AND. (T .EQ. 0.0)) CALL VTK

IF ((DTCSA .LE. TMAX) .AND. (T .EQ. 0.0)) CALL CSA

CALL LIQPCT(1, PCT)

C

C Time cycle

C

10 CONTINUE

CALL INIT
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CALL TILDE

CALL SOLVEP

C

IF (SLOSH .EQ. 1) CALL PLIC

IF (SLOSH .EQ. 1) CALL VFCONV

CALL BC

IF (TUMBLQ .EQ. 1) CALL TUMBLE(0)

C

T = T + DT

C

CALL DTADJ

C

IF ((T+0.5*DT .GE. DTPRNT*FLOAT(NRPRNT)) .OR. (CYCLE .LE. 10))

& CALL PRNT

IF (T+0.5*DT .GE. DTAVS*FLOAT(NRAVS)) CALL AVS

IF (T+0.5*DT .GE. DTMATL*FLOAT(NRMATL)) CALL MATLAB

IF (T+0.5*DT .GE. DTM3D*FLOAT(NRM3D)) CALL MATL3D

IF (T+0.5*DT .GE. DTPLIC*FLOAT(NRPLIC)) CALL MLPLIC

IF (T+0.5*DT .GE. DTVTK*FLOAT(NRVTK)) CALL VTK

IF (T+0.5*DT .GE. DTCSA*FLOAT(NRCSA)) CALL CSA

IF (T+0.5*DT .GE. DTCOM*FLOAT(NRCOM)) CALL COM(1)

IF (T+0.5*DT .GE. DTMOI*FLOAT(NRMOI)) CALL MOI(1)

IF (T+0.5*DT .GE. DTTANK*FLOAT(NRTANK)) CALL TUMBLE(1)

IF (T+0.5*DT .GE. DTFILL*FLOAT(NRFILL)) CALL FILLBX

IF (T+0.5*DT .GE. DTFRC*FLOAT(NRFRC)) CALL FRCBX

IF (T+0.5*DT .GE. DTFLUX*FLOAT(NRFLUX)) CALL FLUXBX

IF (T+0.5*DT .GE. DTMNTR*FLOAT(NRMNTR)) CALL MNTR

CALL STREAM

C

LOADQ = 0

CALL AUTOSV

C

CALL STEER

C

IF (T+0.5*DT .LT. TMAX) GOTO 10

C

C Termination

C

CALL LIQPCT(1, PCT)

C OPEN(UNIT=11, FILE=’dthist.dat’, POSITION=’append’)

CRAY

OPEN(UNIT=11, FILE=’dthist.dat’)

20 CONTINUE

READ(11,’(A1)’,END=30)

GOTO 20
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30 WRITE(11,’(E12.4,I10,I4,E12.4)’) T, CYCLE+1, 0, DT

CLOSE(11)

C

STOP

END

C

C End of MAIN.

C

C ---------------------------------------------------------------------

C

To execute the ComFlo code from Simulink, a level 1 Fortran-MEX S-
function is used (see also [3]). The template file for Fortran MEX S-functions
contains only subroutines and merely copies the input to the output. We
will use this template file and edit it to perform the ComFlo operations.
The template file subroutine output performs the output calculations (at
each time step). This is where the time cycle part of ComFlo should be
placed, without the time loop itself. The program setup and termination
part of ComFlo can be included in the template file subroutines initcond
and stopcomflo respectively:

C

C File: sfuntmpl_fortran.f

C

C=======================================================================

SUBROUTINE INITCOND(X0_S)

C

C Program setup

C

T = 0.0

C

CALL SETPAR

CALL SETCSA

CALL BNDLAB

CALL SETFLD

IF (SLOSH .EQ. 0) CALL COEFL

IF ((DTAVS .LE. TMAX) .AND. (T .EQ. 0.0)) CALL AVS

IF ((DTMATL .LE. TMAX) .AND. (T .EQ. 0.0)) CALL MATLAB

IF ((DTM3D .LE. TMAX) .AND. (T .EQ. 0.0)) CALL MATL3D

IF ((DTPLIC .LE. TMAX) .AND. (T .EQ. 0.0)) THEN

CALL PLIC

CALL MLPLIC

ENDIF

IF ((DTVTK .LE. TMAX) .AND. (T .EQ. 0.0)) CALL VTK
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IF ((DTCSA .LE. TMAX) .AND. (T .EQ. 0.0)) CALL CSA

CALL LIQPCT(1, PCT)

C

RETURN

END

C=======================================================================

SUBROUTINE OUTPUT(T_S, X_S, U_S, Y_S)

C

C Time cycle

C

CALL INIT

CALL TILDE(U_S)

CALL SOLVEP

C

IF (SLOSH .EQ. 1) CALL PLIC

IF (SLOSH .EQ. 1) CALL VFCONV

CALL BC

IF (TUMBLQ .EQ. 1) CALL TUMBLE(0,Y_S)

C

T = T + DT

C

CALL DTADJ

C

IF ((T+0.5*DT .GE. DTPRNT*FLOAT(NRPRNT)) .OR. (CYCLE .LE. 10))

& CALL PRNT

IF (T+0.5*DT .GE. DTAVS*FLOAT(NRAVS)) CALL AVS

IF (T+0.5*DT .GE. DTMATL*FLOAT(NRMATL)) CALL MATLAB

IF (T+0.5*DT .GE. DTM3D*FLOAT(NRM3D)) CALL MATL3D

IF (T+0.5*DT .GE. DTPLIC*FLOAT(NRPLIC)) CALL MLPLIC

IF (T+0.5*DT .GE. DTVTK*FLOAT(NRVTK)) CALL VTK

IF (T+0.5*DT .GE. DTCSA*FLOAT(NRCSA)) CALL CSA

IF (T+0.5*DT .GE. DTCOM*FLOAT(NRCOM)) CALL COM(1)

IF (T+0.5*DT .GE. DTMOI*FLOAT(NRMOI)) CALL MOI(1)

IF (T+0.5*DT .GE. DTTANK*FLOAT(NRTANK))

& CALL TUMBLE(1,Y_S)

IF (T+0.5*DT .GE. DTFILL*FLOAT(NRFILL)) CALL FILLBX

IF (T+0.5*DT .GE. DTFRC*FLOAT(NRFRC)) CALL FRCBX

IF (T+0.5*DT .GE. DTFLUX*FLOAT(NRFLUX)) CALL FLUXBX

IF (T+0.5*DT .GE. DTMNTR*FLOAT(NRMNTR)) CALL MNTR

CALL STREAM

C

LOADQ = 0

CALL AUTOSV

C
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CALL STEER

C

RETURN

END

C=======================================================================

SUBROUTINE STOPCOMFLO

C

CALL LIQPCT(1, PCT)

C OPEN(UNIT=11, FILE=’dthist.dat’, POSITION=’append’)

CRAY

OPEN(UNIT=11, FILE=’dthist.dat’)

20 CONTINUE

READ(11,’(A1)’,END=30)

GOTO 20

30 WRITE(11,’(E12.4,I10,I4,E12.4)’) T, CYCLE+1, 0, DT

CLOSE(11)

C

RETURN

END

Note that in subroutine output the time loop is removed. The variable
declarations in the main program of ComFlo are moved to the subroutines
initcond, output and stopcomflo. ComFlo already contains a coupled solid-
liquid dynamics subroutine. This subroutine (tumble) is executed after the
model for the liquid dynamics has been completed (in the same time step).
In tumble the center of mass of the liquid rl, the inertia tensor of the liq-
uid I l and the integrals over the liquid volume Al and Bl are computed.
These variables need to be inputs for the vehicle model in Simulink and are
therefore assigned to the output vector Y_S:

SUBROUTINE TUMBLE(MODE,Y_S)

C

C Outputs to Simulink

C

Y_S(1) = LQCOMX

Y_S(2) = LQCOMY

Y_S(3) = LQCOMZ

Y_S(4) = LQMOIXX

Y_S(5) = LQMOIYY

Y_S(6) = LQMOIZZ

Y_S(7) = LQMOIXY

Y_S(8) = LQMOIXZ

Y_S(9) = LQMOIYZ
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C

C Outputs to Simulink

C

Y_S(10) = RHO * (ACCX + 2.0 * CORX - FRCX)

Y_S(11) = RHO * (ACCY + 2.0 * CORY - FRCY)

Y_S(12) = RHO * (ACCZ + 2.0 * CORZ - FRCZ)

Y_S(13) = RHO * (RACCX + 2.0 * RCORX - RFRCX)

Y_S(14) = RHO * (RACCY + 2.0 * RCORY - RFRCY)

Y_S(15) = RHO * (RACCZ + 2.0 * RCORZ - RFRCZ)

C

The subscript S is included to differentiate between ComFlo and Simulink
variables. Since the output vector Y_S is assigned a value in subroutine
tumble, Y_S is added to the subroutine parameter list. In the Simulink model
the motion of the vehicle is computed and assigned to the input vector U_S
(replacing the solid body dynamics in tumble). In the ComFlo subroutine
tilde these values are passed to the corresponding ComFlo variables (U_S is
added to the subroutine parameter list):

SUBROUTINE TILDE(U_S)

C

C Inputs from Simulink

C

OMETN(1) = OMET(1)

OMETN(2) = OMET(2)

OMETN(3) = OMET(3)

QT(1) = U_S(1)

QT(2) = U_S(2)

QT(3) = U_S(3)

OMET(1) = U_S(4)

OMET(2) = U_S(5)

OMET(3) = U_S(6)

DQDT(1) = U_S(7)

DQDT(2) = U_S(8)

DQDT(3) = U_S(9)

DOMEDT(1) = U_S(10)

DOMEDT(2) = U_S(11)

DOMEDT(3) = U_S(12)

INTQ(1) = U_S(13)

INTQ(2) = U_S(14)

INTQ(3) = U_S(15)

INTOME(1) = U_S(16)

INTOME(2) = U_S(17)

INTOME(3) = U_S(18)

C
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Note that these ComFlo variables were previously computed in the ComFlo
subroutine tumble. The ComFlo variable OMETN contains the value of OMET
(the angular velocity ω) at the previous time step. Before setting a new
OMET, the value of OMET is stored in OMETN. Since the variable OMETN is part
of the common block COSYS, the whole block COSYS is declared in subroutine
tilde.
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Appendix B

Simulink Models

B.1 Free Rotation of Rectangular Plate
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