
MPI parallelization of the

Poisson solver in COMFLO

J.C. Feitsma

Master Thesis in Applied Mathematics

August 2008

MPI parallelization of the

Poisson solver in COMFLO

J.C. Feitsma

First supervisor(s): R. Luppes and A.E.P. Veldman
Second supervisor: A.J. van der Schaft

Institute of Mathematics and Computing Science
P.O. Box 407
9700 AK Groningen
The Netherlands

Contents

1 Introduction 1

2 COMFLO 3
2.1 Liquid simulation . 3
2.2 A brief history . 3
2.3 Software . 3

2.3.1 program structure . 4
2.3.2 computational analysis . 4

3 Parallelization 7
3.1 Advantages . 7
3.2 Disadvantages . 8
3.3 Programming paradigms . 8

3.3.1 master and slaves . 9
3.3.2 OpenMP . 9
3.3.3 MPI . 9

4 PRESIT parallelized 11
4.1 Prerequisites and features . 11
4.2 Algorithm . 12

4.2.1 un-parallelized algorithm . 12
4.2.2 master and slaves . 13
4.2.3 interaction . 14
4.2.4 red/black ordering . 15
4.2.5 correction phase minimizes communication 15
4.2.6 PSLAG . 16

4.3 Implementation . 16
4.3.1 data memory-alignment . 17
4.3.2 MPI specifics . 17
4.3.3 memory limitations . 18

4.4 Embedding the code . 18
4.4.1 main procedure . 18
4.4.2 PRESIT procedure . 19
4.4.3 global data . 19

iii

iv CONTENTS

5 Results 21
5.1 Notation . 21
5.2 HPCIBM1 . 22

5.2.1 low resolution . 22
5.2.2 high resolution . 24

5.3 SI01 . 25
5.3.1 low resolution . 25
5.3.2 high resolution . 26

6 Discussion and conclusions 29
6.1 Bandwidth bottleneck . 29
6.2 Fluid configuration . 31
6.3 Shared memory . 31
6.4 Concluding remarks . 32
6.5 Suggestions for future work . 32

6.5.1 compiler technicalities . 32
6.5.2 possible MPI improvements . 32
6.5.3 grid partitioning choice . 32

Chapter 1

Introduction

ComFlo ComFlo is a package of simulation software for free-surface flow in terrestrial and
micro-gravity environments. It consists of multiple computer programs, developed and main-
tained since the 1980’s by the Computational Mechanics and Numerical Mathematics De-
partment of the University of Groningen. ComFlo models viscous incompressible flow in and
around arbitrary geometries. At the free surface continuity of stresses is imposed; effects of
capillarity are included. Also liquid-solid body interaction is included (in some versions).

Why parallelize? When the grid resolution increases, ComFlo results should consistently
approach the real-world situation better and better. However, the required computer time
normally also increases, often unproportionally to gained precision. Moreover, memory limi-
tations will prevent users from using high resolutions.

With the emerging area of grid computing and the introduction of multi-core desktop pro-
cessors, it is time for ComFlo to make its way to the play field of parallel programming. By
making use of multiple processors during a simulation, we can achieve results on higher grid
resolutions within shorter computation time than before. The process of writing code to di-
vide work over multiple processors is called parallelization.

Outline of the thesis In chapter 2, the reader will be introduced to ComFlo. We will
discuss briefly its history, several applications, and what variants are currently developed. In
order to effectively parallelize a large code like ComFlo, its most time consuming components
will be identified and analyzed. We will see that the pressure iteration procedure (PRESIT) is
relatively quite costly, making it a main target component to be parallelized.
Chapter 3 treats several general parallelization concepts such as speedup and two application
program interfaces to facilitate parallelization: MPI and OpenMP.
The next chapter introduces the parallel algorithm PRESIT-P, which will be our main weapon
to achieve success.
Results and conclusions will be discussed in chapters 5 and 6.

1

2 CHAPTER 1. INTRODUCTION

Results The results will demonstrate that even the best possible parallelization effort is
destined to fail on systems with distributed memory, as network bandwidth is limited on such
systems and the code requires far too much communication time. On shared memory systems
however, the code will yield fairly good speedup results, despite some technical anomalies.

Chapter 2

COMFLO

2.1 Liquid simulation

ComFlo is a series of Computational Fluid Dynamics (CFD) computer programs to simulate
fluid motion. Its theoretical/computational model is based on the Navier-Stokes equations
for 3D incompressible free-surface flow. This model includes capillary surface physics as
well as coupled solid-liquid interaction dynamics. ComFlo consists of several special-purpose
computer programs.
Typically, a ComFlo user specifies a static geometric 3D layout as well as several parameters,
boundary- and initial conditions. This problem setting is translated into a numerical grid
with dimensions (nx, ny, nz). Then, ComFlo launches a time iteration, during which variables
at each grid cell are updated (for instance the velocity vector ~v, pressure p and density ρ).
Users might be interested in the settled situation after a specific time interval, or in a detailed
movie of flow behaviour over time at a certain subregion. After the simulation, the generated
raw data is post-processed in order to visualize the results.

2.2 A brief history

The present code ComFlo is the successor of the model that was used in the early 1980’s as a
support to experiments on board SpaceLab (Veldman and Vogels [10]).
In 2005, experiments have been carried out with the satellite ’Sloshsat FLEVO’ in an orbit
around earth. This mini satellite has been built by the Dutch Aerospace Laboratory (NLR).
The experimental data was used to validate numerical simulations performed by ComFlo
(Veldman et al.[11], Luppes et al.[6, 7]).
Currently, ComFlo is also used for maritime, industrial and offshore free-surface flow applica-
tions (Fekken [3], Kleefsman et al.[4, 5]).

2.3 Software

Almost all ComFlo code is written in Fortran. Some older versions in use are still in F77,
while newer versions are now developed in a modular way in F90 and F95.

Current development focuses on a two-phase method to better analyze wave impact in offshore
environments [12]. In this thesis, we will work only on SloshDP, which is a special-purpose

3

4 CHAPTER 2. COMFLO

code for validating the Sloshsat experiment (Veldman et al.[11]).

2.3.1 program structure

The main program loop of a typical ComFlo program consists of a time stepping loop. During
each iteration, several functions are called in turn, to complete tasks like:

• determine if time step needs to be adapted

• update boundary conditions

• update cell labels (to distinguish full fluid cells from empty cells)

• update velocity vectors

• calculate pressure

• write a snapshot of the data to disk

The magnitude of the time step ∆t mainly follows from the CFL stability limit. This means
that in the x−direction ∆t U/∆x < L should hold for stable computations, with U the
velocity component in x−direction and L the upper limit. Similar expressions should hold
for the y and z−directions.
A lower bound for the CFL number is also used. During the simulations, the time step is
doubled or halved to achieve 0.1 < CFL < 0.3. This may cause a deviation from the linear
relation between time step refinement and grid refinement.

2.3.2 computational analysis

In this subsection, we will analyze briefly the individual calculation time of ComFlo compo-
nents. With this information, we want to develop a strategy for parallelization. SloshDP is
taken as reference code. It is one of the older F77 codes around and may be considered quite
representative for all one-phase ComFlo variants.

Analysis is done with the profiling tool ”gprof”, which produces a list of percentages of the
total time that a simulation has spent in each subroutine of the code. Checks were done on
4 grids: 30*20*20, 60*40*40, 90*60*60 and 120*80*80. Because of the geometry of the water
tank inside Sloshsat, with these numbers of grid points the meshes are equidistantly spaced,
with approximately equal mesh sizes in each direction: ∆x = ∆y = ∆z.
On each grid, 1.0 seconds (real-time) of a typical flat-spin experiment was simulated. The
number of time steps required for these grids were 30, 61, 167 and 247, respectively.

When the mesh is refined from 30*20*20 to 120*80*80 grid points, at least 4 times as much
time steps are required for the same simulation period of 1.0 seconds. Because of the iterative
SOR procedure to solve the Poisson equation for the pressure, the amount of work per time
step increases with more than a factor of 4*4*4=64 in this case, as described below. Hence,
the simulation time easily increases with more than 2 or 3 orders of magnitude when the grid
is refined from 30*20*20 to 120*80*80 grid points.

2.3. SOFTWARE 5

subroutine 30*20*20 60*40*40 90*60*60 120*80*80
ZEESLAG 22.9 % 57.0 % 80.9 % 86.8 %
FLUIDFORCE 12.9 % 8.0 % 4.3 % 3.1 %
TILDE 12.9 % 6.7 % 3.3 % 2.4 %
VELBC 4.7 % 3.9 % 1.7 % 1.1 %
VFHN 5.6 % 2.7 % 1.1 % 0.7 %
total time 3.5 s 63 s 966 s 4435 s

Table 2.1: The most time-consuming subroutines and the total time for 1.0s simulation of a
flat-spin manoeuvre on 4 different grids.

subroutine description
ZEESLAG one SOR iteration to solve the Poisson equation
FLUIDFORCE computation of the fluid forces on the tank wall
TILDE discretization of the momentum equations
VELBC boundary conditions for the velocity components
VFHN displacement of the free-surface

Table 2.2: Description of the most time-consuming subroutines.

In table 2.1 the most time-consuming subroutines are listed, together with the percentage of
the total simulation time and the total simulation time itself. A short description of these
subroutines is given in table 2.2. Note that the percentages in table 2.1 are not dependant on
the number of executed time steps. The percentages only show the relative CPU consumption
of the subroutines. It is clear that subroutine ZEESLAG, which takes care of one SOR iteration,
becomes the most dominant subroutine with respect to CPU consumption when the mesh
is sufficiently refined. Theoretically, the number of SOR iterations required per time step
depends somewhere between linearly and quadratically on the number of grid points. More-
over, the number of operations per iteration increases cubically (in 3D simulations) in case
of grid refinement in each coordinate direction. Hence, on the fine grids that are required for
accurate simulations, the SOR iterations are the most time-consuming element of a simulation.

In the present project, parallelization of PRESIT will be subject of study. As there is re-
currence in each SOR iteration, this parallelization is certainly not trivial, and a thorough
study is required. The parallelization of the other subroutines, which in most cases consist
of simple loops that can be parallelized trivially, shall be left for future parallelization projects.

6 CHAPTER 2. COMFLO

Chapter 3

Parallelization

Traditionally, computers execute program instructions in a sequential fashion. Such kind of
computers only have a single processor core. When programmers design an algorithm, this
results in a sequence of steps, each step built on top of the result achieved by the previous step.

Parallel computing is a computing method that uses multiple cores within a single program;
parallelization is the process of adapting a sequential program to be run on multiple cores.
For many years, parallel computing was only applied by researchers on ”exotic” supercom-
puters like Cray. During the past few years however, a significant shift towards commercial
applications is seen. As processor manufacturers tend to develop multi-core processors rather
than improve single core processor speeds, parallelization has made its way to the general
public.

3.1 Advantages

The main advantage of parallelization is a possible speedup of program execution time. Sup-
pose a certain parallel program requires t1 = 60 minutes of computing time on a single-core
processor. If we run it on two cores, ideally we would expect a runtime of t2 = 30 minutes.
In that case, the speedup would be 2 out of 2. Generally, the speedup on n cores is defined as
follows:

s(n) =
t1
tn

The extent to which ideal speedup can be achieved for a certain algorithm, depends on the
parallelizable part of the algorithm. If we decompose t1 = tseq + tpar, then

tn = tseq +
tpar

n
,

sn =
tseq + tpar

tseq + tpar

n

,

7

8 CHAPTER 3. PARALLELIZATION

lim
n→∞

sn =
tseq + tpar

tseq
=

1
1− P

with P = tpar

t1
the parallelizable portion. The existence of this limit is known by Amdahl’s

law [1].

Another possible advantage of parallelization is that a program can make use of the aggregate
memory of multiple separate computers at once.

3.2 Disadvantages

The main problems with parallel programming are based on interprocessor communication.
Depending on the type of algorithm, each involved core may need to communicate with one or
more other cores. This communication may slow down overall computation, especially when
bandwidth is limited.

Programmers need to design the code very carefully to avoid deadlocks and race conditions.
A deadlock is the situation that a scheduled data transmission never happens, because one
of the cores that should send or receive data is not ready to do so, and never will be. Figure
3.2 illustrates a simple deadlock example on two cores, p0 and p1. In the left side situation,
both cores are waiting for the other to go into listening mode, which will never happen. A
corrected version is shown on the right side.

recv x1 from p1 recv x0 from p0

send x0 to p1 send x1 to p0

p0 p1

Figure 3.1: Deadlock example.

send x0 to p1

recv x1 from p1 send x1 to p0

recv x0 from p0

p0 p1

Figure 3.2: Correct use.

Race conditions may occur in a shared memory setting, i.e. when multiple cores have write
access to the same variable. We can visualize this problem by a couple of horses racing to a
finish line, where the outcome depends on whichever horse finishes first. As this problem will
be of no concern to us, we will not go into further details.

3.3 Programming paradigms

When a parallel program starts, all cores execute the same code. During execution, each core
is associated with an integer, so the cores can be distinguished from each other. Otherwise,
they would all do the same thing, having no way of knowing about each other.

3.3. PROGRAMMING PARADIGMS 9

In this section, we will introduce two application program interfaces (API’s) for parallel
programming, as well as the parallel programming master-slave model.

3.3.1 master and slaves

In some cases, the task of dividing the work amongst all available cores is done by one special
core. This core is called the master, as it controls the other cores, its slaves. Typically, the
slaves await commands from the master, do their work and report back when done. The
effectivity of this model depends on the way the work can be evenly distributed - if the mas-
ter assigns more work to one slave than another, it may have to wait until the last slave
has finished. The administrative tasks of distributing work and gathering results should be
negligible compared to the actual computational work.

We will apply the master-slave model in section 4.2.2.

3.3.2 OpenMP

OpenMP (Open Multi-Processing) is an API supporting multi-platform shared-memory paral-
lel programming in C/C++ and Fortran [8]. The programmer issues parallelization directives
to the compiler, which works out the details. This allows for a moderately high-level of ab-
straction, as we trust in the compiler to take care of certain technical issues. Performance
may differ, depending on the quality of the compiler.

The application of OpenMP to ComFlo is not within the scope of this thesis. There are plans
to investigate this in the beginning of 2009.

3.3.3 MPI

MPI (Message Passing Interface, [9]) is an API specification for parallel programming on dis-
tributed memory systems. A MPI implementation in a given programming language offers a
wide range of functions, from performing basic tasks like sending and receiving data, to more
advanced functions.

Data typically needs to travel across a network from one core to any other. MPI can also
be applied however on a shared memory system by subdividing the memory over all cores,
effectively unsharing the memory. In this case, data transmission boils down to a mere copy
of memory, which can be realized far more efficiently than any network transmission ever
would. Hybrid constructions are also possible with MPI, for instance groups of cores on SMP
machines collaborating intensively on a low level, while keeping in touch on a higher level
across a network.

In this thesis we will focus only on using MPI to parallelize ComFlo. Below, we will show a
MPI Fortran version helloworld.f of the famous program Hello, world!, to illustrate how
MPI is typically used.

10 CHAPTER 3. PARALLELIZATION

0 PROGRAM he l l owor ld
IMPLICIT NONE
INCLUDE ”mpif . h”

INTEGER nrprocs ! t o t a l number o f cores
5 INTEGER noderank ! rank o f t h i s core

INTEGER err ! e r ror i n d i c a t o r

CALL MPI INIT(err) ! i n i t i a l i z e
CALL MPI COMM SIZE(MPI COMMWORLD, nrprocs , err)

10 CALL MPI COMM RANK(MPI COMMWORLD, noderank , err)

PRINT ∗ , ’ He l lo World from node ’ , noderank , ’ o f ’ , nrprocs , ’ ! ’

CALL MPI FINALIZE(err)
15

END ! end o f program

Systems which have MPI installed, often provide compiler extensions which take care of the
required header inclusion and library paths. On the HPCIBM1 cluster at the University for
Groningen, we can simply compile the program using the command mpif77 helloworld.f.
The program can be started on for instance 3 nodes by invoking mpirun -np 3 a.out.

Chapter 4

PRESIT parallelized

In chapter 2.3.2 we have seen that the PRESIT component is by far the most computationally
expensive part of a typical ComFlo simulation. A 90% portion of total simulation time is not
uncommon. This is a first strong reason to investigate parallelization of PRESIT. Secondly,
because this function iterates many times through the numerical grid, a grid decomposition
strategy seems to be a natural way to get us started.

In this chapter, the new parallel algorithm called PRESIT-P will be introduced, based on the
original un-parallelized code. Also, some technical implementation notes will be mentioned.

4.1 Prerequisites and features

Of course, the primary goal of PRESIT-P is to achieve a significant speedup on relatively large
simulations. The extent to which this goal is achieved may be used to decide whether or not
to spend more time in parallelizing other ComFlo components. Numerical tests will also show
on which computer systems PRESIT-P performs the best.

Besides the main speedup objective, several secondary goals can be distinguished. Some
were listed before our research even started, some were added during the code development
whenever they came forth.

• reusable parallel program flow model
Since more ComFlo components may be parallelized in the future, all nodes which are
passive at a certain moment should be easily activated for whatever task is assigned to
them. This requirement is met by employing a master-slave flow model, as introduced
in section 3.3.1. For a detailed treatment, see section 4.2.2.

• minimal code change
The process of integrating the new parallel component into an existing un-parallelized
ComFlo code should require minimal effort. Users (or even developers) who want to
benefit from the speedup PRESIT-P offers, should not have to be experts in parallel
programming to actually use it in their own code.

• documentation
Evidently, the code must be documented properly for future use. This is closely related

11

12 CHAPTER 4. PRESIT PARALLELIZED

to the previous item. The question How do I use PRESIT-P? should have a clear easy
answer. Part of this documentation will be found in this thesis of course, while the code
itself is also thoroughly documented.

• consistent iteration behaviour
During code development, a technical problem emerged. An intermediate version of
PRESIT-P showed very good speedup results per iteration, yet convergence slowed down
drastically, annihilating the speedup. The reason this problem occurred was the new
order of iterating through the grid cells. By making sure the original numerical iteration
process was reproduced, the problem was solved. More on this matter can be found in
section 4.2.4 about red/black ordering.

4.2 Algorithm

First, let’s take a look at the original PRESIT procedure, which will be the basis of our work.
If we want to keep the amount of changes to the main ComFlo routine minimal, the parallel
algorithm should resemble the original algorithm as much as possible.

4.2.1 un-parallelized algorithm

In the original PRESIT algorithm, the main PRESIT routine controls the SOR iteration process,
calling SLAG as many times as required in order to converge. The routine SLAG iterates
exactly once through the numerical grid, updating all pressure values. Let’s assume the grid
dimensions are nx × ny × nz and cells are labeled i ∈ {1, nx}, j ∈ {1, ny}, k ∈ {1, nz}.

Within the pressure iteration, only interior cell values are updated. This boils down to the
following:

do for all i ∈ {2, nx − 1}, j ∈ {2, ny − 1}, k ∈ {2, nz − 1}
in some order to be specified:

diff(i, j, k) := div(i, j, k)− p(i, j, k)
−cxl(i, j, k) · p(i− 1, j, k)− cxr(i, j, k) · p(i + 1, j, k)
−cyl(i, j, k) · p(i, j − 1, k)− cyr(i, j, k) · p(i, j + 1, k)
−czl(i, j, k) · p(i, j, k − 1)− czr(i, j, k) · p(i, j, k + 1)

p(i, j, k) := p(i, j, k) + ω · diff(i, j, k)

It should be noted that only the six direct neighbours are involved, each with a certain given
coefficient. The values of these coefficients as well as the value of the divergence are calculated
by other ComFlo routines.

At the end of a SLAG iteration, two values are reported back to PRESIT. These variables,
maxdiff and delta, are used to determine whether or not the iteration process needs to be
aborted, when either convergence is achieved or the iteration process has failed. Moreover,
the value of the SOR parameter ω may be altered based on the calculated residuals.

4.2. ALGORITHM 13

maxdiff := max
(i,j,k)interior

∣∣∣∣diff(i, j, k)
p(i, j, k)

∣∣∣∣
delta :=

 ∑
(i,j,k)interior

diff(i, j, k)2

 1
2

After many years of research by the Department of Numerical Mathematics, a strategy for
choosing ω has been developed [2] which enables not only a robust but also a fast iteration
process. These features have to be inherited by the parallel version PRESIT-P.

Figure 4.1 shows a schematical summary of PRESIT.

SLAG

initial iterations

PRESIT

to determine ωopt

pressure convergence iterations

regular iterations using

ω = ωopt

stabilizing iterations using

ω = 1

Figure 4.1: PRESIT schematics

In the following subsections, we will work towards the parallelized version of SLAG, called
PSLAG. This routine will be the most important part of PRESIT-P.

4.2.2 master and slaves

Suppose there are M nodes available and they are numbered m ∈ {0, . . . ,M − 1}. We apply
the previously introduced master-slaves model in PRESIT-P (see chapter 3.3.2). The master is
the one and only node executing the main ComFlo code, usually with rank 0. In the meantime,
all M − 1 slaves are put in a dormant state, waiting for an activation signal from the master

14 CHAPTER 4. PRESIT PARALLELIZED

node in a so-called slave-loop. The benefit of this paradigm is that it allows the slaves to be
used in other components as well, should they be parallelized in the future.

At the beginning of PRESIT-P, the grid cells are equally partitioned in strips by the master
over all nodes. Since the administrative tasks of the master node are negligible compared to
the grid iteration, the master also assigns a strip to itself.

Let’s assume for the time being that the grid is partitioned in the z dimension. The strip Sm

consists of interior cells assigned to node m:

Sm = {(i, j, k) : i ∈ {ilo, iup}, j ∈ {jlo, jup}, k ∈ {klo, kup}}

with

ilo = 2
iup = nx − 1
jlo = 2
jup = ny − 1
klo = b(nz − 2) ·m/Mc+ 2
kup = b(nz − 2) · (m + 1)/Mc+ 1

4.2.3 interaction

We now introduce the boundary planes
Bm,1, Bm,2, Bm,3, Bm,4 for node m. For each
plane, we take i ∈ {ilo, iup} and j ∈ {jlo, jup}.

Bm,1 = {(i, j, klo − 1)}
Bm,2 = {(i, j, klo)}
Bm,3 = {(i, j, kup)}
Bm,4 = {(i, j, kup + 1)}

x, i

z, k

nz

SM−1

BM−1,2, BM−2,4

BM−1,3

BM−1,4

BM−1,1, BM−2,3

1 nx

1

B0,3, B1,1

S0

S1

B2,0, B1,3

B0,2

B0,1

B2,2, B1,4

B0,4, B1,2

Figure 4.2: strips and boundary planes, y
dimension omitted

Within PSLAG each slave at some point needs to send the data from its planes B2 and B3 to the
corresponding neighbours, which will store the planes at respectively B4 or B1. Throughout
the next two sections we will explain this in more detail.

At the end of PSLAG, the master will be responsible for gathering maxdiff and delta, so
PRESIT-P can use these values as if they were produced by the original un-parallelized code.
This is accomplished through the standard MPI reduction routine MPI REDUCE.

4.2. ALGORITHM 15

4.2.4 red/black ordering

How should the nodes iterate through their numerical domain? At first sight, one might think
that a linear grid traversal would be the easiest method, for instance with k iterating in the
outermost loop, and i, j in the inner loops. Even though the original un-parallelized code
uses a red/black ordering, we initially performed some tests with the linear ordering, which
indicated that this method yields good speedup results per iteration. A parallel algorithm
called PSOR [13] has been devised and used for this grid ordering.

Unfortunately, the linear ordering cannot be applied. Despite the fact that speedup within
one single iteration showed to be good (if not optimal), the calculated values of maxdiff
and delta disrupted the strategy for choosing ω within the PRESIT routine. This lead to an
unstable iteration process within PRESIT: the number of required iterations increased with
the number of nodes M .
We concluded that the red/black ordering in the original SLAG could not be circumvented (see
also the fourth prerequisite in the previous section). Theoretically, the reproduced numerical
process should yield exact equal values of maxdiff and delta as the original code would have
delivered. In practice, numerical errors will slightly distort the values, but this will have a
marginal influence in the number of PRESIT iterations, as we will see in the chapter on results.

Let us examine more closely the grid iteration order. All red values will be updated first,
using only black neighbour values besides themselves. No red values are directly depending
on each other during one iteration. Thus, they can all be updated in parallel.
Once all red values have been updated, an interaction step seems necessary for the black values
at B2 and B3 since they need the updated red values. This presents us with a substantial
problem, as interaction costs are normally quite large with respect to the calculation costs.
We might split the amount of data to be sent in two by applying a stride, but this still requires
more interaction than we would like to see.

4.2.5 correction phase minimizes communication

Dropping the interaction step between calculating the red and black values will result in con-
tamination of some of the black values, namely those in all four boundary planes. After the
boundary planes are exchanged, a correction phase is required to set the values straight.

Consider a contaminated black value p(i, j, klo) at B2. It is calculated using an old red value
po(i, j, klo − 1). During the interaction phase, this old value is overwritten by pn(i, j, klo − 1),
which is exactly the value that should have been used during the black update phase. As we
can see from the update recipe from section 4.2.1, the difference between the values needs to
be multiplied by ω as well as the corresponding coefficient, czl in this case. The correction
term ε for p(i, j, klo) then becomes

ε = −ω ∗ czl(i, j, klo) ∗ (pn(i, j, klo − 1)− po(i, j, klo − 1)) .

A similar argument holds for the other three planes. The correction terms ε in the black
values after the interaction phase are given by

16 CHAPTER 4. PRESIT PARALLELIZED

Bm,1 : ε(i, j, klo − 1) = −ω ∗ czr(i, j, klo − 1) ∗ (p∗(i, j, klo)− po(i, j, klo))
Bm,2 : ε(i, j, klo) = −ω ∗ czl(i, j, klo) ∗ (p∗(i, j, klo − 1)− po(i, j, klo − 1))
Bm,3 : ε(i, j, kup) = −ω ∗ czr(i, j, kup) ∗ (p∗(i, j, kup + 1)− po(i, j, kup + 1))

Bm,4 : ε(i, j, kup + 1) = −ω ∗ czl(i, j, kup + 1) ∗ (p∗(i, j, kup)− po(i, j, kup))

The correction phase adds these terms to the corresponding black values, so each node ends
up with the latest correct values without having to perform extra interaction.

4.2.6 PSLAG

Previous subsections can now be combined into the new PSLAG routine. Before the first call to
PSLAG, the strips will be assigned to each slave by the master node and all data (coefficients,
divergence) will be distributed. This work is done in PPRESIT INIT.

The new PSLAG routine consists of the following phases.

• initialization
Slaves receive a signal from the master to help with the pressure iteration. Several
variables are initialized, ω is distributed. Each node stores the four boundary planes
B1, B2, B3 and B4 for later use during the correction phase.

• updating of red values
Each node updates the red values in its grid strip.

• partial update of black values
Update all assigned black values, including those at the boundary planes which will
need correction.

• interaction
Send Bm,2 to node m − 1 while receiving Bm,4 from node m + 1. Send Bm,3 to node
m + 1 while receiving Bm,1 from node m− 1.

• correction of black values
Correct the black values in all four boundary planes by using the just received data and
the values that were stored at the initialization phase.

• finalization
The slaves report their partial values of maxdiff and delta to the master, which delivers
them to the PRESIT control routine.

4.3 Implementation

All PRESIT-P-code is available by means of a special module cfmpi_mod.f.

4.3. IMPLEMENTATION 17

4.3.1 data memory-alignment

In the previous section, we have assumed that grid partitioning is done along the z dimen-
sion. The main advantage of this choice is the convenient memory alignment of values to
be transmitted. When transmitting a block of data, we need to specify a contiguous array
of data, namely the (memory address of) the first element and the number of elements to
send/receive. Partitioning in the z dimension does not require an array reshape operation, as
the boundary planes are already stored contiguously in memory.

However, if nx > nz we would rather partition in the x dimension as this minimizes the
amount of data to be transmitted. It would seem that this approach requires memory reshape
operations before and after the transmission of a boundary plane. Fortunately, by transposing
the entire system (pressure values, coefficients, divergence) before the first PSLAG call, we
can leave the code in PSLAG intact and thus benefit from optimal memory alignment. The
performance penalty of this transposition in PPRESIT INIT will prove to be negligible.

Throughout the code, we will use special variable names P2, DIV2, etcetera for the transposed
system.

4.3.2 MPI specifics

During the interaction phase within PSLAG, the following code is executed. (For details on
the arguments to MPI_SENDRECV, please refer to the MPI manual.)

0 ! the number o f e lements in a f u l l XY−p lane
e l count = (iup − i l o + 3) ∗ (jup − j l o + 3)

! send B3 , r e c e i v e B1
CALL MPI SENDRECV(P2(i l o −1, j l o −1,kup) , e lcount ,

5 MPI DOUBLE PRECISION, mpiNextNode , 707 ,
P2(i l o −1, j l o −1, klo −1) , e lcount ,
MPI DOUBLE PRECISION, mpiPrevNode , 707 ,
mpiActiveComm , mpiStatus , mpiErr)

10 ! send B2 , r e c e i v e B4
CALL MPI SENDRECV(P2(i l o −1, j l o −1, k lo) , e lcount ,

MPI DOUBLE PRECISION, mpiPrevNode , 707 ,
P2(i l o −1, j l o −1,kup+1) , e lcount ,
MPI DOUBLE PRECISION, mpiNextNode , 707 ,

15 mpiActiveComm , mpiStatus , mpiErr)

A call to MPI_SENDRECV is equivalent to a simultaneous blocking combined send and receive
operation. The efficiency of this call is dependent on the underlying MPI implementation.
Perhaps it is worth the effort to explicitly decompose this block of code. On the other hand,
we should not resort to this kind of tweaks, as it degrades code clarity and may very well
prove to have no positive effect on performance.

Other possible improvements in the interaction phase would be to use non-blocking routines,
and/or to send packed data. These improvements are not explored in this thesis.

18 CHAPTER 4. PRESIT PARALLELIZED

4.3.3 memory limitations

In the old-fashioned single-node setting, all cell variables are maintained in several large
static 3D arrays. This does not translate well into the parallel setting, as every node will
allocate far more memory than required. Therefore, the memory blocks that are used in
PRESIT-P will be allocated dynamically whenever required via F90 modules CFDYNMEM_MOD
and CFSTATMEM_MOD.

4.4 Embedding the code

In this section, we will touch briefly on how the PRESIT-P component has been incorporated
in the original sloshdp application. These adaptations can be viewed as a guideline to build
PRESIT-P into other ComFlo programs.

4.4.1 main procedure

The first step is to initialize MPI in the main routine. This is accomplished by loading the
required modules, and placing a piece of code just below the variable devlarations. An exam-
ple follows.

0 PROGRAM COMFLO

! l oad requ i r ed modules
USE CFMPI MOD
USE CFDYNMEMMOD

5 USE CFSTATMEMMOD

! o ther inc ludes , l o c a l v a r i a b l e d e c l a r a t i o n s
! . . .

10

! s t a r t o f main procedure

! a l l nodes : i n i t i a l i z e MPI (see cfmpi mod . f)
CALL CFMPI INIT

15

! the number o f nodes to use in p p r e s i t
mpiNumActiveNodes = mpiNumTotalNodes

! a c t i v a t e nodes
20 CALL CFMPI SET ACTIVE

! put s l a v e s in t o pa s s i v e / l i s t e n −mode
IF (mpiNodeRank > 0) THEN

CALL CFMPI SLAVELOOP
25 ! s l a v e s on ly e x i t the loop when the master t e l l s them

! no more work w i l l come
CALL CFMPI FINALIZE
! s l a v e s shou ld abor t a t t h i s po in t
STOP

4.4. EMBEDDING THE CODE 19

30 END IF

! remainder o f main procedure
! . . .

The module CFMPI_MOD is the extension for the standard MPI module we have built.
It is very important that the slaves are kept clear from the main procedure after finishing the
slave-loop. If they accidentally execute the main procedure, the following things may happen:

• superfluous work: the slaves will perform the same operations as the master node

• multiple masters: all nodes may assume the master role at some point in the code

• I/O problems: multiple nodes may write to the same file at the same moment, leading
to I/O errors

4.4.2 PRESIT procedure

Changes to the PRESIT routine are quite straightforward.

• Initialize PRESIT-P by calling PPRESIT_INIT at the beginning. In this routine, the
master will wake up the slaves and distribute the grid strips.

• Replace each call to SLAG with a call to PSLAG.

• Finalize PRESIT-P by calling PPRESIT_FINISH at the end. This routine will make each
slave send the new pressure values from its strip to the master.

A schematic view is given in figure 4.3.

4.4.3 global data

As mentioned in the subsection on memory limitations, PRESIT-P requires two memory mod-
ules. This may lead to some minor modifications in the main ComFlo code, especially if global
variables are managed via COMMON-blocks.

20 CHAPTER 4. PRESIT PARALLELIZED

initial iterations

to determine ωopt

pressure convergence iterations

regular iterations using

ω = ωopt

stabilizing iterations using

ω = 1

PSLAG

PRESIT-P

PPRESIT-INITinitialization

finalization PPRESIT-FINISH

Figure 4.3: PRESIT-P schematics

Chapter 5

Results

In this chapter, we will present speedup measurements of PRESIT-P on two different machines.

• HPCIBM1
The Opteron Cluster (also known as HPCIBM1) consists of 200 nodes, each having a
dual-core AMD Opteron processor. Most nodes have 1GB memory, some special nodes
are equipped with 4GB. Point-to-point bandwidth is estimated at 22ms/MB.

• SI01
The other machine is a large SMP (Shared Memory Processor) machine called SI01. It
consists of 4 quad-core processors and is equipped with 128GB of shared memory.

All timing- and speedup measurements are taken from the first 10 PRESIT iterations of
SloshDP, after which the program simply aborts. The original SloshDP-code is used as basis
to calculate the various speedup variants.

5.1 Notation

The following symbols are used throughout the tables, figures and accompanying text. Time
is always measured in seconds.

• np: number of processors in MPI-mode np =orig designates the original code.

• m1: the total number of PRESIT-P iterations, normally fixed at m1 = 10.

• m2: total number of PSLAG iterations during the m1 PRESIT-P iterations.

• ttot: total elapsed time of the code (after m1 PRESIT iterations).

• tpar: parallel time, the part of ttot spent in PRESIT-P.

• %par = tpar/ttot.

• tseq: sequential time, i.e. the portion that cannot be reduced by parallelization, thus

tseq = ttot − tpar.

21

22 CHAPTER 5. RESULTS

• s1: standard speedup based on ttot:

s1 =
ttot(orig)
ttot(np)

.

• s2: speedup of the parallel-only portion of the code, i.e.

s2 =
tpar(orig)
tpar(np)

.

• redblack, trb: how much time was spent on updating the red and black values.

• s3: speedup of the red-black values update portion.

• comm, tcomm: total time used by the communication phase.

• other, to: total time in PRESIT-P initialization and finalization, PSLAG correction phase,
PSLAG initialization phase. When no numerical accuracy loss occurs, we should see

ttot = tseq + trb + tcomm + to

• diff: discrepancy (%) in time measurements, possible due to rounding errors:

diff = 100
ttot − tseq − trb − tcomm − to

ttot

5.2 HPCIBM1

5.2.1 low resolution

We start with a relatively small grid: 50× 50× 100.

np ttot tseq m2 s1 s2 s3 redblack comm other diff
orig 107.8 14.9
1 94.3 12.4 6124 1.14 1.14 1.00 79.8 0.1 1.9 0.04
2 80.3 11.6 6124 1.34 1.35 1.52 52.6 7.4 5.3 4.22
3 69.2 11.6 5854 1.56 1.61 2.33 34.2 8.6 9.0 8.27
4 78.0 11.7 6109 1.38 1.40 1.91 41.7 10.1 9.4 6.61
5 69.7 11.6 5886 1.55 1.60 2.85 28.0 10.9 11.7 10.66
6 71.6 11.7 5997 1.51 1.55 3.52 22.7 14.6 11.8 15.08
7 73.6 11.7 6027 1.46 1.50 3.41 23.4 13.2 13.9 15.48
8 70.3 11.9 6117 1.53 1.59 3.91 20.4 15.0 13.4 13.72

Table 5.1: HPCIBM1, 50× 50× 100

We see a slight yet surprising 14% improvement of the single-processor MPI code over the
original code. This might be due to (the lack of) compiler optimizations, despite all code is
compiled with option -O3. Theoretically, both codes should agree closely as MPI overhead
is expected to be negligible. On the other hand, it is difficult to tell what exactly happens
during compilation.

5.2. HPCIBM1 23

The column s3 shows suboptimal speedup, since we would expect s3(np) = np. This is because
the grid planes are partitioned over all processors and s3 reflects the computational work at
those planes only, not being affected by communication costs or whatsoever. In general, the
number of planes is not a multiple of np, yielding a slight fractional performance loss of about
np

nz
, since some processors have been assigned one plane more than some others. This effect

should vanish when the number of planes increases, but on the other hand, the values in table
5.1 are far too bad. For instance, at np = 8 some nodes have been assigned 13 planes and
some only 12, thus s3 is bounded by 100

13 ≈ 7.6.

Observe the erratic iteration counts in m2, as announced in section 4.2.4. During the pressure
iteration, data travels in a slightly different manner through the numerical grid than in the
original code. A certain PRESIT-P call might take a few iterations more or less to converge,
depending on the grid partitioning. This explains why the total iteration counts seem to be
randomly distorted.

Timing measurements are done using MPI_WTIME. This function has only a resolution of about
one millisecond, so for small grids such as this one, rounding problems might distort some of
the numbers. More precisely, when for instance the PSLAG correction phase finishes within
0.5ms, that timing result might be truncated. Thus, timing results after 6000 PSLAG iterations
are off by 3 seconds in the worst case, which resembles the observed order of discrepancy in
diff quite well.

Communication overhead increases with np, indicating that either the network or the MPI
implementation performs worse than expected. We will look more closely into this matter in
section 6.1.

The difference between s1 and s2 is typically only a few percent. This is explained by the
fact that almost all time is spent in PRESIT-P, and this portion will grow even more when
grid resolution increases. From now on, the s2 column will be omitted as it does not add any
significant information.

np ttot tseq m2 s1 s3 redblack comm other
orig 86.6 13.7
1 86.5 12.0 5994 1.00 1.00 69.9 0.0 4.4
2 69.2 12.2 5922 1.25 1.83 38.2 7.3 6.7
3 71.1 11.9 5994 1.22 2.06 33.9 9.0 10.1
4 87.9 12.0 6022 0.99 1.43 49.0 10.1 10.1
5 69.0 12.1 5955 1.25 2.64 26.5 11.1 12.1
6 67.3 12.2 5952 1.29 3.58 19.5 13.7 12.2
7 69.7 12.4 5962 1.24 3.70 18.9 14.4 13.2
8 71.8 12.3 5952 1.21 3.28 21.3 15.8 12.1

Table 5.2: HPCIBM1, 100× 50× 50

Stretching the grid in the other direction (table 5.2) will activate the transposition mode of
PRESIT-P, as the code within PSLAG requires z to be the longest direction. This should show
an increased portion of time spent in the category other, as it contains PRESIT-P initializa-
tion and finalization.

24 CHAPTER 5. RESULTS

As with 50 × 50 × 100, the values of s3 are far from optimal and the communication phase
is too expensive. The values in other are quite comparable to the ones associated with the
untransposed grid, and it indeed seems that the influence of PRESIT-P initialization and fi-
nalization is marginal.

Nonetheless, both small grids exhibit a disappointing performance of PRESIT-P. Let us now
move on to higher resolutions.

5.2.2 high resolution

The memory usage of the (master) SloshDP code is about 440 bytes per grid cell, which means
we cannot increase the resolution much further than 200 × 100 × 100 since a HPCIBM1 node
has 1GB memory.

np ttot tseq m2 s1 s3 redblack comm other
orig 1.629e+03 9.28e+01
1 1.952e+03 9.48e+01 17743 0.83 1.00 1.81e+03 2.00e-01 4.95e+01
2 1.575e+03 8.87e+01 17727 1.03 1.34 1.35e+03 6.88e+01 5.00e+01
3 8.954e+02 8.80e+01 17738 1.82 2.91 6.21e+02 1.00e+02 6.66e+01
4 1.183e+03 8.81e+01 17768 1.38 2.04 8.85e+02 1.24e+02 6.40e+01
5 9.121e+02 8.86e+01 17845 1.79 3.15 5.74e+02 1.52e+02 7.35e+01
6 7.378e+02 8.78e+01 17636 2.21 4.74 3.81e+02 1.66e+02 7.16e+01
7 6.397e+02 8.98e+01 17828 2.55 6.69 2.70e+02 1.68e+02 7.59e+01
8 8.398e+02 8.93e+01 17799 1.94 4.15 4.35e+02 2.11e+02 7.46e+01

Table 5.3: HPCIBM1, 200× 100× 100

At this grid resolution, s3 performs a bit better than before. Unfortunately, the communica-
tion phase has a far too large influence, annihilating the speedup s1.

Again, we also look at the transposed version, in this case 100× 100× 200 (table 5.4).

np ttot tseq m2 s1 s3 redblack comm other
orig 1.806e+03 9.51e+01
1 1.550e+03 1.00e+02 18775 1.17 1.00 1.40e+03 2.00e-01 3.08e+01
2 2.119e+03 8.97e+01 18775 0.85 0.74 1.91e+03 6.93e+01 3.79e+01
3 9.959e+02 8.78e+01 18840 1.81 1.91 7.34e+02 1.04e+02 5.16e+01
4 1.173e+03 8.78e+01 18796 1.54 1.59 8.84e+02 1.30e+02 5.47e+01
5 1.208e+03 8.87e+01 18827 1.50 1.65 8.50e+02 1.61e+02 6.87e+01
6 9.349e+02 8.81e+01 18838 1.93 2.48 5.66e+02 1.71e+02 7.14e+01
7 8.471e+02 8.83e+01 18744 2.13 3.27 4.29e+02 2.10e+02 7.84e+01
8 8.223e+02 8.79e+01 18904 2.20 3.58 3.92e+02 2.28e+02 7.83e+01

Table 5.4: HPCIBM1, 100× 100× 200

Surprisingly, these results are significantly worse (mainly due to s3) than at 200× 100× 100,
despite the fact that no grid transposition is applied within PRESIT-P. We might look into
this curious matter further, if it weren’t overshadowed by the fact that the communication
phase again seems to be too expensive. A more detailed analysis will follow in section 6.1.

5.3. SI01 25

5.3 SI01

5.3.1 low resolution

On SMP machines like SI01, communication costs should have far less impact than on
HPCIBM1.

np ttot tseq m2 s1 s3 redblack comm other
orig 56.4 7.1
1 76.6 6.6 5911 0.74 1.00 68.3 0.0 1.5
2 41.3 7.0 5898 1.37 2.18 31.4 0.7 1.9
3 25.7 6.5 5915 2.20 4.14 16.5 0.8 1.5
4 18.5 6.9 5969 3.05 7.76 8.8 0.9 1.6
5 14.3 6.3 6013 3.95 13.39 5.1 1.0 1.4
6 12.0 6.2 5942 4.69 22.03 3.1 0.9 1.2
7 13.8 6.3 5970 4.10 15.88 4.3 1.0 1.6
8 12.8 6.7 5970 4.40 24.39 2.8 1.1 1.8

Table 5.5: SI01, 100× 50× 50

Somehow, the single-node MPI code performs dramatically worse than the original code. If
this is caused by a structural problem in the code and if that problem would be solved, we
should see s1 improves, not only for np = 1, but for all np.

The red-black update shows a remarkable case of super-linear speedup. As explained before,
we would theoretically expect s3(np) = np, regardless of underlying machine architecture
intrinsics such as network bandwidth and cache sizes. The super-linear speedup possibly re-
flects a ”lucky cache strategy”, so we should not get too excited about this.

As foreseen, tcomm is very small compared to ttot, so the communication overhead is prac-
tically gone on this machine. At this point, we should place a remark regarding the SI01
architecture. The machine has its processors clustered in four groups of four cores each. When
we start a PRESIT-P timing measurement, the system activates a certain number of cores on
its own depending on the availability at that specific moment. In terms of communication, it
might turn out that some cores are more close to each-other than others. On the other hand,
this effect is unnoticeable since communication costs are small anyhow.

Table 5.6 shows really good speedup figures.

np ttot tseq m2 s1 s3 redblack comm other
orig 69.2 8.2
1 35.6 6.2 5986 1.94 1.00 28.4 0.0 0.8
2 31.5 6.2 5986 2.20 1.21 23.5 0.6 0.9
3 16.9 6.2 6060 4.10 3.26 8.7 0.7 1.0
4 14.5 6.2 6103 4.78 4.58 6.2 0.9 0.9
5 13.4 6.2 6086 5.18 5.80 4.9 0.8 1.1
6 11.9 6.2 5989 5.83 8.11 3.5 0.8 1.0
7 11.5 6.2 6004 6.03 9.47 3.0 0.9 1.1
8 11.3 6.2 5954 6.12 10.14 2.8 0.9 1.1

Table 5.6: SI01, 50× 50× 100

26 CHAPTER 5. RESULTS

Again, we observe super-linear speedup at s3, with the sole exception at np = 2. Compared
to the original code, the single node MPI code performs almost twice as good, but not much
better when 2 instead of one node is involved. This can be explained by the fluid configuration
of our test case, see chapter 6.2.

Generally, PRESIT-P seems to yield very good speedup if we do not use too many cores.

5.3.2 high resolution

np ttot tseq m2 s1 s3 redblack comm other
orig 9.837e+02 4.58e+01
1 1.902e+03 5.37e+01 17626 0.52 1.00 1.82e+03 1.00e-01 2.26e+01
2 9.870e+02 5.05e+01 17671 1.00 2.00 9.11e+02 5.40e+00 1.87e+01
3 6.871e+02 5.11e+01 17693 1.43 3.00 6.08e+02 7.40e+00 1.89e+01
4 7.584e+02 5.01e+01 17618 1.30 2.70 6.77e+02 1.01e+01 2.05e+01
5 5.719e+02 5.00e+01 17713 1.72 3.72 4.90e+02 1.01e+01 2.04e+01
6 4.810e+02 5.01e+01 17567 2.05 4.59 3.98e+02 1.05e+01 2.03e+01
7 5.077e+02 4.94e+01 17727 1.94 4.34 4.21e+02 1.28e+01 2.21e+01
8 4.744e+02 4.96e+01 17522 2.07 4.77 3.82e+02 1.45e+01 2.56e+01

Table 5.7: SI01, 200× 100× 100

As with 100 × 50 × 50, the single-node MPI code performs far worse than the original code.
The numbers almost suggest that the compiler silently puts two cores to work on the original
code - compare ttot(orig) = 983.7 to ttot(2) = 987.0. Unfortunately, we can’t draw any real
conclusions from the code yet. If we can either stop the original code from cheating, or apply
the same cheating to PRESIT-P, the speedup s1 probably becomes twice as good.

The column of s3 shows fair speedup until np = 3. Beyond that point, speedup stagnates
without any clear reason.

The previous tables of SI01 benchmarks have shown some numbers that cannot be explained
at the moment. We might even flag them as contaminated, assuming there exists some com-
piler option to relieve our suspicions. More contaminated speedup values can be seen in table
5.8.

np ttot tseq m2 s1 s3 redblack comm other
orig 1.320e+03 5.22e+01
1 9.294e+02 4.90e+01 18836 1.42 1.00 8.71e+02 1.00e-01 9.00e+00
2 8.837e+02 4.88e+01 18836 1.49 1.06 8.19e+02 5.00e+00 9.80e+00
3 6.143e+02 4.89e+01 18847 2.15 1.61 5.42e+02 8.50e+00 1.35e+01
4 5.214e+02 4.89e+01 18792 2.53 1.94 4.49e+02 9.40e+00 1.28e+01
5 5.811e+02 4.88e+01 18852 2.27 1.74 5.01e+02 1.14e+01 1.82e+01
6 4.234e+02 5.03e+01 18865 3.12 2.54 3.42e+02 1.04e+01 1.74e+01
7 3.853e+02 4.88e+01 18844 3.43 2.86 3.05e+02 1.15e+01 1.59e+01
8 3.510e+02 4.88e+01 18813 3.76 3.24 2.69e+02 1.20e+01 1.74e+01

Table 5.8: SI01, 100× 100× 200

The single-core MPI code performs 42% better than its original counterpart. On the other

5.3. SI01 27

hand, adding one extra core has marginal influence, again explained by the fluid configuration
(chapter 6.2).

With the contaminated value trb(1) = 871, the entire column s3 gives a misleading picture.
Suppose we would have trb(1) = 1.5 · 103, then speedup would be far more agreeable, for
instance s3(2) = 1.8, s3(3) = 2.8 and s3(8) = 5.6.

28 CHAPTER 5. RESULTS

Chapter 6

Discussion and conclusions

In this thesis, we first established that the PRESIT component of ComFlo is the most time
consuming component. This procedure, which solves the discrete pressure Poisson equation,
has been parallelized using MPI. The new parallel procedure was named PRESIT-P and it has
been tested on two machines. Although we tried to minimize inter-processor communication
costs, results on the HPCIBM1 cluster were far from good. Section 6.1 will explain this in
more detail. On the other hand, results on the shared memory processing machine SI01 have
shown good speedup measurements.

6.1 Bandwidth bottleneck

The results on HPCIBM1 have raised numerous questions. Why does the single-processor MPI
code sometimes produces its results much faster or slower than the original code? To which
extent does the compiler optimize code? How is it possible we don’t see near-perfect speedup
at s3?

All these questions would certainly be worth the effort of further investigations, if we could
expect better results. However, it is a simple fact that the bandwidth is the main reason
PRESIT-P does not perform good on HPCIBM1. Let’s do a little heuristic analysis to firmly
support this statement.

In an ideal setting, the time spent in the pressure value update should parallelize perfectly.
Let’s approximate the required total time by t̃ in an optimistically way, not taking for example
the correction phase into account. We use notation as introduced in section 5.1.1.
If we assume α is machine-dependent parameter indicating the amount of time required to
update one grid cell, we may estimate

t̃rb(np) = m2 · α · nx · ny · nz

np
≈ trb(1).

As mentioned before (see chapter 4.3.2), in the best case the communication phase takes

29

30 CHAPTER 6. DISCUSSION AND CONCLUSIONS

t̃comm(np) = 2 ·m2 · β · nx · ny,

assuming z is the longest dimension, with β the time to transfer one pressure value to a
neighbor processor. HPCIBM1 has a bandwidth of about 22ms/MB and each pressure value is
8 bytes (double precision), thus β ≈ 1.8 · 10−7.

If we use the equalities above to estimate the optimal general speedup s∗1, we get

s∗1(np) =
ttot(orig)

tseq(np) + t̃rb(np) + t̃comm(np) + to(np)
.

In figure 6.1, these optimal speedup estimates are shown next to the HPCIBM1 measurement
values from section 5.2.

2 4 6 8
0

2

4

6

8

100* 50* 50

s1 ideal
s1

2 4 6 8
0

2

4

6

8

200*100*100

s1 ideal
s1

2 4 6 8
0

2

4

6

8

 50* 50*100

s1 ideal
s1

2 4 6 8
0

2

4

6

8

100*100*200

s1 ideal
s1

Figure 6.1: optimal HPCIBM1 speedup estimates

Although there is some room for improvement, it remains to be seen to which extent it
can be achieved. Therefore we conclude that the bandwidth limitations render PRESIT-P
practically useless on HPCIBM1. On SI01 the ”bandwidth” is high enough to prevent the
problems mentioned above.

6.2. FLUID CONFIGURATION 31

6.2 Fluid configuration

As the PRESIT routine only affects full and mixed fluid cells, and we abort the program after
10 PRESIT calls, the speedup measurements depend highly on the used fluid configuration.
Our measurements were conducted on a setup where the fluid is located in the lower z area,
with a fill ratio of about 38%. This explains the bad speedup when we partition in the z
dimension: if we use two instead of one core, one of both only has air cells to update. Users
should be aware of this phenomenon when choosing a grid resolution. Perhaps the decision
in which dimension to subdivide the grid can be based upon the fluid configuration.

6.3 Shared memory

Results on SI01 are generally quite good. This has two main reasons:

• high bandwidth
Opposite to HPCIBM1, MPI does not need to send its data across a network. Since all
memory is shared by all cores, the transmission of a boundary plane effectively is a
copy of memory from the allocated space of one core to another, which can be achieved
very fast. On the other hand cache effects and bus limitations may hamper speedup, as
illustrated by figure 6.2.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

memory

cache

core 1

cache

core 2

cache

core 4

cache

core 3

cache

core 5

cache

core 6

cache

core 8

cache

core 7

Figure 6.2: cache and bus effects

• high resolutions
As mentioned above, all memory is shared by all cores. This gives us the possibility to
look at larger grids than was previously possible. A nice property of PRESIT-P is that
speedup should become better as grids grow, so this is definitely a feature to put to
good use.

32 CHAPTER 6. DISCUSSION AND CONCLUSIONS

6.4 Concluding remarks

A distributed memory system such as HPCIBM1 is not fit for the developed parallel MPI code
PRESIT-P. The main reason for this is that the bandwidth is too low, i.e. the transferral of
data from the boundary planes takes too much time compared to the actual computation
work within the Poisson solver. However, when we run the program on a SMP system such
as SI01, much better performance can be expected as bandwidth is not an issue anymore.
As long as no SMP specific code is developed, for instance using OpenMP, our PRESIT-P will
prove worth-wile on SMP machines.

6.5 Suggestions for future work

6.5.1 compiler technicalities

Judging from several strange values in section 5.3, it may very well be possible that the com-
piler is performing certain actions, resulting in distorted speedup measurements. Perhaps it
would help if someone with more experience in this area would take a look at this.

6.5.2 possible MPI improvements

As mentioned in section 4.3.2, a possible improvement might be to use specific MPI features
such as non-blocking interaction routines. Another possibility is to somehow pack the data
from the interaction planes, although it seems unlikely that this is worth the effort.

6.5.3 grid partitioning choice

Currently, the grid is partitioned in the longest dimension. Since fluid configuration plays
a large role in the expected speedup, we might use this to choose a better grid partitioning
strategy. This work could be done on PPRESIT INIT.

Bibliography

[1] Amdahl, G. The validity of the single processor approach to achieving large-scale com-
puting capabilities. Proceedings of AFIPS Spring Joint Computer Conference, pp. 48385,
Atlantic City, N.J., April 1967. AFIPS Press.

[2] Botta, E.F.F. and Ellenbroek, M.H.M. A modified sor method for the poisson
equation in unsteady free-surface flow calculations. J. Comput. Physics, 60:119–134,
1985.

[3] Fekken, G. Numerical Simulation of Free-Surface Flow with Moving Rigid Bodies. PhD
thesis, University of Groningen, The Netherlands, 2004.

[4] Kleefsman, K.M.T. Water impact loading on offshore structures - a numerical study.
PhD thesis, University of Groningen, The Netherlands, 2005.

[5] Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B. and Buch-
ner, B. A volume-of-fluid based simulation method for wave impact problems. J.
Comput. Physics, 206:363–393, 2005.

[6] Luppes, R., Helder, J.A. and Veldman, A.E.P. Liquid sloshing in microgravity. In
56th International Astronautical Congress. International Astronautical Federation, 2005.
IAC-05-A2.2.07.

[7] Luppes, R., Helder, J.A. and Veldman, A.E.P. The numerical simulation of liquid
sloshing in microgravity. In Europ. Conf. Comput. Fluid Dyn.: ECCOMAS CFD 06.
ECCOMAS, 2006. paper 490, ISBN 909020970-0.

[8] OpenMP Website, URL: http://openmp.org

[9] MPI specification (website), URL: http://www.mpi-forum.org/docs

[10] Veldman, A.E.P and Vogels, M.E.S. Axisymmetric liquid sloshing under low gravity
conditions. Acta Astronautica, 11:641–649, 1984.

[11] Veldman, A.E.P, Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B.
The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys.,
224:82–99, 2007.

[12] Wemmenhove, R. Numerical simulation of two-phase flow in offshore environ-
ments. PhD Thesis, University of Groningen, The Netherlands, 2008. URL: disserta-
tions.ub.rug.nl/faculties/science/2008/r.wemmenhove.

[13] Xie, D. and Adams, L. SIAM Journal on Scientific Computing, Volume 20 , Issue 6
(November 1999)

33

