

AIBO-R:

Integrating Cognitive Models and Robotics

Anton Wijbenga

 Date: June 25, 2007
e-mail: antonw@ai.rug.nl
Student nr.: 1211005
Supervised by: dr. D.H. van Rijn

 dr. B. de Boer

 Artificial Intelligence
University of Groningen

Abstract

Over the years, the field of robotics has primarily focused on low-level behaviour, like
navigation and exploring, while cognitive modelling has primarily focused on high-level
cognition. As a result, each field often disregards the other field’s level of cognition.
Combining a cognitive model with a robot, such that multiple levels of cognition are
implemented, might be beneficial for both robotics and cognitive modelling. To explore
the possible benefits of that combination, an embodied cognitive model of route learning
was developed. The model was developed using ACT-R, which has been expanded to
interface with a Sony AIBO robot.

The study shows that creating an interface between a cognitive model and a robot
is challenging, especially when low- and high-level cognition have to interact in a
plausible and useful way. From the cognitive modelling perspective, it forces one to
include several aspects which in conventional models might have been overlooked. At the
same time, the study showed that robotics could benefit from the unified representations
and learning mechanisms of a cognitive architecture, which result in useful top-down
control. As a result, a robot is able to learn in a cognitively plausible way and is able to
improve its performance by adapting to a new environment.

TABLE OF CONTENTS

1. INTRODUCTION ..9

1.1 COMBINING COGNITIVE MODELLING AND ROBOTICS ... 9
1.2 ROUTE LEARNING AS A TASK DOMAIN ... 11
1.3 THE RESEARCH GOALS AND APPROACH ... 11
1.4 OUTLINE ... 12

2. THEORETICAL BACKGROUND ..15
2.1 ACT-R ... 16

2.1.1 General Framework .. 16
2.1.2 The Goal and Imaginal module ... 17
2.1.3 Procedural Memory .. 18
2.1.4 Declarative Memory .. 20
2.1.5 Remarks regarding ACT-R .. 21

2.2 SPATIAL LEARNING: THE LANDMARK, ROUTE, SURVEY (LRS) MODEL 22
2.2.1 Landmark Knowledge ... 22
2.2.2 Route Knowledge .. 24
2.2.3 Survey Knowledge ... 26
2.2.4 Remarks regarding Spatial Learning .. 28

2.3 SIMULATED NAVIGATIONAL MODELS .. 30
2.3.1 TOUR (Kuipers, 1978) .. 30

2.3.1.1 The Model ... 30
2.3.1.2 Remarks .. 31

2.3.2 Qualnav (Kuipers & Levitt, 1988) ... 32
2.3.2.1 The Model ... 32
2.3.2.2 Remarks .. 34

2.3.3 NAVIGATOR (Gopal et al., 1989) ... 34
2.3.3.1 The Environment .. 35
2.3.3.2 The Navigation System ... 35
2.3.3.3 Experiments and Remarks .. 36

2.3.4 PLAN (Chown et al., 1995) ... 37
2.3.4.1 Path Selection: NAPS ... 37
2.3.4.2 Landmark Identification .. 38
2.3.4.3 Direction Selection.. 38
2.3.4.4 Environmental Abstraction ... 39
2.3.4.5 Remarks .. 39

2.3.5 ARIADNE (Epstein, 1997)... 40
2.3.5.1 Remarks .. 41

2.3.6 Remarks regarding Simulated Navigational Models .. 41
2.4 MOBILE ROBOT NAVIGATIONAL MODELS .. 42

2.4.1 Nomad 200 (Owen & Nehmzow, 1998) ... 42
2.4.1.1 Remarks .. 44

2.4.2 Toto (Mataric, 1992) ... 45
2.4.2.1 Remarks .. 46

2.4.3 Augustus and Theodosius (Madhavan et al., 2004)... 47
2.4.3.1 Remarks .. 49

2.5 FINAL REMARKS REGARDING THE THEORETICAL BACKGROUND ... 50
3. INTERFACING AIBO AND ACT-R: AIBO-R ...53

3.1 URBI .. 54
3.2 URBI CLIENT ... 54
3.3 URBI COMMANDS .. 54
3.4 EXPANDING ACT-R .. 55

3.4.1 Roboperceptual Module .. 56
3.4.2 Robomotorical Module .. 59

3.5 A DISCUSSION OF LEVELS ... 60

4. THE AIBO-ROUTE MODEL ...63
4.1 GENERAL DESCRIPTION .. 63
4.2 DECISION MAKING LAYER ... 65
4.3 SEARCHING AND PROCESSING LAYER... 67

4.3.1 General Search.. 68
4.3.2 Processing ... 69
4.3.3 Specific Search .. 71

4.4 TRACKING AND MOVING LAYER .. 72
4.5 SUMMARY AND DESCRIPTION OF RUNNING THE MODEL .. 73

5. EXPERIMENT AND RESULTS ..77
5.1 THE EXPERIMENT ... 77

5.1.1 Phase 1 .. 77
5.1.2 Phase 2 .. 78

5.2 RESULTS ... 79
5.2.1 Phase 1 .. 80

5.2.1.1 Declarative Knowledge ... 81
5.2.1.2 Procedural Knowledge .. 84

5.2.2 Phase 2 .. 86
5.2.2.1 Declarative Knowledge ... 88
5.2.2.2 Procedural Knowledge .. 91

5.3 REMARKS ... 92
6. DISCUSSION AND CONCLUSIONS ..95

6.1 DISCUSSION OF THE AIBO-ROUTE MODEL ... 95
6.2 ADVANTAGES OF COMBINING COGNITIVE MODELLING AND ROBOTICS 99
6.3 CONCLUSIONS... 103

7. FUTURE WORK ... 107
8. REFERENCES ... 111

Introduction 9

1. Introduction
The field of artificial intelligence is very broad, but the different research areas within
artificial intelligence all share a common goal: to explain and apply intelligence. Each
research area uses its own approach to work towards that goal, but unfortunately different
research areas often do not combine their knowledge.

An example of two areas that can learn a lot from each other is cognitive
modelling and robotics. Whereas cognitive modelling attempts to model intelligence at a
relatively high level, often disregarding low level processes, robotics attempts to gain
insight into intelligence at a rather low level usually disregarding high level influences.
Since a complete theory of intelligence should include both the low and the high level
processes and the nature of the interactions between them, it is a good idea to combine
cognitive modelling and robotics. By combining cognitive modelling and robotics,
models can be created that approach a complete theory of intelligence closer than most
existing models. The primary goal of the current research is to explore what insights can
be gained by combining cognitive modelling and robotics.

The remainder of this chapter will discuss the possible benefits of using robotics
in the area of cognitive modelling and vice versa, a task domain to explore the
combination of the two research areas and finally the research sub-goals.

1.1 Combining Cognitive Modelling and Robotics
There are several arguments for using robotics in the area of cognitive modelling, which
shall be referred to as embodied cognitive modelling, besides the argument mentioned
above. One of these arguments is that a simulated world does not provide all aspects that
are relevant for a task. For example, when driving a car, the engine sound provides an
indication on when to change gear and horizontal g-forces might indicate that one should
take back some gas when taking a corner. While it is possible to simulate these aspects as
well, it is almost impossible to think of every aspect that plays a role when performing a
certain task. Even if one succeeds in identifying each relevant aspect, it quickly becomes
technically impossible to simulate these aspects.

As will be discussed in the next chapter, actively travelling a route plays an
important role when learning the route. This aspect is hard to model and to model the
effort accompanying active travel one would need a detailed model of the environment
including laws of physics. Besides that, one would have to simulate noise that is present
when sensing the real world through sensors and deviations that arise when actions are
preformed through actuators. Although modelling all these aspects is not impossible, it is
challenging and eventually the model should work in the real world anyway. Embodied
cognitive modelling therefore is an elegant solution to the problems just mentioned as in
the real world these aspects are inherently present.
 Another argument for embodied cognitive modelling can be derived from the
work of Marr (1982). Marr defined three levels that are necessary to understand an
information processing system. Since cognitive models are also information processing
systems the three levels apply to those as well. Conventional cognitive models account
for the first two levels, which are the computational and the algorithmic level. These
levels respectively represent the goal of a system and the means by which the goal can be
obtained. However, the third level, referred to as the implementation level, is usually not
considered when evaluating the plausibility of a cognitive model. This third level is the
medium which realizes the means defined by the second level.

10 Introduction

In the area of cognitive modelling this medium is usually a normal PC, but a PC is
physically completely different from humans. Of course this is also true for robots, but at
least they are a step closer toward mimicking humans. This is important, because the
capabilities (i.e., which goals can be reached) of an information processing system are
first defined by the third level, which is effectively the hardware, and then by the second
level, which is the software. Therefore the goals, represented by the first level, depend
heavily on both the second and third level. By choosing a robot as the means to process
the algorithms of a cognitive model, the model is one step closer towards humans.

Also, using a robot to implement a cognitive model, forces one to consider all the
limitations that come along with the robot. This means that solutions to problems that
might have been ignored have to be implemented in the model, possibly resulting in a
more plausible model.

So far only benefits for using robots in the area of cognitive modelling have been
discussed, but robotics can profit from the area of cognitive modelling as well. Robotics
has already recognized the area of biology (i.e., animals) as a source of inspiration for
certain algorithms (Franz & Mallot, 2000). However, usually these algorithms simulate
relatively basic tasks. To create algorithms that simulate more complex tasks, higher
cognitive processes are needed. For those tasks it makes sense to use inspiration from the
intelligence of humans and thus cognitive modelling.

Examples of tasks that can be used as inspiration for more complex tasks are the
water-jar (Luchins & Luchins, 1959) task and the stick-building task (Lovett & Anderson,
1996). These models show a certain learning effect that can be useful in the area of
robotics. In both tasks a series of steps is used to find the solution to a number of
problems. When a new, different problem is presented the model still uses the same series
of steps, even if there is a better solution. Luchins and Luchins (1959) refer to this as the
Einstellung effect. However, most importantly, the new problem is solved even though it
was not previously encountered, which can be useful in the area of robotics. For example,
a model can be implemented on a robot using the just mentioned cognitive models as
inspiration. By using such a model, the robot can then learn a specific task. The
information gained when executing that specific task can then also be used when
executing a second similar task. Since the robot is capable of solving several similar
problems it has not encountered before, it is very robust. Using learning mechanisms
from the cognitive models, the robot can even increase its performance within the
limitations of the complete system, eventually finding a near-optimal solution. This is
also referred to as bounded rationality (Simon, 1957). The Einstellung effect and bounded
rationality will be discussed in a later chapter in the context of the current research.
 Another benefit of using cognitive modelling in the area of robotics can be
demonstrated in the field of human-robot interaction (Trafton et al., 2006). Trafton et al.’s
work is one of the few examples where a combination of a cognitive model and a robot is
used. They argue that robots that use similar representations as humans can better
collaborate with humans than robots that do not. To solidify this hypothesis they provide
three arguments.
 First robots usually have computationally efficient algorithms that use
mathematical representations like matrices and polar coordinates. However, in general,
humans do not think or reason using those representations. Therefore for robots and
humans to understand each other, their expressions have to be translated which is
inefficient and might cause some loss of information or confusion. These problems of
communication are less likely to present themselves when the robot uses a cognitive
model that has similar representations as humans.

Introduction 11

 Second, a cognitive model ensures that the robot exhibits relatively normal, for
humans understandable, behaviour. Conventional robot algorithms may be able to
efficiently perform certain tasks, but if humans need to collaborate with these robots and
the robots’ behaviour seems unnatural because of the conventional algorithms, the
behaviour will detract from the interaction. Therefore when behaviours are programmed
using cognitive models, the human-robot interaction might improve.
 Finally, for some tasks it is beneficial to incorporate knowledge about how
humans solve certain tasks. For example, when a robot has to search for people hiding, it
is useful to know how humans tend to hide themselves. In this case human intelligence is
not only used to create the processes of a model, but also as content for the processes to
use. Thus, when programming robots using cognitive models, these robots could gain
insight in the beliefs, desires and intentions of humans they collaborate with (or against).

In short, robots are good at low level behaviours but usually lack higher cognitive
processes. The field of cognitive modelling has already thoroughly researched these
higher cognitive processes and can therefore be beneficial as inspiration for robotics to
improve their performance and/or collaboration with humans. Vice versa, the area of
robotics can fill the gap on the low end of cognitive models by adding embodiment and
low level processes that interact with the higher level processes of a cognitive model.

1.2 Route Learning as a Task Domain
Trafton et al. (2006) performed an experiment based on the game Hide and Seek to
support their arguments regarding the benefits of using a cognitive model in the area of
human-robot interaction. However, much more can be learned from examining the
combination of cognitive modelling and robotics, as demonstrated by the previous
section. To explore what insights can be gained from such a combination, a route-learning
task was used.

The route-learning task is an interesting task, because it involves spatial reasoning
processes and the learning of declarative and procedural knowledge, which are all higher
processes. Also it involves movement, a component that is absent in most cognitive
models and often regarded as a lower process. Finally to be able to learn a route one also
has to perceive the environment, which, as will be discussed, is a difficult component to
model.

Route learning as a task is not only interesting to examine the combination of
cognitive modelling and robotics, but also is an interesting task for the individual research
areas. In the area of cognitive modelling and also psychology in general, a lot of research
towards spatial cognition is done. For example, what representations do humans use to
represent spatial knowledge and by what processes do they gain that knowledge. On the
other hand, in the area of robotics, navigation is researched for obvious reasons. Many
robots have to move around and navigate through an environment to be able to complete
their tasks. As a result, the algorithms used in robotics have a pragmatic approach that is
primarily efficient and robust rather than cognitively plausible.

In short, route learning is a useful task to examine the combination of cognitive
modelling and robotics, as well as to examine the psychological aspects and as a means of
navigation for robots.

1.3 The Research Goals and Approach
The main goal of the current research is to explore what insights can be gained by
combining cognitive modelling and robotics. This section describes what approach will
be used to do that and some sub-goals.

12 Introduction

A cognitive model can be programmed in any programming language: Lisp, C++,
Java, R, etc. However, by default, these languages do not provide any psychological or
cognitive constraints. Therefore in the current research ACT-R (Anderson, 2005;
Anderson et al., 2004) is used. ACT-R combines several aspects of cognition into one
general theory. An implementation of this theory is used in the current research. By using
ACT-R, psychological constraints are provided to the second level of Marr’s (1982) three
levels. In addition Taatgen (2007) proposed a guideline referred to as the minimal control
principle. This guideline provides additional constraints which should lead to more
plausible and more robust cognitive models.
 For the current research there were two robot types available, an Active Media
Pioneer 2DX and a Sony AIBO ERS-7. The Pioneer is a three-wheeled robot with a
camera on top and several sonar sensors along its sides. The AIBO consists of a body
with four legs and a head that contains a video camera and a distance sensor. Since the
AIBO’s head can be controlled separately from the rest, it matches the modular approach
used in the current research best. Therefore, the AIBO was chosen to be used instead of
the Pioneer robot.

As mentioned the robot, in this case the AIBO, provides the strongest constraints
for a cognitive model, as it defines the third level of Marr’s (1982) three levels. Also,
since the AIBO with its ACT-R model will operate in the real world, the model has to
deal with all problems that come along with it. This, in combination with ACT-R, the
minimal control principle and the AIBO, provides a set of constraints that should help to
create a plausible cognitive model.
 The model created is called AIBO-Route and uses an expanded version of ACT-
R, referred to as AIBO-R, because ACT-R by default does not have a way to interact with
the AIBO. To explore what insights can be gained by combining cognitive modelling and
robotics, AIBO-Route was developed within the constraints just mentioned and with two
sub-goals in mind. These sub-goals are:

1. Given a setup of several landmarks the AIBO-Route model should be able to learn
a route to a predefined goal.

2. When having learned such a route and the environment changes in such a way that
a shorter route is possible, AIBO-Route should be able to learn the new shorter
route.

AIBO-Route is a cognitive model that simulates how humans develop route knowledge,
but ACT-R also is capable of predicting reaction times and the duration of cognitive
processes. However, these temporal aspects were not considered in the current research.

1.4 Outline
The next chapter, Theoretical Background, will discuss several aspects relevant to this
project. It will discuss: ACT-R, Spatial Learning, Simulated Navigational Models and
Mobile Robot Navigational Models. Then the current research will be discussed in the
context of the Theoretical background starting with the interface between AIBO and
ACT-R. Next the AIBO-Route model will be discussed, followed by the experiments and
results. Then the results will be discussed and in the conclusion will be stated whether the
goals were obtained or not. Finally some ideas of expansions to the AIBO-Route model
and AIBO-R architecture will be discussed in the Future Work chapter.

Introduction 13

14 Introduction

Theoretical Background 15

2. Theoretical Background
In the previous chapter the goal and relevance of the current research has been discussed.
This chapter will discuss the background needed to understand the route-learning model
that has been developed in this project.

The chapter will begin with an introduction to ACT-R, the theory used to create
the route-learning model of the current research. It will continue with a section about
what is known so far about spatial learning and route learning in particular. Next a few
models that have been developed to simulate navigational learning will be discussed
followed by a section about some navigational algorithms specifically developed for
mobile robots that implement navigation.

The different sections will illustrate the difference between robot navigation
models and simulated models based on Spatial-Learning theory. The most important
aspects of the sections in this chapter are summarized and put into context in the final
section of this chapter.

16 Theoretical Background

2.1 ACT-R
Over the years, different components of the human mind have been studied in relative
isolation. There have been, for example, studies of memory, motor control and decision-
making. To get a better understanding of how these components work together a theory
was developed. This theory has taken form in a cognitive architecture called adaptive
control of thought-rational (ACT-R) (Anderson, 2005; Anderson et al., 2004). This
section will discuss how cognition is integrated in the ACT-R theory.

To prevent confusion it is useful to note that the ACT-R theory is not the same as
the ACT-R program implemented in Lisp. Unfortunately this distinction is rarely made,
but it is important to note that the ACT-R theory can be and has been implemented in
several different programming languages. However, most of the cognitive models using
the ACT-R theory have been developed with standard Lisp implementation. In the current
research an extended version of the standard implementation has been developed. This
extended version makes it possible for ACT-R to interact with the Sony AIBO robot and
is discussed in the chapter “Interfacing AIBO and ACT-R: AIBO-R”.

To explain ACT-R, the general framework will be described first. The
components of the general framework, relevant to the current research, will be discussed
in the subsequent sub-sections.

2.1.1 General Framework
The ACT-R architecture consists of several modules. The default modules are: the goal
module, imaginal module, declarative module, visual module and manual module. The
goal module is used to keep track of the current goal of a task. During the execution of
that task one must also be able to keep track of the current state or sub-goal, which is
done by the imaginal buffer. The declarative module represents all factual knowledge,
like for example that three plus two is five or that from one’s house one has to go left to
go to work. Finally, to be able to interact with the world, one has to be able to perceive
the environment and act in it, which is the function of the visual module and manual
module respectively.

The current state of the model is represented by the content of the buffers. Each of
the modules has at least one buffer, which is used by a central production system,
sometimes referred to as the procedural module. Buffers are used as an interface between
the central production system and the modules. For example, the declarative module can
retrieve one fact at a time and that fact is placed in the retrieval buffer, which belongs to
the declarative module. The fact in the retrieval buffer can then be used by the central
production system. All the buffers together are sometimes seen as the working memory of
the ACT-R framework.

The central production system uses the contents of the buffers to recognize a
pattern and then changes the content of these buffers. In what way the content has to be
changed, is determined by production rules. The production rules are if-then rules and
together form the procedural memory. If the content of the buffers matches the if part,
also known as the left-hand side, the then part, also known as the right-hand side, is
executed by the central production system. When this happens it is said that the matching
production rule fires.

The buffers and the central production system together form a serial bottleneck for
the ACT-R architecture. The buffers limit the processing speed, because they can hold
only one fact, called a chunk, at a time and the central production system limits the
processing speed because only one rule can be matched against the buffers at a time.
Besides that, the matching of a production rule against the buffers always takes fifty

Theoretical Background 17

milliseconds. The serial bottleneck represents the single stream of thought one has (i.e.,
one cannot think of two things at the same time).

Although buffers can hold only one chunk at a time, each module has its own
buffer. All these buffers can be used by a single production rule. As a result parallel
processing of, for example, memory retrieval and visual perception is possible. Also, it is
known that the visual system is divided into a “what” and “where” part, which can also
operate in parallel. The “where” part processes the location of objects and the “what” part
classifies them. To make the parallel processing in the visual system possible, the visual
module has two buffers, visual and visual-location, that respectively represent the “what”
and “where” parts of the visual system.

To summarize, ACT-R has several modules that represent components of the
mind of which some provide an interface with the world outside the mind. The modules
have buffers that can contain a chunk. The chunks from all buffers together form a pattern
that can be compared to production rules by the central production system. The matched
production rule specifies which modifications have to be made to the buffers. In turn the
modules respond to the changes in the buffers and the process repeats.

2.1.2 The Goal and Imaginal module
As mentioned, the content of the buffers determine which production rules can fire. When
a certain fact is in the retrieval buffer of the declarative module and another fact is in the
visual buffer, several different production rules might match. Not all these production
rules serve the current goal and therefore some production rules should be excluded from
the possible matches. By adding extra constraints, the number of matching production
rules is limited to those that serve the current goal. The content of the goal buffer and
imaginal buffer provide these additional constraints. The goal and imaginal buffer can
therefore guide a model towards the goal.

Since technically a chunk can have any number of elements, called slots, it is
possible for a chunk in the goal to have a condition for each possible situation. This is of
course not a plausible way to create a cognitive model. The goal buffer should therefore
hold a chunk representing the global goal of the current task. To keep track of which
actions need to be taken and what sub-goals need to be reached, the imaginal buffer can
be used to provide additional constraints.

To help researchers build plausible models, a guideline was designed by Taatgen
(2007), which is called the “minimal control principle”. The idea of this principle is that
one should use as few control states as possible, that is, the number of possible values for
the goal and imaginal buffer should be as few as possible. The model should primarily be
guided by stimuli from the environment and state of the mind, rather than some artificial
state.

Models created by adhering to the guideline tend to simulate bottom up
processing rather than top down. A clear illustration of the minimal control principle is
given through the task of making tea (Taatgen, 2007). Instead of specifying the sequence
of steps that need to be taken to make tea, the steps can be given individually with their
conditions (the conditions being the state of the environment when the individual step is
appropriate). Thus instead of specifying the list on the left without conditions, it is better
to specify the list on the right:

1. put water in kettle [if empty kettle] put water in kettle
2. after step 1, put kettle on stove [if kettle with water] put kettle on stove
3. after step 2, put leaves in teapot [if empty tea pot] put leaves in teapot
4. after step 3, wait until water boils [if water boils and leaves are in teapot] pour water in teapot
5. after step 4, pour water in teapot

18 Theoretical Background

The specification to the right is also able to cope with the situation where there already
was water in the kettle, in which case the first step can be omitted. Also, the specification
to the right is more flexible with regard to the order in which the steps need to be taken.
The step to be taken can be determined entirely by observing the environment. Finally the
specification adhering to the minimal control principle also makes it possible to interrupt
the task and pick it up later since there is no internal state to keep track of.
 All the advantages of adhering to the minimal control principle, such as
environmentally driven and a higher robustness, are very important in combining
cognitive modelling with robotics. Also, in the field of robotics it is common practice to
do bottom-up processing. Through the minimal control principle, cognitive models also
tend to have bottom-up processing in addition to top-down processing. As a result,
cognitive models are better fit to be used with robots. This is an additional reason why the
model in the current research was developed with the minimal control principle in mind.

2.1.3 Procedural Memory
Even though the content of the buffers limit the number of production rules that can fire,
it might still be possible for several rules to match the content of the buffers. The process
that determines which production rule will fire is called conflict resolution. Which
production is chosen by the conflict resolution mechanism is determined by the utility of
the production rules. The utility of a production rule is based on how high the chance is
that the production rule will result in a successful completion of the goal and the cost of
obtaining it through that rule. It is important to note, however, that these utilities are noisy
and the production rule with the highest utility might loose from a production rule with a
slightly lower utility, because of the noise. The utility of a production rule i is defined as

ε+−= iii CGPU , (production utility equation)

where Pi is an estimate of the probability that if production rule i is chosen the current
goal will successfully be achieved. G is the value of the current goal and Ci is an estimate
of the cost to achieve the goal using production rule i. Both Pi and Ci are learned from
experience. The ε is the noise added to the utility and is determined by the parameter s
(see below).

If there are a number of production rules that match, the probability of production
rule i to be chosen from all matching production rules n, is calculated by:

∑
= n

j

sU

i
sjU

i

e

eP
2/

2/

, (production choice equation)

The probability for a production rule i to be chosen, therefore depends on the utility of all
matching production rules n and the noise parameter s which is distributed according to a
logistic distribution with a mean of zero and a variance of:

 2
2

2

3
sπσ = , (logistic distribution variance)

The chance of a production rule to be successful is derived from the times it was
successful with respect to the total number of applications of that rule:

Theoretical Background 19

FailuresSuccesses

SuccessesP
+

= , (probability of success equation)

The cost to achieve the goal is obtained in a similar manner by the formula

FailuresSuccesses

EffortsC
+

= , (cost equation)

where Efforts is the accumulated time over all the successful and failed applications of a
production rule. It is useful to note that the Successes are determined by a final
production rule that indicates that the goal has been reached. The success counter of all
production rules that fired to successfully reach the goal is increased by one. Similarly,
the failure counter of production rules is increased by one when the firing of those rules
led to the final production rule, which is marked as a failure to reach the goal. The initial
values of Successes, Failures and Efforts are respectively, one, zero and 0.05 (seconds).

The above set of equations cause the utility of a production rule to increase when
its application led to successful completion of the goal. The utility decreases when the
cost (i.e., Efforts) becomes higher or the production rule led to a failure. The cost
corresponds to the period from the time of the application of a production rule to the time
of completing the goal. This time period (i.e., the cost) is averaged over the subsequent
use of a production rule. As a result when a production rule causes to quickly reach the
goal, the utility of that rule becomes higher.

Most production rules are defined at the start of the execution of a model. However,
during the execution of the model it is possible that new production rules are formed, a
process called production compilation. This process causes two successive production
rules to merge into one production rule that has the effect of both. Since the execution of
a production rule always costs fifty milliseconds and there might be processes that cost
additional time between the rules that are compiled, the goal of a model can be reached
faster when such production rules merge. This speedup corresponds to the speedup of the
execution of a task as the result of gained experience.
 The compilation of two rules is possible only when the output of the first is
predictable. Imagine there are two rules where the first rule would request a chunk C
from memory representing an action A when encountering situation S, and the second
rule would retrieve the chunk C and then perform action A. These rules can compile into
a rule that immediately performs actions A upon encountering situation S, thereby
eliminating the retrieval of chunk C. If, however, the output of the first rule is not
predictable, for example, when there is not a retrieval between two rules, but a perception
event, the rules cannot compile. If the rules were to compile anyway, it would lead to a
hallucination of the perceived object.

Since new production rules compete with the first of the two production rules it
was compiled from, the utility of the new rule cannot be determined in the usual way.
Also it would seem likely that the new rule borrows some experience from the two old
rules. Therefore the utility of a compiled production rule is calculated from the two rules
that formed it. This is partly done by using the following two equations for the chance of
success:

FailuresSuccessesn
SuccessespriorPnP
++

+
=

*

20 Theoretical Background

)(previouspreivous priorPPpriorPpriorP −+= Old1α

The n in the first equation is the initial experience of a new production rule and defaults
to ten. Old1P is the P value of the first of the two production rules that formed the new
production rule. From the equations one can derive that α is a parameter that sets the
learning rate. The higher α is, the faster the utility of the new rule will converge to the
utility of the first of the two old rules. Since the utility of the new rule will only approach
that of the old rule, noise is needed for the new rule to overcome the utility of the old rule.
Once the new production rule has been chosen a few times, the ratio of Successes and
Failures might cause it to obtain a higher utility then the old rule. The equations for the
cost C are derived from the original equations in the same way as those for the chance of
success.

2.1.4 Declarative Memory
As mentioned a few times before, the buffers of the modules can contain chunks. Chunks
can be defined at the start of a model, acquired through the vision module or learned
through reasoning processes. All chunks are stored in the declarative module. What
information a chunk can contain can be defined by chunk-types. A chunk is therefore
always an instantiation of a chunk-type. A chunk-type usually has a number of slots
which can be filled by other chunks. An example of a possible chunk-type is addition-
fact, which contains three slots. Two slots, addend1 and addend2, represent the numbers
that need to be added and a slot containing the sum, sum. A chunk of chunk-type
addition-fact that represents 7 + 2 = 9 would look like:

 fact7+2
 isa addition-fact
 addend1 seven
 addend2 two
 sum nine

In chunk “fact7+2”, seven, two and nine are other chunks representing the
corresponding numbers.

Production rules can make a request through the retrieval buffer of the declarative
module for certain facts. By partly specifying which chunk needs to be retrieved, a match
can be found by the declarative module. Of the matching chunks the chunk with the
highest activation is retrieved and placed in the retrieval buffer. The activation of chunks
is similar to the utility of production rules and represents the likelihood that a chunk will
be retrieved. The activation of a chunk is defined as

 ∑∑ ++=

k j
jikjii SWBA ε , (activation equation)

where Bi is the base-level activation of the chunk i and ε is the noise determined by s (see
below). The other part of the equation specifies the spreading activation to chunk i from
other chunks j that are present in buffers k. The amount of spreading activation is
determined by the sum of strengths of association from chunks j to chunk i (Sji), weighted
by Wkj. The idea of spreading activation is to account for context when retrieving facts
from memory. It is easier to remember in which direction one has to go at a crossroad
when one has the crossroad in view, that is, when a chunk representing the crossroad is in
the visual buffer.

Theoretical Background 21

 The base-level activation of a chunk rises and falls with practice and delay
according to the equation

 , (base-level learning equation))ln(
1
∑
=

−=
n

j

d
ji tB

where tj is the time since the jth practice of a chunk. As indicated by the formula the base-
level activation decays as time progresses. The decay-rate is determined by the parameter
d. The effect of the base-level activation is that the more time has passed since a fact (i.e.,
chunk) was encountered the less likely it becomes to remember it.
 The probability that a chunk can be retrieved from memory depends on noise and
on the retrieval threshold. The probability of retrieval is determined as

s
Ai i

e
P −

+
= τ

1

1
, (probability of retrieval equation)

where τ is the retrieval threshold and s is the noise parameter, which is distributed
according to a logistic distribution with a mean of zero and a variance as defined before.
When there is no noise a chunk can only be retrieved when the activation of a chunk is
above the threshold.

Besides that a higher activation increases the probability of retrieval, it decreases
the time needed to retrieve the chunk. The time needed to retrieve a chunk is defined as

 , (latency of retrieval equation) iA

i FeT −=

As one can see from the equation the time needed to retrieve a chunk i decreases
exponentially with the increase of its activation. As a result, it not only becomes less
likely to retrieve a fact as more time passes, but it also takes longer to retrieve the fact.

2.1.5 Remarks regarding ACT-R
Now that the components of ACT-R that are relevant for the current research have been
discussed, the theory on spatial learning can be discussed in the next section. In the
section discussing navigational models that implement that Spatial-Learning theory, some
similarities and differences with respect to the ACT-R theory will be noted. Also,
extensions to the ACT-R architecture developed in the current research will be discussed
in the chapter discussing the Interface between AIBO and ACT-R.

22 Theoretical Background

2.2 Spatial Learning: The Landmark, Route, Survey (LRS) Model
Every day people travel from one place to another. This can be from home to work or the
supermarket, but also from one room to another. They travel by foot, bike, car or
otherwise. To be able to do this, one needs spatial knowledge, but how exactly does one
gain this knowledge? What information do we select from the environment and how do
we store and use it? Numerous studies have been conducted to answer these questions
(e.g., Aginsky, Harris, Rensink, & Beusmans, 1997; Allen, 1981; Appleyard, 1970;
Cohen & Schuepfer, 1980; Darken & Peterson, 2001; Gale, Golledge, Pellegrino, &
Doherty, 1990; Goldin & Thorndyke, 1982; Golledge, Gale, Pellegrino, & Doherty, 1992;
Heft, 1979; Lynch, 1960; Schweizer, Herrmann, Janzen, & Katz, 1998; Siegel & White,
1975). In this section an overview of these studies will be given to give an idea about how
one learns spatial knowledge and a route in particular.

Many of the researchers of spatial learning place their studies in the context of the
Landmark, Route, Survey (LRS) model developed by Siegel and White (1975). This
section will also discuss Spatial-Learning theory in the context of the LRS model as it
provides a solid framework in which the different aspects of spatial learning can be filled
in.

The LRS model (Siegel & White, 1975) is the longest standing model of spatial
knowledge representation to date. Siegel and White developed the LRS model using
many aspects of the work of Lynch (1960), who defined five basic types of spatial
knowledge (paths, edges, districts, nodes and landmarks) and their role in spatial
knowledge representation.

The LRS model exists of three learning phases. First, while travelling in an
environment, one stores objects at important locations. These objects are usually referred
to as landmarks and the locations are usually known as waypoints or nodes. In the second
learning phase these landmarks are associated with bearing changes and with other
landmarks. Finally, various routes that have been learned converge into a network. This
network can be seen as survey knowledge of the environment, often referred to as a
cognitive map or mental map.

Although one does first gain landmark knowledge, then route and then survey
knowledge, it is not the case that they are learned entirely separate. This point is
elaborated in the next sub-section. Several aspects of spatial learning will be discussed
next, starting with landmark knowledge, followed by route knowledge, survey knowledge
and some remarks regarding Spatial-Learning theory in general.

2.2.1 Landmark Knowledge
According to the LRS model, the formation of spatial knowledge begins with landmarks,
but what exactly are landmarks? In general sense they are physical objects or properties
of objects, which are used to identify a certain location, which Lynch (1960) defines as
nodes. Nodes are locations where decisions on how to continue one’s journey have to be
made. Also landmarks can sometimes be used to keep on the right path. Landmarks
usually have unique characteristics. That way they can be distinguished from other
objects and identify a specific node. Although usually landmarks have a unique
appearance, a series of similar landmarks could also be useful. Such a series could, for
example, be used to estimate the distance travelled or guide a traveller along a path to the
next node.

The size of a landmark can differ greatly, from a coloured tile to a mountain. Also
it does not matter whether the landmark is distant or local. As long as the landmark is

Theoretical Background 23

visible from a certain location, it can help identify the role of that location in the
environment. Steck and Mallot (2000) call the two types of landmarks local and global
landmarks. They conducted several experiments in a virtual environment and found that
one uses both types. Some participants relied on one of both types and some switched
between the two types, depending on the location. However, the knowledge of both types
of landmarks was always present, since when one type was removed the participant could
easily switch and use the other type.

According to Lynch (1960) especially people who are unfamiliar with a certain
environment, use global landmarks. As an example he states that people who are new to
Boston seem to use the John Hancock Building, a very tall building, as an important
landmark, whereas people who are familiar with Boston rely more on local landmarks.

According to Steck and Mallot (2000) and also Heft (1979) an important factor for
selecting a landmark, is its saliency. Besides that, Heft (1979) and Lynch (1960) also
found that the participants of their experiments use any environmental cue available; for
example the topography of a location or characteristics of a path. This means that
landmarks do not necessarily need to be distinctive objects, like a statue, but might also
be another specific property of the environment; a change in the pavement or a specific
curvature of the road.

When people travel through an environment they might encounter various
landmarks, but not all objects used as landmarks are equally distinctive. Several
experiments show that landmarks that are present at a location where a decision has to be
made (i.e., nodes), are the ones that are remembered. Researchers (Gale et al., 1990;
Golledge et al., 1992; Lynch, 1960; Siegel & White, 1975) explain this by the fact that
one’s attention is heightened, because of the decision one has to make at a certain
location. Because of this heightened attention people are more receptive of their
environment and therefore more likely to remember objects at that location sometime
later. Landmark knowledge therefore develops as an integral part of route knowledge.
One might even state that one develops less landmark knowledge when a route is
travelled passively, for example as a passenger of a taxi. This means that landmarks are
learned much better in the context of a route then when learned individually, which raises
two points.

One point is that the three learning phases that Siegel and White (1975) proposed
cannot be too demarcated. Since route learning facilitates the learning of landmarks, it is
unlikely that the learning of landmarks entirely precedes the learning of a route. Siegel
and White (1975) are not entirely clear on this matter, but some researchers (Aginsky et
al., 1997) state that according to Siegel and White’s theory one first gains landmark
knowledge and when landmark knowledge is complete one gains route knowledge, which
is unlikely.

Aginsky et al. (1997) state that if an object is to be stored as a landmark and it
does not have prominent characteristics, it is only learned as a landmark when one is
learning a route. In other words, if indistinctive objects are to be stored as landmarks,
they have to be in the context of a route. Although Aginsky et al. (1997) criticize the LRS
model of Siegel and White (1975) of being too demarcated, Aginsky et al. and Siegel and
White seem to agree anyway. This is shown by the quotation from Siegel and White’s
work below.

“The prominent role of landmarks in early spatial representations seems to require a special kind
of figurative memory. We may call this a “recognition-in-context” memory. It is insufficient when
one sees a landmark to know, “I’ve seen that before.” One must know something about that
landmark, what it implies, what it is next to, when it last occurred, what its connection is with
other landmarks.” (Siegel & White, 1975, p. 27)

24 Theoretical Background

Although even Siegel and White themselves are not entirely clear on how the three
phases of their theory interrelate, is seems to be the general consensus that they are not
entirely separate. Thus, it is important to note that one phase does not have to be
completed to start the next phase, neither does one phase end when the next phase has
begun. The learning phases are interwoven and have the same goal: to navigate through
an environment in a rather efficient way.

The second point raised by the fact that landmarks are stored because of
heightened attention as a result of a decision being made, is that active travel is important
for spatial learning (Cornell & Hay, 1984; Darken & Peterson, 2001; Gale et al., 1990;
Gibson, 1979; Goldin & Thorndyke, 1982; Siegel & White, 1975). Active travel means
that one really moves through an environment and one makes decisions on where to go.

Active travel also makes it possible to gain procedural knowledge (Gale et al.,
1990). The knowledge of landmarks and their associated decisions is declarative
knowledge. However, to use this declarative knowledge, procedural knowledge is needed.
Knowing how to move from a given location to another and the ability to identify the
routes that facilitate such actions, are examples of such procedural knowledge. Since
active travel is not a part of an experiment using a video presentation, participants of such
an experiment will have less procedural knowledge than those who learn the same route
through a real environment.

Unfortunately there are several studies that base their results on experiments that
lack this active component. The results of these studies regarding procedural knowledge
can therefore be debated.

In short, several objects can function as a landmark, usually these objects are distinctive
with respect to their environment, but not necessarily so. Also a landmark might not be a
specific object at all, but rather a distinctive feature of the environment. The heightened
attention, caused by a decision being made along a route, is the main cause for an object
or feature to be stored as a landmark. If an object is very distinctive however, it may be
stored even if it is not at a decision point.

The landmarks can aid in the recognition of nodes or other parts of the route. This
means that even when one is lost one might recognize a landmark and remember where
one is along a route and continue one’s journey. This is also a nice illustration of the
minimal control principle (Taatgen, 2007). The traveller is guided by the environment
(i.e., landmarks), instead of learning a series of decisions. The difference between these
two possibilities will be discussed further in the next sub-section.

2.2.2 Route Knowledge
Landmarks are the building blocks of route knowledge. There are two theories on how
landmarks are used for route knowledge. One is that they are used as a part of paired-
associate learning or stimulus-response learning (Darken & Peterson, 2001; Golledge et
al., 1992; Heft, 1979; Lynch, 1960; Schweizer et al., 1998; Siegel & White, 1975). This
kind of learning uses landmarks as a trigger to remember the next node along the route
together with a change of direction of travelling (Lynch, 1960).

The second theory is that a series of decisions on how to proceed at each node is
memorized, this is referred to as queue or sequence learning (Tlauka & Wilson, 1994). In
this case the landmarks at a node are not associated with the decision. This means that
when a wrong turn is taken one will continue its journey, but the decisions do not
correspond to the succeeding nodes. The most supported theory is the first. There is

Theoretical Background 25

however evidence for the second theory as well. As we will see, the environment used in
an experiment determines for a large part which theory fits best.
 Tlauka and Wilson (1994) support the second theory and also Heft (1979) found
that when a location lacked distinctive features, the participants of his experiment
resorted to a strategy in accordance with the queue learning theory. Tlauka and Wilson’s
results even indicated that the participants of their experiment had a preference for queue
learning over paired-associate learning, in spite the fact that the landmarks used in their
virtual environment were very salient.

However, the navigation task of Tlauka and Wilson’s experiment was rather
simple. They used a computer simulation of a series of rooms connected by doors. Each
room had a landmark and two doors, from which the “unlocked” door had to be chosen.
The unlocked door would then lead to the next room. In such a setup it is easier to learn a
sequence of decisions than in a real-world environment used by other researchers
(Golledge et al., 1992; Heft, 1979; Schweizer et al., 1998), because in those experiments
there were more options available than right and left. Also when the participants of
Tlauka and Wilson were forced to count backwards during the experiment, they did use
paired-associate learning instead of queue learning.

Besides the fact that the possible choices in their simulated environment were
limited, the environment lacked differentiation. Each room looked the same except for a
landmark. As mentioned before, Heft (1979) found that in an environment, which lacks
differentiating cues, the queue learning strategy might be used.

Given the current research it seems, depending on the environment, both learning
strategies are used. The paired-associate learning strategy however seems the most likely
to be used, since environments usually offer several distinctive features. Only in an
undifferentiated setting, for example a part of the city with similar repetitive building
style, a forest where it is hard to distinguish trees and paths from one another or a desert,
the queue learning strategy is used. Also the paired-associate learning is able to explain
the effect that it is easier to remember the next node along a route than the previous node.
The reason for this is that there is a strong association between the current node and the
next, but a weak association between the current node and the previous. This is explained
in detail by Schweizer et al. (1998).

There is one other interesting strategy proposed by Cornell, Heth and Alberts
(1994). They propose that in the very beginning of learning a route a rather simple
strategy is used. Imagine you have travelled a route once. When you then have to travel
this route again and you encounter a crossroad, you simply look down each possible path
and take the one that seems most familiar. The right path will seem the most familiar
because the first time you travelled it, you spent more time observing features from this
path than from the other paths.

The difference between this strategy and the paired-associate strategy is that in the
latter, the choice of direction is associated with a landmark and in the first the choice is
represented directly by the landmark. Therefore to travel a route, the knowledge of
landmarks with its associated decisions does not necessarily have to be present in one’s
memory. One can imagine however that this strategy is not very robust. Also people are
very uncomfortable when they are uncertain of their location. It therefore seems more
plausible as an initial strategy and later on as a backup strategy, rather than an alternate
strategy.

Given the current research is seems plausible to conclude that, since the
environment humans travel in is usually quite differentiated, the most applied technique is
the paired-associated technique. When learning the association between landmarks and
choice of direction the strategy proposed by Cornell, Heth and Alberts (1994) might help

26 Theoretical Background

in learning the associations. In the event of the environment being too undifferentiated
humans switch back to queue learning.

It is mentioned several times in the literature that segmentation takes place when learning
a route (Allen, 1981; Gale et al., 1990; Golledge et al., 1992; Lynch, 1960; Siegel &
White, 1975). This means that the route is segmented into smaller parts. The segments
can be placed between individual landmarks and a complete route. Segments are paths
between two nodes. The smallest segments are those where there are not any nodes
between the two nodes forming a segment. However there are also segments that stretch
over a larger distance, for example from one district to another district of a city (Allen,
1981; Lynch, 1960). The different segments therefore from a hierarchical structure. In
this structure, the top segment is the entire route and at the bottom is a segment with no
intermediate nodes.

Those segments at the bottom are rather simple and the path between them is
usually short. There are however exceptions. One exception is when edges (Lynch, 1960)
are used. Edges are linear breaks in continuity for example the outer edge of a park,
shorelines, railroads or channels. Instead of a series of nodes, such an edge can be
followed as part of a route. Besides the fact that edges can serve as guidelines, they can
also restrict the possible space in which a route has to be formed. One clear example is a
shoreline. Also they can force the route to include a certain node. A good example here is
a river with only a few bridges. Edges can therefore assist in the acquisition of route
knowledge by limiting the possibilities.

Segmentation also helps to determine the distance travelled (Allen, 1981;
Golledge et al., 1992; Lynch, 1960; Siegel & White, 1975). One can estimate this
distance by observing the number of segments travelled or by investigating the
hierarchical structure representation of the route. Another important factor for the
distance estimation is the effort needed to travel the distance. The effort depends on the
distance, number of turns and the quality of the path; pavement, slope. The effort
therefore not only depends on the time travelled but also on the cognitive effort.
Sometimes people prefer a simple route over a more complex shorter route (Lynch,
1960).
 Again it becomes obvious that active travel is important with respect to spatial
learning. Without active travel one has a poor sense of the effort involved to travel a
certain distance. Without the knowledge or inaccurate knowledge of the effort needed to
travel a route, it is in most cases probably quite difficult to determine an optimal route.
 Active travel also provides proceduralization of declarative route knowledge
(Gale et al., 1990). The landmarks and nodes, which are part of a route, are declarative
knowledge just as the associated decisions. However to use the declarative knowledge,
procedural knowledge is needed. Gale et al. showed that participants who learned a route
through a video representation barely developed procedural knowledge. The notion of
declarative and procedural knowledge with respect to spatial learning is also described by
Golledge et al. (1992) and Colle and Reid (1998).

2.2.3 Survey Knowledge
Survey knowledge is the final stage of the LRS model. Survey knowledge is knowledge
that represents an overview of an environment and therefore contains certain relations
between objects and places. When people have obtained survey knowledge they can
easily locate themselves in the environment. Also they are able to plan new routes not
previously travelled or switch between routes. Unfortunately the development of survey
knowledge with respect to that of landmark or route knowledge is a slow process (Gale et

Theoretical Background 27

al., 1990; Goldin & Thorndyke, 1982; Golledge et al., 1992; Golledge, Ruggles,
Pellegrino, & Gale, 1993; Heft, 1979). A cartographical map can speed up the
development of survey knowledge, but in that case gained knowledge is of less quality
than when gained through direct experience (Darken & Peterson, 2001; Goldin &
Thorndyke, 1982).

Most researchers agree on theories about the development of landmark and route
knowledge. However, when it comes to survey knowledge, there is some discussion. The
main reason for this is probably that there is still little known about how humans exactly
form a representation of their environment. This is also one of the conclusions of
Golledge et al. (1992; 1993) and Gale et al.’s (1990) experiments.

Gale et al. give three reasons why it is hard to gain insight in the acquisition of
survey knowledge. One is pragmatic; it takes a lot of time to have a group of people
travelling around several times in a new environment. The second reason is that it is hard
to test which survey knowledge the participants have gained. The last reason is that the
environment usually cannot be controlled and therefore forces a lot of restrictions upon
the experiment. An exception is a computer simulated environment. But those are only
recently available.

Another reason for uncertainty regarding survey knowledge might be the fact that
one’s representation of the environment is not always as good as some people think it is.
Siegel and White (1975) for instance report that the representation is often fragmented.
Areas of little detail are connected to areas with a lot of detail. Often these areas are even
completely separate. Also they mention the fact that when two locations are at the same
distance of one’s home, the one located downtown is reported closer to home. Besides
that Lynch (1960), Appleyard (1970) and Aginsky et al. (1997) found that when people
draw a map, the topological and projective relations are usually not retained.

The LRS model explains the learning of survey knowledge as an integration of several
routes. In other words after several routes have been learned, these can be integrated into
a map. This kind of map would be defined by Appleyard (1970) as a route map.
Appleyard also mentioned a different kind of map, namely the survey map. The existence
of these two kinds of maps is confirmed by Aginsky et al. (1997).

The route map is a sequential dominant representation. People who use this kind
of map would draw a map based on routes (i.e., lines with certain points along them). The
survey map is a spatial dominant representation. People using this representation draw
maps that resemble regular cartographic maps and include specific landmarks, buildings
and districts.

Aginsky et al. (1997) point out that Siegel and White’s LRS model (1975) first
requires people to obtain route maps and then survey maps. However the results of their
experiment indicate that people can directly form both kinds of maps depending on the
strategy they use for route learning. They define two kinds of strategies. One is a visually
dominated wayfinding strategy and is similar to the theory described in the Route
Knowledge sub-section.

The other strategy is a spatially dominated wayfinding strategy, which relies on a
mental map. People who use this strategy start with a rough map-like representation and
use landmarks to position themselves on their mental map. The idea is that one has a
sense of the distance travelled and one’s change of direction. This information is used to
determine the current location with respect to a previous location and store the relation
between the locations in the mental map. Landmarks are used as additional indicators
where one is on one’s mental map. Since a new environment cannot be mapped before
travelled through, people expand their mental map as they go.

28 Theoretical Background

Aginsky et al. do not suggest that people use only one strategy. It is possible for
people to switch between strategies for different parts of a route. Also, the existence of
two strategies does not exclude Siegel and White’s (1975) idea of route maps preceding
survey maps. Therefore Aginsky et al.’s findings could be used to expand the LRS model.

It is interesting to note that Appleyard (1970) found that of people who lived in an
area for longer than one year forty percent drew spatial dominant maps, while of people
living in an area for less than one year only twenty percent drew spatially dominant maps.
Appleyard also found that of people who travelled by bus only twenty percent drew
coherent maps, whereas almost all of the car travellers drew maps that were coherent and
continuous. In addition, Gale et al. (1990) found that survey knowledge of participants
observing a route through a video representation was inferior to that of participants who
travelled the same route through the real environment. The results of Appleyard and Gale
et al. again stress the importance of active travel.

For survey knowledge the segmentation process, discussed in the Route
Knowledge sub-section, is again very important (Allen, 1981; Lynch, 1960). It helps to
create a structure that is similar to the one used in route knowledge. In route knowledge
the segments exist of one-dimensional parts whereas in survey knowledge they exist of
two-dimensional parts. Thus people do not have a single comprehensive image, but rather
sets of images which are interrelated in a hierarchical structure (Lynch, 1960). The
images can be of different levels, from street level to the levels of district or city
depending on the reasoning level. That means when someone travels through a city they
tend to think of streets and districts, but when travelling across country they tend to think
in terms of cities and highways.

Allen (1981) also describes that the learned route segments can help estimate
distances. These distances can then be used to place points on a map. In Allen’s
experiment, participants developed survey knowledge rather quickly while in Golledge et
al.’s (1992) experiments, although the participants had learned several routes through an
environment, survey knowledge was only partially available. The participants could judge
some relative directions and distances between points, but still made a lot of errors. The
results of Golledge et al. therefore indicate that knowledge of multiple routes alone is not
enough.

There are some differences between the experiments of Allen and Golledge et al..
Golledge et al.’s participants were children of 9- to 12-year-old, while Allen also tested
participants of 18- to 24-year-old. Since Allen also tested older subjects his results might
be more reliable. However, Allen used a series of slides while Golledge et al. used a real
environment, which in turn might make Golledge et al.’s experiment more reliable.

Because of the series of slides the time between nodes was a lot shorter in Allen’s
experiment as well as the overall time of the experiment. Besides these differences, the
environment represented by Allen’s slides was also much more diversified. Golledge et
al. speculate that the differences indicate that it might take more time to learn survey
knowledge when the time between nodes is longer. Also a more distinctive environment
might make the development of survey knowledge easier.

2.2.4 Remarks regarding Spatial Learning
A few remarks can be made about the study of spatial knowledge. First the methodology
used in studying spatial knowledge differs from slide presentations to video presentations
to virtual environments and real environments. Real environments are hard to control, but
are of course the best since they are equal to the real world. Virtual environments come
close to the real world, but lack the richness of detail of the real environment. Virtual
environments, just as video presentations and slide presentations, also lack a sensorimotor

Theoretical Background 29

component, which is important for route learning (Cornell & Hay, 1984; Darken &
Peterson, 2001; Gale et al., 1990; Gibson, 1979; Goldin & Thorndyke, 1982; Siegel &
White, 1975). Video presentation and slide presentations both lack decision making and
slide presentations also lack the sense of time passed during travel. The results obtained
by experiments using these different methodologies therefore have to be studied very
closely to determine their validity.
 A second remark that can be made is about the LRS model. Over the years there
has been some critique. However, the general framework is still widely accepted, though
some modifications or elaborations can be made to it as discussed in the previous sub-
sections. Also some researchers (Aginsky et al., 1997; Colle & Reid, 1998) seem to
disregard the fact that the LRS model is intended for large scale, outdoor environments.

Colle and Reid (1998) describe an alternative model which uses two modes of
learning. One mode is used when inside a single room and the other for between-room
relations. However the latter has several components very similar to components of the
LRS model. The first mode is about the representation of objects within a single room
and explains that learning their spatial relations is a different process than that described
by the LRS model. This is supported by Aginsky et al.. They describe a girl who after
brain damage is still able to name the locations of objects within a room, but not of
landmarks in a city (Clarke et al. 1993 in Aginsky et al., 1997).

A final remark can be made about testing for spatial knowledge. It is very hard,
especially testing for survey knowledge. Usually map drawings are used, but these also
depend on the skill of someone to draw its own spatial knowledge. Also Heft (1979)
suggested that map-like survey knowledge might only be produced when asked for.

30 Theoretical Background

2.3 Simulated Navigational Models
Now that the theory regarding spatial learning has been discussed, we can move on to
some models that implement this theory. As we will see some models focus on
implementation of the theory and others have a more pragmatic approach. The models
that will be discussed are respectively: TOUR (Kuipers, 1978), Qualnav (Kuipers &
Levitt, 1988), NAVIGATOR (Gopal, Klatzky, & Smith, 1989), PLAN (Chown, Kaplan,
& Kortenkamp, 1995) and ARIADNE (Epstein, 1997).

2.3.1 TOUR (Kuipers, 1978)
The TOUR (Kuipers, 1978) model is one of the earliest cognitive models of spatial
learning developed. The environment used in this model is a simulated city block. The
model uses several kinds of descriptions that represent this environment. They contain
several elements like streets and places and, as we will see, they do not have to be
complete, but can be completed using the remaining descriptions. After the model has
learned most of the descriptions that can be learned, this set of descriptions can be seen as
a cognitive map.

2.3.1.1 The Model
The goal of the TOUR model (Kuipers, 1978) is to gather information to form a complete
cognitive map. To accomplish this, the model divides spatial knowledge into five
categories. For each of the categories the model defines a representation for that kind of
knowledge.

1. Routes. Routes are represented by a sequence of actions that take a traveller from
one place to another. The description of a route represents knowledge from three
sources, namely: observations from the environment, recalled versions of
previously travelled routes and intermediate states of the route-planning process.

2. The topological structure of a street network. This structure represents the order of
places along a street and the local geometry of the intersection of two streets. This
information is obtained from the route descriptions.

3. The relative position of two places. This is defined by a vector with respect to a
coordinate frame. The vector is used to indicate the direction of a street with
respect to the coordinate frame. As a result, the angle between two crossing streets
can be obtained by using their vectors.

4. Dividing boundaries. This kind of knowledge is used to separate two regions from
each other. Boundaries can be very useful when planning new routes since they
limit the search space.

5. Regions. Regions are separated by boundaries and contain several elements, such
as places and paths. The relations between these elements are again very useful to
plan new routes.

These five categories are used by three representations, namely: the representations for
knowledge about a particular environment (i.e., declarative knowledge), a description of
the current position of a traveller and representations of inference rules (i.e., procedural
knowledge). The knowledge about a particular environment is divided into the five
categories just described.

Usually information about a particular environment is not complete. To add
information to the representation of this particular environment (i.e., to improve the
cognitive map), inference rules are used. The inference rules use information about the

Theoretical Background 31

current location and actions to complement partial knowledge of one kind with partial
knowledge of another kind. To explain this in more detail, first a few examples of
representations of environmental knowledge will be discussed followed by a description
of the process by which the inference rules add information to the cognitive map.

Route knowledge in the TOUR model consists of a series of TURN and GO-TO
descriptions. The TURN description provides a selection of the next path to follow given
a previous path at the location of an intersection. The GO-TO description describes a
segment from such an intersection to a next intersection.

The TURN description consists of a PLACE, which is the location of the
intersecting two paths, the two paths themselves, directions of the paths, and the angle
between the paths. The GO-TO description consists of two places, the path they are on, a
direction indicating which way of the street the next place is, and the distance between
the two places. A PLACE is a description of an intersection. It contains the name of the
place, the involved paths and the angle between the paths. A PATH description contains
the name of the path and the places on them. As mentioned before the descriptions do not
need to be complete, which means that each of the elements just discussed can be missing
from a description.

The transfer of knowledge can be described as follows. The inference rules can
copy elements from one description to another description, for example from the current
location and a PLACE description to a TURN description. Imagine an action is given to
turn right and the current PLACE is X and on PATH Y. Since a right turn indicates ninety
degrees and the PLACE X contains information that indicates that PATH Y crosses
PATH Z with ninety degrees at PLACE X, all the elements of a TURN description can be
filled. The resulting TURN description will contain PLACE X, PATH Y, PATH Z, the
direction of Y and Z and the angle ninety degrees. In the same way a GO-TO description
could be filled using the current location, which is known, and the location moved to.

A more elaborate example is given in (Kuipers, 1978). The basic idea is that while
moving around in the environment information from the several descriptions that are
incomplete are completed using elements from the remaining descriptions. These
complete descriptions then form the cognitive map. The descriptions can form a cognitive
map because there is an overlap in the descriptions of paths, turns and places. Since the
descriptions contain distances and angles, there is enough information to draw a map
consisting of a network of several streets and places with accurate relative distances.

2.3.1.2 Remarks
It is interesting to note that the TOUR model is modelled after the “production systems”
of Newell and Simon (1972) as Kuipers mentions in (Kuipers, 1977, p. 81). Several
descriptions about the environment can be seen as part of the long-term memory and the
working memory contains descriptions currently operated on by the inference rules. Also
the environmental descriptions are very similar to the syntax of ACT-R chunks discussed
earlier where the elements contained by a description are several slots of such a
description chunk. Also the current location can be seen as the content of the imaginal
buffer.
 Kuipers (1978) also mentions that the angle used in environmental descriptions
cannot contain all 360 degrees, as that would be implausible. Humans are more likely to
be accurate to about eight headings and therefore the 360 degrees are split up in 45 degree
intervals. Also the second category of environment knowledge only mentions topological
representations, but since distances and angles are available in TOUR, metric
representations are also available.

32 Theoretical Background

Unfortunately the TOUR model lacks sensory impressions. The TOUR model
recognizes locations simply because they are labelled. No landmarks are used to identify
a location, nor is there any perception when moving from one place to another. Kuipers
(1978) considers the perception as very important, but also as primitive and opaque.

In more recent work Kuipers (1983; 1988) introduces the concepts of views and
actions. Views are defined as the sensory image received by an observer at a particular
point. It is used to identify particular points so that the appropriate actions can be taken.
Actions are defined as a motor operation that changes the current view by changing the
heading of location of an observer. With views Kuipers again acknowledges that the
sensory impressions of a place are important. Also he admits that in the TOUR model
uses the concept of views only to compare different places.

The analysis of views and actions of Kuipers (1983) is quite interesting. He
defines several combinations of views and actions. A route is described as a series of
them; V0 A1 V1 ... An Vn. Each view is associated with an action and the combination of
both leads to a new view. This idea is defined by Kuipers through the following syntax:
(1) V A and (2) (V A) V’. First knowledge of type (1) is obtained and later on
knowledge of type (2). This is very close to the paired-associate learning theory
previously discussed in the Route Knowledge sub-section. This representation leads to a
possibility that humans are able to take someone somewhere, but are not able to tell them
how to get there themselves. The reason is that the views along the way are needed to
remember the correct action at the place with which the view is associated.

He also investigates a few other combinations of views and actions. One of the
more interesting alternatives is: (1) V V’ and (2) (V V’) A. This representation
causes people to be able to recall the sequence of landmarks encountered during a specific
route, but not always which action is needed to get from one landmark to the next.
 The interactions between views and actions are part of what Kuipers and Levitt
(1988) describe as the sensorimotor interactions level. This is one of four levels
(sensorimotor interaction, procedural behaviour, topological map and metrical map) that
according to Kuipers and Levitt can facilitate robust navigation and mapping systems
(i.e., computational models and robots). The TOUR model is also described in terms of
these four levels, but that description will not be discussed here. Instead the Qualnav
model (Kuipers & Levitt, 1988) will be discussed in terms of the four levels.

2.3.2 Qualnav (Kuipers & Levitt, 1988)
While TOUR (Kuipers, 1978) is developed for an urban environment, the Qualnav
(Kuipers & Levitt, 1988) model is meant for open terrain. Such a terrain might be a
region containing forest, mountains and plains. The environment is simulated and the
model Qualnav navigates in it. Also where the TOUR model almost completely ignores
perception, the Qualnav model focuses on landmarks and perceived relations between
them. Finally TOUR is developed as a cognitive model of spatial learning, while Qualnav
focuses on using the Spatial-Learning theory to create a navigation model for use in a
robot. The Qualnav model will now be discussed in the terms of the four levels
mentioned above (sensorimotor interaction, procedural behaviour, topological map and
metrical map).

2.3.2.1 The Model
The sensorimotor interaction level contains the relations between perception, action and
the environment. The most important element of the sensorimotor interactions level of the
Qualnav model is the viewframe. A viewframe is a data structure that encodes the
observable landmarks around the model at a certain location. The viewframe can

Theoretical Background 33

therefore uniquely identify locations associated with it. The action associated with a
viewframe, is represented by a vector indicating the angle and distance to the next
viewframe.

The landmarks are marked in the simulated environment by the experimenter. The
experimenter can choose points that would resemble a landmark in the real world (e.g., a
mountain top or distinguishable tree). The Qualnav model can perceive landmarks
whenever the robot has a line of sight to it and perceive and store their angle and distance.
To keep the model realistic an error is always added to the angle and distance. Less
realistic, with respect to humans, is the 360 degree view the model has, since humans can
only see what is in front of them.

The procedural behaviour level contains stored and learned procedures defined
in terms of the elements from the sensorimotor level. The procedures facilitate route
finding. In the case of the Qualnav model the most important element at the procedural
level is a route heading. A heading is constructed in a learning phase in which the model
is guided by the heading direction specifier. While moving through the environment
headings and other environmental information is stored by the model for future planning.
 A heading consists of four elements: type, destination goal, a direction function
and termination criteria. There are three kinds of headings: absolute, viewframe and
orientation. These three types will now be discussed in the terms of the remaining three
elements.

The absolute type uses coordinates that correspond to a fixed absolute coordinate
frame. The information used to create this type of heading can come from GPS, dead
reckoning or a previously defined map-like representation. The destination goal of an
absolute heading is a pair of absolute coordinates. The direction function is used to keep
the model on track towards the destination goal. In the case of an absolute heading, the
direction function calculates the distance between the current absolute position and the
destination goal. Finally, the termination criterion is the error of the estimation of the
current absolute position. If the error is too high, the execution of the heading is
terminated. Of course, for all heading types the arrival at the destination goal counts as a
termination criterion as well.

The second heading type is the viewframe heading type. The destination goal is
the viewframe data structure discussed earlier. The angles between the heading vector and
the observed landmarks are calculated and used as the direction function. Another
possibility for the direction function is to maintain visibility of landmarks in the
destination viewframe and use a hill-climbing strategy. The termination criteria again
follow directly from the direction function. For example when the model loses sight of
the landmark or the hill-climbing strategy fails.

The last heading type is the orientation heading type. As a destination goal it has
an orientation region. An orientation region is an area on the ground enclosed by a set of
Landmark-pair boundaries (LPBs). A LPB is a virtual boundary that can be drawn
between two landmarks. It divides an area into two regions, one on either side of the
virtual boundary. A set of these LPBs can define several orientation regions and
determine relations between several landmarks. As just mentioned, one such orientation
region can act as a destination goal. The direction function of an orientation heading type
keeps track whether the model is right, left or between landmarks. The execution of an
orientation heading is terminated when the models loses sight of the landmarks or an LPB
has to be crossed a second time, which means that the model is travelling back.

To reach a certain goal, several algorithms are used to calculate a path and the
needed headings. These algorithms include A* and an algorithm that can use LPBs. The
last algorithm is explained in more detail in (Kuipers & Levitt, 1988). The model operates

34 Theoretical Background

in a loop that contains three stages. The first is to determine a destination goal, the second
to compute and select a current heading and the third and last builds representations of the
environment while travelling.

The metric map level contains a description of the environment in terms such as
places, paths, landmarks and orientation regions. At the metric map level these are linked
by metric relations like distances and angles. The primary data structure of the metric
level in Qualnav has already been discussed and is the viewframe. As discussed, the
viewframe contains distances and angles with respect to landmarks. These values can be
used for all sorts of vector calculations to obtain new relations between landmarks
perceived. From the results of these calculations and the existing viewframes a metric
map can be formed. This map would contain distances and angles of landmarks with
respect to a coordinate frame.

The topological map level also defines relations between elements from the
environment, but this time they are linked by topological relations. Among these relations
are relations of containment, order and connectivity. In the Qualnav model these relations
are derived from the LPBs and the orientation regions defined by them. The topological
map constructed from these elements is a very robust representation and can be used for
powerful path planning. It is powerful, because it is less susceptible to errors, which tend
to accumulate when building a metric map. Also the topological map seems to be a closer
resemblance to the cognitive map of humans than the metric map.

2.3.2.2 Remarks
All four levels have now been discussed and a few interesting remarks can be made. As
Kuipers and Levitt (1988) mention, robot navigation and guidance has traditionally been
quantitative, relying on accurate knowledge of distances, directions and other metric data.
Existing robot navigation techniques include triangulation, ranging sensors, stereo vision,
dead reckoning, GPS, etc. These techniques are usually not very robust and tend to
accumulate errors. Also, robot navigation algorithms usually try to focus on optimizing
the metric information, while common sense or knowledge from human Spatial-Learning
theory can be very useful in such algorithms. This is exactly what Qualnav claims to do.

Although the results of Qualnav seem impressive, it must not be forgotten that
Qualnav uses a simulated environment while the critique of Kuipers and Levitt is directed
at robots that navigate in a real environment. They do realize this, and therefore their
conclusion is that the theory and implementation of Qualnav demonstrates that human
Spatial-Learning theory can be very useful for robust robot navigation models, but much
work still needs to be done.

One particular thing still needs to be done and that is the reliable object detection
and classification by robots. The Qualnav model does not have this problem since it uses
a simulation, but in the real world this is quite hard.

With regard to the Spatial-Learning theory the model captures some interesting
and useful elements such as landmarks and sequences of landmarks and actions to
navigate. However the algorithms used to plan a new route, for example A*, are not
cognitively plausible. In the human mind there are other mechanisms responsible for
finding a new route as described in the Spatial Learning section. The next model that will
be discussed is a model that focuses on which information from the environment is
encoded in the brain and the encoding processes themselves.

2.3.3 NAVIGATOR (Gopal et al., 1989)
NAVIGATOR (Gopal et al., 1989), is based on psychological research towards spatial
learning. Although based on psychological theory the model is not an exact simulation of

Theoretical Background 35

spatial learning. The goal is not to fit data gathered through navigation experiments, but
to gain insight into the acquisition of spatial learning by humans.

NAVIGATOR exists of two modules; the objective environment and the
individual’s subjective representation of that environment. The subjective representation
is gained through the navigation system (NS) that travels through the objective
environment. First the environment module will be discussed and then the NS module.

2.3.3.1 The Environment
The objective environment represents a city block with a grid-like structure of horizontal
and vertical streets. On this grid plots and decision points, in the Spatial Learning section
referred to as nodes, are located.

A plot consists of a location and associated objects, such as a lamppost or a car,
which might be used as landmarks. Each object can have several properties, such as
colour and shape. These properties are called type properties and there are also relational
properties that describe spatial relations between objects. Examples of relational
properties are: left-off, adjacent and near. To differentiate between noticeable and less
noticeable objects a saliency value is given to each object. This way the NS can select
more salient objects over less salient objects, just as humans would. All elements
discussed in this paragraph are described using a predicate calculus-based language.

Decision points can be located at either corners or non-intersecting parts of the
grid. Each decision point is associated with one plot and each plot with one or more
decision points. From the decision points, objects from the associated plot are visible, but
also objects at more distant plots. Given the grid-like structure of the environment, the NS
can perceive information from four directions. All possible information perceived from
one of these directions is called a scene.

These scenes are used to remember actions taken at decision points. In other
words, in the NAVIGATOR model scenes are associated with navigation actions in
accordance with the paired-associate learning theory previously discussed in the Route
Learning section. There are two types of action, one is perceptual and the other is
locomotor. There are four perceptual actions; that is perceiving information from one of
four directions, front, leftward, rightward or behind. After perceiving one of the
directions, a locomotor action could allow the NS to move towards that direction, if
feasible. Such a locomotor action would take the NS to another decision point.

2.3.3.2 The Navigation System
The objective environment just described provides most of the elements used in spatial
learning. The second module of the NAVIGATOR model, the Navigation System,
represents an individual moving through that environment. The NS module consists of
perceptual and memory structures and procedures that operate on these structures. Gopal,
Klatzky en Smith (1989) unfortunately do not describe the procedures in detail. Therefore
only the perceptual and memory structures will be discussed next.

The memory consist of ‘long-term memory’ (LTM) and ‘working memory’
(WM). The WM is seen as a transiently active subset of the LTM and therefore uses
information from the LTM. Besides information from the LTM, the WM also receives
information from the perception system. This information is obtained in two stages. First
salient objects are selected and then salient scenes. A salient object and its properties are
passed through an object filter that tries to match them with propositions in the LTM. If
there is a match and if the total saliency of the object and its properties exceeds a certain
threshold, the object and its properties pass the filter. Using the object filter output, the
scene filter tries to match the objects and their properties with scenes stored in the LTM.

36 Theoretical Background

Again if there is a match and the saliency is above a threshold, the scene is passed. When
a scene has passed the scene filter the objects and their properties in that scene are passed
to the WM.

It is important to note that the initial saliency of objects depend on objects
distance and direction from the observation point. The saliency becomes lower when an
object is further away and also when an object is perceived sideways instead of directly
ahead.

Besides information from the objective environment the perception system can
also receive direct instructions. These instructions can for example guide the NS through
the environment during a learning phase. If an instruction is received to go from A to B, a
link is stored in the LTM between A and B. Another possibility for a link to be stored in
the LTM is when information from two locations is present in the WM at the same time.

Information from the WM is stored in the LTM, but not always. The saliency of
information in the WM decays exponentially over time. Also the capacity of the WM is
limited. If new information enters the WM and the WM is full, the information with the
lowest saliency is removed from the WM. If the current saliency of this removed
information exceeds a threshold it is passed to the LTM. Once in the LTM, the saliency
of the information again begins to decay, influencing its use in the future.

2.3.3.3 Experiments and Remarks
Using the NAVIGATOR model several experiments have been conducted that show
some interesting results. The general setup of the experiment was to change one or more
parameter settings, for example the decay rate of the WM or LTM or the threshold of the
object filter, and observe the number of elements learned. Four types of learned elements
were counted: the number of decision points, the number of objects, the number of
actions, and the number of properties (of objects). The parameters that influence these
counts could have two settings, high or low. High indicates a ‘low performance’ of the
model and low indicates a ‘high performance’ of the model.

One of the results found was that the object filter and scene filter thresholds seem
to influence the number of elements the most. However when the threshold of the object
filter was set to ‘low performance’ the parameter for the scene filter had no longer an
effect on the number of elements learned. This means that the mechanism represented by
the object filter plays an important role in spatial cognition.

The influence of the object filter could however be compensated by a ‘high
performance’ setting of the WM parameters. This indicates that people with a good WM
can compensate for a bottleneck in the initial perception.

Another interesting result was that the saliency of an object always had an effect,
whether the parameters were set to ‘low performance’ or ‘high performance’. This
indicates that people who have poor recognition capabilities, for example mentally
impaired people, can still learn to navigate in a highly salient environment, but would
have trouble in a less salient environment.

Finally the model was run three times in a row to demonstrate that the saliency of
objects and properties approached the saliency value they had in the environment. This
indicates that objects and properties are better remembered after having seen them
multiple times.

A lot of similarities between NAVIGATOR and the ACT-R architecture can be noted.
The predicate calculus-based language is quite similar to the syntax used for ACT-R
chunks. Also the idea of a WM and a LTM are present in both, as well as the decay of
items in the LTM. An interesting difference however is that the initial saliency, called

Theoretical Background 37

activation in ACT-R, is determined by the environment in NAVIGATOR. Each object
has a measure for its distinctiveness and is therefore easier or harder to be remembered.
 Although NAVIGATOR incorporates many elements of general cognition, like
memory and forgetting, it does simplify sensory processing. Just as in most models the
perception of the environment is treated as an opaque subject. It seems that a lot of
interesting work needs to be done in the field of perception before a complete model of
navigation can be created. NAVIGATOR is of course far from complete as it also lacks
mechanisms to create survey knowledge. Nonetheless, NAVIGATOR provides quite
interesting insights into spatial cognition.

The next model that will be discussed is PLAN (Chown et al., 1995) which
attempts to integrate the navigation process into general cognition. In that sense PLAN is
similar to NAVIGATOR, but it is more elaborate.

2.3.4 PLAN (Chown et al., 1995)
PLAN (Chown et al., 1995) has combined several known theories to create a complete
model of cognitive mapping. PLAN adheres to the developmental theory discussed in the
Spatial Learning section and attempts to specify the mechanisms needed to acquire spatial
knowledge. The mechanisms are discussed as four different problems: landmark
identification, direction selection, path selection and environmental abstraction. Although
discussed as four different problems Chown, Kaplan and Kortenkamp acknowledge that
the problems are not separated, but would need to interact to create a complete model.

While in the Spatial Learning section, there were three sub-sections (Landmark,
Route and Survey Knowledge), here there are four. The direction selection and path
selection, however, both belong to the Route Knowledge sub-section. The distinction
between the two is rather interesting and the two are analogue to the “what” and “where”
system identified by research concerning the visual system of humans (for multiple
references see: Chown et al., 1995).

PLAN uses the previous work of NAPS (Network Activity Processing Simulator)
(Levenick, 1991) to build a complete model of cognitive mapping. The problem of path
selection is completely solved using NAPS. The other three problems extend the work
already done in NAPS and therefore NAPS will be discussed first.

2.3.4.1 Path Selection: NAPS
In NAPS nodes in a spreading activation network represent landmarks from an
environment. In this network only neighbouring landmarks are connected, which means
there must be a direct path between two connected landmarks and one landmark should
be visible from the other. A connection between two landmarks therefore represents a
path. Since only the sequence of landmarks is stored only topological information is
available. This information is gained through the “what” part of the visual system.

A route can be found by activating the start node and the goal node. Activation
will start spreading from both nodes and collide at some intermediate node that becomes
a sub-goal. Next the start node and the node representing the sub-goal are activated and
the process is repeated. This way a sequence of landmarks and the paths between them
can be found, together representing a route.

The connections between the nodes do not all have the same strength. A certain
sequence of nodes can therefore have a higher activation than another. Also nodes visited
more frequently than others gain a higher activation. This means that the network will
show a preference over familiar routes, which is consistent with the theory discussed in
the Spatial Learning section.

38 Theoretical Background

NAPS also creates a hierarchy of nodes. Nodes of higher levels can for example
represent complete routes that are represented by several nodes at a lower level.
Searching these higher levels uses the same mechanism as the one described for the lower
level. By using higher levels, it is easier and faster to find longer routes.

Although the hierarchy of nodes is not present in the model developed in this
project, the idea of connections between two landmarks connected by a direct path is.
Two landmarks are stored in a route-element chunk, and multiple of these route chunks
together form a path or route. Since these chunks have an activation value as described in
the ACT-R section, the route-element chunks together show similar characteristics as
the NAPS network. For example, through activation the model also develops a preference
for familiar, more frequently travelled routes. Also, the next point along a route is
determined by the route-element chunk with the highest activation, just as a node with
the highest activation would be selected in the NAPS network.

2.3.4.2 Landmark Identification
NAPS specifies how landmarks are connected, but not how a landmark is recognized and
identified so that the corresponding node can be selected. By PLAN, the landmark
identification problem is treated as a special case of categorization. The idea is that the
sensor input containing a certain object can differ greatly. The sensory data depends for
example on the angle the object is approached at and the lightning conditions it is
observed in. Each of these sensor input variants represents a unique instance of a special
category. This special category is the landmark to be identified.

To tackle the problem of categorization, the prototype theory was developed. This
theory is discussed in more detail in (Chown et al., 1995) and will not be discussed here.
Although the approach just discussed is quite an interesting approach to the landmark
identification problem, it still does not describe what the mechanisms that are needed for
the categorization problem, look like.

2.3.4.3 Direction Selection
Besides landmark identification, NAPS also does not specify how locational relations
between landmarks are obtained. According to PLAN while travelling a route, locational
relations between landmarks are learned automatically. This information is gained
through the “where” part of the visual system mentioned briefly in the introduction to
PLAN. The locational relations give the model an advantage, since it does not always
have to search for the next landmark, but can start moving in the learned direction. As
will be discussed, starting to move in the learned direction is exactly what the model
developed in the current research does. For more detail see “The AIBO-Route model”
chapter.
 When the model travels a route, it stores the landmarks and the associations
between them in NAPS. Similarly, since the next landmark is always visible, the relative
spatial information can be stored. At the same time, the relative spatial information of
other visible landmarks, up to 5 ± 2, can be stored. The relative spatial information is
stored using local directional representations called local maps.

Local maps are created at points where the model would stop and head in a new
direction. This means local maps are not always created at a landmark, but usually
somewhere near it.
 To acquire the relative spatial information a simple elegant method is used. The
relative location of an observed object with respect to one’s body can be derived from the
position of that object in one’s field of view and the angle between one’s head and body.

Theoretical Background 39

Since the body can still have several orientations, a reference point is needed. To solve
that problem a robust local solution is used, instead of a global frame of reference.

The particular direction in which one faces a landmark depends on the landmark
previously passed. Assuming one always uses the same path to reach a landmark the
direction of facing that landmark is always the same (and so is the direction of the body).
That direction can therefore be used as a reference to store the relative direction obtained
from the field of view and the position of the head with respect to the body. Since it is not
plausible to store the direction is exact degrees, intervals of 45 degrees are used. The local
directional information can then be stored in a “local map”.

Analogue to NAPS, which stores the topological relations between landmarks, the
locational relations (i.e., local maps) are also stored in a spreading activation network
called R-Net. Each time a new location is reached and a local map is generated a
connection is created between that local map and the one from the previous location. In a
similar way as NAPS, the R-Net can now be used as a second method to find and travel a
route.

Just as the NAPS network is similar to a collection of route-element chunks, the
collection of relpos chunks, which contain relative directional information, is quite
similar to the R-Net network. Also the selection mechanism is similar since, obviously,
relpos chunks have activations too. The relpos chunk is discussed in more detail in the
“Interfacing AIBO and ACT-R: AIBO-R” and “The AIBO-Route model” chapters.

2.3.4.4 Environmental Abstraction
The environmental abstraction or survey maps have a similar structure as NAPS. The
local maps just discussed, form the building blocks of the survey map. When one has
travelled a route many times, the activation of local maps and the association between
them have become very high. The associations between local maps have a predictive
power that causes one to imagine the next point along the route when one pauses for a
moment at a certain point. The pause is necessary because of the cognitive workload as is
explained next.
 In PLAN such pauses occur naturally at gateways. Gateways are points along a
route that lead to a new perceivable environment that is relatively large. Examples of
gateways are, doors, clearings in a forest or paths emerging from the edge of a forest, and
a pass through the mountains. Such locations usually require a new decision on where to
go and also present several new landmarks. Because a lot of information has to be taken
in and processed, a natural pause occurs during which one can imagine the relations
between several local maps. This process causes a new element, the regional map, which
is a group of local maps.
 Regional maps are conceptualized as abstractions of the group of local maps,
thereby losing some information, which is quite efficient, since the lost information is still
present in the local maps. The regional maps can then be linked together, representing an
even larger area. This process can continue, each time conceptualizing a group of
representations from a lower layer in the network.
 This network with a natural hierarchy provides efficient and natural planning. For
example when navigating through a city one first thinks in global terms moving to the
desired area and navigating more precisely when approaching the goal.

2.3.4.5 Remarks
A few interesting remarks can be made regarding PLAN. It is adheres very closely to the
Spatial-Learning theory discussed earlier and seems cognitively very plausible. It does
not however use a description with the same level of detail as NAVIGATOR. Also PLAN

40 Theoretical Background

as just discussed was not implemented and NAVIGATOR was. PLAN has been
implemented as R-PLAN on a robot, but the document discussing R-PLAN was listed as
submitted and never published. R-PLAN therefore has not been discussed here.
 An example of the adherence of PLAN to the Spatial-Learning theory is the
segmentation discussed with respect to both route knowledge and survey knowledge. The
hierarchical network representations of NAPS and regional maps seem to be an ideal
implementation of the segmentation phenomenon, both in structure and in function.
 With respect to landmarks, PLAN is somewhat brief. Chown, Kaplan and
Kortenkamp (1995) do mention, however, that the landmark part of NAVIGATOR might
be a useful way of representation. What all models seem to be lacking however, is the
perception process by which objects in the environment and their saliency are coded.
PLAN provides only a brief online on how to do that. This process remains a very
difficult and opaque subject, but is essential to all representations of spatial knowledge.
 The local maps are quite an interesting way to store spatial relations. Since they
rely on local information only they are very robust. At each decision point a local map is
created with respect to nearby objects, therefore errors cannot accumulate since there is
no position to be kept with respect to a frame of reference. This is quite different than
most models and especially robot navigation models that usually use GPS, dead
reckoning or some other absolute navigation system to create absolute cartographic-like
maps.

The two models, NAVIGATOR and PLAN, both stay very close to the cognitive
theory. To show the contrast with other less cognitive plausible models, one last model
will now briefly be discussed, called ARIADNE (Epstein, 1997). As we will see it has a
more pragmatic approach to solve the navigation problem.

2.3.5 ARIADNE (Epstein, 1997)
The purpose of ARIADNE (Epstein, 1997) is not to simulate the cognitive processes of
cognitive mapping but to simulate a robot that learns the features of an environment. Its
goal is to provide a model with robust navigation that is resilient to changes. Also the
performance has to increase over time. The environment navigated in is not known before
hand, but its useful features have to be learned while navigating in it. These features
include doors and extended walls.
 The environment is a grid of squares, for example fourteen by fourteen squares.
Of these squares thirty percent are randomly marked as an obstruction. Since the squares
are marked randomly, all sorts of patterns can emerge. In this environment two kind of
features are identified, facilitators and obstructers. The facilitators support efficient travel
whereas the obstructers make it more difficult to travel.

There are three facilitators: gates, bases and corners. The gates provide a passage
from one quadrant (the grid is divided in four equally sized quadrants) to another. The
bases are locations that are frequently used in routes and could be seen as important
nodes. The corners are squares at which a new direction has to be chosen. The bases and
corners together create a hierarchy similar to the one that arises from the segmentation
process discussed in the Route Knowledge sub-section.

There are four obstructers: corridors, chambers, bottles and barriers. A corridor is
a path with the width of one square. The path may have a dead end or emerge in a new
area. Chambers are small, irregular, almost confined spaces of several squares and have
one access/exit point. Bottles are almost similar to chambers but are not identified during
travel but afterwards. Finally barriers are estimations of walls based on an irregular
pattern of obstructed squares. The idea is that such a linear approximation cannot be
passed, except at one or both ends.

Theoretical Background 41

The facilitators and obstructers are used by reasoning processes divided into three
tiers or layers, each having several advisors (i.e., functions). The three tiers are consulted
in turns from the first to the third and work together to reach a decision. The first tier,
however, can veto a move. This seems logical since the first tier represents simple actions
that immediately reach the goal or prevent actions that make it almost impossible to reach
the goal. The second tier provides advisors that can solve small immediate problems the
model faces, such as obstacle avoidance. The third and last tier essentially provides
advisors that facilitate commonsense path-finding.

ARIADNE was tested in a random environment of 20x20 squares. It first went
through twenty learning runs and then through ten test runs. This was done for four
difficulty levels. Of these problems ARIADNE was able to solve about ninety-five
percent. ARIADNE was also tested in non-random environments that represent a
warehouse, a furnished room and an office space. The warehouse and furnished room
categories were all solved, but the office space category presented a challenge. Several
problems in the office space were not solved (no percentage was reported in Epstein,
1997).

2.3.5.1 Remarks
It is obvious that ARIADNE is not a cognitive model, nor does it claim to be. It does not
use landmarks, but does use the idea of nodes or decision points. Epstein (1997) also
mentions that the facilitators and obstructers used in the model represent elements from
the real world that humans also use to represent the environment. They are more abstract
and general then direct perception. How they are linked to direct perception is however
not discussed.

Another similarity can be noted between ARIADNE and humans: several of the
advisors in the three tiers represent typical human behaviour. Examples of these advisors
are: hurry, which simulates anxiety, adventure, which simulates curiosity, and plod,
which simulates tentativeness.

It might be interesting to investigate how the algorithms used in ARIADNE can
be used in a plausible way in the cognitive models discussed earlier, since Epstein (1997)
claims that the mazes solved by ARIADNE are much harder than those solved by for
example, TOUR (Kuipers, 1978), Qualnav (Kuipers & Levitt, 1988) and PLAN (Chown
et al., 1995).

2.3.6 Remarks regarding Simulated Navigational Models
Several models have been discussed: TOUR (Kuipers, 1978), NAVIGATOR (Gopal et
al., 1989), and PLAN (Chown et al., 1995) which are all cognitive models focused to gain
more insight into human spatial cognition, and Qualnav (Kuipers & Levitt, 1988) and
ARIADNE (Epstein, 1997), which are more focused on application and have solutions
inspired by human spatial cognition. Since the model developed in the current research
was implemented on a robot, the next section will discuss some other navigational
algorithms that were implemented on a robot.

42 Theoretical Background

2.4 Mobile Robot Navigational Models
Some models of Spatial-Learning theory have been used for robots, for example the
Qualnav model (Kuipers & Levitt, 1988) discussed in the previous section or the NX
Robot (also discussed in: Kuipers & Levitt, 1988). However, these models are both
simulations of robots that operate in a simulated environment. This section is about real
robots that operate in the real world and deal with problems that come along with it.

Unfortunately, the spatial learning models were not implemented on real robots,
but there are models implemented on real robots that show similarities with Spatial-
Learning theory. A review of map-based navigation by Filliat and Meyer (2003) identifies
two kinds of maps used by mobile robots: topological maps and metric maps. These kind
of spatial representations were also identified by Kuipers and Levitt (1988) and are
similar to respectively route maps and survey maps (Appleyard, 1970) as described in the
Spatial Learning section.

Another distinction made by Filliat and Meyer (2003) is that usually robots are
used to generate the maps or that the maps are known in advance and the robots have to
navigate using them. There are also algorithms that do both and they are known as
Simultaneous Localization and Mapping (SLAM) algorithms. These algorithms are
usually very mathematical and therefore very different from the navigational models
based on human spatial learning.

Besides the focus on topological or metric mapping and on map building or map
usage there is also a category that focuses on the recognition of elements from the
environment. This problem is very hard and usually provides enough of a challenge,
without considering further use of the recognized elements.

Since combining perception, mapping and navigation is very hard it could be
useful to build models inspired by humans or animals and indeed some models do (e.g.,
Franz, Schölkopf, Mallot, & Bülthoff, 1998; Smith & Husbands, 2002). The approach
used in such models is known as the behaviour based approach. However, as mentioned
several times in the Simulated Navigational Models section, cognitive models of spatial
learning often treat recognition of landmarks as an opaque subject. This is impossible
when building models for real robots. Since the recognition of landmarks is always the
first step in a cognitive model of spatial learning and the rest of the model heavily
depends on it, it is very hard to use these models as a basis for models intended for
mobile robots. Robot models, therefore usually have a more pragmatic approach.

To illustrate the approach used in robotics, three models will be discussed
(Madhavan, Fregene, & Parker, 2004; Mataric, 1992; Owen & Nehmzow, 1998). These
models will also illustrate the problems of perception, map building and map usage. The
first two models use topological maps and the third uses a metric map. In addition, the
discussion of these mobile robot models will mention some similarities and differences
with regard to the Spatial-Learning theory and the models already discussed.

2.4.1 Nomad 200 (Owen & Nehmzow, 1998)
Owen and Nehmzow (1998) have build a navigation system that builds a topological map
based on a process of self-organization of the robot’s sensory data. They argue for a
topological map, since it results in a compact representation in which only distinct
locations are stored. Also searching a topological map can be done using proven
algorithms like A* and Best-First Search. Also Brooks (1985) argues that topological
maps can be more robust than metric maps since they handle noise better, which is a
common problem when dealing with robots. Since information is stored locally in
topological maps, errors due to noise do not accumulate. Nevertheless there are several

Theoretical Background 43

reasons why metric maps are very useful and therefore should be used in combination
with topological maps in an ideal scenario.

Topological maps do however have an important problem, which is the problem
of perceptual aliasing. Perceptual aliasing is the problem that distinct locations have
identical sensor readings. These locations can therefore not be distinguished from one
another based on sensor readings alone. A solution is to increase the resolution of the
used sensors or add a different sensor. Although this approach reduces the perceptual
ambiguity, it does not solve it. The solution to this problem used by Owen and Nehmzow
(1998) will be discussed later.

As mentioned before, the navigation system uses an approach of self-organization. This
has two advantages. One is that the systems itself determines which landmarks it uses,
which is useful since it is hard for humans to imagine how the world appears to the robot
through its sensors. This is especially hard for humans, since the Nomad 200 only uses its
sonar sensors and compass and no vision. Secondly, since the self-organization process
uses a clustering technique, which enables generalization over perceptions, robust, noise
tolerant landmark detection is possible. It is interesting to note that this approach seems to
implement the idea to treat landmark identification as a problem of categorization as
discussed in PLAN (Chown et al., 1995).

The clustering technique used is the Restricted Coulomb Energy (RCE) Classifier
(Reilly et al., 1982 in Owen & Nehmzow, 1998). The classifier uses a representation
vector (R-vector) to represent each class (i.e., landmark) and needs training to determine
each R-vector. When an input pattern from the sensors of the robot is presented to the
classifier it compares the pattern to each R-vector. The most similar R-vector is labelled
“winner” if the similarity falls within a predetermined threshold. If the similarity does not
fall within the threshold a new R-vector is created using the input pattern. This means that
the nearest neighbour law determines the boundaries between classes.

Before the input pattern is compared to the R-vector it is transformed into an input
vector. This transformation transforms the input of sixteen sonar sensors to a normalized
input vector. The similarity between this input vector and an R-vector is then determined
by the dot product.

Since the input pattern from the sonar sensors depend on the orientation of the
robot, compensation is needed for different orientations. The sonar sensors are all located
on the top of the robot on a “turret” that is able to turn. The solution is therefore quite
simple; the turret is aligned with the compass north. As a result, the sensor input at a
certain location is always the same regardless of the orientation of the robot.

Finally a solution must be found for the fluctuating readings of the sonar sensors.
The solution to this problem is to use a pass filter. When the readings of the sensors
change and the change is above a threshold, they have to be above the threshold for a
certain number of time steps to be accepted as a new reading. This filters out small
fluctuations over a longer period and large fluctuations over a very small period (i.e.,
spikes).

The landmarks represented by the R-vectors are stored in a vector map. This map
is build in the learning phase in which the robot is led around by an operator. The
operator can either let the robot move forward or make it turn. When the perception of the
robot changes it takes note of the distance travelled since the previous perception. To
decrease the chance a landmark is missed in subsequent visits, a new perception must be
“visible” over a minimum distance before it is stored as a landmark in the vector map.

By keeping track of distances and angles, the robot is able to store links between
the landmarks that contain the distance between them and the angle between the north

44 Theoretical Background

and a virtual line between two landmarks. It also stores the “size” of the landmark as it
keeps track of the distance the landmark is “visible”. A particular landmark therefore
contains its size and a list of connected landmarks containing their identities, distances
and angles.

As mentioned before, there is a problem with the use of topological maps, in this
case a vector map, namely perceptual aliasing. When a landmark is encountered that has
the same readings as a different landmark, no action is taken when it was expected. For
example, when a landmark is followed to the next landmark, it is known which next
landmark will be encountered. Therefore when an expected landmark is ambiguous, the
ambiguity is ignored.

If however the robot encounters an ambiguous landmark that was not expected, it
would explore the environment. Exploration in this instance would involve following
each link to other landmarks that are known to have a connection to the ambiguous
landmark. If all landmarks that are found were expected, the ambiguous landmark was
already known and nothing happens. Otherwise the ambiguous landmark is added to the
vector map. This solution to the perceptual aliasing problem leads to incremental map
building, which is useful for obvious reasons.

Once the vector map is large enough, it can be used to plan new routes. This
planning is done by “Best-First Search”, which is used to determine the shortest path
between current location and goal location. The found path can then be travelled by
moving from one landmark to the next. If a landmark was not found, the robot travels
back to the previous landmark and plans a new route from there.

2.4.1.1 Remarks
Experiments with the described model were conducted in a laboratory in which a few
boxes were placed. The results show that the robot was always able to find its destination
goal. In some runs however, the robot did not travel the shortest path because it failed to
detect a landmark and had to plan an alternate route.

In some other environment, failing to detect a landmark could be a bigger
problem. For example, when there is one chain of landmarks from one area to another in
an environment, failing to detect a landmark could not result in an alternative route. In
such an example the robot would not be able to complete its task.

A solution might be that the path following algorithm is adapted to switch to a
more focused search when the robot fails to detect a landmark. Another possibility is to
add vision to the robot. Vision could help guide the robot towards landmarks. Guiding the
robot by vision also makes it possible to use a coarser representation for the angles stored
in the vector map. The robot would have a rough indication in which direction to travel
and could then be guided by vision. With respect to the Spatial-Learning theory, such a
solution would seem more plausible.

Also vision, although a very complex modality, would enable the use of
landmarks that seem natural to humans. Since humans design a large part of the world,
recognizing landmarks, like tables, doors or crossroads, could potentially increase the
navigating skills of the robot.

To conclude the discussion of the model implemented on the Nomad 200 robot, it
worth mentioning that the algorithm uses some elements from the Spatial-Learning theory
and the navigational models discussed. The model, for example, uses the idea of
landmarks and the association between them represented in angles and identity. Besides
that the model uses declarative knowledge as identified in the Spatial Learning section
like, landmarks, nodes and paths. However, the acquisition and usage (i.e., procedural
knowledge) of that knowledge is entirely pragmatic as is common in robotics. Also less

Theoretical Background 45

plausible with respect to Spatial-Learning theory is the lack of vision, which is something
that is essential for a complete cognitive model of spatial learning.

2.4.2 Toto (Mataric, 1992)
The model for the robot Toto developed by Mataric (1992) is similar to the model just
discussed, as it also uses landmarks and a topological map. Also, Toto uses sonar sensors
and a compass. Despite these similarities there are several interesting differences, which
will be discussed in this sub-section.
 Toto uses the subsumption architecture (Brooks, 1991) as a basis for its model.
The subsumption architecture is a hierarchical parallel-layered architecture. The lower
layers represent processes of a low level like object avoidance and wall following, and
higher layers represent more complex behaviour, like path planning. These layers
influence each other, where the higher levels subsume the lower levels. For example, the
decision to move to the goal takes into account the decision of the obstacle avoidance
layer.

In the case of Toto, there are three layers: basic navigation, landmark detection
and map-related computation (map construction, map update, and path planning). By
using the distance readings from the sonar sensors, the basic navigation layer implements
behaviours like obstacle avoidance and boundary tracing. These behaviours emerge from
four basic behaviours:

• Stroll: this behaviour causes the robot to safely move forward as it moves the

robot backwards when an object in front is approached to a distance considered
dangerous.

• Avoid: the robot turns in the opposite direction from an obstacle that is too close,
yet not so close that it is considered dangerous. If the obstacle is directly in front,
the default direction, to the left, is chosen.

• Align: if an object is detected in the rear-lateral direction of the robot within a
certain distance, the robot makes a small turn in that direction. This causes the
direction of travel to align with the direction of wall-like structures.

• Correct: straight and convex boundaries can be followed by the using the above
three behaviours. To prevent the robot from disorientating when a sharp corner is
encountered, the behaviour correct is used. It detects these sharp corners by a
large difference between two sensors on the each lateral side of the robot. When
the front-most sensor of these two returns a large value and the rear-most of the
two a relatively small value, a sharp corner is detected and the robot turns in the
direction of the detected corner.

Now that the robot can safely wander around by following wall-like structures it can use
the second layer, landmark detection, to detect landmarks. In total, there are four
landmark types, which follow naturally from the boundary tracing behaviour: left walls,
right walls, corridors and a default landmark. The default landmark corresponds to
irregular boundaries that cannot be classified as one of the other three landmarks.

Left walls, right walls and corridors are detected by using two confidence
counters, one for the left side of the robot and one for the right. Whenever the robot
repeatedly detects short readings on a side and the compass reading is stable, the
corresponding confidence counter is increased. When one of the confidence counters
exceeds a certain threshold a left or right wall is detected and the counter is reset. If both
confidence counters exceed the thresholds a corridor is detected. The thresholds represent

46 Theoretical Background

the minimum length of the landmarks to be detected and were set to the maximum length
of non-landmark obstacles in the environment.

Since one of the four landmarks is always detected the robot detects a series of
landmarks that together form a continuous string of boundaries. As a result, one landmark
is always followed by another. When comparing this strategy to the Spatial-Learning
theory, it seems that landmarks have become paths, instead of the landmarks being
connected by paths. While this might work for indoor environments it is doubtful it would
work for outside large-scale environments.

The landmarks are linked together in a topological map, in this case a graph,
which is computed by the third layer of Toto’s subsumption architecture. Each node of
the graph contains four elements: the landmark type, the averaged compass bearing of the
landmark, the length of the landmark and a pair of coordinates. The length of a landmark
is derived from the times the threshold counter is reset during detection of the same
landmark. The pair of coordinates is determined by summing the vectors representing
landmarks (the angle and length of a landmark form a vector).

Each time a landmark is detected its four elements are compared to those of the
landmarks stored in the graph. If the four elements are the same, it is a match, if not, the
landmark is added and a link is formed between the new landmark and the previous one.
A margin is used when comparing the distance, compass bearing and coordinates to solve
the problem of noise.

Since Toto uses a topological map, it has to deal with the problem of perceptual
aliasing. The problem is solved in two ways. First if a landmark was expected based on
the topological map (i.e., the landmark corresponds to a landmark connected to the
previous landmark) the new landmark is matched to the expected landmark. Second,
through the coordinates, each landmark has a rough estimate of position. While two
landmarks might have the same landmark type, average compass bearing and length, it is
almost impossible for two landmarks to have the same coordinates. The coordinates,
together with the expectation, therefore solve the problem of perceptual aliasing.

The third layer of Toto’s subsumption architecture also performs path planning. The path
planning is done by a variation of activation spreading. The goal node repeatedly sends
out a call that reaches each node in the network. While the call is spreading through the
nodes representing the landmarks, the length of these landmarks is summed up. This way
when the call reaches the start node, a rough representation of the spatial distance to the
goal is known. The call can reach the start node from all nodes that are connected to it.
Based on the estimation of spatial distance, the shortest path is chosen and the robot
moves to the selected node. That node again receives a call and the process is repeated
until the goal is reached. Note that the spreading activation discussed here is very
different from the spreading activation discussed in the ACT-R section.

The spreading activation also makes it possible for the robot to reach the goal if it
were placed at some other location, since each node receives the call from the goal node.
Also when the robot has tried to reach a node, but fails because, for example, the path has
become blocked, the current node can receive the goal’s call from another node. After a
fixed time period the link between the current node and the one the robot tried to reach is
removed and the other node is used to reach the goal.

2.4.2.1 Remarks
A few remarks can be made with respect to the Toto robot. The ability to detect failure
and adapt the topological map accordingly makes it possible for Toto to navigate in a

Theoretical Background 47

changing world. Also, Toto’s first layer makes sure it does not bump into anything and
can wander around safely.
 Although the map is topological it also contains metric data and in further
research a metric map could be derived from the topological map. This metric map could
then be used to calculate shortcuts. The metric map can also be better interpreted by
humans and other robots, which makes reuse of the map possible.
 An important drawback of the landmarks used by Toto is that they only work in
indoor environments, since they represent wall-like structures. In an outside large-scale
environment the map would probably consist primarily of the default landmark, which
represents irregular boundaries. To extend the model to navigate outside, other landmarks
would have to be added and also vision. Some benefits of vision have already been
mentioned in the remarks regarding the robot of Owen and Nehmzow (1998). Thus,
compared to a robot with a model that should be able to perform topological mapping in a
real outside environment, Toto is still quite basic.

As mentioned briefly, the landmarks used by Toto differ somewhat from the
landmarks described in the Spatial Learning section. The way they are used, however, is
similar. Also, the architecture of Toto has some other cognitive plausible components.
For example, the basic navigation layer represents the human’s basic ability to wander
around an environment without getting hurt. Also, planning is a “higher” cognitive
process. This is represented by the fact that a higher layer in Toto represents the planning
process.

The spreading activation algorithm implemented here is similar to the idea that the
spreading activation of the goal node in combination with the start node will result in a
recall of the next node along the path towards the goal. This process is similar to NAPS,
which is described in the section that discusses PLAN (Chown et al., 1995).

In short, the architecture of Toto shows some similarities with the theory of spatial
learning and the navigational models. By adding vision and adapting Toto’s architecture,
for example the landmarks that Toto uses, Toto could provide a start for a cognitive
navigational model implemented on a robot.

2.4.3 Augustus and Theodosius (Madhavan et al., 2004)
While the previous two models discussed use a topological map and a single robot,
Madhavan, Fregene and Parker developed an algorithm that builds a metric map, which
will be discussed later in this section, by using two robots (Augustus and Theodosius) that
cooperate. This model will illustrate the difference between a metric map and a
topological map. Also it uses Extended Kalman Filtering (EKF), which is explained later.
Although the approach used in this model is quite common in robotics, it differs greatly
from the previous two models and the models discussed in the Simulated Navigational
Models section.

The two robots used are identical and have several different sensor types: odometry,
DGPS, vision, compass, inclinometer and laser rangefinders. These sensors are used to
determine the position of the robots in an outdoor environment while mapping it. The
goal of the robots is to create a three-dimensional map in which objects and the profile of
the terrain are represented. This map is constructed by using a three-dimensional
coordinate frame. To be able to build this map the robots must first be able to localize
themselves with respect to the coordination frame.

The localization of the robots is done by using EKF. EKF employed for the
localization of robots requires two models (Maybeck, 1979 in Madhavan et al., 2004): a
kinematic model and a sensor model. The kinematic model uses the odometry sensors of

48 Theoretical Background

the robot to determine its forward and angular speed. These speeds are combined with an
experimentally determined variance to get an estimate of the robot’s location and
orientation and a margin of error for these values. Basic laws of physics are used to derive
the position and orientation from the forward and angular speed.

The sensor model uses DGPS and compass information to get a second estimate
of the robot’s location and orientation. The uncertainty of these values is again
represented by variances. The variance of the compass is determined experimentally and
the uncertainty of the DGPS data is inversely proportional to the number of satellites in
view. The second estimate of position and orientation, together with their variances, is
used to supplement the first estimate via the predict-observe-validate-update cycle.

In the predict phase of the cycle the kinematic model is used to predict a location
and orientation, and the error covariance matrix. To determine the error covariance matrix
the values of this matrix from the previous cycle are also used (i.e., it is recursive). In the
observe-validate phase the covariance matrix together with the data from the sensor
model is used to determine whether the data of the sensor model (i.e., the second
estimate) should be used to update the estimates from the kinematic model (i.e., the first
estimate). This means for example, that when the uncertainty of the DGPS data with
respect to that of the kinematic model is too high, the data is not used to update the
estimate of the kinematic model.

The final phase of the cycle, the update phase, calculates the new position and
orientation of the robot based on the kinematic model and, if passed by the observe-
validate phase, the sensor model. The error covariance matrix is updated too, so that it
can be used by the next cycle.

Since Madhavan, Fregene and Parker (2004) use two robots, the relative position
of one robot can help estimate the position and orientation of the other robot. By using the
robot’s camera or laser range finders it is possible to estimate the bearing and distance to
the other robot. The other robot also sends it position and orientation by wireless
communication. The information received and the bearing and distance to the other robot
can then be used in the same way as the data from the sensor model to update the
estimation from the kinematic model.

Now that the localization process has been discussed, the mapping process can be
described. The mapping process takes place via four main processes. The first step is to
determine the distances to several interesting features observed by the camera. The
distances to the features are calculated by using the optical flow from the camera. Next,
the most interesting feature is selected as the object to move to.

The second step involves moving towards the object. While moving toward the
object, the vertical displacement values obtained by using the inclinometer and the DGPS
are used to determine the vertical displacement of the robot. The data obtained from both
sensors are weighted according to their certainty. For example, if the DGPS has many
satellites in view, its measurement is weighted heavier than that of the inclinometer. By
combining the vertical displacement of the robot and the data from the camera, a profile
of the observed terrain can be determined. Once the robot has reached the object, it avoids
it by turning away. The robot then searches for a new object.

During the third step the data obtained upon reaching the object is stored in a
terrain matrix, which is the three-dimensional coordinate frame mentioned earlier. If there
are small, unknown areas within the data, these areas are filled using cubic interpolation.
Objects that form obstacles are represented by extremely high values for the vertical axis
of the terrain matrix.

Since the obtained data is stored in a global frame of reference, the maps of the
individual robots can be combined to create a larger map of the environment. This is done

Theoretical Background 49

in the fourth and final step at a central base station somewhere near the robots. It is
possible that several areas have been visited and mapped by both robots and/or more than
once by the same robot. When an area is visited multiple times the confidence of such an
area in the representation of the mapped terrain is increased.

2.4.3.1 Remarks
Several differences between the first two models and this model can be noted. As
mentioned this model uses an absolute metric map, which makes it possible to merge
maps from multiple robots. Something that is a lot harder when relative maps or
topological maps are used. In absolute metric maps the coordinates of an object indicate
which object it is, but other solutions suffer from the symbol-grounding problem.
 As we have seen the model uses landmarks to navigate the environment and while
doing so, the robot maps it. However, the use of landmarks differs completely from the
use described in the previous two models and the models discussed in the Simulated
Navigational Models section. The difference is that landmarks are not used to represent a
route, but are part of a larger representation of the environment.
 Although the metric map created provides a lot of information, it is too much
information for path planning. It is only relevant whether there is a path between two
locations. It might be useful to know how much effort it costs to travel between the two
locations, but there are simpler methods to represent the effort than describing the exact
profile of the terrain.
 The metric map is also very static, since the map is created at the base station,
only when one of the robots has reached an object. As a result the environment might
change while the robot is navigating toward a new object. This could be dangerous for the
robot.
 From a cognitive point of view, especially the detection of features in the
environment using the camera is interesting, since that is the bottleneck of most of the
models in the Simulated Navigational Models section. The EKF localization method is
very powerful, but probably too powerful to resemble human localization capabilities.
Other points that are lacking from a cognitive point of view are procedural knowledge
and declarative knowledge. Their representations do not resemble those described in the
ACT-R, Spatial Learning and Simulated Navigational Models sections at all.
 In short, the model described has a very pragmatic low-level approach and
similarities between Spatial-Learning theory and the model are based on coincidence. It
might be the case that, for example, the image processing and the localization process
represent low level processes in the human brain, but that is speculative. However, as
already mentioned, the image processing might be interesting to implement in a cognitive
model to facilitate reliable visual landmark detection.

50 Theoretical Background

2.5 Final Remarks regarding the Theoretical Background
The previous section about mobile robot navigation models is the second last section of
this chapter. In this section the most important aspects of the Theoretical Background will
be highlighted and some additional remarks will be made.

The chapter started with explaining the relevant components of ACT-R which is
necessary for the reader to understand the model developed in the current research. ACT-
R provides a framework in which several components of the mind have been combined.
Therefore, by using ACT-R, the navigational model inherits important elements, and
thereby constraints, of human cognition. The constraints are useful when developing a
plausible cognitive model of human route learning. That is why ACT-R is used in the
current research.

How humans exactly learn routes has been discussed in the Spatial Learning
section following the ACT-R section. Spatial learning takes place in three interwoven
stages in which landmark, route and survey knowledge is learned. The most important
aspects of the Spatial Learning section are the different strategies of learning a route of
which the most important is the paired-associate learning. Almost as important is the
discussion about the need for active travel in the process of acquiring accurate spatial
knowledge. The importance of active travel also forces researchers to examine the results
of several experiments very carefully, since not all include active travel or try to simulate
it. Somewhat less important, but also very interesting is the segmentation process that
takes place on both the level of route knowledge as that of survey knowledge. Finally the
discussion of landmarks can be very important when developing a plausible visual
perception component of a navigational model.

The section following the Spatial-Learning theory discussed simulated models
implementing that theory. Each model implemented different aspects of spatial learning
and none is complete. The first model discussed, TOUR, shows some interesting
similarities with ACT-R like chunks and the operations on them. Also NAVIGATOR has
implemented aspects of cognition that are also present in ACT-R like activation, decay,
and memory structures.

Qualnav demonstrates that common sense from Spatial-Learning theory could be
beneficial for robots, but has proven this only in simulation. As with all the simulated
navigational models the visual perception component of spatial learning is absent in
Qualnav. This visual perception component is probably the most important aspect that the
models lack. Once features (e.g., landmarks) from the environment are extracted
NAVIGATOR provides interesting mechanisms on how to process these features through
their saliency. Besides that, PLAN has specified in detail how directional information of
these features could be obtained. In addition, to approach the problem of environmental
feature identification as a problem of categorization, as proposed by the PLAN model,
could also be very useful.

Storing the features and their properties and using them for learning is adequately
modelled in most of the models discussed. Especially the mechanisms of the memory
structure of NAVIGATOR together with the hierarchical way of storing information as in
the PLAN model could be very useful when building a plausible navigational model, as
they simulate learning and forgetting, and segmentation of knowledge respectively.
 As a complete model of navigation should be able to move around in the real
world, some mobile robot navigational models were discussed in the previous section.
They illustrate how Spatial-Learning theory could be used with real robots in a real-world
environment. The discussion of such models showed that the models become a lot more
pragmatic and that specific mechanisms of cognition (e.g., memory, learning and

Theoretical Background 51

forgetting, procedural and declarative knowledge) fade away. They also showed that
accurate and useful (visual) perception is hard when it comes to robots.

It is interesting to note that the just mentioned pragmatic shift is not only observed
when moving from simulation to real-world robotics, but also when moving from theory
to simulation. In the Spatial Learning section many aspects of spatial cognition have been
discussed. However when the spatial-knowledge theory is implemented in simulated
navigational models, some aspects of spatial learning again seem to fade and be replaced
by more pragmatic approaches.

To conclude the theoretical background it is interesting to note that many aspects
necessary to build a robot that navigates in the real world just as humans do, are known.
Among these aspects is psychological knowledge about how humans acquire spatial
knowledge, how this knowledge can be modelled in simulation, and what the capabilities
are of real robots. The most important missing element among these aspects is the
reliable, plausible visual perception of the real world.

In the next chapter the interface between ACT-R and the AIBO will be described.
This interface will be used by a cognitive navigation model, which is described in the
chapter following the description of the interface. That model is similar to the models
described in the Simulated Navigational Models section, but is, unlike those models, also
implemented on a robot.

52 Theoretical Background

Interfacing AIBO and ACT-R: AIBO-R 53

3. Interfacing AIBO and ACT-R: AIBO-R
As mentioned before, the cognitive architecture used in this project is ACT-R (Anderson,
2005; Anderson et al., 2004). ACT-R by default does not have a way to interact with the
AIBO. Therefore additional components are needed that interface the AIBO with ACT-R.
One of the components is the Universal Real-time Behaviour Interface (URBI). URBI
provides a scripting language that can be used to control complex systems, such as the
AIBO. Although URBI shortens the gap between ACT-R and AIBO, it does not close it,
because ACT-R cannot directly communicate with URBI. Therefore, ACT-R was
expanded with two additional modules referred to as the roboperceptual module and
robomotorical module. ACT-R with all the additional components that make it possible
for ACT-R to interact with the AIBO will be referred to as the AIBO-R architecture.
 Next, a short overview of the AIBO-R architecture will be given. The overview
will start with URBI and work its way up to ACT-R. URBI consists of a server part and a
client part. The URBI Server runs locally on the AIBO and communicates through
wireless LAN with the URBI Client that runs on a PC. Although URBI provides a client,
a new client was developed for the current research. The new URBI Client is written in
Lisp and provides functions for any Lisp program to send information to and receive
information from the URBI Server. A component called URBI Commands was developed
to provide several lisp functions that use the URBI Client to interact with the AIBO.
URBI Commands is used by the two modules that have been added to ACT-R:
roboperceptual and robomotorical. Through these modules an ACT-R model can interact
with the AIBO. An overview of the AIBO-R architecture is given in Figure 3.1. After
having discussed the AIBO-R architecture in detail, a final section will discuss which
processes should be implemented at what level of the AIBO-R architecture.

Figure 3.1:
An overview of the AIBO-R architecture.

URBI
Client

URBI
Commands

URBI
Server

AIBO

PC

ACT-R

Existing ACT-R Components

Wireless
Lan

Robo-
motorical
Module

Robo-
perceptual
Module

URBI.u

54 Interfacing AIBO and ACT-R: AIBO-R

3.1 URBI
The programming language provided by Sony to program the AIBO is called OPEN-R. In
OPEN-R all the joints of the AIBO have to be programmed individually and therefore it
requires some effort to program basic behaviours like walking and turning. URBI,
however, creates a layer on top of OPEN-R that makes it relatively easy to program
complex behaviours (e.g., walking, turning, tracking and searching). This is one of the
reasons URBI was used in the current research. Another reason is the client/server
architecture of URBI. Such architecture provides a good basis for an interface with a
different program, such as ACT-R.
 To communicate with the URBI server, the developers of URBI provided a client
called URBIlab. However, since ACT-R is written in Lisp, it was decided to implement
new URBI client in Lisp as a part of the interface between URBI and ACT-R.

3.2 URBI Client
URBI makes use of a socket connection between server and client. To send data from
Lisp to the URBI server a few default Lisp functions are used. However, because of the
time delay in the communication between the AIBO and the computer, receiving data
proved difficult. Therefore a new function was written that waits until there is something
to receive, thereby solving the time delay problem. This function can only be used is if
one is sure that there will be something to receive, for example, after a request for
information was sent.

The URBI client also provides functions to load the additional URBI functions
onto the AIBO. To accomplish this, an external file (i.e., URBI.u) containing the
additional URBI code is read and then sent to the URBI server.

In short, when using Lisp the URBI Client can be used to send data to and receive
data from the URBI Server. Besides that, it makes it easy to load additional URBI code
onto the AIBO.

3.3 URBI Commands
To keep a good overview of the AIBO-R architecture the URBI Commands component
was developed. This component defines lisp functions that call specific URBI functions
through the URBI Client. Some of these functions already existed in URBI, but a few
additional functions were needed to add certain behaviours to the AIBO-R architecture.
These additional URBI functions are located in a separate file, URBI.u, which contains
all the additional URBI code needed.
 URBI Commands therefore depends completely on the contents of URBI.u. If one
wants to add additional functionality to the AIBO, one can write a new lisp function using
the existing code in URBI.u. If one however wants to add a completely new behaviour
that is not a combination of the existing URBI functions, one can add new code to the
URBI.u file and use this in the new lisp function. The lisp function can then be used by
the roboperceptual module and the robomotorical module.

The functions defined in URBI Commands can for example be used to make the
AIBO look around for a certain colour, track a certain colour, walk towards a colour,
request sensor information or just walk around. Also, for each behaviour, there is a stop
function so that a behaviour can be stopped easily when needed. These stopping functions
are needed because ACT-R can start certain behaviours that last for a while. After ACT-R
has started such a behaviour, it might receive information that indicates that this
behaviour should be stopped. An ACT-R model can then call the stopping functions
through the roboperceptual module and/or the robomotorical module.

Interfacing AIBO and ACT-R: AIBO-R 55

Besides that, URBI Commands keeps track whether the legs of the AIBO are busy
performing any action or that they are free to execute a command. The same applies to
the head of the AIBO. URBI Commands also keeps track of angle the AIBO has turned.
As a result, it is always known which direction the AIBO is facing.

Now there are several Lisp functions available that can be used by the
roboperceptual module and the robomotorical module. The advantage of using URBI
Commands, instead of integrating the functions into the modules, is that all functions can
easily be tested outside the context of ACT-R. In fact any Lisp program can use the
components described so far to interact with the AIBO. Testing at this level ensures that a
higher level, for example ACT-R, is not causing a potential problem, keeping debugging
manageable.

3.4 Expanding ACT-R
As discussed earlier in the ACT-R section of the theoretical background, ACT-R uses
several modules that interact with the central production system through their buffers.
The existing ACT-R modules obviously do not provide the possibility to interact with the
AIBO. Therefore additional modules and associated buffers are needed. Since the central
production system interacts with the modules through chunks in their buffers, the
additional modules also need to define new chunk-types.
 Two additional modules are created analogously to the visual module and the
manual module respectively: the roboperceptual module and the robomotorical module.
These new modules inherit the rules for production compilation from the visual and
manual module. As a result the production rules using the roboperceptual or
robomotorical module compile in the same way as the rules using the visual or manual
module respectively. In general that means that those rules do not compile.

The robomotorical module has one buffer, just as the manual module, and just as
the visual module (Anderson et al., 2004), the roboperceptual module has two buffers. As
mentioned in the ACT-R section the two buffers of the visual module represent the
“what” and “where” pathways. The same applies to the buffers of the robovisual module
where the robovisual buffer represents the “what” pathway and robovisual-location buffer
the “where” pathway. As explained in the ACT-R section, using two buffers makes
parallel processing possible. As a result, the robovisual and robovisual-location buffers
can operate in parallel, just as the “what” and “where” pathways do.
 The idea of using two systems for perception also resembles the strategy used by
the PLAN model (Chown et al., 1995) discussed in the Simulated Navigational Models
section. More or less analogue to PLAN, the “what” system, represented by the
robovisual buffer, enables the acquisition of topological knowledge and the “where”
system, represented by the robovisual-location buffer, that of metric knowledge.

Since any number of modules can be added to ACT-R, one might wonder why
two modules have been added and not more or just one. Sticking as close as possible to
the existing ACT-R architecture, as mentioned before, is one good reason. The other
reason is that there are two processes: perceiving the environment and moving around in
it. Both processes can operate in parallel, since perceiving is done using the AIBO’s head
and walking around by using AIBO’s legs. Processing of production rules in the central
production system of ACT-R is a serial process, but a single production rule can match
multiple buffers as described in the ACT-R section. Thus by using two modules with their
associated buffers it is possible to perceive the environment and at the same time move
around in it.

It is interesting to note that the NAVIGATOR (Gopal et al., 1989) model uses two
actions types, perception and locomotor, which are used respectively to perceive the

56 Interfacing AIBO and ACT-R: AIBO-R

environment and move around in it. This is a similar distinction as the distinction between
the roboperceptual and robomotorical modules.

3.4.1 Roboperceptual Module
As just mentioned, there are two roboperceptual buffers that can be used by an ACT-R
model. To keep track of the environment around the AIBO, the robovisual-location buffer
can be used to request information about the environment. To do this, one can use the
following lines in the right-hand side of a production rule:

+robovisual-location>
 ISA observation
 colour nil / =specificcolour

This request fills the buffer with an observation chunk that can be used by a subsequent
production rule. The observation chunk contains several slots that contain information
about the environment:

• The distance of an object in front of the AIBO. Two sensors are used for this
purpose. One is for close range, 5.7 – 50 centimetres and one is for further away
20 – 150 centimetres. The values of these sensors will be placed in slots called
distance-near and distance, respectively.

• Whether an object is visible or not. If the request for information contained a
value for the colour slot only objects of that colour are considered. The request
would translate as “look for something of colour X”. If the colour slot does not
contain a value (i.e., the value of slot colour is nil) all objects are considered.
Such a request would translate as “look for something”. When an object is visible
the slot object-visible will get the value t, otherwise nil.

• The colour of the visible object. If the request contained a value for the colour
slot, this will not change. If nil, the colour of the visible object is used for the
colour slot and if multiple objects are visible the colour of a randomly selected
object is used.1

• Whether an object of a specific colour is near or not. A combination of the
distance sensor and number of visible pixels of the specific colour is used to
determine a Boolean value, t or nil. This value is then stored in the slot called
object-near.

• The number of visible pixels of the colour of the object that was returned. This is
stored in a slot called pixels. In the current research this slot is not used. It can,
however, be used by other models that use the AIBO-R architecture.

• The x and y degrees of the object of interests centre relative to the centre of the
camera image. These values are stored in slots called x-degree and y-degree
respectively. Just as the pixels slot, these slots are not used in the current
research.

Not all colour values can be used. Only the colours defined in the URBI.u file are
available. These colours are defined by creating a colourmap, which is a subspace of the
three dimensional YUV colour space. If one adds a different colour by creating a new

1 Although selecting an object at random is not plausible from a cognitive point of view, it is sufficient for
the current research. Which object should be selected if multiple objects are visible is discussed further in
the chapter. Future Work

Interfacing AIBO and ACT-R: AIBO-R 57

colourmap, the URBI Commands component needs to be expanded to incorporate the
new colour, otherwise when searching for any object, objects of the new colour are
disregarded.

The visual-location buffer can also be used to
determine the relative direction of a perceived
object with respect to a previous location and
the current location (Figure 3.2). Since
humans are not able to determine angles to a
one-degree precision, the eight main points of
a compass are used, that is: N, NE, E, SE, S,
SW, W and NW. This is also in agreement
with the bias people have towards straight,
forty-five and ninety degree angles as
proposed in the PLAN model (Chown et al.,
1995).

The way the direction of objects is obtained is also similar to the way described
when discussing PLAN. In AIBO-R, the direction of objects is also derived from the
position of the head relative to the body and the position of the body itself. There was,
however, no need to analyse the position of the object in the visual field, since the robot is
programmed to focus on objects that are encoded. As a result these objects are always in
the centre of the field of view.

To determine the direction of a new object and create a relpos (relative position) chunk,
which represents this information, the following request can be used in the right-hand
side of a production rule:

+robovisual-location>
 ISA relpos
 next =newobjectcolour
 previous =previous
 current =currentlocation

The robovisual-location buffer is then filled with a new chunk containing the information
from the request and one extra slot called angle. This slot contains the relative direction
of the new object. The new object is stored in the next slot, the current object in the
current slot and the previously visited object in the previous slot.

It is important to note that the angle represented, represents the true angle only
when the robot is standing in line with the previous location and the current location. This
is however not necessary for the relpos chunk to fulfil its function. As long as each time
the AIBO walks between two specific locations, the second is approached from the same
directions as the times before, the relpos chunk correctly indicates the direction of the
next location. As a result, the relpos chunk can even be used in a static world where
objects need to be avoided. In a more dynamic world, however, the idea of the relpos
chunk might fail. Nevertheless, for the model developed in the current research, which is
discussed in the next chapter, the relpos representation is satisfactory.

Up to now the robovisual-location buffer has been discussed, which can only be used for
spatial information. However, if an object of a certain colour is found and its information
is located in the robovisual-location buffer, one can use the robovisual buffer to classify
the object (i.e., request the “what” information). For example when a red thing is

Figure 3.2:
The relative direction of a new object.

previous current location

new object

relative direction

58 Interfacing AIBO and ACT-R: AIBO-R

observed the robovisual buffer can be used to classify this red thing as a waypoint. To do
this one can make the following request through the robovisual buffer:

+robovisual>
 ISA object
 colour =newobjectcolour

After the request, the object that is being attended by the AIBO is classified. Ideally a
complex pattern recognition algorithm would classify the object and return the class. This
class information could then be used to form a chunk representing the object. However
such a pattern recognition algorithm is beyond the scope of the current project. Therefore
a simplification was made: any object attended must be a waypoint and which waypoint it
is, depends only on the colour.

A chunk, which is of the object chunk-type, containing colour and class
information, is placed in the robovisual buffer. More about the classification of objects
can be read in the chapter Future Work.

A few more requests can be made through the robovisual buffer. These requests can be
used to make the AIBO look around or track an object. Whether these requests should be
handled by the robovisual, robovisual-location or even the robomotorical buffer is open
for discussion. On the one hand, moving the head are motor commands, on the other,
head movements are closely related to perception. The existing visual module handles all
perception, including where to look and where to focus the attention of the model,
through the visual buffer. Therefore it seems like a good idea to let the roboperceptual
module also control the searching and tracking through the robovisual buffer. Another,
more pragmatic reason, is that it is easier to implement and maintain control of searching
and tracking behaviour from the roboperceptual module. Finally, within the
roboperceptual module the choice has been made for the robovisual buffer instead of the
robovisual-location buffer, because it should be possible to make a request for
information about the environment through the robovisual-location buffer in parallel to
the request of starting or stopping the searching or tracking behaviour.
 To start searching, tracking a specific colour or stop either, one can make the
following requests through the robovisual buffer respectively:

+robovisual>
 ISA search

+robovisual>
 ISA track
 colour =specificcolour

+robovisual>
 ISA stop

A conflict does not arise when humans switch between two tasks using the same body
part. This is not so trivial when working with robots. If robots are instructed to
continuously perform a certain action, they need a specific command to stop. Therefore
roboperceptual module automatically stops the previous behaviour when switching
between searching and tracking if necessary. For example, when a model is searching for
a certain object and the object is perceived upon which the model decides to track it, the
model does not have to stop the searching behaviour. Vice versa, when the model is

Interfacing AIBO and ACT-R: AIBO-R 59

tracking an object and loses sight of it, it also does not have to stop the tracking behaviour
before starting the searching behaviour.
 The AIBO searches for objects by slowly moving its head continuously from left
to right and back. While the head moves, a model can use the robovisual-location buffer
to request information about the environment through the observation chunk. The
tracking behaviour is a colour blob tracking behaviour. It simply moves the head of the
AIBO, and thereby the focus of the camera, towards the centre of a colour blob. Which
pixels belong to the colour blob is defined by the colour map discussed earlier.

Finally a few queries can be made to the roboperceptual module through the robovisual
buffer. One can check whether the AIBO is currently searching or tracking or is doing
both or neither. To do this use the following lines in the left-hand side of a production
rule:

?robovisual>
 state searching / tracking / busy / free

These queries are useful because the states can be used as an indicator in what phase a
model is. This helps building models that rely on the possible values of the goal chunk as
little as possible. The details of this convention were discussed in the ACT-R section
when discussing the “minimal control principle” (Taatgen, 2007).

3.4.2 Robomotorical Module
The robomotorical module can be used to make the AIBO walk around. This is done
using the buffer also called robomotorical. The most important request that can be made
to this buffer is:

+robomotorical>
 ISA move-to-object
 colour =colourofobject

This request makes the AIBO walk towards an object of the specified colour. The AIBO
walks to the object in segments of seventy centimetres and corrects its direction at the
beginning of each segment. The AIBO will only start moving if the object is visible. If
the AIBO were to lose sight of the object it will stop when it has finished the current
segment. On a lower level a fail-safe could be implemented to prevent the AIBO from
bumping into things. However since the AIBO moves rather slowly this implementation
was omitted. To stop the AIBO moving towards an object through the model, use the
request:

+robomotorical>
 ISA stop-move-to-object

It is also possible to move the AIBO to a specific location instead of an object. Three
slots can be used to determine the destination. These slots are forward, sideways and
turn. The first two must be given in meters and the third in degrees. For turn it is also
possible to use one of the eight main points of a compass as a value. The AIBO moves the
amount of meters provided in the forward and sideways slots. At the same time it will
make a turn of the amount of degrees given, relative to the original orientation. A move
request would look like this:

60 Interfacing AIBO and ACT-R: AIBO-R

+robomotorical>
 ISA walk
 forward =forwardvalue
 sideways =sidewaysvalue
 turn =turnvalue

To stop such a move use:

+robomotorical>
 ISA stop-walk

If one simply wants to move the AIBO seventy centimetres in a certain direction and also
change the orientation towards that direction, the request using walk-to-angle can be
used:

+robomotorical>
 ISA walk-to-angle
 angle =anglevalue

For the angle slot the same values as for the turn slot can be used. The move-to-angle
behaviour can be stopped in the same way as the walk behaviour, but stop-move-to-
angle should be used.

The robomotorical module also keeps track of the state of the legs of the AIBO. One can
use a query to check whether the AIBO is using its legs or not:

?robomotorical>
 state busy / free

3.5 A discussion of levels
While building an interface between ACT-R and AIBO one has to make choices which
component will process what information and execute what actions. One of the obvious
choices is that the filtering of camera images is done at a low level by URBI and not by
ACT-R. In this section “low level” basically indicates all levels other than ACT-R or its
additional modules while “high level” indicates the level of ACT-R.

A more complicated choice is the tracking of an object. Should ACT-R get
information of the objects location and then move the head of the AIBO towards the
object? Or should this be a low level automated process which ACT-R only needs to start
and stop? The choice was made for the latter since there are no conscious choices made
about tracking, while busy tracking, except for starting or stopping this behaviour. It is
almost like moving an arm from left to right, there is a lot of motor control from the
brain, but there is barely any higher cognitive control.

On the other hand if one has to track an object while computing a complex
multiplication one would expect a drop in the performance of both tasks. This would
mean that tracking an object does imply higher cognitive control. Therefore the question
arises “how does such a simple behaviour as tracking an object have an impact on central
cognition?” For now, this remains an open question.

There is however also a pragmatic reason to let the tracking of an object be a low
level automated process: the time it takes to send information from the AIBO to ACT-R
and then for ACT-R to respond with a motor command which is then executed by URBI,

Interfacing AIBO and ACT-R: AIBO-R 61

takes too long to let the tracking process be handled by ACT-R. This would result in a
very shaky and unreliable tracking behaviour.
 Another example of a complicated choice is searching. The behaviour is very
similar to tracking when the amount of lower and higher cognitive control is compared.
The searching behaviour is currently implemented as a periodic movement of AIBO’s
head from left to right. However when considering humans searching a certain space,
they keep track of where they have searched and where they have not. Also when
searching, humans use their experience and knowledge to choose places to search. This
would be impossible if searching would be a low level process.

Therefore not only starting and stopping the AIBO’s search behaviour should be
controlled by ACT-R, as it is now, but also the places where to look. The existing ACT-R
visual module already has this possibility, but the roboperceptual module would have to
be expanded to include the higher level of control over the searching behaviour. This has
not yet been done, as it is beyond the scope of the current.

As mentioned in the Robomotorical Module section, AIBO moves in segments of
seventy centimetres. If AIBO loses sight of the object it is walking towards, it stops at the
end of the current segment. This is done at a low level by URBI. One could think of a
scenario where an object is temporarily hidden because something is passing between the
AIBO and the object. ACT-R could reason that this is temporarily and decide to keep
moving. In the current situation, where URBI handles this decision, AIBO stops and then
moves on as soon as the object becomes visible again. This is however not the way one
would expect a human to react. To make it possible for the AIBO to move on in such a
scenario, ACT-R should have more control over the walking behaviour than it has now.

In short, when expanding ACT-R to interact with the real world using a robot,
many hard choices have to be made. Also there is a strong connection between motor
control and information control at a low level and at a high level. If there is one thing the
current project has shown, it is that ACT-R is a long way from moving around in the real
world as humans do. However, there is no reason to become pessimistic, as for now it
certainly seems possible.

62 Interfacing AIBO and ACT-R: AIBO-R

The AIBO-Route model 63

4. The AIBO-Route model
Now that the interface between AIBO and ACT-R has been discussed the model that uses
the interface can be discussed. As mentioned, the model is a model of the human route-
learning process. First a general description of the AIBO-Route model will be given. In
the subsequent sections the components mentioned in the general description will be
discussed in more detail.

4.1 General Description
In Figure 4.1 an overview of the AIBO-Route model is given. As can be seen from the
figure, the model is divided into three horizontal layers. The first layer is called the
Decision Making layer. In this layer two competing strategies determine how the model
continues to the second layer, which is called the Searching and Processing layer. The
Searching and Processing layer contains processes that search and classify objects. These
processes are divided into three groups as indicated by the regions labelled General
Search, Processing, and Specific Search. Once an object is classified and determined to
be interesting, the model progresses to the third and last layer: Tracking and Moving. This
layer enables the robot to track the classified object and move to it. Once the object is
reached the model returns to the first layer. The process repeats until the goal object (i.e.,
the destination) is reached.

Of the default modules of ACT-R the AIBO-Route model uses the goal,
declarative and imaginal module. Obviously, besides these modules, the model also uses
the roboperceptual and robomotorical module. The goal module is used to keep track of
the general goal, which is the final destination, and the last two visited locations. The
imaginal module is used to hold on to a sub-goal, which is an intermediate destination.
The declarative module is used to hold declarative knowledge of the route. The most
important chunks stored in the declarative module are of chunk-type object, route-
element and relpos. Together these chunks form the building blocks of a route.

A chunk of type object has two slots, which hold an object’s colour and the class
it belongs to. Although the model could reason with any number of classes, only one class
is necessary for the AIBO-Route model. More classes could be implemented, but since
that would require complex recognition processes, it is beyond the scope of the current
project. Therefore, in the current research only the “waypoint” class is implemented. The
possibility of multiple classes is discussed in the Future Work chapter. The usage of the
object chunk-type is discussed in the Processing part of the second layer.

The route-element chunk-type represents a route segment as described in the
Spatial Learning section. It contains two “route” objects and a goal object, which is the
destination of the route. The two “route” objects in the route-element chunk represent
landmarks between which exists a direct path, that is, it is possible to travel from the first
landmark to the second. Similarities between the representation using route-element
chunks and the NAPS network of PLAN have already been mentioned when discussing
PLAN in the Theoretical Background chapter.

Since the classification of objects is simplified and there is only one class (i.e.,
waypoint), the objects can be represented by their colour. The slots of the route-
element chunk-type therefore do not contain the objects themselves, but only their
colours. Given that the AIBO-R architecture only uses the colour property of an object to
search and track it, representing objects by their colour is sufficient.

64 The AIBO-Route model

Fi
gu

re
 4

.1
:

Th
e

A
IB

O
-R

ou
te

 m
od

el
.

The AIBO-Route model 65

Chunks of type relpos have already been discussed in the chapter “Interfacing
AIBO and ACT-R: AIBO-R” and contain local relative directional information. Also in
the Theoretical Background chapter similarities between relpos chunks and the R-Net
representation of PLAN have already been mentioned. However, at this point an
additional remark can be made.

As has been discussed, the relpos chunk contains the previous and current
location. It also contains a next location and its direction relative to the previous and
current location. The previous and current locations together form a route segment. The
relpos chunk therefore represents an association between a route segment and the
direction of the next location. This is similar to the association between landmark and
change of direction described in the Spatial Learning section (paired-associate learning).
However, since the perception of a landmark depends on the angle of approach and
therefore on one’s previous location, the AIBO-Route model uses an association between
route segment and change of direction.

The route-element and relpos chunks together form a route. When several
routes have been learned the sum of these chunks can be seen as a topological map, which
has been discussed in the Theoretical Background chapter. Also it is interesting to note
that the route-element and relpos chunks are very similar to, respectively, the GO-TO
and TURN description of the TOUR model (Kuipers, 1978).

The route-element and relpos chunks are learned in the second and third layer
of the model and when learned can be used in the first layer. The three layers will now be
discussed in more detail, starting with the first layer.

4.2 Decision Making Layer
In the theoretical background several experiments using slide shows or video
presentations have been discussed. In these and also some other experiments, the
participant of the experiment is led around an environment. By observing the
environment the participant learns the route. Then, after learning the route, when the
participant has to navigate it, he or she might not always know what the next landmark
along the route is. In such a scenario a backup strategy is needed. This is one reason why
the AIBO-Route model is designed with two strategies. The other reason is that the two
strategies make it possible to learn a route without leading the model around as is done
with the participants of the experiments described.
 The first strategy is to simply look for what is out there in the world. This strategy
starts with the production rule start-perception (see Figure 4.1):

 IF the goal is a route and

all other buffers are empty and free
 THEN request an observation chunk through the robovisual-location buffer

As a result of this rule the robovisual-location buffer will be filled with an observation
chunk containing information about the environment. The exact content is described in
the previous chapter. The content of this chunk will determine whether the Searching and
Processing layer continues with searching the environment or classifying an object. If the
observation chunk indicates that no object is visible, the model continues searching and if
the observation chunk indicates that an object is visible, the model continues classifying
the object. The content of the chunk can therefore be seen as a condition on how to
proceed and is represented by the condition diamond “Any Object Perceived?” which is
shown in Figure 4.1 directly below the start-perception rule.

66 The AIBO-Route model

The second strategy is more complex and uses information from declarative
memory. The idea behind this strategy is to try to remember the next landmark along a
route given the current location. If the model remembers the next landmark it tries to
remember its direction and starts moving in that direction. The strategy starts with the
rule start-route-element-retrieval:

 IF the goal is a route and the current location is known and

all other buffers are empty and free
THEN request a route-element chunk of which the next object is not the current object and the

goal is the goal of the route in the goal buffer

If the model fails to remember the next landmark, the declarative module will returns an
error. In that case the model switches to the first strategy through the rule route-
element-retrieval-failed-start-perception (see). If, however, the
request succeeds, a route-element chunk will be placed in the retrieval buffer and the
rule route-element-retrieval-success-retrieve-relpos will match:

Figure 4.1

 IF a route-element chunk is retrieved
 THEN hold the route-element as the sub-goal in the imaginal buffer and

request a relpos chunk

Since the model knows what specific object is next on the route it can use this
information by keeping it in the imaginal buffer to specifically search for this object when
it is not immediately perceived. This will be discussed in more detail in the discussion of
the second layer.

Just as the retrieval of the route-element chunk, the retrieval of the relpos
chunk either fails or succeeds. If the retrieval fails the model will request an
observation chunk in the same way as the start-perception rule, but this time the
request will be limited to observations containing the colour of the retrieved object (i.e.,
the next object on the route). Depending on the returned information the model continues
classifying the next object or starts searching for it. These possibilities are represented by
the “Specific Object Perceived?” condition diamond.

If the retrieval of the relpos chunk is successful the model can use the
information contained in it to move and turn the AIBO in the direction of the next
landmark. This is done by the rule relpos-retrieval-success-turn-to-waypoint:

 IF a relpos chunk is retrieved and

the imaginal buffer holds a route-element chunk
 THEN hold the route-element as the sub-goal in the imaginal buffer and

use the walk-to-angle command through the robomotorical buffer to turn and move
towards the next object and
request an observation chunk limited to those holding the colour of the next object

After this rule has fired the model continues in a similar way as after the failure of
retrieving a relpos chunk, that is, it again depends on the specific object being perceived
or not, whether the model continues searching or classifying it. At this point it might be
helpful for the reader to look at Figure 4.1 to fully grasp the flow of the model in the first
layer.

Since the condition (i.e., if part) of the rules start-perception and start-route-
element-retrieval are identical, they are in competition. Both are rules that represent
relative general behaviour that is quite common to humans. Therefore, they both have a
history of experience, which is simulated by setting the initial successes, failures and

The AIBO-Route model 67

efforts of the production rules to certain values. By doing so, the utilities of these
production rules are more or less fixed.

In the ACT-R section the process of product compilation has been discussed. This
is the process by which two rules merge into one new rule that has the effect of both.
Since some of the production rules belonging to the second strategy can merge into new
rules, these new rules add to the already existing competition between start-
perception and start-route-element-retrieval. Which rules can merge in what
way is illustrated in . Figure 4.2

Rule one, start-route-element-retrieval, is merged into rules five and seven and
indirectly, through rule five, into rule eight. Rule five, seven and eight therefore have the
same condition (i.e., if part) as the start-route-element-retrieval rule. Since they
have the same condition they, together with the start-perception rule, also compete
with the start-route-element-retrieval rule. Rule six only competes with rule two.

1
start-route-element-
retrieval

2
route-element-retrieval-
success-retrieve-relpos

3
relpos-retrieval-success-
turn-to-waypoint

5
New-1-2

6
New-2-3

7
New-1-6

8
New-3-5

Figure 4.2:
Production compilation in the AIBO-Route model.

 By merging two original rules the chunk that they requested and retrieved is
incorporated into a new rule. The compiled rules in the centre, five and six, respectively
eliminate the retrieval of a route-element chunk and that of a relpos chunk. The rules
to the right, seven and eight, eliminate the retrieval of both chunk-types and therefore are
identical. Since there may be several landmarks along a route, there are also several
route-element and relpos chunks. These chunks are merged into the new production
rules and therefore there may be multiple instances of each of the new production rules.
 As described in the ACT-R section, of the rules that compete with each other, the
rule with the highest utility is chosen. The utility of the original rules, start-perception
and start-route-element-retrieval, is more or less fixed as mentioned earlier. Over
time the new production rules can win from the old rules thereby speeding up the
deliberation process of the model after having reached a landmark and before moving on
to the next. More on the creation and development of the new rules is discussed in the
Experiment and Results chapter. The Searching and Processing layer that will be
discussed next determines what happens when the Decision Making layer is done.

4.3 Searching and Processing Layer
The Searching and Processing Layer consists of three parts, General Search, Processing,
and Specific Search. From the first strategy discussed in the previous section, the model
usually progresses to the part in the second layer labelled General Search and incidentally
progresses directly to the Processing part. The second strategy causes the model to

68 The AIBO-Route model

continue to either the Processing or Specific Search part. The General Search part will
now be discussed first.

4.3.1 General Search
This part of the model consists of four production rules that together are able to search for
any object. The searching starts with the rule no-object-perceived-start-search:

 IF no object is perceived and

the model is not searching
THEN start searching and
 request an observation chunk holding the colour of any object and
 start counting using the temporal module

The temporal module has not yet been discussed as it is not part of the default ACT-R
architecture. It has been developed by Taatgen, Van Rijn, and Anderson (2004) to add
temporal reasoning to the existing ACT-R architecture. By adding a temporal module and
its associated temporal buffer to ACT-R, models using ACT-R are given the possibility to
reason about time.

The temporal module is used by the AIBO-Route model because when searching
in front of the AIBO, it is possible that no object is found because the object is behind the
AIBO. Therefore when a certain amount of time has been spent searching, the AIBO
turns around. The searching behaviour is implemented by the searching production rule:

 IF no object is perceived and

the model is searching
THEN request an observation chunk holding the colour of any object and
 continue searching

Since the searching behaviour that pans the head of the AIBO from left to right and back,
is implemented at a low level in URBI, the model only needs to continuously request an
observation chunk to gain knowledge about the environment from different directions.
The searching production rule therefore will keep firing2, until the counter of the
temporal module has reached a certain threshold or an object is perceived. If the threshold
is reached, the search-failure-turn-around production rule will fire:

 IF no object is perceived and

the model is searching and
a certain amount of time has passed

THEN turn around using the walk command through the robomotorical buffer and
 set the turned-around slot of the route chunk in the goal buffer to t (true) and

request an observation chunk holding the colour of any object and
 stop searching

How exactly humans keep track of where they have searched or whether they have turned
around, remains an open question. In the AIBO-Route model the pragmatic solution of
adding a slot to the goal chunk is chosen, since it does not really increases or decreases
the model’s plausibility. The models plausibility is not really altered, because for a human
it is trivial to remember whether one has turned around to search behind him. Since it is
so trivial it does not affect the cognitive workload or mental processing speed. The model

Figure 4.12 Since the production rule repeatedly fires, it is marked as recursive in . Instead of continuously

fire a production rule, buffer stuffing could also be a solution. In that case the robovisual-location buffer
would be filled bottom-up in the event the observation changes. However due to technical constraints (i.e.,
time delay in the wireless communication) this has not been implemented.

The AIBO-Route model 69

has to keep track of whether it has turned around or not, because otherwise it would keep
on turning around. After the model has turned around the rule no-object-perceived-
start-search will fire again unless an object is perceived.

It is possible that the model still does not find an object after having turned
around. In that case a final production rule called second-search-failed-stop, which
is indicated as a failure to reach the goal, fires:

 IF no object is perceived and

the model is searching and
a certain amount of time has passed and
the turned-around slot contains t

THEN stop searching and
 clear the goal buffer

After this rule has fired the model will stop, since the model is lost. It is lost because the
model cannot find any objects to which it can travel. Usually, however, the model will
find an object in front or behind the AIBO. If an object is found the model switches from
the General Search part to the Processing part.

An object might be perceived directly from the Decision Making layer or after the
search-failure-turn-around rule has fired. In that case, the model was not searching
which is indicated by a solid arrow from the “Any Object Perceived?” condition diamond
to the object-perceived-determine-class rule of the Processing part. An object
might also be perceived directly after the rule no-object-perceived-start-search has
fired or after the searching rule fired. If that happens the model also switches to the
object-perceived-determine-class rule, but keeps on searching too, which is
indicated by the dashed arrow pointing from the searching and no-object-perceived-
start-search rules to the object-perceived-determine-class rule (see Figure 4.1).
The Processing part of the second Layer will now be discussed.

4.3.2 Processing
Basically the Processing part of the second layer classifies objects. When an object has
been perceived, its colour is known, but to what class it belongs is still unknown. The
class has first to be determined so that it is known exactly at which object the model is
focussing. The model can then compare the classified object to the landmark it is
currently at and the landmark it has passed before that. These landmarks will be referred
to as the current object and the previous object respectively. If the classified object is
neither of those, it must be a new landmark and therefore interesting to navigate to.

The classification of an object perceived by the General Search part is started by
the object-perceived-determine-class rule:

IF an object is perceived and
it is unknown which landmark should be next (i.e., the imaginal buffer is empty) and
the model is not tracking the object

THEN request a classification of the object through the robovisual buffer and
store the relative direction of the object in a relpos chunk through the robovisual-
location buffer

The roboperceptual module then classifies the perceived object as a waypoint and places
an object chunk, holding the colour and class of the object, in the visual buffer. The
object chunk can then be used by subsequent production rules that determine whether
the object is the same as the current or previous object or that it is an interesting object.

70 The AIBO-Route model

In the previous sub-section it was described that the model could enter the
Processing part either while searching or not searching. When a production rule
determines that the classified object is either the current or the previous object and the
model is not searching, it should start searching for any object. This is exactly what the
rules current-waypoint-classified-start-search and previous-waypoint-
classified-start-search do. The current-waypoint-classified-start-search
rule looks like:

IF if the classified object is the same as the current object and
the model is not searching

THEN start searching and
 request an observation chunk holding the colour of any object (general search) and
 start counting using the temporal module

The previous-waypoint-classified-start-search rule is the same except for that
the if part compares the classified object to the previous object.

It is also possible that the classified object is matched while the model was still
searching. In that case the model should simply continue searching. This is done by the
current-waypoint-classified-continue-search and previous-waypoint-
classified-continue-search rules. These rules are similar to the rules that start the
search in the current context except that they do not start searching and counting, but only
request an observation chunk holding the colour of any object.

When the model enters the Processing part through the first strategy of the Decision
Making layer or the General Search part of the second layer, it starts with the object-
perceived-determine-class rule. However if the model enters the Processing part
through the second strategy or the Specific Search part, it starts with the specific-
object-perceived-determine-class rule:

IF an specific object is perceived and
it is known which landmark should be next (i.e., the imaginal buffer contains a route-
element chunk) and
the model is not tracking the object

THEN request a classification of the object through the robovisual buffer and
store the relative direction of the object in a relpos chunk through the robovisual-
location buffer and
start counting using the temporal module and
set the turned-around slot to nil

The if part of this rule is different from the object-perceived-determine-class rule
so that it can match a specific search instead of a general search. Upon a match the then
part of the rule can then reset the counter of the temporal module and set the turned-
around slot to nil. This is necessary because in the Processing part it is possible to
switch from a specific search to a general search when the current or previous landmark is
perceived. As a result the search routine, that is whether the model has turned around and
the time spent searching, has to be reset before continuing with a general search.

One might wonder how it is possible that the specific object perceived is not an
interesting object. The answer is that it is possible due to noise in the perception. At some
point the model might mistakenly have perceived an object as another object due to noise.

Finally the classified object could also be determined as interesting in which case
the model can stop searching (if it was searching), start tracking the object and navigate
towards it. All this is done by the interesting-waypoint-classified-start-
tracking-and-moving rule:

The AIBO-Route model 71

IF if the classified object is not the same as either the current or the previous object and

the model is not yet tracking
THEN start tracking and
 start moving towards the classified object and

place a route-element chunk in the imaginal buffer containing the current, the classified
and the goal object and

 stop counting and reset the temporal module and
 set the turned-around slot to nil

In Figure 4.1 this rule is positioned in the Processing part and halfway between the
Searching and Processing, and the Tracking and Moving layer since the if part of the rule
belongs to the second layer and the then part belongs to the third layer. The third layer
will be discussed after the Specific Search part of the second layer has been discussed.

4.3.3 Specific Search
The Specific Search part is very similar to the General Search part, something that also
can be derived from the symmetrical appearance of these two parts in .
However, obviously, the Specific Search part searches for a specific object. The
representation of the specific object (i.e., the colour) is part of the route-element chunk
present in the imaginal buffer as a result of the second strategy of the Decision Making
layer as has been mentioned before. The advantage of searching for a specific object is
that other objects are ignored and therefore do not need to be classified. The model
“filters out” the other objects, which is more efficient than considering each perceived
object. One might consider this top-down control on the search process.

Figure 4.1

Just as the General Search, the Specific Search also first searches in front of the
AIBO and after a while behind the AIBO. However, when neither in front of the AIBO
nor behind the AIBO the specific object is perceived, the model should switch to the
General Search part to find another object to navigate to. This is done by the rule
search-for-specific-waypoint-failed-twice:

 IF the specific object is not perceived and

the model is searching and
a certain amount of time has passed and
the turned-around slot contains t

THEN stop searching and
request an observation chunk holding the colour of any object and
set the turned-around slot to nil

After this rule has fired the model either perceives any object or it does not and starts
searching for any object. This transition is indicated by the relatively long arrow from the
search-for-specific-waypoint-failed-twice rule to the “Any Object Perceived?”
condition diamond shown in Figure 4.1.

The last difference between the General Search and the Specific Search is that
when an object is found it progresses to the specific-object-perceived-determine-
class rule instead of the object-perceived-determine-class rule. The reason for this
difference has already been discussed in the Processing sub-section.

The Specific Search was the last part of the second layer to be discussed. The
third and final layer will be discussed next.

72 The AIBO-Route model

4.4 Tracking and Moving Layer
Through the interesting-waypoint-classified-start-tracking-and-moving rule,
the model progresses from the second layer to the third layer. The rule already started
tracking the classified object and moving towards it. During tracking the AIBO-Route
model has to keep track of the object, but also observe whether it has reached the object
or not. Therefore there is a rule called tracking-and-moving-to-waypoint that
constantly observes the environment and therefore the object. This rule is similar to the
searching-specific-waypoint, but instead of continuously firing while searching until
the object is found, the tracking-and-moving-to-waypoint continuously fires3 until
the model loses sight of the object or has reached it. The rule looks like this:

 IF the specific object is perceived and

the model is tracking and
the object is not near (i.e., the object-near slot is nil)

THEN request an observation chunk holding the specific colour of the object and
keep track of the specific object through a route-element chunk in the imaginal
buffer

If the AIBO loses sight of the object in the third layer of the model it switches back to the
Specific Search part of the second layer. The model then attempts to find the lost object
again, and if found continues to the Processing Part and then again starts tracking the
object and moving towards it. It is also possible, mainly due to noise, that the model
immediately loses sight of the object after the interesting-waypoint-classified-
start-tracking-and-moving rule has fired. In both cases, what happens next is
indicated by a dot-dashed arrow from the interesting-waypoint-classified-start-
tracking-and-moving and tracking-and-moving-to-waypoint rule to the specific-
waypoint-not-perceived-start-search rule shown in Figure 4.1.

Whether the AIBO-Route model has reached the object or not is determined by
the object-near slot of the observation chunk described in the previous chapter. If the
object-near slot is t, it means that the AIBO has reached the object, otherwise the slot
is nil. When the AIBO has reached the object there are two possible rules that can fire.
One rule fires when the sub-goal, that is an intermediate object along the route, has been
reached. The other rule fires if the reached object is the goal of the route (i.e., the final
object along the route). The rule that fires when a sub-goal has been reached is called
near-waypoint-stop-moving-and-find-next-waypoint and is defined as:

 IF the specific object is perceived and
 the specific object is not the goal object of the route and

the model is tracking and
the object is near (i.e., the object-near slot is t)

THEN stop tracking and
stop moving and
set the current object in the goal chunk as the previous object in the goal chunk and
set the reached object as the current object in the goal chunk

Since the reached object and the last object passed are set as the current object and the
previous object respectively, the model “knows” where it just was. This information can
be used in the Processing part of the second layer to determine whether a new interesting
object is classified or the current or previous object.

3 See footnote 2 earlier on page 62.

The AIBO-Route model 73

 After the near-waypoint-stop-moving-and-find-next-waypoint rule the
model progresses from the third layer back to the first layer to start a new cycle to find
and move to the next object. This cycle starts as described in the Decision Making layer
with one of two strategies.

If the model has reached the goal of the route, the rule goal-reached-stop fires:

 IF the specific object is perceived and
 the specific object is the goal object of the route and

the model is tracking and
the object is near (i.e., the object-near slot is t)

THEN stop tracking and
stop moving and
clear the goal buffer

This rule is marked as a success, which indicates that the model has successfully
completed its task.

4.5 Summary and Description of Running the Model
Now that the AIBO-Route model has been discussed in detail, a brief summary
describing how the model works can be given. The model starts with no declarative
knowledge except for the goal object of a route it has to learn. Therefore in the first runs
of the model it usually uses the first strategy, which is to search around for something to
move to. When doing so, the model learns connections between objects and stores these
in declarative memory as route-element chunks. Also, when observing a new object, it
stores the relative direction of that object in a relpos chunk.

When searching around the model might turn the robot around when no object is
perceived in front of the robot. Once an object is perceived the robot classifies the object.
If the object is classified as interesting it starts moving towards it, otherwise the object is
ignored and the model continues searching for another object. The process of searching
for an interesting object and moving towards it repeats until the interesting object is the
goal object of the route. In that case the model has finished its run.

After a few runs the model has learned sufficient route knowledge. This means
that there are route-element and relpos chunks which are above the retrieval threshold
(with or without noise). Since the production rules representing the two strategies have
the same fixed utility there is a fifty percent chance due to noise that the second strategy
is chosen. If that happens, the model remembers which object it should move to and
possibly in which direction that object is. If the direction is remembered the models starts
moving and searching for the specific object, regardless of whether it was perceived or
not. Otherwise the model does not move and just start searching for the specific object.

Once the object has been perceived it is again classified and then the model either
starts moving, in case it did not already move, or corrects its direction of movement
towards the perceived object. It might be the case that the model cannot find the specific
object even when having turned around. If that happens the model starts searching for any
object it can find.

For each route segment either the first or the second strategy is used. Eventually
the goal object is reached and the run is complete. As mentioned in the first few runs the
first strategy is primarily used. However when the second strategy is used, its production
rules compile into new production rules, which do not have a fixed utility. After a certain
number of runs those utilities will become higher than those of the original production
rules. This causes the second strategy to be used more often, since the compiled
production rules represent the second strategy. When the route is walked using primarily

74 The AIBO-Route model

rules of type seven and eight from , the route is thoroughly learned as
procedural knowledge.

Figure 4.2

The learning of chunks and compilation of production rules described in this
section will be discussed in detail in the Experiment and Results chapter.

The AIBO-Route model 75

76 The AIBO-Route model

Experiment and Results 77

5. Experiment and Results
To find out whether the AIBO-Route model meets the two sub-goals of this project, the
model was tested in a robot lab. The two sub-goals are repeated below:

1. Given a setup of several landmarks the AIBO-Route model should be able to learn
a route to a predefined goal.

2. When having learned such a route and the environment changes in such a way that
a shorter route is possible, AIBO-Route should be able to learn the new shorter
route.

The experiment performed in the robot lab consisted of two phases. In Phase 1 the model
was tested for the first sub-goal and in Phase 2 for the second. To test the model for the
first goal, the experimental setup illustrated in was used. After the model had
learned the route of that setup, the setup was changed to test the model for the second
goal in Phase 2. The changed setup is illustrated in Figure 5.2. For the model to learn,
several runs were needed, where in each run the AIBO moves from START to the goal
landmark via a certain path. Next, the experiment will be discussed in detail, followed by
its results.

Figure 5.1

Figure
5.1

5.1 The Experiment
As mentioned above, the experiment was performed in a robot lab. Since the camera of
the AIBO is sensitive to changes in lighting conditions, the robot lab was illuminated
using only fluorescent lightning thereby minimizing variations in visual perception.

5.1.1 Phase 1
The setup used in Phase 1 consisted of a START point and four landmarks (see

). The landmarks are constructed of four differently coloured cardboard cylinders with
a height of 50 cm and a diameter of 20 cm. The landmarks each have a different colour,
which enables the model to uniquely identify each landmark. The pink landmark,
landmark D, is set as the goal of the route the model has to learn.

A wall of cardboard boxes, indicated by the rectangles in Figure 5.1, is used to
limit the number of landmarks the model can perceive. As a result, AIBO can perceive
exactly one landmark it has not yet visited from each landmark or the START point. Note
that although landmark C might be visible from landmark A, the AIBO does not stop
exactly at landmark A, but a little bit earlier. Also, the AIBO is facing away from
landmark C upon reaching landmark A. Therefore AIBO does not perceive landmark C
from landmark A. The same line of reasoning applies to landmark B and D.

A different setup could have been used such that multiple landmarks are visible
from one of the nodes, but the AIBO-Route model was not designed to handle multiple
visible landmarks other than to choose one at random. Furthermore, the model only
remembers the last two landmarks visited. As a result, if two landmarks are visible at the
same time, the model might travel back to a landmark it has already visited. If the model
is able to learn a route in such a specific setup, it could be modified in the future to work
with different, more complex setups. Therefore to test whether the model is able to learn a
route, the setup illustrated in Figure 5.1 where at most one unvisited landmark is visible
was used in the experiment.

The idea behind the setup is that the AIBO is forced to always walk the route in
the same order, START-A-B-C-D, as illustrated by the arrows in Figure 5.1. While

78 Experiment and Results

walking that route, the model should be able to learn the order of and relative directions
between the landmarks. Since the model was developed to use those directions to start
walking towards a landmark before having perceived it, the model saves time because it
does not have to search before moving towards that landmark. As a result, the
performance of the model should improve over time, because less time is needed to reach
the goal. Whether the AIBO-Route model learns the route is therefore not perceived by
the order in which the model visits the landmarks, but by the change in behaviour. Of
course, learning can also be determined by examining the declarative and procedural
memory that cause the changing behaviour.

5.1.2 Phase 2
After having learned the route, which is the end of Phase 1, the setup of the environment
was changed as illustrated in Figure 5.2. As shown in the figure, the first two landmarks
have been removed as well as part of the wall. As a result, the AIBO is able to directly
perceive the third landmark, landmark C, from its start position. The setup should cause
the model to forget the route learned in Phase 1 and start learning a new shorter route
START-C-D.

Since the model should have learned the route START-A-B-C-D in Phase 1 and
therefore knows the relative directions of the landmarks, it should start moving from
START to A without first searching for landmark A. While moving, the model will try to
find the landmark, but it will fail because landmark A is no longer there. As a result the
model stops moving, which will be near point X shown in , because the model
moves in segments of seventy centimetres. After having stopped, the model continues
searching for landmark A and after a while starts searching for any other landmark. The

Figure 5.2

1 m.

A
Blue

C
Green

D
Pink

B
Yellow

START

Figure 5.1:
The setup in Phase 1 of the experiment.

Experiment and Results 79

1 m.

A
Blue

C
Green

D
Pink

START

X

Figure 5.2:
The setup in Phase 2 of the experiment.

model should find and then move to landmark C, because that is the only one visible from
point X. Finally, the AIBO-Route model will reach landmark D via landmark C. The path
just described is marked with the dashed arrows followed by a solid arrow from landmark
C to D.

The AIBO-Route model will only start moving towards landmark A if it uses the
second strategy described in the previous chapter. If the second strategy is used, the
model tries to remember the next node and its direction and starts moving towards it.
However, there is a chance that the AIBO-Route model will use the first strategy, which
is to look around for any landmark to move to. If the first strategy is used, the model
should perceive landmark C from START and start moving towards it, which results in
the path illustrated by the solid arrows in Figure 5.2. Just as the AIBO-Route model
learned route START-A-B-C-D in Phase 1 of the experiment, it should eventually learn
START-C-D in Phase 2 of the experiment.

In the next section the results of running the AIBO-Route model in the two
described setups will be discussed. Since the model was developed to meet the
expectations just discussed, it is not surprising that the results match those expectations
very closely.

5.2 Results
In this section the results of the experiment will be discussed. First the results of Phase 1
will be discussed and then those of Phase 2. The description of both phases will start with
a general description of the observed behaviour, followed by a detailed description of the
learned declarative and procedural knowledge.

80 Experiment and Results

5.2.1 Phase 1
By examining the data, that is the
activations of chunks and utilities
of original and new production
rules, the learning of Phase 1 was
determined to be complete after
run 25. The figures referring to
Phase 1 will therefore only show
the first 25 runs of the total of 85
runs.

As expected, the AIBO-
Route model walked the route
START-A-B-C-D indicated by the solid arrows in Figure 5.1. In the first few runs the
model had to search at each node for the next landmark. In run 5, however, the model
remembered the direction of a landmark for the first time. As a result, the model started
moving from landmark B to C, without first searching for landmark C. It is important to
note that remembering the directions of landmarks in this context can be because of
declarative memory, but also because of procedural memory. In the next few runs the
model started to remember the directions of the other landmarks as well and in run 8 the
model remembered the directions of all landmarks in a single run for the first time. In the
subsequent runs, the model remembers the direction of at least three landmarks and in the
final five runs of Phase 1, the model remembers the directions of all landmarks in each
run. The results just described are illustrated in Figure 5.3. The lines indicate whether the
direction of a landmark was remembered. For example, at run 10 the line START-A is
present, which indicates that the model remembered the direction of landmark A at
START in run 10.

For the model to remember the direction of a landmark it needs to apply the
second strategy. However, by default, there is a fifty percent chance that the model will
apply the second strategy, because either the start-perception rule (first strategy) or
the start-route-element-retrieval rule (second strategy) will fire and their utilities
are fixed at the same level because they both have a similar history of experience (see
section 4.2). Since the results shown in Figure 5.3 indicate that chance for the model to
remember the direction of landmark becomes higher than fifty percent, additional

production rules must have been learned
that compete with the original production
rules.

These new production rules, as
described in the previous chapter,
eliminate a retrieval (i.e., the need to
remember a certain fact), which speeds up
the model. This, in combination with
remembering the direction of a landmark,
causes the duration of each run (i.e.,
runtime) to decrease. The runtimes in
ACT-R time for each run of Phase 1 are
illustrated in Figure 5.4.

The ACT-R time is based on the
internal clock of ACT-R, which it uses to
calculate retrieval times and the durations
of other cognitive processes. However, the

Figure 5.3:
The remembered directions for each run in Phase 1.

Run #

0 5 10 15

START-A

A-B

B-C

C-D

20 25

Figure 5.4:
The runtimes in ACT-R Time for Phase 1.

8
10

12
14

16
18

5 10 15 20 25

Run #

AC
T-

R
 T

im
e

(s
)

Experiment and Results 81

temporal aspects of the cognitive processes handled by the modules developed in the
current research (i.e., roboperceptual and robomotorical) are not implemented. Therefore,
the temporal data obtained by the experiment is meaningless from a cognitive point of
view. However, the duration of a run in ACT-R time is a reliable measure for the duration
of a run in real time and is therefore illustrated in Figure 5.4 to illustrate the increase of
the model’s performance.

One might ask why there is a relatively high variation in the runtimes. The answer
to that question is: noise. The noise is primarily due to simultaneously moving and
perceiving the environment. The movement of the AIBO results in an unsteady video
feed that sometimes causes the model to poorly judge a situation. As a result, for
example, the AIBO not always stops at the same point upon reaching a landmark.
Stopping too close to a landmark results in a longer path and also causes the AIBO to
bump into the landmark, both causing the runtime to increase.

Now that some general observations about Phase 1 of the experiment have been
discussed, the learned declarative knowledge can be discussed.

5.2.1.1 Declarative Knowledge
As mentioned in The Experiment section, the order of landmarks that can be learned is
fixed as a result of the setup illustrated in . Therefore it is not surprising that the
model has learned four route-element chunks that represent the four route segments of
the route START-A-B-C-D. Remember that a route-element chunk has three slots that
represent the goal of the route and two connected landmarks. As values for the previous
and next slot, the four chunks respectively have the values: START-A, A-B, B-C and C-D.
All four chunks have landmark D as a value for the goal slot. The activations of the four
chunks are illustrated in Figure 5.5.

Figure 5.1

Since the activations illustrated are the activations values after a run has been
completed and chunks used earlier in the route have more time to decay before the goal is

Figure 5.5:
The activations of the route-element chunks in Phase 1.

0 5 10 15 20 25

C-D

B-C
A-B
START-A

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Run #

Ac
tiv

at
io

n

82 Experiment and Results

reached than those used later in the route, there is a difference in the activation levels of
the four chunks. For example, chunk A-B is not used after landmark B and therefore
decays more before the end of a run than chunk C-D, which is used until the goal is
reached. As a result, the activation of chunk A-B measured after a run has been completed
is lower than the chunk C-D.

Besides the order of the landmarks, the model has also learned their relative
directions which are stored in relpos chunks. The activations of these chunks are
illustrated in . At the end of each curve there is label that represents the
information stored in the chunk belonging to that curve. For example, the label “START-A
< B: W” represents a chunk holding the start position in its previous slot, landmark A in
its current slot, landmark B in its next slot, and the relative direction west in its angle
slot. This information indicates that landmark B is to the west with respect to line
connecting START and landmark A. In other words: if the line START-A indicates north,
then landmark B is to the west.

Figure 5.6

Figure 5.6

Figure 5.6
Figure

5.6

 Note that not all relpos chunks are illustrated in . First, the figure only
contains relpos chunks learned during Phase 1 of the experiment. Second, only relevant
relpos chunks are illustrated. For example, the model also learns the relative direction of
landmark B with respect to the line that connects landmark A and B. Since the model
ignores landmarks that are the same as the previous or current landmark, only relpos
chunks representing relative directions of landmarks that are not ignored are illustrated in

.
 In Figure 5.7 a graphical representation of the relpos chunks illustrated in

 is given. The arrows originating from a landmark indicate the relative direction of the
next landmark. Thus the arrows originating from landmark A indicate the direction of
landmark B. The three types of arrows used in the figure indicate an activation level. This
activation level is the activation of the relpos chunks at the end of Phase 1. A thick
arrow represents the relpos chunk that has the highest activation with respect to the
relpos chunks that represent a direction to the same landmark. The solid arrows
represent relpos chunks that are above the retrieval threshold and the dashed arrows
represent those that are below the retrieval threshold.

 The relative direction is derived from the direction of AIBO’s body. This
direction is maintained via dead reckoning, which is not very robust. As a result there are
multiple relpos chunks, which contain the same landmarks, but different angles. As
described in the ACT-R section, of chunks that match a request, the chunk with the
highest activation is retrieved. Therefore the chunk with the highest activation should
represent the most accurate relative direction. As can be seen from Figure 5.7, the relpos
chunks with a higher activation are indeed more accurate. It is interesting to note that the
gradual build up of correct relative directional knowledge seems to fit a theory of skill
acquisition referred to as instance theory or instance learning (Logan, 1988).

The arrows in Figure 5.7 originate from the centre of the landmarks, but the AIBO
never perceives the next landmark from exactly that position. Therefore, the arrows
should originate from the position of AIBO’s head at the moment it sees the next
interesting landmark. Also the direction of the arrows should be drawn with respect to the
orientation of the AIBO’s body at that moment. However, since the position and
orientation varies slightly with each run, the centre of a landmark is used. Although

 is not entirely accurate, it is still an useful illustration of the directions learned
at the end of Phase 1.
Figure 5.7

Experiment and Results 83

Figure 5.7:
Graphical representation of the activations of the relpos chunks after run 25.

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

cm

cm

pink

green

yellow

blue

D

C

B

A

START

Legend

Highest Activation

Above Threshold

Below Threshold

Figure 5.6:
Activations of the relpos chunks in Phase 1.

0 5 10 15 20 25

B-C < D: NW
A-B < C: W
START-A < B: W

START-START < A: NE

B-C < D: N

A-B < C: NW

START-A < B: NW

START-A < B: S

START-A < B: E

A-B < C: SW

B-C < D: SW

START-START < A: E

B-C < D: W

START-A < B: N

START-A < B: SW

START-START < A: SE

B-C < D: NW
A-B < C: W
START-A < B: W

START-START < A: NE

B-C < D: N

A-B < C: NW

START-A < B: NW

START-A < B: S

START-A < B: E

-2
-1

0
1

Run #

Ac
tiv

at
io

n

84 Experiment and Results

The learned declarative knowledge indicates that the route was learned correctly: the
model has learned the correct order of the landmarks and also correctly learned their
relative directions. Besides this declarative knowledge the model was also designed to
learn procedural knowledge, which is discussed next.

5.2.1.2 Procedural Knowledge
As explained in the previous chapter, there are three possible types for new production
rules. One type eliminates the retrieval of a route-element chunk and will be called type
(1), a second eliminates the retrieval of a relpos chunk and will be called type (2) a third
and final type eliminates the retrieval of both chunks and will be called type (3). In

, which illustrates the production compilation process, these types correspond to
respectively rules number five, six, and seven or eight.

Figure
4.2

The utilities of the through production compilation learned production rules are
illustrated in . In the figure there are five different line types. Except for the
thick line, each line type indicates a different situation in which the if part of the
production rule represented by that line, matches that situation. For example, the dashed
black lines represent production rules that match the situation where the AIBO has
reached landmark A. The thick lines represent the utility of the production rules: route-
element-retrieval-success-retrieve-relpos (RERSRR), and start-perception
and start-route-element-retrieval. Since these rules are in competition with the
new learned rules, the thick lines more or less act as a threshold for those new rules, as
will be explained below.

Figure 5.8

On the right of Figure 5.8 a list of labels is given. Each label is a short representation
of what the corresponding production rule stands for. Also each label starts with a number
that matches one of the three production rule types just mentioned. Below, examples of
these labels are explained for each rule type:

 A label like “(1) B -> C” represents a production rule of type (1):

 IF the previous landmark was a landmark X and

the current landmark is landmark B and
the goal is landmark D

THEN the next landmark is landmark C and
request a relpos chunk matching “current: B, next: C, previous: X”

The “X” in the description represents a variable that can hold any landmark. The
relpos chunk needs to be requested because the direction of landmark C is still
unknown.

 A label like “(3) B-C < D: NW” represents a production rule of type (3):

 IF the previous landmark was landmark B and

the current landmark is landmark C
THEN the next landmark is landmark D and

the AIBO moves to the north-west (NW) with respect to its current direction

 A label like “(2) B-C < D: NW” represents a rule of type (2):

 IF the previous landmark was landmark B and

the current landmark is landmark C and
the route-element chunk representing “current: C, next: D, goal: D” is retrieved

THEN the next landmark is landmark D and
the AIBO moves to the north-west (NW) with respect to its current direction

Experiment and Results 85

Note that although a label of type (2) is similar to a label of type (3), a rule of type (2)
requires a retrieved route-element chunk whereas a rule of type (3) does not. Also it
interesting to note that of some rules of type 3 there are two (e.g., (3) START-A < B: W),
because three production rules can merge into one production rule in two different ways.
For example rules A, B and C can merge into AB and BC, which in turn can merge with
respectively C and A, both resulting in the rule AC. This is explained in more detail in the
previous chapter and also illustrated by Figure 4.2.

Production rules of type (1) and (3) compete with start-perception and start-
route-element-retrieval and therefore must have a higher activation (with added
noise) than the latter two if they are to be used. The thick horizontal line that represents
the utility level of the last two rules, therefore acts as a threshold for rules of type (1) and
(3). Similarly, the thick line representing the utility of the rule route-element-
retrieval-success-retrieve-relpos (RERSRR) acts like a threshold for rules of
type (2).

From Figure 5.8 it is possible to derive the production rule with the highest utility
of the production rules that compete at the beginning of a route segment. Since there are
four route segments there are also four corresponding rules which are: “(3) START-
START < A: NE”, “(3) START-A < B: W”, “(3) A-B < C: W” and “(3) B-C < D:
NW”. These four rules are marked with a rectangle.

The four production rules have incorporated the four route-element chunks, and
the relpos chunks represented by the thick arrows illustrated in Figure 5.7. Since the
relpos chunks represented by the thick arrows already had relatively high activations
during the first 10 runs, they are usually retrieved instead of other matching chunks
during those runs. Because most of the production rules learned in Phase 1 are created
before the 10th run, it is not surprising that the four production rules just mentioned have
incorporated the chunks represented by the thick arrows. In fact, those chunks are the

Figure 5.8:
The utilities of the learned production rules in Phase 1.

0 5 10 15 20 25 30

8
9

10
11

12
13

14

Run #

U
til

ity

(2): B-C < D: NW
(2): A-B < C: W

(2): START-A < B: W

(2): START-A < B: NW

(2): START-START < A: NE

(1): A -> B

(3): START-A < B: W

(3): START-A < B: W

(1): B -> C

(3): A-B < C: W

(3): B-C < D: NW

(3): B-C < D: NW

(1): C -> D

(1): START -> A

(3): START-START < A: NE

RERSRR

Legend

Matches if position = landmark C

Matches if position = landmark B

Matches if position = landmark A

Matches if position = START

86 Experiment and Results

only chunks that were used in the production compilation process, with the exception of
the chunk “START-A < B: NW”, which resulted in the rule “(2): START-A < B: NW”.
That rule was created in run 18, but was never used again.

The fact that the four production rules represent the correct order and direction of
landmarks indicates that the model has correctly learned the route as procedural
knowledge. Also taking into consideration the results the declarative memory, Phase 1 of
the experiment demonstrates that the AIBO-Route model has correctly learned a route.
The results of Phase 1 therefore satisfy its goal.

5.2.2 Phase 2
After Phase 1 of the experiment was complete, the environmental setup was changed to
the setup illustrated in Figure 5.2. The AIBO had learned to move from START to
landmark A, and therefore kept moving towards the position where landmark A was in
Phase 1, even though the setup had changed. Since landmark A was no longer present in
Phase 2, the model could not find it and turned around near the position marked with “X”
in Figure 5.2. Of course, the model still could not find landmark A and as a result
switched to a general search thereby perceiving landmark C from X. After perceiving
landmark C, the model started moving towards it and then continued towards landmark
D.
 The model repeatedly showed the behaviour just described until the utilities of the
production rules causing the AIBO to move towards X had decreased sufficiently to allow
the rule start-perception to fire. The utilities of the production rules causing the AIBO
to move to X decrease, because reaching the goal through those rules takes longer in
Phase 2 than in Phase 1. When the start-perception rule fired, the model immediately
started searching for any object from START without first moving towards landmark A.
As a result, the AIBO moved from START to landmark C without the detour.

The start-route-element-retrieval rule always has the same fixed utility as
start-perception, because it shares the same history of experience as explained in
section 4.2. Since start-perception is able to fire and start-route-element-
retrieval has the same utility, the latter is also able to fire thereby requesting a route-
element chunk. If the right route-element chunk (i.e., START-C) was retrieved the
model would also directly move to landmark C. However, since the route-element
chunk START-A still had a high activation, it had a higher chance of being retrieved than
START-C. Therefore, if the start-route-element-retrieval rule were to retrieve the
route-element chunk representing START-C, that chunk first had to gain a higher
activation.

Since in Phase 2 landmark C is the first landmark the model can perceive from
START, the activation of the chunk START-C is increased each time the model perceives
landmark C. Also the activation of START-A decays each time the model starts with the
rule start-perception, because in that case START-A is not used. After a few more runs,
when the rule start-route-element-retrieval fires, the model is able to retrieve the
chunk START-C, because its activation has come close to that of START-A and with added
noise can surpass the activation of START-A. This occurred for the first time in run 42.

At that point, by merging start-route-element-retrieval, route-element-
retrieval-success-retrieve-relpos and chunk START-C, a new production rule of
type (1) is created which represents that after node START, landmark C should follow
(see “(1): START -> C” in Figure 5.13). In addition to that rule, two rules of type (2) are
created. One rule represents that landmark C with respect to START is to the north-west
(i.e., “(2): START-START < C: NW”) and the other that landmark D is to the west with

Experiment and Results 87

respect to START-C (i.e., “(2): START-C < D: W”). More importantly, in run 56 the
rule “(1): START -> C” fires for the first time and is followed by the rule relpos-
retrieval-success-turn-to-waypoint. As a result, those two rules can be merged
with the chunk “START-START < C: NW”, which results in the rule “(3): START-START
< C: NW”. That rule and the rule “(1): START -> C” show an upward trend which
clearly illustrates the model learned to move from START to C. The fact that the model
has learned to move from START to C instead of from START to A can also be derived
from the activations of chunks START-A and START-C, since in the final runs START-C
surpasses START-A (see Figure 5.10).

The runtimes of Phase 2 will now be discussed, followed by the learned
declarative and procedural knowledge.

The trend in the runtimes of the model can be explained by the development of the model
just described. In Figure 5.9, one can see the decrease in runtimes during Phase 1, which
is explained in the previous sub-section. The first half of Phase 2 is characterized by a
high variation in the runtimes. This variation is the result of the fact that the model
sometimes uses the rule start-perception, which results in a fast run, and sometimes
uses rules that make the AIBO walk towards where landmark A was in Phase 1, which
results in a relatively slow run. The runtimes in the second half of Phase 2 show a
downward trend, which illustrates that the model has learned to move directly from
START to C. The runtimes of the second half are also lower than the lowest runtime in
Phase 1; the mean of the last 25 runs is 4.87 seconds while the fastest runtime in Phase 1
is 7.6 seconds. This is not surprising, since the route learned in Phase 2 is much shorter
than the route in phase1, but it does show that the model is able to adapt and improve its
performance.

5
10

15

Figure 5.9:
The runtimes in ACT-R Time for Phase 1 and 2.

0 20 40 60 80

Run #

A
C

T-
R

 T
im

e
(s

)

Phase 1 Phase 2

88 Experiment and Results

Note that there are three runtimes missing (run numbers 29, 49 and 51). These
runs were relatively high and respectively have the values 37.8, 27.2 and 15.3. The high
runtimes are due to a programming bug and to noise. In run 29 the model kept searching
and did not turn around, because the temporal module stopped functioning for unknown
reasons. As a result, the run had to be aborted, but only after some time, which resulted in
a high runtime. In runs 49 and 51 the model mistakenly perceived a wall as the yellow
landmark (i.e. landmark B). Since, there was no real yellow landmark in Phase 2 and no
other object in Phase 2 that could satisfy the threshold that indicates that the yellow object
is near, the robot wandered a long time before switching to a general search. After having
switched to a general search and perceiving the green landmark (i.e., landmark C), the
AIBO moved to that landmark and then to the pink landmark (i.e., landmark D). In short,
the misperceptions led to a detour, which resulted in high runtimes.

5.2.2.1 Declarative Knowledge
Figure 5.10 shows the route-element chunks learned in Phase 1 and the new route-
element chunks learned in Phase 2. Of course, the most interesting chunk learned is
START-C. One can see in the figure that its activation increases with each run, with a few
exceptions, in the end surpassing the activation of START-A. Also clear in the figure is the
decay of activations of the chunks representing the first part of the route learned in Phase
1 (i.e., A-B and B-C).
 As explained before, the production rules that make the AIBO move from START
to A were still used in the beginning of Phase 2. As a result, the chunk START-A was also
still used and the activation of that chunk did not decay as for example the activation of
chunk A-B. However, one can see that the line representing START-A is not straight. The
variations (i.e., small decays) are because of the production rule start-perception.
When that rule was used, the chunk START-A was not used and only START-C gained a

0 20 40 60 80

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Run #

A
ct

iv
at

io
n

Phase 1 Phase 2

C-D

B-C

A-B

START-A

START-C

START-D

START-B

Figure 5.10:
The activations of the route-element chunks in Phase 1 and 2.

Experiment and Results 89

higher activation.
 The other variations present in are mainly due to the problem with the
temporal module and the misperception of the yellow landmark (i.e., landmark B). For
example the relatively large decay in the activation of START-C at run 29, is because
START-C was never used in that run, since the run had to be aborted. Another example is
the creation of the chunk START-B and START-D at respectively run numbers 49 and 42.
Because those chunks were created, START-C and C-D were not used, resulting in a
sudden decay in their activations at those run numbers.

Figure 5.10

 Finally, it is interesting to note that, since the model has learned to go from
START to C, the chunk START-A is not used anymore in the final few runs. As a result
the activation of chunk START-A continuously decays from run 69. The chunks START-C
and C-D represent the two route segments of the new route START-C-D.

Besides new route-element chunk the model also learned new relpos chunks in
Phase 2. The activations of the relpos chunks are illustrated in Figure 5.11. Note that
just as in Phase 1 only the activations of relevant relpos chunks (i.e., relpos chunks that
are not ignored by the model) are illustrated. Also, since most of the relpos chunks from
Phase 1 only decay after run 25, the activation of those chunks is not illustrated after run
25.

In the graphical representation of the activations of the relpos chunks
after run 85 is given. is similar to , which belongs to Phase 1, but
there is a new type of arrow: the dotted arrow. All the arrow types, except for the dotted
arrow, are part of the route START-C-D. Thus arrows originating from START that are
not dotted indicate the direction of C with respect to START. Similarly, non-dotted
arrows originating from C indicate the direction of D with respect to the line START-C.

Figure 5.12
Figure 5.12

Figure 5.12

Figure 5.7

The dotted arrows represent relpos chunks, which are the result of noise and/or
were already learned in Phase 1 and the fact that they are dotted has nothing to do with
activation levels. A clear example of a relpos chunk learned due to noise is the arrow
originating from where landmark B was, because the model mistakenly observed
something as the yellow landmark (i.e., landmark B). Note that not all relpos chunks
illustrated in are visible in , because some dotted arrows are
concealed by an arrow of a different type.

Figure 5.11

Figure 5.11

An important dotted arrow originates from START and points to the north-east.
That arrow represents the chunk “START-START < A: NE” and is frequently used in the
first half of Phase 2. However, just as the chunk START-A, the activation of “START-
START < A: NE” continuously decays in the final runs, in this case from run 60 (see

).
From Figure 5.11 and Figure 5.12, one can see that the model has again learned

the correct local relative directions of the landmarks and again the activation levels of the
chunks have a high correspondence to their accuracy. The relpos chunks with the highest
activation, represented by the thick arrows in Figure 5.12, represent the most accurate
directions within the limited set of eight possible directions.

Since the directions, but also the order of the landmarks, are correctly learned, just
as in Phase 1, one can conclude that the model can acquire correct and accurate
declarative knowledge about a new possible route. Also, just as in Phase 1, if wrong or
inaccurate knowledge is gained, the decay mechanism of ACT-R causes that knowledge
to be forgotten. Only the chunks above the threshold represent accurate knowledge,
where chunks with the highest activation represent the most accurate knowledge.

The procedural knowledge gained in Phase 2 is discussed next after which all the
results of Phase 2 have been discussed.

90 Experiment and Results

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

cm

cm

pink

green

D

C

START

Legend

Highest Activation

Above Threshold

Below Threshold

Phase 1 or Noise

Figure 5.12:
The activations of the relpos chunks after run 85.

Figure 5.11:
The activations of the relpos chunks in Phase 1 and 2.

0 20 40 60 80 100

B-C < D: NW

START-START < A: NE

B-C < D: SW

B-C < D: W

START-C < D: NW

START-START < C: W

START-C < D: W

START-START < C: NW

START-C < D: SW

START-C < D: SE

START-C < D: S

START-C < D: E

START-START < C: N

START-START < D: SW

START-START < D: W

START-B < C: N

START-START < B: NE

START-START < B: NW

START-START < B: N

START-START < B: W

START-C < D: N

-3
-2

-1
0

1
2

Run #

A
ct

iv
at

io
n

Phase 1 Phase 2

Experiment and Results 91

5.2.2.2 Procedural Knowledge
The production rules learned in Phase 2 are illustrated in Figure 5.13. Note that of some
rules, the utility is not illustrated after run 25, because these rules are not used in Phase 2
of the experiment. Since the rules are not used, their utility level remains constant after
run 25.

Globally, the figure is a good illustration of learning the first route in Phase 1,
forgetting that route in the first half of Phase 2 and learning the new route in the second
half of Phase 2. The difference between the first route and the second route is where the
AIBO has to go from start. All the rules that indicate what to do from START are
illustrated as grey-dashed lines. The general trend these lines show correspond to the
learning development just described: first an upward trend until run 25, which represents
learning the first route, then a downward trend until run 60, which represents forgetting
that route, and then a upward trend, which represents learning the second route.
 As mentioned before, in Phase 2 the model first moves towards the location of
where landmark A was in Phase 1. However, because landmark A is no longer present,
the model cannot find it and has to search for a different landmark. Eventually, landmark
C is found, but first searching for landmark A costs a lot of time. As a result, the utility of
the rules representing the behaviour to go to landmark A from START (i.e., “(1):
START-A”, “(2) START-START < A: NE”, “(3) START-START < A: NE” and “(3)
START-START < A: NE”) decrease. Around run 35 the utility of those rules are all below
the utility of start-perception and start-route-element-retrieval4, giving those
two rules a higher chance to fire.

4 Remember that the horizontal line at a utility level of 9 represents the utility of start-perception and
start-route-element-retrieval.

Figure 5.13:
The utilities of the learned production rules in Phase 1 and 2.

0 20 40 60 80 100

4
6

8
10

12
14

16
18

Run #

U
til

ity

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

(3): START-START < C: NW

(1): START -> A

(3): START-START < A: NE

(3): START-START < A: NE

RERSRR

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

(3): START-START < C: NW

(1): START -> A

(3): START-START < A: NE

(3): START-START < A: NE

RERSRR

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

(3): START-START < C: NW

(1): START -> A

(3): START-START < A: NE

(3): START-START < A: NE

RERSRR

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

(3): START-START < C: NW

(1): START -> A

(3): START-START < A: NE

(3): START-START < A: NE

RERSRR

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

(3): START-START < C: NW

(1): START -> A

(3): START-START < A: NE

(3): START-START < A: NE

RERSRR

(2): START-START < A: NE

(2): START-START < C: NW
(2): START-C < D: W

(1): B -> C

(1): C -> D

(3): START-C < D: E

(3): START-C < D: W

(3): B-C < D: W

(3): START-C < D: S

(1): START -> C

Legend

Matches if position = landmark C

Matches if position = landmark B

Matches if position = landmark A

Matches if position = START

Phase 1 Phase 2

92 Experiment and Results

The rule start-perception causes the chunk START-C to gain on START-A, as
explained before. As a result, START-C can be retrieved by start-route-element-
retrieval at which point, the new rules “(1): START -> C”, “(2): START-START <
C: NW” and “(2): START-C < D: W” are created. These rules respectively represent that
after START, landmark C should follow, that C is towards the north-west from start, and
that D is towards the west from the line START-C. The latter two rules are not used in
later runs, because at run 56 the rule “(1): START -> C” fires and soon thereafter gains
a higher utility as start-route-element-retrieval. The rule start-route-element-
retrieval needs to precede the rules “(2): START-START < C: NW” and “(2):
START-C < D: W”, because they are of type (2) (for a more detailed explanation see
section 5.2.1.2 and Figure 4.2).

Also, because “(1): START -> C” fires the rule “(3): START-START < C: NW”
can be created, which brings the model much closer to achieving the goal of Phase 2. At
run 61 the rule “(3): START-START < C: NW” fires for the first time. The rule is very
successful and immediately surpasses “(1): START -> C” and almost start-
perception. In the runs following run 61 “(3): START-START < C: NW” is almost the
only rule to fire when the AIBO is at START. Of the 24 runs that remain of Phase 2 after
run 61, “(3): START-START < C: NW” is used 17 times. In the remaining 8 runs “(1):
START -> C” is used 4 times and start-perception twice. These numbers together
with the upward trend of both “(3): START-START < C: NW” and “(1): START -> C”
indicate that the model has learned the segment START-C as procedural knowledge.

Finally, the model has also correctly learned the segment C-D as procedural
knowledge. One can derive this from the utility of the rules “(1): C-D” and “(3):
START-C < D: W”, which have the highest utilities at run 85. The rules “(3): START-
START < C: NW” and “(3): START-C < D: W” together form the procedural
representation of the route START-C-D and are marked with the rectangles in

. The gained declarative knowledge and the fact that the model has learned the two
marked rules, indicate that the model has achieved its second goal, which is to learn a
shorter route after having learned a different route.

Figure
5.13

5.3 Remarks
In this chapter the experiments and results have been discussed. The results are as
expected. They show that the model is able to learn a route and, when the environment
changes, is able to adapt and learn a second route. The model is able to learn both routes
as declarative knowledge and procedural knowledge. Also the durations of the runs
indicate that the model is able to improve its performance, that is, it is able to decrease the
amount of time needed to reach its goal.
 In the next chapter the model and its results will be compared to the other models
and Spatial-Learning theory, which both have been discussed in the Theoretical
Background chapter.

Experiment and Results 93

94 Experiment and Results

Discussion and Conclusions 95

6. Discussion and Conclusions
The goal of this project is to examine which mutual benefits arise from integrating the
research areas cognitive modelling and robotics. To accomplish that goal, an embodied
cognitive model of route learning was developed with a number of constraints. In short,
the constraints are: the technical limitations of the AIBO, operation in a real-world
environment, cognitive constraints due to the ACT-R architecture (Anderson, 2005;
Anderson et al., 2004) and the minimal control design principle (Taatgen, 2007).
Furthermore, the model has to be a plausible model of route learning and has to be able to
perform two tasks, which are the sub-goals of the current research. First, the model must
be able to learn a route and second, it must be able to adapt to changes in the environment
to learn a different route.

The route to be learned existed of a start point and four landmarks and after a
change in the environment two landmarks remained and a shorter route was possible.
During an experiment the model had to learn the route and after the change had to adapt
to learn the shorter route. This chapter will first discuss the AIBO-Route model and the
results of the experiment with respect to the Spatial-Learning theory and existing models
discussed in the Theoretical Background chapter. The chapter will continue with the
discussion of the advantages of combining cognitive modelling and robotics and will
finish with the conclusion, which summarizes the results with respect to the research
goals.

6.1 Discussion of the AIBO-Route model
Through the use of ACT-R, the AIBO-Route model incorporates many cognitive aspects.
Of these aspects, the declarative and procedural memory with respectively their activation
and utility mechanisms are the most important. These mechanisms enable the model to
gain declarative as well as procedural knowledge about a route. Procedural knowledge, as
indicated by Gale et al. (1990) is one of the most important aspects of route learning,
since, as described in the theoretical background, people who travel a route passively by,
for example, observing a video, often lack procedural knowledge with respect to people
who actively travel the same route in the real world.

Also an important feature of ACT-R’s procedural memory is the production
compilation mechanism. In the AIBO-Route model, the production compilation
mechanism might explain the event in which people travel a route, but upon reaching
their destination do not remember some parts of that route. It is as if they automatically,
more or less unconsciously, made the choices needed to get to their destination. Since the
production compilation mechanism causes declarative knowledge to be merged into
procedural knowledge, the need to retrieve certain facts is eliminated. Because those facts
are not retrieved, they also do not enter the buffers. However, the content of the buffers is
often seen as the things one is aware of. If that is true, the production compilation
mechanism prevents the model to become “aware” of certain facts. With respect to the
task of travelling a route, those facts could be changes in direction or the order of nodes
to visit. If these facts never enter the buffers, as is the case when only procedural memory
is used, one would be less aware of the decisions made during travel. However, one is not
completely unaware, because, for example, there is always visual and motor feedback of
one’s actions. This feedback causes some facts to enter the buffers, thereby making one
aware of those facts.

Although the AIBO-Route model is able to explain “unconscious” travel, it lacks
some reasoning processes at a conscious level. The routes are learned completely through

96 Discussion and Conclusions

sub-symbolic or unconscious processes of activations and utilities. As a result, a
relatively high number of runs is needed to forget a route and learn a new route. It is hard
to determine a plausible number of runs, since the route used in the experiment is
relatively easy for humans. Therefore, even if experimental data of subjects were to be
available, that data would be hard to compare to the results of this project. However,
more than forty runs to forget a route and learn a new route as procedural knowledge
certainly seems too much. On the other hand, the number of runs to learn declarative
knowledge of the route is not unreasonable. After one run the model has learned the order
of the landmarks, which is plausible given that there are only four landmarks in the first
route and two in the second. In addition, the relative directions are learned in about six
runs, which might be a bit high, but spatial information is harder to learn as is explained
in the theoretical background. Furthermore, Chown, Kaplan and Kortenkamp (p. 21 1995)
state that first people learn the order of landmarks and after a while learn their relative
directions.

Since the learning speed of declarative knowledge is in the right order of
magnitude, the procedural knowledge that uses that knowledge must be incomplete. What
is missing is a higher reasoning level. One might have noticed by now that the model
seems a bit unintelligent with respect to the part where it walks towards landmark A when
it is no longer there. It keeps doing that for a large number of runs while it could have
reasoned that it makes no sense doing so, because landmark A is simply not there. If a
higher reasoning level would have been present a thought process like: “I am at START
and should go to landmark A, but landmark A, I remember, is no longer there thus I
should do something else” might have been possible.

To further illustrate the higher reasoning level that is lacking an example is given
below. Imagine one has travelled a route from home to work many times and one has
complete procedural knowledge of this route and can travel it “unconsciously” as
mentioned before. Then at some time, a new bridge is build and a much shorter route has
become possible. As long as one consciously decides on where to go, one can reason that
the new route via the bridge is best. However, if the one were to travel to work while not
paying enough attention to the route, one might accidentally take the old longer route. In
such a scenario, it is the higher reasoning level that is not used. The AIBO-Route model
therefore is a model of the lower processes regarding route learning. For example, the
activations of the chunks representing knowledge of the first part of the route learned in
Phase 1 decrease after the model has learned the new route in Phase 2 (e.g., START-A in

). The decrease in those activations, indicate that the model is slowly starting
to forget the old route. However, although the declarative part of the model functions
sufficiently with respect to the current research, it lacks metric knowledge or another
indication of distance/effort that is necessary for the higher reasoning level.

Figure 5.10

The fact that the model needs many runs before it has learned to travel the new
route is a perfect example of bounded rationality (Simon, 1957): within the limitations of
the model a near optimal solution is found. The model is limited or “bounded”, because it
lacks the higher reasoning level and therefore needs relatively many runs to find a near
optimal solution. Also, the fact that the model repeats previous learned behaviour, even
though the setup of the environment has changed such that a different more efficient
behaviour is possible, is a good example of the Einstellung effect (Luchins & Luchins,
1959) mentioned in the Introduction chapter.

In the introduction, it was also stated that because of the Einstellung effect a
second similar task, such as a second route, could be solved quicker because of
knowledge gained in the first task. Unfortunately, the results do not immediately show
that possibility. However, the model needs a lot of time to forget the first route and learn

Discussion and Conclusions 97

the second route because it lacks the higher reasoning level. If that level had been present
and if the route was longer, a positive effect of the Einstellung effect might have been
present. As a result of the longer route, there would have been a bigger overlap between
the first and second route. The model could then have used its knowledge from the latter
part of the first route to travel a part of the second route. If this knowledge included the
relative directions of landmarks part of the second route, the model could start walking
towards those landmarks without first searching for them. As a result, the model would be
faster than it would be without that knowledge. Therefore, the knowledge acquired when
travelling the first route could be beneficial when travelling the second route.

A longer route does create a situation in which the Einstellung effect could be
beneficial, but also creates a problem. In the AIBO-Route model only the last two
landmarks visited are remembered, which is sufficient for a setup with four landmarks.
However given a different setup with more landmarks, where also more landmarks might
be visible at once, a different strategy is needed to keep track of the visited landmarks.
The current solution, to keep the two last visited landmarks in two slots of the goal chunk
is not a plausible solution. How exactly people keep track of where they have been,
remains an open question, but one that could be examined to improve the AIBO-Route
model.

What representation should be used to keep track of visited locations is one of
many problems of representation. Closely related is, for example, how one knows one has
turned around to search behind oneself. Another example is how the segmentation
process should be represented. Although the model uses route-element chunks to
represent the smallest possible segment of a route, it is known (e.g. Lynch, 1960) that
people also group those segments to summarize larger parts of a route. The AIBO-Route
model does not provide that possibility, but it might be possible by using a different
chunk-type that does not represent a direct path between two nodes. A similar
representation as used in NAPS (Levenick, 1991), which is part of the PLAN model
(Chown et al., 1995), could be used to facilitate the segmentation process. How exactly, is
explained in the Future Work chapter.

The segmentation process is also present when it comes to metric knowledge.
However, the relpos chunk in the AIBO-Route model only provides directional
information and no information about distance. The model therefore has only a
rudimentary understanding of metric relations. To include plausible metric knowledge,
not only the AIBO-Route model would have to be expanded, but also the AIBO-R
architecture, because, currently, it cannot provide any additional metric information
besides directional information. To expand the AIBO-Route model, again, inspiration
from the PLAN model might be used, as PLAN’s (Chown et al., 1995) R-NET provides a
theory on how metric knowledge could be represented. PLAN, however, is not very
specific about how that metric knowledge is acquired. To that end, the approach used in
TOUR (Kuipers, 1977, 1978) might be useful, also because the representations used in
TOUR closely resemble those used in ACT-R. Besides PLAN and TOUR, Qualnav
(Kuipers & Levitt, 1988) also has interesting theories on the representation and
acquisition of metric and topological knowledge that could be used as inspiration to
expand the AIBO-Route model. However, as just mentioned, the AIBO-R architecture
would first have to be expanded such that it can provide additional metric knowledge,
before the AIBO-Route model could be modified to fully reason with metric knowledge.

Although, the AIBO-Route model is lacking many aspects of metric knowledge,
the local directional information represented by the relpos chunks is sufficient to help
improve the performance of the model. Currently the relpos chunk can contain eight
possible directions, since these directions were also used in PLAN, but how relative

98 Discussion and Conclusions

directions between objects are represented exactly, remains an open question. For the
current model, the limited eight directions work, because after the model starts moving in
the direction of an object, it also starts searching for it. As a result, the model can find the
object and use visual information to guide itself towards the object. Since the model
moves in segments, the direction can only be corrected at the beginning of each segment,
which results in behaviour where the model makes corrections that become smaller as the
model approaches the object. This trend of smaller corrections closely resembles Fitt’s
law (Fitt, 1954) and provides robust behaviour, because an initial direction does not have
to be very accurate. In short, the relpos chunk representation does not have to be very
accurate, which is a step towards navigating in more dynamic environments, while it also
helps to improve the model’s performance.
 Another analogy between the model and Fitt’s law can be found when looking at
the utility levels of the production rules. and show that the utilities
of productions rules are higher, if those production rules are used when the AIBO is
closer to the goal. For example, in , the utility of the rule “(3) A-B < C: W”,
which is used at landmark B, is lower than “(3) B-C < D: NW”, which is used at
landmark C. As a result, it is more likely that a general rule from the first or second
strategy fires when the model is at landmark B than when it is at landmark C. Since the
general rules are more prone to errors than the through production compilation learned
rules, the model is less likely to make mistakes as it approaches the goal. It is interesting
to examine whether this is true for humans as well.

Figure 5.8

Figure 5.8

Figure 5.13

As mentioned before in the previous chapters, there are three production rules that
compile. The first rule requests a chunk that holds the next object given the previous and
current location, the second rule requests an direction given the next object, and the third
rule moves in that direction if a direction was retrieved. These three rules are the most
important rules of the model as through these rules the model makes it primary decisions.
The sequence of the three rules can be seen as one of the variations proposed by Kuipers
(1983) and was represented as (1) V V’ and (2) (V V’) A in the theoretical
background. V is the current view, which in the AIBO-Route model is represented by the
previous and current location, V’ is the next view and is represented by the next object,
and A is the action, which belongs to the combination of the two views and is represented
by moving in a certain direction.

It is interesting to note, that the AIBO-Route model could be modified to fit
another variation: (1) V A and (2) (V A) V’. After the modification, the first rule
would request a direction given the previous and current location, the second rule would
start moving towards that direction (if retrieved) and try to retrieve the next object given
that direction, and the third rule would start searching for the next object if it was
retrieved. Kuipers (1983) predicted that when the first representation was used, one
would be able to recall the sequence of landmarks encountered during a specific route,
but not always which actions are needed to get from one landmark to the next. This
prediction is confirmed by the results of the experiment of the current research, as the
activations of the route-element chunks are higher than those of the relpos chunks.
Also, the first few runs of the model show that often the model is able to recall a route-
element chunk, but not a relpos chunk. It would be interesting to see if Kuipers’
predictions about the latter representation also hold.
 Although the utilities of the three production rules and compiled versions of these
rules are discussed in detail in the previous chapter, most of the utilities of the non-
compiled production rules are left out of the results as they have no effect on the
behaviour of the model. They have no effect, because they are not in competition with

Discussion and Conclusions 99

any other rule, since, in accordance with the minimal control principle, each rule matches
a specific set of conditions. The rules might have had competition if new rules would
have been created through the production compilation process, but since the
robomotorical and roboperceptual modules inherit the product compilation rules from the
motorical and visual modules, respectively, there are very few situations where rules
using one or both of the robo-modules can compile. Whether the inheritance of product
compilation rules by the robo-modules is correct or whether different rules apply, is open
to debate.
 Besides the compilation rules, also the production compilation process itself might
be debated. As mentioned in the previous two chapters similar production rules might be
created in different ways. For example, when there are three rules, A, B and C, the first
two and the latter two might compile to respectively AB and BC. Next, the new rule AB
can compile with C and the new rule BC can compile with A, both resulting in AC. In
ACT-R, as shown in the Experiment and Results chapter, this would lead to two identical
rules with their own utilities. However, they represent the same knowledge and therefore
it might be possible that they must be fused into one production rule with one utility
value. Since learning and forgetting with two identical production rules instead of just
one would lead to different results, an experiment could be conducted to examine whether
two identical production rules should be fused or not.
 A general problem of ACT-R, closely related to the production compilation
mechanism, is how one gains procedural knowledge in the first place. Through the
defined production rules, a model is able to create new procedural knowledge, but the
initial production rules have to be defined manually. Whereas declarative knowledge can
be gained through visual and auditive perception of the environment in combination with
reasoning processes, the acquisition of procedural memory (i.e., production rules) is still
missing in ACT-R. Perhaps all procedural knowledge can be derived from some basic
rules already present at the moment of birth, just like, for example, many laws in physics
can be derived from a limited set of basic formulas (i.e., Grand Unification Theory).
 Before the advantages and disadvantages of combining cognitive modelling and
robotics are discussed, one final subject regarding the model itself will be discussed. As
has been mentioned several times in the previous chapters, the visual perception, and
object classification in particular, is simplified in the AIBO-Route model. Currently
those processes are treated as a black box and, of course, a complete model should
contain those processes as well. However, as already explained in the Theoretical
Background chapter, the perception component is very hard to model. The human brain
performs exceptionally well when it comes to visual perception, which has been studied
for many years by researchers from several research areas. One component of perception
is particularly hard to model, which is the top down influence. It is well known that the
mental image created in one’s brain is very different from what one’s eyes perceive.
Besides that, the bottom up mechanisms that process several features like edges,
movement and colour are computationally demanding. The combination of the
complexity of visual processing and high computational demand make it hard to
implement many aspects, let alone all aspects, of visual perception. Therefore, it is hard
to create a complete model of route learning. Thus, for future embodied cognitive models
it is a challenge to also include the perception and object classification processes.

6.2 Advantages of combining Cognitive Modelling and Robotics
Above, the AIBO-Route model and AIBO-R architecture have been discussed with
respect to the Spatial-Learning theory and existing models. Next, the advantages and
disadvantages of combining cognitive modelling with robotics will be discussed.

100 Discussion and Conclusions

 One of the advantages of combining a cognitive model with a robot is the
perception problem. This probably sounds contradictory, but implementing a cognitive
model on a robot forces one to deal with problems that might not have presented
themselves at all when creating conventional models. Therefore, implementing a
cognitive model on a robot leads to more complete and plausible models. For example,
many of the simulated navigational models discussed simply ignore the perception and
object classification problems, something which is impossible when implementing such a
model on a robot. Admittedly, in the AIBO-Route model the perception and object
classification are simplified, but at least they are included in the model. Embodied
cognitive modelling therefore forces one to take aspects into consideration, which
otherwise might have been missed.
 Another example of an aspect that might have been missed in conventional
cognitive models is the fact that the AIBO turns around when no interesting object is
perceived in front of it. Qualnav, for example, uses a 360 degree view which makes
turning unnecessary. However, the turn included in the AIBO-Route model has proven to
be an important aspect, because turning around takes relatively long, thereby influencing
the utility learning process. For example, when the AIBO has learned the direction of an
object that lies behind it at a certain point, the behaviour of first searching in front and
then turning around are replaced trough utility learning and production compilation by the
behaviour of immediately turning towards the object. Since first searching in front of the
AIBO and turning around are time consuming processes, the learned behaviour of
immediately turning towards the object, has a large advantage with respect to the old
behaviour. Because of the large advantage (i.e., faster solution), the production rules that
represent the behaviour of immediately turning around, gain a higher utility than the
production rules representing the old behaviour. However, if the model would have had a
360 degree view, the advantage would not have been that large and therefore might have
prevented the use of new production rules. The turn behaviour therefore is important for
the learning of new production rules.

The time consuming process of turning around also helps to forget the behaviour of
moving from START to A in Phase 2. In the first few runs of Phase 2, the AIBO moves
to the location of where landmark A was in Phase 1. After having moved, the AIBO has
to turn around to find landmark C. Since turning around is time consuming, the utilities of
the production rules that cause the AIBO to move into the wrong direction, decrease.
Because of the decrease in the utilities of those production rules, other production rules,
for example start-perception and start-route-element-retrieval, have a higher chance of
being selected. This example demonstrates again that the behaviour of turning around
influences the learning process. Since the turning around behaviour is important and
might have been absent in a conventional model, implementing a cognitive model on a
robot has proven to be beneficial.

Another advantage of implementing a cognitive model on a robot is the fact that the
durations of certain behaviours and the variations in those durations due to noise do not
have to be simulated. For example, in the real world slight variations in friction during
movement and lightning conditions are always present. The presence of these variations
is important, because they might influence the development of a model. For example,
lightning conditions might cause misperceptions or a certain path might be faster because
a robot has more grip. In the experiment of this project, misperceptions were present, for
example, the model mistakenly perceived something as the yellow landmark. Despite the
misperception the model was able to complete it task and satisfy the goals of the current
project. Since, the mentioned variations are not present when testing conventional
models, it is unknown whether they would have been able to cope with them. Therefore,

Discussion and Conclusions 101

if a cognitive model implemented on a robot is able to perform a task in the real world,
the model is more likely to be a correct representation of the cognitive processes
belonging to that task. As a result, data generated by embodied cognitive models is more
reliable than data generated by conventional models.

In short, it is important to include all possible aspects of a task, since they all might
have an influence on the development of a model. Since, implementing a cognitive model
on a robot helps to find those aspects, embodied cognitive models are likely to be more
complete than conventional cognitive models. Also, embodied cognitive models
implement all three levels proposed by Marr (1982). Of course, it is harder to build an
embodied cognitive model, but, just as in the AIBO-Route model, some components
could be simplified for pragmatic reasons and in future work be replaced by more
detailed components.

So far only benefits for using robots in the area of cognitive modelling have been

discussed, but robotics can profit from the area of cognitive modelling as well. Several
advantages of using cognitive modelling in the specific area of human robot interaction
have already been mentioned in the introduction and were examined by Trafton et al.
(2006). However, there are more advantages when using cognitive modelling in the area
of robotics, especially when using a cognitive architecture such as ACT-R.

One of the advantages of using a cognitive architecture to control a robot is that the
learning mechanisms of the architecture can be used. In the area of robotics several
learning algorithms have been used, like, for example, Bayesian learning and neural
networks. However, these are usually designed for a specific task and have to be created
from scratch, while, if using a cognitive architecture, one would get a learning
mechanism for free. In case of the AIBO-Route model, the learning mechanism was used
to learn a route and adapt to a different route. Closely related to such an advantage are the
unified representations used in cognitive architectures. By using similar representations
for information from different sources (e.g., vision, sound and memory), this information
can be compared more easily than when each source has its own representation. For
example, in the AIBO-Route model information from an observation chunk is
compared with that from a route-element chunk. In addition, the logical rules, which
are common in cognitive architectures, can reason with information from any source,
since all information is represented using a similar representation. In short, a cognitive
architecture provides unified representations and learning mechanisms that are able to
work with those representations.

Besides the general ability to learn, the learning mechanism and unified
representation also makes it possible to reuse knowledge gained during a certain task in
another similar task. Unfortunately, as explained before, this advantage was not
demonstrated by the AIBO-Route model. However, as also explained, the AIBO-Route
model could have demonstrated the advantage if the route had been longer. Fortunately,
the AIBO-Route model did show the ability to solve two similar tasks using the same
unmodified model, which is also an advantage of using a cognitive model to control a
robot.

Another advantage of the use of cognitive models in the area of robotics is that
existing models could be used as inspiration. If a robot is to perform a task of which such
a model exists, that model could be used as a basis for the model that is to control the
robot. As a result, many problems that accompany a certain task have already been
solved, and, as a bonus, the cognitive model is expanded to work in the real world, which
could provide new insights into human cognition with respect to the task modelled.

102 Discussion and Conclusions

Using a cognitive model (a cognitive architecture in particular) as inspiration also
creates the possibility of combining models of different tasks into one model. Since
cognitive models, using the same architecture, have the components of the architecture
itself in common, they can be combined more easily than two random conventional
algorithms used in robotics. Such cognitive models share the same unified representation
for declarative and procedural memory, which is especially interesting when combining
two closely related tasks. For example, it would be interesting to see how declarative and
procedural knowledge from both tasks merge and complement each other. However, most
importantly, a robot which is able to perform two tasks using a single architecture is an
important step towards human cognition, since humans are able to perform all tasks using
the same architecture.
 Another thing humans are capable of is using top-down knowledge in perception
and classification. Most of the time this happens unconsciously, but sometimes when
perception conditions are poor humans use top-down knowledge more consciously. For
example, when observing three lights in the distance, one might reason that one’s house is
where the middle light is, although one cannot see the house. An example of using top-
down knowledge in normal perception conditions is when there are several identical
drinking glasses on the table and one knows which glass is his or hers because of the
location of the glass on the table. When using a cognitive model to control a robot, it
might be possible to take advantage of such top-down reasoning processes. In the current
research an experiment was attempted to show that advantage, but unfortunately the
AIBO-Route model lacked sufficient high level reasoning skills.
 The idea behind the experiment was to use four landmarks of which two
landmarks would have similar colours. Trough calibration, one of the landmarks could be
perceived as either of the two landmarks and therefore would be ambiguous. In the first
few runs the AIBO-Route model should perceive the ambiguous landmark as either of the
two. If the model classifies the ambiguous landmark as the other, the model is stuck,
because it should not go somewhere it has already been. At this point, it is important to
remember that at most one landmark is visible at each node. However, if the ambiguous
landmark was correctly classified, there would be no problem. As a result of the
activation, utility and production compilation mechanisms the model should learn to
search for an object that matches the correct classification of the ambiguous landmark,
thereby eliminating the perception problem of that landmark.

Unfortunately, as mentioned, this experiment failed because higher reasoning skills
are lacking. The AIBO-Route model continuously processes the camera image and
therefore classifies an object not only once, but each time it requests an observation
chunk. As a result, the ambiguous object is classified many times in a short time interval.
Among those classifications both possible classifications of the ambiguous landmark are
always present. Thus the scenario in which the ambiguous object is correctly classified
and the AIBO moves on has a very low probability. That would happen only if each
observation request would lead to the correct classification, which in practice is almost
impossible. Therefore, for the experiment to work, the AIBO-Route model should, for
example, be able to reason that the object just perceived could not suddenly be another
object. Another possibility is that the model reasons that the next object cannot be the
same as the one just perceived, because its location is different (and the object cannot
move). One might think the experiment would have been possible using a different order
of the landmarks, but all possible orders, using four landmarks positioned as in the
original experiment during Phase 1, resulted in failure. Either the model would be lost,
since there was no landmark to go to, or it would be stuck in an infinite loop, because the

Discussion and Conclusions 103

model could repeatedly travel between two landmarks if one of those two landmarks
could be perceived as two possibilities5.

Although a second experiment demonstrating the advantage of using top-down
knowledge failed, it is still plausible that such an advantage is possible using a cognitive
model to control a robot. However, such a model would have to include the higher
reasoning processes (i.e., procedural knowledge) required to use that top-down
knowledge. In future work the AIBO-Route model could be modified to include those
reasoning processes and hopefully would then be able to demonstrate the advantage of the
usage of top-down knowledge in perception.

6.3 Conclusions
The primary goal of the current research is to explore what insights can be gained by
combining cognitive modelling and robotics. Above, these insights have been discussed
and it is certain that cognitive modelling and robotics can benefit from each other. It is,
however, not an easy task to utilize the advantages, as can be read in the previous two
sections and section 3.5 in which the interface between AIBO and ACT-R was discussed.
It is also difficult to include all aspects of a task such that an advantage is utilized, but
working towards that goal does help to build more complete cognitive models. On the
other hand, controlling a robot with a cognitive model is also a challenge, because one
has to deal with many more constraints. However, again, the advantages are worth the
effort, because robots controlled by cognitive models inherit the learning capabilities
provided by a cognitive architecture. Furthermore, a robot controlled by a cognitive
model resembles a human more closely than a conventional robot algorithm and therefore
is a step closer towards explaining and applying human intelligence.

Besides the primary goal there are two sub-goals which are:

1. Given a setup of several landmarks the AIBO-Route model should be able to learn
a route to a predefined goal.

2. When having learned such a route and the environment changes in such a way that
a shorter route is possible, AIBO-Route should be able to learn the new shorter
route.

Regarding the first sub-goal, the results of Phase 1 clearly indicate that the AIBO-Route
model is able to learn a route. This is supported by the acquired declarative knowledge as
well as the acquired procedural knowledge. In addition, the decrease in time necessary to
complete a run demonstrates an improvement in performance, which is also a clear
indication of learning.
 Just as the results of Phase 1 satisfy the first sub-goal, the results of Phase 2
satisfy the second sub-goal. In Phase 1 the model has learned a route, which in the first
half of Phase 2 was de-learned and in the second half of Phase 2 the model successfully
learned the new shorter route. It is important to note however, that forgetting the first
route took relatively long, because higher reasoning levels were lacking in the AIBO-
Route model. The AIBO-Route model must therefore be seen as a model of the lower
cognitive processes involved with route learning.

5 Imagine a landmark X, which can be classified as A or B and a second landmark Y, which is classified as
C. The AIBO-Route model remembers only the last two landmarks visited, therefore the next orders are
possible: in the case of X-Y: (A-C-B)-(A-C-B)-etc or (B-C-A)-(B-C-A)-etc and in the case of Y-X: (C-B-
A)-(C-B-A)-etc or (C-A-B)-(C-A-B)-etc. As a result the model is stuck in such loops. Using similar
analyses it can be proven that all orders of the four landmarks lead to failure.

104 Discussion and Conclusions

Furthermore, it is important to note that although existing models implement some
aspects of route learning in more detail and some existing models have aspects which the
AIBO-Route model lacks, the AIBO-Route is a model that contains aspects from the
lowest to the highest level. In contrast, most of the existing models have focussed on only
one or two aspects of spatial cognition. For example, mobile robot models primarily focus
on perception and functionality and simulated models focus on higher reasoning
processes, whereas AIBO-Route combines aspects from all levels into one functional,
plausible model of route learning.

In short, combining a cognitive model and a robot is a challenging task, because
there is a strong connection between higher and lower levels of cognition. Also, if there is
one thing the current project has shown, it is that cognitive models are a long way from
moving around in the real world as humans do. However, there is no reason to become
pessimistic, as it certainly seems possible. A lot of future research has to be done, but it is
certain that the work of combining cognitive models and robotics will be very rewarding.

Discussion and Conclusions 105

106 Discussion and Conclusions

Future Work 107

7. Future Work
It is mentioned several times throughout this document that a more detailed model of
object classification could be added to the AIBO-Route model. Besides that, there are a
few more possible additions and experiments, which will be discussed in this chapter.
This chapter does not describe in full detail what the additions and expansions should
look like, but it gives a global overview of work that that could be done in the future to
improve the AIBO model and AIBO-R architecture. Next, the detailed object
classification will be discussed.
 Currently, the model classifies any object as a waypoint object and the only
property such an object has, is its colour. This classification is done by the roboperceptual
module after a request through the robovisual buffer. At that point there is some simple
function that returns an object chunk, which is always of class “waypoint”. However,
that code could be replaced by a different function, which performs a more complex
object recognition process. To create such a function, inspiration from the area of
computer vision could be used. The function could then, just as the current function
return an object chunk with multiple properties like, for example, the number of legs,
colour and height. With the addition of a more complex object classification system, the
model could, for example, distinguish a red chair from a red table, which is currently
impossible, but obviously necessary for a complete model of route learning.
 A more complex object classification system provides more possibilities and
thereby creates a new problem. In the current model any object is a waypoint, and thus a
possible navigation point. However, if an object is not immediately classified as a
waypoint, the model does not know whether it is a navigation point belonging to the route
or not. Therefore, after an object has been classified it should be matched against
declarative memory to determine whether it is an object on the route or not. If it is, the
model could move towards it, and if it is not, the model could continue searching.

The object classification system could also implement an algorithm to determine
an object’s saliency. In ACT-R the activation of a chunk only depends on the previous
encounters and association with other chunks, but saliency could have an effect too. For
example, very striking objects might be easier remembered than ordinary objects.
Recently a theory, referred to as RACE (Van Maanen & Van Rijn, in press), has been
developed to model what happens between a retrieval request and the actual retrieval.
Saliency could be incorporated into an implementation of that theory such that striking
objects are easier remembered than ordinary objects. Of course, striking objects might
also be easier remembered, because one divides more attention to those objects. Whether
striking objects are easier remembered because of their saliency, or whether they are
easier remembered because of the attention they receive, must therefore be examined
first.

Although it is uncertain if saliency directly influences the remembering of an
object, it is certain that saliency, among other things, determines which objects are
attended. A detailed description of how saliency influences the selection of objects can be
found in the work of Gopal et al. (1989). In contrast to choosing an object at random,
adding a mechanism to select objects based on their saliency might make it possible to
create a model that handles multiple visible objects in a plausible way. As a result, the
environment would be searched in a more natural way. However, adding a mechanism
that takes saliency into account is not sufficient. The AIBO-Route model searches the
environment from right to left and back, but that is not how humans search an
environment. A future modified version of the AIBO-Route model should therefore
include several different searching mechanisms.

108 Future Work

Another, but completely different, addition that would make the AIBO-Route
model more complete is the addition of a segmentation mechanism. AIBO-Route can
only learn the lowest possible segments of a route, that is, two landmarks, which are
directly linked. To make a fully segmented hierarchical representation of a route possible,
chunks of a different chunk-type than route-element could be added. The route-
element chunk would only be used to determine if it is possible to directly move from
one point to another and the new chunk-type could be used to represent nodes that are
connected through several route-element chunks. The example below illustrates how
these new chunks could be created.
 Imagine the model first learns a route as declarative knowledge through relpos
and route-element chunks. However as the model travels the route more often, it gains
procedural knowledge about the route. As a result, some declarative knowledge has
become obsolete. The model can now travel parts of the route using procedural
knowledge. However, at some point procedural knowledge may still be lacking and the
model would need declarative knowledge. The nodes at the beginning and end of the part
travelled using procedural knowledge could be stored in a chunk of the new chunk-type.
The nodes are not directly connected, but it is known that there exists a route between
them. As the model gains more procedural knowledge through production compilation,
the nodes that are stored in the new chunk will be further apart. The chunks containing
such nodes are therefore a summary of parts of the route and together form a hierarchical
topological representation of the route.
 To reason with those segmentation chunks the model would need additional
procedural knowledge, which represents a higher reasoning level. At that level the model
should also be able to reason with distance such that shortcuts and new paths can be
found. However, in order to gain information about distance, as mentioned before, the
AIBO-R architecture would have to be expanded, because now it can only provide
directional information to the AIBO-Route model.
 Finding shortcuts and different paths through reasoning, creates scenarios in
which the model travels much larger distances. However, as of now, the model is only
able to function in the robot lab. Therefore before any higher level reasoning processes
can be fully utilized, the AIBO-Route model should be able to function outdoors. For the
AIBO-Route model to be able to function outside, many more expansions are needed,
like, for example, object avoidance, a robot with better movement capabilities and a
better localization algorithm. Thus, a complete embodied cognitive model of route
learning would need a better link between low level (perception, movement and
localization) and high level (reasoning about distances, objects, shortcuts, etc.) processes.
 Eventually, after many of the additions and expansions have been added to the
AIBO-Route model and AIBO-R architecture, several interesting experiments could be
conducted. For example, in the theoretical background it was discussed that humans first
use global landmarks to navigate and later, when they are more familiar with the
environment, rely more on local landmarks. It would be interesting to see if, for example,
the saliency mechanism in combination with different search processes would also show
such behaviour. Finally, an ultimate experiment would be an experiment where the model
learns a route and through those routes forms some kind of mental map. The information
gained, could then be used to draw maps, which in turn could be compared to maps
drawn by humans that have also learned those routes. Such experiments will probably be
near to impossible for some time, but it is interesting to work towards such a goal.

Future Work 109

110 Future Work

References 111

8. References
Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning

a route in a driving simulator. Journal of Environmental Psychology, 17(4), 317-
331.

Allen, G. L. (1981). A developmental perspective on the effects of “subdividing”
macrospatial experience. Journal of Experimental Psychology: Human Learning
and Memory, 7(2), 120-132.

Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive
architecture. Cognitive Science, 29(3), 313-341.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. L.
(2004). An integrated theory of the mind. Psychological Review, 111(4), 1036-
1060.

Appleyard, D. (1970). Styles and methods of structuring a city. Environment and
Behavior, 2, 100-117.

Brooks, R. (1985). Visual map making for a mobile robot. Robotics and Automation.
Proceedings. 1985 IEEE International Conference on, 2, 824-829.

Brooks, R. (1991). New approaches to robotics. Science, 253(5025), 1227-1232.
Chown, E., Kaplan, S., & Kortenkamp, D. (1995). Prototypes, Location, and Associative

Networks (Plan) - Towards a Unified Theory of Cognitive Mapping. Cognitive
Science, 19(1), 1-51.

Cohen, R., & Schuepfer, T. (1980). The Representation of Landmarks and Routes. Child
Development, 51(4), 1065-1071.

Colle, H. A., & Reid, G. B. (1998). The room effect: Metric spatial knowledge of local
and separated regions. Presence-Teleoperators and Virtual Environments, 7(2),
116-128.

Cornell, E. H., & Hay, D. H. (1984). Children's Acquisition of a Route Via Different
Media. Environment and Behavior, 16(5), 627-641.

Cornell, E. H., Heth, C. D., & Alberts, D. M. (1994). Place Recognition and Way Finding
by Children and Adults. Memory & Cognition, 22(6), 633-643.

Darken, R. P., & Peterson, B. (2001). Spatial Orientation, Wayfinding, and
Representation. In K. Stanney (Ed.), Handbook of Virtual Environment
Technology. New Jersey: Laurence Erlbaum Associates.

Epstein, S. (1997). Spatial Representation for Pragmatic Navigation. Paper presented at
the Spatial Information Theory - A Theoretical Basis for GIS, International
Conference COSIT'97.

Filliat, D., & Meyer, J. A. (2003). Map-based navigation in mobile robots: I. A review of
localization strategies. Cognitive Systems Research, 4(4), 243-282.

Fitt, P. M. (1954). The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology, 47(6), 381-391.

Franz, M. O., & Mallot, H. A. (2000). Biomimetic robot navigation. Robotics and
Autonomous Systems, 30(1), 133-153.

Franz, M. O., Schölkopf, B., Mallot, H. A., & Bülthoff, H. H. (1998). Where did I take
that snapshot? Scene-based homing by image matching. Biological Cybernetics,
79(3), 191-202.

Gale, N. D., Golledge, R. G., Pellegrino, J. W., & Doherty, S. (1990). The Acquisition
and Integration of Route Knowledge in an Unfamiliar Neighborhood. Journal of
Environmental Psychology, 10(1), 3-25.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton
Mifflin.

112 References

Goldin, S. E., & Thorndyke, P. W. (1982). Simulating Navigation for Spatial Knowledge
Acquisition. Human Factors, 24(4), 457-471.

Golledge, R. G., Gale, N. D., Pellegrino, J. W., & Doherty, S. (1992). Spatial Knowledge
Acquisition by Children - Route Learning and Relational Distances. Annals of the
Association of American Geographers, 82(2), 223-244.

Golledge, R. G., Ruggles, A. J., Pellegrino, J. W., & Gale, N. D. (1993). Integrating route
knowledge in an unfamiliar neighborhood: along and across route experiments.
Journal of Environmental Psychology, 13(4), 293-307.

Gopal, S., Klatzky, R. L., & Smith, T. R. (1989). Navigator: A psychologically based
model of environmental learning through navigation. Journal of Environmental
Psychology, 9(4), 309-331.

Heft, H. (1979). Role of Environmental Features in Route-Learning - 2 Exploratory
Studies of Way-Finding. Environmental Psychology and Nonverbal Behavior,
3(3), 172-185.

Kuipers, B. J. (1977). Representing Knowledge of Large-Scale Space (No. TR-418).
Cambridge, MA: Massachusetts Institute of Technology.

Kuipers, B. J. (1978). Modeling spatial knowledge. Cognitive Science, 2(2), 129-153.
Kuipers, B. J. (1983). Modeling human knowledge of routes: Partial knowledge and

individual variation. Paper presented at the Proceedings of the National
Conference on Artificial Intelligence (AAAI-83), Washington, DC.

Kuipers, B. J., & Levitt, T. S. (1988). Navigation and Mapping in Large-Scale Space. Ai
Magazine, 9(2), 25-43.

Levenick, J. R. (1991). NAPS: a connectionist implementation of cognitive maps.
Connection science, 3(2), 107-126.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological
Review, 95(4), 492-527.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in
problem solving. Cognitive Psychology, 31(2), 168-217.

Luchins, A. S., & Luchins, E. H. (1959). Rigidity of Behavior: A Variational Approach to
the Effect of Einstellung. Eugene, Oregon: University of Oregon Books.

Lynch, K. (1960). The image of the city. Cambridge, Massachusetts: The M.I.T. Press.
Madhavan, R., Fregene, K., & Parker, L. E. (2004). Distributed Cooperative Outdoor

Multirobot Localization and Mapping. Autonomous Robots, 17(1), 23-39.
Marr, D. (1982). Vision. San Francisco, Ca: W. H. Freeman.
Mataric, M. J. (1992). Integration of representation into goal-driven behavior-based

robots. Robotics and Automation, IEEE Transactions on, 8(3), 304-312.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.
Owen, C., & Nehmzow, U. (1998). Landmark-based navigation for a mobile robot. Paper

presented at the From Animals to Animats, Proceedings of SAB'98, Zurich,
Switzerland.

Schweizer, K., Herrmann, T., Janzen, G., & Katz, S. (1998). The Route Direction Effect
and its Constraints. In Spatial Cognition, An Interdisciplinary Approach to
Representing and Processing Spatial Knowledge (pp. 19-38). Berlin: Springer-
Verlag.

Siegel, A. W., & White, S. H. (1975). The development of spatial representations of
large-scale environments. Adv Child Dev Behav, 10, 9-55.

Simon, H. A. (1957). Models of man: Social and Rational. New York, NY: Wiley.

References 113

Smith, L., & Husbands, P. (2002). Visual landmark navigation through large-scale
environments. Paper presented at the EPSRC/BBSRC International Workshop on
Biologically-Inspired Robotics: The Legacy of W. Grey Walter.

Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual
environment navigation. Presence-Teleoperators and Virtual Environments, 9(1),
69-83.

Taatgen, N. (2007). The minimal control principle. In W. D. Gray (Ed.), Integrated
models of cognitive systems. New York: Oxford University Press.

Taatgen, N., van Rijn, H., & Anderson, J. R. (2004). Time perception: Beyond simple
interval estimation. Proceedings of the Sixth International Conference on
Cognitive Modeling, 296-301.

Tlauka, M., & Wilson, P. N. (1994). The Effect of Landmarks on Route-Learning in a
Computer-Simulated Environment. Journal of Environmental Psychology, 14(4),
305-313.

Trafton, J. G., Schultz, A. C., Perznowski, D., Bugajska, M. D., Adams, W., Cassimatis,
N. L., et al. (2006). Children and robots learning to play hide and seek. ACM
SIGCHI/SIGART Human-Robot Interaction, 242-249.

Van Maanen, L., & Van Rijn, H. (in press). An Accumulator Model of Semantic
Interference. Cognitive Systems Research.

	1. Introduction
	1.1 Combining Cognitive Modelling and Robotics
	1.2 Route Learning as a Task Domain
	1.3 The Research Goals and Approach
	1.4 Outline

	2. Theoretical Background
	2.1 ACT-R
	2.1.1 General Framework
	2.1.2 The Goal and Imaginal module
	2.1.3 Procedural Memory
	2.1.4 Declarative Memory
	2.1.5 Remarks regarding ACT-R

	2.2 Spatial Learning: The Landmark, Route, Survey (LRS) Model
	2.2.1 Landmark Knowledge
	2.2.2 Route Knowledge
	2.2.3 Survey Knowledge
	2.2.4 Remarks regarding Spatial Learning

	2.3 Simulated Navigational Models
	2.3.1 TOUR (Kuipers, 1978)
	2.3.1.1 The Model
	2.3.1.2 Remarks

	2.3.2 Qualnav (Kuipers & Levitt, 1988)
	2.3.2.1 The Model
	2.3.2.2 Remarks

	2.3.3 NAVIGATOR (Gopal et al., 1989)
	2.3.3.1 The Environment
	2.3.3.2 The Navigation System
	2.3.3.3 Experiments and Remarks

	2.3.4 PLAN (Chown et al., 1995)
	2.3.4.1 Path Selection: NAPS
	2.3.4.2 Landmark Identification
	2.3.4.3 Direction Selection
	2.3.4.4 Environmental Abstraction
	2.3.4.5 Remarks

	2.3.5 ARIADNE (Epstein, 1997)
	2.3.5.1 Remarks

	2.3.6 Remarks regarding Simulated Navigational Models

	2.4 Mobile Robot Navigational Models
	2.4.1 Nomad 200 (Owen & Nehmzow, 1998)
	2.4.1.1 Remarks

	2.4.2 Toto (Mataric, 1992)
	2.4.2.1 Remarks

	2.4.3 Augustus and Theodosius (Madhavan et al., 2004)
	2.4.3.1 Remarks

	2.5 Final Remarks regarding the Theoretical Background

	3. Interfacing AIBO and ACT-R: AIBO-R
	3.1 URBI
	3.2 URBI Client
	3.3 URBI Commands
	3.4 Expanding ACT-R
	3.4.1 Roboperceptual Module
	3.4.2 Robomotorical Module

	3.5 A discussion of levels

	4. The AIBO-Route model
	4.1 General Description
	4.2 Decision Making Layer
	4.3 Searching and Processing Layer
	4.3.1 General Search
	4.3.2 Processing
	4.3.3 Specific Search

	4.4 Tracking and Moving Layer
	4.5 Summary and Description of Running the Model

	5. Experiment and Results
	5.1 The Experiment
	5.1.1 Phase 1
	5.1.2 Phase 2

	5.2 Results
	5.2.1 Phase 1
	5.2.1.1 Declarative Knowledge
	5.2.1.2 Procedural Knowledge

	5.2.2 Phase 2
	5.2.2.1 Declarative Knowledge
	5.2.2.2 Procedural Knowledge

	5.3 Remarks

	6. Discussion and Conclusions
	6.1 Discussion of the AIBO-Route model
	6.2 Advantages of combining Cognitive Modelling and Robotics
	6.3 Conclusions

	7. Future Work
	8. References

