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Abstract 
 
Over the years, the field of robotics has primarily focused on low-level behaviour, like 
navigation and exploring, while cognitive modelling has primarily focused on high-level 
cognition. As a result, each field often disregards the other field’s level of cognition. 
Combining a cognitive model with a robot, such that multiple levels of cognition are 
implemented, might be beneficial for both robotics and cognitive modelling. To explore 
the possible benefits of that combination, an embodied cognitive model of route learning 
was developed. The model was developed using ACT-R, which has been expanded to 
interface with a Sony AIBO robot. 

The study shows that creating an interface between a cognitive model and a robot 
is challenging, especially when low- and high-level cognition have to interact in a 
plausible and useful way. From the cognitive modelling perspective, it forces one to 
include several aspects which in conventional models might have been overlooked. At the 
same time, the study showed that robotics could benefit from the unified representations 
and learning mechanisms of a cognitive architecture, which result in useful top-down 
control. As a result, a robot is able to learn in a cognitively plausible way and is able to 
improve its performance by adapting to a new environment. 
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Introduction  9 

1. Introduction 
The field of artificial intelligence is very broad, but the different research areas within 
artificial intelligence all share a common goal: to explain and apply intelligence. Each 
research area uses its own approach to work towards that goal, but unfortunately different 
research areas often do not combine their knowledge.  

An example of two areas that can learn a lot from each other is cognitive 
modelling and robotics. Whereas cognitive modelling attempts to model intelligence at a 
relatively high level, often disregarding low level processes, robotics attempts to gain 
insight into intelligence at a rather low level usually disregarding high level influences. 
Since a complete theory of intelligence should include both the low and the high level 
processes and the nature of the interactions between them, it is a good idea to combine 
cognitive modelling and robotics. By combining cognitive modelling and robotics, 
models can be created that approach a complete theory of intelligence closer than most 
existing models. The primary goal of the current research is to explore what insights can 
be gained by combining cognitive modelling and robotics. 

The remainder of this chapter will discuss the possible benefits of using robotics 
in the area of cognitive modelling and vice versa, a task domain to explore the 
combination of the two research areas and finally the research sub-goals. 

1.1 Combining Cognitive Modelling and Robotics 
There are several arguments for using robotics in the area of cognitive modelling, which 
shall be referred to as embodied cognitive modelling, besides the argument mentioned 
above. One of these arguments is that a simulated world does not provide all aspects that 
are relevant for a task. For example, when driving a car, the engine sound provides an 
indication on when to change gear and horizontal g-forces might indicate that one should 
take back some gas when taking a corner. While it is possible to simulate these aspects as 
well, it is almost impossible to think of every aspect that plays a role when performing a 
certain task. Even if one succeeds in identifying each relevant aspect, it quickly becomes 
technically impossible to simulate these aspects.  

As will be discussed in the next chapter, actively travelling a route plays an 
important role when learning the route. This aspect is hard to model and to model the 
effort accompanying active travel one would need a detailed model of the environment 
including laws of physics. Besides that, one would have to simulate noise that is present 
when sensing the real world through sensors and deviations that arise when actions are 
preformed through actuators. Although modelling all these aspects is not impossible, it is 
challenging and eventually the model should work in the real world anyway. Embodied 
cognitive modelling therefore is an elegant solution to the problems just mentioned as in 
the real world these aspects are inherently present. 
 Another argument for embodied cognitive modelling can be derived from the 
work of Marr (1982). Marr defined three levels that are necessary to understand an 
information processing system. Since cognitive models are also information processing 
systems the three levels apply to those as well. Conventional cognitive models account 
for the first two levels, which are the computational and the algorithmic level. These 
levels respectively represent the goal of a system and the means by which the goal can be 
obtained. However, the third level, referred to as the implementation level, is usually not 
considered when evaluating the plausibility of a cognitive model. This third level is the 
medium which realizes the means defined by the second level.  
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In the area of cognitive modelling this medium is usually a normal PC, but a PC is 
physically completely different from humans. Of course this is also true for robots, but at 
least they are a step closer toward mimicking humans. This is important, because the 
capabilities (i.e., which goals can be reached) of an information processing system are 
first defined by the third level, which is effectively the hardware, and then by the second 
level, which is the software. Therefore the goals, represented by the first level, depend 
heavily on both the second and third level. By choosing a robot as the means to process 
the algorithms of a cognitive model, the model is one step closer towards humans. 

Also, using a robot to implement a cognitive model, forces one to consider all the 
limitations that come along with the robot. This means that solutions to problems that 
might have been ignored have to be implemented in the model, possibly resulting in a 
more plausible model.  

So far only benefits for using robots in the area of cognitive modelling have been 
discussed, but robotics can profit from the area of cognitive modelling as well. Robotics 
has already recognized the area of biology (i.e., animals) as a source of inspiration for 
certain algorithms (Franz & Mallot, 2000). However, usually these algorithms simulate 
relatively basic tasks. To create algorithms that simulate more complex tasks, higher 
cognitive processes are needed. For those tasks it makes sense to use inspiration from the 
intelligence of humans and thus cognitive modelling. 

Examples of tasks that can be used as inspiration for more complex tasks are the 
water-jar (Luchins & Luchins, 1959) task and the stick-building task (Lovett & Anderson, 
1996). These models show a certain learning effect that can be useful in the area of 
robotics. In both tasks a series of steps is used to find the solution to a number of 
problems. When a new, different problem is presented the model still uses the same series 
of steps, even if there is a better solution. Luchins and Luchins (1959) refer to this as the 
Einstellung effect. However, most importantly, the new problem is solved even though it 
was not previously encountered, which can be useful in the area of robotics. For example, 
a model can be implemented on a robot using the just mentioned cognitive models as 
inspiration. By using such a model, the robot can then learn a specific task. The 
information gained when executing that specific task can then also be used when 
executing a second similar task. Since the robot is capable of solving several similar 
problems it has not encountered before, it is very robust. Using learning mechanisms 
from the cognitive models, the robot can even increase its performance within the 
limitations of the complete system, eventually finding a near-optimal solution. This is 
also referred to as bounded rationality (Simon, 1957). The Einstellung effect and bounded 
rationality will be discussed in a later chapter in the context of the current research. 
 Another benefit of using cognitive modelling in the area of robotics can be 
demonstrated in the field of human-robot interaction (Trafton et al., 2006). Trafton et al.’s 
work is one of the few examples where a combination of a cognitive model and a robot is 
used. They argue that robots that use similar representations as humans can better 
collaborate with humans than robots that do not. To solidify this hypothesis they provide 
three arguments. 
 First robots usually have computationally efficient algorithms that use 
mathematical representations like matrices and polar coordinates. However, in general, 
humans do not think or reason using those representations. Therefore for robots and 
humans to understand each other, their expressions have to be translated which is 
inefficient and might cause some loss of information or confusion. These problems of 
communication are less likely to present themselves when the robot uses a cognitive 
model that has similar representations as humans. 
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 Second, a cognitive model ensures that the robot exhibits relatively normal, for 
humans understandable, behaviour. Conventional robot algorithms may be able to 
efficiently perform certain tasks, but if humans need to collaborate with these robots and 
the robots’ behaviour seems unnatural because of the conventional algorithms, the 
behaviour will detract from the interaction. Therefore when behaviours are programmed 
using cognitive models, the human-robot interaction might improve. 
 Finally, for some tasks it is beneficial to incorporate knowledge about how 
humans solve certain tasks. For example, when a robot has to search for people hiding, it 
is useful to know how humans tend to hide themselves. In this case human intelligence is 
not only used to create the processes of a model, but also as content for the processes to 
use. Thus, when programming robots using cognitive models, these robots could gain 
insight in the beliefs, desires and intentions of humans they collaborate with (or against).  

In short, robots are good at low level behaviours but usually lack higher cognitive 
processes. The field of cognitive modelling has already thoroughly researched these 
higher cognitive processes and can therefore be beneficial as inspiration for robotics to 
improve their performance and/or collaboration with humans. Vice versa, the area of 
robotics can fill the gap on the low end of cognitive models by adding embodiment and 
low level processes that interact with the higher level processes of a cognitive model. 

1.2 Route Learning as a Task Domain 
Trafton et al. (2006) performed an experiment based on the game Hide and Seek to 
support their arguments regarding the benefits of using a cognitive model in the area of 
human-robot interaction. However, much more can be learned from examining the 
combination of cognitive modelling and robotics, as demonstrated by the previous 
section. To explore what insights can be gained from such a combination, a route-learning 
task was used.  

The route-learning task is an interesting task, because it involves spatial reasoning 
processes and the learning of declarative and procedural knowledge, which are all higher 
processes. Also it involves movement, a component that is absent in most cognitive 
models and often regarded as a lower process. Finally to be able to learn a route one also 
has to perceive the environment, which, as will be discussed, is a difficult component to 
model. 

Route learning as a task is not only interesting to examine the combination of 
cognitive modelling and robotics, but also is an interesting task for the individual research 
areas. In the area of cognitive modelling and also psychology in general, a lot of research 
towards spatial cognition is done. For example, what representations do humans use to 
represent spatial knowledge and by what processes do they gain that knowledge. On the 
other hand, in the area of robotics, navigation is researched for obvious reasons. Many 
robots have to move around and navigate through an environment to be able to complete 
their tasks. As a result, the algorithms used in robotics have a pragmatic approach that is 
primarily efficient and robust rather than cognitively plausible. 

In short, route learning is a useful task to examine the combination of cognitive 
modelling and robotics, as well as to examine the psychological aspects and as a means of 
navigation for robots. 

1.3 The Research Goals and Approach 
The main goal of the current research is to explore what insights can be gained by 
combining cognitive modelling and robotics. This section describes what approach will 
be used to do that and some sub-goals.  

 



12  Introduction 

A cognitive model can be programmed in any programming language: Lisp, C++, 
Java, R, etc. However, by default, these languages do not provide any psychological or 
cognitive constraints. Therefore in the current research ACT-R (Anderson, 2005; 
Anderson et al., 2004) is used. ACT-R combines several aspects of cognition into one 
general theory. An implementation of this theory is used in the current research. By using 
ACT-R, psychological constraints are provided to the second level of Marr’s (1982) three 
levels. In addition Taatgen (2007) proposed a guideline referred to as the minimal control 
principle. This guideline provides additional constraints which should lead to more 
plausible and more robust cognitive models. 
 For the current research there were two robot types available, an Active Media 
Pioneer 2DX and a Sony AIBO ERS-7. The Pioneer is a three-wheeled robot with a 
camera on top and several sonar sensors along its sides. The AIBO consists of a body 
with four legs and a head that contains a video camera and a distance sensor. Since the 
AIBO’s head can be controlled separately from the rest, it matches the modular approach 
used in the current research best. Therefore, the AIBO was chosen to be used instead of 
the Pioneer robot. 

As mentioned the robot, in this case the AIBO, provides the strongest constraints 
for a cognitive model, as it defines the third level of Marr’s (1982) three levels. Also, 
since the AIBO with its ACT-R model will operate in the real world, the model has to 
deal with all problems that come along with it. This, in combination with ACT-R, the 
minimal control principle and the AIBO, provides a set of constraints that should help to 
create a plausible cognitive model.  
 The model created is called AIBO-Route and uses an expanded version of ACT-
R, referred to as AIBO-R, because ACT-R by default does not have a way to interact with 
the AIBO. To explore what insights can be gained by combining cognitive modelling and 
robotics, AIBO-Route was developed within the constraints just mentioned and with two 
sub-goals in mind. These sub-goals are: 
  

1. Given a setup of several landmarks the AIBO-Route model should be able to learn 
a route to a predefined goal. 

2. When having learned such a route and the environment changes in such a way that 
a shorter route is possible, AIBO-Route should be able to learn the new shorter 
route. 

 
AIBO-Route is a cognitive model that simulates how humans develop route knowledge, 
but ACT-R also is capable of predicting reaction times and the duration of cognitive 
processes. However, these temporal aspects were not considered in the current research. 

1.4 Outline 
The next chapter, Theoretical Background, will discuss several aspects relevant to this 
project. It will discuss: ACT-R, Spatial Learning, Simulated Navigational Models and 
Mobile Robot Navigational Models. Then the current research will be discussed in the 
context of the Theoretical background starting with the interface between AIBO and 
ACT-R. Next the AIBO-Route model will be discussed, followed by the experiments and 
results. Then the results will be discussed and in the conclusion will be stated whether the 
goals were obtained or not. Finally some ideas of expansions to the AIBO-Route model 
and AIBO-R architecture will be discussed in the Future Work chapter. 
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2. Theoretical Background 
In the previous chapter the goal and relevance of the current research has been discussed. 
This chapter will discuss the background needed to understand the route-learning model 
that has been developed in this project. 

The chapter will begin with an introduction to ACT-R, the theory used to create 
the route-learning model of the current research. It will continue with a section about 
what is known so far about spatial learning and route learning in particular. Next a few 
models that have been developed to simulate navigational learning will be discussed 
followed by a section about some navigational algorithms specifically developed for 
mobile robots that implement navigation.  

The different sections will illustrate the difference between robot navigation 
models and simulated models based on Spatial-Learning theory. The most important 
aspects of the sections in this chapter are summarized and put into context in the final 
section of this chapter. 
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2.1 ACT-R 
Over the years, different components of the human mind have been studied in relative 
isolation. There have been, for example, studies of memory, motor control and decision-
making. To get a better understanding of how these components work together a theory 
was developed. This theory has taken form in a cognitive architecture called adaptive 
control of thought-rational (ACT-R) (Anderson, 2005; Anderson et al., 2004). This 
section will discuss how cognition is integrated in the ACT-R theory.  

To prevent confusion it is useful to note that the ACT-R theory is not the same as 
the ACT-R program implemented in Lisp. Unfortunately this distinction is rarely made, 
but it is important to note that the ACT-R theory can be and has been implemented in 
several different programming languages. However, most of the cognitive models using 
the ACT-R theory have been developed with standard Lisp implementation. In the current 
research an extended version of the standard implementation has been developed. This 
extended version makes it possible for ACT-R to interact with the Sony AIBO robot and 
is discussed in the chapter “Interfacing AIBO and ACT-R: AIBO-R”. 

To explain ACT-R, the general framework will be described first. The 
components of the general framework, relevant to the current research, will be discussed 
in the subsequent sub-sections. 

2.1.1 General Framework 
The ACT-R architecture consists of several modules. The default modules are: the goal 
module, imaginal module, declarative module, visual module and manual module. The 
goal module is used to keep track of the current goal of a task. During the execution of 
that task one must also be able to keep track of the current state or sub-goal, which is 
done by the imaginal buffer. The declarative module represents all factual knowledge, 
like for example that three plus two is five or that from one’s house one has to go left to 
go to work. Finally, to be able to interact with the world, one has to be able to perceive 
the environment and act in it, which is the function of the visual module and manual 
module respectively. 

The current state of the model is represented by the content of the buffers. Each of 
the modules has at least one buffer, which is used by a central production system, 
sometimes referred to as the procedural module. Buffers are used as an interface between 
the central production system and the modules. For example, the declarative module can 
retrieve one fact at a time and that fact is placed in the retrieval buffer, which belongs to 
the declarative module. The fact in the retrieval buffer can then be used by the central 
production system. All the buffers together are sometimes seen as the working memory of 
the ACT-R framework. 

The central production system uses the contents of the buffers to recognize a 
pattern and then changes the content of these buffers. In what way the content has to be 
changed, is determined by production rules. The production rules are if-then rules and 
together form the procedural memory. If the content of the buffers matches the if part, 
also known as the left-hand side, the then part, also known as the right-hand side, is 
executed by the central production system. When this happens it is said that the matching 
production rule fires. 

The buffers and the central production system together form a serial bottleneck for 
the ACT-R architecture. The buffers limit the processing speed, because they can hold 
only one fact, called a chunk, at a time and the central production system limits the 
processing speed because only one rule can be matched against the buffers at a time. 
Besides that, the matching of a production rule against the buffers always takes fifty 
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milliseconds. The serial bottleneck represents the single stream of thought one has (i.e., 
one cannot think of two things at the same time). 

Although buffers can hold only one chunk at a time, each module has its own 
buffer. All these buffers can be used by a single production rule. As a result parallel 
processing of, for example, memory retrieval and visual perception is possible. Also, it is 
known that the visual system is divided into a “what” and “where” part, which can also 
operate in parallel. The “where” part processes the location of objects and the “what” part 
classifies them. To make the parallel processing in the visual system possible, the visual 
module has two buffers, visual and visual-location, that respectively represent the “what” 
and “where” parts of the visual system. 

To summarize, ACT-R has several modules that represent components of the 
mind of which some provide an interface with the world outside the mind. The modules 
have buffers that can contain a chunk. The chunks from all buffers together form a pattern 
that can be compared to production rules by the central production system. The matched 
production rule specifies which modifications have to be made to the buffers. In turn the 
modules respond to the changes in the buffers and the process repeats. 

2.1.2 The Goal and Imaginal module 
As mentioned, the content of the buffers determine which production rules can fire. When 
a certain fact is in the retrieval buffer of the declarative module and another fact is in the 
visual buffer, several different production rules might match. Not all these production 
rules serve the current goal and therefore some production rules should be excluded from 
the possible matches. By adding extra constraints, the number of matching production 
rules is limited to those that serve the current goal. The content of the goal buffer and 
imaginal buffer provide these additional constraints. The goal and imaginal buffer can 
therefore guide a model towards the goal. 

Since technically a chunk can have any number of elements, called slots, it is 
possible for a chunk in the goal to have a condition for each possible situation. This is of 
course not a plausible way to create a cognitive model. The goal buffer should therefore 
hold a chunk representing the global goal of the current task. To keep track of which 
actions need to be taken and what sub-goals need to be reached, the imaginal buffer can 
be used to provide additional constraints. 

To help researchers build plausible models, a guideline was designed by Taatgen 
(2007), which is called the “minimal control principle”. The idea of this principle is that 
one should use as few control states as possible, that is, the number of possible values for 
the goal and imaginal buffer should be as few as possible. The model should primarily be 
guided by stimuli from the environment and state of the mind, rather than some artificial 
state.  

Models created by adhering to the guideline tend to simulate bottom up 
processing rather than top down. A clear illustration of the minimal control principle is 
given through the task of making tea (Taatgen, 2007). Instead of specifying the sequence 
of steps that need to be taken to make tea, the steps can be given individually with their 
conditions (the conditions being the state of the environment when the individual step is 
appropriate). Thus instead of specifying the list on the left without conditions, it is better 
to specify the list on the right: 

 
1. put water in kettle   [if empty kettle] put water in kettle 
2. after step 1, put kettle on stove [if kettle with water] put kettle on stove 
3. after step 2, put leaves in teapot [if empty tea pot] put leaves in teapot 
4. after step 3, wait until water boils [if water boils and leaves are in teapot] pour water in teapot 
5. after step 4, pour water in teapot 
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The specification to the right is also able to cope with the situation where there already 
was water in the kettle, in which case the first step can be omitted. Also, the specification 
to the right is more flexible with regard to the order in which the steps need to be taken. 
The step to be taken can be determined entirely by observing the environment. Finally the 
specification adhering to the minimal control principle also makes it possible to interrupt 
the task and pick it up later since there is no internal state to keep track of. 
 All the advantages of adhering to the minimal control principle, such as 
environmentally driven and a higher robustness, are very important in combining 
cognitive modelling with robotics. Also, in the field of robotics it is common practice to 
do bottom-up processing. Through the minimal control principle, cognitive models also 
tend to have bottom-up processing in addition to top-down processing. As a result, 
cognitive models are better fit to be used with robots. This is an additional reason why the 
model in the current research was developed with the minimal control principle in mind. 

2.1.3 Procedural Memory 
Even though the content of the buffers limit the number of production rules that can fire, 
it might still be possible for several rules to match the content of the buffers. The process 
that determines which production rule will fire is called conflict resolution. Which 
production is chosen by the conflict resolution mechanism is determined by the utility of 
the production rules. The utility of a production rule is based on how high the chance is 
that the production rule will result in a successful completion of the goal and the cost of 
obtaining it through that rule. It is important to note, however, that these utilities are noisy 
and the production rule with the highest utility might loose from a production rule with a 
slightly lower utility, because of the noise. The utility of a production rule i is defined as 
 

ε+−= iii CGPU ,  (production utility equation) 
 
where Pi is an estimate of the probability that if production rule i is chosen the current 
goal will successfully be achieved. G is the value of the current goal and Ci is an estimate 
of the cost to achieve the goal using production rule i. Both Pi and Ci are learned from 
experience. The ε is the noise added to the utility and is determined by the parameter s 
(see below). 

If there are a number of production rules that match, the probability of production 
rule i to be chosen from all matching production rules n, is calculated by: 
 

∑
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,  (production choice equation) 

 
The probability for a production rule i to be chosen, therefore depends on the utility of all 
matching production rules n and the noise parameter s which is distributed according to a 
logistic distribution with a mean of zero and a variance of: 
 

 2
2

2

3
sπσ = ,   (logistic distribution variance) 

 
The chance of a production rule to be successful is derived from the times it was 
successful with respect to the total number of applications of that rule: 
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SuccessesP
+

= , (probability of success equation) 

 
The cost to achieve the goal is obtained in a similar manner by the formula 
 

 
FailuresSuccesses

EffortsC
+

= , (cost equation) 

 
where Efforts is the accumulated time over all the successful and failed applications of a 
production rule. It is useful to note that the Successes are determined by a final 
production rule that indicates that the goal has been reached. The success counter of all 
production rules that fired to successfully reach the goal is increased by one. Similarly, 
the failure counter of production rules is increased by one when the firing of those rules 
led to the final production rule, which is marked as a failure to reach the goal. The initial 
values of Successes, Failures and Efforts are respectively, one, zero and 0.05 (seconds). 

The above set of equations cause the utility of a production rule to increase when 
its application led to successful completion of the goal. The utility decreases when the 
cost (i.e., Efforts) becomes higher or the production rule led to a failure. The cost 
corresponds to the period from the time of the application of a production rule to the time 
of completing the goal. This time period (i.e., the cost) is averaged over the subsequent 
use of a production rule. As a result when a production rule causes to quickly reach the 
goal, the utility of that rule becomes higher. 
 
Most production rules are defined at the start of the execution of a model. However, 
during the execution of the model it is possible that new production rules are formed, a 
process called production compilation. This process causes two successive production 
rules to merge into one production rule that has the effect of both. Since the execution of 
a production rule always costs fifty milliseconds and there might be processes that cost 
additional time between the rules that are compiled, the goal of a model can be reached 
faster when such production rules merge. This speedup corresponds to the speedup of the 
execution of a task as the result of gained experience. 
 The compilation of two rules is possible only when the output of the first is 
predictable. Imagine there are two rules where the first rule would request a chunk C 
from memory representing an action A when encountering situation S, and the second 
rule would retrieve the chunk C and then perform action A. These rules can compile into 
a rule that immediately performs actions A upon encountering situation S, thereby 
eliminating the retrieval of chunk C. If, however, the output of the first rule is not 
predictable, for example, when there is not a retrieval between two rules, but a perception 
event, the rules cannot compile. If the rules were to compile anyway, it would lead to a 
hallucination of the perceived object. 

Since new production rules compete with the first of the two production rules it 
was compiled from, the utility of the new rule cannot be determined in the usual way. 
Also it would seem likely that the new rule borrows some experience from the two old 
rules. Therefore the utility of a compiled production rule is calculated from the two rules 
that formed it. This is partly done by using the following two equations for the chance of 
success: 
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The n in the first equation is the initial experience of a new production rule and defaults 
to ten. Old1P is the P value of the first of the two production rules that formed the new 
production rule. From the equations one can derive that α is a parameter that sets the 
learning rate. The higher α is, the faster the utility of the new rule will converge to the 
utility of the first of the two old rules. Since the utility of the new rule will only approach 
that of the old rule, noise is needed for the new rule to overcome the utility of the old rule. 
Once the new production rule has been chosen a few times, the ratio of Successes and 
Failures might cause it to obtain a higher utility then the old rule. The equations for the 
cost C are derived from the original equations in the same way as those for the chance of 
success. 

2.1.4 Declarative Memory 
As mentioned a few times before, the buffers of the modules can contain chunks. Chunks 
can be defined at the start of a model, acquired through the vision module or learned 
through reasoning processes. All chunks are stored in the declarative module. What 
information a chunk can contain can be defined by chunk-types. A chunk is therefore 
always an instantiation of a chunk-type. A chunk-type usually has a number of slots 
which can be filled by other chunks. An example of a possible chunk-type is addition-
fact, which contains three slots. Two slots, addend1 and addend2, represent the numbers 
that need to be added and a slot containing the sum, sum. A chunk of chunk-type 
addition-fact that represents 7 + 2 = 9 would look like: 
 
    fact7+2  
       isa addition-fact 
       addend1 seven 
       addend2 two 
       sum nine 
 
In chunk “fact7+2”, seven, two and nine are other chunks representing the 
corresponding numbers. 

Production rules can make a request through the retrieval buffer of the declarative 
module for certain facts. By partly specifying which chunk needs to be retrieved, a match 
can be found by the declarative module. Of the matching chunks the chunk with the 
highest activation is retrieved and placed in the retrieval buffer. The activation of chunks 
is similar to the utility of production rules and represents the likelihood that a chunk will 
be retrieved. The activation of a chunk is defined as 
 
 ∑∑ ++=

k j
jikjii SWBA ε , (activation equation) 

 
where Bi is the base-level activation of the chunk i and ε is the noise determined by s (see 
below). The other part of the equation specifies the spreading activation to chunk i from 
other chunks j that are present in buffers k. The amount of spreading activation is 
determined by the sum of strengths of association from chunks j to chunk i (Sji), weighted 
by Wkj. The idea of spreading activation is to account for context when retrieving facts 
from memory. It is easier to remember in which direction one has to go at a crossroad 
when one has the crossroad in view, that is, when a chunk representing the crossroad is in 
the visual buffer. 
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 The base-level activation of a chunk rises and falls with practice and delay 
according to the equation 
 

 ,  (base-level learning equation) )ln(
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where tj is the time since the jth practice of a chunk. As indicated by the formula the base-
level activation decays as time progresses. The decay-rate is determined by the parameter 
d. The effect of the base-level activation is that the more time has passed since a fact (i.e., 
chunk) was encountered the less likely it becomes to remember it. 
 The probability that a chunk can be retrieved from memory depends on noise and 
on the retrieval threshold. The probability of retrieval is determined as 
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where τ is the retrieval threshold and s is the noise parameter, which is distributed 
according to a logistic distribution with a mean of zero and a variance as defined before. 
When there is no noise a chunk can only be retrieved when the activation of a chunk is 
above the threshold. 

Besides that a higher activation increases the probability of retrieval, it decreases 
the time needed to retrieve the chunk. The time needed to retrieve a chunk is defined as 
 
 ,   (latency of retrieval equation) iA
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As one can see from the equation the time needed to retrieve a chunk i decreases 
exponentially with the increase of its activation. As a result, it not only becomes less 
likely to retrieve a fact as more time passes, but it also takes longer to retrieve the fact. 

2.1.5 Remarks regarding ACT-R 
Now that the components of ACT-R that are relevant for the current research have been 
discussed, the theory on spatial learning can be discussed in the next section. In the 
section discussing navigational models that implement that Spatial-Learning theory, some 
similarities and differences with respect to the ACT-R theory will be noted. Also, 
extensions to the ACT-R architecture developed in the current research will be discussed 
in the chapter discussing the Interface between AIBO and ACT-R. 
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2.2 Spatial Learning: The Landmark, Route, Survey (LRS) Model 
Every day people travel from one place to another. This can be from home to work or the 
supermarket, but also from one room to another. They travel by foot, bike, car or 
otherwise. To be able to do this, one needs spatial knowledge, but how exactly does one 
gain this knowledge? What information do we select from the environment and how do 
we store and use it? Numerous studies have been conducted to answer these questions 
(e.g., Aginsky, Harris, Rensink, & Beusmans, 1997; Allen, 1981; Appleyard, 1970; 
Cohen & Schuepfer, 1980; Darken & Peterson, 2001; Gale, Golledge, Pellegrino, & 
Doherty, 1990; Goldin & Thorndyke, 1982; Golledge, Gale, Pellegrino, & Doherty, 1992; 
Heft, 1979; Lynch, 1960; Schweizer, Herrmann, Janzen, & Katz, 1998; Siegel & White, 
1975). In this section an overview of these studies will be given to give an idea about how 
one learns spatial knowledge and a route in particular.  

Many of the researchers of spatial learning place their studies in the context of the 
Landmark, Route, Survey (LRS) model developed by Siegel and White (1975). This 
section will also discuss Spatial-Learning theory in the context of the LRS model as it 
provides a solid framework in which the different aspects of spatial learning can be filled 
in. 
 
The LRS model (Siegel & White, 1975) is the longest standing model of spatial 
knowledge representation to date. Siegel and White developed the LRS model using 
many aspects of the work of Lynch (1960), who defined five basic types of spatial 
knowledge (paths, edges, districts, nodes and landmarks) and their role in spatial 
knowledge representation. 

The LRS model exists of three learning phases. First, while travelling in an 
environment, one stores objects at important locations. These objects are usually referred 
to as landmarks and the locations are usually known as waypoints or nodes. In the second 
learning phase these landmarks are associated with bearing changes and with other 
landmarks. Finally, various routes that have been learned converge into a network. This 
network can be seen as survey knowledge of the environment, often referred to as a 
cognitive map or mental map. 

Although one does first gain landmark knowledge, then route and then survey 
knowledge, it is not the case that they are learned entirely separate. This point is 
elaborated in the next sub-section. Several aspects of spatial learning will be discussed 
next, starting with landmark knowledge, followed by route knowledge, survey knowledge 
and some remarks regarding Spatial-Learning theory in general. 

2.2.1 Landmark Knowledge 
According to the LRS model, the formation of spatial knowledge begins with landmarks, 
but what exactly are landmarks? In general sense they are physical objects or properties 
of objects, which are used to identify a certain location, which Lynch (1960) defines as 
nodes. Nodes are locations where decisions on how to continue one’s journey have to be 
made. Also landmarks can sometimes be used to keep on the right path. Landmarks 
usually have unique characteristics. That way they can be distinguished from other 
objects and identify a specific node. Although usually landmarks have a unique 
appearance, a series of similar landmarks could also be useful. Such a series could, for 
example, be used to estimate the distance travelled or guide a traveller along a path to the 
next node. 

The size of a landmark can differ greatly, from a coloured tile to a mountain. Also 
it does not matter whether the landmark is distant or local. As long as the landmark is 
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visible from a certain location, it can help identify the role of that location in the 
environment. Steck and Mallot (2000) call the two types of landmarks local and global 
landmarks. They conducted several experiments in a virtual environment and found that 
one uses both types. Some participants relied on one of both types and some switched 
between the two types, depending on the location. However, the knowledge of both types 
of landmarks was always present, since when one type was removed the participant could 
easily switch and use the other type. 

According to Lynch (1960) especially people who are unfamiliar with a certain 
environment, use global landmarks. As an example he states that people who are new to 
Boston seem to use the John Hancock Building, a very tall building, as an important 
landmark, whereas people who are familiar with Boston rely more on local landmarks. 

According to Steck and Mallot (2000) and also Heft (1979) an important factor for 
selecting a landmark, is its saliency. Besides that, Heft (1979) and Lynch (1960) also 
found that the participants of their experiments use any environmental cue available; for 
example the topography of a location or characteristics of a path. This means that 
landmarks do not necessarily need to be distinctive objects, like a statue, but might also 
be another specific property of the environment; a change in the pavement or a specific 
curvature of the road. 

When people travel through an environment they might encounter various 
landmarks, but not all objects used as landmarks are equally distinctive. Several 
experiments show that landmarks that are present at a location where a decision has to be 
made (i.e., nodes), are the ones that are remembered. Researchers (Gale et al., 1990; 
Golledge et al., 1992; Lynch, 1960; Siegel & White, 1975) explain this by the fact that 
one’s attention is heightened, because of the decision one has to make at a certain 
location. Because of this heightened attention people are more receptive of their 
environment and therefore more likely to remember objects at that location sometime 
later. Landmark knowledge therefore develops as an integral part of route knowledge. 
One might even state that one develops less landmark knowledge when a route is 
travelled passively, for example as a passenger of a taxi. This means that landmarks are 
learned much better in the context of a route then when learned individually, which raises 
two points.  

One point is that the three learning phases that Siegel and White (1975) proposed 
cannot be too demarcated. Since route learning facilitates the learning of landmarks, it is 
unlikely that the learning of landmarks entirely precedes the learning of a route. Siegel 
and White (1975) are not entirely clear on this matter, but some researchers (Aginsky et 
al., 1997) state that according to Siegel and White’s theory one first gains landmark 
knowledge and when landmark knowledge is complete one gains route knowledge, which 
is unlikely.  

Aginsky et al. (1997) state that if an object is to be stored as a landmark and it 
does not have prominent characteristics, it is only learned as a landmark when one is 
learning a route. In other words, if indistinctive objects are to be stored as landmarks, 
they have to be in the context of a route. Although Aginsky et al. (1997) criticize the LRS 
model of Siegel and White (1975) of being too demarcated, Aginsky et al. and Siegel and 
White seem to agree anyway. This is shown by the quotation from Siegel and White’s 
work below. 

 
“The prominent role of landmarks in early spatial representations seems to require a special kind 
of figurative memory. We may call this a “recognition-in-context” memory. It is insufficient when 
one sees a landmark to know, “I’ve seen that before.” One must know something about that 
landmark, what it implies, what it is next to, when it last occurred, what its connection is with 
other landmarks.” (Siegel & White, 1975, p. 27) 
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Although even Siegel and White themselves are not entirely clear on how the three 
phases of their theory interrelate, is seems to be the general consensus that they are not 
entirely separate. Thus, it is important to note that one phase does not have to be 
completed to start the next phase, neither does one phase end when the next phase has 
begun. The learning phases are interwoven and have the same goal: to navigate through 
an environment in a rather efficient way. 

The second point raised by the fact that landmarks are stored because of 
heightened attention as a result of a decision being made, is that active travel is important 
for spatial learning (Cornell & Hay, 1984; Darken & Peterson, 2001; Gale et al., 1990; 
Gibson, 1979; Goldin & Thorndyke, 1982; Siegel & White, 1975). Active travel means 
that one really moves through an environment and one makes decisions on where to go.  

Active travel also makes it possible to gain procedural knowledge (Gale et al., 
1990). The knowledge of landmarks and their associated decisions is declarative 
knowledge. However, to use this declarative knowledge, procedural knowledge is needed. 
Knowing how to move from a given location to another and the ability to identify the 
routes that facilitate such actions, are examples of such procedural knowledge. Since 
active travel is not a part of an experiment using a video presentation, participants of such 
an experiment will have less procedural knowledge than those who learn the same route 
through a real environment. 

Unfortunately there are several studies that base their results on experiments that 
lack this active component. The results of these studies regarding procedural knowledge 
can therefore be debated. 

 
In short, several objects can function as a landmark, usually these objects are distinctive 
with respect to their environment, but not necessarily so. Also a landmark might not be a 
specific object at all, but rather a distinctive feature of the environment. The heightened 
attention, caused by a decision being made along a route, is the main cause for an object 
or feature to be stored as a landmark. If an object is very distinctive however, it may be 
stored even if it is not at a decision point.  

The landmarks can aid in the recognition of nodes or other parts of the route. This 
means that even when one is lost one might recognize a landmark and remember where 
one is along a route and continue one’s journey. This is also a nice illustration of the 
minimal control principle (Taatgen, 2007). The traveller is guided by the environment 
(i.e., landmarks), instead of learning a series of decisions. The difference between these 
two possibilities will be discussed further in the next sub-section.  

2.2.2 Route Knowledge 
Landmarks are the building blocks of route knowledge. There are two theories on how 
landmarks are used for route knowledge. One is that they are used as a part of paired-
associate learning or stimulus-response learning (Darken & Peterson, 2001; Golledge et 
al., 1992; Heft, 1979; Lynch, 1960; Schweizer et al., 1998; Siegel & White, 1975). This 
kind of learning uses landmarks as a trigger to remember the next node along the route 
together with a change of direction of travelling (Lynch, 1960).  

The second theory is that a series of decisions on how to proceed at each node is 
memorized, this is referred to as queue or sequence learning (Tlauka & Wilson, 1994). In 
this case the landmarks at a node are not associated with the decision. This means that 
when a wrong turn is taken one will continue its journey, but the decisions do not 
correspond to the succeeding nodes. The most supported theory is the first. There is 
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however evidence for the second theory as well. As we will see, the environment used in 
an experiment determines for a large part which theory fits best. 
 Tlauka and Wilson (1994) support the second theory and also Heft (1979) found 
that when a location lacked distinctive features, the participants of his experiment 
resorted to a strategy in accordance with the queue learning theory. Tlauka and Wilson’s 
results even indicated that the participants of their experiment had a preference for queue 
learning over paired-associate learning, in spite the fact that the landmarks used in their 
virtual environment were very salient. 

However, the navigation task of Tlauka and Wilson’s experiment was rather 
simple. They used a computer simulation of a series of rooms connected by doors. Each 
room had a landmark and two doors, from which the “unlocked” door had to be chosen. 
The unlocked door would then lead to the next room. In such a setup it is easier to learn a 
sequence of decisions than in a real-world environment used by other researchers 
(Golledge et al., 1992; Heft, 1979; Schweizer et al., 1998), because in those experiments 
there were more options available than right and left. Also when the participants of 
Tlauka and Wilson were forced to count backwards during the experiment, they did use 
paired-associate learning instead of queue learning. 

Besides the fact that the possible choices in their simulated environment were 
limited, the environment lacked differentiation. Each room looked the same except for a 
landmark. As mentioned before, Heft (1979) found that in an environment, which lacks 
differentiating cues, the queue learning strategy might be used. 

Given the current research it seems, depending on the environment, both learning 
strategies are used. The paired-associate learning strategy however seems the most likely 
to be used, since environments usually offer several distinctive features. Only in an 
undifferentiated setting, for example a part of the city with similar repetitive building 
style, a forest where it is hard to distinguish trees and paths from one another or a desert, 
the queue learning strategy is used. Also the paired-associate learning is able to explain 
the effect that it is easier to remember the next node along a route than the previous node. 
The reason for this is that there is a strong association between the current node and the 
next, but a weak association between the current node and the previous. This is explained 
in detail by Schweizer et al. (1998). 

There is one other interesting strategy proposed by Cornell, Heth and Alberts 
(1994). They propose that in the very beginning of learning a route a rather simple 
strategy is used. Imagine you have travelled a route once. When you then have to travel 
this route again and you encounter a crossroad, you simply look down each possible path 
and take the one that seems most familiar. The right path will seem the most familiar 
because the first time you travelled it, you spent more time observing features from this 
path than from the other paths. 

The difference between this strategy and the paired-associate strategy is that in the 
latter, the choice of direction is associated with a landmark and in the first the choice is 
represented directly by the landmark. Therefore to travel a route, the knowledge of 
landmarks with its associated decisions does not necessarily have to be present in one’s 
memory. One can imagine however that this strategy is not very robust. Also people are 
very uncomfortable when they are uncertain of their location. It therefore seems more 
plausible as an initial strategy and later on as a backup strategy, rather than an alternate 
strategy. 

Given the current research is seems plausible to conclude that, since the 
environment humans travel in is usually quite differentiated, the most applied technique is 
the paired-associated technique. When learning the association between landmarks and 
choice of direction the strategy proposed by Cornell, Heth and Alberts (1994) might help 
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in learning the associations. In the event of the environment being too undifferentiated 
humans switch back to queue learning. 

 
It is mentioned several times in the literature that segmentation takes place when learning 
a route (Allen, 1981; Gale et al., 1990; Golledge et al., 1992; Lynch, 1960; Siegel & 
White, 1975). This means that the route is segmented into smaller parts. The segments 
can be placed between individual landmarks and a complete route. Segments are paths 
between two nodes. The smallest segments are those where there are not any nodes 
between the two nodes forming a segment. However there are also segments that stretch 
over a larger distance, for example from one district to another district of a city (Allen, 
1981; Lynch, 1960). The different segments therefore from a hierarchical structure. In 
this structure, the top segment is the entire route and at the bottom is a segment with no 
intermediate nodes. 

Those segments at the bottom are rather simple and the path between them is 
usually short. There are however exceptions. One exception is when edges (Lynch, 1960) 
are used. Edges are linear breaks in continuity for example the outer edge of a park, 
shorelines, railroads or channels. Instead of a series of nodes, such an edge can be 
followed as part of a route. Besides the fact that edges can serve as guidelines, they can 
also restrict the possible space in which a route has to be formed. One clear example is a 
shoreline. Also they can force the route to include a certain node. A good example here is 
a river with only a few bridges. Edges can therefore assist in the acquisition of route 
knowledge by limiting the possibilities. 

Segmentation also helps to determine the distance travelled (Allen, 1981; 
Golledge et al., 1992; Lynch, 1960; Siegel & White, 1975). One can estimate this 
distance by observing the number of segments travelled or by investigating the 
hierarchical structure representation of the route. Another important factor for the 
distance estimation is the effort needed to travel the distance. The effort depends on the 
distance, number of turns and the quality of the path; pavement, slope. The effort 
therefore not only depends on the time travelled but also on the cognitive effort. 
Sometimes people prefer a simple route over a more complex shorter route (Lynch, 
1960).  
 Again it becomes obvious that active travel is important with respect to spatial 
learning. Without active travel one has a poor sense of the effort involved to travel a 
certain distance. Without the knowledge or inaccurate knowledge of the effort needed to 
travel a route, it is in most cases probably quite difficult to determine an optimal route. 
 Active travel also provides proceduralization of declarative route knowledge 
(Gale et al., 1990). The landmarks and nodes, which are part of a route, are declarative 
knowledge just as the associated decisions. However to use the declarative knowledge, 
procedural knowledge is needed. Gale et al. showed that participants who learned a route 
through a video representation barely developed procedural knowledge. The notion of 
declarative and procedural knowledge with respect to spatial learning is also described by 
Golledge et al. (1992) and Colle and Reid (1998). 

2.2.3 Survey Knowledge 
Survey knowledge is the final stage of the LRS model. Survey knowledge is knowledge 
that represents an overview of an environment and therefore contains certain relations 
between objects and places. When people have obtained survey knowledge they can 
easily locate themselves in the environment. Also they are able to plan new routes not 
previously travelled or switch between routes. Unfortunately the development of survey 
knowledge with respect to that of landmark or route knowledge is a slow process (Gale et 
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al., 1990; Goldin & Thorndyke, 1982; Golledge et al., 1992; Golledge, Ruggles, 
Pellegrino, & Gale, 1993; Heft, 1979). A cartographical map can speed up the 
development of survey knowledge, but in that case gained knowledge is of less quality 
than when gained through direct experience (Darken & Peterson, 2001; Goldin & 
Thorndyke, 1982). 

Most researchers agree on theories about the development of landmark and route 
knowledge. However, when it comes to survey knowledge, there is some discussion. The 
main reason for this is probably that there is still little known about how humans exactly 
form a representation of their environment. This is also one of the conclusions of 
Golledge et al. (1992; 1993) and Gale et al.’s (1990) experiments. 

Gale et al. give three reasons why it is hard to gain insight in the acquisition of 
survey knowledge. One is pragmatic; it takes a lot of time to have a group of people 
travelling around several times in a new environment. The second reason is that it is hard 
to test which survey knowledge the participants have gained. The last reason is that the 
environment usually cannot be controlled and therefore forces a lot of restrictions upon 
the experiment. An exception is a computer simulated environment. But those are only 
recently available.  

Another reason for uncertainty regarding survey knowledge might be the fact that 
one’s representation of the environment is not always as good as some people think it is. 
Siegel and White (1975) for instance report that the representation is often fragmented. 
Areas of little detail are connected to areas with a lot of detail. Often these areas are even 
completely separate. Also they mention the fact that when two locations are at the same 
distance of one’s home, the one located downtown is reported closer to home. Besides 
that Lynch (1960), Appleyard (1970) and Aginsky et al. (1997) found that when people 
draw a map, the topological and projective relations are usually not retained. 

 
The LRS model explains the learning of survey knowledge as an integration of several 
routes. In other words after several routes have been learned, these can be integrated into 
a map. This kind of map would be defined by Appleyard (1970) as a route map. 
Appleyard also mentioned a different kind of map, namely the survey map. The existence 
of these two kinds of maps is confirmed by Aginsky et al. (1997). 

The route map is a sequential dominant representation. People who use this kind 
of map would draw a map based on routes (i.e., lines with certain points along them). The 
survey map is a spatial dominant representation. People using this representation draw 
maps that resemble regular cartographic maps and include specific landmarks, buildings 
and districts. 

Aginsky et al. (1997) point out that Siegel and White’s LRS model (1975) first 
requires people to obtain route maps and then survey maps. However the results of their 
experiment indicate that people can directly form both kinds of maps depending on the 
strategy they use for route learning. They define two kinds of strategies. One is a visually 
dominated wayfinding strategy and is similar to the theory described in the Route 
Knowledge sub-section.  

The other strategy is a spatially dominated wayfinding strategy, which relies on a 
mental map. People who use this strategy start with a rough map-like representation and 
use landmarks to position themselves on their mental map. The idea is that one has a 
sense of the distance travelled and one’s change of direction. This information is used to 
determine the current location with respect to a previous location and store the relation 
between the locations in the mental map. Landmarks are used as additional indicators 
where one is on one’s mental map.  Since a new environment cannot be mapped before 
travelled through, people expand their mental map as they go. 
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Aginsky et al. do not suggest that people use only one strategy. It is possible for 
people to switch between strategies for different parts of a route. Also, the existence of 
two strategies does not exclude Siegel and White’s (1975) idea of route maps preceding 
survey maps. Therefore Aginsky et al.’s findings could be used to expand the LRS model. 

It is interesting to note that Appleyard (1970) found that of people who lived in an 
area for longer than one year forty percent drew spatial dominant maps, while of people 
living in an area for less than one year only twenty percent drew spatially dominant maps. 
Appleyard also found that of people who travelled by bus only twenty percent drew 
coherent maps, whereas almost all of the car travellers drew maps that were coherent and 
continuous. In addition, Gale et al. (1990) found that survey knowledge of participants 
observing a route through a video representation was inferior to that of participants who 
travelled the same route through the real environment. The results of Appleyard and Gale 
et al. again stress the importance of active travel. 

For survey knowledge the segmentation process, discussed in the Route 
Knowledge sub-section, is again very important (Allen, 1981; Lynch, 1960). It helps to 
create a structure that is similar to the one used in route knowledge. In route knowledge 
the segments exist of one-dimensional parts whereas in survey knowledge they exist of 
two-dimensional parts. Thus people do not have a single comprehensive image, but rather 
sets of images which are interrelated in a hierarchical structure (Lynch, 1960). The 
images can be of different levels, from street level to the levels of district or city 
depending on the reasoning level. That means when someone travels through a city they 
tend to think of streets and districts, but when travelling across country they tend to think 
in terms of cities and highways. 

Allen (1981) also describes that the learned route segments can help estimate 
distances. These distances can then be used to place points on a map. In Allen’s 
experiment, participants developed survey knowledge rather quickly while in Golledge et 
al.’s (1992) experiments, although the participants had learned several routes through an 
environment, survey knowledge was only partially available. The participants could judge 
some relative directions and distances between points, but still made a lot of errors. The 
results of Golledge et al. therefore indicate that knowledge of multiple routes alone is not 
enough. 

There are some differences between the experiments of Allen and Golledge et al.. 
Golledge et al.’s participants were children of 9- to 12-year-old, while Allen also tested 
participants of 18- to 24-year-old. Since Allen also tested older subjects his results might 
be more reliable. However, Allen used a series of slides while Golledge et al. used a real 
environment, which in turn might make Golledge et al.’s experiment more reliable.  

Because of the series of slides the time between nodes was a lot shorter in Allen’s 
experiment as well as the overall time of the experiment. Besides these differences, the 
environment represented by Allen’s slides was also much more diversified. Golledge et 
al. speculate that the differences indicate that it might take more time to learn survey 
knowledge when the time between nodes is longer. Also a more distinctive environment 
might make the development of survey knowledge easier. 

2.2.4 Remarks regarding Spatial Learning 
A few remarks can be made about the study of spatial knowledge. First the methodology 
used in studying spatial knowledge differs from slide presentations to video presentations 
to virtual environments and real environments. Real environments are hard to control, but 
are of course the best since they are equal to the real world. Virtual environments come 
close to the real world, but lack the richness of detail of the real environment. Virtual 
environments, just as video presentations and slide presentations, also lack a sensorimotor 
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component, which is important for route learning (Cornell & Hay, 1984; Darken & 
Peterson, 2001; Gale et al., 1990; Gibson, 1979; Goldin & Thorndyke, 1982; Siegel & 
White, 1975). Video presentation and slide presentations both lack decision making and 
slide presentations also lack the sense of time passed during travel. The results obtained 
by experiments using these different methodologies therefore have to be studied very 
closely to determine their validity. 
 A second remark that can be made is about the LRS model. Over the years there 
has been some critique. However, the general framework is still widely accepted, though 
some modifications or elaborations can be made to it as discussed in the previous sub-
sections. Also some researchers (Aginsky et al., 1997; Colle & Reid, 1998) seem to 
disregard the fact that the LRS model is intended for large scale, outdoor environments.  

Colle and Reid (1998) describe an alternative model which uses two modes of 
learning. One mode is used when inside a single room and the other for between-room 
relations. However the latter has several components very similar to components of the 
LRS model. The first mode is about the representation of objects within a single room 
and explains that learning their spatial relations is a different process than that described 
by the LRS model. This is supported by Aginsky et al.. They describe a girl who after 
brain damage is still able to name the locations of objects within a room, but not of 
landmarks in a city (Clarke et al. 1993 in Aginsky et al., 1997). 

A final remark can be made about testing for spatial knowledge. It is very hard, 
especially testing for survey knowledge. Usually map drawings are used, but these also 
depend on the skill of someone to draw its own spatial knowledge. Also Heft (1979) 
suggested that map-like survey knowledge might only be produced when asked for. 
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2.3 Simulated Navigational Models 
Now that the theory regarding spatial learning has been discussed, we can move on to 
some models that implement this theory. As we will see some models focus on 
implementation of the theory and others have a more pragmatic approach. The models 
that will be discussed are respectively: TOUR (Kuipers, 1978), Qualnav (Kuipers & 
Levitt, 1988), NAVIGATOR (Gopal, Klatzky, & Smith, 1989), PLAN (Chown, Kaplan, 
& Kortenkamp, 1995) and ARIADNE (Epstein, 1997). 

2.3.1 TOUR (Kuipers, 1978) 
The TOUR (Kuipers, 1978) model is one of the earliest cognitive models of spatial 
learning developed. The environment used in this model is a simulated city block. The 
model uses several kinds of descriptions that represent this environment. They contain 
several elements like streets and places and, as we will see, they do not have to be 
complete, but can be completed using the remaining descriptions. After the model has 
learned most of the descriptions that can be learned, this set of descriptions can be seen as 
a cognitive map. 

2.3.1.1 The Model 
The goal of the TOUR model (Kuipers, 1978) is to gather information to form a complete 
cognitive map. To accomplish this, the model divides spatial knowledge into five 
categories. For each of the categories the model defines a representation for that kind of 
knowledge. 
  

1. Routes. Routes are represented by a sequence of actions that take a traveller from 
one place to another. The description of a route represents knowledge from three 
sources, namely: observations from the environment, recalled versions of 
previously travelled routes and intermediate states of the route-planning process. 

2. The topological structure of a street network. This structure represents the order of 
places along a street and the local geometry of the intersection of two streets. This 
information is obtained from the route descriptions. 

3. The relative position of two places. This is defined by a vector with respect to a 
coordinate frame. The vector is used to indicate the direction of a street with 
respect to the coordinate frame. As a result, the angle between two crossing streets 
can be obtained by using their vectors. 

4. Dividing boundaries. This kind of knowledge is used to separate two regions from 
each other. Boundaries can be very useful when planning new routes since they 
limit the search space. 

5. Regions. Regions are separated by boundaries and contain several elements, such 
as places and paths. The relations between these elements are again very useful to 
plan new routes. 

 
These five categories are used by three representations, namely: the representations for 
knowledge about a particular environment (i.e., declarative knowledge), a description of 
the current position of a traveller and representations of inference rules (i.e., procedural 
knowledge). The knowledge about a particular environment is divided into the five 
categories just described. 

Usually information about a particular environment is not complete. To add 
information to the representation of this particular environment (i.e., to improve the 
cognitive map), inference rules are used. The inference rules use information about the 
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current location and actions to complement partial knowledge of one kind with partial 
knowledge of another kind. To explain this in more detail, first a few examples of 
representations of environmental knowledge will be discussed followed by a description 
of the process by which the inference rules add information to the cognitive map. 

Route knowledge in the TOUR model consists of a series of TURN and GO-TO 
descriptions. The TURN description provides a selection of the next path to follow given 
a previous path at the location of an intersection. The GO-TO description describes a 
segment from such an intersection to a next intersection. 

The TURN description consists of a PLACE, which is the location of the 
intersecting two paths, the two paths themselves, directions of the paths, and the angle 
between the paths. The GO-TO description consists of two places, the path they are on, a 
direction indicating which way of the street the next place is, and the distance between 
the two places. A PLACE is a description of an intersection. It contains the name of the 
place, the involved paths and the angle between the paths. A PATH description contains 
the name of the path and the places on them. As mentioned before the descriptions do not 
need to be complete, which means that each of the elements just discussed can be missing 
from a description. 

The transfer of knowledge can be described as follows. The inference rules can 
copy elements from one description to another description, for example from the current 
location and a PLACE description to a TURN description. Imagine an action is given to 
turn right and the current PLACE is X and on PATH Y. Since a right turn indicates ninety 
degrees and the PLACE X contains information that indicates that PATH Y crosses 
PATH Z with ninety degrees at PLACE X, all the elements of a TURN description can be 
filled. The resulting TURN description will contain PLACE X, PATH Y, PATH Z, the 
direction of Y and Z and the angle ninety degrees. In the same way a GO-TO description 
could be filled using the current location, which is known, and the location moved to. 

A more elaborate example is given in (Kuipers, 1978). The basic idea is that while 
moving around in the environment information from the several descriptions that are 
incomplete are completed using elements from the remaining descriptions. These 
complete descriptions then form the cognitive map. The descriptions can form a cognitive 
map because there is an overlap in the descriptions of paths, turns and places. Since the 
descriptions contain distances and angles, there is enough information to draw a map 
consisting of a network of several streets and places with accurate relative distances. 

2.3.1.2 Remarks 
It is interesting to note that the TOUR model is modelled after the “production systems” 
of Newell and Simon (1972) as Kuipers mentions in (Kuipers, 1977, p. 81). Several 
descriptions about the environment can be seen as part of the long-term memory and the 
working memory contains descriptions currently operated on by the inference rules. Also 
the environmental descriptions are very similar to the syntax of ACT-R chunks discussed 
earlier where the elements contained by a description are several slots of such a 
description chunk. Also the current location can be seen as the content of the imaginal 
buffer. 
 Kuipers (1978) also mentions that the angle used in environmental descriptions 
cannot contain all 360 degrees, as that would be implausible. Humans are more likely to 
be accurate to about eight headings and therefore the 360 degrees are split up in 45 degree 
intervals. Also the second category of environment knowledge only mentions topological 
representations, but since distances and angles are available in TOUR, metric 
representations are also available. 
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Unfortunately the TOUR model lacks sensory impressions. The TOUR model 
recognizes locations simply because they are labelled. No landmarks are used to identify 
a location, nor is there any perception when moving from one place to another. Kuipers 
(1978) considers the perception as very important, but also as primitive and opaque. 

In more recent work Kuipers (1983; 1988) introduces the concepts of views and 
actions. Views are defined as the sensory image received by an observer at a particular 
point. It is used to identify particular points so that the appropriate actions can be taken. 
Actions are defined as a motor operation that changes the current view by changing the 
heading of location of an observer. With views Kuipers again acknowledges that the 
sensory impressions of a place are important. Also he admits that in the TOUR model 
uses the concept of views only to compare different places. 

The analysis of views and actions of Kuipers (1983) is quite interesting. He 
defines several combinations of views and actions. A route is described as a series of 
them; V0 A1 V1 ... An Vn. Each view is associated with an action and the combination of 
both leads to a new view. This idea is defined by Kuipers through the following syntax: 
(1) V  A and (2) (V A)  V’. First knowledge of type (1) is obtained and later on 
knowledge of type (2). This is very close to the paired-associate learning theory 
previously discussed in the Route Knowledge sub-section. This representation leads to a 
possibility that humans are able to take someone somewhere, but are not able to tell them 
how to get there themselves. The reason is that the views along the way are needed to 
remember the correct action at the place with which the view is associated.  

He also investigates a few other combinations of views and actions. One of the 
more interesting alternatives is: (1) V  V’ and (2) (V V’)  A. This representation 
causes people to be able to recall the sequence of landmarks encountered during a specific 
route, but not always which action is needed to get from one landmark to the next. 
 The interactions between views and actions are part of what Kuipers and Levitt 
(1988) describe as the sensorimotor interactions level. This is one of four levels 
(sensorimotor interaction, procedural behaviour, topological map and metrical map) that 
according to Kuipers and Levitt can facilitate robust navigation and mapping systems 
(i.e., computational models and robots). The TOUR model is also described in terms of 
these four levels, but that description will not be discussed here. Instead the Qualnav 
model (Kuipers & Levitt, 1988) will be discussed in terms of the four levels. 

2.3.2 Qualnav (Kuipers & Levitt, 1988) 
While TOUR (Kuipers, 1978) is developed for an urban environment, the Qualnav 
(Kuipers & Levitt, 1988) model is meant for open terrain. Such a terrain might be a 
region containing forest, mountains and plains. The environment is simulated and the 
model Qualnav navigates in it. Also where the TOUR model almost completely ignores 
perception, the Qualnav model focuses on landmarks and perceived relations between 
them. Finally TOUR is developed as a cognitive model of spatial learning, while Qualnav 
focuses on using the Spatial-Learning theory to create a navigation model for use in a 
robot. The Qualnav model will now be discussed in the terms of the four levels 
mentioned above (sensorimotor interaction, procedural behaviour, topological map and 
metrical map). 

2.3.2.1 The Model 
The sensorimotor interaction level contains the relations between perception, action and 
the environment. The most important element of the sensorimotor interactions level of the 
Qualnav model is the viewframe. A viewframe is a data structure that encodes the 
observable landmarks around the model at a certain location. The viewframe can 
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therefore uniquely identify locations associated with it. The action associated with a 
viewframe, is represented by a vector indicating the angle and distance to the next 
viewframe. 

The landmarks are marked in the simulated environment by the experimenter. The 
experimenter can choose points that would resemble a landmark in the real world (e.g., a 
mountain top or distinguishable tree). The Qualnav model can perceive landmarks 
whenever the robot has a line of sight to it and perceive and store their angle and distance. 
To keep the model realistic an error is always added to the angle and distance. Less 
realistic, with respect to humans, is the 360 degree view the model has, since humans can 
only see what is in front of them. 

The procedural behaviour level contains stored and learned procedures defined 
in terms of the elements from the sensorimotor level. The procedures facilitate route 
finding. In the case of the Qualnav model the most important element at the procedural 
level is a route heading. A heading is constructed in a learning phase in which the model 
is guided by the heading direction specifier. While moving through the environment 
headings and other environmental information is stored by the model for future planning. 
 A heading consists of four elements: type, destination goal, a direction function 
and termination criteria. There are three kinds of headings: absolute, viewframe and 
orientation. These three types will now be discussed in the terms of the remaining three 
elements.  

The absolute type uses coordinates that correspond to a fixed absolute coordinate 
frame. The information used to create this type of heading can come from GPS, dead 
reckoning or a previously defined map-like representation. The destination goal of an 
absolute heading is a pair of absolute coordinates. The direction function is used to keep 
the model on track towards the destination goal. In the case of an absolute heading, the 
direction function calculates the distance between the current absolute position and the 
destination goal. Finally, the termination criterion is the error of the estimation of the 
current absolute position. If the error is too high, the execution of the heading is 
terminated. Of course, for all heading types the arrival at the destination goal counts as a 
termination criterion as well. 

The second heading type is the viewframe heading type. The destination goal is 
the viewframe data structure discussed earlier. The angles between the heading vector and 
the observed landmarks are calculated and used as the direction function. Another 
possibility for the direction function is to maintain visibility of landmarks in the 
destination viewframe and use a hill-climbing strategy. The termination criteria again 
follow directly from the direction function. For example when the model loses sight of 
the landmark or the hill-climbing strategy fails. 

The last heading type is the orientation heading type. As a destination goal it has 
an orientation region. An orientation region is an area on the ground enclosed by a set of 
Landmark-pair boundaries (LPBs). A LPB is a virtual boundary that can be drawn 
between two landmarks. It divides an area into two regions, one on either side of the 
virtual boundary. A set of these LPBs can define several orientation regions and 
determine relations between several landmarks. As just mentioned, one such orientation 
region can act as a destination goal. The direction function of an orientation heading type 
keeps track whether the model is right, left or between landmarks. The execution of an 
orientation heading is terminated when the models loses sight of the landmarks or an LPB 
has to be crossed a second time, which means that the model is travelling back. 

To reach a certain goal, several algorithms are used to calculate a path and the 
needed headings. These algorithms include A* and an algorithm that can use LPBs. The 
last algorithm is explained in more detail in (Kuipers & Levitt, 1988). The model operates 
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in a loop that contains three stages. The first is to determine a destination goal, the second 
to compute and select a current heading and the third and last builds representations of the 
environment while travelling. 

The metric map level contains a description of the environment in terms such as 
places, paths, landmarks and orientation regions. At the metric map level these are linked 
by metric relations like distances and angles. The primary data structure of the metric 
level in Qualnav has already been discussed and is the viewframe. As discussed, the 
viewframe contains distances and angles with respect to landmarks. These values can be 
used for all sorts of vector calculations to obtain new relations between landmarks 
perceived. From the results of these calculations and the existing viewframes a metric 
map can be formed. This map would contain distances and angles of landmarks with 
respect to a coordinate frame. 

The topological map level also defines relations between elements from the 
environment, but this time they are linked by topological relations. Among these relations 
are relations of containment, order and connectivity. In the Qualnav model these relations 
are derived from the LPBs and the orientation regions defined by them. The topological 
map constructed from these elements is a very robust representation and can be used for 
powerful path planning. It is powerful, because it is less susceptible to errors, which tend 
to accumulate when building a metric map. Also the topological map seems to be a closer 
resemblance to the cognitive map of humans than the metric map. 

2.3.2.2 Remarks 
All four levels have now been discussed and a few interesting remarks can be made. As 
Kuipers and Levitt (1988) mention, robot navigation and guidance has traditionally been 
quantitative, relying on accurate knowledge of distances, directions and other metric data. 
Existing robot navigation techniques include triangulation, ranging sensors, stereo vision, 
dead reckoning, GPS, etc. These techniques are usually not very robust and tend to 
accumulate errors. Also, robot navigation algorithms usually try to focus on optimizing 
the metric information, while common sense or knowledge from human Spatial-Learning 
theory can be very useful in such algorithms. This is exactly what Qualnav claims to do. 

Although the results of Qualnav seem impressive, it must not be forgotten that 
Qualnav uses a simulated environment while the critique of Kuipers and Levitt is directed 
at robots that navigate in a real environment. They do realize this, and therefore their 
conclusion is that the theory and implementation of Qualnav demonstrates that human 
Spatial-Learning theory can be very useful for robust robot navigation models, but much 
work still needs to be done. 

One particular thing still needs to be done and that is the reliable object detection 
and classification by robots. The Qualnav model does not have this problem since it uses 
a simulation, but in the real world this is quite hard. 

With regard to the Spatial-Learning theory the model captures some interesting 
and useful elements such as landmarks and sequences of landmarks and actions to 
navigate. However the algorithms used to plan a new route, for example A*, are not 
cognitively plausible. In the human mind there are other mechanisms responsible for 
finding a new route as described in the Spatial Learning section. The next model that will 
be discussed is a model that focuses on which information from the environment is 
encoded in the brain and the encoding processes themselves. 

2.3.3 NAVIGATOR (Gopal et al., 1989) 
NAVIGATOR (Gopal et al., 1989), is based on psychological research towards spatial 
learning. Although based on psychological theory the model is not an exact simulation of 
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spatial learning. The goal is not to fit data gathered through navigation experiments, but 
to gain insight into the acquisition of spatial learning by humans. 

NAVIGATOR exists of two modules; the objective environment and the 
individual’s subjective representation of that environment. The subjective representation 
is gained through the navigation system (NS) that travels through the objective 
environment. First the environment module will be discussed and then the NS module. 

2.3.3.1 The Environment 
The objective environment represents a city block with a grid-like structure of horizontal 
and vertical streets. On this grid plots and decision points, in the Spatial Learning section 
referred to as nodes, are located. 

A plot consists of a location and associated objects, such as a lamppost or a car, 
which might be used as landmarks. Each object can have several properties, such as 
colour and shape. These properties are called type properties and there are also relational 
properties that describe spatial relations between objects. Examples of relational 
properties are: left-off, adjacent and near. To differentiate between noticeable and less 
noticeable objects a saliency value is given to each object. This way the NS can select 
more salient objects over less salient objects, just as humans would. All elements 
discussed in this paragraph are described using a predicate calculus-based language. 

Decision points can be located at either corners or non-intersecting parts of the 
grid. Each decision point is associated with one plot and each plot with one or more 
decision points. From the decision points, objects from the associated plot are visible, but 
also objects at more distant plots. Given the grid-like structure of the environment, the NS 
can perceive information from four directions. All possible information perceived from 
one of these directions is called a scene.  

These scenes are used to remember actions taken at decision points. In other 
words, in the NAVIGATOR model scenes are associated with navigation actions in 
accordance with the paired-associate learning theory previously discussed in the Route 
Learning section. There are two types of action, one is perceptual and the other is 
locomotor. There are four perceptual actions; that is perceiving information from one of 
four directions, front, leftward, rightward or behind. After perceiving one of the 
directions, a locomotor action could allow the NS to move towards that direction, if 
feasible. Such a locomotor action would take the NS to another decision point.  

2.3.3.2 The Navigation System 
The objective environment just described provides most of the elements used in spatial 
learning. The second module of the NAVIGATOR model, the Navigation System, 
represents an individual moving through that environment. The NS module consists of 
perceptual and memory structures and procedures that operate on these structures. Gopal, 
Klatzky en Smith (1989) unfortunately do not describe the procedures in detail. Therefore 
only the perceptual and memory structures will be discussed next. 

The memory consist of ‘long-term memory’ (LTM) and ‘working memory’ 
(WM). The WM is seen as a transiently active subset of the LTM and therefore uses 
information from the LTM. Besides information from the LTM, the WM also receives 
information from the perception system. This information is obtained in two stages. First 
salient objects are selected and then salient scenes. A salient object and its properties are 
passed through an object filter that tries to match them with propositions in the LTM. If 
there is a match and if the total saliency of the object and its properties exceeds a certain 
threshold, the object and its properties pass the filter. Using the object filter output, the 
scene filter tries to match the objects and their properties with scenes stored in the LTM. 
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Again if there is a match and the saliency is above a threshold, the scene is passed. When 
a scene has passed the scene filter the objects and their properties in that scene are passed 
to the WM. 

It is important to note that the initial saliency of objects depend on objects 
distance and direction from the observation point. The saliency becomes lower when an 
object is further away and also when an object is perceived sideways instead of directly 
ahead. 

Besides information from the objective environment the perception system can 
also receive direct instructions. These instructions can for example guide the NS through 
the environment during a learning phase. If an instruction is received to go from A to B, a 
link is stored in the LTM between A and B. Another possibility for a link to be stored in 
the LTM is when information from two locations is present in the WM at the same time. 

Information from the WM is stored in the LTM, but not always. The saliency of 
information in the WM decays exponentially over time. Also the capacity of the WM is 
limited. If new information enters the WM and the WM is full, the information with the 
lowest saliency is removed from the WM. If the current saliency of this removed 
information exceeds a threshold it is passed to the LTM. Once in the LTM, the saliency 
of the information again begins to decay, influencing its use in the future. 

2.3.3.3 Experiments and Remarks 
Using the NAVIGATOR model several experiments have been conducted that show 
some interesting results. The general setup of the experiment was to change one or more 
parameter settings, for example the decay rate of the WM or LTM or the threshold of the 
object filter, and observe the number of elements learned. Four types of learned elements 
were counted: the number of decision points, the number of objects, the number of 
actions, and the number of properties (of objects). The parameters that influence these 
counts could have two settings, high or low. High indicates a ‘low performance’ of the 
model and low indicates a ‘high performance’ of the model. 

One of the results found was that the object filter and scene filter thresholds seem 
to influence the number of elements the most. However when the threshold of the object 
filter was set to ‘low performance’ the parameter for the scene filter had no longer an 
effect on the number of elements learned. This means that the mechanism represented by 
the object filter plays an important role in spatial cognition. 

The influence of the object filter could however be compensated by a ‘high 
performance’ setting of the WM parameters. This indicates that people with a good WM 
can compensate for a bottleneck in the initial perception. 

Another interesting result was that the saliency of an object always had an effect, 
whether the parameters were set to ‘low performance’ or ‘high performance’. This 
indicates that people who have poor recognition capabilities, for example mentally 
impaired people, can still learn to navigate in a highly salient environment, but would 
have trouble in a less salient environment. 

Finally the model was run three times in a row to demonstrate that the saliency of 
objects and properties approached the saliency value they had in the environment. This 
indicates that objects and properties are better remembered after having seen them 
multiple times. 
 
A lot of similarities between NAVIGATOR and the ACT-R architecture can be noted. 
The predicate calculus-based language is quite similar to the syntax used for ACT-R 
chunks. Also the idea of a WM and a LTM are present in both, as well as the decay of 
items in the LTM. An interesting difference however is that the initial saliency, called 
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activation in ACT-R, is determined by the environment in NAVIGATOR. Each object 
has a measure for its distinctiveness and is therefore easier or harder to be remembered. 
 Although NAVIGATOR incorporates many elements of general cognition, like 
memory and forgetting, it does simplify sensory processing. Just as in most models the 
perception of the environment is treated as an opaque subject. It seems that a lot of 
interesting work needs to be done in the field of perception before a complete model of 
navigation can be created. NAVIGATOR is of course far from complete as it also lacks 
mechanisms to create survey knowledge. Nonetheless, NAVIGATOR provides quite 
interesting insights into spatial cognition. 

The next model that will be discussed is PLAN (Chown et al., 1995) which 
attempts to integrate the navigation process into general cognition. In that sense PLAN is 
similar to NAVIGATOR, but it is more elaborate. 

2.3.4 PLAN (Chown et al., 1995) 
PLAN (Chown et al., 1995) has combined several known theories to create a complete 
model of cognitive mapping. PLAN adheres to the developmental theory discussed in the 
Spatial Learning section and attempts to specify the mechanisms needed to acquire spatial 
knowledge. The mechanisms are discussed as four different problems: landmark 
identification, direction selection, path selection and environmental abstraction. Although 
discussed as four different problems Chown, Kaplan and Kortenkamp acknowledge that 
the problems are not separated, but would need to interact to create a complete model.  

While in the Spatial Learning section, there were three sub-sections (Landmark, 
Route and Survey Knowledge), here there are four. The direction selection and path 
selection, however, both belong to the Route Knowledge sub-section. The distinction 
between the two is rather interesting and the two are analogue to the “what” and “where” 
system identified by research concerning the visual system of humans (for multiple 
references see: Chown et al., 1995). 

PLAN uses the previous work of NAPS (Network Activity Processing Simulator) 
(Levenick, 1991) to build a complete model of cognitive mapping. The problem of path 
selection is completely solved using NAPS. The other three problems extend the work 
already done in NAPS and therefore NAPS will be discussed first. 

2.3.4.1 Path Selection: NAPS 
In NAPS nodes in a spreading activation network represent landmarks from an 
environment. In this network only neighbouring landmarks are connected, which means 
there must be a direct path between two connected landmarks and one landmark should 
be visible from the other. A connection between two landmarks therefore represents a 
path. Since only the sequence of landmarks is stored only topological information is 
available. This information is gained through the “what” part of the visual system. 

A route can be found by activating the start node and the goal node. Activation 
will start spreading from both nodes and collide at some intermediate node that becomes 
a sub-goal. Next the start node and the node representing the sub-goal are activated and 
the process is repeated. This way a sequence of landmarks and the paths between them 
can be found, together representing a route. 

The connections between the nodes do not all have the same strength. A certain 
sequence of nodes can therefore have a higher activation than another. Also nodes visited 
more frequently than others gain a higher activation. This means that the network will 
show a preference over familiar routes, which is consistent with the theory discussed in 
the Spatial Learning section. 
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NAPS also creates a hierarchy of nodes. Nodes of higher levels can for example 
represent complete routes that are represented by several nodes at a lower level. 
Searching these higher levels uses the same mechanism as the one described for the lower 
level. By using higher levels, it is easier and faster to find longer routes. 

Although the hierarchy of nodes is not present in the model developed in this 
project, the idea of connections between two landmarks connected by a direct path is. 
Two landmarks are stored in a route-element chunk, and multiple of these route chunks 
together form a path or route. Since these chunks have an activation value as described in 
the ACT-R section, the route-element chunks together show similar characteristics as 
the NAPS network. For example, through activation the model also develops a preference 
for familiar, more frequently travelled routes. Also, the next point along a route is 
determined by the route-element chunk with the highest activation, just as a node with 
the highest activation would be selected in the NAPS network. 

2.3.4.2 Landmark Identification 
NAPS specifies how landmarks are connected, but not how a landmark is recognized and 
identified so that the corresponding node can be selected. By PLAN, the landmark 
identification problem is treated as a special case of categorization. The idea is that the 
sensor input containing a certain object can differ greatly. The sensory data depends for 
example on the angle the object is approached at and the lightning conditions it is 
observed in. Each of these sensor input variants represents a unique instance of a special 
category. This special category is the landmark to be identified. 

To tackle the problem of categorization, the prototype theory was developed. This 
theory is discussed in more detail in (Chown et al., 1995) and will not be discussed here. 
Although the approach just discussed is quite an interesting approach to the landmark 
identification problem, it still does not describe what the mechanisms that are needed for 
the categorization problem, look like. 

2.3.4.3 Direction Selection 
Besides landmark identification, NAPS also does not specify how locational relations 
between landmarks are obtained. According to PLAN while travelling a route, locational 
relations between landmarks are learned automatically. This information is gained 
through the “where” part of the visual system mentioned briefly in the introduction to 
PLAN.  The locational relations give the model an advantage, since it does not always 
have to search for the next landmark, but can start moving in the learned direction. As 
will be discussed, starting to move in the learned direction is exactly what the model 
developed in the current research does. For more detail see “The AIBO-Route model” 
chapter. 
 When the model travels a route, it stores the landmarks and the associations 
between them in NAPS. Similarly, since the next landmark is always visible, the relative 
spatial information can be stored. At the same time, the relative spatial information of 
other visible landmarks, up to 5 ± 2, can be stored. The relative spatial information is 
stored using local directional representations called local maps.  

Local maps are created at points where the model would stop and head in a new 
direction. This means local maps are not always created at a landmark, but usually 
somewhere near it. 
 To acquire the relative spatial information a simple elegant method is used. The 
relative location of an observed object with respect to one’s body can be derived from the 
position of that object in one’s field of view and the angle between one’s head and body. 
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Since the body can still have several orientations, a reference point is needed. To solve 
that problem a robust local solution is used, instead of a global frame of reference. 

The particular direction in which one faces a landmark depends on the landmark 
previously passed. Assuming one always uses the same path to reach a landmark the 
direction of facing that landmark is always the same (and so is the direction of the body). 
That direction can therefore be used as a reference to store the relative direction obtained 
from the field of view and the position of the head with respect to the body. Since it is not 
plausible to store the direction is exact degrees, intervals of 45 degrees are used. The local 
directional information can then be stored in a “local map”. 

Analogue to NAPS, which stores the topological relations between landmarks, the 
locational relations (i.e., local maps) are also stored in a spreading activation network 
called R-Net. Each time a new location is reached and a local map is generated a 
connection is created between that local map and the one from the previous location. In a 
similar way as NAPS, the R-Net can now be used as a second method to find and travel a 
route. 

Just as the NAPS network is similar to a collection of route-element chunks, the 
collection of relpos chunks, which contain relative directional information, is quite 
similar to the R-Net network. Also the selection mechanism is similar since, obviously, 
relpos chunks have activations too. The relpos chunk is discussed in more detail in the 
“Interfacing AIBO and ACT-R: AIBO-R” and “The AIBO-Route model” chapters. 

2.3.4.4 Environmental Abstraction 
The environmental abstraction or survey maps have a similar structure as NAPS. The 
local maps just discussed, form the building blocks of the survey map. When one has 
travelled a route many times, the activation of local maps and the association between 
them have become very high. The associations between local maps have a predictive 
power that causes one to imagine the next point along the route when one pauses for a 
moment at a certain point. The pause is necessary because of the cognitive workload as is 
explained next. 
 In PLAN such pauses occur naturally at gateways. Gateways are points along a 
route that lead to a new perceivable environment that is relatively large. Examples of 
gateways are, doors, clearings in a forest or paths emerging from the edge of a forest, and 
a pass through the mountains. Such locations usually require a new decision on where to 
go and also present several new landmarks. Because a lot of information has to be taken 
in and processed, a natural pause occurs during which one can imagine the relations 
between several local maps. This process causes a new element, the regional map, which 
is a group of local maps. 
 Regional maps are conceptualized as abstractions of the group of local maps, 
thereby losing some information, which is quite efficient, since the lost information is still 
present in the local maps. The regional maps can then be linked together, representing an 
even larger area. This process can continue, each time conceptualizing a group of 
representations from a lower layer in the network. 
 This network with a natural hierarchy provides efficient and natural planning. For 
example when navigating through a city one first thinks in global terms moving to the 
desired area and navigating more precisely when approaching the goal.  

2.3.4.5 Remarks 
A few interesting remarks can be made regarding PLAN. It is adheres very closely to the 
Spatial-Learning theory discussed earlier and seems cognitively very plausible. It does 
not however use a description with the same level of detail as NAVIGATOR. Also PLAN 
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as just discussed was not implemented and NAVIGATOR was. PLAN has been 
implemented as R-PLAN on a robot, but the document discussing R-PLAN was listed as 
submitted and never published. R-PLAN therefore has not been discussed here. 
 An example of the adherence of PLAN to the Spatial-Learning theory is the 
segmentation discussed with respect to both route knowledge and survey knowledge. The 
hierarchical network representations of NAPS and regional maps seem to be an ideal 
implementation of the segmentation phenomenon, both in structure and in function. 
 With respect to landmarks, PLAN is somewhat brief. Chown, Kaplan and 
Kortenkamp (1995) do mention, however, that the landmark part of NAVIGATOR might 
be a useful way of representation. What all models seem to be lacking however, is the 
perception process by which objects in the environment and their saliency are coded. 
PLAN provides only a brief online on how to do that. This process remains a very 
difficult and opaque subject, but is essential to all representations of spatial knowledge. 
 The local maps are quite an interesting way to store spatial relations. Since they 
rely on local information only they are very robust. At each decision point a local map is 
created with respect to nearby objects, therefore errors cannot accumulate since there is 
no position to be kept with respect to a frame of reference. This is quite different than 
most models and especially robot navigation models that usually use GPS, dead 
reckoning or some other absolute navigation system to create absolute cartographic-like 
maps. 

The two models, NAVIGATOR and PLAN, both stay very close to the cognitive 
theory. To show the contrast with other less cognitive plausible models, one last model 
will now briefly be discussed, called ARIADNE (Epstein, 1997). As we will see it has a 
more pragmatic approach to solve the navigation problem. 

2.3.5 ARIADNE (Epstein, 1997) 
The purpose of ARIADNE (Epstein, 1997) is not to simulate the cognitive processes of 
cognitive mapping but to simulate a robot that learns the features of an environment. Its 
goal is to provide a model with robust navigation that is resilient to changes. Also the 
performance has to increase over time. The environment navigated in is not known before 
hand, but its useful features have to be learned while navigating in it. These features 
include doors and extended walls. 
 The environment is a grid of squares, for example fourteen by fourteen squares. 
Of these squares thirty percent are randomly marked as an obstruction. Since the squares 
are marked randomly, all sorts of patterns can emerge. In this environment two kind of 
features are identified, facilitators and obstructers. The facilitators support efficient travel 
whereas the obstructers make it more difficult to travel.  

There are three facilitators: gates, bases and corners. The gates provide a passage 
from one quadrant (the grid is divided in four equally sized quadrants) to another. The 
bases are locations that are frequently used in routes and could be seen as important 
nodes. The corners are squares at which a new direction has to be chosen. The bases and 
corners together create a hierarchy similar to the one that arises from the segmentation 
process discussed in the Route Knowledge sub-section. 

There are four obstructers: corridors, chambers, bottles and barriers. A corridor is 
a path with the width of one square. The path may have a dead end or emerge in a new 
area. Chambers are small, irregular, almost confined spaces of several squares and have 
one access/exit point. Bottles are almost similar to chambers but are not identified during 
travel but afterwards. Finally barriers are estimations of walls based on an irregular 
pattern of obstructed squares. The idea is that such a linear approximation cannot be 
passed, except at one or both ends. 
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The facilitators and obstructers are used by reasoning processes divided into three 
tiers or layers, each having several advisors (i.e., functions). The three tiers are consulted 
in turns from the first to the third and work together to reach a decision. The first tier, 
however, can veto a move. This seems logical since the first tier represents simple actions 
that immediately reach the goal or prevent actions that make it almost impossible to reach 
the goal. The second tier provides advisors that can solve small immediate problems the 
model faces, such as obstacle avoidance. The third and last tier essentially provides 
advisors that facilitate commonsense path-finding. 

ARIADNE was tested in a random environment of 20x20 squares. It first went 
through twenty learning runs and then through ten test runs. This was done for four 
difficulty levels. Of these problems ARIADNE was able to solve about ninety-five 
percent. ARIADNE was also tested in non-random environments that represent a 
warehouse, a furnished room and an office space. The warehouse and furnished room 
categories were all solved, but the office space category presented a challenge. Several 
problems in the office space were not solved (no percentage was reported in Epstein, 
1997). 

2.3.5.1 Remarks 
It is obvious that ARIADNE is not a cognitive model, nor does it claim to be. It does not 
use landmarks, but does use the idea of nodes or decision points. Epstein (1997) also 
mentions that the facilitators and obstructers used in the model represent elements from 
the real world that humans also use to represent the environment. They are more abstract 
and general then direct perception. How they are linked to direct perception is however 
not discussed.  

Another similarity can be noted between ARIADNE and humans: several of the 
advisors in the three tiers represent typical human behaviour. Examples of these advisors 
are: hurry, which simulates anxiety, adventure, which simulates curiosity, and plod, 
which simulates tentativeness. 

It might be interesting to investigate how the algorithms used in ARIADNE can 
be used in a plausible way in the cognitive models discussed earlier, since Epstein (1997) 
claims that the mazes solved by ARIADNE are much harder than those solved by for 
example, TOUR (Kuipers, 1978), Qualnav (Kuipers & Levitt, 1988) and PLAN (Chown 
et al., 1995). 

2.3.6 Remarks regarding Simulated Navigational Models 
Several models have been discussed: TOUR (Kuipers, 1978), NAVIGATOR (Gopal et 
al., 1989), and PLAN (Chown et al., 1995) which are all cognitive models focused to gain 
more insight into human spatial cognition, and Qualnav (Kuipers & Levitt, 1988) and 
ARIADNE (Epstein, 1997), which are more focused on application and have solutions 
inspired by human spatial cognition. Since the model developed in the current research 
was implemented on a robot, the next section will discuss some other navigational 
algorithms that were implemented on a robot. 
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2.4 Mobile Robot Navigational Models 
Some models of Spatial-Learning theory have been used for robots, for example the 
Qualnav model (Kuipers & Levitt, 1988) discussed in the previous section or the NX 
Robot (also discussed in: Kuipers & Levitt, 1988). However, these models are both 
simulations of robots that operate in a simulated environment. This section is about real 
robots that operate in the real world and deal with problems that come along with it.  

Unfortunately, the spatial learning models were not implemented on real robots, 
but there are models implemented on real robots that show similarities with Spatial-
Learning theory. A review of map-based navigation by Filliat and Meyer (2003) identifies 
two kinds of maps used by mobile robots: topological maps and metric maps. These kind 
of spatial representations were also identified by Kuipers and Levitt (1988) and are 
similar to respectively route maps and survey maps (Appleyard, 1970) as described in the 
Spatial Learning section. 

Another distinction made by Filliat and Meyer (2003) is that usually robots are 
used to generate the maps or that the maps are known in advance and the robots have to 
navigate using them. There are also algorithms that do both and they are known as 
Simultaneous Localization and Mapping (SLAM) algorithms. These algorithms are 
usually very mathematical and therefore very different from the navigational models 
based on human spatial learning. 

Besides the focus on topological or metric mapping and on map building or map 
usage there is also a category that focuses on the recognition of elements from the 
environment. This problem is very hard and usually provides enough of a challenge, 
without considering further use of the recognized elements. 

Since combining perception, mapping and navigation is very hard it could be 
useful to build models inspired by humans or animals and indeed some models do (e.g., 
Franz, Schölkopf, Mallot, & Bülthoff, 1998; Smith & Husbands, 2002). The approach 
used in such models is known as the behaviour based approach. However, as mentioned 
several times in the Simulated Navigational Models section, cognitive models of spatial 
learning often treat recognition of landmarks as an opaque subject. This is impossible 
when building models for real robots. Since the recognition of landmarks is always the 
first step in a cognitive model of spatial learning and the rest of the model heavily 
depends on it, it is very hard to use these models as a basis for models intended for 
mobile robots. Robot models, therefore usually have a more pragmatic approach. 

To illustrate the approach used in robotics, three models will be discussed 
(Madhavan, Fregene, & Parker, 2004; Mataric, 1992; Owen & Nehmzow, 1998). These 
models will also illustrate the problems of perception, map building and map usage. The 
first two models use topological maps and the third uses a metric map. In addition, the 
discussion of these mobile robot models will mention some similarities and differences 
with regard to the Spatial-Learning theory and the models already discussed. 

2.4.1 Nomad 200 (Owen & Nehmzow, 1998) 
Owen and Nehmzow (1998) have build a navigation system that builds a topological map 
based on a process of self-organization of the robot’s sensory data. They argue for a 
topological map, since it results in a compact representation in which only distinct 
locations are stored. Also searching a topological map can be done using proven 
algorithms like A* and Best-First Search. Also Brooks (1985) argues that topological 
maps can be more robust than metric maps since they handle noise better, which is a 
common problem when dealing with robots. Since information is stored locally in 
topological maps, errors due to noise do not accumulate. Nevertheless there are several 
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reasons why metric maps are very useful and therefore should be used in combination 
with topological maps in an ideal scenario.  

Topological maps do however have an important problem, which is the problem 
of perceptual aliasing. Perceptual aliasing is the problem that distinct locations have 
identical sensor readings. These locations can therefore not be distinguished from one 
another based on sensor readings alone. A solution is to increase the resolution of the 
used sensors or add a different sensor. Although this approach reduces the perceptual 
ambiguity, it does not solve it. The solution to this problem used by Owen and Nehmzow 
(1998) will be discussed later.  
 
As mentioned before, the navigation system uses an approach of self-organization. This 
has two advantages. One is that the systems itself determines which landmarks it uses, 
which is useful since it is hard for humans to imagine how the world appears to the robot 
through its sensors. This is especially hard for humans, since the Nomad 200 only uses its 
sonar sensors and compass and no vision. Secondly, since the self-organization process 
uses a clustering technique, which enables generalization over perceptions, robust, noise 
tolerant landmark detection is possible. It is interesting to note that this approach seems to 
implement the idea to treat landmark identification as a problem of categorization as 
discussed in PLAN (Chown et al., 1995). 

The clustering technique used is the Restricted Coulomb Energy (RCE) Classifier 
(Reilly et al., 1982 in Owen & Nehmzow, 1998). The classifier uses a representation 
vector (R-vector) to represent each class (i.e., landmark) and needs training to determine 
each R-vector. When an input pattern from the sensors of the robot is presented to the 
classifier it compares the pattern to each R-vector. The most similar R-vector is labelled 
“winner” if the similarity falls within a predetermined threshold. If the similarity does not 
fall within the threshold a new R-vector is created using the input pattern. This means that 
the nearest neighbour law determines the boundaries between classes. 

Before the input pattern is compared to the R-vector it is transformed into an input 
vector. This transformation transforms the input of sixteen sonar sensors to a normalized 
input vector. The similarity between this input vector and an R-vector is then determined 
by the dot product. 

Since the input pattern from the sonar sensors depend on the orientation of the 
robot, compensation is needed for different orientations. The sonar sensors are all located 
on the top of the robot on a “turret” that is able to turn. The solution is therefore quite 
simple; the turret is aligned with the compass north. As a result, the sensor input at a 
certain location is always the same regardless of the orientation of the robot. 

Finally a solution must be found for the fluctuating readings of the sonar sensors. 
The solution to this problem is to use a pass filter. When the readings of the sensors 
change and the change is above a threshold, they have to be above the threshold for a 
certain number of time steps to be accepted as a new reading. This filters out small 
fluctuations over a longer period and large fluctuations over a very small period (i.e., 
spikes). 

The landmarks represented by the R-vectors are stored in a vector map. This map 
is build in the learning phase in which the robot is led around by an operator. The 
operator can either let the robot move forward or make it turn. When the perception of the 
robot changes it takes note of the distance travelled since the previous perception. To 
decrease the chance a landmark is missed in subsequent visits, a new perception must be 
“visible” over a minimum distance before it is stored as a landmark in the vector map. 

By keeping track of distances and angles, the robot is able to store links between 
the landmarks that contain the distance between them and the angle between the north 
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and a virtual line between two landmarks. It also stores the “size” of the landmark as it 
keeps track of the distance the landmark is “visible”. A particular landmark therefore 
contains its size and a list of connected landmarks containing their identities, distances 
and angles. 

As mentioned before, there is a problem with the use of topological maps, in this 
case a vector map, namely perceptual aliasing. When a landmark is encountered that has 
the same readings as a different landmark, no action is taken when it was expected. For 
example, when a landmark is followed to the next landmark, it is known which next 
landmark will be encountered. Therefore when an expected landmark is ambiguous, the 
ambiguity is ignored. 

If however the robot encounters an ambiguous landmark that was not expected, it 
would explore the environment. Exploration in this instance would involve following 
each link to other landmarks that are known to have a connection to the ambiguous 
landmark. If all landmarks that are found were expected, the ambiguous landmark was 
already known and nothing happens. Otherwise the ambiguous landmark is added to the 
vector map. This solution to the perceptual aliasing problem leads to incremental map 
building, which is useful for obvious reasons. 

Once the vector map is large enough, it can be used to plan new routes. This 
planning is done by “Best-First Search”, which is used to determine the shortest path 
between current location and goal location. The found path can then be travelled by 
moving from one landmark to the next. If a landmark was not found, the robot travels 
back to the previous landmark and plans a new route from there. 

2.4.1.1 Remarks 
Experiments with the described model were conducted in a laboratory in which a few 
boxes were placed. The results show that the robot was always able to find its destination 
goal. In some runs however, the robot did not travel the shortest path because it failed to 
detect a landmark and had to plan an alternate route. 

In some other environment, failing to detect a landmark could be a bigger 
problem. For example, when there is one chain of landmarks from one area to another in 
an environment, failing to detect a landmark could not result in an alternative route. In 
such an example the robot would not be able to complete its task. 

A solution might be that the path following algorithm is adapted to switch to a 
more focused search when the robot fails to detect a landmark. Another possibility is to 
add vision to the robot. Vision could help guide the robot towards landmarks. Guiding the 
robot by vision also makes it possible to use a coarser representation for the angles stored 
in the vector map. The robot would have a rough indication in which direction to travel 
and could then be guided by vision. With respect to the Spatial-Learning theory, such a 
solution would seem more plausible. 

Also vision, although a very complex modality, would enable the use of 
landmarks that seem natural to humans. Since humans design a large part of the world, 
recognizing landmarks, like tables, doors or crossroads, could potentially increase the 
navigating skills of the robot. 

To conclude the discussion of the model implemented on the Nomad 200 robot, it 
worth mentioning that the algorithm uses some elements from the Spatial-Learning theory 
and the navigational models discussed. The model, for example, uses the idea of 
landmarks and the association between them represented in angles and identity. Besides 
that the model uses declarative knowledge as identified in the Spatial Learning section 
like, landmarks, nodes and paths. However, the acquisition and usage (i.e., procedural 
knowledge) of that knowledge is entirely pragmatic as is common in robotics. Also less 
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plausible with respect to Spatial-Learning theory is the lack of vision, which is something 
that is essential for a complete cognitive model of spatial learning. 

2.4.2 Toto (Mataric, 1992) 
The model for the robot Toto developed by Mataric (1992) is similar to the model just 
discussed, as it also uses landmarks and a topological map. Also, Toto uses sonar sensors 
and a compass. Despite these similarities there are several interesting differences, which 
will be discussed in this sub-section. 
 Toto uses the subsumption architecture (Brooks, 1991) as a basis for its model. 
The subsumption architecture is a hierarchical parallel-layered architecture. The lower 
layers represent processes of a low level like object avoidance and wall following, and 
higher layers represent more complex behaviour, like path planning. These layers 
influence each other, where the higher levels subsume the lower levels. For example, the 
decision to move to the goal takes into account the decision of the obstacle avoidance 
layer. 

In the case of Toto, there are three layers: basic navigation, landmark detection 
and map-related computation (map construction, map update, and path planning). By 
using the distance readings from the sonar sensors, the basic navigation layer implements 
behaviours like obstacle avoidance and boundary tracing. These behaviours emerge from 
four basic behaviours: 

 
• Stroll: this behaviour causes the robot to safely move forward as it moves the 

robot backwards when an object in front is approached to a distance considered 
dangerous. 

• Avoid: the robot turns in the opposite direction from an obstacle that is too close, 
yet not so close that it is considered dangerous. If the obstacle is directly in front, 
the default direction, to the left, is chosen. 

• Align: if an object is detected in the rear-lateral direction of the robot within a 
certain distance, the robot makes a small turn in that direction. This causes the 
direction of travel to align with the direction of wall-like structures. 

• Correct: straight and convex boundaries can be followed by the using the above 
three behaviours. To prevent the robot from disorientating when a sharp corner is 
encountered, the behaviour correct is used. It detects these sharp corners by a 
large difference between two sensors on the each lateral side of the robot. When 
the front-most sensor of these two returns a large value and the rear-most of the 
two a relatively small value, a sharp corner is detected and the robot turns in the 
direction of the detected corner. 

 
Now that the robot can safely wander around by following wall-like structures it can use 
the second layer, landmark detection, to detect landmarks. In total, there are four 
landmark types, which follow naturally from the boundary tracing behaviour: left walls, 
right walls, corridors and a default landmark. The default landmark corresponds to 
irregular boundaries that cannot be classified as one of the other three landmarks. 

Left walls, right walls and corridors are detected by using two confidence 
counters, one for the left side of the robot and one for the right. Whenever the robot 
repeatedly detects short readings on a side and the compass reading is stable, the 
corresponding confidence counter is increased. When one of the confidence counters 
exceeds a certain threshold a left or right wall is detected and the counter is reset. If both 
confidence counters exceed the thresholds a corridor is detected. The thresholds represent 
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the minimum length of the landmarks to be detected and were set to the maximum length 
of non-landmark obstacles in the environment. 

Since one of the four landmarks is always detected the robot detects a series of 
landmarks that together form a continuous string of boundaries. As a result, one landmark 
is always followed by another. When comparing this strategy to the Spatial-Learning 
theory, it seems that landmarks have become paths, instead of the landmarks being 
connected by paths. While this might work for indoor environments it is doubtful it would 
work for outside large-scale environments. 

The landmarks are linked together in a topological map, in this case a graph, 
which is computed by the third layer of Toto’s subsumption architecture. Each node of 
the graph contains four elements: the landmark type, the averaged compass bearing of the 
landmark, the length of the landmark and a pair of coordinates. The length of a landmark 
is derived from the times the threshold counter is reset during detection of the same 
landmark. The pair of coordinates is determined by summing the vectors representing 
landmarks (the angle and length of a landmark form a vector). 

Each time a landmark is detected its four elements are compared to those of the 
landmarks stored in the graph. If the four elements are the same, it is a match, if not, the 
landmark is added and a link is formed between the new landmark and the previous one. 
A margin is used when comparing the distance, compass bearing and coordinates to solve 
the problem of noise. 

Since Toto uses a topological map, it has to deal with the problem of perceptual 
aliasing. The problem is solved in two ways. First if a landmark was expected based on 
the topological map (i.e., the landmark corresponds to a landmark connected to the 
previous landmark) the new landmark is matched to the expected landmark. Second, 
through the coordinates, each landmark has a rough estimate of position. While two 
landmarks might have the same landmark type, average compass bearing and length, it is 
almost impossible for two landmarks to have the same coordinates. The coordinates, 
together with the expectation, therefore solve the problem of perceptual aliasing. 
 
The third layer of Toto’s subsumption architecture also performs path planning. The path 
planning is done by a variation of activation spreading. The goal node repeatedly sends 
out a call that reaches each node in the network. While the call is spreading through the 
nodes representing the landmarks, the length of these landmarks is summed up. This way 
when the call reaches the start node, a rough representation of the spatial distance to the 
goal is known. The call can reach the start node from all nodes that are connected to it. 
Based on the estimation of spatial distance, the shortest path is chosen and the robot 
moves to the selected node. That node again receives a call and the process is repeated 
until the goal is reached. Note that the spreading activation discussed here is very 
different from the spreading activation discussed in the ACT-R section. 

The spreading activation also makes it possible for the robot to reach the goal if it 
were placed at some other location, since each node receives the call from the goal node. 
Also when the robot has tried to reach a node, but fails because, for example, the path has 
become blocked, the current node can receive the goal’s call from another node. After a 
fixed time period the link between the current node and the one the robot tried to reach is 
removed and the other node is used to reach the goal. 

2.4.2.1 Remarks 
A few remarks can be made with respect to the Toto robot. The ability to detect failure 
and adapt the topological map accordingly makes it possible for Toto to navigate in a 
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changing world. Also, Toto’s first layer makes sure it does not bump into anything and 
can wander around safely. 
 Although the map is topological it also contains metric data and in further 
research a metric map could be derived from the topological map. This metric map could 
then be used to calculate shortcuts. The metric map can also be better interpreted by 
humans and other robots, which makes reuse of the map possible. 
 An important drawback of the landmarks used by Toto is that they only work in 
indoor environments, since they represent wall-like structures. In an outside large-scale 
environment the map would probably consist primarily of the default landmark, which 
represents irregular boundaries. To extend the model to navigate outside, other landmarks 
would have to be added and also vision. Some benefits of vision have already been 
mentioned in the remarks regarding the robot of Owen and Nehmzow (1998). Thus, 
compared to a robot with a model that should be able to perform topological mapping in a 
real outside environment, Toto is still quite basic. 

As mentioned briefly, the landmarks used by Toto differ somewhat from the 
landmarks described in the Spatial Learning section. The way they are used, however, is 
similar. Also, the architecture of Toto has some other cognitive plausible components. 
For example, the basic navigation layer represents the human’s basic ability to wander 
around an environment without getting hurt. Also, planning is a “higher” cognitive 
process. This is represented by the fact that a higher layer in Toto represents the planning 
process. 

The spreading activation algorithm implemented here is similar to the idea that the 
spreading activation of the goal node in combination with the start node will result in a 
recall of the next node along the path towards the goal. This process is similar to NAPS, 
which is described in the section that discusses PLAN (Chown et al., 1995). 

In short, the architecture of Toto shows some similarities with the theory of spatial 
learning and the navigational models. By adding vision and adapting Toto’s architecture, 
for example the landmarks that Toto uses, Toto could provide a start for a cognitive 
navigational model implemented on a robot. 

2.4.3 Augustus and Theodosius (Madhavan et al., 2004) 
While the previous two models discussed use a topological map and a single robot, 
Madhavan, Fregene and Parker developed an algorithm that builds a metric map, which 
will be discussed later in this section, by using two robots (Augustus and Theodosius) that 
cooperate. This model will illustrate the difference between a metric map and a 
topological map. Also it uses Extended Kalman Filtering (EKF), which is explained later. 
Although the approach used in this model is quite common in robotics, it differs greatly 
from the previous two models and the models discussed in the Simulated Navigational 
Models section. 
 
The two robots used are identical and have several different sensor types: odometry, 
DGPS, vision, compass, inclinometer and laser rangefinders. These sensors are used to 
determine the position of the robots in an outdoor environment while mapping it. The 
goal of the robots is to create a three-dimensional map in which objects and the profile of 
the terrain are represented. This map is constructed by using a three-dimensional 
coordinate frame. To be able to build this map the robots must first be able to localize 
themselves with respect to the coordination frame. 

The localization of the robots is done by using EKF. EKF employed for the 
localization of robots requires two models (Maybeck, 1979 in Madhavan et al., 2004): a 
kinematic model and a sensor model. The kinematic model uses the odometry sensors of 
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the robot to determine its forward and angular speed. These speeds are combined with an 
experimentally determined variance to get an estimate of the robot’s location and 
orientation and a margin of error for these values. Basic laws of physics are used to derive 
the position and orientation from the forward and angular speed. 

The sensor model uses DGPS and compass information to get a second estimate 
of the robot’s location and orientation. The uncertainty of these values is again 
represented by variances. The variance of the compass is determined experimentally and 
the uncertainty of the DGPS data is inversely proportional to the number of satellites in 
view. The second estimate of position and orientation, together with their variances, is 
used to supplement the first estimate via the predict-observe-validate-update cycle. 

In the predict phase of the cycle the kinematic model is used to predict a location 
and orientation, and the error covariance matrix. To determine the error covariance matrix 
the values of this matrix from the previous cycle are also used (i.e., it is recursive). In the 
observe-validate phase the covariance matrix together with the data from the sensor 
model is used to determine whether the data of the sensor model (i.e., the second 
estimate) should be used to update the estimates from the kinematic model (i.e., the first 
estimate). This means for example, that when the uncertainty of the DGPS data with 
respect to that of the kinematic model is too high, the data is not used to update the 
estimate of the kinematic model. 

The final phase of the cycle, the update phase, calculates the new position and 
orientation of the robot based on the kinematic model and, if passed by the observe-
validate phase, the sensor model. The error covariance matrix is updated too, so that it 
can be used by the next cycle. 

Since Madhavan, Fregene and Parker (2004) use two robots, the relative position 
of one robot can help estimate the position and orientation of the other robot. By using the 
robot’s camera or laser range finders it is possible to estimate the bearing and distance to 
the other robot. The other robot also sends it position and orientation by wireless 
communication. The information received and the bearing and distance to the other robot 
can then be used in the same way as the data from the sensor model to update the 
estimation from the kinematic model.  

Now that the localization process has been discussed, the mapping process can be 
described. The mapping process takes place via four main processes. The first step is to 
determine the distances to several interesting features observed by the camera. The 
distances to the features are calculated by using the optical flow from the camera. Next, 
the most interesting feature is selected as the object to move to. 

The second step involves moving towards the object. While moving toward the 
object, the vertical displacement values obtained by using the inclinometer and the DGPS 
are used to determine the vertical displacement of the robot. The data obtained from both 
sensors are weighted according to their certainty. For example, if the DGPS has many 
satellites in view, its measurement is weighted heavier than that of the inclinometer. By 
combining the vertical displacement of the robot and the data from the camera, a profile 
of the observed terrain can be determined. Once the robot has reached the object, it avoids 
it by turning away. The robot then searches for a new object. 

During the third step the data obtained upon reaching the object is stored in a 
terrain matrix, which is the three-dimensional coordinate frame mentioned earlier. If there 
are small, unknown areas within the data, these areas are filled using cubic interpolation. 
Objects that form obstacles are represented by extremely high values for the vertical axis 
of the terrain matrix. 

Since the obtained data is stored in a global frame of reference, the maps of the 
individual robots can be combined to create a larger map of the environment. This is done 
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in the fourth and final step at a central base station somewhere near the robots. It is 
possible that several areas have been visited and mapped by both robots and/or more than 
once by the same robot. When an area is visited multiple times the confidence of such an 
area in the representation of the mapped terrain is increased. 

2.4.3.1 Remarks 
Several differences between the first two models and this model can be noted. As 
mentioned this model uses an absolute metric map, which makes it possible to merge 
maps from multiple robots. Something that is a lot harder when relative maps or 
topological maps are used. In absolute metric maps the coordinates of an object indicate 
which object it is, but other solutions suffer from the symbol-grounding problem. 
 As we have seen the model uses landmarks to navigate the environment and while 
doing so, the robot maps it. However, the use of landmarks differs completely from the 
use described in the previous two models and the models discussed in the Simulated 
Navigational Models section. The difference is that landmarks are not used to represent a 
route, but are part of a larger representation of the environment. 
 Although the metric map created provides a lot of information, it is too much 
information for path planning. It is only relevant whether there is a path between two 
locations. It might be useful to know how much effort it costs to travel between the two 
locations, but there are simpler methods to represent the effort than describing the exact 
profile of the terrain. 
 The metric map is also very static, since the map is created at the base station, 
only when one of the robots has reached an object. As a result the environment might 
change while the robot is navigating toward a new object. This could be dangerous for the 
robot. 
 From a cognitive point of view, especially the detection of features in the 
environment using the camera is interesting, since that is the bottleneck of most of the 
models in the Simulated Navigational Models section. The EKF localization method is 
very powerful, but probably too powerful to resemble human localization capabilities. 
Other points that are lacking from a cognitive point of view are procedural knowledge 
and declarative knowledge. Their representations do not resemble those described in the 
ACT-R, Spatial Learning and Simulated Navigational Models sections at all. 
 In short, the model described has a very pragmatic low-level approach and 
similarities between Spatial-Learning theory and the model are based on coincidence. It 
might be the case that, for example, the image processing and the localization process 
represent low level processes in the human brain, but that is speculative. However, as 
already mentioned, the image processing might be interesting to implement in a cognitive 
model to facilitate reliable visual landmark detection. 
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2.5 Final Remarks regarding the Theoretical Background 
The previous section about mobile robot navigation models is the second last section of 
this chapter. In this section the most important aspects of the Theoretical Background will 
be highlighted and some additional remarks will be made. 

The chapter started with explaining the relevant components of ACT-R which is 
necessary for the reader to understand the model developed in the current research. ACT-
R provides a framework in which several components of the mind have been combined. 
Therefore, by using ACT-R, the navigational model inherits important elements, and 
thereby constraints, of human cognition. The constraints are useful when developing a 
plausible cognitive model of human route learning. That is why ACT-R is used in the 
current research. 

How humans exactly learn routes has been discussed in the Spatial Learning 
section following the ACT-R section. Spatial learning takes place in three interwoven 
stages in which landmark, route and survey knowledge is learned. The most important 
aspects of the Spatial Learning section are the different strategies of learning a route of 
which the most important is the paired-associate learning. Almost as important is the 
discussion about the need for active travel in the process of acquiring accurate spatial 
knowledge. The importance of active travel also forces researchers to examine the results 
of several experiments very carefully, since not all include active travel or try to simulate 
it. Somewhat less important, but also very interesting is the segmentation process that 
takes place on both the level of route knowledge as that of survey knowledge. Finally the 
discussion of landmarks can be very important when developing a plausible visual 
perception component of a navigational model. 

The section following the Spatial-Learning theory discussed simulated models 
implementing that theory. Each model implemented different aspects of spatial learning 
and none is complete. The first model discussed, TOUR, shows some interesting 
similarities with ACT-R like chunks and the operations on them. Also NAVIGATOR has 
implemented aspects of cognition that are also present in ACT-R like activation, decay, 
and memory structures.  

Qualnav demonstrates that common sense from Spatial-Learning theory could be 
beneficial for robots, but has proven this only in simulation. As with all the simulated 
navigational models the visual perception component of spatial learning is absent in 
Qualnav. This visual perception component is probably the most important aspect that the 
models lack. Once features (e.g., landmarks) from the environment are extracted 
NAVIGATOR provides interesting mechanisms on how to process these features through 
their saliency. Besides that, PLAN has specified in detail how directional information of 
these features could be obtained. In addition, to approach the problem of environmental 
feature identification as a problem of categorization, as proposed by the PLAN model, 
could also be very useful.  

Storing the features and their properties and using them for learning is adequately 
modelled in most of the models discussed. Especially the mechanisms of the memory 
structure of NAVIGATOR together with the hierarchical way of storing information as in 
the PLAN model could be very useful when building a plausible navigational model, as 
they simulate learning and forgetting, and segmentation of knowledge respectively. 
 As a complete model of navigation should be able to move around in the real 
world, some mobile robot navigational models were discussed in the previous section. 
They illustrate how Spatial-Learning theory could be used with real robots in a real-world 
environment. The discussion of such models showed that the models become a lot more 
pragmatic and that specific mechanisms of cognition (e.g., memory, learning and 
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forgetting, procedural and declarative knowledge) fade away. They also showed that 
accurate and useful (visual) perception is hard when it comes to robots.  

It is interesting to note that the just mentioned pragmatic shift is not only observed 
when moving from simulation to real-world robotics, but also when moving from theory 
to simulation. In the Spatial Learning section many aspects of spatial cognition have been 
discussed. However when the spatial-knowledge theory is implemented in simulated 
navigational models, some aspects of spatial learning again seem to fade and be replaced 
by more pragmatic approaches. 
 
To conclude the theoretical background it is interesting to note that many aspects 
necessary to build a robot that navigates in the real world just as humans do, are known. 
Among these aspects is psychological knowledge about how humans acquire spatial 
knowledge, how this knowledge can be modelled in simulation, and what the capabilities 
are of real robots. The most important missing element among these aspects is the 
reliable, plausible visual perception of the real world.  

In the next chapter the interface between ACT-R and the AIBO will be described. 
This interface will be used by a cognitive navigation model, which is described in the 
chapter following the description of the interface. That model is similar to the models 
described in the Simulated Navigational Models section, but is, unlike those models, also 
implemented on a robot. 
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3. Interfacing AIBO and ACT-R: AIBO-R 
As mentioned before, the cognitive architecture used in this project is ACT-R (Anderson, 
2005; Anderson et al., 2004). ACT-R by default does not have a way to interact with the 
AIBO. Therefore additional components are needed that interface the AIBO with ACT-R. 
One of the components is the Universal Real-time Behaviour Interface (URBI). URBI 
provides a scripting language that can be used to control complex systems, such as the 
AIBO. Although URBI shortens the gap between ACT-R and AIBO, it does not close it, 
because ACT-R cannot directly communicate with URBI. Therefore, ACT-R was 
expanded with two additional modules referred to as the roboperceptual module and 
robomotorical module. ACT-R with all the additional components that make it possible 
for ACT-R to interact with the AIBO will be referred to as the AIBO-R architecture. 
 Next, a short overview of the AIBO-R architecture will be given. The overview 
will start with URBI and work its way up to ACT-R. URBI consists of a server part and a 
client part. The URBI Server runs locally on the AIBO and communicates through 
wireless LAN with the URBI Client that runs on a PC. Although URBI provides a client, 
a new client was developed for the current research. The new URBI Client is written in 
Lisp and provides functions for any Lisp program to send information to and receive 
information from the URBI Server. A component called URBI Commands was developed 
to provide several lisp functions that use the URBI Client to interact with the AIBO. 
URBI Commands is used by the two modules that have been added to ACT-R: 
roboperceptual and robomotorical. Through these modules an ACT-R model can interact 
with the AIBO. An overview of the AIBO-R architecture is given in Figure 3.1. After 
having discussed the AIBO-R architecture in detail, a final section will discuss which 
processes should be implemented at what level of the AIBO-R architecture. 

Figure 3.1: 
An overview of the AIBO-R architecture. 
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3.1 URBI 
The programming language provided by Sony to program the AIBO is called OPEN-R. In 
OPEN-R all the joints of the AIBO have to be programmed individually and therefore it 
requires some effort to program basic behaviours like walking and turning. URBI, 
however, creates a layer on top of OPEN-R that makes it relatively easy to program 
complex behaviours (e.g., walking, turning, tracking and searching). This is one of the 
reasons URBI was used in the current research. Another reason is the client/server 
architecture of URBI. Such architecture provides a good basis for an interface with a 
different program, such as ACT-R. 
 To communicate with the URBI server, the developers of URBI provided a client 
called URBIlab. However, since ACT-R is written in Lisp, it was decided to implement 
new URBI client in Lisp as a part of the interface between URBI and ACT-R. 

3.2 URBI Client 
URBI makes use of a socket connection between server and client. To send data from 
Lisp to the URBI server a few default Lisp functions are used. However, because of the 
time delay in the communication between the AIBO and the computer, receiving data 
proved difficult. Therefore a new function was written that waits until there is something 
to receive, thereby solving the time delay problem. This function can only be used is if 
one is sure that there will be something to receive, for example, after a request for 
information was sent. 

The URBI client also provides functions to load the additional URBI functions 
onto the AIBO. To accomplish this, an external file (i.e., URBI.u) containing the 
additional URBI code is read and then sent to the URBI server. 

In short, when using Lisp the URBI Client can be used to send data to and receive 
data from the URBI Server. Besides that, it makes it easy to load additional URBI code 
onto the AIBO. 

3.3 URBI Commands 
To keep a good overview of the AIBO-R architecture the URBI Commands component 
was developed. This component defines lisp functions that call specific URBI functions 
through the URBI Client. Some of these functions already existed in URBI, but a few 
additional functions were needed to add certain behaviours to the AIBO-R architecture. 
These additional URBI functions are located in a separate file, URBI.u, which contains 
all the additional URBI code needed. 
 URBI Commands therefore depends completely on the contents of URBI.u. If one 
wants to add additional functionality to the AIBO, one can write a new lisp function using 
the existing code in URBI.u. If one however wants to add a completely new behaviour 
that is not a combination of the existing URBI functions, one can add new code to the 
URBI.u file and use this in the new lisp function. The lisp function can then be used by 
the roboperceptual module and the robomotorical module. 

The functions defined in URBI Commands can for example be used to make the 
AIBO look around for a certain colour, track a certain colour, walk towards a colour, 
request sensor information or just walk around. Also, for each behaviour, there is a stop 
function so that a behaviour can be stopped easily when needed. These stopping functions 
are needed because ACT-R can start certain behaviours that last for a while. After ACT-R 
has started such a behaviour, it might receive information that indicates that this 
behaviour should be stopped. An ACT-R model can then call the stopping functions 
through the roboperceptual module and/or the robomotorical module. 
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Besides that, URBI Commands keeps track whether the legs of the AIBO are busy 
performing any action or that they are free to execute a command. The same applies to 
the head of the AIBO. URBI Commands also keeps track of angle the AIBO has turned. 
As a result, it is always known which direction the AIBO is facing.  

Now there are several Lisp functions available that can be used by the 
roboperceptual module and the robomotorical module. The advantage of using URBI 
Commands, instead of integrating the functions into the modules, is that all functions can 
easily be tested outside the context of ACT-R. In fact any Lisp program can use the 
components described so far to interact with the AIBO. Testing at this level ensures that a 
higher level, for example ACT-R, is not causing a potential problem, keeping debugging 
manageable. 

3.4 Expanding ACT-R 
As discussed earlier in the ACT-R section of the theoretical background, ACT-R uses 
several modules that interact with the central production system through their buffers. 
The existing ACT-R modules obviously do not provide the possibility to interact with the 
AIBO. Therefore additional modules and associated buffers are needed. Since the central 
production system interacts with the modules through chunks in their buffers, the 
additional modules also need to define new chunk-types. 
 Two additional modules are created analogously to the visual module and the 
manual module respectively: the roboperceptual module and the robomotorical module. 
These new modules inherit the rules for production compilation from the visual and 
manual module. As a result the production rules using the roboperceptual or 
robomotorical module compile in the same way as the rules using the visual or manual 
module respectively. In general that means that those rules do not compile. 

The robomotorical module has one buffer, just as the manual module, and just as 
the visual module (Anderson et al., 2004), the roboperceptual module has two buffers. As 
mentioned in the ACT-R section the two buffers of the visual module represent the 
“what” and “where” pathways. The same applies to the buffers of the robovisual module 
where the robovisual buffer represents the “what” pathway and robovisual-location buffer 
the “where” pathway. As explained in the ACT-R section, using two buffers makes 
parallel processing possible. As a result, the robovisual and robovisual-location buffers 
can operate in parallel, just as the “what” and “where” pathways do. 
 The idea of using two systems for perception also resembles the strategy used by 
the PLAN model (Chown et al., 1995) discussed in the Simulated Navigational Models 
section. More or less analogue to PLAN, the “what” system, represented by the 
robovisual buffer, enables the acquisition of topological knowledge and the “where” 
system, represented by the robovisual-location buffer, that of metric knowledge. 

Since any number of modules can be added to ACT-R, one might wonder why 
two modules have been added and not more or just one. Sticking as close as possible to 
the existing ACT-R architecture, as mentioned before, is one good reason. The other 
reason is that there are two processes: perceiving the environment and moving around in 
it. Both processes can operate in parallel, since perceiving is done using the AIBO’s head 
and walking around by using AIBO’s legs. Processing of production rules in the central 
production system of ACT-R is a serial process, but a single production rule can match 
multiple buffers as described in the ACT-R section. Thus by using two modules with their 
associated buffers it is possible to perceive the environment and at the same time move 
around in it.  

It is interesting to note that the NAVIGATOR (Gopal et al., 1989) model uses two 
actions types, perception and locomotor, which are used respectively to perceive the 
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environment and move around in it. This is a similar distinction as the distinction between 
the roboperceptual and robomotorical modules. 

3.4.1 Roboperceptual Module 
As just mentioned, there are two roboperceptual buffers that can be used by an ACT-R 
model. To keep track of the environment around the AIBO, the robovisual-location buffer 
can be used to request information about the environment. To do this, one can use the 
following lines in the right-hand side of a production rule: 
 

+robovisual-location> 
 ISA  observation 
 colour nil / =specificcolour 

 
This request fills the buffer with an observation chunk that can be used by a subsequent 
production rule. The observation chunk contains several slots that contain information 
about the environment: 
 

• The distance of an object in front of the AIBO. Two sensors are used for this 
purpose. One is for close range, 5.7 – 50 centimetres and one is for further away 
20 – 150 centimetres. The values of these sensors will be placed in slots called 
distance-near and distance, respectively. 

• Whether an object is visible or not. If the request for information contained a 
value for the colour slot only objects of that colour are considered. The request 
would translate as “look for something of colour X”. If the colour slot does not 
contain a value (i.e., the value of slot colour is nil) all objects are considered. 
Such a request would translate as “look for something”. When an object is visible 
the slot object-visible will get the value t, otherwise nil. 

• The colour of the visible object. If the request contained a value for the colour 
slot, this will not change. If nil, the colour of the visible object is used for the 
colour slot and if multiple objects are visible the colour of a randomly selected 
object is used.1 

• Whether an object of a specific colour is near or not. A combination of the 
distance sensor and number of visible pixels of the specific colour is used to 
determine a Boolean value, t or nil. This value is then stored in the slot called 
object-near. 

• The number of visible pixels of the colour of the object that was returned. This is 
stored in a slot called pixels. In the current research this slot is not used. It can, 
however, be used by other models that use the AIBO-R architecture. 

• The x and y degrees of the object of interests centre relative to the centre of the 
camera image. These values are stored in slots called x-degree and y-degree 
respectively. Just as the pixels slot, these slots are not used in the current 
research. 

 
Not all colour values can be used. Only the colours defined in the URBI.u file are 
available. These colours are defined by creating a colourmap, which is a subspace of the 
three dimensional YUV colour space. If one adds a different colour by creating a new 

                                                 
1 Although selecting an object at random is not plausible from a cognitive point of view, it is sufficient for 
the current research. Which object should be selected if multiple objects are visible is discussed further in 
the  chapter. Future Work
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colourmap, the URBI Commands component needs to be expanded to incorporate the 
new colour, otherwise when searching for any object, objects of the new colour are 
disregarded. 
 
The visual-location buffer can also be used to 
determine the relative direction of a perceived 
object with respect to a previous location and 
the current location (Figure 3.2). Since 
humans are not able to determine angles to a 
one-degree precision, the eight main points of 
a compass are used, that is: N, NE, E, SE, S, 
SW, W and NW. This is also in agreement 
with the bias people have towards straight, 
forty-five and ninety degree angles as 
proposed in the PLAN model (Chown et al., 
1995).  

The way the direction of objects is obtained is also similar to the way described 
when discussing PLAN. In AIBO-R, the direction of objects is also derived from the 
position of the head relative to the body and the position of the body itself. There was, 
however, no need to analyse the position of the object in the visual field, since the robot is 
programmed to focus on objects that are encoded. As a result these objects are always in 
the centre of the field of view. 
  
To determine the direction of a new object and create a relpos (relative position) chunk, 
which represents this information, the following request can be used in the right-hand 
side of a production rule: 
 

+robovisual-location> 
 ISA  relpos 
 next   =newobjectcolour 
 previous =previous 
 current =currentlocation 

 
The robovisual-location buffer is then filled with a new chunk containing the information 
from the request and one extra slot called angle. This slot contains the relative direction 
of the new object. The new object is stored in the next slot, the current object in the 
current slot and the previously visited object in the previous slot. 

It is important to note that the angle represented, represents the true angle only 
when the robot is standing in line with the previous location and the current location. This 
is however not necessary for the relpos chunk to fulfil its function. As long as each time 
the AIBO walks between two specific locations, the second is approached from the same 
directions as the times before, the relpos chunk correctly indicates the direction of the 
next location. As a result, the relpos chunk can even be used in a static world where 
objects need to be avoided. In a more dynamic world, however, the idea of the relpos 
chunk might fail. Nevertheless, for the model developed in the current research, which is 
discussed in the next chapter, the relpos representation is satisfactory. 
 
Up to now the robovisual-location buffer has been discussed, which can only be used for 
spatial information. However, if an object of a certain colour is found and its information 
is located in the robovisual-location buffer, one can use the robovisual buffer to classify 
the object (i.e., request the “what” information). For example when a red thing is 

Figure 3.2: 
The relative direction of a new object. 
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observed the robovisual buffer can be used to classify this red thing as a waypoint. To do 
this one can make the following request through the robovisual buffer: 
 

+robovisual> 
 ISA  object 
 colour  =newobjectcolour 

 
After the request, the object that is being attended by the AIBO is classified. Ideally a 
complex pattern recognition algorithm would classify the object and return the class. This 
class information could then be used to form a chunk representing the object. However 
such a pattern recognition algorithm is beyond the scope of the current project. Therefore 
a simplification was made: any object attended must be a waypoint and which waypoint it 
is, depends only on the colour.  

A chunk, which is of the object chunk-type, containing colour and class 
information, is placed in the robovisual buffer. More about the classification of objects 
can be read in the chapter Future Work. 
 
A few more requests can be made through the robovisual buffer. These requests can be 
used to make the AIBO look around or track an object. Whether these requests should be 
handled by the robovisual, robovisual-location or even the robomotorical buffer is open 
for discussion. On the one hand, moving the head are motor commands, on the other, 
head movements are closely related to perception. The existing visual module handles all 
perception, including where to look and where to focus the attention of the model, 
through the visual buffer. Therefore it seems like a good idea to let the roboperceptual 
module also control the searching and tracking through the robovisual buffer. Another, 
more pragmatic reason, is that it is easier to implement and maintain control of searching 
and tracking behaviour from the roboperceptual module. Finally, within the 
roboperceptual module the choice has been made for the robovisual buffer instead of the 
robovisual-location buffer, because it should be possible to make a request for 
information about the environment through the robovisual-location buffer in parallel to 
the request of starting or stopping the searching or tracking behaviour. 
 To start searching, tracking a specific colour or stop either, one can make the 
following requests through the robovisual buffer respectively: 
 

+robovisual> 
 ISA  search 

 
+robovisual> 
 ISA  track 
 colour =specificcolour 

 
+robovisual> 
 ISA  stop 

 
A conflict does not arise when humans switch between two tasks using the same body 
part. This is not so trivial when working with robots. If robots are instructed to 
continuously perform a certain action, they need a specific command to stop. Therefore 
roboperceptual module automatically stops the previous behaviour when switching 
between searching and tracking if necessary. For example, when a model is searching for 
a certain object and the object is perceived upon which the model decides to track it, the 
model does not have to stop the searching behaviour. Vice versa, when the model is 
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tracking an object and loses sight of it, it also does not have to stop the tracking behaviour 
before starting the searching behaviour. 
 The AIBO searches for objects by slowly moving its head continuously from left 
to right and back. While the head moves, a model can use the robovisual-location buffer 
to request information about the environment through the observation chunk. The 
tracking behaviour is a colour blob tracking behaviour. It simply moves the head of the 
AIBO, and thereby the focus of the camera, towards the centre of a colour blob. Which 
pixels belong to the colour blob is defined by the colour map discussed earlier. 
 
Finally a few queries can be made to the roboperceptual module through the robovisual 
buffer. One can check whether the AIBO is currently searching or tracking or is doing 
both or neither. To do this use the following lines in the left-hand side of a production 
rule: 
 

?robovisual> 
 state  searching / tracking / busy / free 

 
These queries are useful because the states can be used as an indicator in what phase a 
model is. This helps building models that rely on the possible values of the goal chunk as 
little as possible. The details of this convention were discussed in the ACT-R section 
when discussing the “minimal control principle” (Taatgen, 2007). 

3.4.2 Robomotorical Module 
The robomotorical module can be used to make the AIBO walk around. This is done 
using the buffer also called robomotorical. The most important request that can be made 
to this buffer is: 
 

+robomotorical> 
 ISA  move-to-object 
 colour =colourofobject 

 
This request makes the AIBO walk towards an object of the specified colour. The AIBO 
walks to the object in segments of seventy centimetres and corrects its direction at the 
beginning of each segment. The AIBO will only start moving if the object is visible. If 
the AIBO were to lose sight of the object it will stop when it has finished the current 
segment. On a lower level a fail-safe could be implemented to prevent the AIBO from 
bumping into things. However since the AIBO moves rather slowly this implementation 
was omitted. To stop the AIBO moving towards an object through the model, use the 
request: 
 

+robomotorical> 
 ISA  stop-move-to-object 

 
It is also possible to move the AIBO to a specific location instead of an object. Three 
slots can be used to determine the destination. These slots are forward, sideways and 
turn. The first two must be given in meters and the third in degrees. For turn it is also 
possible to use one of the eight main points of a compass as a value. The AIBO moves the 
amount of meters provided in the forward and sideways slots. At the same time it will 
make a turn of the amount of degrees given, relative to the original orientation. A move 
request would look like this: 
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+robomotorical> 
 ISA  walk 
 forward =forwardvalue 
 sideways =sidewaysvalue 
 turn  =turnvalue 

 
To stop such a move use: 
 

+robomotorical> 
 ISA  stop-walk 

 
If one simply wants to move the AIBO seventy centimetres in a certain direction and also 
change the orientation towards that direction, the request using walk-to-angle can be 
used: 
 

+robomotorical> 
 ISA  walk-to-angle 
 angle  =anglevalue 

 
For the angle slot the same values as for the turn slot can be used. The move-to-angle 
behaviour can be stopped in the same way as the walk behaviour, but stop-move-to-
angle should be used. 
 
The robomotorical module also keeps track of the state of the legs of the AIBO. One can 
use a query to check whether the AIBO is using its legs or not:  
 

?robomotorical> 
 state  busy / free 

3.5 A discussion of levels 
While building an interface between ACT-R and AIBO one has to make choices which 
component will process what information and execute what actions. One of the obvious 
choices is that the filtering of camera images is done at a low level by URBI and not by 
ACT-R. In this section “low level” basically indicates all levels other than ACT-R or its 
additional modules while “high level” indicates the level of ACT-R. 

A more complicated choice is the tracking of an object. Should ACT-R get 
information of the objects location and then move the head of the AIBO towards the 
object? Or should this be a low level automated process which ACT-R only needs to start 
and stop? The choice was made for the latter since there are no conscious choices made 
about tracking, while busy tracking, except for starting or stopping this behaviour. It is 
almost like moving an arm from left to right, there is a lot of motor control from the 
brain, but there is barely any higher cognitive control. 

On the other hand if one has to track an object while computing a complex 
multiplication one would expect a drop in the performance of both tasks. This would 
mean that tracking an object does imply higher cognitive control. Therefore the question 
arises “how does such a simple behaviour as tracking an object have an impact on central 
cognition?” For now, this remains an open question. 

There is however also a pragmatic reason to let the tracking of an object be a low 
level automated process: the time it takes to send information from the AIBO to ACT-R 
and then for ACT-R to respond with a motor command which is then executed by URBI, 
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takes too long to let the tracking process be handled by ACT-R. This would result in a 
very shaky and unreliable tracking behaviour. 
 Another example of a complicated choice is searching. The behaviour is very 
similar to tracking when the amount of lower and higher cognitive control is compared. 
The searching behaviour is currently implemented as a periodic movement of AIBO’s 
head from left to right. However when considering humans searching a certain space, 
they keep track of where they have searched and where they have not. Also when 
searching, humans use their experience and knowledge to choose places to search. This 
would be impossible if searching would be a low level process. 

Therefore not only starting and stopping the AIBO’s search behaviour should be 
controlled by ACT-R, as it is now, but also the places where to look. The existing ACT-R 
visual module already has this possibility, but the roboperceptual module would have to 
be expanded to include the higher level of control over the searching behaviour. This has 
not yet been done, as it is beyond the scope of the current. 

As mentioned in the Robomotorical Module section, AIBO moves in segments of 
seventy centimetres. If AIBO loses sight of the object it is walking towards, it stops at the 
end of the current segment. This is done at a low level by URBI. One could think of a 
scenario where an object is temporarily hidden because something is passing between the 
AIBO and the object. ACT-R could reason that this is temporarily and decide to keep 
moving. In the current situation, where URBI handles this decision, AIBO stops and then 
moves on as soon as the object becomes visible again. This is however not the way one 
would expect a human to react. To make it possible for the AIBO to move on in such a 
scenario, ACT-R should have more control over the walking behaviour than it has now. 

In short, when expanding ACT-R to interact with the real world using a robot, 
many hard choices have to be made. Also there is a strong connection between motor 
control and information control at a low level and at a high level. If there is one thing the 
current project has shown, it is that ACT-R is a long way from moving around in the real 
world as humans do. However, there is no reason to become pessimistic, as for now it 
certainly seems possible. 
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4. The AIBO-Route model 
Now that the interface between AIBO and ACT-R has been discussed the model that uses 
the interface can be discussed. As mentioned, the model is a model of the human route-
learning process. First a general description of the AIBO-Route model will be given. In 
the subsequent sections the components mentioned in the general description will be 
discussed in more detail. 

4.1 General Description 
In Figure 4.1 an overview of the AIBO-Route model is given. As can be seen from the 
figure, the model is divided into three horizontal layers. The first layer is called the 
Decision Making layer. In this layer two competing strategies determine how the model 
continues to the second layer, which is called the Searching and Processing layer. The 
Searching and Processing layer contains processes that search and classify objects. These 
processes are divided into three groups as indicated by the regions labelled General 
Search, Processing, and Specific Search. Once an object is classified and determined to 
be interesting, the model progresses to the third and last layer: Tracking and Moving. This 
layer enables the robot to track the classified object and move to it. Once the object is 
reached the model returns to the first layer. The process repeats until the goal object (i.e., 
the destination) is reached. 

Of the default modules of ACT-R the AIBO-Route model uses the goal, 
declarative and imaginal module. Obviously, besides these modules, the model also uses 
the roboperceptual and robomotorical module. The goal module is used to keep track of 
the general goal, which is the final destination, and the last two visited locations. The 
imaginal module is used to hold on to a sub-goal, which is an intermediate destination. 
The declarative module is used to hold declarative knowledge of the route. The most 
important chunks stored in the declarative module are of chunk-type object, route-
element and relpos. Together these chunks form the building blocks of a route. 

A chunk of type object has two slots, which hold an object’s colour and the class 
it belongs to. Although the model could reason with any number of classes, only one class 
is necessary for the AIBO-Route model. More classes could be implemented, but since 
that would require complex recognition processes, it is beyond the scope of the current 
project. Therefore, in the current research only the “waypoint” class is implemented. The 
possibility of multiple classes is discussed in the Future Work chapter. The usage of the 
object chunk-type is discussed in the Processing part of the second layer. 

The route-element chunk-type represents a route segment as described in the 
Spatial Learning section. It contains two “route” objects and a goal object, which is the 
destination of the route. The two “route” objects in the route-element chunk represent 
landmarks between which exists a direct path, that is, it is possible to travel from the first 
landmark to the second. Similarities between the representation using route-element 
chunks and the NAPS network of PLAN have already been mentioned when discussing 
PLAN in the Theoretical Background chapter. 

Since the classification of objects is simplified and there is only one class (i.e., 
waypoint), the objects can be represented by their colour. The slots of the route-
element chunk-type therefore do not contain the objects themselves, but only their 
colours. Given that the AIBO-R architecture only uses the colour property of an object to 
search and track it, representing objects by their colour is sufficient. 

 



64  The AIBO-Route model 

 

Fi
gu

re
 4

.1
: 

Th
e 

A
IB

O
-R

ou
te

 m
od

el
. 

 



The AIBO-Route model  65 

Chunks of type relpos have already been discussed in the chapter “Interfacing 
AIBO and ACT-R: AIBO-R” and contain local relative directional information. Also in 
the Theoretical Background chapter similarities between relpos chunks and the R-Net 
representation of PLAN have already been mentioned. However, at this point an 
additional remark can be made.  

As has been discussed, the relpos chunk contains the previous and current 
location. It also contains a next location and its direction relative to the previous and 
current location. The previous and current locations together form a route segment. The 
relpos chunk therefore represents an association between a route segment and the 
direction of the next location. This is similar to the association between landmark and 
change of direction described in the Spatial Learning section (paired-associate learning). 
However, since the perception of a landmark depends on the angle of approach and 
therefore on one’s previous location, the AIBO-Route model uses an association between 
route segment and change of direction. 

The route-element and relpos chunks together form a route. When several 
routes have been learned the sum of these chunks can be seen as a topological map, which 
has been discussed in the Theoretical Background chapter. Also it is interesting to note 
that the route-element and relpos chunks are very similar to, respectively, the GO-TO 
and TURN description of the TOUR model (Kuipers, 1978). 

The route-element and relpos chunks are learned in the second and third layer 
of the model and when learned can be used in the first layer. The three layers will now be 
discussed in more detail, starting with the first layer. 

4.2 Decision Making Layer 
In the theoretical background several experiments using slide shows or video 
presentations have been discussed. In these and also some other experiments, the 
participant of the experiment is led around an environment. By observing the 
environment the participant learns the route. Then, after learning the route, when the 
participant has to navigate it, he or she might not always know what the next landmark 
along the route is. In such a scenario a backup strategy is needed. This is one reason why 
the AIBO-Route model is designed with two strategies. The other reason is that the two 
strategies make it possible to learn a route without leading the model around as is done 
with the participants of the experiments described. 
 The first strategy is to simply look for what is out there in the world. This strategy 
starts with the production rule start-perception (see Figure 4.1): 
 
 IF  the goal is a route and  

all other buffers are empty and free 
 THEN  request an observation chunk through the robovisual-location buffer 
 
As a result of this rule the robovisual-location buffer will be filled with an observation 
chunk containing information about the environment. The exact content is described in 
the previous chapter. The content of this chunk will determine whether the Searching and 
Processing layer continues with searching the environment or classifying an object. If the 
observation chunk indicates that no object is visible, the model continues searching and if 
the observation chunk indicates that an object is visible, the model continues classifying 
the object. The content of the chunk can therefore be seen as a condition on how to 
proceed and is represented by the condition diamond “Any Object Perceived?” which is 
shown in Figure 4.1 directly below the start-perception rule. 
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The second strategy is more complex and uses information from declarative 
memory. The idea behind this strategy is to try to remember the next landmark along a 
route given the current location. If the model remembers the next landmark it tries to 
remember its direction and starts moving in that direction. The strategy starts with the 
rule start-route-element-retrieval: 
 
 IF  the goal is a route and the current location is known and  

all other buffers are empty and free 
THEN  request a route-element chunk of which the next object is not the current object and the 

goal is the goal of the route in the goal buffer 
 
If the model fails to remember the next landmark, the declarative module will returns an 
error. In that case the model switches to the first strategy through the rule route-
element-retrieval-failed-start-perception (see ). If, however, the 
request succeeds, a route-element chunk will be placed in the retrieval buffer and the 
rule route-element-retrieval-success-retrieve-relpos will match: 

Figure 4.1

 
 IF  a route-element chunk is retrieved 
 THEN  hold the route-element as the sub-goal in the imaginal buffer and  

request a relpos chunk 
 
Since the model knows what specific object is next on the route it can use this 
information by keeping it in the imaginal buffer to specifically search for this object when 
it is not immediately perceived. This will be discussed in more detail in the discussion of 
the second layer. 

Just as the retrieval of the route-element chunk, the retrieval of the relpos 
chunk either fails or succeeds. If the retrieval fails the model will request an 
observation chunk in the same way as the start-perception rule, but this time the 
request will be limited to observations containing the colour of the retrieved object (i.e., 
the next object on the route). Depending on the returned information the model continues 
classifying the next object or starts searching for it. These possibilities are represented by 
the “Specific Object Perceived?” condition diamond.  

If the retrieval of the relpos chunk is successful the model can use the 
information contained in it to move and turn the AIBO in the direction of the next 
landmark. This is done by the rule relpos-retrieval-success-turn-to-waypoint: 
 
 IF  a relpos chunk is retrieved and  

the imaginal buffer holds a route-element chunk 
 THEN  hold the route-element as the sub-goal in the imaginal buffer and 

use the walk-to-angle command through the robomotorical buffer to turn and move 
towards the next object and 
request an observation chunk limited to those holding the colour of the next object 

 
After this rule has fired the model continues in a similar way as after the failure of 
retrieving a relpos chunk, that is, it again depends on the specific object being perceived 
or not, whether the model continues searching or classifying it. At this point it might be 
helpful for the reader to look at Figure 4.1 to fully grasp the flow of the model in the first 
layer. 
 
Since the condition (i.e., if part) of the rules start-perception and start-route-
element-retrieval are identical, they are in competition. Both are rules that represent 
relative general behaviour that is quite common to humans. Therefore, they both have a 
history of experience, which is simulated by setting the initial successes, failures and 
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efforts of the production rules to certain values. By doing so, the utilities of these 
production rules are more or less fixed. 

In the ACT-R section the process of product compilation has been discussed. This 
is the process by which two rules merge into one new rule that has the effect of both. 
Since some of the production rules belonging to the second strategy can merge into new 
rules, these new rules add to the already existing competition between start-
perception and start-route-element-retrieval. Which rules can merge in what 
way is illustrated in .  Figure 4.2

Rule one, start-route-element-retrieval, is merged into rules five and seven and 
indirectly, through rule five, into rule eight. Rule five, seven and eight therefore have the 
same condition (i.e., if part) as the start-route-element-retrieval rule. Since they 
have the same condition they, together with the start-perception rule, also compete 
with the start-route-element-retrieval rule. Rule six only competes with rule two. 

1 
start-route-element-
retrieval 

2 
route-element-retrieval-
success-retrieve-relpos 

3 
relpos-retrieval-success-
turn-to-waypoint 

5 
New-1-2 

6 
New-2-3 

7 
New-1-6 

8 
New-3-5 

Figure 4.2: 
Production compilation in the AIBO-Route model. 

 By merging two original rules the chunk that they requested and retrieved is 
incorporated into a new rule. The compiled rules in the centre, five and six, respectively 
eliminate the retrieval of a route-element chunk and that of a relpos chunk. The rules 
to the right, seven and eight, eliminate the retrieval of both chunk-types and therefore are 
identical. Since there may be several landmarks along a route, there are also several 
route-element and relpos chunks. These chunks are merged into the new production 
rules and therefore there may be multiple instances of each of the new production rules. 
 As described in the ACT-R section, of the rules that compete with each other, the 
rule with the highest utility is chosen. The utility of the original rules, start-perception 
and start-route-element-retrieval, is more or less fixed as mentioned earlier. Over 
time the new production rules can win from the old rules thereby speeding up the 
deliberation process of the model after having reached a landmark and before moving on 
to the next. More on the creation and development of the new rules is discussed in the 
Experiment and Results chapter. The Searching and Processing layer that will be 
discussed next determines what happens when the Decision Making layer is done. 

4.3 Searching and Processing Layer 
The Searching and Processing Layer consists of three parts, General Search, Processing, 
and Specific Search. From the first strategy discussed in the previous section, the model 
usually progresses to the part in the second layer labelled General Search and incidentally 
progresses directly to the Processing part. The second strategy causes the model to 
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continue to either the Processing or Specific Search part. The General Search part will 
now be discussed first. 

4.3.1 General Search 
This part of the model consists of four production rules that together are able to search for 
any object. The searching starts with the rule no-object-perceived-start-search: 
 
 IF  no object is perceived and  

the model is not searching 
THEN  start searching and 
 request an observation chunk holding the colour of any object and 
 start counting using the temporal module 

 
The temporal module has not yet been discussed as it is not part of the default ACT-R 
architecture. It has been developed by Taatgen, Van Rijn, and Anderson (2004) to add 
temporal reasoning to the existing ACT-R architecture. By adding a temporal module and 
its associated temporal buffer to ACT-R, models using ACT-R are given the possibility to 
reason about time. 

The temporal module is used by the AIBO-Route model because when searching 
in front of the AIBO, it is possible that no object is found because the object is behind the 
AIBO. Therefore when a certain amount of time has been spent searching, the AIBO 
turns around. The searching behaviour is implemented by the searching production rule: 
 
 IF  no object is perceived and  

the model is searching 
THEN  request an observation chunk holding the colour of any object and 
 continue searching 

 
Since the searching behaviour that pans the head of the AIBO from left to right and back, 
is implemented at a low level in URBI, the model only needs to continuously request an 
observation chunk to gain knowledge about the environment from different directions. 
The searching production rule therefore will keep firing2, until the counter of the 
temporal module has reached a certain threshold or an object is perceived. If the threshold 
is reached, the search-failure-turn-around production rule will fire: 
 
 IF  no object is perceived and  

the model is searching and  
a certain amount of time has passed 

THEN  turn around using the walk command through the robomotorical buffer and 
 set the turned-around slot of the route chunk in the goal buffer to t (true) and 

request an observation chunk holding the colour of any object and 
 stop searching 

 
How exactly humans keep track of where they have searched or whether they have turned 
around, remains an open question. In the AIBO-Route model the pragmatic solution of 
adding a slot to the goal chunk is chosen, since it does not really increases or decreases 
the model’s plausibility. The models plausibility is not really altered, because for a human 
it is trivial to remember whether one has turned around to search behind him. Since it is 
so trivial it does not affect the cognitive workload or mental processing speed. The model 

                                                 
Figure 4.12 Since the production rule repeatedly fires, it is marked as recursive in . Instead of continuously 

fire a production rule, buffer stuffing could also be a solution. In that case the robovisual-location buffer 
would be filled bottom-up in the event the observation changes. However due to technical constraints (i.e., 
time delay in the wireless communication) this has not been implemented. 
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has to keep track of whether it has turned around or not, because otherwise it would keep 
on turning around. After the model has turned around the rule no-object-perceived-
start-search will fire again unless an object is perceived. 

It is possible that the model still does not find an object after having turned 
around. In that case a final production rule called second-search-failed-stop, which 
is indicated as a failure to reach the goal, fires: 
 
 IF  no object is perceived and  

the model is searching and  
a certain amount of time has passed and 
the turned-around slot contains t 

THEN  stop searching and 
 clear the goal buffer 

 
After this rule has fired the model will stop, since the model is lost. It is lost because the 
model cannot find any objects to which it can travel. Usually, however, the model will 
find an object in front or behind the AIBO. If an object is found the model switches from 
the General Search part to the Processing part.  

An object might be perceived directly from the Decision Making layer or after the 
search-failure-turn-around rule has fired. In that case, the model was not searching 
which is indicated by a solid arrow from the “Any Object Perceived?” condition diamond 
to the object-perceived-determine-class rule of the Processing part. An object 
might also be perceived directly after the rule no-object-perceived-start-search has 
fired or after the searching rule fired. If that happens the model also switches to the 
object-perceived-determine-class rule, but keeps on searching too, which is 
indicated by the dashed arrow pointing from the searching and no-object-perceived-
start-search rules to the object-perceived-determine-class rule (see Figure 4.1). 
The Processing part of the second Layer will now be discussed. 

4.3.2 Processing 
Basically the Processing part of the second layer classifies objects. When an object has 
been perceived, its colour is known, but to what class it belongs is still unknown. The 
class has first to be determined so that it is known exactly at which object the model is 
focussing. The model can then compare the classified object to the landmark it is 
currently at and the landmark it has passed before that. These landmarks will be referred 
to as the current object and the previous object respectively. If the classified object is 
neither of those, it must be a new landmark and therefore interesting to navigate to. 

The classification of an object perceived by the General Search part is started by 
the object-perceived-determine-class rule: 
 

IF  an object is perceived and 
it is unknown which landmark should be next (i.e., the imaginal buffer is empty) and 
the model is not tracking the object 

THEN  request a classification of the object through the robovisual buffer and 
store the relative direction of the object in a relpos chunk through the robovisual-
location buffer 

 
The roboperceptual module then classifies the perceived object as a waypoint and places 
an object chunk, holding the colour and class of the object, in the visual buffer. The 
object chunk can then be used by subsequent production rules that determine whether 
the object is the same as the current or previous object or that it is an interesting object. 
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In the previous sub-section it was described that the model could enter the 
Processing part either while searching or not searching. When a production rule 
determines that the classified object is either the current or the previous object and the 
model is not searching, it should start searching for any object. This is exactly what the 
rules current-waypoint-classified-start-search and previous-waypoint-
classified-start-search do. The current-waypoint-classified-start-search 
rule looks like: 
 

IF  if the classified object is the same as the current object and 
the model is not searching 

THEN  start searching and 
 request an observation chunk holding the colour of any object (general search) and 
 start counting using the temporal module 

 
The previous-waypoint-classified-start-search rule is the same except for that 
the if part compares the classified object to the previous object. 

It is also possible that the classified object is matched while the model was still 
searching. In that case the model should simply continue searching. This is done by the 
current-waypoint-classified-continue-search and previous-waypoint-
classified-continue-search rules. These rules are similar to the rules that start the 
search in the current context except that they do not start searching and counting, but only 
request an observation chunk holding the colour of any object. 
 
When the model enters the Processing part through the first strategy of the Decision 
Making layer or the General Search part of the second layer, it starts with the object-
perceived-determine-class rule. However if the model enters the Processing part 
through the second strategy or the Specific Search part, it starts with the specific-
object-perceived-determine-class rule: 
 

IF  an specific object is perceived and 
it is known which landmark should be next (i.e., the imaginal buffer contains a route-
element chunk) and 
the model is not tracking the object 

THEN  request a classification of the object through the robovisual buffer and 
store the relative direction of the object in a relpos chunk through the robovisual-
location buffer and 
start counting using the temporal module and  
set the turned-around slot to nil 

 
The if part of this rule is different from the object-perceived-determine-class rule 
so that it can match a specific search instead of a general search. Upon a match the then 
part of the rule can then reset the counter of the temporal module and set the turned-
around slot to nil. This is necessary because in the Processing part it is possible to 
switch from a specific search to a general search when the current or previous landmark is 
perceived. As a result the search routine, that is whether the model has turned around and 
the time spent searching, has to be reset before continuing with a general search. 

One might wonder how it is possible that the specific object perceived is not an 
interesting object. The answer is that it is possible due to noise in the perception. At some 
point the model might mistakenly have perceived an object as another object due to noise. 

Finally the classified object could also be determined as interesting in which case 
the model can stop searching (if it was searching), start tracking the object and navigate 
towards it. All this is done by the interesting-waypoint-classified-start-
tracking-and-moving rule: 
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IF  if the classified object is not the same as either the current or the previous object and 

the model is not yet tracking 
THEN  start tracking and 
 start moving towards the classified object and 

place a route-element chunk in the imaginal buffer containing the current, the classified 
and the goal object and 

 stop counting and reset the temporal module and 
 set the turned-around slot to nil 

 
In Figure 4.1 this rule is positioned in the Processing part and halfway between the 
Searching and Processing, and the Tracking and Moving layer since the if part of the rule 
belongs to the second layer and the then part belongs to the third layer. The third layer 
will be discussed after the Specific Search part of the second layer has been discussed. 

4.3.3 Specific Search 
The Specific Search part is very similar to the General Search part, something that also 
can be derived from the symmetrical appearance of these two parts in . 
However, obviously, the Specific Search part searches for a specific object. The 
representation of the specific object (i.e., the colour) is part of the route-element chunk 
present in the imaginal buffer as a result of the second strategy of the Decision Making 
layer as has been mentioned before. The advantage of searching for a specific object is 
that other objects are ignored and therefore do not need to be classified. The model 
“filters out” the other objects, which is more efficient than considering each perceived 
object. One might consider this top-down control on the search process. 

Figure 4.1

Just as the General Search, the Specific Search also first searches in front of the 
AIBO and after a while behind the AIBO. However, when neither in front of the AIBO 
nor behind the AIBO the specific object is perceived, the model should switch to the 
General Search part to find another object to navigate to. This is done by the rule 
search-for-specific-waypoint-failed-twice: 
 
 IF  the specific object is not perceived and  

the model is searching and  
a certain amount of time has passed and 
the turned-around slot contains t 

THEN  stop searching and 
request an observation chunk holding the colour of any object and 
set the turned-around slot to nil 

 
After this rule has fired the model either perceives any object or it does not and starts 
searching for any object. This transition is indicated by the relatively long arrow from the 
search-for-specific-waypoint-failed-twice rule to the “Any Object Perceived?” 
condition diamond shown in Figure 4.1. 

The last difference between the General Search and the Specific Search is that 
when an object is found it progresses to the specific-object-perceived-determine-
class rule instead of the object-perceived-determine-class rule. The reason for this 
difference has already been discussed in the Processing sub-section. 

The Specific Search was the last part of the second layer to be discussed. The 
third and final layer will be discussed next. 
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4.4 Tracking and Moving Layer 
Through the interesting-waypoint-classified-start-tracking-and-moving rule, 
the model progresses from the second layer to the third layer. The rule already started 
tracking the classified object and moving towards it. During tracking the AIBO-Route 
model has to keep track of the object, but also observe whether it has reached the object 
or not. Therefore there is a rule called tracking-and-moving-to-waypoint that 
constantly observes the environment and therefore the object. This rule is similar to the 
searching-specific-waypoint, but instead of continuously firing while searching until 
the object is found, the tracking-and-moving-to-waypoint continuously fires3 until 
the model loses sight of the object or has reached it. The rule looks like this: 
 
 IF  the specific object is perceived and  

the model is tracking and  
the object is not near (i.e., the object-near slot is nil) 

THEN  request an observation chunk holding the specific colour of the object and 
keep track of the specific object through a route-element chunk in the imaginal 
buffer 

 
If the AIBO loses sight of the object in the third layer of the model it switches back to the 
Specific Search part of the second layer. The model then attempts to find the lost object 
again, and if found continues to the Processing Part and then again starts tracking the 
object and moving towards it. It is also possible, mainly due to noise, that the model 
immediately loses sight of the object after the interesting-waypoint-classified-
start-tracking-and-moving rule has fired. In both cases, what happens next is 
indicated by a dot-dashed arrow from the interesting-waypoint-classified-start-
tracking-and-moving and tracking-and-moving-to-waypoint rule to the specific-
waypoint-not-perceived-start-search rule shown in Figure 4.1. 

Whether the AIBO-Route model has reached the object or not is determined by 
the object-near slot of the observation chunk described in the previous chapter. If the 
object-near slot is t, it means that the AIBO has reached the object, otherwise the slot 
is nil. When the AIBO has reached the object there are two possible rules that can fire. 
One rule fires when the sub-goal, that is an intermediate object along the route, has been 
reached. The other rule fires if the reached object is the goal of the route (i.e., the final 
object along the route). The rule that fires when a sub-goal has been reached is called 
near-waypoint-stop-moving-and-find-next-waypoint and is defined as: 
 
 IF  the specific object is perceived and 
  the specific object is not the goal object of the route and 

the model is tracking and  
the object is near (i.e., the object-near slot is t) 

THEN  stop tracking and 
stop moving and 
set the current object in the goal chunk as the previous object in the goal chunk and 
set the reached object as the current object in the goal chunk 

 
Since the reached object and the last object passed are set as the current object and the 
previous object respectively, the model “knows” where it just was. This information can 
be used in the Processing part of the second layer to determine whether a new interesting 
object is classified or the current or previous object. 

                                                 
3 See footnote 2 earlier on page 62. 
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 After the near-waypoint-stop-moving-and-find-next-waypoint rule the 
model progresses from the third layer back to the first layer to start a new cycle to find 
and move to the next object. This cycle starts as described in the Decision Making layer 
with one of two strategies. 

If the model has reached the goal of the route, the rule goal-reached-stop fires: 
 
 IF  the specific object is perceived and  
  the specific object is the goal object of the route and 

the model is tracking and  
the object is near (i.e., the object-near slot is t) 

THEN  stop tracking and 
stop moving and 
clear the goal buffer 

 
This rule is marked as a success, which indicates that the model has successfully 
completed its task. 

4.5 Summary and Description of Running the Model 
Now that the AIBO-Route model has been discussed in detail, a brief summary 
describing how the model works can be given. The model starts with no declarative 
knowledge except for the goal object of a route it has to learn. Therefore in the first runs 
of the model it usually uses the first strategy, which is to search around for something to 
move to. When doing so, the model learns connections between objects and stores these 
in declarative memory as route-element chunks. Also, when observing a new object, it 
stores the relative direction of that object in a relpos chunk.  

When searching around the model might turn the robot around when no object is 
perceived in front of the robot. Once an object is perceived the robot classifies the object. 
If the object is classified as interesting it starts moving towards it, otherwise the object is 
ignored and the model continues searching for another object. The process of searching 
for an interesting object and moving towards it repeats until the interesting object is the 
goal object of the route. In that case the model has finished its run. 

After a few runs the model has learned sufficient route knowledge. This means 
that there are route-element and relpos chunks which are above the retrieval threshold 
(with or without noise). Since the production rules representing the two strategies have 
the same fixed utility there is a fifty percent chance due to noise that the second strategy 
is chosen. If that happens, the model remembers which object it should move to and 
possibly in which direction that object is. If the direction is remembered the models starts 
moving and searching for the specific object, regardless of whether it was perceived or 
not. Otherwise the model does not move and just start searching for the specific object.  

Once the object has been perceived it is again classified and then the model either 
starts moving, in case it did not already move, or corrects its direction of movement 
towards the perceived object. It might be the case that the model cannot find the specific 
object even when having turned around. If that happens the model starts searching for any 
object it can find. 

For each route segment either the first or the second strategy is used. Eventually 
the goal object is reached and the run is complete. As mentioned in the first few runs the 
first strategy is primarily used. However when the second strategy is used, its production 
rules compile into new production rules, which do not have a fixed utility. After a certain 
number of runs those utilities will become higher than those of the original production 
rules. This causes the second strategy to be used more often, since the compiled 
production rules represent the second strategy. When the route is walked using primarily 
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rules of type seven and eight from , the route is thoroughly learned as 
procedural knowledge.  

Figure 4.2

The learning of chunks and compilation of production rules described in this 
section will be discussed in detail in the Experiment and Results chapter. 
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5. Experiment and Results 
To find out whether the AIBO-Route model meets the two sub-goals of this project, the 
model was tested in a robot lab. The two sub-goals are repeated below: 
 

1. Given a setup of several landmarks the AIBO-Route model should be able to learn 
a route to a predefined goal. 

2. When having learned such a route and the environment changes in such a way that 
a shorter route is possible, AIBO-Route should be able to learn the new shorter 
route. 

 
The experiment performed in the robot lab consisted of two phases. In Phase 1 the model 
was tested for the first sub-goal and in Phase 2 for the second. To test the model for the 
first goal, the experimental setup illustrated in  was used. After the model had 
learned the route of that setup, the setup was changed to test the model for the second 
goal in Phase 2. The changed setup is illustrated in Figure 5.2. For the model to learn, 
several runs were needed, where in each run the AIBO moves from START to the goal 
landmark via a certain path. Next, the experiment will be discussed in detail, followed by 
its results. 

Figure 5.1

Figure 
5.1

5.1 The Experiment 
As mentioned above, the experiment was performed in a robot lab. Since the camera of 
the AIBO is sensitive to changes in lighting conditions, the robot lab was illuminated 
using only fluorescent lightning thereby minimizing variations in visual perception. 

5.1.1 Phase 1 
The setup used in Phase 1 consisted of a START point and four landmarks (see 

). The landmarks are constructed of four differently coloured cardboard cylinders with 
a height of 50 cm and a diameter of 20 cm. The landmarks each have a different colour, 
which enables the model to uniquely identify each landmark. The pink landmark, 
landmark D, is set as the goal of the route the model has to learn. 

A wall of cardboard boxes, indicated by the rectangles in Figure 5.1, is used to 
limit the number of landmarks the model can perceive. As a result, AIBO can perceive 
exactly one landmark it has not yet visited from each landmark or the START point. Note 
that although landmark C might be visible from landmark A, the AIBO does not stop 
exactly at landmark A, but a little bit earlier. Also, the AIBO is facing away from 
landmark C upon reaching landmark A. Therefore AIBO does not perceive landmark C 
from landmark A. The same line of reasoning applies to landmark B and D. 

A different setup could have been used such that multiple landmarks are visible 
from one of the nodes, but the AIBO-Route model was not designed to handle multiple 
visible landmarks other than to choose one at random. Furthermore, the model only 
remembers the last two landmarks visited. As a result, if two landmarks are visible at the 
same time, the model might travel back to a landmark it has already visited. If the model 
is able to learn a route in such a specific setup, it could be modified in the future to work 
with different, more complex setups. Therefore to test whether the model is able to learn a 
route, the setup illustrated in Figure 5.1 where at most one unvisited landmark is visible 
was used in the experiment. 

The idea behind the setup is that the AIBO is forced to always walk the route in 
the same order, START-A-B-C-D, as illustrated by the arrows in Figure 5.1. While 
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walking that route, the model should be able to learn the order of and relative directions 
between the landmarks. Since the model was developed to use those directions to start 
walking towards a landmark before having perceived it, the model saves time because it 
does not have to search before moving towards that landmark. As a result, the 
performance of the model should improve over time, because less time is needed to reach 
the goal. Whether the AIBO-Route model learns the route is therefore not perceived by 
the order in which the model visits the landmarks, but by the change in behaviour. Of 
course, learning can also be determined by examining the declarative and procedural 
memory that cause the changing behaviour. 

5.1.2 Phase 2 
After having learned the route, which is the end of Phase 1, the setup of the environment 
was changed as illustrated in Figure 5.2. As shown in the figure, the first two landmarks 
have been removed as well as part of the wall. As a result, the AIBO is able to directly 
perceive the third landmark, landmark C, from its start position. The setup should cause 
the model to forget the route learned in Phase 1 and start learning a new shorter route 
START-C-D. 

Since the model should have learned the route START-A-B-C-D in Phase 1 and 
therefore knows the relative directions of the landmarks, it should start moving from 
START to A without first searching for landmark A. While moving, the model will try to 
find the landmark, but it will fail because landmark A is no longer there. As a result the 
model stops moving, which will be near point X shown in , because the model 
moves in segments of seventy centimetres. After having stopped, the model continues 
searching for landmark A and after a while starts searching for any other landmark. The 

Figure 5.2
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Figure 5.1: 
The setup in Phase 1 of the experiment. 
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Figure 5.2: 
The setup in Phase 2 of the experiment. 

model should find and then move to landmark C, because that is the only one visible from 
point X. Finally, the AIBO-Route model will reach landmark D via landmark C. The path 
just described is marked with the dashed arrows followed by a solid arrow from landmark 
C to D. 

The AIBO-Route model will only start moving towards landmark A if it uses the 
second strategy described in the previous chapter. If the second strategy is used, the 
model tries to remember the next node and its direction and starts moving towards it. 
However, there is a chance that the AIBO-Route model will use the first strategy, which 
is to look around for any landmark to move to. If the first strategy is used, the model 
should perceive landmark C from START and start moving towards it, which results in 
the path illustrated by the solid arrows in Figure 5.2. Just as the AIBO-Route model 
learned route START-A-B-C-D in Phase 1 of the experiment, it should eventually learn 
START-C-D in Phase 2 of the experiment. 

In the next section the results of running the AIBO-Route model in the two 
described setups will be discussed. Since the model was developed to meet the 
expectations just discussed, it is not surprising that the results match those expectations 
very closely. 

5.2 Results 
In this section the results of the experiment will be discussed. First the results of Phase 1 
will be discussed and then those of Phase 2. The description of both phases will start with 
a general description of the observed behaviour, followed by a detailed description of the 
learned declarative and procedural knowledge. 
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5.2.1 Phase 1 
By examining the data, that is the 
activations of chunks and utilities 
of original and new production 
rules, the learning of Phase 1 was 
determined to be complete after 
run 25. The figures referring to 
Phase 1 will therefore only show 
the first 25 runs of the total of 85 
runs. 

As expected, the AIBO-
Route model walked the route 
START-A-B-C-D indicated by the solid arrows in Figure 5.1. In the first few runs the 
model had to search at each node for the next landmark. In run 5, however, the model 
remembered the direction of a landmark for the first time. As a result, the model started 
moving from landmark B to C, without first searching for landmark C. It is important to 
note that remembering the directions of landmarks in this context can be because of 
declarative memory, but also because of procedural memory. In the next few runs the 
model started to remember the directions of the other landmarks as well and in run 8 the 
model remembered the directions of all landmarks in a single run for the first time. In the 
subsequent runs, the model remembers the direction of at least three landmarks and in the 
final five runs of Phase 1, the model remembers the directions of all landmarks in each 
run. The results just described are illustrated in Figure 5.3. The lines indicate whether the 
direction of a landmark was remembered. For example, at run 10 the line START-A is 
present, which indicates that the model remembered the direction of landmark A at 
START in run 10. 

For the model to remember the direction of a landmark it needs to apply the 
second strategy. However, by default, there is a fifty percent chance that the model will 
apply the second strategy, because either the start-perception rule (first strategy) or 
the start-route-element-retrieval rule (second strategy) will fire and their utilities 
are fixed at the same level because they both have a similar history of experience (see 
section 4.2). Since the results shown in Figure 5.3 indicate that chance for the model to 
remember the direction of landmark becomes higher than fifty percent, additional 

production rules must have been learned 
that compete with the original production 
rules.  

These new production rules, as 
described in the previous chapter, 
eliminate a retrieval (i.e., the need to 
remember a certain fact), which speeds up 
the model. This, in combination with 
remembering the direction of a landmark, 
causes the duration of each run (i.e., 
runtime) to decrease. The runtimes in 
ACT-R time for each run of Phase 1 are 
illustrated in Figure 5.4.  

The ACT-R time is based on the 
internal clock of ACT-R, which it uses to 
calculate retrieval times and the durations 
of other cognitive processes. However, the 

Figure 5.3: 
The remembered directions for each run in Phase 1.
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Figure 5.4: 
The runtimes in ACT-R Time for Phase 1. 
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temporal aspects of the cognitive processes handled by the modules developed in the 
current research (i.e., roboperceptual and robomotorical) are not implemented. Therefore, 
the temporal data obtained by the experiment is meaningless from a cognitive point of 
view. However, the duration of a run in ACT-R time is a reliable measure for the duration 
of a run in real time and is therefore illustrated in Figure 5.4 to illustrate the increase of 
the model’s performance. 

One might ask why there is a relatively high variation in the runtimes. The answer 
to that question is: noise. The noise is primarily due to simultaneously moving and 
perceiving the environment. The movement of the AIBO results in an unsteady video 
feed that sometimes causes the model to poorly judge a situation. As a result, for 
example, the AIBO not always stops at the same point upon reaching a landmark. 
Stopping too close to a landmark results in a longer path and also causes the AIBO to 
bump into the landmark, both causing the runtime to increase. 

Now that some general observations about Phase 1 of the experiment have been 
discussed, the learned declarative knowledge can be discussed.  

5.2.1.1 Declarative Knowledge 
As mentioned in The Experiment section, the order of landmarks that can be learned is 
fixed as a result of the setup illustrated in . Therefore it is not surprising that the 
model has learned four route-element chunks that represent the four route segments of 
the route START-A-B-C-D. Remember that a route-element chunk has three slots that 
represent the goal of the route and two connected landmarks. As values for the previous 
and next slot, the four chunks respectively have the values: START-A, A-B, B-C and C-D. 
All four chunks have landmark D as a value for the goal slot. The activations of the four 
chunks are illustrated in Figure 5.5.  

Figure 5.1

Since the activations illustrated are the activations values after a run has been 
completed and chunks used earlier in the route have more time to decay before the goal is 

Figure 5.5: 
The activations of the route-element chunks in Phase 1. 
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reached than those used later in the route, there is a difference in the activation levels of 
the four chunks. For example, chunk A-B is not used after landmark B and therefore 
decays more before the end of a run than chunk C-D, which is used until the goal is 
reached. As a result, the activation of chunk A-B measured after a run has been completed 
is lower than the chunk C-D. 

Besides the order of the landmarks, the model has also learned their relative 
directions which are stored in relpos chunks. The activations of these chunks are 
illustrated in . At the end of each curve there is label that represents the 
information stored in the chunk belonging to that curve. For example, the label “START-A 
< B: W” represents a chunk holding the start position in its previous slot, landmark A in 
its current slot, landmark B in its next slot, and the relative direction west in its angle 
slot. This information indicates that landmark B is to the west with respect to line 
connecting START and landmark A. In other words: if the line START-A indicates north, 
then landmark B is to the west. 

Figure 5.6

Figure 5.6

Figure 5.6
Figure 

5.6

 Note that not all relpos chunks are illustrated in . First, the figure only 
contains relpos chunks learned during Phase 1 of the experiment. Second, only relevant 
relpos chunks are illustrated. For example, the model also learns the relative direction of 
landmark B with respect to the line that connects landmark A and B. Since the model 
ignores landmarks that are the same as the previous or current landmark, only relpos 
chunks representing relative directions of landmarks that are not ignored are illustrated in 

. 
 In Figure 5.7 a graphical representation of the relpos chunks illustrated in 

 is given. The arrows originating from a landmark indicate the relative direction of the 
next landmark. Thus the arrows originating from landmark A indicate the direction of 
landmark B. The three types of arrows used in the figure indicate an activation level. This 
activation level is the activation of the relpos chunks at the end of Phase 1. A thick 
arrow represents the relpos chunk that has the highest activation with respect to the 
relpos chunks that represent a direction to the same landmark. The solid arrows 
represent relpos chunks that are above the retrieval threshold and the dashed arrows 
represent those that are below the retrieval threshold.  

  The relative direction is derived from the direction of AIBO’s body. This 
direction is maintained via dead reckoning, which is not very robust. As a result there are 
multiple relpos chunks, which contain the same landmarks, but different angles. As 
described in the ACT-R section, of chunks that match a request, the chunk with the 
highest activation is retrieved. Therefore the chunk with the highest activation should 
represent the most accurate relative direction. As can be seen from Figure 5.7, the relpos 
chunks with a higher activation are indeed more accurate. It is interesting to note that the 
gradual build up of correct relative directional knowledge seems to fit a theory of skill 
acquisition referred to as instance theory or instance learning (Logan, 1988).  

The arrows in Figure 5.7 originate from the centre of the landmarks, but the AIBO 
never perceives the next landmark from exactly that position. Therefore, the arrows 
should originate from the position of AIBO’s head at the moment it sees the next 
interesting landmark. Also the direction of the arrows should be drawn with respect to the 
orientation of the AIBO’s body at that moment. However, since the position and 
orientation varies slightly with each run, the centre of a landmark is used. Although 

 is not entirely accurate, it is still an useful illustration of the directions learned 
at the end of Phase 1. 
Figure 5.7
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Figure 5.7: 
Graphical representation of the activations of the relpos chunks after run 25. 
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Activations of the relpos chunks in Phase 1. 
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The learned declarative knowledge indicates that the route was learned correctly: the 
model has learned the correct order of the landmarks and also correctly learned their 
relative directions. Besides this declarative knowledge the model was also designed to 
learn procedural knowledge, which is discussed next. 

5.2.1.2 Procedural Knowledge 
As explained in the previous chapter, there are three possible types for new production 
rules. One type eliminates the retrieval of a route-element chunk and will be called type 
(1), a second eliminates the retrieval of a relpos chunk and will be called type (2) a third 
and final type eliminates the retrieval of both chunks and will be called type (3). In 

, which illustrates the production compilation process, these types correspond to 
respectively rules number five, six, and seven or eight. 

Figure 
4.2

The utilities of the through production compilation learned production rules are 
illustrated in . In the figure there are five different line types. Except for the 
thick line, each line type indicates a different situation in which the if part of the 
production rule represented by that line, matches that situation. For example, the dashed 
black lines represent production rules that match the situation where the AIBO has 
reached landmark A. The thick lines represent the utility of the production rules: route-
element-retrieval-success-retrieve-relpos (RERSRR), and start-perception 
and start-route-element-retrieval. Since these rules are in competition with the 
new learned rules, the thick lines more or less act as a threshold for those new rules, as 
will be explained below. 

Figure 5.8

On the right of Figure 5.8 a list of labels is given. Each label is a short representation 
of what the corresponding production rule stands for. Also each label starts with a number 
that matches one of the three production rule types just mentioned. Below, examples of 
these labels are explained for each rule type: 
 

 A label like “(1) B -> C” represents a production rule of type (1): 
 
 IF  the previous landmark was a landmark X and 

the current landmark is landmark B and 
the goal is landmark D 

THEN  the next landmark is landmark C and 
request a relpos chunk matching “current: B, next: C, previous: X” 

 
The “X” in the description represents a variable that can hold any landmark. The 
relpos chunk needs to be requested because the direction of landmark C is still 
unknown. 

 
 A label like “(3) B-C < D: NW” represents a production rule of type (3): 

 
 IF  the previous landmark was landmark B and 

the current landmark is landmark C 
THEN  the next landmark is landmark D and 

the AIBO moves to the north-west (NW) with respect to its current direction 
 

 A label like “(2) B-C < D: NW” represents a rule of type (2): 
 
 IF  the previous landmark was landmark B and 

the current landmark is landmark C and 
the route-element chunk representing “current: C, next: D, goal: D” is retrieved  

THEN  the next landmark is landmark D and 
the AIBO moves to the north-west (NW) with respect to its current direction 
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Note that although a label of type (2) is similar to a label of type (3), a rule of type (2) 
requires a retrieved route-element chunk whereas a rule of type (3) does not. Also it 
interesting to note that of some rules of type 3 there are two (e.g., (3) START-A < B: W), 
because three production rules can merge into one production rule in two different ways. 
For example rules A, B and C can merge into AB and BC, which in turn can merge with 
respectively C and A, both resulting in the rule AC. This is explained in more detail in the 
previous chapter and also illustrated by Figure 4.2. 

Production rules of type (1) and (3) compete with start-perception and start-
route-element-retrieval and therefore must have a higher activation (with added 
noise) than the latter two if they are to be used. The thick horizontal line that represents 
the utility level of the last two rules, therefore acts as a threshold for rules of type (1) and 
(3). Similarly, the thick line representing the utility of the rule route-element-
retrieval-success-retrieve-relpos (RERSRR) acts like a threshold for rules of 
type (2). 

From Figure 5.8 it is possible to derive the production rule with the highest utility 
of the production rules that compete at the beginning of a route segment. Since there are 
four route segments there are also four corresponding rules which are: “(3) START-
START < A: NE”, “(3) START-A < B: W”, “(3) A-B < C: W” and “(3) B-C < D: 
NW”. These four rules are marked with a rectangle. 

The four production rules have incorporated the four route-element chunks, and 
the relpos chunks represented by the thick arrows illustrated in Figure 5.7. Since the 
relpos chunks represented by the thick arrows already had relatively high activations 
during the first 10 runs, they are usually retrieved instead of other matching chunks 
during those runs. Because most of the production rules learned in Phase 1 are created 
before the 10th run, it is not surprising that the four production rules just mentioned have 
incorporated the chunks represented by the thick arrows. In fact, those chunks are the 

Figure 5.8: 
The utilities of the learned production rules in Phase 1. 
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only chunks that were used in the production compilation process, with the exception of 
the chunk “START-A < B: NW”, which resulted in the rule “(2): START-A < B: NW”. 
That rule was created in run 18, but was never used again. 

The fact that the four production rules represent the correct order and direction of 
landmarks indicates that the model has correctly learned the route as procedural 
knowledge. Also taking into consideration the results the declarative memory, Phase 1 of 
the experiment demonstrates that the AIBO-Route model has correctly learned a route. 
The results of Phase 1 therefore satisfy its goal. 

5.2.2 Phase 2 
After Phase 1 of the experiment was complete, the environmental setup was changed to 
the setup illustrated in Figure 5.2. The AIBO had learned to move from START to 
landmark A, and therefore kept moving towards the position where landmark A was in 
Phase 1, even though the setup had changed. Since landmark A was no longer present in 
Phase 2, the model could not find it and turned around near the position marked with “X” 
in Figure 5.2. Of course, the model still could not find landmark A and as a result 
switched to a general search thereby perceiving landmark C from X. After perceiving 
landmark C, the model started moving towards it and then continued towards landmark 
D. 
 The model repeatedly showed the behaviour just described until the utilities of the 
production rules causing the AIBO to move towards X had decreased sufficiently to allow 
the rule start-perception to fire. The utilities of the production rules causing the AIBO 
to move to X decrease, because reaching the goal through those rules takes longer in 
Phase 2 than in Phase 1. When the start-perception rule fired, the model immediately 
started searching for any object from START without first moving towards landmark A. 
As a result, the AIBO moved from START to landmark C without the detour. 

The start-route-element-retrieval rule always has the same fixed utility as 
start-perception, because it shares the same history of experience as explained in 
section 4.2. Since start-perception is able to fire and start-route-element-
retrieval has the same utility, the latter is also able to fire thereby requesting a route-
element chunk. If the right route-element chunk (i.e., START-C) was retrieved the 
model would also directly move to landmark C. However, since the route-element 
chunk START-A still had a high activation, it had a higher chance of being retrieved than 
START-C. Therefore, if the start-route-element-retrieval rule were to retrieve the 
route-element chunk representing START-C, that chunk first had to gain a higher 
activation.  

Since in Phase 2 landmark C is the first landmark the model can perceive from 
START, the activation of the chunk START-C is increased each time the model perceives 
landmark C. Also the activation of START-A decays each time the model starts with the 
rule start-perception, because in that case START-A is not used. After a few more runs, 
when the rule start-route-element-retrieval fires, the model is able to retrieve  the 
chunk START-C, because its activation has come close to that of START-A and with added 
noise can surpass the activation of START-A. This occurred for the first time in run 42. 

At that point, by merging start-route-element-retrieval, route-element-
retrieval-success-retrieve-relpos and chunk START-C, a new production rule of 
type (1) is created which represents that after node START, landmark C should follow 
(see “(1): START -> C” in Figure 5.13). In addition to that rule, two rules of type (2) are 
created. One rule represents that landmark C with respect to START is to the north-west 
(i.e., “(2): START-START < C: NW”) and the other that landmark D is to the west with 
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respect to START-C (i.e., “(2): START-C < D: W”). More importantly, in run 56 the 
rule “(1): START -> C” fires for the first time and is followed by the rule relpos-
retrieval-success-turn-to-waypoint. As a result, those two rules can be merged 
with the chunk “START-START < C: NW”, which results in the rule “(3): START-START 
< C: NW”. That rule and the rule “(1): START -> C” show an upward trend which 
clearly illustrates the model learned to move from START to C. The fact that the model 
has learned to move from START to C instead of from START to A can also be derived 
from the activations of chunks START-A and START-C, since in the final runs START-C 
surpasses START-A (see Figure 5.10).  

The runtimes of Phase 2 will now be discussed, followed by the learned 
declarative and procedural knowledge. 
 
The trend in the runtimes of the model can be explained by the development of the model 
just described. In Figure 5.9, one can see the decrease in runtimes during Phase 1, which 
is explained in the previous sub-section. The first half of Phase 2 is characterized by a 
high variation in the runtimes. This variation is the result of the fact that the model 
sometimes uses the rule start-perception, which results in a fast run, and sometimes 
uses rules that make the AIBO walk towards where landmark A was in Phase 1, which 
results in a relatively slow run. The runtimes in the second half of Phase 2 show a 
downward trend, which illustrates that the model has learned to move directly from 
START to C. The runtimes of the second half are also lower than the lowest runtime in 
Phase 1; the mean of the last 25 runs is 4.87 seconds while the fastest runtime in Phase 1 
is 7.6 seconds. This is not surprising, since the route learned in Phase 2 is much shorter 
than the route in phase1, but it does show that the model is able to adapt and improve its 
performance. 
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Figure 5.9: 
The runtimes in ACT-R Time for Phase 1 and 2. 
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Note that there are three runtimes missing (run numbers 29, 49 and 51). These 
runs were relatively high and respectively have the values 37.8, 27.2 and 15.3. The high 
runtimes are due to a programming bug and to noise. In run 29 the model kept searching 
and did not turn around, because the temporal module stopped functioning for unknown 
reasons. As a result, the run had to be aborted, but only after some time, which resulted in 
a high runtime. In runs 49 and 51 the model mistakenly perceived a wall as the yellow 
landmark (i.e. landmark B). Since, there was no real yellow landmark in Phase 2 and no 
other object in Phase 2 that could satisfy the threshold that indicates that the yellow object 
is near, the robot wandered a long time before switching to a general search. After having 
switched to a general search and perceiving the green landmark (i.e., landmark C), the 
AIBO moved to that landmark and then to the pink landmark (i.e., landmark D). In short, 
the misperceptions led to a detour, which resulted in high runtimes. 

5.2.2.1 Declarative Knowledge 
Figure 5.10 shows the route-element chunks learned in Phase 1 and the new route-
element chunks learned in Phase 2. Of course, the most interesting chunk learned is 
START-C. One can see in the figure that its activation increases with each run, with a few 
exceptions, in the end surpassing the activation of START-A. Also clear in the figure is the 
decay of activations of the chunks representing the first part of the route learned in Phase 
1 (i.e., A-B and B-C). 
 As explained before, the production rules that make the AIBO move from START 
to A were still used in the beginning of Phase 2. As a result, the chunk START-A was also 
still used and the activation of that chunk did not decay as for example the activation of 
chunk A-B. However, one can see that the line representing START-A is not straight. The 
variations (i.e., small decays) are because of the production rule start-perception. 
When that rule was used, the chunk START-A was not used and only START-C gained a 
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Figure 5.10: 
The activations of the route-element chunks in Phase 1 and 2. 
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higher activation. 
 The other variations present in  are mainly due to the problem with the 
temporal module and the misperception of the yellow landmark (i.e., landmark B). For 
example the relatively large decay in the activation of START-C at run 29, is because 
START-C was never used in that run, since the run had to be aborted. Another example is 
the creation of the chunk START-B and START-D at respectively run numbers 49 and 42. 
Because those chunks were created, START-C and C-D were not used, resulting in a 
sudden decay in their activations at those run numbers. 

Figure 5.10

 Finally, it is interesting to note that, since the model has learned to go from 
START to C, the chunk START-A is not used anymore in the final few runs. As a result 
the activation of chunk START-A continuously decays from run 69. The chunks START-C 
and C-D represent the two route segments of the new route START-C-D.  

Besides new route-element chunk the model also learned new relpos chunks in 
Phase 2. The activations of the relpos chunks are illustrated in Figure 5.11. Note that 
just as in Phase 1 only the activations of relevant relpos chunks (i.e., relpos chunks that 
are not ignored by the model) are illustrated. Also, since most of the relpos chunks from 
Phase 1 only decay after run 25, the activation of those chunks is not illustrated after run 
25. 

In  the graphical representation of the activations of the relpos chunks 
after run 85 is given.  is similar to , which belongs to Phase 1, but 
there is a new type of arrow: the dotted arrow. All the arrow types, except for the dotted 
arrow, are part of the route START-C-D. Thus arrows originating from START that are 
not dotted indicate the direction of C with respect to START. Similarly, non-dotted 
arrows originating from C indicate the direction of D with respect to the line START-C. 

Figure 5.12
Figure 5.12

Figure 5.12

Figure 5.7

The dotted arrows represent relpos chunks, which are the result of noise and/or 
were already learned in Phase 1 and the fact that they are dotted has nothing to do with 
activation levels. A clear example of a relpos chunk learned due to noise is the arrow 
originating from where landmark B was, because the model mistakenly observed 
something as the yellow landmark (i.e., landmark B). Note that not all relpos chunks 
illustrated in  are visible in , because some dotted arrows are 
concealed by an arrow of a different type.  

Figure 5.11

Figure 5.11

An important dotted arrow originates from START and points to the north-east. 
That arrow represents the chunk “START-START < A: NE” and is frequently used in the 
first half of Phase 2. However, just as the chunk START-A, the activation of “START-
START < A: NE” continuously decays in the final runs, in this case from run 60 (see 

). 
From Figure 5.11 and Figure 5.12, one can see that the model has again learned 

the correct local relative directions of the landmarks and again the activation levels of the 
chunks have a high correspondence to their accuracy. The relpos chunks with the highest 
activation, represented by the thick arrows in Figure 5.12, represent the most accurate 
directions within the limited set of eight possible directions. 

Since the directions, but also the order of the landmarks, are correctly learned, just 
as in Phase 1, one can conclude that the model can acquire correct and accurate 
declarative knowledge about a new possible route. Also, just as in Phase 1, if wrong or 
inaccurate knowledge is gained, the decay mechanism of ACT-R causes that knowledge 
to be forgotten. Only the chunks above the threshold represent accurate knowledge, 
where chunks with the highest activation represent the most accurate knowledge. 

The procedural knowledge gained in Phase 2 is discussed next after which all the 
results of Phase 2 have been discussed. 
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Figure 5.11: 
The activations of the relpos chunks in Phase 1 and 2. 
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5.2.2.2 Procedural Knowledge 
The production rules learned in Phase 2 are illustrated in Figure 5.13. Note that of some 
rules, the utility is not illustrated after run 25, because these rules are not used in Phase 2 
of the experiment. Since the rules are not used, their utility level remains constant after 
run 25. 

Globally, the figure is a good illustration of learning the first route in Phase 1, 
forgetting that route in the first half of Phase 2 and learning the new route in the second 
half of Phase 2. The difference between the first route and the second route is where the 
AIBO has to go from start. All the rules that indicate what to do from START are 
illustrated as grey-dashed lines. The general trend these lines show correspond to the 
learning development just described: first an upward trend until run 25, which represents 
learning the first route, then a downward trend until run 60, which represents forgetting 
that route, and then a upward trend, which represents learning the second route. 
 As mentioned before, in Phase 2 the model first moves towards the location of 
where landmark A was in Phase 1. However, because landmark A is no longer present, 
the model cannot find it and has to search for a different landmark. Eventually, landmark 
C is found, but first searching for landmark A costs a lot of time. As a result, the utility of 
the rules representing the behaviour to go to landmark A from START (i.e., “(1): 
START-A”, “(2) START-START < A: NE”, “(3) START-START < A: NE” and “(3) 
START-START < A: NE”) decrease. Around run 35 the utility of those rules are all below 
the utility of start-perception and start-route-element-retrieval4, giving those 
two rules a higher chance to fire.  

                                                 
4 Remember that the horizontal line at a utility level of 9 represents the utility of start-perception and 
start-route-element-retrieval. 

Figure 5.13: 
The utilities of the learned production rules in Phase 1 and 2. 
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The rule start-perception causes the chunk START-C to gain on START-A, as 
explained before. As a result, START-C can be retrieved by start-route-element-
retrieval at which point, the new rules “(1): START -> C”, “(2): START-START < 
C: NW” and “(2): START-C < D: W” are created. These rules respectively represent that 
after START, landmark C should follow, that C is towards the north-west from start, and 
that D is towards the west from the line START-C. The latter two rules are not used in 
later runs, because at run 56 the rule “(1): START -> C” fires and soon thereafter gains 
a higher utility as start-route-element-retrieval. The rule start-route-element-
retrieval needs to precede the rules “(2): START-START < C: NW” and “(2): 
START-C < D: W”, because they are of type (2) (for a more detailed explanation see 
section 5.2.1.2 and Figure 4.2). 

Also, because “(1): START -> C” fires the rule “(3): START-START < C: NW” 
can be created, which brings the model much closer to achieving the goal of Phase 2. At 
run 61 the rule “(3): START-START < C: NW” fires for the first time. The rule is very 
successful and immediately surpasses “(1): START -> C” and almost start-
perception. In the runs following run 61 “(3): START-START < C: NW” is almost the 
only rule to fire when the AIBO is at START. Of the 24 runs that remain of Phase 2 after 
run 61, “(3): START-START < C: NW” is used 17 times. In the remaining 8 runs “(1): 
START -> C” is used 4 times and start-perception twice. These numbers together 
with the upward trend of both “(3): START-START < C: NW” and “(1): START -> C” 
indicate that the model has learned the segment START-C as procedural knowledge.  

Finally, the model has also correctly learned the segment C-D as procedural 
knowledge. One can derive this from the utility of the rules “(1): C-D” and “(3): 
START-C < D: W”, which have the highest utilities at run 85. The rules “(3): START-
START < C: NW” and “(3): START-C < D: W” together form the procedural 
representation of the route START-C-D and are marked with the rectangles in 

. The gained declarative knowledge and the fact that the model has learned the two 
marked rules, indicate that the model has achieved its second goal, which is to learn a 
shorter route after having learned a different route. 

Figure 
5.13

5.3 Remarks 
In this chapter the experiments and results have been discussed. The results are as 
expected. They show that the model is able to learn a route and, when the environment 
changes, is able to adapt and learn a second route. The model is able to learn both routes 
as declarative knowledge and procedural knowledge. Also the durations of the runs 
indicate that the model is able to improve its performance, that is, it is able to decrease the 
amount of time needed to reach its goal. 
 In the next chapter the model and its results will be compared to the other models 
and Spatial-Learning theory, which both have been discussed in the Theoretical 
Background chapter. 
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6. Discussion and Conclusions 
The goal of this project is to examine which mutual benefits arise from integrating the 
research areas cognitive modelling and robotics. To accomplish that goal, an embodied 
cognitive model of route learning was developed with a number of constraints. In short, 
the constraints are: the technical limitations of the AIBO, operation in a real-world 
environment, cognitive constraints due to the ACT-R architecture (Anderson, 2005; 
Anderson et al., 2004) and the minimal control design principle (Taatgen, 2007). 
Furthermore, the model has to be a plausible model of route learning and has to be able to 
perform two tasks, which are the sub-goals of the current research. First, the model must 
be able to learn a route and second, it must be able to adapt to changes in the environment 
to learn a different route. 

The route to be learned existed of a start point and four landmarks and after a 
change in the environment two landmarks remained and a shorter route was possible. 
During an experiment the model had to learn the route and after the change had to adapt 
to learn the shorter route. This chapter will first discuss the AIBO-Route model and the 
results of the experiment with respect to the Spatial-Learning theory and existing models 
discussed in the Theoretical Background chapter. The chapter will continue with the 
discussion of the advantages of combining cognitive modelling and robotics and will 
finish with the conclusion, which summarizes the results with respect to the research 
goals. 

6.1 Discussion of the AIBO-Route model 
Through the use of ACT-R, the AIBO-Route model incorporates many cognitive aspects. 
Of these aspects, the declarative and procedural memory with respectively their activation 
and utility mechanisms are the most important. These mechanisms enable the model to 
gain declarative as well as procedural knowledge about a route. Procedural knowledge, as 
indicated by Gale et al. (1990) is one of the most important aspects of route learning, 
since, as described in the theoretical background, people who travel a route passively by, 
for example, observing a video, often lack procedural knowledge with respect to people 
who actively travel the same route in the real world. 

Also an important feature of ACT-R’s procedural memory is the production 
compilation mechanism. In the AIBO-Route model, the production compilation 
mechanism might explain the event in which people travel a route, but upon reaching 
their destination do not remember some parts of that route. It is as if they automatically, 
more or less unconsciously, made the choices needed to get to their destination. Since the 
production compilation mechanism causes declarative knowledge to be merged into 
procedural knowledge, the need to retrieve certain facts is eliminated. Because those facts 
are not retrieved, they also do not enter the buffers. However, the content of the buffers is 
often seen as the things one is aware of. If that is true, the production compilation 
mechanism prevents the model to become “aware” of certain facts. With respect to the 
task of travelling a route, those facts could be changes in direction or the order of nodes 
to visit. If these facts never enter the buffers, as is the case when only procedural memory 
is used, one would be less aware of the decisions made during travel. However, one is not 
completely unaware, because, for example, there is always visual and motor feedback of 
one’s actions. This feedback causes some facts to enter the buffers, thereby making one 
aware of those facts. 

Although the AIBO-Route model is able to explain “unconscious” travel, it lacks 
some reasoning processes at a conscious level. The routes are learned completely through 
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sub-symbolic or unconscious processes of activations and utilities. As a result, a 
relatively high number of runs is needed to forget a route and learn a new route. It is hard 
to determine a plausible number of runs, since the route used in the experiment is 
relatively easy for humans. Therefore, even if experimental data of subjects were to be 
available, that data would be hard to compare to the results of this project. However, 
more than forty runs to forget a route and learn a new route as procedural knowledge 
certainly seems too much. On the other hand, the number of runs to learn declarative 
knowledge of the route is not unreasonable. After one run the model has learned the order 
of the landmarks, which is plausible given that there are only four landmarks in the first 
route and two in the second. In addition, the relative directions are learned in about six 
runs, which might be a bit high, but spatial information is harder to learn as is explained 
in the theoretical background. Furthermore, Chown, Kaplan and Kortenkamp (p. 21 1995) 
state that first people learn the order of landmarks and after a while learn their relative 
directions. 

Since the learning speed of declarative knowledge is in the right order of 
magnitude, the procedural knowledge that uses that knowledge must be incomplete. What 
is missing is a higher reasoning level. One might have noticed by now that the model 
seems a bit unintelligent with respect to the part where it walks towards landmark A when 
it is no longer there. It keeps doing that for a large number of runs while it could have 
reasoned that it makes no sense doing so, because landmark A is simply not there. If a 
higher reasoning level would have been present a thought process like: “I am at START 
and should go to landmark A, but landmark A, I remember, is no longer there thus I 
should do something else” might have been possible. 

To further illustrate the higher reasoning level that is lacking an example is given 
below. Imagine one has travelled a route from home to work many times and one has 
complete procedural knowledge of this route and can travel it “unconsciously” as 
mentioned before. Then at some time, a new bridge is build and a much shorter route has 
become possible. As long as one consciously decides on where to go, one can reason that 
the new route via the bridge is best. However, if the one were to travel to work while not 
paying enough attention to the route, one might accidentally take the old longer route. In 
such a scenario, it is the higher reasoning level that is not used. The AIBO-Route model 
therefore is a model of the lower processes regarding route learning. For example, the 
activations of the chunks representing knowledge of the first part of the route learned in 
Phase 1 decrease after the model has learned the new route in Phase 2 (e.g., START-A in 

). The decrease in those activations, indicate that the model is slowly starting 
to forget the old route. However, although the declarative part of the model functions 
sufficiently with respect to the current research, it lacks metric knowledge or another 
indication of distance/effort that is necessary for the higher reasoning level. 

Figure 5.10

The fact that the model needs many runs before it has learned to travel the new 
route is a perfect example of bounded rationality (Simon, 1957): within the limitations of 
the model a near optimal solution is found. The model is limited or “bounded”, because it 
lacks the higher reasoning level and therefore needs relatively many runs to find a near 
optimal solution. Also, the fact that the model repeats previous learned behaviour, even 
though the setup of the environment has changed such that a different more efficient 
behaviour is possible, is a good example of the Einstellung effect (Luchins & Luchins, 
1959) mentioned in the Introduction chapter. 

In the introduction, it was also stated that because of the Einstellung effect a 
second similar task, such as a second route, could be solved quicker because of 
knowledge gained in the first task. Unfortunately, the results do not immediately show 
that possibility. However, the model needs a lot of time to forget the first route and learn 
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the second route because it lacks the higher reasoning level. If that level had been present 
and if the route was longer, a positive effect of the Einstellung effect might have been 
present. As a result of the longer route, there would have been a bigger overlap between 
the first and second route. The model could then have used its knowledge from the latter 
part of the first route to travel a part of the second route. If this knowledge included the 
relative directions of landmarks part of the second route, the model could start walking 
towards those landmarks without first searching for them. As a result, the model would be 
faster than it would be without that knowledge. Therefore, the knowledge acquired when 
travelling the first route could be beneficial when travelling the second route. 

A longer route does create a situation in which the Einstellung effect could be 
beneficial, but also creates a problem. In the AIBO-Route model only the last two 
landmarks visited are remembered, which is sufficient for a setup with four landmarks. 
However given a different setup with more landmarks, where also more landmarks might 
be visible at once, a different strategy is needed to keep track of the visited landmarks. 
The current solution, to keep the two last visited landmarks in two slots of the goal chunk 
is not a plausible solution. How exactly people keep track of where they have been, 
remains an open question, but one that could be examined to improve the AIBO-Route 
model. 

What representation should be used to keep track of visited locations is one of 
many problems of representation. Closely related is, for example, how one knows one has 
turned around to search behind oneself. Another example is how the segmentation 
process should be represented. Although the model uses route-element chunks to 
represent the smallest possible segment of a route, it is known (e.g. Lynch, 1960) that 
people also group those segments to summarize larger parts of a route. The AIBO-Route 
model does not provide that possibility, but it might be possible by using a different 
chunk-type that does not represent a direct path between two nodes. A similar 
representation as used in NAPS (Levenick, 1991), which is part of the PLAN model 
(Chown et al., 1995), could be used to facilitate the segmentation process. How exactly, is 
explained in the Future Work chapter. 

The segmentation process is also present when it comes to metric knowledge. 
However, the relpos chunk in the AIBO-Route model only provides directional 
information and no information about distance. The model therefore has only a 
rudimentary understanding of metric relations. To include plausible metric knowledge, 
not only the AIBO-Route model would have to be expanded, but also the AIBO-R 
architecture, because, currently, it cannot provide any additional metric information 
besides directional information. To expand the AIBO-Route model, again, inspiration 
from the PLAN model might be used, as PLAN’s (Chown et al., 1995) R-NET provides a 
theory on how metric knowledge could be represented. PLAN, however, is not very 
specific about how that metric knowledge is acquired. To that end, the approach used in 
TOUR (Kuipers, 1977, 1978) might be useful, also because the representations used in 
TOUR closely resemble those used in ACT-R. Besides PLAN and TOUR, Qualnav 
(Kuipers & Levitt, 1988) also has interesting theories on the representation and 
acquisition of metric and topological knowledge that could be used as inspiration to 
expand the AIBO-Route model. However, as just mentioned, the AIBO-R architecture 
would first have to be expanded such that it can provide additional metric knowledge, 
before the AIBO-Route model could be modified to fully reason with metric knowledge. 

Although, the AIBO-Route model is lacking many aspects of metric knowledge, 
the local directional information represented by the relpos chunks is sufficient to help 
improve the performance of the model. Currently the relpos chunk can contain eight 
possible directions, since these directions were also used in PLAN, but how relative 
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directions between objects are represented exactly, remains an open question. For the 
current model, the limited eight directions work, because after the model starts moving in 
the direction of an object, it also starts searching for it. As a result, the model can find the 
object and use visual information to guide itself towards the object. Since the model 
moves in segments, the direction can only be corrected at the beginning of each segment, 
which results in behaviour where the model makes corrections that become smaller as the 
model approaches the object. This trend of smaller corrections closely resembles Fitt’s 
law (Fitt, 1954) and provides robust behaviour, because an initial direction does not have 
to be very accurate. In short, the relpos chunk representation does not have to be very 
accurate, which is a step towards navigating in more dynamic environments, while it also 
helps to improve the model’s performance. 
 Another analogy between the model and Fitt’s law can be found when looking at 
the utility levels of the production rules.  and  show that the utilities 
of productions rules are higher, if those production rules are used when the AIBO is 
closer to the goal. For example, in , the utility of the rule “(3) A-B < C: W”, 
which is used at landmark B, is lower than “(3) B-C < D: NW”, which is used at 
landmark C. As a result, it is more likely that a general rule from the first or second 
strategy fires when the model is at landmark B than when it is at landmark C. Since the 
general rules are more prone to errors than the through production compilation learned 
rules, the model is less likely to make mistakes as it approaches the goal. It is interesting 
to examine whether this is true for humans as well. 

Figure 5.8

Figure 5.8

Figure 5.13

 
As mentioned before in the previous chapters, there are three production rules that 
compile. The first rule requests a chunk that holds the next object given the previous and 
current location, the second rule requests an direction given the next object, and the third 
rule moves in that direction if a direction was retrieved. These three rules are the most 
important rules of the model as through these rules the model makes it primary decisions. 
The sequence of the three rules can be seen as one of the variations proposed by Kuipers 
(1983) and was represented as (1) V  V’ and (2) (V V’)  A in the theoretical 
background. V is the current view, which in the AIBO-Route model is represented by the 
previous and current location, V’ is the next view and is represented by the next object, 
and A is the action, which belongs to the combination of the two views and is represented 
by moving in a certain direction.  

It is interesting to note, that the AIBO-Route model could be modified to fit 
another variation: (1) V  A and (2) (V A)  V’. After the modification, the first rule 
would request a direction given the previous and current location, the second rule would 
start moving towards that direction (if retrieved) and try to retrieve the next object given 
that direction, and the third rule would start searching for the next object if it was 
retrieved. Kuipers (1983) predicted that when the first representation was used, one 
would be able to recall the sequence of landmarks encountered during a specific route, 
but not always which actions are needed to get from one landmark to the next. This 
prediction is confirmed by the results of the experiment of the current research, as the 
activations of the route-element chunks are higher than those of the relpos chunks. 
Also, the first few runs of the model show that often the model is able to recall a route-
element chunk, but not a relpos chunk. It would be interesting to see if Kuipers’ 
predictions about the latter representation also hold. 
 Although the utilities of the three production rules and compiled versions of these 
rules are discussed in detail in the previous chapter, most of the utilities of the non-
compiled production rules are left out of the results as they have no effect on the 
behaviour of the model. They have no effect, because they are not in competition with 

 



Discussion and Conclusions  99 

any other rule, since, in accordance with the minimal control principle, each rule matches 
a specific set of conditions. The rules might have had competition if new rules would 
have been created through the production compilation process, but since the 
robomotorical and roboperceptual modules inherit the product compilation rules from the 
motorical and visual modules, respectively, there are very few situations where rules 
using one or both of the robo-modules can compile. Whether the inheritance of product 
compilation rules by the robo-modules is correct or whether different rules apply, is open 
to debate. 
 Besides the compilation rules, also the production compilation process itself might 
be debated. As mentioned in the previous two chapters similar production rules might be 
created in different ways. For example, when there are three rules, A, B and C, the first 
two and the latter two might compile to respectively AB and BC. Next, the new rule AB 
can compile with C and the new rule BC can compile with A, both resulting in AC. In 
ACT-R, as shown in the Experiment and Results chapter, this would lead to two identical 
rules with their own utilities. However, they represent the same knowledge and therefore 
it might be possible that they must be fused into one production rule with one utility 
value. Since learning and forgetting with two identical production rules instead of just 
one would lead to different results, an experiment could be conducted to examine whether 
two identical production rules should be fused or not. 
 A general problem of ACT-R, closely related to the production compilation 
mechanism, is how one gains procedural knowledge in the first place. Through the 
defined production rules, a model is able to create new procedural knowledge, but the 
initial production rules have to be defined manually. Whereas declarative knowledge can 
be gained through visual and auditive perception of the environment in combination with 
reasoning processes, the acquisition of procedural memory (i.e., production rules) is still 
missing in ACT-R. Perhaps all procedural knowledge can be derived from some basic 
rules already present at the moment of birth, just like, for example, many laws in physics 
can be derived from a limited set of basic formulas (i.e., Grand Unification Theory). 
 Before the advantages and disadvantages of combining cognitive modelling and 
robotics are discussed, one final subject regarding the model itself will be discussed. As 
has been mentioned several times in the previous chapters, the visual perception, and 
object classification in particular, is simplified in the AIBO-Route model.  Currently 
those processes are treated as a black box and, of course, a complete model should 
contain those processes as well. However, as already explained in the Theoretical 
Background chapter, the perception component is very hard to model. The human brain 
performs exceptionally well when it comes to visual perception, which has been studied 
for many years by researchers from several research areas. One component of perception 
is particularly hard to model, which is the top down influence. It is well known that the 
mental image created in one’s brain is very different from what one’s eyes perceive. 
Besides that, the bottom up mechanisms that process several features like edges, 
movement and colour are computationally demanding. The combination of the 
complexity of visual processing and high computational demand make it hard to 
implement many aspects, let alone all aspects, of visual perception. Therefore, it is hard 
to create a complete model of route learning. Thus, for future embodied cognitive models 
it is a challenge to also include the perception and object classification processes. 

6.2 Advantages of combining Cognitive Modelling and Robotics 
Above, the AIBO-Route model and AIBO-R architecture have been discussed with 
respect to the Spatial-Learning theory and existing models. Next, the advantages and 
disadvantages of combining cognitive modelling with robotics will be discussed. 
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 One of the advantages of combining a cognitive model with a robot is the 
perception problem. This probably sounds contradictory, but implementing a cognitive 
model on a robot forces one to deal with problems that might not have presented 
themselves at all when creating conventional models. Therefore, implementing a 
cognitive model on a robot leads to more complete and plausible models. For example, 
many of the simulated navigational models discussed simply ignore the perception and 
object classification problems, something which is impossible when implementing such a 
model on a robot. Admittedly, in the AIBO-Route model the perception and object 
classification are simplified, but at least they are included in the model. Embodied 
cognitive modelling therefore forces one to take aspects into consideration, which 
otherwise might have been missed.  
 Another example of an aspect that might have been missed in conventional 
cognitive models is the fact that the AIBO turns around when no interesting object is 
perceived in front of it. Qualnav, for example, uses a 360 degree view which makes 
turning unnecessary. However, the turn included in the AIBO-Route model has proven to 
be an important aspect, because turning around takes relatively long, thereby influencing 
the utility learning process. For example, when the AIBO has learned the direction of an 
object that lies behind it at a certain point, the behaviour of first searching in front and 
then turning around are replaced trough utility learning and production compilation by the 
behaviour of immediately turning towards the object. Since first searching in front of the 
AIBO and turning around are time consuming processes, the learned behaviour of 
immediately turning towards the object, has a large advantage with respect to the old 
behaviour. Because of the large advantage (i.e., faster solution), the production rules that 
represent the behaviour of immediately turning around, gain a higher utility than the 
production rules representing the old behaviour. However, if the model would have had a 
360 degree view, the advantage would not have been that large and therefore might have 
prevented the use of new production rules. The turn behaviour therefore is important for 
the learning of new production rules. 

The time consuming process of turning around also helps to forget the behaviour of 
moving from START to A in Phase 2. In the first few runs of Phase 2, the AIBO moves 
to the location of where landmark A was in Phase 1. After having moved, the AIBO has 
to turn around to find landmark C. Since turning around is time consuming, the utilities of 
the production rules that cause the AIBO to move into the wrong direction, decrease. 
Because of the decrease in the utilities of those production rules, other production rules, 
for example start-perception and start-route-element-retrieval, have a higher chance of 
being selected. This example demonstrates again that the behaviour of turning around 
influences the learning process. Since the turning around behaviour is important and 
might have been absent in a conventional model, implementing a cognitive model on a 
robot has proven to be beneficial. 

Another advantage of implementing a cognitive model on a robot is the fact that the 
durations of certain behaviours and the variations in those durations due to noise do not 
have to be simulated. For example, in the real world slight variations in friction during 
movement and lightning conditions are always present. The presence of these variations 
is important, because they might influence the development of a model. For example, 
lightning conditions might cause misperceptions or a certain path might be faster because 
a robot has more grip. In the experiment of this project, misperceptions were present, for 
example, the model mistakenly perceived something as the yellow landmark. Despite the 
misperception the model was able to complete it task and satisfy the goals of the current 
project. Since, the mentioned variations are not present when testing conventional 
models, it is unknown whether they would have been able to cope with them. Therefore, 
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if a cognitive model implemented on a robot is able to perform a task in the real world, 
the model is more likely to be a correct representation of the cognitive processes 
belonging to that task. As a result, data generated by embodied cognitive models is more 
reliable than data generated by conventional models. 

In short, it is important to include all possible aspects of a task, since they all might 
have an influence on the development of a model. Since, implementing a cognitive model 
on a robot helps to find those aspects, embodied cognitive models are likely to be more 
complete than conventional cognitive models. Also, embodied cognitive models 
implement all three levels proposed by Marr (1982). Of course, it is harder to build an 
embodied cognitive model, but, just as in the AIBO-Route model, some components 
could be simplified for pragmatic reasons and in future work be replaced by more 
detailed components. 

 
So far only benefits for using robots in the area of cognitive modelling have been 

discussed, but robotics can profit from the area of cognitive modelling as well. Several 
advantages of using cognitive modelling in the specific area of human robot interaction 
have already been mentioned in the introduction and were examined by Trafton et al. 
(2006). However, there are more advantages when using cognitive modelling in the area 
of robotics, especially when using a cognitive architecture such as ACT-R. 

One of the advantages of using a cognitive architecture to control a robot is that the 
learning mechanisms of the architecture can be used. In the area of robotics several 
learning algorithms have been used, like, for example, Bayesian learning and neural 
networks. However, these are usually designed for a specific task and have to be created 
from scratch, while, if using a cognitive architecture, one would get a learning 
mechanism for free. In case of the AIBO-Route model, the learning mechanism was used 
to learn a route and adapt to a different route. Closely related to such an advantage are the 
unified representations used in cognitive architectures. By using similar representations 
for information from different sources (e.g., vision, sound and memory), this information 
can be compared more easily than when each source has its own representation. For 
example, in the AIBO-Route model information from an observation chunk is 
compared with that from a route-element chunk. In addition, the logical rules, which 
are common in cognitive architectures, can reason with information from any source, 
since all information is represented using a similar representation. In short, a cognitive 
architecture provides unified representations and learning mechanisms that are able to 
work with those representations. 

Besides the general ability to learn, the learning mechanism and unified 
representation also makes it possible to reuse knowledge gained during a certain task in 
another similar task. Unfortunately, as explained before, this advantage was not 
demonstrated by the AIBO-Route model. However, as also explained, the AIBO-Route 
model could have demonstrated the advantage if the route had been longer. Fortunately, 
the AIBO-Route model did show the ability to solve two similar tasks using the same 
unmodified model, which is also an advantage of using a cognitive model to control a 
robot. 

Another advantage of the use of cognitive models in the area of robotics is that 
existing models could be used as inspiration. If a robot is to perform a task of which such 
a model exists, that model could be used as a basis for the model that is to control the 
robot. As a result, many problems that accompany a certain task have already been 
solved, and, as a bonus, the cognitive model is expanded to work in the real world, which 
could provide new insights into human cognition with respect to the task modelled. 
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Using a cognitive model (a cognitive architecture in particular) as inspiration also 
creates the possibility of combining models of different tasks into one model. Since 
cognitive models, using the same architecture, have the components of the architecture 
itself in common, they can be combined more easily than two random conventional 
algorithms used in robotics. Such cognitive models share the same unified representation 
for declarative and procedural memory, which is especially interesting when combining 
two closely related tasks. For example, it would be interesting to see how declarative and 
procedural knowledge from both tasks merge and complement each other. However, most 
importantly, a robot which is able to perform two tasks using a single architecture is an 
important step towards human cognition, since humans are able to perform all tasks using 
the same architecture. 
 Another thing humans are capable of is using top-down knowledge in perception 
and classification. Most of the time this happens unconsciously, but sometimes when 
perception conditions are poor humans use top-down knowledge more consciously. For 
example, when observing three lights in the distance, one might reason that one’s house is 
where the middle light is, although one cannot see the house. An example of using top-
down knowledge in normal perception conditions is when there are several identical 
drinking glasses on the table and one knows which glass is his or hers because of the 
location of the glass on the table. When using a cognitive model to control a robot, it 
might be possible to take advantage of such top-down reasoning processes. In the current 
research an experiment was attempted to show that advantage, but unfortunately the 
AIBO-Route model lacked sufficient high level reasoning skills. 
 The idea behind the experiment was to use four landmarks of which two 
landmarks would have similar colours. Trough calibration, one of the landmarks could be 
perceived as either of the two landmarks and therefore would be ambiguous. In the first 
few runs the AIBO-Route model should perceive the ambiguous landmark as either of the 
two. If the model classifies the ambiguous landmark as the other, the model is stuck, 
because it should not go somewhere it has already been. At this point, it is important to 
remember that at most one landmark is visible at each node. However, if the ambiguous 
landmark was correctly classified, there would be no problem. As a result of the 
activation, utility and production compilation mechanisms the model should learn to 
search for an object that matches the correct classification of the ambiguous landmark, 
thereby eliminating the perception problem of that landmark. 

Unfortunately, as mentioned, this experiment failed because higher reasoning skills 
are lacking. The AIBO-Route model continuously processes the camera image and 
therefore classifies an object not only once, but each time it requests an observation 
chunk. As a result, the ambiguous object is classified many times in a short time interval. 
Among those classifications both possible classifications of the ambiguous landmark are 
always present. Thus the scenario in which the ambiguous object is correctly classified 
and the AIBO moves on has a very low probability. That would happen only if each 
observation request would lead to the correct classification, which in practice is almost 
impossible. Therefore, for the experiment to work, the AIBO-Route model should, for 
example, be able to reason that the object just perceived could not suddenly be another 
object. Another possibility is that the model reasons that the next object cannot be the 
same as the one just perceived, because its location is different (and the object cannot 
move). One might think the experiment would have been possible using a different order 
of the landmarks, but all possible orders, using four landmarks positioned as in the 
original experiment during Phase 1, resulted in failure. Either the model would be lost, 
since there was no landmark to go to, or it would be stuck in an infinite loop, because the 
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model could repeatedly travel between two landmarks if one of those two landmarks 
could be perceived as two possibilities5. 

Although a second experiment demonstrating the advantage of using top-down 
knowledge failed, it is still plausible that such an advantage is possible using a cognitive 
model to control a robot. However, such a model would have to include the higher 
reasoning processes (i.e., procedural knowledge) required to use that top-down 
knowledge. In future work the AIBO-Route model could be modified to include those 
reasoning processes and hopefully would then be able to demonstrate the advantage of the 
usage of top-down knowledge in perception. 

6.3 Conclusions 
The primary goal of the current research is to explore what insights can be gained by 
combining cognitive modelling and robotics. Above, these insights have been discussed 
and it is certain that cognitive modelling and robotics can benefit from each other. It is, 
however, not an easy task to utilize the advantages, as can be read in the previous two 
sections and section 3.5 in which the interface between AIBO and ACT-R was discussed. 
It is also difficult to include all aspects of a task such that an advantage is utilized, but 
working towards that goal does help to build more complete cognitive models. On the 
other hand, controlling a robot with a cognitive model is also a challenge, because one 
has to deal with many more constraints. However, again, the advantages are worth the 
effort, because robots controlled by cognitive models inherit the learning capabilities 
provided by a cognitive architecture. Furthermore, a robot controlled by a cognitive 
model resembles a human more closely than a conventional robot algorithm and therefore 
is a step closer towards explaining and applying human intelligence. 
 
Besides the primary goal there are two sub-goals which are: 
  

1. Given a setup of several landmarks the AIBO-Route model should be able to learn 
a route to a predefined goal. 

2. When having learned such a route and the environment changes in such a way that 
a shorter route is possible, AIBO-Route should be able to learn the new shorter 
route. 

 
Regarding the first sub-goal, the results of Phase 1 clearly indicate that the AIBO-Route 
model is able to learn a route. This is supported by the acquired declarative knowledge as 
well as the acquired procedural knowledge. In addition, the decrease in time necessary to 
complete a run demonstrates an improvement in performance, which is also a clear 
indication of learning. 
 Just as the results of Phase 1 satisfy the first sub-goal, the results of Phase 2 
satisfy the second sub-goal. In Phase 1 the model has learned a route, which in the first 
half of Phase 2 was de-learned and in the second half of Phase 2 the model successfully 
learned the new shorter route. It is important to note however, that forgetting the first 
route took relatively long, because higher reasoning levels were lacking in the AIBO-
Route model. The AIBO-Route model must therefore be seen as a model of the lower 
cognitive processes involved with route learning.  
                                                 
5 Imagine a landmark X, which can be classified as A or B and a second landmark Y, which is classified as 
C. The AIBO-Route model remembers only the last two landmarks visited, therefore the next orders are 
possible: in the case of X-Y: (A-C-B)-(A-C-B)-etc or (B-C-A)-(B-C-A)-etc and in the case of Y-X: (C-B-
A)-(C-B-A)-etc or (C-A-B)-(C-A-B)-etc. As a result the model is stuck in such loops. Using similar 
analyses it can be proven that all orders of the four landmarks lead to failure. 
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Furthermore, it is important to note that although existing models implement some 
aspects of route learning in more detail and some existing models have aspects which the 
AIBO-Route model lacks, the AIBO-Route is a model that contains aspects from the 
lowest to the highest level. In contrast, most of the existing models have focussed on only 
one or two aspects of spatial cognition. For example, mobile robot models primarily focus 
on perception and functionality and simulated models focus on higher reasoning 
processes, whereas AIBO-Route combines aspects from all levels into one functional, 
plausible model of route learning. 

In short, combining a cognitive model and a robot is a challenging task, because 
there is a strong connection between higher and lower levels of cognition. Also, if there is 
one thing the current project has shown, it is that cognitive models are a long way from 
moving around in the real world as humans do. However, there is no reason to become 
pessimistic, as it certainly seems possible. A lot of future research has to be done, but it is 
certain that the work of combining cognitive models and robotics will be very rewarding. 
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7. Future Work 
It is mentioned several times throughout this document that a more detailed model of 
object classification could be added to the AIBO-Route model. Besides that, there are a 
few more possible additions and experiments, which will be discussed in this chapter. 
This chapter does not describe in full detail what the additions and expansions should 
look like, but it gives a global overview of work that that could be done in the future to 
improve the AIBO model and AIBO-R architecture. Next, the detailed object 
classification will be discussed. 
 Currently, the model classifies any object as a waypoint object and the only 
property such an object has, is its colour. This classification is done by the roboperceptual 
module after a request through the robovisual buffer. At that point there is some simple 
function that returns an object chunk, which is always of class “waypoint”. However, 
that code could be replaced by a different function, which performs a more complex 
object recognition process. To create such a function, inspiration from the area of 
computer vision could be used. The function could then, just as the current function 
return an object chunk with multiple properties like, for example, the number of legs, 
colour and height. With the addition of a more complex object classification system, the 
model could, for example, distinguish a red chair from a red table, which is currently 
impossible, but obviously necessary for a complete model of route learning. 
 A more complex object classification system provides more possibilities and 
thereby creates a new problem. In the current model any object is a waypoint, and thus a 
possible navigation point. However, if an object is not immediately classified as a 
waypoint, the model does not know whether it is a navigation point belonging to the route 
or not. Therefore, after an object has been classified it should be matched against 
declarative memory to determine whether it is an object on the route or not. If it is, the 
model could move towards it, and if it is not, the model could continue searching. 

The object classification system could also implement an algorithm to determine 
an object’s saliency. In ACT-R the activation of a chunk only depends on the previous 
encounters and association with other chunks, but saliency could have an effect too. For 
example, very striking objects might be easier remembered than ordinary objects. 
Recently a theory, referred to as RACE (Van Maanen & Van Rijn, in press), has been 
developed to model what happens between a retrieval request and the actual retrieval. 
Saliency could be incorporated into an implementation of that theory such that striking 
objects are easier remembered than ordinary objects. Of course, striking objects might 
also be easier remembered, because one divides more attention to those objects. Whether 
striking objects are easier remembered because of their saliency, or whether they are 
easier remembered because of the attention they receive, must therefore be examined 
first. 

Although it is uncertain if saliency directly influences the remembering of an 
object, it is certain that saliency, among other things, determines which objects are 
attended. A detailed description of how saliency influences the selection of objects can be 
found in the work of Gopal et al. (1989). In contrast to choosing an object at random, 
adding a mechanism to select objects based on their saliency might make it possible to 
create a model that handles multiple visible objects in a plausible way. As a result, the 
environment would be searched in a more natural way. However, adding a mechanism 
that takes saliency into account is not sufficient. The AIBO-Route model searches the 
environment from right to left and back, but that is not how humans search an 
environment. A future modified version of the AIBO-Route model should therefore 
include several different searching mechanisms. 
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Another, but completely different, addition that would make the AIBO-Route 
model more complete is the addition of a segmentation mechanism. AIBO-Route can 
only learn the lowest possible segments of a route, that is, two landmarks, which are 
directly linked. To make a fully segmented hierarchical representation of a route possible, 
chunks of a different chunk-type than route-element could be added. The route-
element chunk would only be used to determine if it is possible to directly move from 
one point to another and the new chunk-type could be used to represent nodes that are 
connected through several route-element chunks. The example below illustrates how 
these new chunks could be created. 
 Imagine the model first learns a route as declarative knowledge through relpos 
and route-element chunks. However as the model travels the route more often, it gains 
procedural knowledge about the route. As a result, some declarative knowledge has 
become obsolete. The model can now travel parts of the route using procedural 
knowledge. However, at some point procedural knowledge may still be lacking and the 
model would need declarative knowledge. The nodes at the beginning and end of the part 
travelled using procedural knowledge could be stored in a chunk of the new chunk-type. 
The nodes are not directly connected, but it is known that there exists a route between 
them. As the model gains more procedural knowledge through production compilation, 
the nodes that are stored in the new chunk will be further apart. The chunks containing 
such nodes are therefore a summary of parts of the route and together form a hierarchical 
topological representation of the route. 
 To reason with those segmentation chunks the model would need additional 
procedural knowledge, which represents a higher reasoning level. At that level the model 
should also be able to reason with distance such that shortcuts and new paths can be 
found. However, in order to gain information about distance, as mentioned before, the 
AIBO-R architecture would have to be expanded, because now it can only provide 
directional information to the AIBO-Route model. 
 Finding shortcuts and different paths through reasoning, creates scenarios in 
which the model travels much larger distances. However, as of now, the model is only 
able to function in the robot lab. Therefore before any higher level reasoning processes 
can be fully utilized, the AIBO-Route model should be able to function outdoors. For the 
AIBO-Route model to be able to function outside, many more expansions are needed, 
like, for example, object avoidance, a robot with better movement capabilities and a 
better localization algorithm. Thus, a complete embodied cognitive model of route 
learning would need a better link between low level (perception, movement and 
localization) and high level (reasoning about distances, objects, shortcuts, etc.) processes. 
 Eventually, after many of the additions and expansions have been added to the 
AIBO-Route model and AIBO-R architecture, several interesting experiments could be 
conducted. For example, in the theoretical background it was discussed that humans first 
use global landmarks to navigate and later, when they are more familiar with the 
environment, rely more on local landmarks. It would be interesting to see if, for example, 
the saliency mechanism in combination with different search processes would also show 
such behaviour. Finally, an ultimate experiment would be an experiment where the model 
learns a route and through those routes forms some kind of mental map. The information 
gained, could then be used to draw maps, which in turn could be compared to maps 
drawn by humans that have also learned those routes. Such experiments will probably be 
near to impossible for some time, but it is interesting to work towards such a goal. 
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