
Finding 

the Minimal Distance of

Cyclic Self-Dual Codes

Bachelor's thesis, Mathematics

March 2009

Student: E.J.H. Brandenburg

Supervisor: Prof.dr. J. Top



Contents

1 Minimal Distance 4

2 Cyclic Codes 4

3 Self-Dual Codes 6

4 CSD-Codes 7
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Trivial CSD’s . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Factorizing xn − 1 . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Non-Trivial CSD’s . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Algorithm 11
5.1 Equivalent Codes . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Product Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Results 15

7 Conclusion 18



Introduction

When advocating mathematics, one of the best subjects to discuss is its
importance to securing data-transmission, especially when this concerns fi-
nancial issues on the internet: not only do third parties need to be disabled
from reading the data (for which RSA can be used) also does the data need
to arrive as it was sent.
The latter can be done by enforcing certain restrictions on the admissible
data, which will enable the receiver to detect errors and possibly correct
them.
For exampel, few people will have problems reading this sentense, although
it contains errors.

Two interesting vocabularies (or codes in mathematical terms) are the so-
called Cyclic and Self-Dual ones. Their intriguing properties have been in-
vestigated extensively throughout the years; however, research on their com-
bination is rather scarce. Nonetheless, an interesting result is a list of 2003
by Carmen-Simona Nedeloaia containing the minimal distances of all binary
Cyclic Self-Dual (hence CSD for convenience) codes up to lengths of 120
digits.[2]

These minimal distances are important, because they give us information
about the possibility that corrupted data can be restored. For this reason
the aim of the thesis will be to improve this list and also to make an attempt
to discover the properties of the best CSD’s.
The first chapter will introduce the minimal distance and is followed by
3 chapters with basic theory concerning Cyclic, Self-Dual and CSD codes.
Chapter 5 deals with the algorithms for finding minimal distances of CSD’s
and the next chapter contains the results of the research.

3



1 Minimal Distance

Definition 1.1. C is called a code if it is a linear subspace of Fn
q .

Example: {(0, 0, 0), (1, 0, 1)} ⊆ F3
2 is a code, while {(0, 0), (1, 0, 1)} (6⊆ Fn

2

for any n) and {(1, 0, 1)} (not linear) are not.
Note: since this thesis will restrict itself to binary codes, I will simply write
F for F2.

Definition 1.2. The weight of a word x is the number of non-zero dig-
its.

Example: wt(0, 0, 0) = 0 wt(0, 1, 0) = 1 wt(1, 0, 1) = 2 wt(1, 1, 1) = 3

Definition 1.3. The minimal distance of C is d(C) = min{wt(u − v) :
u, v ∈ C, u 6= v}.

Since we work with linear subspaces, we have u, v ∈ C ⇒ u− v ∈ C. There-
fore we can rewrite the definition to d(C) = min{wt(u) : u ∈ C, u 6= 0}.

Example: If C = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)}, then using the previ-
ous example, we find d(C) = 1.
Use this example to verify that the two definitions indeed give the same min-
imal distance for C.

When one reads a word that is ‘not correct’, i.e. not in C, one notices
an ‘error’ and automatically replaces it by a ‘correct’ word that ‘looks most
like it’.
The minimal distance gives us an indication how many digits may go wrong,
before the corrupted word will start to look more like another word. For
example: consider C = {(0, 0, 0), (1, 1, 1)}, d(C) = 3. If we receive (1, 0, 0),
then we notice an error and replace it by (0, 0, 0), because that ‘looks most
like it’.
We should try to get the minimal distance as large as possible, without mak-
ing our words to long.

2 Cyclic Codes

Definition 2.1. C is called cyclic if (u1, u2, . . . , un−1, un) ∈ C implements
(un, u1, u2, . . . , un−1) ∈ C.

4



Cyclic codes have a nice property, which is that a single word can already
generate an entire code. For example: if C is a cyclic code generated by
(1, 0, 1, 0), then C also contains (0, 1, 0, 1) because of the cyclic shift and
(0, 0, 0, 0), (1, 1, 1, 1) because of the linearity.
But there is more, because the cyclic shift has striking similarities with mul-
tiplying by x on a polynomial field. Compare for example (0, 0, 1) → (1, 0, 0)
and (0 + 0 · x + x2) mod (x3 − 1) → x3 mod (x3 − 1) = (1 + 0 · x + 0 ·
x2) mod (x3 − 1). This similarity will bring us to the following theorem:

Theorem 2.2. Under the isomorphism ϕ(u1, u2, . . . , un) = u1 + u2x +
. . . + unx

n−1, the cyclic shift σ on Fn corresponds to multiplication by x
on F[x]/(xn − 1).

Proof:
ϕ(σ(u1, u2, . . . , un−1, un))
= ϕ[(un, u1, u2, . . . , un−1)]
= un + u1x + u2x

2 + . . . + un−1x
n−1

= (u1x + u2x
2 + . . . + un−1x

n−1 + unxn) mod (xn − 1)
= x(u1 + u2x + . . . + un−1x

n−2 + unxn−1) mod (xn − 1)
= xϕ[(u1u2 . . . un−1un)] mod (xn − 1)
QED

Using this isomorphism, it is easy to see that ϕ(C) (and therefore C) is
an ideal, because since both multiplication and adding are defined, we have
f, g ∈ ϕ(C) ⇒ gcd(f, g) ∈ ϕ(C). In other words: while we already stated
that a cyclic code can be generated by a single word, we can even state that
every cyclic code is generated by a single word.

Because the nice arithmetical properties of the polynomial field, the rest
of the text will treat codes as subsets of F[x]/(xn− 1), where n is the length
of the words. For this reason I shall introduce another notation:

Definition 2.3. Let f be a polynomial, then Cf is the cyclic code (f ·
F[x])/(xn − 1).

Lemma 2.4. f |(xn − 1) ⇒ dim Cf = n− deg(f).

Proof: Since ∀g ∈ F[x] : gf ∈ Cf and ∃f⊥ : f ·f⊥ = xn−1 = 0 mod (xn−1),
we have Cf

∼= F [x]/f⊥.
Because f⊥ = xn−1

f
⇒ deg(f⊥) = deg(xn − 1) − deg(f) = n − deg(f), this

5



results in dim Cf = dim(F [x]/f⊥) = deg(f⊥) = n− deg(f).
QED

3 Self-Dual Codes

Definition 3.1. If C is a code, then its dual is defined as C⊥ = {u : <
u, v >= 0 ∀v ∈ C}.

From linear algebra we already know that dim C⊥
f = n − dim Cf , but we

can say more about dual codes by investigating the inner product.
Given f = α0 +α1x+ ...+αn−1x

n−1 and g = β0 +β1x+ ...βn−1x
n−1 the inner

product results in < f, g >= Σn−1
j=0 αjβj.

Compare this to the product in F[x]/(xn − 1), which is given as (f · g) mod
(xn − 1) = Σn−1

i,j=0αj mod nβ(i−j) mod nxi.
The inner product makes both αj and βj go up, keeping the difference of
their indices constant, while the other product makes βi−j go down, keeping
the sum of the indices constant.
For this reason I will introduce the following definition:

Definition 3.2. If f = α0 + α1x + ... + αmxm, αm 6= 0, then define its
reciprocal by f ∗ = α0x

m + α1x
m−1 + ... + αm = xdeg(f)f( 1

x
).

Now one can see that (f · g) mod (xn − 1) = Σn−1
i=0 < f, xi−deg(g)g∗ > xi,

which will lead us to the following theorem:

Theorem 3.3. g = xn−1
f

⇔ C⊥
f = Cg∗ .

Proof: Define f̃ as the generator of C⊥
f . This means < uf, vf̃ ∗ >= 0 ∀u, v ∈

F[x], because uf · vf ∗ = 0 ∀u, v ∈ F[x]. Using linearity of the inner product
and < xaf, xbf̃ >=< xa−1f, xb−1f̃ >, this can be reduced to < f, xbf̃ >=
0 ∀b ∈ Z.
Since Σn−1

i=0 < f, xi−deg(f̃∗)f̃ > xi = (f · f̃ ∗) mod (xn − 1), we need every co-
efficient of (f · f̃ ∗) mod (xn − 1) to be equal to 0, which happens then and
only then if (xn − 1)|(f · f̃ ∗) ⇒ g|f̃ ∗.
Thus we can say C⊥

f = Cf̃ ⊆ Cg∗ .

Because dim C⊥
f = n−dim Cf = n−(n−deg(f)) = n−deg(g) = n−deg(g∗) =

dim(Cg∗), we have Cg∗ = C⊥
f .

QED

The importance of this theorem will become clear in the next chapter, when

6



we will create CSD’s. First, however, it is necessary to discuss the meaning
of self-dual.

Definition 3.4. C is self-dual if C = C⊥.

Proposition 3.5. If C is a self-dual code, then:

1. 2|n(C)

2. 2|d(C)

Proof:
1) dim C⊥ = n− dim C ⇒ n = dim C + dim C⊥ = 2 · dim C.
2) If u ∈ C, then < u, v >= 0 ∀v ∈ C, especially < u, u >= 0. Since
wt(u) mod 2 =< u, u >, this means that 2|wt(u). Because u is arbitrary, we
have 2|wt(v) ∀v ∈ C, therefore 2|[d(C) = min{wt(v) : v ∈ C}].
QED

4 CSD-Codes

4.1 Introduction

Definition 4.1.1. C is called cyclic self-dual (CSD) if it is both cyclic and
self-dual.

Using what we found in the previous chapter, we can already tell a lot about
the way CSD’s look like: Cf = C⊥

f ⇒ f ∗ = xn−1
f

. So if f is the generator of
a CSD, then f · f ∗ = xn − 1.
Also we have 2|n and 2|d(C).
So just by using the previous chapters, we can already tell 3 things about
CSD’s:

• Cf is a CSD then and only then if f · f ∗ = xn − 1 (in F2).

• If Cf is a CSD, then 2|n.

• If Cf is a CSD, then 2|d(C).

Now let’s have a closer look.

7



4.2 Trivial CSD’s

We have stated that if n is odd, then we don’t have a CSD. But can we also
say the opposite: if n is even, then does a CSD exist? The answer is “yes”.
In fact it is the code when not only Cf = C⊥

f , but also f = f ∗, which is the

code generated by f =
√

xn − 1 = x
1
2
n + 1.

This code is called a repetition code and has a very easy construction: all
words can be written as g · (x 1

2
n−1), where g ∈ F[x]/ xn−1

x
1
2 n−1

= F[x]/(x
1
2
n−1).

Note that this means deg(g) < 1
2
n, after which we can conclude that the

trivial code just says to send the same word twice.
For example, the trivial code for n = 6 looks like:
C = {(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 1, 0), (0, 1, 1, 0, 1, 1),
(1, 0, 0, 1, 0, 0), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0), (1, 1, 1, 1, 1, 1)}.
So the next question would be: “Are there also other CSD’s than the ‘trivial’
ones?” Again the answer is “yes”, but in order to find f , such that f 6= f ∗

and f · f ∗ = xn − 1, one first needs to be able to factorize xn − 1.

4.3 Factorizing xn − 1

Define n = 2ab, with b odd, then, since we are working on F2, we have
(x + y)2 = x2 + 2xy + y2 = x2 + y2, therefore we can rewrite xn − 1 =
x2ab − 1 = (xb − 1)2a

.
Now comes the tricky part: it is easy to see that (x− 1)|(xb− 1), but how to
see that x5−1 can not be further factorized than (x−1)(x4 +x3 +x2 +x+1),
while (x7 − 1) = (x− 1)(x3 + x + 1)(x3 + x2 + 1)?
This paragraph shall show that the factorization of xb − 1 depends on the
behaviour of 2 in Z/bZ.

First of all a little lemma:
Lemma 4.3.1. b is odd ⇔ ∃ζ ∈ F̄2, such that b is the smallest integer for
which ζb − 1 = 0.
Proof: If b is odd and such a ζ would not exist, then we would need that
∀ζ ∈ F̄ ∃s < b, such that s is the smallest integer for which ζs − 1 = 0.
But since we have xb − 1 = 0, we need s|b, so we can write b = st and see
that ζb − 1 = ζst − 1 = (ζs − 1)Σt

i=1ζ
s(t−i) = 0. Because b is odd, t is also

odd, therefore if ζs − 1 = 0 ⇒ Σt
i=1ζ

s(t−i) = Σt
i=11

(t−i) = 1, which means
there also exists a ζ : ζs − 1 6= 0, for which ζb − 1 = 0.
The other way around we see that if b is even, then we can choose t = 2 and
see that ζb − 1 = 0 ⇒ ζs − 1 = 0. QED

Now, if ζ is a root of xb − 1 = 0, then also ζ2, ζ3, . . . , ζb. Note that

8



ζb+1 = ζb · ζ = 1 · ζ = ζ. Therefore, thanks to the lemma, we can say
that xb + 1 = Πb−1

i=0(x− ζ i) for some ζ in the algebraic closure of F2.
The trick is to find out which combinations of roots in F̄2 form an irreducible
polynomial in F2.

Proposition 4.3.2. If f |(xb − 1) is an irreducible polynomial and ζ is a
root of f , then f = Πm−1

i=0 (x− ζ2i
), where m is the smallest integer such that

2m = 1 mod b.

Proof: It is easy to see that S = {ζ, ζ2, ζ4, . . . , ζ2m−1} are all roots of f ,
because f(ζ) = 0 ⇒ f(ζ2) = f(ζ)2 = 0. So knowing we need at least these
roots, we now need to prove they are also sufficient.
Let us take a look at the coefficients of Πm−1

i=0 (x−ζ2i
) = α0+α1x+. . .+αmxm.

We need to prove that αi ∈ F2 ∀i ∈ {0, 1, . . . , m− 1}.
To prove this, we need that α2

i = αi, because α2
i = αi ⇒ α2

i − αi = 0 ⇒
αi(αi − 1) = 0. In other words: αi can only be equal to its square if αi = 0
or if αi = 1, which are the elements of F2.
Take ϕ : f 7→ f 2 and ψ : x 7→ x2, then we see that ϕ(f) = f 2 = (Σm

i=0αix
i)2 =

Σm
i=0α

2
i x

2i and ψ(f) = Σm
i=0αix

2i. Now we see we need to prove ϕ(f) = ψ(f).
To do that, we need f ’s other notation:
ϕ(f) = [Πm−1

i=0 (x− ζ2i
)]2 = Πm−1

i=0 (x2 − ζ2i+1
) = Πm−1

i=0 (x2 − ζ2i
) = ψ(f).

QED

Example: Take x7 − 1 and a ζ, such that ζ7 = 1, ζ 6= 1. Then according
to the proposition the minimal polynomial f also contains ζ2 and ζ4. So the
irreducible polynomial will become f = Π2

i=0(x− ζ2i
), where we notice that

ζ23
= ζ8 = ζ7 · ζ = ζ.

Factorizing gives Π2
i=0(x− ζ2i

) = Σ3
i=0(Σs⊂S, |s|=3−iΠj∈sζ

2j
)xi

= (Σs⊂S, |s|=3Πj⊂sζ
2j

) + (Σs⊂S, |s|=2Πj∈sζ
2j

)x + (Σs⊂S, |s|=1Πj∈sζ
2j

)x2

+ (Σs⊂S, |s|=0Πj∈sζ
2j

)x3

= (ζ2 · ζ4 · ζ1) + (ζ2 · ζ4 + ζ4 · ζ1 + ζ1 · ζ2)x + (ζ2 + ζ4 + ζ1)x2 + x3

= 1 + (ζ6 + ζ5 + ζ3)x + (ζ2 + ζ4 + ζ1)x2 + x3.
Now we see (ζ2 + ζ4 + ζ1)2 = ζ4 + ζ8 + ζ2 = ζ2 + ζ4 + ζ1 and of course
(ζ6 + ζ5 + ζ3)2 = ζ12 + ζ10 + ζ6 = ζ6 + ζ5 + ζ3. This means the coefficients
of f are indeed elements of F2.

Note: We don’t know, yet, what the irreducible polynomial looks like, but
we know already enough to decide for which n a CSD can be found.

9



4.4 Non-Trivial CSD’s

We needed to find f : f · f ∗ = xn− 1, f 6= f ∗. From the previous paragraph
we know 2a√

xn − 1 can be factorized into irreducible polynomials, which de-
pend on 2i mod b.
Therefore we need to translate the reciprocal to the roots. For this reason
define Si = {ζ2ji mod b : j ∈ Z} and fSi

as the minimal polynomial of ζ i, after
which we can state the following theorem:

Theorem 4.4.1. f ∗Si
= fS−i

Proof: The roots of f ∗Si
are the roots of fSi

( 1
x
) and those are the x such

that 1
x
∈ Si ⇒ x ∈ S−i.

QED

To form a CSD, we need to split the roots of xn − 1 in two groups, fixed
under x 7→ x2, in such a way that if a certain root is placed in one group,
then its inverse has to be placed in the other group.
This implies a non-trivial CSD can only exist if there is an i such that
Si 6= S−i, which brings us to the most important theorem of this chapter:

Theorem 4.4.2. Non-trivial CSD’s exist for n = 2ab ⇔ ∀l ∈ Z : 2l 6=
−1 mod b.

Proof: If there does not exists an l such that 2l = −1 mod b, then S1∩S−1 =
∅, which means we can form a CSD by adding S1 to f and S−1 to f ∗.
The other way around we need an i such that Si ∩ S−i = ∅, which means
{ζ2ji mod b : j ∈ Z} 6= {ζ−2ji mod b : j ∈ Z}. Now if there would exist an l
such that 2l = −1 mod b, then
Si = {ζ2ji mod b : j ∈ Z}
= {ζ−2j−li mod b : j ∈ Z}
= {ζ−2ji mod b : j ∈ Z} = S−i

QED

Example: Now we finally know enough to construct the first CSD.
If n = 3 · 2a, then we find 21 = −1 mod 3, which means there exist no CSD.
If n = 5 · 2a, then we find 22 = −1 mod 5, which means again no CSD.
If n = 7 · 2a, then we find < 2 >= {2, 4, 1}. So we can find a CSD.
Let us take the smallest possibility, which is n = 14, then we have x14 − 1 =
(x7 − 1)2 = (fS0fS1fS3)

2.
fS0 = (x − ζ0) = x − 1 is symmetric, so should be added to both f and its

10



reciprocal. But S1 6= S3 = S−1, so we can create a CSD by adding S1 twice
to f , after which we have to add S3 twice to f ∗. This results in f = fS0f

2
S1

.
Since (fg)∗ = f ∗g∗, we get f ∗ = (fS0f

2
S1

)∗ = fS0f
2
S3

and we see f · f ∗ =
fS0f

2
S1
· fS0f

2
S3

= x14 − 1, which means Cf (and of course Cf∗) is a CSD.

5 Algorithm

Being familiar with the basic properties of CSD’s, time has come to find their
minimal distances. However, calculating the weights of all words of a code
will be very time-consuming, so this chapter will treat ways to safe work.

5.1 Equivalent Codes

The first way to safe work is by doing nothing at all: if we already know the
minimal distance of the code, then it would be a waste of time to calculate
the weights of the words.
In the previous chapter we saw there were two codes for x14 − 1, which were
the codes generated by fS0f

2
S1

and the one generated by its reciprocal fS0f
2
S3

.
Now since (fg)∗ = xdeg(fg)(fg)( 1

x
) = xdeg(f)f( 1

x
) · xdeg(g)g( 1

x
) = f ∗g∗, we have

that the reciprocal of every word in Cf is a multiple of f ∗ and therefore con-
tained in Cf∗ .
Also one can easily verify that wt(f) = wt(f ∗), which will lead us to say
that if Cf contains a word of a certain weight, then Cf∗ should also contain
a word of that weight, after which we conclude d(Cf ) = d(Cf∗).
This appears to be merely a special case of an even more general theorem:

Theorem 5.1.1. gcd(α, n) = 1 ⇒ d(CfSi
) = d(CfSαi

)

Proof: The words of CfSαi
can be written as g(x)fSαi

= g(x)Π#Sαi

j=1 (x−ζ2jαi),
where g is an arbitrary polynomial.
Since the weight function only counts the different x’s, we have ∀α : gcd(α, n) =
1 ⇒ wt[g(x)Π#Sαi

j=1 (x − ζ2jαi)] = wt[g(xα)Π#Sαi

j=1 (xα − ζ2jαi)]. The latter ap-
pears to be a word in CfSi

, for it gives zero for every element of Si = {ζ2ri :
r ∈ Z}:
g((ζ2ri)α)Π

#Sfαi
j=1 ((ζ2ri)α − ζ2jαi)

= g(ζ2rαi)Π
#Sfi
j=1 (ζ2rαi − ζ2jαi)

= g(ζ2rαi)(ζ2rαi − ζ2rαi)Π
#Sfi
j=1, j 6=r(ζ

2rαi − ζ2jαi)
= 0
So if there exists a word of certain weight in CfSαi

, there exists a word of

11



equal weight in CfSi
, from which it follows: d(CfSαi

) ≥ d(CfSi
).

Since ∃α−1 and gcd(α−1, n) = 1, the process is reversible, which means
d(CfSi

) ≤ d(CfSαi
).

Combining the two we get: d(CfSi
) = d(CfSαi

).
QED

In the above proof we used the map ϕ : F[x]/(xn − 1) 7→ F[x]/(xn − 1) :
x 7→ xα, where gcd(α, n) = 1. This happens to have some very interesting
properties:

• ϕ is an homomorphism, since ϕ(f + g) = ϕ(f) + ϕ(g) and ϕ(fg) =
ϕ(f)ϕ(g).

• Since gcd(a, n) = 1, ϕ is invertible and therefore an isomorphism.

• CfSi
is an ideal in F[x]/(xn− 1)F[x], so Cϕ(fSi

) = CfSαi
is also an ideal,

which means fSαi
= gcd(fsi

(xα), xn − 1).

• Also very important: this map preserves the weights.

• If α = −1 then ϕ(CfSi
) = CfS−i

= Cf∗Si
.

We call Cf and Cg equivalent if there exists such a ϕ : ϕ(f) = g. Replacing
the minimal polynomial by a product of minimal polynomials in the above
proof, it can be shown that d(Cf ) = d(Cg) if Cf and Cg are equivalent.

5.2 Product Codes

Define Cn
f as the code generated by f in the nth-dimension. If we know the

minimal distances of Cn
f1

, Cn
f2

, what can we say about the minimal distance
of C2n

f1f2
?

Again we start with the ‘trivial’ case: f1 = f2. Then we can easily state the
following theorem:

Proposition 5.2.1. d(C2n
f2 ) = d(Cn

f )

Proof: The words of d(C2n
f2 ) can be described as gf 2, g = β0 + β1x + . . . +

βnxn, these can be split into an odd and even part: (β0 + β2x
2 + . . .)f 2 +

(β1x + β3x
3 + . . .)f 2.

This can be rewritten to [(β0 + β2x + . . .)f ]2 + x[(β1 + β3x + . . .)f ]2: a sum
of 2 words in Cn

f .
Since both words live separately (one on the even places, the other on the

12



odd) they do not influence each other’s weight. So the smallest word for 2n
can be formed by choosing one of them to be 0 and the other the smallest
word of f .
QED

Again things get a little more complicated if we look at ‘non-trivial’ cases.
Before starting an investigation on such codes, we can, however, already state
the following:

Proposition 5.2.2. d(C2n
f1f2

) ≤ 2 min{d(Cn
f1

), d(Cn
f2

)}

Proof: Define f ′i as the word of smallest weight in Cn
fi
, then since deg(f ′i) <

n, we have wt[(xn − 1)f ′i ] = 2wt(f ′i). Because f ′i is a multiple of fi and
xn − 1 = f3−i · f⊥3−i, (xn − 1)f ′i is contained in C2n

f1f2
, therefore d(C2n

f1f2
) ≤

2wt(f ′i).
QED

So if we have a CSD for 2n, it is never better than a CSD for n. Nev-
ertheless, we want to be able to calculate the exact minimal distance, for
which reason we need a theorem by Van Lint.[1]

Theorem 5.2.3. If n is odd and (fg)|(xn− 1), then C2n
f2g

∼= {(xn− 1)u + v :
u ∈ Cn

f , v ∈ Cn
fg}.

Proof: Again we use the trick of splitting in odd and even parts: v = veven +
vodd = ve + vo. Next we easily see that (xn− 1)u+ v ∼= (xn− 1)u+ vo +xnve.
Now we need to prove that the right handside of the equation symbol is just
another way for writing the elements of C2n

f2g. Since the dimensions are equal,

this means ∀u, v : (f 2g)|[(xn − 1)u + vo + xnve].
First we see that (fg)|(xn−1) and u ∈ Cn

f ⇒ f |u, so we have (f 2g)|[(xn−1)u].
Next we see that vo + xnve = vo + ve − ve + xnve = v + (xn − 1)ve and since
(fg)|v and (fg)|(xn − 1), we have (fg)|[vo + (xn − 1)ve].
Finally we will have to prove that not only f |(vo + xnve), but also f 2|(vo +
xnve). Therefore we notice that vo + xnve only contains odd powers of x, so
we can write vo + xnve = xw, where w only contains even powers of x and
where we also see that gcd(fg, x) = 1 ⇒ (fg)|w.
Now if f 2|(xw), then f | d

dx
(xw). This just so happens to be the case: d

dx
(xw) =

x′w + w′x = w + 0 · x = w.
QED

13



The importance of Van Lint’s theorem will become clear with the follow-
ing lemma:

Lemma 5.2.4. d({(xn−1)u+v : u ∈ Cn
f , v ∈ Cn

g }) = min{2d(Cn
f ), d(Cn

g )},
where f, g voluntary.
Proof: This is a sum of v − u and xnu. Now every x which u eliminates
from v below the xn is added above, so wt[(xn − 1)u + v] ≥ wt(v). QED

So we can use this Van Lint’s theorem to say d(C2n
f2g) = min{2d(Cn

f ), d(Cn
fg)}.

It has, however, one flaw: what if n is even?
Luckily one can generalize his theorem with a small adaption.

Theorem 5.2.5. Write n = 2ab, where b is odd, and factorize f |(x2n − 1)

to f = f 2a+1

1 f 2a+1−1
2 · · · f2a+1 , where i 6= j ⇒ gcd(fi, fj) = 1. (Note that we

allow fi = 1) Next define ñ = 2a, Fi = f ñ
1+iñf ñ−1

2+iñ · · · fñ+iñ, for i ∈ {0, 1}, and
G = Πn

i=1fi, so that we have f = F0 ·Gñ · F1.
Then C2n

f
∼= {(xn − 1)u + v : u ∈ Cn

F0
, v ∈ Cn

Gñ·F1
}.

Proof: Just as before we see that (xn− 1)u + v ∼= (xn− 1)u + vo + xnve and
f |[(xn − 1)u]. Also it is easy to see that (GñF1)|[vo + xnve = v + (xn − 1)ve].
But how do we prove it is also divisible by F0G

ñF1?
To see that, we first need to notice that F0|Gñ, after which we can conclude
that it is sufficient to prove that G2ñ|(vo + xnve).
Again we look at d

dx
(vo + xnve) = v′o + nxn−1ve + xnve. If n is odd, then we

can use the proof of above, else we are stuck with 1
x
vo.

Now we need a trick: rewrite v = Gñw, then vo = (Gñ
owe +woG

ñ
e ). But since

ñ is even, we have Gñ
o = 0 and Gñ

e = Gñ, therefore vo = woG
ñ. After which

we conclude vo and therefore d
dx

(vo + xnve) are multiples of Gñ.
QED

Using recursion this theorem will lead us to:

C2n
f = Σ2a+1

i=1 (xb − 1)2a+1−iui : ui = Πi
j=1fi

Furthermore combining recursion with d(C2n
F0GF1

) = min{2d(Cn
F0

), d(Cn
GF1

)},
we get:

d(C2n
f ) = min{wt[(xb − 1)2a+1−i] · d(Cb

ui
) : 1 ≤ i ≤ 2a+1}

14



6 Results

The goal of this thesis was to find the properties of the best CSD’s and with-
out even calculating a code, we can already say what property a good CSD
should not have:

Proposition 6.1. ∃g ∈ F[x]/(xb − 1), g 6= 0 : ∀f : f · f ∗ = x2a+1b − 1 ⇒
d(C2a+1b

f ) ≤ 2d(Cb
g).

Proof: Since (x − 1)∗ = x − 1, we have gcd((x − 1)2a+1
, f) = (x − 1)2a

.

Now if ui is defined as in the end of the previous section, then u2a|(xb−1
x−1

),

which means u2a 6= 0. Therefore Cb
u2a contains a non-zero word, for which

reason d(Cb
u2a ) > 0.

So we conclude:
d(C2a+1b

f ) ≤ min{wt[(xb − 1)2a+1−i] · d(Cb
ui

) : 1 ≤ i ≤ 2a+1}
≤ wt[(xb − 1)2a+1−2a

] · d(Cb
u2a ) = wt[(xb − 1)2a

] · d(Cb
u2a ) = 2d(Cb

u2a ).
QED

This proposition is rather surprising, since the upper limit for the minimal
distances appears to be independent of a. So it doesn’t just say that the
code won’t improve much after doubling many times, but even that it won’t
improve at all.
For example, take b = 7, then for all a ∈ N and f : f · f ∗ = x7·2a − 1, we
have d(C7·2a

f ) ≤ 2d(C7
x3+x+1) ≤ 6.

Indeed we see that if we take the sequence n = 14, 28, 56, 112, . . . we get more
and more codes with a minimal distance of 6, but never one with a minimal
distance greater than 6.

Now let’s turn our attention to a property we would expect a good code
to have: a high BCH-bound. The BCH-bound says that if we have a code
Cb

f , b odd, and a ζ such that ord(ζ) = b and all ζα+1, ζα+2, ζα+3, . . . , ζα+δ are

roots of f , then d(Cb
f ) > δ.

It is this BCH-bound that is responsible for the best result now known for
an open problem on CSD’s: one would like to have a sequence of codes, such
that both dim(Ci)

ni
and di

ni
converge to a non-zero constant. Since we are work-

ing with CSD’s, we have ∀i ∈ Z : dim(Ci)
ni

= 1
2
. But a sequence for which

limi→∞ di

ni
> 0 has, for now, only been found for the non-cyclic case.

In fact, the best known limit for CSD’s says for every δ there exists n < 4δ2−2
such that for a well-chosen f : d(Cn

f ) ≥ δ.[4] This sequence chooses n such that
xn−1 has many factors, after which one chooses his f as a product of the min-

15



imal polynomials of ζ1, ζ2, ζ3, . . . , ζδ−1. As a limit it has lim infi→∞ di√
ni

= 1.

That this limit is a little rude may become clear if we take δ = 6, after
which we have n < 4 · 62 − 2 = 142. It turns out, however, that we already
have a code with d = 6 for n = 30 and that for n = 126 < 142 we even
have a code such that d = 14, while δ = 14 would require an upper limit of
4 · 142 − 2 = 782.

So let’s investigate the influence of a high BCH-bound by looking at the
following list, which has been found using Magma (see Appendix). It lists
the best minimal distance for every length and also the number of asymmet-
ric pairs, or in symbols: A = {Si ∪ S−i : Si 6= S−i}; a high #A means we
can construct a high BCH-bound.
Note: we only look at n mod 4 = 2 for the reason given earlier in this chapter.

n #A dopt n #A dopt n #A dopt

14 1 4 126 5 14 206 1 20
30 1 6 138 2 12 210 6 18
42 2 8 142 1 12 222 1 6
46 1 8 146 4 18 230 2 16
62 3 10 150 2 6 234 4 18
70 2 8 154 2 8 238 3 14
78 1 6 158 1 16 246 2 6
90 2 8 170 4 10
94 1 12 174 1 6
98 2 6 178 4 20

102 2 6 182 4 14
110 1 10 186 6 20

190 1 10

In the table we see that if for some n we have a relative low dopt, then #A
is also low. Take, for example, n = 174. However, the opposite is not true.
Compare, for example, n = 158, which gives dopt = 16, and n = 170, which
gives dopt = 10.
So although a high #A ensures us of at least a reasonable dopt, which is some-
thing we like during these times of economic crisis, the n’s with low values
for #A may, although risky, give a better result. This is nicely illustrated by
the fact that in the list of Nedeloaia, n ≤ 120, the best result is obtained for
n = 94 with #A = 1!

However, a high #A does not just assure us that our dopt won’t be to low, it

16



even seems to increase our chances of finding a good minimal distance, as is
nicely illustrated by the next sequence:

ni − ni−1 16 16 16 32 32 32 48
ni 14 30 46 62 94 126 158 206
di 4 6 8 10 12 14 16 20

It turns out in our table that, with a few exceptions, ∀n < ni : d(Cn) < di

and that those exceptions (46, 146, 178, 186) have a relative high #A.
So like we concluded that if dopt is relatively low, then the same goes for #A,
we now expect that if dopt is relatively high, then again the same goes for
#A. However, I am not sure whether that is really true, leave alone how to
prove it.
Finally I would like to spend a few words on the sequence of the last table.
Based on the results on dopt, I expect that the following sequence will give
an improving dopt:

ni = ni−1 + 16 · d i− 1

3
e, and n0 = 14 ⇒ ni = 16d i

3
ei + 14

Concerning dopt I wish to make another bold statement: di ≥ 2d i
6
ei + 4. We

then have di

ni
≥ 2· i

6
·i+4

16( i
3
+1)i+14

=
1
3
i2+4

16
3

i2+16i+14
→ 1

16
> 0.

But it needs to be said that this expectation is merely based on the calcu-
lations we did for n ≤ 246 and has no theoretic foundation. So it may very
well be that there exists a large ni for which this doesn’t work.

17



7 Conclusion

Now let’s summarize what has been achieved:

• We have extended the list of Nedeloaia with minimal weights of CSD’s
from n ≤ 120 to n ≤ 246. This turns out to be relatively easy thanks
to Magma and Theorem 5.2.5.

• The minimal distance of a CSD with length 2ab has an upper bound
of twice the minimal distance of a certain code with length b. So it is
independent of a.

• We may have found a sequence of CSD’s for which limi→∞ di

ni
> 0.

Biblography

1. J.H. van Lint, “Repeated-Root Cyclic Codes”, IEEE Transactions on
Information Theory, vol.37, no.2 pp..343-345, March 1991.

2. Carmen-Simona Nedeloaia, “Weight Distributions of Cyclic Self-Dual
Codes”, IEEE Transactions on Information Theory, Vol.49, no.6, JUNE
2003.

3. Bas Heijne, “Cyclic Self-Dual Codes”, Master’s Thesis Rijksuniversiteit
Groningen, 7 MAY 2007,
http://scripties.fwn.eldoc.ub.rug.nl/FILES/scripties/Wiskunde/
Masters/2007/Heijne.B./Bas Heijne doctoraal WM 2007.pdf

4. Bas Heijne and Jaap Top, “On the Minimal Distance of Self-Dual Cyclic
Codes”, Submitted for publication, 2008.

18



Appendix: Magma

Magma proved to be ideal for calculating the minimal distances of the
CSD’s: the demo-version (http://magma.maths.usyd.edu.au/calc/) allowed
only 20 seconds, but that was enough for all cases, except n = 206, where
we needed a few more seconds.
I entered the text below to find dopt, with one exception: I also used the
results of paragraph 5.1, but I manually found out which codes did not need
to be calculated. To explain how that can be done is complicated and not
necessary, since the program below works as well.

P<x> := PolynomialRing(FiniteField(2));

/* divides the factors of x^b-1 in 2 groups
* Ls = a list of all symmetric factors
* La = a list of all asymmetric pairs
*/
SplitFactors := function(b)
Ls:=[]; La:=[]; F:=Factorization(x^b+1);
done:=[]; for i:=1 to #F do Append(~done,false); end for;
for i:=1 to #F do
if not done[i] then
g:=GCD(Evaluate(F[i][1],x^(b-1)),x^b-1); done[i]:=true;
if F[i][1] eq g then
Append(~Ls,F[i][1]); done[i] := true;

else
index:=i;
for j:=index+1 to #F do
if g eq F[j][1] then index := j; end if;

end for;
done[index] := true;
for j:=1 to F[i][2] do
Append(~La,[F[i][1],g]);

end for;
end if;

end if;
end for;
return Ls, La;
end function;

// finds the minimal distance of a cyclic code of length ‘b’, ‘b’ odd.
dC:=function(Ls,La,s,v1,v2,b)
f:=1; for i:=1 to #Ls do f:=f*Ls[i]^s; end for;
for i:=1 to #La do
f:=f*La[i][1]^v1[i]*La[i][2]^v2[i];

end for;
C:=CyclicCode(b,f);
return MinimumWeight(C);
end function;

19



/* calculates the minimal distance of a CSD of length ‘n=2b’, ‘b’ odd
* v in F_3^#La = v chooses which one from each asymmetric pair
* should be contained in the CSD
* 0 = second twice; 1 = both once; 2 = first twice
*/
dCSD:=function(Ls,La,v,b)
v1f:=v; for i:=1 to #v1f do v1f[i]:=v1f[i]*(v1f[i]-1)/2; end for;
v2f:=v; for i:=1 to #v1f do v2f[i]:=(v2f[i]-1)*(v2f[i]-2)/2; end for;
v1g:=v; for i:=1 to #v1g do v1g[i]:=v1g[i]-v1f[i]; end for;
v2g:=v; for i:=1 to #v1g do v2g[i]:=2-(v2g[i]+v2f[i]); end for;
df:=2*dC(Ls,La,0,v1f,v2f,b);
dg:=dC(Ls,La,1,v1g,v2g,b);
return Minimum(df,dg),"@",df,dg,"@",v;
end function;

// CHANGE THE VALUE OF ‘n’ TO FIND THE OPTIMAL DISTANCE OF OTHER ‘n’.
n:=42;
Ls,La:=SplitFactors(n div 2);
for i:=0 to 3^#La-1 do
v:=[]; res:=i;
for j:=1 to #La do Append(~v,res mod 3); res:=res div 3; end for;
dCSD(Ls,La,v,n div 2);
end for;

20


