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Summary

We study a method by Ferragina and Manzini for creating an index of a text.
This index allows us to find any string in the original text. What is so special
about this index is that it is smaller than the original text, while still allowing
quick searching and recovery of the original text.
In order to understand the performance bounds given by Ferragina and Manzini
we first examine the concept of information density, the entropy. Next we
examine the details of the method suggested by Ferragina and Manzini. Finally
we design an extention to their method. Using this method we are not only able
to search for any specific string in the text, but also for some more generalized
descriptions of pieces of text. More precisely we can find all matches for a given
regular expression. Using this we are able to find answers to the question like
‘give all quoted piece of text’.
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Chapter 1

Introduction

There are various methods of searching for a substring in a given text. Indexing
is one of them. The indices we will consider here are reminiscent of the indices
at the end of many textbooks. Given a certain keyword or subject we can use
those paper-based indices to locate the relevant pages on which it occurs. With
the full text indices we consider here, we improve upon these well established
indices in the following two ways. First of all, searching is possible for any given
substring, not just those predefined words that can be found in the index of a
book. Secondly this method yields the exact position in the text, as opposed
to just a page number. To make searching fast we would like the time the
procedure takes to be independent of the length of the text.

The only way to achieve this independence on the length of the text is by precom-
puting some kind of data structure that facilitates fast searching for arbitrary
substrings. This data structure is what we will call a full-text index. Comput-
ing this data structure may or may not be very efficient. We will, however, not
concern ourselfs in this thesis with the efficiency of actually constructing these
data structures.

Ferragina and Manzini manage to achieve the goals described in the first para-
graph even though they added an additional requirement: the index should
contain the entire text and this text should be compressed in order to keep the
index, i.e. the set of data structures, small. They describe their results in their
2005 paper [8], which has been the basis for this thesis.

Not every text is easily compressible. For example, a set of completely random
texts is likely to resist compression completely, while English prose is probably
highly compressible. This would defeat the purpose of an upper bound on the
space requirements since the worst case is always a noncompressible string. To
have more realistic space bounds Ferragina and Manzini have opted to include
a measure of compressibility in their space bounds. This measure, the empirical
entropy, is discussed in Chapter 2.

Before doing the actual compression the Burrows-Wheeler transform is applied
to facilitate the compression. We discuss this transformation in detail in Sec-
tion 3.1. The Burrows-Wheeler transform compresses the text in such a way
that we can easily count the number of occurences and even locate them within
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2 Indexing Compressed Text

the original text. The general idea of these methods is outlined in Sections 3.3
and 3.5. The resulting algorithm for locating occurrences is, although promis-
ing, not yet optimal with respect to time complexity. By using a Lempel-Ziv
parsing, Ferragina and Manzini are able to obtain the desired speedup in locat-
ing the occurrences. A detailed exposition about the Lempel-Ziv parsing and a
sketch of the resulting algorithms can be found in Sections 3.6, 3.7 and 3.8.

Searching for an exact pattern is a powerfull tool, but it is not always the most
useful solution. Regular expressions are often better suited to describe more
complex queries. Usually regular expression engines will process the entire text
linearly. In Chapter 4 we discuss two alternative implementations that depend
on the full-text index we built earlier. This can cause a rather significant speedup
in searching for matches of the regular expression.

1.1 Notation

Before we can continue we need to introduces some notation. Much of this is
borrowed from Ferragina and Manzini. Throughout this thesis T will be the text
we want to compress and create an index of. To be more precise we may write
T [1, n] instead, using a range notation, to emphasize the fact that the length of
T is n. Furthermore we will always use one-based indexing, as implied by the
notation. The ith character of T then is T [i]. In the following we often need
to denote prefixes and suffixes of a string. We again use the range notation,
T [1, i] is the prefix of T of length i, while T [i, n] denotes the suffix of T of length
n − i + 1. We assume a constant alphabet Σ, so T ∈ Σ∗. We write |A| for the
number of elements in the set A, and |w| for the length of the string w.

We use this notation to describe the problem of full-text indexing a bit more
precise. Given the text T we would like to find all occurrences of a pattern P [1, p]
for arbitrary patterns P (rather than a limited set of index items). To do this
we use an additional data structure for T , the index, which is precomputed.



Chapter 2

Entropy

Some pieces of data are more equal than others. Compare for example an
essay written by a six year old on his favourite pet and a piece of writing
by Shakespeare of equal length. The latter is most likely more complex in
both the choice of vocabulary and sentence construction. This difference in
complexity makes it very unlikely that we will ever be able to compress the
piece by Shakespeare as good as the one by the six year old.

We would like to have a measure of the compressibility of a given piece of data.
Shannon introduced the concept of entropy [15] that we can adapt to measure
this compressibility in some useful sense, thereby allowing us to determine how
‘compressible’ pieces of data are.

Shannon deals primarily with data from a probabilistic point of view. A data
source is considered to produce data according to some probabilistic rules, spe-
cific to that data source. He then derives the entropy as a measure for the
‘amount’ of information the source produces. Note the huge difference between
information and data in this context. While a source producing just zeros will
produce quite some data, the amount of information it produces will be negli-
gable. Ferragina and Manzini use a notion of empirical entropy instead. This
entropy is not defined for a data source that can produce infinitely many mes-
sages while following its rules, but for a specific piece of text. We can say it
measures, in some sense, the information density of the text. We first consider
the entropy in the context of Shannons paper. After deriving a formula for the
entropy we will transform it to obtain the empirical entropy.

2.1 Uncertainty

We want to measure the amount of information produced by a data source. It
is insightful to think of the amount of information in relation to how uncertain
we are of the next symbol. Intuitively, if the uncertainty is high, the amount
of information transmitted is high, while if it is low, the amount of information
transmitted is low.
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4 Indexing Compressed Text

We will derive a formula for this uncertainty following roughly the same method
as Shannon used. Suppose our data source can produce l different characters,
with probabilities p1, . . . , pl. Of course the sum of these should be one. Let
H(p1, . . . , pl) be the measure of the uncertainty for this data source. In order
to derive an actual formula for H we require the following properties:

1. The measure of uncertainty should be a mathematically well behaved func-
tion, so H should be continuous in all of the pi’s.

2. When we increase the number of sides on a fair dice, we are more uncertain
about the outcome. The uncertainty, H , should mimic this behaviour. So
if we put pi = 1/n for all i and increase n, then H should increase as well.

3. Not every decision has to be made in one magic step. Suppose we throw
a fair coin. If we get heads the result is A, if we get tails we are not yet
done. We throw the coin once more. If it is heads the result is B and
otherwise it is C. So we have probabilities 1

2 , 1
4 and 1

4 for the events A,
B and C respectively. The uncertainty can just be written as H(1

2 , 1
4 , 1

4 ),
however there is a second plausible method of calculating the uncertainty.
Looking at the uncertainties produced by throwing the coin we see at the
first throw introduced some uncertainty, while the second throw adds more
uncertainty in half of the cases. The uncertainty introduced by throwing
a coin is H(1

2 , 1
2 ). The second uncertainty is only added half of the time,

so the total uncertainty should equal H(1
2 , 1

2 ) + 1
2H(1

2 , 1
2 ) as well. Since

H should behave nicely these two expressions should be the same. If a
choice can be decomposed into successive choices, then the entropy should
be equal to the weighted sum of the individual choices.

Using just these requirements Shannon managed to prove the following theorem.

Theorem 2.1. The only function H that satisfies the properties is of the form:

H = −K

l
∑

i=1

pi log pi,

where K is a positive constant. H is called the entropy.

Note that K only determines the unit of measure.

Proof. This proof is almost identical to the one presented by Shannon in [15].
Introduce the function A(n) = H( 1

n , . . . , 1
n ), with n a natural number, so we

have n choices with equal probability. We will show A(n) must be of the form
K log n. Take n = st with s, t natural numbers. So we choose between n
equally likely options. It is possible to split this choice in two steps. First
choose between s equally likely options. Then choose again between t equally
likely options. This gives a choice between st = n equally likely options, as
required. By property 3 the following equality holds:

A(st) = A(s) + A(t).
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From this we get for any natural number p that

A(sp) = pA(s). (2.1)

Suppose s and t are fixed. For any natural number q there exists a natural
number p such that

sp ≤ tq ≤ sp+1. (2.2)

Taking logarithms and dividing by q log s we get

p

q
≤

log t

log s
≤

p

q
+

1

q
.

This can be made to hold for any q, so

∣

∣

∣

∣

p

q
−

log t

log s

∣

∣

∣

∣

≤
1

q
. (2.3)

for 1/q arbitrarily small. Note that p/q is not constant in this expression. Its
value may vary when an other bound is required. We will remove this term
shortly.

Property 2 requires A(n) to be monotonic in n, so it follows directly from
equation (2.2) that A(sp) ≤ A(tq) ≤ A(sp+1). Applying equality (2.1) three
times gives

pA(s) ≤ qA(t) ≤ (p + 1)A(s).

Dividing by qA(s) gives
p

q
≤

A(t)

A(s)
≤

p

q
+

1

q
,

so we see
∣

∣

∣

∣

p

q
−

A(t)

A(s)

∣

∣

∣

∣

≤
1

q
(2.4)

for 1/q arbitrarily small. Combining (2.3) and (2.4), and using the triangular
inequality gives

∣

∣

∣

∣

A(t)

A(s)
−

log t

log s

∣

∣

∣

∣

≤
2

q

for all s and t and q ∈ N. Therefore A(t)/ log t = A(s)/ log s, the right-hand
side is independent of t and thus is a constant, say K. Rewriting gives A(n) =
K log n. Note that K should be positive in order to satisfy property 2.

Consider now the case where the probabilities are not all equal. Assume that
p1, . . . , pl are rational numbers. Then there exists natural numbers m1, . . . , ml

and m such that pi = mi/m for all 1 ≤ i ≤ l and m =
∑

mi. We will now use
a trick to derive the entropy H(p1, . . . , pl). Consider exactly m equally likely
choices. These m choices can be decomposed by choosing between l possibilities
with probabilities p1, . . . , pl and then choosing between m1, . . . , ml equally likely
choices. This gives

K log m = H(p1, . . . , pl) + K

l
∑

i=1

pi log mi.
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αi a b c d e f g h i
pi .0575 .0128 .0263 .0285 .0913 .0173 .0133 .0313 0.0599
αi j k l m n o p q r
pi .0006 .0084 .0335 .0235 .0596 .0689 .0192 .008 .0508
αi s t u v w x y z -
pi .0567 .0706 .0334 .0069 .0119 .0073 .0164 .0007 .1928

Table 2.1: A table with the probabilities of the characters a through z and the
space in an English text.

So

H(p1, . . . , pl) = K
(

log m −
∑

i

pi log mi

)

= K
(

∑

i

pi log m −
∑

i

pi log mi

)

= K
∑

i

pi log
m

mi
= −K

∑

i

pi log pi.

This almost concludes the proof for the general case. When not all the pi’s
are rational numbers, they can be approximated arbitrarily well by rational
numbers, since Q is dense in R. Because H is continuous in the pi this does still
yield the same result.

Once again, note that the constant K only determines a choice of the unit of
measure. Assume, for the remainder of this chapter, that the logarithm has
base two and that K = 1, i.e. the unit of measure is in bits.

The entropy as defined above has a second, much more interesting, interpre-
tation. Suppose we have a data source which emits characters from Σ =
{α1, . . . , αl} with probabilities p1, . . . , pl. Then the entropy can be interpreted
as the minimal average number of bits per character, provided we always use
the same code for a given character.

Example 2.2. The frequencies of the characters a,b,. . . ,z and the space in an
English text are displayed in Table 2.1, see [12]. Calculating the entropy gives
a value of about 4.1 bits per character on average. Note that this value is a
bit lower than it usually will be since we did not take punctuation and capital
letters into account.

Since Shannon a more contemporary notation has been devised. Let (X, AX , PX)
be an ensemble, that is AX is a finite set of possible values for a random variable
X and PX contains the corresponding probabilities. We say that H(X) is the
entropy of this ensemble.

2.2 Conditional Entropy

Up till now we have thought of data sources as devices that produce each sub-
sequent character independent of the previous ones. Remember our intent was
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to say something about the compressibility of text. Almost always there exists
some relation between a sequence of previous characters and the next one. For
example when reading ‘entrop’ it is highly likely that the next character will be
a ‘y’. Another slightly less likely possibility is an ‘i’, if the word actually were
to be ‘entropies’. In English texts the ‘e’ is very common, it has a high chance
of appearing at a random location in the text. Yet, the chance of an ‘e’ follow-
ing ‘entrop’ is negligible. So including information about previous characters
tends to reduce the number of possibilities. In a sense this seems to reduce the
entropy at that specific point as well, since the number of plausible options is a
lot smaller. Unfortunately entropy is defined on a data source, not for a specific
point in its output. We will solve this by introducing the conditional entropy,
once again basing our exposition on Shannon’s work.

The previous paragraph showed that it is plausible that adding information
reduces the entropy. As before let (X, AX , PX) be an ensemble of which we
want to measure the entropy. Now let us suppose we know another ensemble
(Y, AY , PY ), that is for each event we know the value of the random variable
Y . How does knowing this change the entropy of X . We saw in the previous
paragraph that having additional information, in this case the value of Y , might
lower the uncertainty of X . It is easy to give the uncertainty of X for each
specific value of Y , but this is not nice. Now the uncertainty for X depends on
the value of Y . This does not help since we only know the distribution of Y ,
not its values. A natural solution would be to define the entropy of X given
knowledge about Y as the weighted average of the entropy of X given that
Y = y, H(X |Y = y), over all values y of Y . So the conditional entropy of X
given Y ,

H(X, Y ) = −
∑

y∈AY

P (y)
∑

x∈AX

P (x|y) log P (x|y)

= −
∑

x∈AX,y∈AY

P (x, y) log P (x|y).
(2.5)

Intuitively the entropy of X should not increase when taking into account the
knowledge about Y , that is H(X |Y ) ≤ H(X). We will prove that this is indeed
the case. First we need to introduce the concept of joint entropy. Consider
again the ensembles X and Y as above. Consider now a joint event (x, y), that
is X = x and Y = y simultaneously. The joint entropy of X and Y is

H(X, Y ) = −
∑

x∈AX,y∈AY

P (x, y) log P (x, y). (2.6)

In order to prove that H(X |Y ) ≤ H(X) we need some additional equations.
The following lemma helps us to derive the first of them, see for example [12].

Lemma 2.3 (Jensen’s Inequality). Let f be a concave, continuous function over

(a, b). That is for all x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2). (2.7)

Let αi > 0 for 1 ≤ i ≤ n and
∑n

i=1 αi = 1. Then

n
∑

i=1

αif(xi) ≤ f(

n
∑

i=1

αixi), (2.8)
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provided that
∑n

i=1 βixi ∈ (a, b) for all 0 ≤ βi ≤ αi.

Proof. We will use a limited induction argument. Let Ak =
∑n

i=k αi, so as a
result Ak − αk = Ak+1. We will show that

f(

n
∑

i=1

αixi) ≥
n

∑

i=1

αif(xi). (2.9)

Simple expansion of the left-hand side gives, using A1 = 1, that

f(

n
∑

i=1

αixi) = A1f(
α1

A1
x1 +

A2

A1

n
∑

i=2

αi

A2
xi). (2.10)

A slightly generalized version of the right-hand side yields, using the concavity
of f , that for k < n

Akf

(

αk

Ak
xk +

Ak+1

Ak

n
∑

i=k+1

αi

Ak+1
xi

)

≥

αkf(xk) + Ak+1f

( n
∑

i=k+1

αi

Ak+1
xi

)

=

αkf(xk) + Ak+1f

(

αk+1

Ak+1
xk+1 +

Ak+2

Ak+1

n
∑

i=k+2

αi

Ak+2
xi

)

.

(2.11)

Applying this n − 1 times proves the theorem:

f

( n
∑

i=1

αixi

)

≥ αif(x1) + · · · + αn−1f(xn−1) + Anf(
αn

An
xn + 0)

= α1f(x1) + · · · + αnf(xn) =
n

∑

i=1

αif(xi).

Notice how we require all the αi to be positive. In a few moments we will apply
Jensen’s Inequality to the entropy. Then αi = pi and xi = pi and f(x) = log(x).
In this case however some of the αi can be zero. A first question to ask is whether
0 log 0 is a well-defined expression. To see that it is actually equal to zero apply
l’Hospital to limx→0 x log x = limx→0 log x/(1/x). As a result terms with αi = 0
do neither contribute to the left-hand side nor to the right-hand side, so we can
safely apply Jensen’s Inequality in case of the entropy.

We will show that the joint entropy H(X, Y ) is never greater than the entropy
of X plus the entropy of Y , that is H(X, Y ) ≤ H(X) + H(Y ). In other words,
the uncertainty of the joint event (x, y) is never greater than the sum of the
uncertainty of its parts. So we want

H(X, Y ) = −
∑

x,y

P (x, y) log P (x, y) ≤ H(X) + H(Y )

= −
∑

x

P (x) log P (x) −
∑

y

P (y) log P (y)

= −
∑

x,y

P (x, y)
[

log
∑

y′

P (x, y′) + log
∑

x′

P (x′, y)
]

(2.12)
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or in other words

0 ≤ −
∑

x,y

P (x, y)
[

log
∑

y′

P (x, y′) + log
∑

x′

P (x′, y) − log P (x, y)
]

. (2.13)

Simple manipulation shows that the right-hand side of (2.13) is equal to

−
∑

x,y

P (x, y)

∑

x′,y′ P (x, y′)P (x′, y)

P (x, y)
. (2.14)

We may apply Jensen’s Inequality, since the logarithm is a concave function on
[0,∞), and all other requirements are met. Doing so gives:

−
∑

x,y

P (x, y)

∑

x′,y′ P (x, y′)P (x′, y)

P (x, y)
≥ − log

∑

x,y

∑

x′,y′

P (x, y′)P (x′, y) ≥ 0

where the latter inequality follows from the fact that the argument of the loga-
rithm sums to 1. This proves that

H(X, Y ) ≥ H(X) + H(Y ). (2.15)

Let us now return to the conditional probability H(X |Y ). Expanding it gives

H(X |Y ) = −
∑

x,y

P (x, y) log P (x|y)

= −
∑

x,y

P (x, y) log
P (x, y)

P (y)

= −
∑

x,y

P (x, y)
[

log P (x, y) − log P (y)
]

= H(X, Y ) − H(Y )

(2.16)

Notice how this gives H(X, Y ) = H(X |Y ) + H(Y ), in other words the joint
entropy of X and Y equals the conditional entropy of X given Y and the entropy
of Y . Combining this with (2.15) proves that

H(X |Y ) ≤ H(X). (2.17)

So indeed the given knowledge about Y does not increase the entropy of X .

2.3 Empirical Entropy

Until now we have only considered the entropy in a probabilistic context. Re-
member once more that our original goal was to give a measure of the com-
pressibility of a given text, and not the compressibility of a probabilistic source
producing these texts. This change of perspective yields a slightly different
concept: the empirical entropy. As implied by the name the empirical entropy
uses empirical measurements as opposed to probabilistic assumptions. These
empirical measures will replace the probabilities.
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bits/character bits
original 8.0 1188328.0
H0 4.512741 670326.91
H1 3.501531 520117.47
H2 2.510313 372879.33
H3 1.794791 266594.67
H4 1.320564 196152.63
H5 0.977257 145157.81
H6 0.718981 106793.87
H7 0.511979 76046.29
H8 0.357624 53118.95
H9 0.251111 37297.97
H10 0.177618 26381.72

Table 2.2: Some entropies for ‘Alice’s Adventures in Wonderland’ by Lewis
Carrol.

Create for a given text T an ensemble (XT , Σ, PT ), where with a slight abuse
of notation the possible values of XT consist of the alphabet Σ = {α1, . . . , αl}.
The probabilities PT are the corresponding probabilities of choosing αi aselect
from the text. Let ni be the number of occurrences of αi in T . Then PT =
{n1/n, n2/n, . . . , nl/n}. The result is a valid ensemble corresponding to the
given text. We thus define the empirical entropy as

H0(T ) = H(XT ) = −
l

∑

i=1

ni

n
log

ni

n
. (2.18)

The significance of the subscripted zero will become apparent shortly. Also in
the empirical case we want to reap the benefit of a conditional entropy. In this
case the conditional part is a short string of characters that occurred before the
current one. Let nwαi

be the number of occurrences of wαi in T , where w ∈ Σ∗

and αi ∈ Σ. That is the number of occurrences of the string w followed by the
character αi. Then the total number of occurrences of w that precede another
character is nw =

∑l
i=1 nwαi

. Suppose we include a history of k characters,
then the corresponding conditional entropy is called the k-th order entropy and
defined by

Hk(T ) = −
1

n

∑

w∈Σk

nw

[ l
∑

i=1

nwαi

nw
log

nwαi

nw

]

. (2.19)

As a result we can interpret the conditional entropy Hk(T ) as the average num-
ber of bits required to encode the next character, given the previous k charac-
ters. It would seem that the information can be encoded in only nHk(T ) bits,
for any k. This is however only partially true since we somehow need to tell
the receiver how to decode the message. Describing these codewords takes an
additional Ω(|Σ|k) bits. It is however an established practise in Information
Theory to ignore these additional costs [8].

Just as for the conditional entropy we have that adding more information does
not increase the entropy, that is Hk+1 ≤ Hk.
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Example 2.4. Table 2.2 shows the k-th order entropy for ‘Alice’s Adventures
in Wonderland’ by Lewis Carroll. In addition the total size is shown. Notice
how including a larger history lowers the overall entropy. Remember though
that we did not take into account the space required for the code words.
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Chapter 3

Compressed Text Indices

This chapter is concerned with how we can create a full text index for a text
while at the same time compressing it. The Burrows-Wheeler transform is used
to make the text better compressible, see Section 3.1. The transformed text is
then compressed in three steps, see Section 3.2.

To prevent this chapter from flooding the reader with information, the discussion
of searching for a substring has been split up, just like Ferragina and Manzini
did. First we will see how the number of occurrences can be counted, see
Section 3.3. Then we optimize this solution by means of the four Russians
trick in Section 3.4. Next we explain in Section 3.5 how the former solution for
counting can be used to actually locate a given substring. This solution is not
yet optimal. A Lempel-Ziv parsing is used to improve the time bounds. The
theory behind this parsing is discussed in Section 3.6. How this parsing can be
used to improve the time bounds will be explained in Sections 3.7 and 3.8.

3.1 Burrows-Wheeler Transform

The compression algorithm described in Ferragina’s and Manzini’s paper [8]
heavily depends on the Burrows-Wheeler transform (from now on BWT). This
transformation was first described in a paper by Burrows and Wheeler in 1994
[5]. It has two very important properties: firstly it makes compression easier
and secondly it is easily reversible. Ferragina and Manzini have made some
slight modifications to the transformation originally described by Burrows and
Wheeler. It is this version that we will now examine more closely.

The BWT can be described by the following three steps. We begin by appending
a special character hash (#) to T . This character is alphabetically smaller than
any other character in the alphabet. Secondly we generate all cyclic permuta-
tions of T#, see matrix M in Figure 3.1. Finally we sort these permutations in
lexicographic order, see matrix MT in Figure 3.1. We will often think of the re-
sult as a matrix MT where the rows are made up by these sorted permutations.
Note that every column of MT is just a permutation of T#. The result L of the
BWT is the last column of matrix MT .

13
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1

2

3

4

5

6

7

8

9

10

11

12

engineering#

ngineering#e

gineering#en

ineering#eng

neering#engi

eering#engin

ering#engine

ring#enginee

ing#engineer

ng#engineeri

g#engineerin

#engineering

−→

#engineering

eering#engin

engineering#

ering#engine

g#engineerin

gineering#en

ineering#eng

ing#engineer

neering#engi

ng#engineeri

ngineering#e

ring#enginee

M MT

Figure 3.1: The Burrows-Wheeler transform of T = engineering is obtained by
creating all cyclic permutations of T# and then sorting them in lexicographic
order. The result is L = gn#enngriiee.

To understand why L is more easily compressed we first need to look at the
effect of sorting in the presence of the special character #. We will see that the
BWT actually sorts the suffixes of T . Note that due to the cyclic permutations
we have exactly one hash in every column of MT . In addition the hash is
lexicographically smaller than all other characters. As a result, everything to
the right of a hash has no influence on the order of the rows in MT . The
characters to the left of a hash precisely form a suffix of T . So we have indeed
sorted all suffixes of T .

Every last character in the ith row immediately precedes the first character of
this row in the original text T . For example see Figure 3.1, the fifth row ends
with a ‘n’, while it begins with ‘g’. Indeed the ‘n’ immediately precedes the ‘g’
in text T , since ‘engineering’ ends with ‘ng’. Let us now consider an example
given by Burrows and Wheeler: suppose we apply the BWT to this thesis and
imagine we look at the rows of MT , that start with ‘he ’ (we have to imagine
this since the BWT only yields L, not MT ). Remember these will be consecutive
rows, due to sorting. It will be very likely that these rows end with a ‘t’, since
the word ‘the’ occurs very often in this text, other possibilities include ‘T’, ‘c’,
‘s’ and ‘S’. Other characters in the last column are highly unlikely. So locally
in L we only encounter very few characters with high probability. This makes
the transformed text very easy to compress. One of the ways of seeing this is
to consider the conditional entropy. Given a couple of previous characters in L,
very few possible following characters remain. So the entropy will be very low.
Therefore the text is highly compressible.

Now that we have clarified the first important property of the BWT it is time
to spend some effort on the second property: reversibility. We will show that
the BWT L allows us to ‘step back’ along T . Given the position of T [k] in L
we can find the preceding character in T , T [k−1], provided it exists, i.e. k > 1.
By construction we know that the last character of T is the first character of
L. This allows us to reconstruct T by backstepping, starting with the first
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character of L.

We step back along T in the following way. Denote the first column of MT by
F . We will determine a formula to find, for a given character in L, the exact
same character in F . Here the exact same character means not only that it is
the same character, but also that it is at the same position in T . Suppose now
that L[i] is at position j in F , then we know that L[j] precedes L[i] in T , since
L[j] precedes F [j] in T . So knowing where a character in L is in F allows us
to step back along T . Suppose L[i] = c, then we would like to know which of
the c’s in F corresponds to this one. This is easy if we can show that the order
of the rows in MT starting with a c is the same as the order of the rows of MT

ending with the corresponding c’s. Since then the pth c in L will just correspond
with the pth c in F .

We will show this is true by examining a new imaginary matrix M̂T . This proof
is based on the proof of Burrows and Wheeler [5]. We obtain this matrix by
cyclic shifting every row of MT once to the right, i.e. remove L from MT and add
it again on the left. Note that M̂T is still sorted when we ignore the first column.
Let us now return to the objects of our interest: the rows of MT ending with a
c. In M̂T these will be the rows starting with a c. Now comes the crux: all these
rows in M̂T start with the same character and are therefore lexicographically
sorted. Compare these two lists of rows. The rows in MT beginning with a c
are sorted lexicographically and they are cyclic permutations of T#. We just
saw that the rows of M̂T starting with a c are also sorted lexicographically. By
construction they are also cyclic permutations of T#. So both lists of rows
contain the cyclic permutations of T# beginning with a c and the lists are
sorted. The only possible conclusion is that both sets are exactly the same,
including order. Since we did nothing to M̂T except for a simple cyclic shift we
have shown that the order of the corresponding c’s in both F and L is the same.

In order to formalize this property and some subsequent results we need to
introduce some additional notation. This notation is the same as the one used
by Ferragina and Manzini in [8].

• Let C[c] be the number of occurring text characters that are alphabetically
smaller than c. So C[·] denotes an array of length |Σ|+ 1. In our example
in figure 3.1 C[#] = 0, while C[n] = 8, since the hash, the three e’s, the
two g’s and the two i’s are alphabetically smaller than ‘n’.

• Occ(c, q) gives the number of occurences of c in L[1, q]. So in our example
Occ(n, 5) = 2.

Lemma 3.1. The Last-to-First column mapping LF that assigns to each L[i]
its corresponding location LF (i) in F is given by C[L[i]] + Occ(L[i], i).

Proof. This lemma follows directly from the preceding text. C[L[i]] is the row
in MT preceding the ones starting with the sought after character L[i]. The
second term, Occ(L[i], i) is the number of L[i]’s in L upto this one. Since order
is preserved we find the required index in F by adding them.
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3.2 Compressing the BWT

We have seen in the previous section that the BWT often produces long runs
of identical characters or at least few different characters. See for a somewhat
lengthier example Figure 3.2. Ferragina and Manzini proposed the following
compression algorithm. The first step involves converting all characters in L
to small numbers. Imagine we process L character by character. After each
character we output a counter: the number of distinct characters since the
previous occurrence of that character. We bootstrap this process by assuming
the alphabet is processed first in alphabetic order, since then everything is well-
defined.

”Oh, grandmother, what big ears
you have!” ”All the better to
hear you with.” ”Oh, grandmother,
what big eyes you have!” ”All
the better to see you with.” ”Oh,
grandmother, what big hands you
have!” ”All the better to grab you
with!” ”Oh, grandmother, what a
horribly big mouth you have!”

”””””””teeetttyggo,,,,guuuuoagolllrrr
,,,,uuuhsssbreeeeeh!!!!!.. # hhhhrr
rrhh””””””” rrrrrheehhhhhhhha
innnnnhhhevvvvh sttthhhhybbb iiii

ttOOOOtt wwww ttt tttt rbb
bbwwwlllAAAbdddd aaaaattthmmm
myyyyyyymeeeaeeeegggggroadre aaaa
tttuiii oooo eeeooooooooaaaa

le

Figure 3.2: The BWT applied to an excerpt from Grimm’s Little Red Riding
Hood, the spaces have been visualized by ‘ ’ since they are in the alphabet as
well. Notice the long runs of identical characters.

Formally this process is called a move-to-front (MTF) encoding [4]. It uses a
list with all characters of the alphabet, ordered by recency of occurrence. This
list is called the MTF-list. Since we supposed that the alphabet was processed
first, initially this list contains all characters in reverse alphabetical order. For
every new character we output its position in the list. The character then is
moved to the front of the list and the next character is processed. The resulting
string is Lmtf, which is a list of, hopefully, small numbers.

Applying the move-to-front encoding on the transformed text L has significant
consequences. Every sequence of identical characters is converted to a sequence
of zeroes. In addition if L contains only a few characters locally these will be
converted to small numbers in Lmtf since it is likely we have seen them before.

Ferragina and Manzini subsequently get rid of these sequences of zeroes by
applying a run-length encoder, see for example [14]. They replace a sequence
of zeroes by their length in binary. Finally both the normal numbers as well
as the binary numbers representing the runs of zeroes are converted into zeroes
and ones using a variable-length prefix code, see for example [14]. These three
steps combined will be referrred to as BW RLX. For a more technicial exposition
see Ferragina’s and Manzini’s paper [8].

It is shown in [8] that the compression rate can be bounded by the kth order
empirical entropy Hk(T ) of T ,

|BW RLX(T )| ≤ 5nHk(T ) + O(log n) (3.1)
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for any k ≥ 0. Remember that when using the kth order entropy one should
take the additional cost of describing the codewords into account. In (3.1) this
term is hidden inside the big-O notation. We thus assume that |Σ| is constant
with respect to n.

3.3 Counting Occurrences

Ferragina and Manzini identify two phases in the searching process. The first
phase counts the number of occurences, the second phase locates these occur-
rences. This is useful because “it simplifies the presentation and shows that the
locating phase builds on top of the counting phase.”

In this section we will concern ourselves with the first phase: counting the
occurrences of a pattern P [1, p] in text T . This number equals the number of
rows in MT that are prefixed by P [1, p]. Since the suffixes are sorted, these rows
will be consecutive. Let the first of these rows have index First and the last of
these index Last. Then the number of occurences is (Last− First+ 1).

For the duration of the section we shall forget about the compression described
in the previous section. We will reintroduce this aspect in the next section.

1 Algorithm backward search(P [1, p])
2 i← p, c← P [p], First← C[c] + 1, Last← C[c + 1];
3 while ((First ≤ Last) and (i ≥ 2)) do

4 c← P [i− 1];
5 First← C[c] + Occ(c, First − 1) + 1;
6 Last← C[c] + Occ(c, Last);
7 i← i− 1;
8 if (Last < First) then return “No rows prefixed byP [1, p]” else return (First, Last).

Listing 3.1: Algorithm backward search locates the rows in MT that are prefixed
by pattern P in p steps.

To find these rows prefixed by P [1, p] we use Lemma 3.1. First we find the
rows starting with just the last character of P , P [p], this we can find using
just C. Then we add characters step by step from the back of P until we
have processed all of P . See Listing 3.1 for the pseudocode of this algorithm.
We only give an intuitive account of the workings of this algorithm here, see
Ferragina and Manzini [8] for a formal proof. Suppose we have determined that
the rows First, . . . , Last start with P [i, p], for some i. We will now show how
to find the rows prefixed by P [i − 1, p]. Let c be P [i − 1]. Some of the selected
rows may end with a c, these rows are the interesting ones. Remember that
LF (i) = C[L[i]]+Occ(L[i], i) is the position of the ith character of L in the first
column F , since it was the Occ(L[i], i)-th character L[i] after C[L[i]]. We can
adapt this slightly to find the first row starting with cP [i, p] = P [i − 1, p]. The
number of c’s before row First in L is Occ(c, First− 1), so our c, if it exists,
should be the first c after that, so it is at C[c] + Occ(c, First− 1) + 1, see also
line 5. Similarly the last row prefixed by cP [i, p] is C[c] + Occ(c, Last). Note
that if c is not in L[First, Last] then Last < First so the guard is no longer
true and the algorithm will correctly report that no matches could be found.
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Until now we have not yet talked about how to calculate Occ(c, q). Examining
L each time we need to know Occ(c, q) seems a bit expensive. Assume for
the moment we build a huge array OCC such that OCC[c][q] = Occ(c, q), then
backward search runs in O(p) time. Do note that OCC requires O(|Σ|n log n) =
O(n log n) bits.

3.4 A Four Russians Trick

Using the array OCC is useful, but its size completely defeats the purpose of any
compression applied to L, since L is only O(n) bits. We will illustrate here a
solution produced by Ferragina and Manzini based on the Four Russians trick.
The trick is named after four Russians [13]: Arlazarov, Dinic, Kronrod and
Faradzev, since they used it first in their paper [2]. This trick is used to reduce
the amount of storage required for calculating Occ efficiently. The trick itself
resembles a divide and conquer approach. This time however the trick suggests
to stop when the problem is ‘small enough’. The outcome is then determined
by looking it up in a precomputed table.

We start by partitioning L in so-called buckets of length l = Θ(log n). So
we have n/l buckets BLi = L[(i − 1)l + 1, il], i = 1, . . . , n/l of length l. For
simplicity we will ignore a lot of details. For a more precise discussion we refer
to Ferragina’s and Manzini’s paper. The partitioning induces a partitioning
of Lmtf into buckets BLmtf

1 , . . . , BLmtf
n/l as well. And finally it also induces a

partition on the compressed text Z = BW RLX(T ) into buckets BZ1, . . . , BZn/l ,
provided some assumptions are met. Note that the latter buckets do not have
equal size.

Recall that Occ(c, q) is the number of occurrences of c in L[1, q]. We apply the
Four Russians trick. Split L[1, q] in three substrings (of which the last ones might
be empty), see also figure 3.3. The first part is the longest prefix of L[1, q] that
has length a multiple of l2. The second part is the longest prefix of the remainder
that has length a multiple of l. The third part is the remainder of L[1, q]. Note
that by construction the last part will be the prefix of a single bucket. The idea
of determining Occ(c, q) is now as follows. First get the number of occurrences
of c in substring one. Then get the number of occurrences in substring two. We
are left with a substring of L with length less than l. The number of occurrences
of c in this last part can only be obtained by examining the correct compressed
bucket. This is where the precomputed table of solutions comes in. We just
look up the required information in a table indexed by the bucket, the character
c and the length of the remaining substring. Adding these three numbers gives
Occ(c, q).

The previous paragraph already alluded to two data structures for counting the
occurrences in the first and second substring, as well as the lookup table. Note
that all of these data structures can be precomputed. We brushed over two
important elements. First of all we need to find the last bucket in Z containing
a piece of L[1, q], that is we need to know where it begins and ends. In order to
get this information we store for every substring of type one as well as for every
substring of type two its compressed size in bits. Note that in the latter case
we only need to store its length up to the first multiple of l2. These two data
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Figure 3.3: A possible splitting of L[1, q] into the three substrings. Type 1 has
length a multiple of l2, type 2 has a length a multiple of l and finally type 3 has
length less than l.

structures may be precomputed as well. Now we are able to locate the bucket
and we come to the second important element: we need the MTF-list before we
can say anything about the content of the bucket. So we also store the content
of the MTF-list for every bucket and index the lookup table with this list as
well. Table 3.1 summarizes the various data structures and their sizes.

Substrings of length a multiple of l2

number of occurrences O(|Σ|n/l2 log n) = O(n/ log n)
compressed bucket sizes O(n/l2 log n) = O(n/ log n)
Substrings of length a multiple of l
number of occurrences O(|Σ|n/l log(l2)) = O(n/(log n) log log n)
compressed bucket sizes O(n/l log(l2)) = O(n/ log n)
Substrings of length less than l
MTF-lists O(|Σ|n/l log |Σ|) = O(n/ log n)

lookup table O(|Σ|l2l′2|Σ| log |Σ|)

Table 3.1: An overview of the various additional data structures in Opp(T ) and
the corresponding sizes.

It is proven in [8] that this set of data structures allows us to compute Occ(c, q)
in O(1) time using |Z|+ O(n(log log n)/(log n)) bits of storage. Combining this
fact with bound 3.1 we get the following major result from Ferragina’s and
Manzini’s paper.

Theorem 3.2. Using procedure backward search we can compute the number

of occurrences of a pattern P [1, p] in T [1, n] in O(p) time. It needs at most

5nHk(T ) + O(n log log n
log n ) bits, for any k ≥ 0, to store the precomputed data

structures.

We will need this set of data structures a couple of times more, so denote this
set by Opp(T ).

3.5 Locating the Patterns

Recall how the result of the backward search algorithm is a set of rows [First,Last

in MT that are prefixed by the pattern P . We are however interested in the
location of these (Last − First + 1) occurrences in the original text T . Note
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that every row starts with a suffix of T , we are interested in the position of these
suffixes in T . However it is not completely trivial to find the position of these
suffixes since their location in MT is determined by sorting cyclic permutations
of T . Rebuilding this mapping every time costs O(n2 log n) time because of
sorting n cyclic permutations (comparing two permutations takes O(n) time as
well). This is not acceptable from a performance point of view. On the other
hand, storing the mapping in a table is not acceptable from a storage point of
view since that tabel takes O(n log n) bits.

Ferragina and Manzini propose a different solution. Remember we can step
along T by means of Lemma 3.1. They propose to ‘logically mark’ a limited set
of rows with their position in T . Now when a position of a row is requested there
are two possibilities: either we know its position because the row is marked, or
we do not. In the latter case we can always step to the row that has a prefix
that starts one position earlier because of Lemma 3.1 and try again until we
find a marked row.

Let Pos(i) be the position of the suffix of T starting in row i of MT in the
original text T . In our example in Figure 3.1 we have Pos(4) = 7 since suffix
ering starts at position 7 in T . To step back one position from row i we need to
find j such that Pos(j) = Pos(i)− 1. Or in other words: we need to find j such
that T [Pos(i) − 1, n] = T [Pos(j), n]. Using Lemma 3.1 one may conclude this
is as simple as writing j = C[L[i]] + Occ(L[i], i), however we do not yet know
what L[i] is. Fortunately we can find this out by calculating the difference
between Occ(c, i) and Occ(c, i − 1) for all characters c. The result is algorithm
backward step; see Listing 3.2. For a formal proof of the correctness see [8].

1 Algorithm backward step(i)
2 Compute L[i] comparing Occ(c, i) with Occ(c, i− 1) for every c ∈ Σ ∪#.
3 if (L[i] = #) then return “Pos(i) = 1”;
4 else return C[L[i]] + Occ(L[i], i);

1 Algorithm get position(i)
2 i′ ← i, t← 0;
3 while row i′ is not marked do

4 i′ ← backward step(i′);
5 t← t + 1;
6 return Pos(i′) + 1;

Listing 3.2: Algorithms backward step and get position.

Now on to the marking of the rows. Here we have a tension between two of our
requirements. If we mark more rows queries will be faster, however marking
more rows requires more space. We solve this by introducing a parameter ǫ.
Let the distance between two markers be η = ⌈log1+ǫ n⌉. Mark every row rj

such that Pos(rj) = 1 + jη for j = 0, 1, . . . , ⌊n/η⌋. So within η steps we always
find a marker. The algorithm to do this is get position, see Listing 3.2. Since
backward step takes constant time, every iteration of get position takes constant
time as well. So finding the position of one occurrence takes O(log1+ǫ n) time.
Finding occ occurrences of P in text T then takes O(occ log1+ǫ n) time.

We have assumed that checking if a row is marked takes constant time. This
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can be done using a Packet B-tree, see [8] for the details. This data structure
uses O(n/ logǫ n) bits. The results are formalized in the following theorem.

Theorem 3.3. For any text T [1, n] we can build a compressed index such that

all the occ occurrences of P [1, p] in T can be retrieved in O(p + occ log1+ǫ n)
time and at most 5nHk(T ) + n

logǫ n bits space, for any k ≥ 0.

3.6 LZ78 Parsing

The previous result in Theorem 3.3 showed a time complexity of O(p+occ log1+ǫ n).
In the last part of their paper Ferragina and Manzini show that this bound can
in fact be lowered to the theoretical lower bound of O(p + occ). To do this they
adapted the manner in which rows are marked and combined this in a new way
with the previous results. The improvement in marking is brought about by
considering a compression technique developed by Lempel and Ziv.

In 1978 Lempel and Ziv described in their paper [17] an adaptive dictionary
encoder for compressing text. A dictionary encoder uses a dictionary to encode
a string [3]. First the text is split into words that are in the dictionary. This is
called parsing (note that in general there are a lot of ways to split a text into
dictionary words). Then each word is replaced by a reference to this word in the
dictionary. However dictionary encoders with a fixed dictionary do not perform
very well. The version by Lempel and Ziv is adaptive and it therefore usually
performs better.

Ferragina and Manzini only used the parsing part of the dictionary encoder.
The parsing method of Lempel and Ziv will henceforth be known as the LZ78
parsing. The most important aspect of the LZ78 parsing is that it splits the
input text T in a sequence of d words T1, T2, . . . , Td such that T1T2 . . . Td = T .
Each of these words (except possibly the last word) is bound by the following
constraint: it is either

1. a single new character that is not one of the previous words, or

2. it is an existing word followed by one additional character.

To make this parsing unique we require that we always make the next word
as long as possible. By construction all words are unique, with the possible
exeption of the last word because it is not always possible to add sufficient
characters to the last word to make it distinct from the previous ones. As an
example the LZ78 parsing of T = engineering is e, n, g, i, ne, er, in,

g. In the remainder of the chapter we shall assume, for simplicity’s sake, that
the last word is unique as well.

Let T = T1T2 . . . Td be the LZ78 parsing of T . The set D = T1, . . . , Td is called
the dictionary. It can easily be seen that the dictionary is prefix-complete. That
is, every nonempty prefix of a word in D is again contained in D. This property
will be very important later on.

Theorem 3.4. Let T = T1T2 . . . Td be the LZ78 parsing of text T then d =
O(n/ log n).
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Proof. This prove is due to Wim Hesselink. Another, somewhat similar proof
appears in [11]. We know T, T1, . . . , Td ∈ Σ∗ and |T | = n. To prove the order
we need to show that d ≤ A n

log n for some A > 0. Since we would like to bound
for d it suffices to consider only the maximum. Define dk as the number of Ti’s
of length k and let x be |Σ|.

It is clear that d is maximal when for some integer m > 0 dk = xk for k < m,
dk = 0 for k > m and 0 ≤ dm ≤ xm, since the smaller the words, the more we
can fit into T . Now we find an upperbound for d

d =
∑

k∈N

dk ≤
∑

k≤m

xk =
xm+1 − 1

x − 1
≤

xm+1

x − 1
(3.2)

and a lowerbound for n

n =
∑

k∈N

kdk ≥
∑

k<m

kxk = x
d

dx

∑

k<m

kxk = x
d

dx

(

xm − 1

x − 1

)

=
1

(x − 1)2
(

x(x − 1)mxm−1 − xm−1x2 + x
)

≥
1

(x − 1)2
(

x(x − 1)mxm−1 − xm−1x2
)

put y := x − 1 and suppose x ≥ 2 and m ≥ 3 to obtain

n ≥
1

(x − 1)2
(

x(x − 1)mxm−1 − xm−1x2
)

=
xm−1

y2

(

(m − 1)y2 + (m − 2)y − 1
)

≥ (m − 1)xm−1 (3.3)

Let r := m − 1 to get rxr ≤ n and d ≤ Bxr for B = x2

x−1 . We would like to get
rid of the B as well so let z = d/B, this yields z ≤ xr and xr ≤ n/r.

Remember we wanted to show that d ≤ A n
log n , or equivalently, z ≤ A′ n

log n . We

get this for free from the last inequality if we take r ≥ log n
1+ǫ for any ǫ > 0 since

this implies z ≤ (1+ǫ)n
log n . Now consider r < log n

1+ǫ we then get:

z ≤ x
log n

1+ǫ = n
log x

1+ǫ <
n

log n

where the last inequality follows from:

log n < n1− log x

1+ǫ

given that 1+ǫ > log x. So we have found that z ≤ (1+δ) log x n
log n , with δ > 0.

It follows directly that d ≤ A n
log n for A = x2

x−1(1 + δ) log x.

Because of the complexity of the solution we are forced to repeat some of the
notation of Ferragina and Manzini. Introduce a new string

T$ = T1$T2$ · · · $Td$ (3.4)
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where $ is a character that is not in Σ and is alphabetically smaller than all
characters except #. This string is introduced because the $’s in T$ will take
the role of the markers in the previous section. For every $ following Ti we store
its position 1 + |T1| + |T2| + · · · + |Ti| in T . Suppose now we have a pattern
P that overlaps such a marker, i.e. it crosses the boundary between two words
in the parsing of T . If we know its relative position to the marker we know its
location in T . This well be the main idea in the remainder of this chapter.

Not every pattern will however overlap a word boundary. These occurrences
are what Ferragina and Manzini call internal occurrences. We deal with those
in the next section. Another possibility is that a pattern P overlaps one or
more words, as was alluded to in the previous paragraph. These occurrences
are called overlapping occurrences. Finding these is a bit more tricky. Ferragina
and Manzini first showed a straightforward, but suboptimal, algorithm which
they then optimized. We will cover the simple method here but only describe
the changes made to get the optimal version. If possible we will omit the
troublesome details.

We need some more notation before we can continu. Let T R
$ be the string

T$ reversed, that is T R
$ = $T R

d $ · · · $T R
2 $T R

1 . Applying the Burrows-Wheeler

transform gives us the cyclic shift matrix MT R

$
corresponding to T R

$ . Using

Opp(T R
$ ) we can find in O(|P |) time the rows of MT R

$
that are prefixed by

P . Ferragina and Manzini showed that Opp(T R
$ ) is bounded by 5nHk(T ) +

O(n log log n
log n ).

Note that in the next sections we will often call words in D just ‘words’. Do not
confuse these words with ordinary words in a written language, they are rarily
the same.

3.7 Internal Occurrences

We first focus our attention on the internal occurrences of a given pattern P .
So the occurrences where the pattern P is completely contained within a word
Ti. Remember that D is prefix complete. Our overall strategy is as follows:

1. find all words Ti such that P is a suffix of Ti and report the position of P
in T for each of them, then

2. find all Tj such that Ti is a prefix of Tj and report the positions of P in
T for each Tj as well.

Clearly every word found in step one contains P so an occurrence is correctly
reported. Subsequently every word found in step two has a prefix that ends
with P , so the word itself contains P as well and is therefore correctly reported.
Note that every internal occurrence will be found. If P is contained in a Tk,
that is wPw′ = Tk for some w, w′ ∈ Σ∗ then wP is also in D by the prefix
completeness of D and it will be found in step one. In step two the Tk will be
correctly reported.
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Let us first focus our attention to the words found in step one. How can they be
found? Remember the string T$ = T1$T2$ · · · $Td. Searching for P$ seems to be
a good solution to finding all words ending with pattern P . However knowing
where P$ can be found in T$ still leaves us with the question of which words
in D contain the occurrences. It is possible to create a mapping that maps the
position of the $’s in T$ to the corresponding Ti. It is hard (if not impossible)
to store this mapping efficiently. There exists a better solution to finding the
words from step one.

The improved solution makes itself apparent when we examine not T$ but its
reverse, T R

$ . Again we start by first locating the occurrences of the pattern at

word boundaries. This time however we have to search for $PR instead. In
Section 3.3 we showed that in O(p) time we can find the rows in MT R

$
prefixed

by $PR. Furthermore, matrix MT R

$
is sorted so the rows beginning with a $ will

be contiguous. Note that there exists a one-to-one correspondence between the
rows starting with a $ and the words in D. More precisely the row beginning
with $T R

i $ corresponds to the word Ti in D and vice versa.

We wanted to know to which words the occurrences of $PR belong. Create an
array N [1, d] that stores in N [i] the word in D that corresponds to the ith row
in MT R

$
beginning with a $. Now for every row returned by backward search we

can use N [1, d] to look up the corresponding word in D.

The algorithm described in the previous two paragraphs correctly reports the
words in step one. Let’s say these words are Ti1 , . . . , Tik

. Now we need to find
the words that have one of the Ti1 , . . . , Tik

as a prefix. The fact that D is prefix-
complete suggests that this can be solved efficiently by representing D as a trie
T . We label every edge with a character. Consider a node u in the trie. The
path from the root to u always spells out one of the words in D. Henceforth
every node in the trie will just be denoted by the word it spells out.

We dit not yet describe how to report an occurrence. To do so we need the
index vi in T where word Ti begins. Then the occurrences in step one have
positions vi + (|Ti| − p). The trie T is a prefix tree, see [9] and is ideally suited
for storing these indices vi. Just add it as a label to the corresponding node in
the trie T .

1 Algorithm get internal(P [1, p])

2 Search for $P R in MTR

$
thus determining the words Ti1 , . . . , Tik

which have P as a

suffix.
3 For l = 1, . . . , k, visit the subtrie of T rooted at the corresponding node Til

. For
each visited word Tj return the value of vj + (|Til

| − p), where vj is the starting
position of Tj in T .

Listing 3.3: Algorithm get internal retrieves all internal occurrences of pattern
P in text T .

Using the trie we can now easily find all words that have Ti as a prefix. We
simply travers the subtree rooted at Ti. All of these nodes have Ti as a prefix
and should indeed be reported in step two. It is now also clear that the elements
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of N should refer to the corresponding node in the trie to make this process go
smoothly. The algorithm described above is named get internal, see Listing 3.3.

Figure 3.4: Let T = aabaabbbaabbbababbabbb then the relevant piece of MT R

$

is shown on the left. On the right the corresponding trie is shown. The edges
are labeled with the characters. The nodes are labeled with the corresponding
location in T .

Example 3.5. Let us consider a somewhat lengthier example. Let Σ = {a, b}
be the alphabet and let T = aabaabbbaabbbababbabbb. When beginning the
parsing we have no dictionary words yet. So the only possibility is to add a to the
dictionary. For the next word we can extend the a with a b to obtain the longest
possible extention: ab. Our dictionary now contains [a, ab]. Continuing in
this fashion gives the following parsing [a, ab, aa, b, bb, aab, bba, ba, bbab, bbb].
So we have found that T$ = a$ab$aa$b$bb$aab$bba$ba$bbab$bbb$ and T R

$ =
$bbb$babb$ab$abb$baa$bb$b$aa$ba$a.

In Figure 3.4 we can see a piece of MT R

$
. Suppose we want to locate all internal

occurrences of pattern ba. Algorithm get internal dictates that we search for
the rows beginning with $PR = $ab. These are rows 4 and 5. Using array N
we can locate the corresponding parsing words Ti1 and Ti2 . In the trie these
are the nodes pointed to by the arrows, let’s call them p and q. This completes
step 1 of the algorithm.

In step 2 we need to visit each node in the subtries of both p and q. Let’s begin
with p. The only node in the subtrie is itself so we report vi1 + (|Ti1 | − p) =
15 + (2 − 2) = 15. The subtrie of node q contains another node, corresponding
to word Ti3 . For this node we report vi3 +(|Ti2 |−p) = 17+(3−2) = 18. For the
root node q we report vi2 +(|Ti2 | − p) = 12+ (3− 2) = 13. Indeed the positions
13, 15 and 18 are the only positions in T that have an internal occurrence of ba.

The following theorem summarized the results obtained in this section. See [8]
for a proof of the space bounds.

Theorem 3.6. Let occ1 denote the number of internal occurrences of P [1, p] in

T [1, n]. The algorithm get internal retrieves the internal occurrences in O(p +
occ1) time. Algorithm get internal uses a precomputed data structure with space

bounded by O(nHk(T )) + O((n log log n)/ logn) bits.
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3.8 Overlapping Occurrences

As promised we will now concern ourselves with occurrences of the pattern P
that overlap more than one dictionary word. We first present a relatively simple
algorithm. Having done this we will show how these ideas can be optimized.
The core of the simple algorithm is based on the following observation.

Property 3.7. An overlapping occurrence of the pattern P [1, p] starts inside

the dictionary word Tj−1, fully overlaps Tj · · ·Tj+h−1 and ends inside Tj+h for

some h ≥ 0, if and only if there exists an m, 1 ≤ m < p such that P [1, m] is a

suffix of Tj−1 and P [m + 1, p] is a prefix of Tj · · ·Td.

Let us linger on the meaning of this property a bit longer. It states that if an
occurrence of P overlaps some successive words in D then that is equivalent
to stating that we can find a splitting point m such that P [1, m] is a suffix of
the first overlapped word and the remainder of P , P [m + 1, p] is a prefix of the
remainder of T . This suggests the following approach to finding the overlapping
occurrences. For every splitting point m do the following:

1. Find all dictionary words ending with P [1, m].

2. Find all suffixes of T that begin with P [m + 1, p].

3. Check which of the dictionary words immediately precede one of the suf-
fixes and report those occurrences.

Since we check every possible splitting and every possible concatenation this
approach will give all overlapping occurrences.

The previous section suggests searching for $P [1, m]R using backward search to
find all dictionary words ending with P [1, m]. Remember how backward search,
when searching for $P [1, m]R, first finds all rows of MT R

$
prefixed by P [1], then

the rows prefixed by P [1, 2]R, then the rows prefixed by P [1, 3]R and so on until
it finds the rows prefixed by P [1, m]R. Looking at the approach above we see we
would need the rows prefixed by $P [1]R, $P [1, 2]R, . . . , $P [1, m]R one for each
m we choose. By changing backward search a little bit we can obtain all these
sets of rows in one pass. After finding the rows prefixed by P [1, k]R first find the
rows prefixed by $P [1, k]R, this yields one of the desired ranges. Then backtrack
and find the rows prefixed by P [1, k + 1]R, and so on. In doing so we find all
ranges [f∗

m, l∗m] of rows prefixed by $P [1, m]R for all 1 ≤ m < p. Similarly we
can find all ranges [fm, lm] of rows in MT that are prefixed by P [m, p]. Now
we have two sets of ranges that somehow represent the points found at steps
one and two for every m. We only need to combine these in order to complete
step 3.

The property above is stated in such a way that we only need to consider joining
at the word boundary, there are only d of them. Ferragina and Manzini proposed
a geometric approach. For every splitting point m we have ranges [f∗

m, l∗m] and
[fm+1, lm+1]. The approach is based on the following observation. If pattern P
starts in Ti, say Ti = wP [1, m] for some w ∈ Σ∗, then the row of MT R

$
prefixed

by $T R
i $ should be in the range [f∗

m, l∗m]. Similarly the row of MT prefixed by
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Li+1 · · ·LD should be in the range fm+1, lm+1. For every splitting point we thus
need to check which, if any, of the word-boundaries are inside these ranges.

Suppose we draw a 2D grid. On the x-axis we have the rows in MT R

$
. On the

y-axis we have the rows in MT , see also Figure 3.6 for an example. For every
word boundary Ti$Ti+1 we draw a point in this grid. The x coordinate xi is the
row in MT R

$
prefixed by $T R

i $. The y-coordinate yi is the row in MT prefixed by

Ti+1 · · ·Td#. So we have a set of 2D points Q = (x1, y1), . . . , (xd−1, yd−1), each
corresponding to a word boundary. Now for every region [f∗

m, l∗m] × [fm, lm] we
find all points of Q that lie inside this region. We have thus found all overlapping
occurrences.

Finding all the points from Q that lie in a given range is called an orthogo-
nal range query. Note that the dataset we query, the one containing Q, may
be precomputed. Ferragina and Manzini use a result by Alstrup [1] to make
these queries sufficiently fast. The corresponding data structure is reffered to
as RT (Q). The resulting algorithm is shown in Listing 3.4. This data struc-
ture supportes orthogonal range queries in O(log log n + q) time, where q is the
number of retrieved points.

1 Algorithm get overlapping(P [1, p])
2 For m = p, p− 1, . . . , 1, search for P [m, p] in Opp(T ) thus retrieving the range

[fm, lm] of rows in MT prefixed by P [m,p].
3 For m = 1, 2, . . . , p, search for $P [1, m]R in Opp(T R

$ ) thus retrieving the range
[f∗

m, l∗m] of rows in MTR

$
prefixed by $P [1, m]R.

4 For m = 1, 2, . . . , p− 1 use the data structure RT (Q) to retrieve the points of Q
which lie inside the rectangle [f∗

m, l∗m]× [fm, lm].
5 For each point (xj, yj) retrieved at the m−th iteration of the previous step return

the value vj −m, where vj = 1 + |T1|+ · · ·+ |Tj−1| is the starting position of the
word Tj inside T .

Listing 3.4: Algorith get overlapping retrieves all overlapping occurrences of the
pattern P in T .

Example 3.8. Continuation of Example 3.5. We are considering the string
T = aabaabbbaabbbababbabbb over the alphabet Σ = {a, b}. We will use
algorithm get overlapping to find all overlapping occurrences of pattern P = abb.
In step 2 we find the ranges of rows of MT , see Figure 3.5, beginning with a
suffix of P , see the first two rows of Table 3.2. In step 3 we find the rows of
MT R

$
, see Figure 3.4, beginning with $P [1, m]R for m = 1, 2, 3. The results are

shown in the last two rows of Table 3.2.

In step 4 we need to examing the rectangles [f∗
1 , l∗1]× [f1, l1] and [f∗

2 , l∗2]× [f2, l2].
They are shown in Figure 3.6 together with small squares corresponding to the
points in Q. We immediately see there are four such points inside the rectangles.
These correspond to the four overlapping occurrences at positions 5, 10, 16 and
19.

The time and space bounds, as proven by Ferragina and Manzini, are summa-
rized in the following theorem.
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m 3 2 1
P [m, p] b bb abb

[fm, lm] [11,24] [17,24] [7,10]
$P [1, m]R $bba $ba $a

[f∗
m, l∗m] ∅ [7,9] [2,5]

Table 3.2: Shows the results of steps 1 and 2 when searching for P = abb in
T = aabaabbbaabbbababbabbb.

1

2
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8
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12
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17
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20

21

22

23

24

#aabaabbbaabbbababbabbbb

aabaabbbaabbbababbabbbb#

aabbbaabbbababbabbbb#aab

aabbbababbabbbb#aabaabbb

abaabbbaabbbababbabbbb#a

ababbabbbb#aabaabbbaabbb

abbabbbb#aabaabbbaabbbab

abbbaabbbababbabbbb#aaba

abbbababbabbbb#aabaabbba

abbbb#aabaabbbaabbbababb

b#aabaabbbaabbbababbabbb

baabbbaabbbababbabbbb#aa

baabbbababbabbbb#aabaabb

bababbabbbb#aabaabbbaabb

babbabbbb#aabaabbbaabbba

babbbb#aabaabbbaabbbabab

bb#aabaabbbaabbbababbabb

bbaabbbababbabbbb#aabaab

bbababbabbbb#aabaabbbaab

bbabbbb#aabaabbbaabbbaba

bbb#aabaabbbaabbbababbab

bbbaabbbababbabbbb#aabaa

bbbababbabbbb#aabaabbbaa

bbbb#aabaabbbaabbbababba

MT

Figure 3.5: The Burrows-Wheeler transform of T = aabaabbbaabbbababbabbb.
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Figure 3.6: The 2D grid displaying all point (xi, yi) as small squares. The
orthogonal ranges are shown as rectangles. Along the x-axis are the rows in
MT R

$
, while along the y-axis are the rows in MT .



30 Indexing Compressed Text

Theorem 3.9. Let occO denote the number of overlapping occurrences of P [1, p]
in T [1, n]. Algorithm get overlapping retrieves them in O(p log log n+occO time.

The precomputed data structures used by get overlapping take O(nHk(T ) logǫ n)+
O(n/log1−ǫn) bits of storage overall, where 0 < ǫ < 1 is an arbitrary constant

chosen when building the data structures.

3.8.1 A Faster Approach

As mentioned before the theoretical lower bound of finding all occurrences of a
pattern P [1, p] is O(p + occ), so the previous result is off by a factor log log n.
Ferragina and Manzini removed this factor by reducing the number of orthogonal
range queries, since they are responsible for this unnecessary factor. Instead of
trying all m as possible splitting points we only examine points of the form
m = 1 + i log log n, where we just assume that log log n is an integer.

Again we will employ a defining property to obtain a correct algorithm. Let
T−k

j be the word Ti without the last k characters, that is T−k
j is the prefix

of Ti with length |Ti| − k. Similarly let T +k
i be the suffix of length k of Ti.

The following property states that there is always a splitting point of the form
m = 1 + i log log n within log log n characters of a word boundary, provided of
course that a character overlaps multiple words.

Property 3.10. An overlapping occurrence of pattern P [1, p] starts inside the

dictionary word Tj−1 and ends inside Tj+h, for some h ≥ 0, if and only if there

exist i ≥ 0 and k ∈ [0, log log n − 1] such that P [1, i log log n + 1] is a suffix of

T−k
j−1 and P [i log log n + 2, p] is a prefix of T +k

j−1Tj · · ·Td.

This property has an interesting reading. If we not only consider our anchoring
points right at the splitting of a word but also in a small neighborhood of those
word-boundaries we only have to test p/(log log n) possible splitting points of P .
Our general approach is identical to the previous attempt. Only this time we
have to take into account the extra anchoring points and what to do with them.
Create a new data structure Q′ that contains points (x, y) for every anchoring
point, just like they did for Q. For each i, k let xi,k be the row of MT R

$
prefixed

by ($T−k
i $)R and yi,k the row of MT prefixed by T +k

i Ti+1 · · ·Td#, provided
that k ≤ |Ti|. Note that by the prefix-completeness of D the string T−k

i is also
in D. We associate the value vi,k = 1 + |T1| + · · · + |Ti−1| − k with the point
(xi,k, yi,k) and add each of these points to Q′.

Now that we have created additional anchoring points we know by the property
stated above that we only need to test splitting the pattern P [1, p] at points of
the form m = i log log n+1. The resulting algorithm can be seen in Listing 3.5.
The query time for the data structure RT (Q′) is again O(log log n + q) where q
is the number of retrieved points. The results are summarized in the following
theorem.

Theorem 3.11. Let occO denote the number of overlapping occurrences of a

long pattern P [1, p] in T [1, n]. Algorithm get overlapping fast retrieves them in

O(p + occO) time. It requires O(nHk(T ) logǫ n) + O(n/ log1−ǫ) bits of storage

for the precomputed data structures. Here ǫ is an arbitrary constant, 0 < ǫ < 1.
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1 Algorithm get overlapping fast(P[1,p])
2 For m = p, p− 1, . . . , 1, search for P [m, p] in Opp(T ) thus retrieving the range

[fm, lm] of rows in MT prefixed by P [m,p].
3 For m = 1, 2, . . . , p, search for $P [1, m]R in Opp(T R

$ ) thus retrieving the range

[f∗

m, l∗m] of rows in MTR

$
prefixed by $P [1, m]R.

4 For j = 0, 1, . . . , ⌊(p− 2)/(log log n)⌋, set h = j log log n + 1 and use the data
structure RT (Q′) to retrieve the points of Q′ which lie inside the rectangle
[f∗

m, l∗m]× [fm, lm].
5 For each point (x, y) retrieved at the j−th iteration of the previous step return the

value vi,k − (j log log n + 1), where vi,k is the value associated with (x, y).

Listing 3.5: Algorith get overlapping fast retrieves all overlapping occurrences of
the pattern P (1, p) in T (1, n).

3.8.2 Summary of Results

In this section and the preceding one we have seen how we can handle both
internal and overlapping occurrences. Searching for an occurrence takes O(p +
occI) time in the internal case and O(p + occO) time in the overlapping case.
Combining them yields an algorithm of order O(p + occ), where p is the length
of the pattern P and occ the number of occurrences of P in T . We summarize
the overall results in the following theorem.

Theorem 3.12. For any text T [1, n] we can create a full-text index that supports

queries for a pattern P [1, p] in O(p + occ) time. The size of the precomputed

index is bounded by O(nHk(T ) logǫ n) + O(n/ log1−ǫ) bits for any k ≥ 0. The

constant 0 < ǫ < 1 is an arbitrary constant chosen when building the index.
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Chapter 4

Regular expressions

The full-text index described in the previous chapter is perfectly fine for locating
specific patterns P [1, p]. However we might envision asking, for a given text, a
query like: where are all the quoted pieces in this text? Or maybe even: what
are all the quoted pieces in this text? And what about finding all the numeric
expressions in a text? None of these questions can easily be answered by a
query for a pattern, since we a priori do not know what the pattern looks like.
A query language that is more suited to answer these kinds of questions is that
of regular expressions.

Ordinarily regular expression engines operate by examining the entire text char-
acter by character, while performing some simple bookkeeping. It is our goal
to create an engine that does not have to scan the entire text, but instead uses
the full-text index described in the previous chapter. We will begin by recalling
the formal definition of a regular expression. Over the years quite a number
of extensions have been made to this formal definition to make application of
these regular expressions easier. We will briefly touch upon them as well, since
we will implement some of these extensions.

We have chosen to find all matches of a given regular expressions instead of
just the longest-leftmost match. This choice does have major repercussions in
the sense that for some regular expressions the result will contain a great many
overlapping and nested results. The rule of always picking the longest-leftmost
match is however not infallible either. In [6] these problems are discussed in
greater detail. The authors propose an alternative to the longest-leftmost rule
that is more suitable in most practical applications involving large written texts.
As can be seen there are many different options about which match to pick, in
order to allow the most flexibility we have opted to just find them all.

After giving the formal definition in Section 4.1, we will examine a set-based
implementation of this formal definition in Section 4.2. We derive both a time
and a space bound for this method. Most of the current fast implementations
are based on some kind of NFA method. We will examine this method in
Section 4.3 and then design a competitive implementation of this NFA method
that utilizes the full-text index. Finally we consider the difficulties that occur
when retrieving a match in Section 4.4.

33
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4.1 Formal Definition

Regular expressions offer a way of describing so-called regular languages. In
the formal sense a language is a set of strings over a given alphabet. The set
L = {s ∈ Σ∗ : s = ban, n ∈ 0, 1, 2, . . .} is an example of such a language over the
alphabet Σ = {a, b}. The corresponding regular expression R is given by ba*,
in other words, a b followed by zero or more a’s. Note how we have written the
literal parts of the regular expressions in typewriter font to distinguish it from
the other text.

It is useful to describe regular expressions in an inductive fashion, see for ex-
ample [10] for a classical account. We summarize those results here. The main
idea is that every regular expression has an associated language. We will write
L(R) for the language associated with the regular expression R. We will shortly
show how operators on regular expressions operate. First we need to examine
the basic building blocks:

1. The constants ǫ and ∅ are regular expressions. They represent respectively
the language ǫ, containing only the empty string, and the language ∅, the
empty language. Summarizing, L(ǫ) = {ǫ} and L(∅) = ∅.

2. If a is a character in the alphabet then a is a regular expression denoting
this character, that is L(a) = {a}.

3. A variable L representing a language is a regular expression.

There are three valid operators: union, concatenation and the Kleene closure.
In the following let both A and B be regular expressions. We have the following
induction steps:

1. The union between A and B is denoted A|B and is a regular expression.
The corresponding language is the union of the languages defined by A
and B, that is L(A|B) = L(A) ∪ L(B).

2. The concatenation of A and B is denoted by AB and is a regular expres-
sion. The corresponding language is obtained by taking the concatenation
of all strings in A with all strings in B, that is L(AB) = L(A)L(B) = {ab ∈
Σ∗ : a ∈ L(A), b ∈ L(B)}.

3. The Kleene closure of A is denoted by A∗ and is a regular expression. The
corresponding language is obtained by taking the closure of L(A), L(A)∗.
Each element in L(A)∗ can be obtained by taking an arbitrary number
of strings from L(A), it is allowed to take one string multiple times, and
concatenate them. Note that the empty string is also in L(A)∗.

4. The parenthesized regular expression (A) denotes the same language as
A, that is L((A)) = L(A).

In practice we will never use the regular expression ∅. As for notation, we have
deviated a bit from Hopcroft et al. [10] here, in favour of the more common
notation employed by many Unix tools. Let us look at the precedence of the
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operators. The star binds strongest, it binds to the smallest complete regular
expression to the left. The next strongest operator is the concatenation. After
grouping the closures we group the adjacent expressions. The weakest opera-
tor is the union operator, it binds least. When it is not clear how to group
expressions we associate them from the left.

Example 4.1. The regular expression aaba is grouped as (((aa)b)a). The
regular expression 1(1|0)*|0 is grouped as (1((1|0)*))|0. It represents all
positive binary numbers without leading zeroes.

When applying regular expressions in real-world scenarios the semantics change
a bit. When a string matches a regular expression it usually does not imply
that the entire string is in the language represented by the regular expression,
but rather that a substring is. As a result we can only speak of ‘a match’ for
the regular expression. We will just try to find all of them.

4.1.1 Modern extensions

Sometimes writing expressions using the building blocks above becomes a bit
tedious. Suppose we want to match an arbitrary character followed by the word
‘tree’. The only possible solution is to create a big union of the form (a|b| · · · |y|z)
to match an arbitrary character, provided that the alphabet Σ = {a, b, . . . , y, z}.
The solution is to introduce the regular expression ., pronounced dot, such that
L(.) = Σ. Furthermore we introduce a couple of variants for repetition. The
operator + means one or more times, so A+ equals AA∗. The operator ? means
zero or one times, so A? equals (ǫ|A).

4.2 Set-based implementation

In the set-based approach a set of pairs will represent all matches of a cor-
responding regular expression. Initially these sets are generated by using the
full-text index to searching for the strings and find all matches. Then we apply
operators to these sets to obtain new sets, this continues until the entire regular
expression has been processed.

Each pair will denote a match (a, b), the first component, a, corresponds to
the starting position of the match in T . The second component, b, is the first
character after the match, so (a, b) matches T [a, b−1]. Note that in this context
an empty match is just of the form (a, a). Denote the set corresponding to a
regular expression A by S(A).

The basis elements of a regular expression as defined in the previous section
are not entirely suited for this approach. Imagine the embarrassingly simple
regular expression foobar. Decomposing it using the previous definition gives
six sets, one for each of the characters, and five operations on these sets. This
is of course far from optimal since using the full-text index to just find foobar

gives only one sets and no operations. The latter is obviously preferable. So
somehow we want to consider a string as one unit, instead of a concatenation
of characters. Make the following change to the definition of the basic building
blocks.
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2’. If w is a nonempty string, that is w ∈ Σ+, then w is a regular expression
denoting this string, so L(w) = w.

To remove the ambiguity caused by the fact that concatenating two strings is
possible as well change the induction step to:

2’. The concatenation of regular expressions A and B is denoted by AB and
is a regular expression unless both A and B are as in basis step 2’. The
corresponding language is L(AB) = L(A)L(B).

Translating ǫ and ∅ into sets is rather easy. Let for a text T [1, n] the set
ξ = {(a, a) : a ∈ 1, . . . , n} represent the regular expression ǫ, that is S(ǫ) = ξ.
In a way ξ denotes that at any point in T we can match the empty string ǫ.
Since T is never empty, ∅ is represented by itself, so S(∅) = ∅.

The operations are rather easy to define on the sets. Suppose we have two
regular expressions A and B, with corresponding sets of matches S(A) and
S(B). Then

1. The set corresponding to the union A|B is given by

S(A|B) = S(A) ∪ S(B) = {(p, q) : (p, q) ∈ S(A) ∨ (p, q) ∈ S(B)}, (4.1)

since it may contain matches of A as well as matches of B.

2. The set corresponding to the concatenation AB is given by

S(AB) = S(A) ◦ S(B) = {(p, q) : (p, r) ∈ S(A) ∧ (r, q) ∈ S(B)}, (4.2)

since matches in B have to follow matches in A.

3. The set corresponding to the closure A∗ is given by

S(A∗) = ξ ∪ {(p, q) : (p, q) ∈ An, n ∈ P}, (4.3)

since every match for A∗ is obtained by repeating A arbitrarily often.

This definition gives a remarkable clean solution for finding all matches of a
given regular expression R, it is however not very efficient. As mentioned before
the full-text index from the previous chapter will take care of creating the sets
corresponding to the strings. To facilitate reasonably quick operations we need
to consider a suitable data structure for the sets. It is desirable to keep the
sets as small as possible, since both the union and the closure can increase the
number of elements significantly. A nice solution to this problem is by just
demanding that the data structures should not contain any duplicates, we will
see that we can do this without an additional penalty. Furthermore to calculate
a concatenation we need to swiftly locate all elements of the form (a, ·), for some
a ∈ {1, . . . , n}. As a solution create a linked list L with the elements sorted by

(a1, b1) ≤ (a2, b2) ≡ a1 < a2 ∨ (a1 = a2 ∧ b1 < b2). (4.4)

In addition create a hashtable H indexed with keys in {1, . . . , n}. If there exist
elements (a, ·) in L then H(a) points to the first of those elements in L. This
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way we can easily find all elements (a, ·) by simply looking up H(a) and then
following the linked list.

Let us examine the algorithm for calculating the union of two sets. It is union

in Listing 4.1. Merging LA and LB is easy since they are both sorted and the
linkedlist supports iterating. As a result step 3 takes only O(|LA|+ |LB|) time,
the same timebound holds for step 4 so calculating the union can be done in
O(|LA| + |LB|) time.

Determining the concatenation is a bit more involved. Take a look at equa-
tion (4.2), for every (p, r) ∈ LA we need to add (p, q) for every (r, q) ∈ LB. See
Listing 4.1 for a more formalized version of concatenation. The algorithm takes
O(|LA||LB|) time since worst case every element has to be connected to every
other element.

1 Algorithm union((LA, HA), (LB , HB))
2 Let L be an empty linked list, and H an empty hashtable.
3 Merge the elements from LA and LB into L by always adding the smallest element first.
4 Fill hashtable H by iterating over the elements of L.
5 return (L, H).

1 Algorithm concatenation((LA, HA), (LB , HB))
2 Let L be an empty linked list, and H an empty hashtable.
3 for each element (p, r) ∈ LA do

4 for each element (r, q) ∈ LB do

5 Add (p, q) to L
6 Link H(p) to (p, q) if it does not exist already.
7 end
8 end
9 return (L, H).

1 Algorithm closure((LA, HA))
2 Let L and Lprev be empty sets, and H and Hprev be empty hashtables.
3 L← ∅;
4 while L 6= Lprev

5 Lprev ← L, Hprev ← H;
6 (L, H)← union((Lprev, Hprev), concatenation(L, LA));
7 end
8 Lprev ← L, Hprev ← H;
9 (L, H)← union((Lprev, Hprev), (Lξ, Hξ));

10 return (L, H).

Listing 4.1: Algorithms union, concatenation and closure

The final algorithm in Listing 4.1 is closure. Notice how the algorithm just
calculates

ξ ∪
∞
⋃

i=1

Ai (4.5)

which equals S(A∗). The only difference is that we do not take the infinite
union but stop after the set does not change anymore. Suppose LA has length
m. The longest possible sequence of concatenations has length m ≤ n, since



38 Indexing Compressed Text

we cannot go outside the text. A quick calculations shows that taking these m
unions costs O(1 + m + m2 + · · ·+ mm = O(mm+1) time. Since the size of a set
is at most n2 and the maximum sequence has length n we have a slightly more
optimistic bound. The algorithm is timebounded by O(n · n2n2), since we take
n unions of sets of size n2. Neither of these bounds is very promising.

Even though the general ideo of this setbased implementation is simple, calcu-
lating the closure is prohibitively expensive. In the following sections we will see
how we can improve these results. The reason we get a better bound is because
we only determine the closure on demand.

4.3 An NFA based approach

The fastest [7] modern regular expression engines are based on the concept of
a finite automaton. This method was first described by Thompson in 1968 in
[16]. He did so without actually mentioning the finite automata. The term was
not yet well established then. Finite automata are conceptual machines that
have a finite number of states, hence their name. After reading a character the
machine can go to a new state. The initial state is fixed. Some of the states
are socalled accepting states. If an input sequence leads to such a state it is
said to be accepted by the finite automaton, it is in the language. It turns
out that regular expressions can accept the same class of languages as finite
automata can. There exists an easy translation from a regular expression to the
corresponding finite automaton. An excellent formal account of automata and
the translation from regular expresions to automata is given in [10]. We do not
require the rigorous introduction to automata given in [10], we will introduce the
necessary concepts about automata in the following examples. At the same time
we will illustrate how a regular expression can be converted into a corresponding
automaton.

1 2
a

3

b

4a 5
b

Figure 4.1: Automaton corresponding to the regular expression a(b|ab).

Example 4.2. Consider the regular expression R = a(b|ab). The corresponding
automaton is shown in Figure 4.1. Each state is represented by a node. The
initial state is marked by an incoming arrow. In this example it is state 1.
Transitions of the automaton are represented by edges. For example, when the
automaton is in state 2 it can go to state 4 when it reads an a or to state 3
when it reads a b. When there is no outgoing edge with the right character the
automaton blocks. The accepting states are marked with a double circle. The
sequences ab and aab bring the automaton into an accepting state, it is easy to
see that these are the only input sequences leading to such a state. The only
strings in L(R) are ab and aab, so the automaton does indeed correspond with
the regular expression.
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In a way the previous finite automaton is simple. For every node it is always
clear which transition to follow. The next example shows that this is not always
the case.

1 2
b

3

b

4
a

5b 6
b

Figure 4.2: Automaton corresponding to the regular expression b(bb|ba).

Example 4.3. Consider the regular expression b(bb|ba). Drawing an automa-
ton like the one in the previous example gives Figure 4.2. This automaton has
a problem in state 2, if it reads a b it can go to state 3 as well as state 5. To
deal with these kinds of transistions assume that the automaton will magically
choose that transition that will lead to accepting state, if such a transition ex-
ists. Note that this really requires some kind of magic since the remainder of
the input is not yet known at the moment the automaton has to make that
decision. As an example, after reading bb of bbb the automaton will go to state
5 and not state 3. If it however reads bb as a beginning of bba it will go to state
3 instead.

Automata where there always is only one possible transition are called deter-
ministic finite automata, or DFA’s. When magic is required to decide which
transition to take the automaton is called a nondeterministic finite automaton,
or NFA. Note that it is not possible to build an NFA since we do not know how
to implement the magic component. It is however possible to convert an NFA
to a DFA, see [10] for the details.

1 2
ǫ

3ǫ 4
b

5
b

6
a

7

ǫ

8
b

9
a

10
a

11

ǫ

ǫ

ǫ

ǫ
Figure 4.3: Automaton corresponding to the regular expression (bba|baa)*.

Example 4.4. Consider the regular expression (bba|baa)*. The corresponding
automaton is shown in Figure 4.3. Notice the introduction of a new kind of
transition, the ǫ-transitions, marked by an ǫ. Before and after every transition
the automaton can follow an arbitrary number of ǫ transitions. Notice how the
structure of the regular expression shows itself in the automaton. States 3, 4,
5 and 6 are responsible for matching bba, states 7, 8, 9 and 10 are responsible
for matching baa. The split in state 2 corresponds to the union (bba|baa) and
finally the surrounding ǫ-transitions are responsible for the closure.

An NFA that includes ǫ-transitions is often called an ǫ-NFA. Once again adding
these special transitions does not make the total class of possible languages big-
ger. An ǫ-NFA is just as strong as a DFA. See once more [10] for an algorithm for
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converting an ǫ-NFA into a DFA that accepts the same language. Eventhough
adding ǫ-transitions and nondeterminism doesn’t increase what the automaton
can do, it does make it easier to build automata.

The same induction steps as used originally to define regular expressions can be
used to construct a corresponding ǫ-NFA from a regular expression. Each basis
part of a regular expression gets converted to an ǫ-NFA. Combine these using
the induction steps above to obtain a new automata.

ǫ

(a) (b)

a

(c)

Figure 4.4: The basis constructions of a regular expression converted to an NFA.

In Figure 4.4 the three basis components for a regular expression are shown
in NFA-form. Subfigure (a) shows the automaton corresponding to the regu-
lar expression ǫ. It correctly accepts the language {ǫ}, since that is the only
input that leads to an accepting output. Subfigure (b) shows the automaton
corresponding to the regular expression ∅. Since there are no transitions to the
accepting state it does not accept anything, that is the language is ∅. Subfigure
(c) show the automaton for accepting the character a.

How to combine these very simple automata is shown in Figure 4.5. The blocks
with the A or B inside represent the automata corresponding to regular expres-
sions A and B. In subfigure (a) we see the automaton corresponding to the
regular expression (A|B). As a result of the ǫ-transitions the only two possible
paths to get to the accepting states are through either A or B, so it accepts the
correct language. Subfigure (b) shows the concatenation of A and B, that is
it corresponds to the regular expression AB. The construction of the automa-
ton forces it to first read an acceptable input for A followed by an acceptable
input for B before it reaches an accepting state. Again it accepts the correct
language. Finally subfigure (c) shows an automaton for the closure of A. The
ǫ-transitions make sure the automaton can reach the accepting state by passing
A zero, one or more times. As a result the automaton accepts the correct input.
For a formal account see [10].

4.3.1 Simulating an automaton

We have seen how every regular expression can be converted to an ǫ-NFA. This
is very useful since NFA’s are very easy to simulate. We first show how to
simulate the automaton. This gives an algorithm for using a regular expression
in its orginal sense, the automaton will report for every input string if that
string is in the alphabet. Later on we show how we can adapt this algorithm to
report all possible matching substrings.

Simulating a DFA is straightforward. At every point the automaton is only in
one, well-defined state. Reading a character brings the automaton to a next
state that is also well-defined. So keeping track of the current state is sufficient
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Figure 4.5: The inductive constructions of a regular expression converted to an
NFA.
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to simulate a DFA. Things change when simulating an NFA. As a result of the
nondeterminism we don’t know in which state the automaton is. The solution
is to keep track of all possible states that the automaton can currently be in.
When processing the next character the algorithm considers each state in turn
and adds all possible new states to the set of current states. In this way we
just simulate the automaton to be in a lot of states at once. Since it is a finite
automaton, there are only a finite number of states, so this is perfectly doable.

1 Algorithm simulate NFA(T, nfa)
2 Let Sold be an empty set of states.
3 Let S by a set of states containing only the initial state.
4 Replace S by its ǫ−closure.
5 while more characters
6 Let c be the next character.
7 Sold ← S; S ← ∅.
8 for each state s in Sold

9 Add states reachable from s by an edge marked with a c to S.
10 end
11 end
12 return “accepted” if an accepting state is in S.

Listing 4.2: Algorithm simulate NFA simulates an ǫ-NFA.

Let us examine Listing 4.2. Set S contains the current set of states. Notice
how we immediately add the ǫ-closure to S. This closure includes all states
reachable by just taking ǫ-transitions, this is necessary because all these states
can be the current state of the NFA. Next we process each character in turn and
advance the machine whenever possible. It is possible that one of the states has
no transitions with a c. In that case that state is discarded. It is also possible
that the same state is reached in more than one way, the fact that we deal with
sets guarantees we only get that state once. At the end we correctly return that
the string is accepted only if there is an accepting state in the final set of states.
This is correct since the NFA would have ended up in this accepting state by
means of its magic.

1 Algorithm find all matches(T, regexp)
2 Let nfa be the ǫ−NFA corresponding to regexp.
3 For each suffix P of T do

4 Run simulate NFA(P , nfa) to find all matching prefixes of P , and report them.
5 end

Listing 4.3: Algorithm find all matches uses simulate NFA to find all matching
substrings

The algorithm simulate NFA can be used to report all possible matches by adapt-
ing it slightly. Suppose we run simulate NFA on a suffix of the input text T . It
will dutifully report if the entire suffix matches. Suppose now that after pro-
cessing a character we check if one of the states in S is accepting. In doing so
we can report all matching prefixes of the suffix of T . By running the algo-
rithm for each suffix of T we thus examine all possible substrings and thus find



CHAPTER 4. REGULAR EXPRESSIONS 43

all matches. The algorithm find all matches that implements this is shown in
Listing 4.3. The following theorem shows the time complexity of this algorithm.

Theorem 4.5. Algorithm find all matches finds all matching substrings of text

T in O(mn2) time, where m is the length of the regular expression and n is the

length of the text T .

Proof. Take a look at the conversion of the regular expression to an NFA as
shown in Figures 4.4 and 4.5. For every character in the basis steps only 2
states are necessary. An induction steps introduces at most 2 new states. So
the number of states of the resulting NFA is O(m).

Now let us look at the actual algorithm. The loop is of course O(n) since T
has length n and we consider every suffix. Algorithm simulate NFA’s outerloop
loops over all characters of P . Since this is a suffix of T it is O(n) as well. The
inner loop loops over all states. Since the number of states is bounded by O(m)
the inner loop is O(m) as well. As a result algorithm simulate NFA is O(mn)
and algorithm find all matches is O(mn2).

4.3.2 Using a full-text index

Notice how simulating an NFA is a more efficient method of finding all matches
than using the set-based approach. However we need the original text to pull
this off. That was not our intent. We opted to use the results of the full-text
index just like in the set-based approach. This is possible but does have some
problems of its own.

Taking a close look at the algorithms above we see that the transitions are
determined by the next character. When using the full-text index we don’t
know what that character is. We propose the following approach. Change the
way in which transitions work. In a sense we replace every character by the
positions in the text where that character occurs. Suppose we have such an
automaton that is at position k in the text. To get the next state we find all
outgoing transitions marked with position k.

A side-effect is that we need to change the automaton for every new input string.
We will see this is not that hard to do. Consider the following pathological
example.

A B
1,3,4,5,8,9,11,13

C
1,3,4,5,8,9,11,13

Figure 4.6: Automaton corresponding to the regular expression aa and text
abaabbaaababa.

Example 4.6. Suppose T = abaabbaaababa and our regular expression is aa.
Following the above construction we get the automaton shown in Figure 4.6.
Every transition is marked with the positions at which an a occurs in the text.
Suppose we start this automaton in position 9. We can go from state A to
state B, so we are in state B and in position 10. Now we cannot go any further
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because 10 is not an outgoing transition. If we start the automaton in position
8 we can transfer to B and then on to C since position 9 is a valid transition
from B to C.

The above example clearly illustrates how such an automaton would work. How-
ever using it in this way is clearly an abuse of the full-text index. Again we
don’t take advantage of the fact that aa occurs less frequent than just an a.
The lists for the transitions are enormous. Remember the solution we used in
the set-based approach: change the basis components of a regular expression to
remove concatenation of strings from the regular expressions. As a result we
only have strings and operations on these strings in our parse tree. We again
take advantage of this fact.

Our translation from regular expressions to NFA’s needs to be updated a bit.
The automata for the regular expression ǫ and ∅ as shown in Figure 4.4 remain
the same. The last basis component is now not just a single character but a
string w. Suppose |w| = l. Since we are building the NFA for a given input T
we can use the full-text index to find all occurrences i1, i2, . . . , ik of string w in
T . The corresponding automaton is shown in Figure 4.7.

A0 A1

i1, . . . , ik
A2

i1 + 1, . . . , ik + 1 . . . Al−1 Al

i1 + l − 1, . . . , ik + l − 1

Figure 4.7: Automaton matching string w at positions i1, i2, . . . , ik in text T

Example 4.7. Continuation of Example 4.6. Using the above definition we can
build a better automaton for matching the regular expression aa. See Figure 4.8
for the automaton for this regular expression and input text abaabbaaababa.
Notice the decrease in the amount of transitions.

A B
3,7,8

C
4,8,9

Figure 4.8: Improved automaton corresponding to the regular expression aa and
text abaabbaaababa.

The next theorem summarizes the efficiency of this NFA-implementation.

Theorem 4.8. The transformation described above will convert a regular ex-

pression to an NFA. This conversion will take O(m+occ) where m is the length

of the regular expression and occ the sum of the number of occurrences of the

various strings in the regular expression. Finding all matches costs O(mn2)
time and O(m + occ) runtime memory.

Proof. We saw before that converting the regular expression to the correspond-
ing NFA takes O(m) time. This time we also need to find all the occurrences
of the substrings. For each substring w of length |w| with occw occurrences this
takes O(|w|+ occw) time. Combining all the substrings gives O(m + occ) where
occ is the sum of all the occw’s. This proves the time complexity of O(m + occ)
for creating the automaton.



CHAPTER 4. REGULAR EXPRESSIONS 45

We have to be a bit more careful when simulating this NFA. We require an
O(1) operation to check if a transition is possible. This can be done using a
hashtable. Storing these hashtables for all the substrings requires O(occ) space.
Using these hashtables does not slow down algorithm find all matches so we can
find them all in O(mn2) time.

4.4 Retrieving Matches

Retrieving matches is one aspect of this new implementation that we have not
yet considered. The result of both the set-based implementation as well as the
NFA-based implemention is a set of indices. For example running find all matches

with automaton in Example 4.7 gives indices (3, 4), (7, 8) and (8, 9) for the sub-
strings T [3, 4], T [7, 8] and T [8, 9]. Retrieving these substrings is not completely
trivial when we only have the compressed text available.

Remember that we can retrieve T by stepping through L. Unfortunately we
then need to know where to start. Remember that the last character of T is
the first character of L, so we do have one starting point. This is not really
optimal since to retrieve a substring at the beginning we need to decode almost
all of T . We propose the following solution. Store for every position in T of
the form n − ηi the corresponding location in L, for i = 0, 1, . . . , ⌊(n − 1)/η⌋
and η = log1+ǫ n for some ǫ > 0. Create a table M of length ⌊(n − 1)/η⌋ + 1
containing these positions. In order to retrieve a match m we can now in η
steps through T reach the end of the match m in T . In an additional |m|
steps we can find the corresponding string. So retrieving a match costs at most
O(m + log1+ǫ n).
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Chapter 5

Discussion

In Chapter 2 we have seen how Shannon defined the concept of entropy as a
measure for the information density of a piece of text. We used this definition
in Chapter 3 to give a bound for the compressed Burrows-Wheeler transform
of a text. I have implemented the BWT and compression part of the algorithm
to get a better grasp of the material. The few tests that I performed showed
a compression ratio of about 50%. Ferragina and Manzini claim [8] that the
compression is comparable to gzip compression.

Using some additional datastructures we have seen how Ferragina and Manzini
manage to build a full-text index with the optimal time bound of O(p+ occ) for
locating a pattern of length p. Ferragina and Manzini state [8] that the storage
space required for the additional datastructures is neglegible. I have not tested
this.

In Chapter 4 we have seen two implementations for regular expression engines
that profit from the full-text index that we built in the previous chapter. Ob-
viously the NFA-based implementation is more efficient than the set-based im-
plementation, since the latter deals badly with closures. Unfortunately, both
implementations suffer from some other problems. When one of the substrings
is very short, say one, two or three characters it occurs very often, thereby caus-
ing the various sets to be very large. This reduces performance a lot. On the
other hand, when dealing with reasonable length substrings both implementa-
tions will in practise be a lot faster in finding all matches in a large text than
an ordinary engine is.

We should not forget however that these implementations are only useful when
the full-text index has already been precomputed. In all other cases it is much
easier to just use the existing engines, since they have a smaller overhead.

For testing purposes I build a simple implementation of the set-based engine. It
used simple string searching as a full-text index. In the small number of tests
that I have performed this implementation worked rather well.

47
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