
Abelian Sandpiles

Nynke Niezink

Bachelor Thesis in Mathematics

August 2008





Abelian Sandpiles

Summary

Sandpiles models have nice physical properties. However, they can also be
studied from an algebraic point of view. In this thesis we consider the abelian
sandpile model. We begin by examining the group structure of this model. The
elements of this group, configurations of the sandpile, can be added by placing
them on top of each other and subsequently letting them topple to a stable
configuration. We show this operation is well defined. It turns out that the
sandpile groups are in fact finitely generated. The structure of the group can
be determined using the minor method.
We define four equivalence relations on the elements of the sandpile group. Each
of these is generated by a different interpretation of the idea that configurations
can be toppled into each other and are thus ‘equivalent’. We compare these
equivalence classes and show that some of them are in fact equivalent.
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Chapter 1

Introduction

Imagine building a sand castle of loose sand. You start with a steady base
and slowly you make it higher and higher. Eventually the slope of what was
meant to be a castle, becomes too large and the pile of sand will collapse. This
illustrates the concept of self-organized criticality, which was first introduced in
1987 by Bak, Tang and Wiesenfeld [1]. A self-organized critical system reaches
a critical state, not because some parameter is fine-tuned, but by its intrinsic
dynamics. In case of the sandpile the same thing happens; when grains of sand
are rained upon a sandpile, after a while it will not get steeper but, because of
small avalanches, the pile will reach its critical slope.

Bak, Tang and Wiesenfeld studied self-organized criticality by a mathematical
sandpile model. Since then sandpile models have raised the interest of mathe-
matical physicists, experimentalists, probabilists, combinatorists and algebraists
[8]. In this thesis I will focus on a subclass of sandpile models: abelian sandpile
models. I will do this from an algebraic point of view.

1.1 The model

The concept of the abelian sandpile model (ASM) is as follows. We consider
a certain number of sites, some of which are connected. Every site has a cor-
responding capacity. When this capacity is exceeded, the site loses grains to
neighbouring sites. This is called a toppling. When a site topples, it can of
course cause neighbouring sites to topple as well. This might cause the first
site to topple once more. To prevent the system from toppling indefinitely, we
introduce sinks. Grains can enter these sinks, but can never leave them. We
can thus think of them as sites without restrictions on the capacity; loose ends
where grains just perish.

If we think of sites as vertices and of the connections between those sites as
edges, we can consider the ASM in terms of graphs [2]. Let V = {1, . . . , n} be
a set of vertices and denote by eij the number of edges from vertex i to vertex
j. The graph is undirected if eij = eji for all i, j ∈ V . Otherwise we speak of
a directed graph. From now on we will restrict ourselves to undirected graphs.
Moreover, we assume that the graphs contain no loops, that is eii = 0 for any i.

1
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2 0

4 2

Figure 1.1: Unstable configuration u = (2, 0, 4, 2).

A vertex may have one or more sinks attached to it. Let si denote the number
of sinks attached to vertex i. In graphs we represent these sinks as ‘dangling’
edges, that are connected to only one site. We call the combination of vertices,
edges and sinks a toppling graph. On this graph we can define configurations.
A configuration u = (u1, . . . , un) is a vector of nonnegative integers. Therefore
Zn
≥0 is the set of all possible configurations. Integer ui can be interpreted as

the number of grains at site i. As mentioned before, every site or vertex i has
a certain capacity. This capacity depends on the degree degi of vertex i, which
is equal to the number of outgoing edges plus the number of sinks attached to
that edge, i.e. degi = si +

∑n

j=1 eij . The capacity of a vertex is its degree minus
one.

If the number of grains at a certain vertex exceeds its capacity, we call a config-
uratation unstable at this vertex. We prefer this over the term ‘unstable vertex’,
which has become common in the literature, since being stable is not an intrin-
sic property of a vertex. If the number of grains at a vertex does not exceed
its capacity, a configuration is stable at that vertex. A stable configuration is a
configuration that is stable at all of its vertices. We denote by Ωn the set of all
stable configurations, that is

Ωn =
{

u ∈ Zn
≥0| ui < degi for all i

}

.

If a configuration is unstable at a vertex i, that vertex topples. This means
that its number of grains ui is decreased by its degree degi, while the number of
grains at neighbouring vertices j are increased by eij . In this way we can define
n toppling operations Ti, one for each vertex. The sequence of topplings, that
causes an initial configuration u to stabilize, is called an avalanche. We denote
the stabilized configuration by T (u), where T is a mapping T : Zn

≥0 → Ωn.

Example 1.1. Consider figure 1.1. We see a toppling graph, consisting of four
vertices, five edges and four sinks. The initial configuration is u = (2, 0, 4, 2).
Vertex 3 contains four grains, while its capacity is deg3 − 1 = 4 − 1 = 3, so u
is unstable at this vertex and will topple. Therefore it has been marked gray in
the figure. The toppling causes vertex 1, 2 and 4 to gain one grain each. The
fourth grain disappears into a sink. As we can see in figure 1.2, both vertex 1
and 4 have become unstable. We choose to topple vertex 1 first, the result of
which is shown in figure 1.3, and after that we topple vertex 4. Figure 1.4 shows
that we have now reached the stable configuration v = (0, 3, 2, 0). We say that
T (u) = v.
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3 1

0 2

Figure 1.2: Ustable configuration (3, 1, 0, 2) obtained by toppling vertex 3 in
configuration (2, 0, 4, 2).

0 2

1 3

Figure 1.3: Ustable configuration (0, 2, 1, 3) obtained by toppling vertex 1 in
configuration (3, 1, 0, 2).

1.2 Toppling operator T

In example 1.1 we could have decided to first topple vertex 4 and then vertex
1. In that way we change the order of the topplings. One might think that
this could lead to a different final state. This however is not the case. The
resulting state is independent of the order in which the topplings are executed,
since toppling operations commute on unstable configurations [9]. This result
is called the abelian property, which is why our sandpile model is called abelian.
The proof of this property is almost trivial, if we keep in mind that it only
concerns two topplings, instead of the full stabilization of a configuration at two
sites.

Theorem 1.2. Topplings of individual vertices commute.

Proof. Let a configuration u be unstable at both vertex i and vertex j (i 6= j),
that is ui ≥ degi and uj ≥ degj . We first consider Ti ◦ Tj. Let v = Tj(u), then

vj = uj − degj

vk = uk + ejk k 6= j

0 3

2 0

Figure 1.4: Stable configuration (0, 3, 2, 0) obtained by toppling vertex 4 in
configuration (0, 2, 1, 3).
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We now apply Ti to v and let w = Ti(v),

wi = ui + eji − degi

wj = uj − degj + eij

wk = uk + ejk + eik k /∈ {i, j}

In the same way we can derive configuration w′ as a result of Tj ◦ Ti:

w′
i = ui − di + eji

w′
j = uj + eij − degj

w′
k = uk + eik + ejk k /∈ {i, j}

We conclude that w = w′. In other words, Ti ◦ Tj(u) = Tj ◦ Ti(u).

In physics literature it is often stated that theorem 1.2 directly implies that
operator T is well defined. This means that it always assigns to a configuration
in Zn

≥0 a unique configuration in Ωn. Meester, Redig, and Znamenski rightly say
that there is a bit more to this. They address the following problem. Assume
configuration u is unstable at vertices i and j. A toppling of vertex i may cause
u to become unstable at another vertex k. This possibly would never have
happened if vertex j had been toppled first. So different toppling orders could
lead to different stable configurations.

This is not the only problem we encounter. It is also not trivial, that the toppling
operator converges. Maybe we can find a configuration u such that repeatedly
toppling does not cause u to stabilize. Let uk (k ≥ 0) denote configuration u
after toppling k times. We say that configuration u does not stabilize, if uk is
unstable for all k ≥ 0. Since the total amount of grains

∑n

i=1 uk
i is non-increasing

and we assume u does not stabilize, this number has to remain constant after a
certain number of topplings K. The only way this can happen is if there exists
a nontrivial cycle of unstable states, for there only exists a finite number of
unstable configurations v that contain

∑n

i=1 uK
i grains. We will prove that the

existence of such a nontrivial cycle is impossible [5].

Theorem 1.3. The toppling operator T converges.

Proof. We will show that there does not exist a nontrivial cycle of unstable
states. Let dis(i) be the minimal distance from vertex i to a vertex that is
connected to a sink. For vertices i, that have sinks attached to them (si > 0),
we thus have that dis(i) = 0. We call these vertices the boundary vertices of
the toppling graph.

First note that the toppling of a vertex i in the ‘interior’ of the toppling graph,
that is dis(i) > 0, does not change total amount of grains

∑n

i=1 uk
i . However, a

toppling of a boundary vertex decreases this sum, because one or more grains
disappear into the sink. So the sum is nonincreasing and only decreases, if a
vertex on the boundary topples. A nontrivial cycle of unstable states therefore
can not contain a toppling of a boundary vertex.

Now let us assume that there does exist a nontrivial cycle, so we can conse-
qutively topple vertices i1, i2, . . . , ik over and over again. Let nj = dis(ij) for
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j = 1, . . . , k. Now take n = min{n1, . . . , nk}. Every time a vertex with distance
n topples in the cycle, the number of grains in a vertex m with dis(m) = n− 1
increases. After at most degm cycles the configuration is also unstable at vertex
m, so this vertex has to be included in the cycle as well.

Repeating this argument we find that some vertices with distances n − 2 to 0
have to be included in the cycle. However, we have seen that a nontrivial cycle
can not contain a toppling of a boundary vertex. This yields that there can not
exist a nontrivial cycle and therefore toppling operator T converges.

Now we have solved our second problem, but we still do not know whether or not
T is well-defined. It could still be that the toppling process does not uniquely
determine a final, stable configuration for every unstable initial configuration.
We will show that every vertex always topples the same number of times, irre-
spective of the order in which we execute the topplings, since this implies that
the toppling order does not affect our final configuration.

Theorem 1.4. The operator T is well-defined.

Proof. This proof is nearly identical to the one given by Meester et al. [9]. If u
is stable then there is nothing to prove. Let u be an unstable configuration and
suppose that

TiN
◦ . . . ◦ Ti2 ◦ Ti1(u)

and
TjM

◦ . . . ◦ Tj2 ◦ Tj1(u)

are both stable. We have to show two things: firstly that M = N and secondly
that sequences i and j are permutations of each other. If these propositions
holds, every vertex always topples the same number of times and T is well-
defined.

We will prove by induction with respect to N that the two propositions hold.
If N = 1 there is nothing to prove. Suppose that N > 1 and assume that both
propositions hold for all configurations having some toppling sequence of length
less than N . Let j = j1, j2, . . . , jM also be a sequence for u. Since vertex i1 is
the first to topple according to sequence i, the initial configuration u has to be
unstable at that vertex. Therefore i1 has to occur at least once in sequence j.
Let k be minimal such that jk = i1. We claim that

TjM
◦ . . . ◦ Tjk+1

◦ Ti1 ◦ Tjk−1
◦ . . . ◦ Tj2 ◦ Tj1(u) (1.1)

and
TjM

◦ . . . ◦ Tjk+1
◦ Tjk−1

◦ Ti1 ◦ . . . ◦ Tj2 ◦ Tj1(u)

are the same. We can show this as follows. Let u′ = Tjk−2
◦ . . . ◦ Tj2 ◦ Tj1(u).

Vertex i1 has not yet toppled at this point, so u′
i1
≥ di1 . Since we also know that

u′
jk−1

≥ djk−1
, we may interchange Ti1 and Tjk−1

. By repeating this argument
we can slide Ti1 to the right completely. Thus configuration (1.1) and

TjM
◦ . . . ◦ Tjk+1

◦ Tjk−1
◦ . . . ◦ Tj1 ◦ Ti1(u)

denote the same stable configuration. Now let v = Ti1(u), then both

TiN
◦ . . . ◦ Ti2(v)



6 CHAPTER 1. INTRODUCTION

and
TjM

◦ . . . ◦ Tjk+1
◦ Tjk−1

◦ . . . ◦ Tj1(v)

are stable and the corresponding sequences are minimal. Using the assumption
we made at the beginning of this proof, we know that M − 1 = N − 1 and
that sequences i2, . . . , iN and j1, . . . , jk−1, jk+1, . . . , jM are permutations of each
other. Consequently, M = N and sequence i and j are permutations of each
other as well, which is what we had to prove.

1.3 Toppling matrices

We have introduced the ASM in terms of toppling graphs. Every graph can
induce an ASM, under the condition that it contains at least one sink. Another
way to consider the ASM is by means of toppling matrices [10].

Definition 1.5. Let V = {1, . . . , n}. An n × n integer matrix ∆ is a toppling
matrix if it satisfies the following conditions.

1. For all i ∈ V : ∆ii ≥ 1 and for all i, j ∈ V , i 6= j: ∆ij ≤ 0

2. For all i, j ∈ V , i 6= j: ∆ij = ∆ji (symmetry)

3. For all i ∈ V :
∑

j∈V ∆ij ≥ 0 (dissipativity)

4.
∑

i,j∈V ∆ij > 0 (strict dissippativity)

This definition only describes toppling matrices of undirected graphs. If we
replace the symmetry property by property 2∗, another dissipativity property,
we define toppling matrices of both directed and undirected graphs.

2∗. For all j ∈ V :
∑

i∈V ∆ij ≥ 0 (dissipativity)

However, we will restrict ourselves to undirected graphs and symmetric toppling
matrices. There exists a bijection between these two sets, which is defined by

∆ij =

{

degi if i = j
−eij else

(1.2)

Notice that this expression can also be written as ∆ = D−E, where D is defined
by Dij = degiδij and E by Eij = eij , with i, j = 1, . . . , n.

Example 1.6. The toppling matrix that corresponds to the graph in figure 1.1,
is given by:

∆ =









3 −1 −1 0
−1 4 −1 −1
−1 −1 4 −1
0 −1 −1 3









.

Toppling operations can be expressed in terms of the toppling matrix. Toppling
a vertex i in a configuration u = (u1, . . . , un) is equivalent to substracting the
ith row of ∆ from u.
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Figure 1.5: Toppling graph: d1 = d2 = 2.

1.4 Recurrent configurations

The space of all configurations on n vertices is Zn
≥0. Only deg1 · deg2 · · · degn

of them are stable. All the others can through toppling return to a stable
configuration. Some stable configurations are more probable to be returned to
than others. Consider for example the configuration z = (0, . . . , 0). There does
not exist any configuration u with z as its stabilized result, that is T (u) = z.
Therefore we say that it occurs with zero probability. Only a small subset
of all stable configurations occurs with nonzero probability. These are called
recurrent configurations [2]. Since we however would like to avoid a probabilistic
definition, we use the following one.

Definition 1.7. A configuration u is recurrent if it is stable and there exists a
(nontrivial) configuration v such that T (u + v) = u.

In this definition, + denotes the vertexwise addition of two configurations. We
denote the set of recurrent configurations by R. Dhar introduced in [7] the so-
called ‘burning algorithm’, that determines whether a configuration is in R or
not. Speer generalized this into his ‘script algorithm’ [12]. However, for really
small graphs we can determine the recurrent configurations by hand.

Example 1.8. Consider the toppling graph in figure 1.5. The set of all sta-
ble configurations is {u1, u2, u3, u4} = {(0, 0), (0, 1), (1, 0), (1, 1)}, since d1 = 2
and d2 = 2. Which of these configurations are recurrent? Certainly, (0, 0) is
not, since in the sequence of topplings leading to the stable configuration (0, 0)
the last configuration before (0, 0) would be either (−1, 2) or (2,−1). These
configurations are not in Z2

≥0. Now let us consider the other three:

(0, 1) + (1, 1) = (1, 2) → (2, 0) → (0, 1)

(1, 0) + (1, 1) = (2, 1) → (0, 2) → (1, 0)

(1, 1) + (1, 1) = (2, 2) → (0, 3) → (1, 1)

So T (u2 + u4) = u2, T (u3 + u4) = u3 and T (u4 + u4) = u4. Therefore the
configurations u2, u3 and u4 are recurrent.

On R we can define an operator ⊕ by x ⊕ y = T (x + y). In chapter 2 we will
prove that the set R combined with this operator forms an abelian group, that
is isomorphic to Zn/∆Zn.

Group Zn/∆Zn is a finitely generated abelian group. It can be decomposed into
a direct product of cyclic groups, see chapter 3, but this structure of Zn/∆Zn

is not trivial. In chapter 4 we present a way to determine this structure.

Several authors have tried to approach the abelian sandpile model in a different
manner than we presented. Nevertheless, the focus remained on the recurrent
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configurations. In order to say something about these configurations, they de-
fined equivalence classes, which we will discuss in chapter 5.

We end this introduction with an example, that was introduced by Redig [10],
called ‘The crazy office’.

Example 1.9. In the crazy office n persons are sitting at a long table, person
1 at the left end and person n and the right end. We think of them as commis-
sioners who have to treat files. All of them can treat at most one file. However,
in reality the commisioners do not treat files at all. In normal circumstances
the files just lay in front of them, but if a commissioner has two or more files
he does the following. He passes on one file to his left neighbour and one to
his right neighbour at the same time and will repeat this, until he has only one
or zero files in front of him. The persons at the left and right end of the table
do things somewhat differently. They also pass on one file to a neighbour, but
throw the other file out of the window.

We present a slightly changed version of this example. To impress their boss
the commissioners have told her that they are able to treat at most three files,
instead of one. In reality they drilled two holes in the floor, one in front of the
table and one behind it. When a commisioner has four or more files in front
of him now, he passes one file on to each neighbour and throws one file in each
of the holes. In that way they lose four files at once. Again he repeats this if
necessary, until he has less than four files in front of him and he can relax.

One day commisioner 1 reads something about abelian sandpile models and
decides to examine the group structure of his coworkers (read: recurrent con-
figurations of files on the table). He realizes that this must have something to
do with Fn, the n × n file dispenser matrix.

Fn =



















4 −1 0 · · · 0

−1 4 −1
...

0 −1
. . .

. . . 0
...

. . . 4 −1
0 · · · 0 −1 4



















Before they drilled holes in the floor, this matrix would have looked as follows:



















2 −1 0 · · · 0

−1 2 −1
...

0 −1
. . .

. . . 0
...

. . . 2 −1
0 · · · 0 −1 2



















.

However, commisioner 1 is not satisfied with his results and would like to know
more. To be continued. . .



Chapter 2

Toppling groups

The set of recurrent configurations R combined with operator ⊕ appears to have
a very nice properties. We can already see this in example 1.8. Consider the
addition table, corresponding to the recurrent configurations in this example,
and compare it to the table of Z/3Z.

⊕ (0, 1) (1, 0) (1, 1)

(0, 1) (1, 0) (1, 1) (0, 1)
(1, 0) (1, 1) (0, 1) (1, 0)
(1, 1) (0, 1) (1, 0) (1, 1)

+ 2 1 0

2 1 0 2
1 0 2 1
0 2 1 0

We conclude that in this case R is isomorphic to the abelian group Z/3Z.
Remind that we added configuration (1, 1) to each of the three configurations
to show that they were recurrent. This was no arbitrary choice. Under addition
of this configuration all elements in R remain the same. Therefore this is the
unit of R.

We will show that any set of recurrent configurations is isomorphic to an abelian
group. This proof and the remainder of this chapter are based mainly on the
work of Redig [10] and Meester, Redig and Znamenski [9].

Our plan is as follows. We will first introduce another set G endowed with
a suitable operation and show that this forms a group. Then we will find a
bijection between this group G and R.

In order to define G, we first have to define the addition operations ai : Ωn → Ωn

by
ai(u) = T (u + δi), for i = 1, . . . , n.

Here δi represents the configuration containing one grain at vertex i and none
at the other vertices. The fact that T is well-defined (theorem 1.4) implies that
the addition operators are well-defined as well and that abelianness holds. This
means that for all i, j ∈ {1, . . . , n} and u ∈ Ωn,

aiaj(u) = ajai(u) = T (u + δi + δj).

Now we are ready to introduce set G:

G =

{

n
∏

i=1

aki

i : ki ∈ N

}

9
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The following theorem states that this set, with multiplication as operation, is
an abelian group.

Theorem 2.1. Set G, viewed as operator on R, defines an abelian group.

Proof. If a configuration u is recurrent we can by definition find a (non-trivial)
configuration v such that T (u+ v) = u. Since v is nontrivial, some of the vi are
nonzero. Now suppose we add v to u very often. As a result we end up with
at least one site with a large surplus of grains. Performing topplings from this
vertex outwards will distribute these grains to all vertices. Since u + v + . . . + v
topples to u, any configuration obtained by topplings of u + v + . . . + v also has
u as stabilized result. Now we are sure that we can find a configuration m such
that mi > 0 for all i and T (u + m) = u.

In terms of set G this means that there exist integers mi > 0 such that

n
∏

i=1

ami

i (u) = u.

Let eu =
∏n

i=1 ami

i and consider Au = {v ∈ R : eu(v) = v}. This set is not

empty, since u ∈ A. Moreover, if g =
∏n

i=1 aki

i , where ki ∈ N and v ∈ A, then
by abelianness

eu(g(v)) = g(eu(v)) = g(v).

So v ∈ A implies g(v) ∈ A.

Now suppose u = (deg1 − 1, . . . , degn − 1), which is the maximal stable config-
uration, and let eu correspond to this u. For all w ∈ R we can find a function
g such that g(u) = w, by a similar argument as used in the first paragraph of
this proof, so w ∈ A. Therefore R ⊂ A. By definition A ⊂ R, so we have that
A = R.

Note that this shows that eu is a neutral element; it sends every element to
itself. Since mi > 0 we can find an inverse for addition operator ai:

a−1
i = ami−1

i

n
∏

j=1,j 6=i

a
mj

j .

Then indeed ai ·a−1
i = a−1

i ·ai = eu. From this we can derive that every element
in the set

G =

{

n
∏

i=1

aki

i : ki ∈ N

}

,

acting on R, has an inverse. We have already seen that G contains a neutral
element and when two elements from G are multiplied, the result again is in G.
The order in which we execute this multiplication does not affect this result,
since the ai’s commute. This proves that G defines an abelian group.

Theorem 2.2. There exists a bijection between G and R.

Proof. We will prove that for all u ∈ R, the map Ψu : G → R defined by
Ψu(g) = g(u) is a bijection between G and R.
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Following the same argument used in the proof of theorem 2.1 we can find for
every element v ∈ R a function g such that Ψu(g) = g(u) = v. Thus map Ψu is
surjective. Now it only remains to prove that Ψu is injective.

Suppose that Ψu(g) = Ψu(g′), that is g(u) = g′(u), for some g, g′ ∈ G. Then by
abelianness h(g(u)) = h(g′(u)) gives that

g(h(u)) = g′(h(u))

for any h ∈ G. Consider the set {h(u) : h ∈ G}. This set contains u and we
can reach every element in R by choosing a suitable h and applying it to u, so
{h(u) : h ∈ G} = R. This implies that g(v) = g′(v) for any v ∈ R and thus
g = g′. This proves that Ψu is injective.

Combining the results of the previous theorems, we find that R is an abelian
group. The following theorem shows that its structure is completely determined
by the toppling matrix ∆.

Theorem 2.3. Group R is isomorphic to Zn/∆Zn.

Proof. We will show that G ∼= Zn/∆Zn. Then, by theorem 2.2, we also know
that R ∼= Zn/∆Zn. First consider the map Ψ : Zn → G, defined by

Ψ(m) =
n

∏

i=1

ami

i .

This map is a homomorphism, since clearly for m, s ∈ Zn, Ψ(m+s) = Ψ(m)Ψ(s).
Furthermore, Ψ is surjective, so by the first isomorphism theorem G ∼= Zn/K,
where K is the kernel of Ψ. We will prove that this kernel is equal to ∆Zn,
where

∆Zn = {∆m : m ∈ Zn},
by showing that both ∆Zn ⊂ K and K ⊂ ∆Zn.

The toppling rules imply that for all i = 1, . . . , n,

adegi

i =

n
∏

j=1

a
eij

j

and therefore

adegi

i

n
∏

j=1

a
−eij

j = e,

where e is the neutral element of G, given by
∏n

i=1 a0
i . We can write this in

terms of the toppling matrix as

n
∏

j=1

a
∆ij

j = e.

This implies that we have that for all m ∈ Zn,

n
∏

i=1

n
∏

j=1

a
mi∆ij

j =

n
∏

j=1

a
P

n
i=1

mi∆ij

j = e.
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Since
∑n

i=1 mi∆ij = (∆m)j and Ψ(∆m) =
∏n

i=1 a
(∆m)i

i = e for all m ∈ Zn, we
know that ∆Zn ⊂ K.

Now let us prove that Zn ⊂ K. Suppose that Ψ(m) = e for some m ∈ Zn. If
we write m = m+ − m− with m+

i ≥ 0 and m−
i ≥ 0, we have

n
∏

i=1

a
m

+

i

i =

n
∏

i=1

a
m

−

i

i .

Adding m+ to a recurrent configuration u yields the same result after stabiliza-
tion as adding m− to u. Let us call this result v, then

u + m+ = v + ∆k+

u + m− = v + ∆k−,

where k+
i represents the number of topplings at vertex i during the stabilization

of u + m+. In a similar way we define k−
i . If we substract the two equations,

we get
m = m+ − m− = ∆(k+ − k−),

so K ⊂ ∆Zn. We thus can conclude that G is isomorphic to Zn/∆Zn and R is
too.



Chapter 3

Finitely generated abelian

groups

We have seen that R is isomorphic to Zn/∆Zn. In this chapter we will learn
what it means that this group is finitely generated and we will determine the
structure of Zn/∆Zn more precisely.

Some groups are simple in the sense that they can be generated by a few ele-
ments. Take for example Z3. Every element in this space is a linear combination
of the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), so the group Z3 is finitely generated.
Let us define this property more precisely [13].

Definition 3.1. A group G is finitely generated if there exists a finite number
of elements g1, . . . , gn that generate G.

By means of these elements, called generators, we can write every finitely gen-
erated abelian group G in the following way:

G = Zg1 + . . . + Zgn.

Note that we have made a condition here: G has to be an abelian group. As
a result the order of the gi’s does not matter. We now define a very intuitive
map φ : Zn → G by φ(m1, . . . , mn) = m1g1 + . . . mngn. Map φ defines an onto
homomorphism. Let K be the kernel of φ. This is a subgroup of Zn and by the
first isomorphism theorem G ∼= Zn/K.

We want to determine the structure of G. However, it has now become possible
to determine the structure of K instead. To do this we first need the following
theorem.

Theorem 3.2. Every subgroup of Zn is finitely generated (by at most n ele-
ments).

Proof. We will prove this by induction. Let K be a subgroup of Zn. The case
n = 0 is trivial. If n = 1, then we can find the least positive element m in
K. All the other elements are multiples of m. If not, there would have existed

13



14 CHAPTER 3. FINITELY GENERATED ABELIAN GROUPS

an h in K not divisible by m. Then an element m′ could be constructed as a
linear combination of m and h such that 0 ≤ m′ < m. This contradicts our
assumption about the minimality of K. So if n = 1, then K = mZ, m ≥ 0.

Now consider the case n ≥ 2. Assume that the theorem holds for every subgroup
of Zn−1. Let F consist of the first components of the elements of K. This is a
subgroup of Z. Choose the least positive element f in F (or f = 0 if F is trivial)
and select (f, c2, . . . , cn) ∈ K. Every k1 ∈ F can now be written as k1 = sf ,
s ∈ Z. So for all elements in K

(k1, . . . , kn) = s(f, c2, . . . , cn) + (0, k2 − sc2, . . . , kn − scn).

The set of all elements (k2 − sc2, . . . , kn − scn) is a subgroup of Zn−1 and
therefore by induction, finitely generated by at most n − 1 elements. When
we add (f, c2, . . . , cn) to the generators of this set, we find a set of at most n
generators, that generate K. This proves the theorem.

Kernel K of φ is a subgroup of Zn and therefore by theorem 3.2 finitely gener-
ated. Let k1, . . . , km (m ≤ n) be generators of K and let e1, . . . , en be generators
of Zn. Write ki = ai1e1 + . . . + ainen, 1 ≤ i ≤ m and set

A =







a11 · · · am1

...
...

a1n · · · anm






.

Kernel K can now be written as AZn. By manipulating and rewriting gen-
erators, we can reduce this matrix to its Smith normal form B, as shown in
equation (3.1). See section 3.1 for the construction of this form.

B =





















d1

. . .

dm

0 . . . 0
...

...
0 . . . 0





















. (3.1)

We will see that the non-negative integers d1, . . . , dn uniquely define the struc-
ture of K and therefore also the structure of G. The proof of the fundamental
theorem of finitely generated abelian groups, which we will state hereafter, is
based mainly on this reduction and the fact that AZn ∼= BZn. The proof of
this theorem can be found in [11] and [14].

Theorem 3.3 (Fundamental theorem of Finitely Generated Abelian Groups).
Let G be a finitely generated abelian group. Then there is an isomorphism

G ∼= Zr × Z/d1Z × . . . × Z/dkZ,

where di > 1 and d1| . . . |dk−1|dk. Furthermore, the integers di and r ≥ 0 are
uniquely defined by G.
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Definition 3.4. Let G be a finitely generated abelian group. Then the integer
r in theorem 3.3 is called the rank and d1, . . . , dk are called the elementary
divisors of G.

Example 3.5. Now consider G = Z/2Z × Z/9Z. The rank of G is 0. The
elementary divisors are somewhat harder to discover: 2 and 9 seem to be obvious
options, but remember that d1 should divide d2. So first let us take a closer
look at G:

Z/2Z × Z/9Z ∼= Z/18Z.

The elementary divisors of G are d1 = 1 and d2 = 18, since d1|d2.

In the previous example we considered a quite simple and small group. We were
able to determine the elementary divisors in a straightforward way. It will not
be easy to apply this method to a group, that is much larger.

3.1 Smith normal form

We have already mentioned the Smith normal form briefly. We can reduce any
integer matrix to this form by repeatedly applying the following steps:

1. Interchange two rows (or columns).

2. Multiply a row (or column) by −1.

3. Add a multiple of one row (or column) to another.

Note that, unlike Gaussian elimination, a matrix reduction to Smith normal
form requires both elementary row and elementary column operations. These
operations should however not be executed in some random order. We can turn
a matrix A in finitely many steps into its Smith normal form, using the following
algorithm [14]. We define |aij | to be the size of entry aij .

Step 1. If A is the zero matrix, then we are done. If not, pick a non-zero entry
of A, aij , of least size. Interchange the first and the ith row and the first
and the jth column.

Step 2. Repeatedly add the first column to or substract it from other columns,
reducing the size r of the entries a1j to 0 ≤ r < |a11|. If r is non-zero,
interchange the first and jth column. In this way all entries in the first
row, except for a11, are turned zero.

Step 3. Turn all entries in the first column, except for a11, zero in the same
way.

Step 4. If a11 does not divide every entry of matrix A, say it does not divide
aij , then add the first row to the ith row and then add or substract the
first column a sufficient number of times to the jth column. The size of
aij now is smaller than the size of a11. Return to step 1.
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Step 5. Let B be the matrix obtained by deleting the first row and first column
of A. At this point a11 divides all entries of B. Return to step 1 to follow
the same steps for matrix B.

Step 6. By multiplying the rows with ±1, we finally find the Smith normal
form of A.

Example 3.6. Let us reexamine example 3.5 from the previous section. We
were looking for the elementary divisors of Z/2Z×Z/9Z. Another way to write
this group is Z2/AZ2, where

A =

(

2 0
0 9

)

.

Running the algorithm on this matrix yields the following. The numbers above
the arrows denote which step is executed.

(

2 0
0 9

)

4−→
(

2 −8
2 1

)

1−→
(

1 2
−8 2

)

2−→
(

1 0
−8 18

)

2−→
(

1 0
0 18

)

.

So the elementary divisors of Z/2Z × Z/9Z are 1 and 18, as we saw before.

3.2 Number of elements

The Smith normal form of matrix A does not only give us the full structure of
Zn/K. It also tells us whether this group is finite or not. If the group is finite,
then its number of elements is completely determined too.

Theorem 3.7. Let {e1, . . . , en} be a basis of Zn. Let K be a subset of Zn,
generated by k1, . . . , kn, where ki = ai1e1 + . . .+ ainen. Denote by A = (aij) the
corresponding n×n matrix. Group Zn/K is finite only if det(A) 6= 0. Moreover,
if det(A) 6= 0, then #Zn/K = |det(A)|.

Proof. We have already seen that we can reduce matrix A to Smith normal
form, with integers d1, . . . , dn on its diagonal. Note that during the process
of reducing, the determinant does not change except possibly for the sign, so
|det(A)| = |d1 · . . . ·dn|. From theorem 3.3 we know that Zn/K ∼= Z/d1Z× . . .×
Z/dnZ. Some of the di may be be zero. In fact, in theorem 3.3 we know that r
of the di’s are zero, which results in the factor Zr . Therefore Zn/K is a finite
group only if none of the di’s is zero, that is, if det(A) 6= 0. If this is true, then
#Zn/K = |d1 · . . . · dn| = |det(A)|.



Chapter 4

Minors-method

In chapter 1 we have introduced the toppling matrix ∆. We have shown that
this matrix uniquely determines the structure of R by means of its elementary
divisors. One way to compute these elementary divisors is to determine the
Smith normal form of ∆. However, this is a quite elaborate job. Therefore we
present in this chapter another way to find the elementary divisors.

The minors of ∆ are used in this method. These are the determinants of the
square submatrices of ∆. For example, the 2 × 2 minors of

A =





1 2 3
4 5 6
7 8 9



 .

are the determinants of the matrices that can be obtained by eliminating one
row and one column of A,





1 2 �

� � �

7 8 �



 ⇒ B =

(

1 2
7 8

)

.

So B is a submatrix of A and its determinant −6 is a minor of A. Theorem
4.1 states the connection between the elementary divisors and the minors of a
matrix. Since we are only interested in toppling matrices, which are square, we
only state and prove this theorem for square matrices. However, theorem 4.1
holds in general, for all m × n integer matrices.

Theorem 4.1. Let A be an n × n integer matrix and let d1, . . . , dn denote its
elementary divisors. The product δi = d1 · · · di equals the (non-negative) greatest
common divisor of the i × i minors of A.

Proof. Any integer matrix can be reduced into Smith normal form. Since it
is more easy to prove the theorem for matrices in this form, we will do this
first. Then we will show that the reduction process does not affect the greatest
common divisor (gcd) of the minors.

17
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Let B be the Smith normal form of A:

B =













d1 0 · · · 0

0 d2
. . .

...
...

. . .
. . . 0

0 · · · 0 dn













Any i × i minor of B is zero or the product of i distinct dj . Since d1|d2| . . . |dn

these minors will be divisible by the product of the first i dj . This product is
also the greatest common divisor of the minors, since d1 · · · di is an i × i minor
itself. So we have proved the theorem for a matrix in Smith normal form.

Now we need to show the following: if M is an integer matrix where d1 · · ·di is
the gcd of all of the i × i minors, then applying an elementary row or column
operation to this matrix, will not affect this property.

1. Interchange a row (column) I by a row (column) J .

For any i× i minor that does not involve I or J , the minor is unchanged.
If a submatrix contains both I and J , its determinant is multiplied by −1,
which does not affect the gcd. The other minors, that involve only one
row (column), are just permuted and are possibly multiplied by −1. All
this does not affect the gcd.

2. Multiply a row (column) by −1.

By this operation only the signs of the minors can be changed, so this will
not affect the gcd.

3. Add a multiple of row (column) I to row (column) J .

For any i×i minor that does not involve I or J , the minor is unchanged. If
the minor contains both I and J , the minor will remain the same as well.
If only one row (column) is present in a submatrix, then the ggd of the
minors remains the same, which follows from the fact that ggd(a+ b, a) =
ggd(a, b).

We saw that matrix B satisfies the theorem. By reversing the elementary op-
erations we reobtain A without changing the greatest common divisor of the
minors. This proves the theorem.

Example 4.2. Again take a look at example 1.1. We already saw that the
matrix, corresponding to the graph in figure 1.1, is

∆ =









3 −1 −1 0
−1 4 −1 −1
−1 −1 4 −1
0 −1 −1 3









.

Theorem 4.1 has provided us with an easy way to determine the structure of
R ∼= Z4/∆Z4. We only have to consider the minors of ∆. Since −1 is an entry
of ∆, d1 is equal to 1. Also the second elementary divisor d2 is 1, since

(

−1 0
−1 −1

)
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is a 2× 2 submatrix of ∆ and its determinant is 1. Computer calculations show
that d3 = 5. The determinant of ∆ is 75, so δ4 = 1 · 1 · 5 · d4 = 75 and d4 = 15.
Now we have determined the structure of R.

R ∼= Z/1Z × Z/1Z × Z/5Z × Z/15Z (4.1)
∼= Z/5Z × Z/15Z

Example 4.3. We return to example 1.9, where we again meet commissioner
1, who is very busy to determine the structure of his coworkers. Using theorem
4.1 he finds it rather easy to do this, for he notices that for 1 ≤ i ≤ n− 1 there
alway exists an i × i lower triangular submatrix of Fn with diagonal entries all
−1. The minor corresponding to this submatrix is (−1)i, so for 1 ≤ i ≤ n − 1
the greatest common divisor of the i × i submatrices is 1. So commisioner 1
knows that the group structure of his coworkers is cyclic, Z/ det(Fn)Z. The
determinant of matrix Fn is given by

det(Fn) =
1

2
√

3

[

(2 +
√

3)n+1 − (2 −
√

3)n+1
]

.

A derivation of this formula is given in the appendix.

Sadly it did not take long before all the commisioners in the crazy office were
fired. If only they had known that their boss’s office was one floor below. . .
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Chapter 5

Equivalence classes

In the previous chapter we presented a way to determine elementary divisors.
The results were based directly on the toppling matrix. However, other meth-
ods to consider the structure of a toppling group have been discovered. These
methods are generally more laborious.

A first method, described by Dhar, Ruelle, Sen and Verma [6], divides the
space of all possible configurations into equivalence classes. By means of special
functions, called toppling invariants, they label these classes. Each equivalence
class contains exactly one recurrent configuration. So the invariants label the
recurrent configurations as well. The toppling invariants provide us with full
information about the structure of the toppling group.

A second method, described by Cori, Rossin and Salvy [3], deals with configu-
rations and toppling operations in a polynomial setting. To every configuration
they assign a monomial and the set of toppling operations gives rise to an ideal.
Cori et al. define two equivalence relations, one in the regular and one in the
polynomial setting. They claim that these relations are the same. In doing so
they can say a lot about the toppling group, for example about its unit element.

We see that both methods heavily depend on equivalence relations. In this
chapter we will take a closer look at these relations. We will state and restate
the definitions used by the several authors. Moreover, we will try to find the
relations between the several equivalences.

The terms we use for the different equivalences are not generally used in the
literature.

5.1 Delta equivalence

Dhar, Ruelle, Sen and Verma [6] define equivalence classes, using the following
definition.

Definition 5.1. Two configurations {zi} and {z′i} are equivalent (under top-
pling) if there exist N integers nj such that

z′i = zi −
∑

j

∆ijnj , for all i.

21
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We can rewrite this definition into the following one, which is somewhat easier
to work with.

Definition 5.2. Two configurations u and v are delta equivalent if

u ∈ v + Zn∆.

Dhar et al. prove that each equivalence class contains exactly one recurrent
configuration. This in fact proves that R ∼= Zn/∆Zn.

5.2 Toppling equivalence

Cori, Rossin and Salvy [3] use the notation u → v if v is obtained from u by

toppling a vertex. The transitive closure of this operation is denoted by
∗−→, so

u
∗−→ v means that v is obtained from u by a sequence of topplings. Note that

this sequence does not have to be stabilizing, so
∗−→ truly differs from operator

T . Cori et al. define equivalence in the following way.

Definition 5.3. Two configurations u and v are equivalent if u ≡ v, where ≡
denotes the symmetric closure of

∗−→.

This symmetric closure corresponds to allowing topplings and reverse topplings.
A reverse toppling can be consdered as follows: when all neighbours j of a vertex
i are non-empty, they can each give that vertex eij grains. In case one or more
sinks are attached to that vertex, the vertex receives an extra si grains. Let us
denote a reverse toppling by 99K. We can restate definition 5.3 in the following
way.

Definition 5.4. Two configurations u and v are toppling equivalent if T (u) =
T (v).

The fact that definitions 5.3 and 5.4 are equivalent, that is u ≡ v if and only if
T (u) = T (v), can be shown as follows. If u → v, then it is clear that T (u) =
T (v). If u 99K v, then v → u and again T (u) = T (v). So all configurations w,
that we can derive from u by applying a sequence of topplings → and reverse
topplings 99K, have the property that T (u) = T (w). Therefore, if u ≡ v, then
T (u) = T (v). The reverse statement is true as well. We can find sequences
of topplings and reverse topplings S and T , that respectively derive T (u) from
u and T (v) from v. If we combine S with the reverse of T , we have found a
sequence that derives v from u. So T (u) = T (v) implies u ≡ v.

5.3 Ideal equivalence

Cori, Rossin and Salvy [3] define another kind of equivalence as well. In order to
understand this equivalence, we first have to take a closer look at the polynomial
setting mentioned in the introduction of this chapter.
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5.3.1 Polynomial setting

Let X denote the finite set {x1, . . . , xn} and Q[X ] the ring of polynomials
with variables in X and coefficients in Q. We can link a configuration u =
(u1, . . . , un) ∈ Zn

≥0 to a monomial in this space. To this end we consider u as a
degree vector and put xu = xu1

1 · · ·xun
n . The addition of two configurations, u

and v, results in a multiplication in the polynomial setting:

xu+v = xu1+v1

1 · · ·xun+vn
n = xu1

1 · · ·xun
n · xv1

1 · · ·xvn
n = xu · xv.

This helps us to translate topplings into Q[X ]. Recall that if we topple a vertex
1 configuration u changes into

v = (u1 − d1, u2 + e12, . . . , un + e1n).

Let v be a degree vector. Then

xv = xu1−d1

1 · xu2+e12

2 · · ·xun+e1n
n = x−d1

1

n
∏

j=1

x
e1j

j · xu

Note that we have added an extra term xe11

1 to the product. This does not
matter, since e11 = 0. Now let us put this more in general. A toppling of a
configuration u at a site i corresponds to the multiplication of the monomial xu

by x−di

i

∏n

j=1 x
eij

j in Q[X ].

5.3.2 Toppling ideal

First let us recall the definition of an ideal in Q[X ].

Definition 5.5. A subset I ∈ Q[X ] is an ideal if it satisfies the following
conditions:

(I1) If f, g ∈ I, then f + g ∈ I

(I2) If f ∈ I and h ∈ Q[X ], then hf ∈ I.

We can construct an ideal in Q[X ] by taking s polynomials from this space and
setting

〈f1, . . . , fs〉 =

{

s
∑

i=1

hifi : hi ∈ Q[X ]

}

Then 〈f1, . . . , fs〉 is called the ideal generated by f1, . . . , fs [4]. We can define a
really meaningful ideal in Q[X ] when it comes to configuration polynomials.

Definition 5.6. The toppling ideal I is the ideal generated by







xdi

i −
n

∏

j=1

x
eij

j : i = 1, . . . , n







.
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(a) (b)

Figure 5.1: Toppling graph without and with sink

However, this is not the ideal that was defined by Cori, Rossin and Salvy. They
add an extra vertex to a toppling graph. Vertex 0 is the ‘sink vertex’ and satisfies
the properties e0i = ei0 = si for all i = 1, . . . , n and e00 = 0. The degree of
this vertex is deg0 =

∑n

i=1 si. This degree however does not say anything about
the capacity of the sink vertex, which is in fact infinite. Cori et al. present a
toppling ideal, that is slightly different from the one in definition 5.6.

Definition 5.7. The toppling ideal Is is the ideal generated by x0 − 1 and







xdi

i −
n

∏

j=1

x
eij

j : i = 0, . . . , n







.

We can now define two new equivalences.

Definition 5.8. Two configurations u and v are ideal equivalent if xu−xv ∈ I.

Definition 5.9. Two configurations u and v are S-ideal equivalent if xu −xv ∈
Is.

5.4 Relations between equivalences

We now have four equivalence relations. We wonder in what way these relations
are connected. Cori, Rossin and Salvy state the following theorem.

Theorem 5.10. Two configurations u and v are toppling equivalent if and only
if xu − xv ∈ Is.

We can easily disprove this by showing that we can find configurations u and v
such that xu − xv ∈ Is, though they are not toppling equivalent. Recall that
xu−xv ∈ Is if and only if xu−xv reduces to zero in Q[X ]/Is. No let us consider
the toppling graph in figure 5.1(a) , which with a sink vertex can be represented
as in figure 5.1(b).

Here Is = 〈x2 − yz, y2 − xz, z2 − xy, z − 1〉. We have that

Q[x, y, z]/Is
∼= Q[x, y]/〈x2 − y, y2 − x, 1 − xy〉.

Now if u = (0, 0) and v = (1, 1), then xu − xv = 1 − xy reduces to zero in
Q[x, y, z]/Is. This would mean that u and v are toppling equivalent. However,
since T (u) = u 6= v = T (v) this is not true.
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(a) (b)

Figure 5.2: Toppling graph without and with sink

The question arises whether there exist connections between the several equiva-
lence relations or not. Intuitively, one would say this is the case. To get a firmer
hold on this problem we consider the following example.

Example 5.11. Look at the toppling graph in figure 5.2(a). On this graph,
u = (0, 1) and v = (0, 0) are the only stable configurations. We are going to
answer the question ‘Are u and v equivalent?’ for each of the four equivalence
relations.

• Toppling equivalence. Answer: no.
Configurations u and v are stable and not the same, so T (u) 6= T (v).

• Delta equivalence. Answer: yes.
The toppling matrix, corresponding to the toppling grapg in figure 5.2(a),
is given by

∆ =

(

0 −1
−1 1

)

.

We have that u = v − 1 · (0,−1) + 0 · (−1, 1), so u ∈ v + Z2∆.

• Ideal equivalence. Answer: no.
The ideal corresponding to the graph in figure 5.2(a) is I = 〈x−y, y2−x〉
and (x, y)u − (x, y)v = y − 1. We have that

y − 1 mod Q[x, y]/I ≡ x − 1 mod Q[x]/〈x2 − x〉
6≡ 0 mod Q[x]/〈x2 − x〉.

Thus y − 1 /∈ I.

• S-ideal equivalence. Answer: yes.
Figure 5.2(b) shows the toppling graph, extended with a sink vertex. Now
the ideal becomes Is = 〈x − y, y2 − xz, z − y, z − 1〉. Since we have that

Q[x, y, z]/Is
∼= Q[x, y]/〈x − y, y2 − x, 1 − y〉,

we know that y − 1 ∈ Is.

From this example we can derive that neither delta nor S-ideal equivalence can
imply toppling or ideal equivalence. Other implications still remain possible.
Consider for example theorems 5.12 and 5.13, that show two simple connections
between the several equivalence relations.

Theorem 5.12. If two confgurations are toppling equivalent, the they are also
delta equivalent.
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Proof. If we topple a configuration u at a vertex i, we can write the result as
u − ∆i, wheere ∆i denotes the ith row of ∆. We therefore have for T (u) that

T (u) = u −
n

∑

i=1

mi∆i, (5.1)

where mi is the number of topplings over vertex i during the stabilization of u.
In the same way we have for T (v) that

T (v) = v −
n

∑

i=1

ki∆i, (5.2)

Configurations u and v are toppling equivalent, so T (u) = T (v). Now if we
combine the two equations (5.1) and (5.2), we find that

u = v +

n
∑

i=1

mi∆i −
n

∑

i=1

ki∆i = v +

n
∑

i=1

(mi − ki)∆i ∈ v + Zn∆.

So u and v are delta equivalent.

Theorem 5.13. If two confgurations are ideal equivalent, the they are also
S-ideal equivalent.

Proof. This follows directly from the fact that I ⊂ Is.

At this point we know both relations between toppling equivalence and delta
equivalence. The first implies the second, but the second does not imply the
first. The same holds for ideal equivalence and S-ideal equivalence. We now
would like to compare an equivalence relation in polynomial setting to such a
relation in our regular setting. Example 5.11 already gives us an idea about the
possibilities.



Chapter 6

Discussion

We have seen in chapter 2 that the set of recurrent configurations forms a group,
that is isomorphic to Zn/∆Zn. Group Zn/∆Zn is a finitely generated abelian
group, of which the structure is uniquely determined by its elementary divisors.
We can determine the elementary divisors by computing the Smith normal form
of the toppling matrix ∆. We can also apply the minors-method, described in
chapter 4, that uses the minors of ∆ to determine the elementary divisors.

In chapter 5 I have focussed specifically on equivalence classes. Although I have
a strong feeling that the following two statements hold, I have not been able to
prove them:

• Two configurations are delta equivalent if and only if they are S-ideal
equivalent.

• Two configurations are toppling equivalent if and only if they are ideal
equivalent.

These conjectures are supported by the following two facts:

• According to [3] all S-ideal equivalence classes contain exactly one recur-
rent configuration. According to [6] the same holds for the delta equiva-
lence classes.

• For some small graphs I have found that |Q[X ]/I| is equal to the number
of stable configurations. This is also the number of equivalence classes
under T .
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Appendix

Our aim is to find the determinant of the n × n matrix

Fn =



















4 −1 0 · · · 0

−1 4 −1
...

0 −1
. . .

. . . 0
...

. . . 4 −1
0 · · · 0 −1 4



















.

Let this determinant be denoted by un. If we expand the determinant along the
first row, we find a recurrence relation for un.

un = 4un−1 + det



















−1 −1 0 · · · 0

0 4 −1
...

0 −1
. . .

. . . 0
...

. . . 4 −1
0 · · · 0 −1 4



















= 4un−1 − un−2.

We could choose to take the initial conditions

u1 = det F1 = 4 and u2 = detF2 = 15,

but since u2 = 4u1 − 1 · 1, we can simplify these conditions by taking

u0 = 1 and u1 = 4.

We can rewrite our recurrence relation into matrix form:
(

4 −1
1 0

) (

un−1

un−2

)

=

(

un

un−1

)

.

This form gives rise to the following matrix equality:

(

4 −1
1 0

)n−1 (

u1

u0

)

=

(

un

un−1

)

.

By diagonalizing matrix

A =

(

4 −1
1 0

)
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it becomes easy to compute the n − 1th power of this matrix. The eigenvalues
of matrix A are λ1 = 2 +

√
3 and λ2 = 2 −

√
3. Let S be the matrix whose

columns are the eigenvectors of A then

S =

(

2 +
√

3 2 −
√

3
1 1

)

and S−1 =
1

2
√

3

(

1 −2 +
√

3

−1 2 +
√

3

)

.

Let D be the diagonal matrix with the eigenvalues of A on its diagonal. Then

An−1 = SDn−1S−1 = S

(

(2 +
√

3)n−1 0

0 (2 −
√

3)n−1

)

S−1.

Determining the first entry of the column vector

An−1

(

u1

u0

)

results in the following formula for the determinant of Fn:

det(Fn) = un =
1

2
√

3

[

(2 +
√

3)n+1 − (2 −
√

3)n+1
]

.
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