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Chapter 1

Introduction

For a long time Lie algebras are known and used in both mathematics and
physics. They have been studied intensively in order to make a classification
of Lie algebras. In physics for example they play an import role in quantum
mechanics.

In essence a Lie algebra is a vector space V with a bilinear map V2 →
V, (x, y) 7→ [x, y]. This map must be skew-symmetric and satisfies the so called
Jacobi identity

[[x, y] , z] + [[z, x] , y] + [[y, z] , x] = 0
for all x, y, z ∈ V. The bilinear map can be regarded as a kind of multiplication.
Therefore subalgebras, ideals and other concepts known from ring theory can
also be defined for Lie algebras.

In 1985 V.T. Filippov [6] generalized Lie algebras to what is called n-Lie
algebras or Filippov algebras. The bilinear map is replaced with a n-linear map
Vn → V, (x1, . . . , xn) 7→ [x1, . . . , xn]. This map must also be skew-symmetric
and satisfies a generalization of the Jacobi identity such that it coincides with
the definition of a Lie algebra if n = 2. Concepts known from Lie algebras are
generalized to n-Lie algebras. In 1987 S.M. Kasymov [12] introduced additional
concepts known from Lie algebras and for example showed that the definition
of nilpotent can be generalized in several ways.

In physics applications of n-Lie algebras are found in string theory, or more
specifically in M-theory. A model of multiple M2-branes is given in [2]. In this
model a skew-symmetric 3-linear map is needed which satisfies an identity called
the fundamental identity. Actually this identity is the same as the generalized
Jacobi identity. This fact is recognized in [11] where new ways to construct
3-Lie algebras are studied. The n-Lie algebras also play a central role in a
generalization of reduced super Yang-Mills theory [9].

The study of n-Lie algebras is related to the study of Nambu dynamics. In
1973 Y. Nambu [13] generalized Hamiltonian dynamics such that the dynamics
is determined by multiple Hamiltonians. The definitions of Nambu-Poisson
manifolds and Nambu-Lie algebras of order n is given by L. Takhtajan in 1994
[16]. In fact the definition of a Nambu-Lie algebra of order n coincides with the
definition of a n-Lie algebra, as is noticed in [4, 11, 14].

A generalization of 3-Lie algebras appeared in [5]. The 3-linear map of a
generalized 3-Lie algebra need not be skew-symmetric, but still satisfies the
Jacobi identity.
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Chapter 2 is about the definition of a n-Lie algebra and some general state-
ments about n-Lie algebras. In chapter 3 we focus on finding 3-Lie algebras and
show that quaternions naturally give a 3-Lie algebra. Furthermore in appendix
A we develop some theorems concerning congruent matrices.
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Chapter 2

n-Lie algebras

2.1 Definitions

In the articles [6, 12]1 most standard notations from the theory of Lie algebras
are extended to so called n-Lie algebras, and what it means for such an algebra
to be k-solvable, k-nilpotent or simple. There are no explicit definitions of
subalgebra, homomorphism and isomorphism, but it is straightforward to define
them as we will see below.

We begin with the definition of a n-Lie algebra. As we will see it is a natural
generalization of a Lie algebra.

Definition 2.1. If L is a vector space with a n-linear map [·, . . . , ·] : Ln → L
such that the map is skew-symmetric[

xσ(1), . . . , xσ(n)

]
= ε (σ) [x1, . . . , xn] (2.1)

and satisfies the Jacobi identity

[[x1, . . . , xn] , y2, . . . , yn] =
n∑
i=1

[x1, . . . , [xi, y2, . . . , yn] , . . . xn] (2.2)

for all elements xi, yj ∈ L and permutations σ ∈ Sn with sign ε (σ) ∈ {±1},
then L is called a n-Lie algebra.

Next we give the definitions of a subalgebra, abelian n-Lie algebra and an
ideal in a n-Lie algebra. Also these are very similar to the case of Lie algebras.

Definition 2.2. Let L be a n-Lie algebra. If K is a subspace of L such that
[k1, . . . , kn] ∈ K for all k1, . . . , kn ∈ K, then K is called a n-Lie subalgebra.

Definition 2.3. Let L be a n-Lie algebra. If [x1, . . . , xn] = 0 for all x1, . . . , xn ∈
L, then the n-Lie algebra L is called abelian.

Definition 2.4. Let L be a n-Lie algebra. If K is a subspace of L such that
[k, x2, . . . , xn] ∈ K for all k ∈ K and x2, . . . , xn ∈ L, then K is called a ideal.

If the ideal K is unequal to {0} and unequal to L, then the ideal K is called
proper.

1 In these articles a slightly different notation is used. Suppose A is a linear map to act
upon an element x. In the articles this is denoted as xA, whereas we use the notation Ax or
A (x).
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Definition 2.5. Let L be a n-Lie algebra. If L is not abelian and has no proper
ideals, then L is called simple.

The definitions of homomorphism and isomorphism can be generalized with-
out problems from the definitions for Lie algebras in [3].

Definition 2.6. Suppose L1 and L2 are n-Lie algebras. A map T : L1 → L2 is
called a homomorphism if T is linear and satisfies

T ([x1, . . . , xn]1) = [T (x1) , . . . , T (xn)]2 (2.3)

for all xi ∈ L1.

Definition 2.7. Let L1 and L2 be n-Lie algebras. A bijective homomorphism
T : L1 → L2 is called an isomorphism. If there exists such an isomorphism T ,
then L1 and L2 are called isomorphic.

If I is an ideal of a n-Lie algebra L, then we can define a new n-Lie algebra
on the quotient space L/I with the n-linear map

[v̄1, . . . , v̄n]L/I = [v1, . . . , vn]L + I (2.4)

for all v̄i ∈ L/I [6].

Theorem 2.8. If I is an ideal of a n-Lie algebra L, then the quotient space
L/I is also a n-Lie algebra and is called n-Lie quotient algebra.

We know that a Lie algebra can be solvable or nilpotent. Similar a n-Lie
algebra can also be solvable or nilpotent, but there are different generalizations
possible [12]. Before we define k-solvable and k-nilpotent, a new notation is
introduced in the following definition.

Definition 2.9. Let L be a n-Lie algebra. If K1, . . . ,Kn are subsets of L, then
define [K1, . . . ,Kn] to be the vector space

[K1, . . . ,Kn] = span {[k1, . . . , kn] : k1 ∈ K1, . . . , kn ∈ Kn} . (2.5)

Definition 2.10. Let I be an ideal of a n-Lie algebra L and 2 ≤ k ≤ n. Define
I(0,k) = I and I(r+1,k) =

[
I(r,k), . . . , I(r,k),L, . . . ,L

]
with k times I(r,k) and

n − k times L. If there exists a r ≥ 0 such that I(r,k) = 0, then I is called
k-solvable.

Definition 2.11. Let I be an ideal of a n-Lie algebra L and 2 ≤ k ≤ n. Define
I(1,k) = I and I(r+1,k) =

[
I(r,k), I, . . . , I,L, . . . ,L

]
with k−1 times I and n−k

times L. If there exists a r ≥ 1 such that I(r,k) = 0, then I is called k-nilpotent.

2.2 General properties

In this section we give some examples of n-Lie algebras and some general prop-
erties of n-Lie algebras.

A vector space with a zero n-linear map is a trivial example of a abelian
n-Lie algebra. From [6] we know an example of an infinite dimensional n-Lie
algebra.
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Example 2.12. Let V = R [x1, . . . , xn] be the vector space of polynomials in n
variables. The vector space V with the Jacobian as the n-linear map

[f1, . . . , fn] := det


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn

∂x1
. . . ∂fn

∂xn

 (2.6)

for f1, . . . , fn ∈ V, is a n-Lie algebra. For the proof see [7].

Given two n-Lie algebras over the same field, we can create a new n-Lie
algebra on the direct sum of vector space of both n-Lie algebras.

Theorem 2.13. If L1 and L2 are n-Lie algebras over the same field, then the
direct sum L1 ⊕ L2 with the n-linear map

[x1 ⊕ y1, . . . , xn ⊕ yn]⊕ = [x1, . . . , xn]1 ⊕ [y1, . . . , yn]2 (2.7)

is also a n-Lie algebra.

Suppose we have a n-Lie algebra with n > 2. We can construct a m-Lie
algebra where m = n− 1, by keeping one element fixed in the n-linear map [6].

Theorem 2.14. Let L be a n-Lie algebra with n > 2. If V is the vector space
of L and m = n − 1, then for any x ∈ V the vector space V with the m-linear
map defined as

[y1, . . . , ym]x = [y1, . . . , ym, x] (2.8)

for all y1, . . . , ym ∈ V, is a m-Lie algebra.

Using the above theorem inductively, we can construct a Lie algebra from
a n-Lie algebra. Another way to create a Lie algebra form a n-Lie algebra is
given in the following theorem.

Theorem 2.15. If L is a n-Lie algebra, then the vector space of all derivations
on L, that is, all linear maps D : L → L such that

D ([x1, . . . , xn]) =
n∑
i=1

[x1, . . . , D (xi) , . . . , xn]

for all x1, . . . , xn ∈ L, is a Lie algebra with the bilinear map given by

L × L → L, (D1, D2) 7→ [D1, D2] = D1D2 −D2D1

for derivations D1, D2.
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Chapter 3

3-Lie algebras

In this chapter we concentrate on finding n-Lie algebras in the case n is equal to
three. We assume the characteristic of the field to be unequal to two. We take
two approaches to finding all 3-Lie algebras of dimension lower than or equal
to four. The former approach is quite naive and the latter is more formal and
structured.

All n-Lie algebras of dimensions lower than or equal to n + 1 have been
calculated in [6]. We give a proof for four-dimensional 3-Lie algebras with the
use of linear and multilinear algebra in the second approach.

We make a note first. It is easy to construct Lie algebras. Define on a vector
space of square matrices the following bilinear map

[A,B] := AB −BA

for all matrices A,B in that vector spaces. This map satisfies the conditions of a
Lie algebra as a straightforward computation shows. A reasonable generalization
for a 3-linear map would be

[A,B,C] := ABC +BCA+ CAB −BAC −ACB − CBA

for all matrices A,B,C in that vector spaces. This map is skew-symmetric, but
unfortunately the map does not satisfy the Jacobi identity in general.

Example 3.1. Let [·, ·, ·] be as above. Choose six 3× 3 matrices as follows

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 ,

A4 =

0 1 0
0 0 0
0 0 0

 , A5 =

0 0 0
0 0 1
0 0 0

 , A6 =

0 0 1
0 0 0
0 0 0

 ,

then [A1, [A2, A4, A5] , A3] = −A6 and

[[A1, A2, A3] , A4, A5] = [[A1, A4, A5] , A2, A3] = [A1, A2, [A3, A4, A5]] = O.

Insert these terms into the Jacobi identity, and we find that this identity is not
satisfied for these matrices.
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3.1 3-Lie algebras of dimension three and lower

Suppose V is a vector space of dimension m. A first approach to find all 3-Lie
algebras on this vector space, is to find all skew-symmetric maps [·, ·, ·] : V3 → V.
By selecting the skew-symmetric maps which satisfy the Jacobi identity, one
finds all possible 3-Lie algebras of dimension m.

Example 3.2. Let V be a vector space of dimension 0, then V = {0}. The
only possible map is [0, 0, 0] = 0. This map is skew-symmetric and satisfies the
Jacobi identity.

Example 3.3. Let V be a vector space of dimension 1, then V has basis {e1}.
Since every element of V is equal to e1 up to a scaler, we only need to define
[e1, e1, e1]. Skew-symmetry implies

[e1, e1, e1] = − [e1, e1, e1] (3.1)

which can only hold if [e1, e1, e1] = 0. Therefore [x, y, z] = 0 for all x, y, z ∈ V.
This map also satisfies the Jacobi identity.

The previous two examples show that the only possible 3-Lie algebras of
dimension 0 and 1 are those with the map [x, y, z] = 0 for all x, y, z ∈ V. This
also holds for 3-Lie algebras of dimension 2, as can be proven in the same way
as above.

Example 3.4. Let V be a vector space of dimension three with {e1, e2, e3} a
basis of V. If the 3-linear map is determined for all combinations of elements
in the basis, then the map is also determined for all elements in V. The skew-
symmetry of the map implies

[ei, ej , ek] = 0 if i = j or i = k or j = k. (3.2)

Therefore only [e1, e2, e3] can be chosen freely. The choice of [e1, e2, e3] can be
split in two cases

• If [e1, e2, e3] = 0, then [x, y, z] = 0 for all x, y, z ∈ V.

• If [e1, e2, e3] 6= 0, then there exists a z = z1e1 +z2e2 +z3e3 ∈ V unequal to
zero such that [e1, e2, e3] = z. Assume z1 6= 0, then f1 = z, f2 = z1

−1e2
and f3 = e3 also form a basis for V and [f1, f2, f3] = f1. The f1,f2 and f3
can be chosen in a similar way, when z2 6= 0 or z3 6= 0.

Both choices of the map [·, ·, ·] satisfy the Jacobi identity. So there exist only
two 3-Lie algebras of dimension three up to an isomorphism.

The previous example shows there are only two 3-Lie algebras of dimension
three, and that any skew-symmetric map on a three dimension 3-Lie algebra
satisfies the Jacobi identity. This is a special case of the following theorem.

Theorem 3.5. Let V be some vector space. If [·, ·, ·] : V3 → V is a 3-linear
skew-symmetric map, then for all x, y, z ∈ V the map satisfies

[[x, y, z] , x, y] = [[x, x, y] , y, z] + [x, [y, x, y] , z] + [x, y, [z, x, y]] . (3.3)
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Proof. The skew-symmetry of the map implies [x, x, y] = 0, [y, x, y] = 0 and
[z, x, y] = [x, y, z] for all x, y, z ∈ V. These equalities imply

[[x, y, z] , x, y] = [0, y, z] + [x, 0, z] + [[z, x, y] , x, y]
= [[x, x, y] , y, z] + [x, [y, x, y] , z] + [x, y, [z, x, y]]

which is equal to equation (3.3).

All 3-Lie algebras of dimension four can be found by a similar method as
above, but there is an important difference. In this case there exist skew-
symmetric maps which do not satisfy the Jacobi identity, as the following ex-
ample illustrates.

Example 3.6. Let V be a vector space of dimension 4 with basis {e1, e2, e3, e4}.
Fix a skew-symmetric map [·, ·, ·] : V3 → V by

[e1, e2, e3] = e1

[e1, e2, e4] = 0
[e1, e3, e4] = 0
[e2, e3, e4] = e2.

This map does not satisfy the Jacobi identity, because

[[e1, e2, e3] , e3, e4] = 0

and

[[e1, e3, e4] , e2, e3] + [e1, [e2, e3, e4] , e3] + [e1, e2, [e3, e3, e4]] = e1

are not equal.

Example 3.7. Let V be a vector space with dimV = 4 and W = [V,V,V]. If
dimW = 0, then W = {0}. Therefore [x, y, z] = 0 for all x, y, z ∈ V. This map
is skew symmetric and satisfies the Jacobi identity.

Example 3.8. Let V be a vector space with dimV = 4 and W = [V,V,V].
If dimW = 1, then W has a basis {e1}. There are two possible cases for a
skew-symmetric map

• Assume [e1, x, y] = 0 for all x, y ∈ V. Extend the basis {e1} of W to a
basis {e1, e2, e3, e4} of V. The assumption implies

[e1, e2, e3] = [e1, e2, e4] = [e1, e3, e4] = 0.

Since dimW = 1 there must exist a nonzero z = z1e1 ∈ W such that
[e2, e3, e4] = z. Choose a new basis {f1, f2, f3, f4} of V with f1 = e1,
f2 = e2, f3 = e3 and f4 = z1

−1e4. The skew-symmetric map is fixed by

[f1, f2, f3] = [f1, f2, f4] = [f1, f3, f4] = 0

and
[f2, f3, f4] = f1.
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• Assume there exist e2, e3 ∈ V such that [e1, e2, e3] 6= 0. The skew-
symmetry of the map implies e1, e2 and e3 are linear independent. The
basis {e1} of W can be extended to a basis {e1, e2, e3, e4} of V for some
e4 ∈ V. Since [e1, e2, e3] 6= 0 and {e1} is a basis of W, there exists
α, β, γ ∈ F and a nonzero z = z1e1 ∈ W such that

[e1, e2, e3] = z

[e1, e2, e4] = αz

[e1, e3, e4] = βz

[e2, e3, e4] = γz.

Choose a new basis {f1, f2, f3, f4} of V with f1 = z, f2 = z1
−1e2, f3 = e3

and f4 = e4 − αe3 + βe2 − γe1. The skew-symmetric map is fixed by

[f1, f2, f3] = f1

and
[f1, f2, f4] = [f1, f3, f4] = [f2, f3, f4] = 0.

Both choices of the skew-symmetric map satisfy the Jacobi identity.

The previous two examples illustrate a method to find all 3-Lie algebras of
dimension four. First find all 3-Lie algebras with dim [V,V,V] = 0, then find all
3-Lie algebras with dim [V,V,V] = 1 and so on.

The methods presented in this section can be used to find all 3-Lie algebras
of dimensions up to four. The same methods can also be used for higher finite
dimensions, but is not recommended. The number of skew-symmetric 3-linear
maps increases as the dimension of the vector space increases, while only some
skew-symmetric maps satisfy the Jacobi identity. This can result in a lot of
useless calculations.

3.2 Four dimensional 3-Lie algebras

In the previous section we have seen a method to find all 3-Lie algebras of finite
dimensions, but the section also showed this will be a lot of work and might be
error prone. We need a more structured approach to search for 3-Lie algebras.

We give a short introduction to multilinear algebra. For a more complete
introduction we redirect the reader to [10] or any other book on this subject.

Suppose V and W are vector spaces. Then there exists a vector space
∧n V

with elements x1 ∧ . . . ∧ xn and an unique n-linear skew-symmetric map

Vn →
n∧
V, (x1, . . . , xn) 7→ x1 ∧ . . . ∧ xn

such that for any skew-symmetric n-linear map f : Vn → W there exists a
unique linear map g :

∧n V → W that satisfies f (x1, . . . , xn) = g (x1 ∧ . . . ∧ xn).
That is, the following diagram commutes

Vn
f //

∧n

��

W

∧n V g

<<zzzzzzzz
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If V is a n dimensional vector space, then
(
n
k

)
equals the dimension of

∧k V.

Example 3.9. Let T : V → W be a linear map between vector space V and W
and k some positive integer. We define a skew-symmetric k-linear map as

Vk →
k∧
W, (v1, . . . , vk) 7→ Tv1 ∧ . . . ∧ Tvk

for all v1, . . . , vk ∈ V. This map induces a unique linear map

T∧
k

:
k∧
V →

k∧
W, (v1 ∧ . . . ∧ vk) 7→ Tv1 ∧ . . . ∧ Tvk

for all v1 ∧ . . . ∧ vk ∈
∧k V.

A 3-Lie algebra is a vector space with a skew-symmetric 3-linear map. The
3-linear map can be decomposed into a universal skew-symmetric map and a
linear map. The following theorem shows the Jacobi identity is a restriction on
the linear map.

Theorem 3.10. Let V be a vector space and [·, ·, ·] : V3 → V a 3-linear map.
The vector space V with the 3-linear map is a 3-Lie algebra if and only if there
exists a linear map ρ :

∧3 V → V such that [v1, v2, v3] = ρ (v1 ∧ v2 ∧ v3) for all
v1, v2, v3 ∈ V and satisfies

ρ (ρ (v1 ∧ v2 ∧ v3) ∧ v4 ∧ v5) = ρ (ρ (v1 ∧ v4 ∧ v5) ∧ v2 ∧ v3)
+ ρ (v1 ∧ ρ (v2 ∧ v4 ∧ v5) ∧ v3)
+ ρ (v1 ∧ v2 ∧ ρ (v3 ∧ v4 ∧ v5))

(3.4)

for all v1, v2, v3, v4, v5 ∈ V.

The next theorem states that every 3-Lie algebra of dimension lower than
three is trivial. This is the direct consequence of the dimension of

∧3 V which
is zero in this case.

Theorem 3.11. All 3-Lie algebras L of dimension lower than three over a field
F of characteristic unequal to two are isomorphic to the vector space Fn with
the map [x, y, z] = 0 for all x, y, z ∈ Fn with n = dimL.

All 3-Lie algebras of dimension three are given in the following theorem,
which is stated without proof. The result is the same as in example 3.4.

Theorem 3.12. All three dimensional 3-Lie algebras over a field F of charac-
teristic unequal to two are isomorphic to one of the following 3-Lie algebras

• The vector space F3 with the map [x, y, z] = 0 for all x, y, z ∈ F3.

• The vector space F3 with the skew-symmetric multilinear map fixed by
[e1, e2, e3] = e1, where {e1, e2, e3} is the standard ordered basis of F3.

The four dimensional 3-Lie algebras up to an isomorphism are given in the
next theorem. Some of the 3-Lie algebras can still be isomorphic to each other
as will be clear from the proof of the theorem and a corollary about the special
case when the field F is algebraically closed.
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Theorem 3.13. All four dimensional 3-Lie algebras over a field F of charac-
teristic unequal to two are isomorphic to one of the following 3-Lie algebras

• The vector space F4 with the skew-symmetric 3-linear map given by

[e1, e2, e3] = α4e4

[e1, e2, e4] = α3e3

[e1, e3, e4] = α2e2

[e2, e3, e4] = α1e1

where {e1, e2, e3, e4} is the standard ordered basis of F4 and α1, α2, α3 and
α4 are elements from F such that

α1 = 0 ⇒ α2 = 0 ⇒ α3 = 0 ⇒ α4 = 0.

• The vector space F4 with the skew-symmetric 3-linear map given by

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e1 + α2e2

[e2, e3, e4] = e2 − α1e1

where {e1, e2, e3, e4} is the standard ordered basis of F4 and α1 and α2 are
elements from F such that α1α2 + 1 6= 0 and

α1 = 0 ⇒ α2 = 0.

• The vector space F4 with the skew-symmetric 3-linear map given by

[e1, e2, e3] = e1

[e1, e2, e4] = 0
[e1, e3, e4] = 0
[e2, e3, e4] = 0

where {e1, e2, e3, e4} is the standard ordered basis of F4.

The road to the proof of this theorem is as follows. We know that for each
3-Lie algebra there exists a linear map ρ such that [x, y, z] = ρ (x ∧ y ∧ z). First
we translate the condition of isomorphic 3-Lie algebras into a relation between
their linear maps ρ. After this we give a set of equations in terms of the matrix
representation of ρ that are equivalent to the Jacobi identity. Finally the proof
of the theorem is presented.

Suppose L : V → W is a linear map between vector spaces V and W. This
map leads to a linear map T ∗ :W∗ → V∗ with

T ∗ (ω) (v) := ω (Tv)

for all v ∈ V and ω ∈ W∗.
From this point on until the proof of the theorem, we will assume that all

3-Lie algebras of dimension four are defined on the same vector space V = F4

with an ordered basis {e1, e2, e3, e4}. Let
{
e1, e2, e3, e4

}
be the basis of the dual

vector space V∗ such that ei (ej) = δij .
The vector spaces

∧3 V and V∗ both have dimension four. This allows us to
choose an isomorphism of vector spaces between them.
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Lemma 3.14. Let V and V∗ be vector spaces with bases as above. The linear
map φ :

∧3 V → V∗ defined as

φ (v1 ∧ v2 ∧ v3) (v) := 〈v1 ∧ v2 ∧ v3 ∧ v, e1 ∧ e2 ∧ e3 ∧ e4〉

for all v1 ∧ v2 ∧ v3 ∈
∧3 V and v ∈ V is an isomorphism of vector spaces, where

〈·, ·〉 is an inner product on
∧4 V such that

〈e1 ∧ e2 ∧ e3 ∧ e4, e1 ∧ e2 ∧ e3 ∧ e4〉 = 1.

So far we saw that a 3-Lie algebra on a vector space V corresponds to a
linear map ρ :

∧3 V → V. Using the above lemma we see that the 3-Lie algebra
corresponds to a linear map τ : V∗ → V, that is, τ := ρ ◦ φ−1.

The following lemma translates an isomorphism of 3-Lie algebras into a
simple relation between the linear maps τ for each 3-Lie algebra and a linear
map T .

Lemma 3.15. Suppose V with [·, ·, ·]1 and V with [·, ·, ·]2 are two 3-Lie alge-
bras of dimension four. Let T : V → V be a linear map. The map T is an
isomorphism if and only if the map T is bijective and

T ◦ τ1 ◦ T ∗ = det (T ) τ2

where τi : V∗ → V are the maps corresponding to [·, ·, ·]i.

Proof. Let V with [·, ·, ·]1 and V with [·, ·, ·]2 be two 3-Lie algebras and let T :
V → V be a linear map. Then there exists linear maps ρi :

∧3 V → V such that

[v1, v2, v3]i = ρi (v1 ∧ v2 ∧ v3)

for all v1, v2, v3 ∈ V. Furthermore there exists linear maps τi : V∗ → V such
that the following diagram commutes.

V∗

τ1
!!DD

DD
DD

DD
D

∧3 V
φoo

ρ1

��

T∧
3

// ∧3 V
φ //

ρ2

��

V∗

τ2
}}zz

zz
zz

zz
z

V
T

// V

The map T is an isomorphism if and only if T is bijective and

T [v1, v2, v3]1 = [Tv1, T v2, T v3]2

for all v1, v2, v3 ∈ V. This equation is equivalent to

T ◦ τ1 ◦ φ = τ2 ◦ φ ◦ T∧
3
.

Define a linear map S : V → V such that S∗ := φ ◦ T∧3 ◦ φ−1 ◦ T ∗. Since the
maps φ and T are bijective, then the above equation is equivalent to

T ◦ τ1 ◦ T ∗ = τ2 ◦ S∗. (3.5)

There exists an invertible linear map S′ : V → V such that S′∗ ◦ T ∗ = T ∗ ◦ S∗,
because the maps T and S are invertible. Combining S′∗ with the definition of
S∗ gives

S′
∗ ◦ φ = T ∗ ◦ φ ◦ T∧

3
.
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Writing out both sides of the equation results into

v1 ∧ v2 ∧ v3 ∧ S′v = Tv1 ∧ Tv2 ∧ Tv3 ∧ Tv

for all v1∧ v2∧ v3 ∈
∧3 V and v ∈ V. But this equation is satisfied if and only if

S′ = det (T ) I. This map scales any vector with constant det (T ), that is, also
the maps S′∗ and S∗ scale any vector with the same constant. Thus equation
(3.5) is equivalent to

T ◦ τ1 ◦ T ∗ = det (T ) τ2.

This completes the proof of the lemma.

When we choose some basis of the vector space V, then in matrix represen-
tation the relation which an isomorphism must satisfy is

Q [τ1]QT = det (Q) [τ2]

for the matrix representation Q of the isomorphism. This equation looks like
the relation between congruent matrices. This similarity lies at the heart of the
next lemma.

Lemma 3.16. If A is a 4× 4 matrix over a field F of characteristic unequal to
two, then there exists an invertible 4× 4 matrix Q such that

QAQT = det (Q)


α1 β1 γ1 γ2

−β1 α2 γ3 γ4

γ1 γ3 α3 β2

γ2 γ4 −β2 α4


with scalars αi, βi, γi ∈ F. The scalars are constrained by

β1 = 0 ⇒ β2 = 0
α1 = 0 ⇒ α2 = 0
α3 = 0 ⇒ α4 = 0

and if β1 = 0, then γ1 = γ2 = γ3 = γ4 = 0 and

α2 = 0 ⇒ α3 = 0.

Proof. This lemma is essentially a special case of theorem A.4. That theorem
states that a matrix A is congruent to a matrix B of a special shape, that is,
there exists an invertible 4×4 matrix P such that PTAP = B. Define Q := PT

and C := det (Q)−1
B.

The constraints on the scalars are due to the freedom to switch diagonal
elements in specific parts in the matrix, and due to the special cases associated
to the rank of the skew-symmetric part of C.

We know that the Jacobi identity is a restriction on the linear map τ : V∗ →
V, or equivalent a restriction on its matrix representation. This is precisely the
topic of the following lemma.

14



Lemma 3.17. Let V be a four dimensional vector space with an ordered basis
as described above. Suppose [·, ·, ·] : V3 → V is a 3-linear map and τ : V∗ → V a
linear map such that [x, y, z] = τ ◦ φ (x ∧ y ∧ z) for all x, y, z ∈ V. The matrix
representation of τ is given by

[τ ] =


τ11 τ12 τ13 τ14
τ21 τ22 τ23 τ24
τ31 τ32 τ33 τ34
τ41 τ42 τ43 τ44

 .

The vector space V with the 3-linear map [·, ·, ·] is a 3-Lie algebra if and only
if τ satisfies the following set of equations

(τ34 − τ43) τi2 + (τ42 − τ24) τi3 + (τ23 − τ32) τi4 = 0
(τ43 − τ34) τi1 + (τ14 − τ41) τi3 + (τ31 − τ13) τi4 = 0
(τ24 − τ42) τi1 + (τ41 − τ14) τi2 + (τ12 − τ21) τi4 = 0
(τ23 − τ32) τi1 + (τ31 − τ13) τi2 + (τ12 − τ21) τi3 = 0

for i = 1, 2, 3, 4.

Proof. The vector space V with the skew-symmetric 3-linear map [·, ·, ·] is a
3-Lie algebra if and only if [·, ·, ·] satisfies the Jacobi identity

0 = [[v1, v2, v3] , v4, v5]− [[v1, v4, v5] , v2, v3]−
[v1, [v2, v4, v5] , v3]− [v1, v2, [v3, v4, v5]]

for all v1, v2, v3, v4, v5 ∈ V. It is necessary and sufficient to prove the Jacobi
identity for all elements in the basis of V.

As an example the Jacobi identity is written out for the vectors

(v1, v2, v3, v4, v5) = (e1, e2, e3, e4, e1) .

Start by expressing [ei, ej , ek] in terms of τi′j′

[e1, e2, e3] = +τ14e1 + τ24e2 + τ34e3 + τ44e4

[e1, e2, e4] = −τ13e1 − τ23e2 − τ33e3 − τ43e4
[e1, e3, e4] = +τ12e1 + τ22e2 + τ32e3 + τ42e4

[e2, e3, e4] = −τ11e1 − τ21e2 − τ31e3 − τ41e4.

Expand each term in the Jacobi identity in terms of τij

[[e1, e2, e3] , e4, e1] = (−τ24τ13 + τ34τ12) e1 + (−τ24τ23 + τ34τ22) e2+
(−τ24τ33 + τ34τ32) e3 + (−τ24τ43 + τ34τ42) e4

[[e1, e4, e1] , e2, e3] = 0
[e1, [e2, e4, e1] , e3] = (−τ23τ14 + τ43τ12) e1 + (−τ23τ24 + τ43τ22) e2+

(−τ23τ34 + τ43τ32) e3 + (−τ23τ44 + τ43τ42) e4
[e1, e2, [e3, e4, e1]] = (+τ32τ14 − τ42τ13) e1 + (+τ32τ24 − τ42τ23) e2+

(+τ32τ34 − τ42τ33) e3 + (+τ32τ44 − τ42τ43) e4.
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Insert these terms into the Jacobi identity. This gives an equivalent equation in
terms of τij for the vectors v1, . . . , v5

0 = [(τ34 − τ43) τ12 + (τ42 − τ24) τ13 + (τ23 − τ32) τ14] e1+
[(τ34 − τ43) τ22 + (τ42 − τ24) τ23 + (τ23 − τ32) τ24] e2+
[(τ34 − τ43) τ32 + (τ42 − τ24) τ33 + (τ23 − τ32) τ34] e3+
[(τ34 − τ43) τ42 + (τ42 − τ24) τ43 + (τ23 − τ32) τ44] e4.

This is a subset of the set of sixteen quadratic equations.
The remaining equations are derived by choosing a different combination of

basis vectors. This proves the lemma.

At this point we have split the 3-linear map [·, ·, ·] : V3 → V into a skew-
symmetric part φ (· ∧ · ∧ ·) : V3 → V∗ and a linear part τ : V∗ → V. For any four
dimensional 3-Lie algebra on V we can find an isomorphic 3-Lie algebra using
lemmas 3.15 and 3.16 such that the linear map τ corresponding to the latter
has a convenient matrix representation with respect to the quadratic equations
given in lemma 3.17. Now we are ready to prove theorem 3.13.

Proof of theorem 3.13. Suppose L is a four dimensional 3-Lie algebra over a
field F of characteristic unequal to two. Let [·, ·, ·]L : L3 → L be the skew-
symmetric 3-linear map associated with the 3-Lie algebra L. As a vector space
L is isomorphic with V = F4, that is, there exists a invertible linear map T :
L → V. Define [·, ·, ·]V : V3 → V as

[v1, v2, v3]V := T−1 [Tv1, T v2, T v3]L .

This is a skew-symmetric 3-linear map on V and satisfies the Jacobi identity,
because of [·, ·, ·]L. Furthermore, the 3-Lie algebra L is isomorphic to the vector
space V with the 3-linear map [·, ·, ·]V . This shows that any four dimensional
3-Lie algebra over a field F of characteristic unequal to two is isomorphic to
some 3-Lie algebra defined on V = F4.

Suppose V with [·, ·, ·]1 : V3 → V is a four dimensional 3-Lie algebra. Then
there exists a linear map τ1 : V∗ → V such that

[v1, v2, v3]1 = τ1 ◦ φ (v1 ∧ v2 ∧ v3)

for all v1, v2, v3 ∈ V. Lemmas 3.15 and 3.16 imply the existence of a linear map
τ2 : V∗ → V such that the V with τ1 and V with τ2 are isomorphic 3-Lie algebras
and the matrix representation of τ2 is

[τ2] =


α1 β1 γ1 γ2

−β1 α2 γ3 γ4

γ1 γ3 α3 β2

γ2 γ4 −β2 α4


with scalars αi, βi, γi ∈ F that satisfy the constraints given in lemma 3.16.
This shows that any 3-Lie algebra on V is isomorphic to a 3-Lie algebra with a
τ : V∗ → V whose matrix representation is as in lemma 3.16.

Let V = F4 be a four dimensional vector space over a field F of characteristic
unequal to two and τ : V∗ → V a linear map such that its matrix representation
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is as in lemma 3.16. According to lemma 3.17 the vector space V with skew-
symmetric 3-linear map [·, ·, ·] = τ ◦ φ (· ∧ · ∧ ·) is a 3-Lie algebra if and only if
the matrix representation of τ satisfies

(τ34 − τ43) τi2 + (τ42 − τ24) τi3 + (τ23 − τ32) τi4 = 0
(τ43 − τ34) τi1 + (τ14 − τ41) τi3 + (τ31 − τ13) τi4 = 0
(τ24 − τ42) τi1 + (τ41 − τ14) τi2 + (τ12 − τ21) τi4 = 0
(τ23 − τ32) τi1 + (τ31 − τ13) τi2 + (τ12 − τ21) τi3 = 0

for i = 1, 2, 3, 4. Since the characteristic of F is unequal to two and the special
shape of the matrix representation of τ , then the above equations are equivalent
to

β2τi2 = 0
β2τi1 = 0
β1τi4 = 0
β1τi3 = 0

for i = 1, 2, 3, 4. After applying the constraints on the scalars αi, βi, γi ∈ F, the
following equivalent equations are derived

α3β1 = 0
β2 = 0
γi = 0

for i = 1, 2, 3, 4, and

α1 = 0 ⇒ α2 = 0 ⇒ α3 = 0 ⇒ α4 = 0.

Thus, the vector space V with a 3-linear map induced by a linear map τ : V∗ → V
with a matrix representation as in lemma 3.16 is a 3-Lie algebra if and only if
the matrix representation of τ satisfies

[τ ] =


α1 β 0 0
−β α2 0 0
0 0 α3 0
0 0 0 α4


with scalars αi, β ∈ F such that α3β = 0 and

α1 = 0 ⇒ α2 = 0 ⇒ α3 = 0 ⇒ α4 = 0.

The matrix representation of τ shows us that some 3-Lie algebras can not
be isomorphic. At this point we can distinct three types of 3-Lie algebras:

• If [τ ] is symmetric, then β = 0. The map [·, ·, ·] induced by τ is given by

[e1, e2, e3] = α4
′e4

[e1, e2, e4] = α3
′e3

[e1, e3, e4] = α2
′e2

[e2, e3, e4] = α1
′e1

with αi
′ := (−1)i αi for i = 1, 2, 3, 4 such that

α1
′ = 0 ⇒ α2

′ = 0 ⇒ α3
′ = 0 ⇒ α4

′ = 0.
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• If [τ ] is not symmetric and the rank of τ is two, then α3 = α4 = 0 and
β 6= 0. The linear map V → V with matrix representation

1 0 0 0
0 β−1 0 0
0 0 β 0
0 0 0 1


is an isomorphism of 3-Lie algebras. This map transforms τ such that
β = 1. The map [·, ·, ·] induced by τ is given by

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e1 + α2e2

[e2, e3, e4] = e2 − α1e1

for scalars α1, α2 ∈ F such that α1α2 + 1 6= 0 and

α1 = 0 ⇒ α2 = 0.

• If [τ ] is not symmetric and the rank of τ is one, then α3 = α4 = 0, β 6= 0
and α1α2 + β = 0. The linear map V → V with matrix representation

1
2β

1
2α2

0 0
0 0 2β 0
0 0 0 1
β

2α1

1
2 0 0


is an isomorphism of 3-Lie algebras. The map [·, ·, ·] induced by τ is given
by

[e1, e2, e3] = e1

[e1, e2, e4] = 0
[e1, e3, e4] = 0
[e2, e3, e4] = 0.

Combining the successive parts completes the proof of theorem 3.13. Any
four dimensional 3-Lie algebra over a field F is isomorphic to some 3-Lie algebra
defined on the vector space F4. Every such a 3-Lie algebra is isomorphic to one
of the three types of 3-Lie algebras given above.

Corollary 3.18. All four dimensional 3-Lie algebras over a field F of charac-
teristic unequal to two which is algebraically closed are isomorphic to one of the
following 3-Lie algebras. Furthermore no two of the 3-Lie algebras below are
isomorphic to each other.

• The vector space F4 with basis {e1, e2, e3, e4}, and 3-linear map given by

[e1, e2, e3] = α4e4

[e1, e2, e4] = α3e3

[e1, e3, e4] = α2e2

[e2, e3, e4] = α1e1
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with α1, α2, α3, α4 ∈ {0, 1} such that

α1 = 0 ⇒ α2 = 0 ⇒ α3 = 0 ⇒ α4 = 0.

• The vector space F4 with basis {e1, e2, e3, e4}, and 3-linear map given by

[e1, e2, e3] = e1

[e1, e2, e4] = 0
[e1, e3, e4] = 0
[e2, e3, e4] = 0.

• The vector space F4 with basis {e1, e2, e3, e4}, and 3-linear map given by

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e1

[e2, e3, e4] = e2.

• The vector space F4 with basis {e1, e2, e3, e4}, and 3-linear map given by

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e1 + αe2

[e2, e3, e4] = e1 + e2

with α ∈ F such that α 6= 1.

Proof. This proof extends the proof of theorem 3.13. Take the situation as at
the end of that proof and let F be algebraically closed.

In lemma 3.15 we saw that two four dimensional 3-Lie algebras on the same
vector space V are isomorphic if and only if there exists a bijective linear map
T : V → V such that the relation

T ◦ τ1 ◦ T ∗ = det (T ) τ2

holds. Define S := λT for a nonzero scalar λ ∈ F. Then the above relation is
equivalent to

S ◦ τ1 ◦ S∗ = λ2 det (T ) τ2 =
det (S)
λ2

τ2.

The field F is algebraically closed and det (T ) 6= 0. So there exists a nonzero
scalar λ such that λ2 det (T ) = 1. Thus, two 3-Lie algebras on the same vector
space V of dimension four are isomorphic if and only if there exists a bijective
linear map T : V → V such that the relation

T ◦ τ1 ◦ T ∗ = τ2

holds. In matrix representation this relation is the same as the relation between
congruent matrices.
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Let τ : V∗ → V be the map corresponding to a 3-Lie algebra on the vector
space V = F4. Suppose the matrix representation of τ is given by

[τ ] =


α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4


and let T : V → V be a linear map with matrix representation

[T ] =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


for scalars λi such that if αi 6= 0, then λ2

iαi = (−1)i, otherwise λi = 1. The
linear map T is invertible. So the above 3-Lie algebra is isomorphic to

[e1, e2, e3] = α4
′e4

[e1, e2, e4] = α3
′e3

[e1, e3, e4] = α2
′e2

[e2, e3, e4] = α1
′e1

with α1
′, α2

′, α3
′, α4

′ ∈ {0, 1} such that

α1
′ = 0 ⇒ α2

′ = 0 ⇒ α3
′ = 0 ⇒ α4

′ = 0.

Again let τ : V∗ → V be the map corresponding to a 3-Lie algebra on the
vector space V = F4. Suppose τ has a matrix representation

[τ ] =


α1 1 0 0
−1 α2 0 0
0 0 0 0
0 0 0 0


for scalars α1, α2 ∈ F such that α1α2 + 1 6= 0 and

α1 = 0 ⇒ α2 = 0.

The third type of 3-Lie algebra in the corollary corresponds to the case α1 = 0.
Assume α1 6= 0. Let T : V → V be a linear map with matrix representation

[T ] =


λ1 0 0 0
0 λ2 0 0
0 0 1 0
0 0 0 1


for scalars λi such that α1λ1

2 = −1 and λ1λ2 = 1. Then

[T ◦ τ ◦ T ∗] =


−1 1 0 0
−1 −α1α2 0 0
0 0 0 0
0 0 0 0

 .
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So the 3-Lie algebra corresponding to τ is isomorphic to

[e1, e2, e3] = 0
[e1, e2, e4] = 0
[e1, e3, e4] = e1 + αe2

[e2, e3, e4] = e1 + e2

with α ∈ F such that α 6= 1.
To see that no two of the 3-Lie algebras above are isomorphic to each other,

consider the rank of the matrix representation of τ : V → V corresponding to
each 3-Lie algebra and the rank of the symmetric and skew-symmetric parts
thereof. This works for all types of 3-Lie algebras but the last. We prove by
contradiction that also all 3-Lie algebra of the last type are distinct.

Assume that two 3-Lie algebras of the last type, with corresponding scalars
α and β such that α 6= β, are isomorphic. Then there exists an invertible 4× 4
matrix Q such that

Q


−1 1 0 0
−1 α 0 0
0 0 0 0
0 0 0 0

QT =


−1 1 0 0
−1 β 0 0
0 0 0 0
0 0 0 0


and more specifically, there exists a 2× 2 matrix P such that

P

(
−1 1
−1 α

)
PT =

(
−1 1
−1 β

)
.

Then the symmetric and skew-symmetric parts of the above matrices satisfy

P

(
0 1
−1 0

)
PT =

(
0 1
−1 0

)
P

(
−1 0
0 α

)
PT =

(
−1 0
0 β

)
.

Taking the determinant of the above matrices gives equations det (P )2 = 1 and
det (P )2 α = β. These equations imply α = β. This contradicts our assumption.
Thus also the 3-Lie algebras of the last type are distinct.

Remark 3.19. In the above corollary no two 3-Lie algebras are isomorphic to
each other. Indeed there are almost as many 3-Lie algebras of the last type as
there are elements in the field F.

3.3 Quaternions

On a quaternion algebra the 3-linear map at the beginning of this chapter in-
duces a four dimensional 3-Lie algebra. First we recall the definition of the
quaternion algebra [17].

Definition 3.20. Let F be a field and let α, β ∈ F be nonzero. The quaternion
algebra is the set of elements a+bi+cj+dk with a, b, c, d ∈ F called quaternions,
component wise addition and multiplication determined by ij = −ji = k, i2 = α
and j2 = β.
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We define a skew-symmetric 3-linear map as

[x, y, z] := xyz + yzx+ zxy − yxz − xzy − zyx

for quaternions x, y, z. Then

[1, i, j] = 2k
[1, i, k] = 2αj
[1, j, k] = −2βi
[i, j, k] = −6αβ.

If we view the quaternion algebra as a four dimensional vector space with
basis {1, i, j, k}, then the above 3-linear map on this vector space clearly is
one of the types in theorem 3.13. Thus a quaternion algebra induces a four
dimensional 3-Lie algebra.

Over the real numbers R there are two distinct quaternion algebras up to
an isomorphism. For α = β = −1 we have Hamilton’s quaternions, and for
α = β = 1 the quaternion algebra can be identified with the 2 × 2 matrices.
This explains why the Jacobi identity is satisfied for real 2× 2 matrices.

Theorem 3.21. If two quaternion algebras are isomorphic, then also their cor-
responding 3-Lie algebras are isomorphic.

Proof. This follows from the fact that isomorphisms respect addition and mul-
tiplication.

It is not known whether the reverse statement is also true.

3.4 Octonions

The quaternions are a generalization of the complex numbers. In the same way
octonions generalize quaternions. The octonions are no longer associative, but
it is an alternative algebra [15], that is, it satisfies

(xy)x = x (yx)

x (xy) = x2y

(xy) y = xy2

for all elements x, y.
A natural way to define a 3-linear map is to use the associator

[x, y, z] = (xy) z − x (yz)

for all elements x, y, z. We can prove this is a skew-symmetric map using the
above relations. For example

[x, x, y] = x2y − x (xy) = 0

so we have
0 = [x+ y, x+ y, z] = [x, y, z] + [y, x, z]
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for all elements x, y, z. The other cases are proven in the same way. Thus the
associator is skew-symmetric. However this 3-linear map does not satisfy the
Jacobi identity. Before we can show this, we need to describe how to multiply
octonions.

We write an octonion x as

x = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

for a0, . . . , a7 ∈ R, where {1, e1, e2, e3, e4, e5, e6, e7} is a basis of the octonion
algebra as in [1]. To describe the multiplication of octonions, we note that 1 is
the identity and ei2 = −1 for all i = 1, . . . , 7. All other products can be resolved
from the Fano plane, which is given in the figure below.

e3 e2 e5

e6

e4 e1

e7

Each line passes through three points. If ei, ej , ek are three such points ordered
according to the arrows on the line, then eiej = ek and ejei = −ek. For example
e5e2 = e3 and e3e2 = −e5.

Now we show that the Jacobi identity is not satisfied. Lets check it for the
vectors e1, e2, e4, e1, e7. Then

[e1, e2, e4] = 0
[e1, e1, e7] = 0
[e2, e1, e7] = 2e5
[e4, e1, e7] = −2e6

and

[e1, [e2, e1, e7] , e4] = −4e3
[e1, e2, [e4, e1, e7]] = −4e3.

So we have

[[e1, e2, e4] , e1, e7] =
[[e1, e1, e7] , e2, e4] + [e1, [e2, e1, e7] , e4] + [e1, e2, [e4, e1, e7]] + 8e3

that is, the Jacobi identity is not satisfied.
Using the associator as a skew-symmetric 3-linear map on the octonions does

not give a 3-Lie algebra. However it is possible to construct a generalized 3-Lie
algebra using the octonions as is shown in [18].
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Chapter 4

Conclusions

In chapter 2 the definition of a n-Lie algebra was given with corresponding
definitions such as subalgebras, ideals and isomorphisms. We saw an infinite
dimensional n-Lie algebra in example 2.12. A new m-Lie algebra can be con-
structed from a n-Lie algebra for m < n as we saw in theorems 2.14 and 2.15.

We classified the 3-Lie algebras of low dimensions in chapter 3. There were
only trivial 3-Lie algebras of dimension up to three, one nontrivial 3-Lie algebra
of dimension three, and many nontrivial four dimensional 3-Lie algebras as we
saw in theorems 3.11, 3.12 and 3.13 respectively. In general the 3-linear map

[A,B,C] := ABC +BCA+ CAB −BAC −ACB − CBA

for matrices A, B, C does not satisfy the Jacobi identity as we saw in example
3.1, but in section 3.3 we saw that on the quaternion algebra it does define a
3-Lie algebra. Furthermore the octonions with the associator as the 3-linear
map is not a 3-Lie algebra.
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Appendix A

Congruent matrices

From linear algebra we know that every symmetric matrix is congruent to a
diagonal matrix [8]. In this appendix we prove a similar result for any square
matrix over a field of characteristic unequal to two. Let us first recall the
definition of congruent matrices [8].

Definition A.1. Let A and B be n×n matrices. Then B is said to be congruent
to A if there exists an invertible n× n matrix Q such that B = QTAQ.

The first theorem we prove is a statement about the vector space on which
a skew-symmetric bilinear form is defined. The vector space can be split into
a number of two dimensional subspaces such that the bilinear form is nonzero,
and one remaining subspace on which the bilinear form is zero. The proof of
this theorem is inspired by the proof of theorem 6.35 in [8] about diagonalizable
symmetric bilinear forms.

Theorem A.2. Let B : V × V → F be a skew-symmetric bilinear form on a
vector space V of finite dimension n over a field F of characteristic unequal
to two. Then there exists a nonnegative integer k ≤ n

2 and two dimensional
subspaces V1, . . . ,Vk of V and a n− 2k dimensional subspace V0 of V such that

V = V0 ⊕ · · · ⊕ Vk

with B restricted to V0 is zero, B restricted to Vi is nonzero for i = 1, . . . , k and
B (x, y) = 0 for all x ∈ Vi, y ∈ Vj with i 6= j.

Proof. If B (x, y) = 0 for all x, y ∈ V, then choose k = 0 and define V0 := V.
This proves the theorem in the case B is a zero bilinear form.

If n = 0, then B (x, y) = 0 by bilinearity. Suppose n = 1. Let x, y ∈ V
be any pair of vectors. If x or y or both are zero vectors, then B (x, y) = 0
by bilinearity. If x and y are both nonzero vectors, then there exists a nonzero
scalar λ ∈ F such that x = λy. Again B (x, y) = 0 by skew-symmetry as follows
from

B (x, y) = λB (x, x) = −λB (x, x) = −B (x, y) .

Thus if n = 0 or n = 1, then B (x, y) = 0 for all x, y ∈ V. Combining this result
with the above statement completes the proof for n = 0 and n = 1.
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Assume B is nonzero and the theorem holds for n − 2. There exists a pair
of nonzero vectors x, y ∈ V and a nonzero scalar λ ∈ F such that B (x, y) = λ.
Define a linear map L : V → F2 as

Lx,y (z) :=
(
B (z, y)
B (x, z)

)
for any z ∈ V. The map L is linear, because B is bilinear. The rank of the map
L is two, because the rank can at most be two and

Lx,y (x) =
(
λ
0

)
and Lx,y (y) =

(
0
λ

)
requires the rank to be at least two.

Define V ′ := kerLx,y. The dimension theorem implies that dimV ′ = n− 2.
By assumption the theorem can be applied to the restriction of B to V ′. There
exists a nonnegative integer k′ ≤ n−2

2 and two dimensional subspaces V1, . . . ,Vk′
of V ′ and a n− 2 (k′ + 1) dimensional subspace V0 of V ′. Define k := k′+ 1 and
Vk := span {x, y}. Then

V = V ′ ⊕ Vk = V0 ⊕ · · · ⊕ Vk′ ⊕ Vk.

The construction of the linear map L and subspace V ′ implies that B restricted
to Vk is nonzero and B (x, y) = 0 for all x ∈ V ′ and y ∈ Vk. Thus also that
B (x, y) = 0 for all x ∈ Vi and y ∈ Vk with i = 1, . . . , k − 1. If this is combined
with the results for V ′, then the theorem is also proved for n.

By induction the theorem holds for any nonnegative integer n.

The space of bilinear forms on a vector space of dimension n is isomorphic
to the vector space of n×n matrices. Combining this statement with the above
theorem gives us a simple statement about congruent skew-symmetric matrices.

Corollary A.3. Let A be a skew-symmetric n × n matrix over a field F of
characteristic unequal to two. Then A has even rank and is congruent to

D1 O · · · O
O D2 · · · O
...

...
. . .

...
O O · · · Dk+1

 (A.1)

with 2k = rankA, Dk+1 is the n− 2k × n− 2k zero matrix and for i = 1, . . . , k

Di =
(

0 1
−1 0

)
.

Proof. Let V be any n dimensional vector space over the field F with an ordered
basis β. There exists a bilinear form B : V × V → F such that A is the matrix
representation of B with respect to β. The matrix A is skew-symmetric, thus
the bilinear form B is also skew-symmetric. Apply theorem A.2 to B and let k,
Vi for i = 0, . . . , k be as in the theorem.

Suppose 1 ≤ i ≤ k. There exists nonzero vectors x, y ∈ Vi and a nonzero
scalar λ ∈ F such that B (x, y) = λ, because B restricted to Vi is nonzero.
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Define ui := x and vi := λ−1y. The skew-symmetry of B implies the linear
independence of the vectors x and y, and hence also of ui and vi. The dimension
of Vi is two. Therefore {ui, vi} is an ordered basis of Vi. Furthermore the matrix
representation of B restricted to Vi is Di.

Theorem A.2 states that B restricted to V0 is zero and dimV0 = n − 2k.
Let {w1, . . . , wn−2k} be any ordered basis of V0. The matrix representation of
B restricted to V0 is the n− 2k × n− 2k zero matrix, that is Dk+1.

Define the ordered set γ := {u1, v1, . . . , uk, vk, w1, . . . , wn−2k}. The set γ
consists of n linear independent vectors. That is, γ is an ordered basis of V.
The matrix representation of B with respect to γ is as in equation (A.1), because
B (x, y) = 0 for all x ∈ Vi, y ∈ Vj with i 6= j. This proves A is congruent to the
matrix in (A.1).

The rank of A is a direct consequence of the shape of the matrix in (A.1).

In theorem A.2 the vector space is split up into a number of subspaces. The
proof of the above corollary illustrates there is some freedom left in choosing a
basis for the subspaces. This is exploited in the proof of the following theorem.
This theorem is a statement about any square matrix.

Theorem A.4. Let A be a n×n matrix over a field F of characteristic unequal
to two. Then the matrix is congruent to

D1 C12 · · · C1k′

C12
T D2 · · · C2k′

...
...

. . .
...

C1k′
T C2k′

T · · · Dk′

 (A.2)

with k′ = k+1, the rank of the skew-symmetric part of A is 2k, Dk′ is a diagonal
matrix and for i = 1, . . . , k

Di =
(
αi 1
−1 βi

)
for some αi, βi ∈ F.

Proof. Let V be a n dimensional vector space over the field F with an ordered
basis γ. There exists a bilinear form B : V × V → F such that A is the matrix
representation of B with respect to γ. Define new bilinear forms BS : V×V → F
and BA : V × V → F as

BS (x, y) :=
B (x, y) +B (y, x)

2

BA (x, y) :=
B (x, y)−B (y, x)

2

for all x, y ∈ V. Then BS is a symmetric bilinear form, BA is a skew-symmetric
bilinear form and B = BS +BA.

Apply theorem A.2 to BA. Let k and Vi for i = 0, . . . , k be as in that
theorem. The restriction of BS to Vi is again a symmetric bilinear form. Thus
there exists an ordered basis δi of Vi such that the restriction of BS is diagonal.

Suppose 1 ≤ i ≤ k. The subspace Vi has dimension two. The basis δi
contains two vectors, that is δi = {xi, yi}. The restriction of BA to Vi is
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nonzero. There exists a pair of vectors u, v ∈ Vi and a nonzero scalar λ ∈ F
such that BA (u, v) = λ. Expressing the vectors u, v in terms of the ordered
basis gives u = u1xi + u2yi and v = v1xi + v2yi. Define ai := λ−1xi and
bi := (u1v2 − u2v1) yi. Then {ai, bi} is again an ordered basis of Vi and the
matrix representation of B with respect to this ordered basis is Di for some
scalars αi and βi.

The restriction of BA to V0 is zero. The dimension of V0 is equal to n− 2k,
that is, the ordered basis δ0 = {c1, . . . , cn−2k}. The matrix representation of B
with respect to δ0 is a diagonal matrix. Denote this matrix by Dk′ .

Define the ordered set γ′ = {a1, b1, . . . , ak, bk, c1, . . . , cn−2k}. This set con-
tains n linear independent vectors, that is, the set γ′ is an ordered basis of V.
For all x ∈ Vi, y ∈ Vj with i 6= j the bilinear form BA (x, y) = 0, that is,
B (x, y) = BS (x, y). Combining these results shows that the matrix represen-
tation of B with respect to γ′ is given by the matrix in A.2. This completes the
proof.
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