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1 Introduction

In this thesis a central role is played by cubic surfaces in P3. Informally speaking, a cubic
surface consists of triples (x, y, z) ∈ C3 satisfying f(x, y, z) = 0, where f is a third degree
polynomial with coefficients in some field. In this thesis, we will often look at surfaces
arising from polynomials over Q, the field of rational numbers. We say that these surfaces
are defined over Q.

The geometry of cubic surfaces has been an object of study since the 19th century.
In 1849 it was discovered by Cayley and Salmon that every non-singular (or smooth)
cubic surface contains exactly 27 straight lines. These lines, along with their intersection
properties, contain a lot of information about the surface itself.

The interest of cubic surfaces also lies in their connection with number theory. For
instance, the following questions are directly related to the geometry of cubic surfaces.

Question 1.1. Can every rational number be expressed as the sum of three cubes of
rational numbers?

Question 1.2. Find an integer that is expressible as the sum of two cubes of integers in
two distinct ways.

Question 1.3. Find an infinite number of rational solutions to f(x, y, z) = 0, where f is
a third-degree polynomial (not necessarily homogeneous).

An important property of cubic surfaces is that they can be parametrized with rational
functions, or stated in a slightly more technical way, for any cubic surface S defined over
Q there is a birational map φ : P2(Q) → S. But for a problem like Question 1.3, this
is not enough. Not only do we want a parametrization in terms of rational functions,
but these rational functions have to be defined over Q, that is, we don’t want them to
contain any non-rational numbers. We are thus led to pose the following question: for
which cubic surfaces S does there exist a birational map φ : P2(Q) → S that is defined
over Q?

1.1 Outline of the thesis

In this section I will give a brief outline of this thesis.
In Chapter 2, the reader finds some facts from the algebraic geometry of surfaces (blow-

ups, Picard group, intersection form) and their applications to cubic surfaces. Also, the
symmetry of the 27 lines is examined, resulting in a brief discussion of the Weyl group
W (E6).

In Chapter 3, the main result of Swinnerton-Dyer is stated: this result gives a nec-
essary and sufficient criterion for a smooth cubic surface S over a number field K to be
birationally trivial over K; that is, to allow a K-birational map to P2. This is followed
by a classification of birationally trivial smooth cubic surfaces. Finally, we turn to the
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problem of explicitly finding K-rational and K-birational maps, distinguishing three cases
according to the classification mentioned.

In Chapter 4, some birationally trivial cubic surfaces are presented. Here it is shown
that all types of the classification are indeed represented by a smooth cubic surface. Also,
we exhibit smooth cubic surfaces that are birationally trivial over Q, but not blow-ups
over Q.

In Chapter 5, we turn to the computational aspects of Swinnerton-Dyer’s criterion. A
Maple algorithm to find all 27 lines on a smooth cubic surface S is presented. It turns
out that, modulo the difficulties of working in high-degree number fields, the criterion can
be easily checked. The case of the twisted Fermat cubic surface x3 + y3 + z3 + 2w3 = 0 is
done as an example.

Chapter 6 is devoted to birationally non-trivial surfaces and the Galois orbits of
straight lines lying on them. We explore some different types of orbits and establish
the fact that an orbit must have cardinality 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 24 or
27, and that moreover all these cardinalities do indeed occur. Next, we discuss a possible
way of finding a cubic surface without any rational points, but with an orbit of 6 pairwise
skew lines.

1.2 About notation and conventions

Throughout the thesis, K denotes a number field.
By Pn(K) is meant the set (Kn − (0, 0, . . . , 0)) / ∼ where (a1, a2, . . . , an) ∼ (b1, b2, . . . , bn)

if and only if there is λ ∈ K∗ such that bi = λai for all i. When the field K is apparent
from context, we will just write Pn.

Whenever we speak of a curve or surface, and a ground field is not mentioned, the
ground field is understood to be just Q.

To avoid clutter, we occasionally use the same notation for divisors and their classes
in the Picard group. When there is any danger of confusion, we denote the divisor class
of C as Ĉ.

When studying a cubic surface S, we sometimes use the existence of a morphism
π : S → P2 that blows down 6 lines. It is sometimes useful to swap back and forth
between S and its image under π. In these cases, the image of any subvariety ` of S under
π will be denoted `.

For n ∈ N, we will sometimes call a set of n elements an n-set. Likewise, when
discussing group actions, we will refer to an orbit consisting of n elements as an n-orbit.

Throughout the thesis, S denotes a smooth cubic surface and L its set of 27 lines.
L′ usually denotes a distinguished subset of L. We will reserve the calligraphic letter `,
with or without primes and subscripts, for lines on S.
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2 Prerequisites about cubic surfaces

We now come to the definition of a cubic surface, as it will be used in this thesis.

Definition 2.1. A cubic surface over a number field K is a set{
(x : y : z : w) ∈ P3(Q) : F (x, y, z, w) = 0

}
⊂ P3(Q),

where F ∈ K[x, y, z, w] is irreducible and homogeneous of degree 3.

If we do not specify the ground field K, the cubic surface is understood to be defined
over Q.

2.1 The 27 lines on a cubic surface

We will mainly study the geometry of a cubic surface by the lines on it: there are always
27 of them.

Theorem 2.2. There are 27 lines on any smooth cubic surface.

Proof. We will not give the details, for which plenty of references exist, e.g. [6]. The first
step is to demonstrate that any smooth cubic surface contains at least one line. This can
simply be done by “counting constants” (see [9, Ch. 1, pp. 79-80]). The next step is to
prove that every line is contained in 5 distinct tritangent planes, i.e. planes that intersect
the cubic surface in a union of three lines. The last step is to fix a tritangent plane H,
then count the number of lines intersecting one of the three lines in H, and lastly showing
that there are no more lines than the ones already found.

Remark 2.3. On a surface with only isolated singularities, there are still lines, but their
number is strictly less than 27.

In order to establish the fact that smooth cubic surfaces over a number field K can
be parametrised over its algebraic closure Q, the concept of a blow-up is convenient.

Theorem 2.4. Let S be a smooth surface and let x ∈ S. There exists a surface BlxS
and a morphism φ : BlxS → S, unique up to isomorphism, such that

1. φ−1(x) ∼= P1

2. φ : BlxS\φ−1(x)→ S\{x} is an isomorphism

(By a surface we mean any two-dimensional projective variety, in particular it does not
have to be embeddable in P3.) We call BlxS the blow-up of S in the point x. The map φ is
called the blow-down morphism, while the (restriction of its) inverse φ−1 is called the blow-
up map. The inverse image φ−1(x) is the exceptional divisor of the blow-up BlxS. Finally,
for every curve C ⊂ S, we define the strict transform of C to be φ−1(C − {x}) ⊂ BlxS,
where the bar denotes the Zariski closure.
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Throughout the rest of this thesis, we will need the notion of a set of n points being
“in general position”. For simplicity, and since we will not need anything more, we will
only treat the case n = 6.

Definition 2.5. Six points in a projective plane P2(F ), where F is any algebraically
closed field, are said to be in general position if no three lie on a line, and not all six on
a conic.

In 1871, Alfred Clebsch established the fact that every smooth cubic surface can be
realised as a blow-up of the plane in the union of six points in general position. Of course,
being a classical geometer of the 19th century, Clebsch only established this for surfaces
defined over C. By virtue of the Lefschetz principle, we can translate both of his results
into geometry over Q. His results then read as follows:

Theorem 2.6. Let p1, . . . , p6 ∈ P2(Q) be six points in general position and let {f1, f2, f3, f4}
be a basis for the Q-vector space of cubic curves vanishing in all of the pi. Then the ra-
tional map φ : P2 → P3 given by φ(P ) = (f1(P ) : f2(P ) : f3(P ) : f4(P )) is a blow-up
of P2 in the six points pi, and the Zariski closure φ(P2 − {p1, . . . , p6}) ⊂ P3 is a smooth
cubic surface.

As a converse to this, we have:

Theorem 2.7. Every smooth cubic surface over Q is isomorphic over Q to P2(Q) blown
up in six points in general position.

The intersection properties of the 27 lines on a cubic surface S can be investigated by
considering S as a blow-up of the projective plane. We have the following:

Theorem 2.8. Let S be a smooth cubic surface and π : S → P2 a blow-down morphism,
and let pi (1 ≤ i ≤ 6) be the images of the exceptional divisors. Then the image of the
27 lines under π are:

1. the six points pi =: `i

2. the fifteen lines `ij connecting pi and pj (1 ≤ i < j ≤ 6)

3. the six conics `′i passing through all pj except pi

Proof. The proof is an explicit verification, using the fact that S is a blow-up of the plane.
We will do a sample case; the rest of the cases go similarly. Let S be a smooth cubic
surface arising as a blow-up of P2 in p1, . . . , p6. We will check the case of the conic not
passing through p1, whose defining polynomial we denote C1. Let F,G be a basis of linear
forms vanishing in p1, then FC1,GC1 are linearly independent cubic forms vanishing in
all pi. Let H, J be cubic forms vanishing in the pi such that FC1, GC1, H, J are linearly
independent. We will now choose the blow-up map φ given by φ(P ) = (FC1(P ) : GC1(P ) :
H(P ) : J(P )); any other choice would amount to a projective linear transformation in
P3. The image is clearly contained in the line X = Y = 0, and since φ is an isomorphism
outside the pi, it must be the whole line.
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A very classical and useful geometric description of the 27 lines on a cubic surface is
furnished by Schläfli’s double six. It is immediately linked to the description of the lines
as listed in Theorem 2.8.

Definition 2.9. A double six is a set of 12 lines (on a cubic surface S), which we shall
denote by {`1, `2, `3, `4, `5, `6, `′1, `′2, `′3, `′4, `′5, `′6}, such that no two of the `i intersect, no
two of the `′i intersect and `i intersects `′j if and only if i 6= j.

Furthermore, the remaining 15 lines can be labeled `ij, for 1 ≤ i < j ≤ 6, in a unique
way such that `i meets `jk if and only if i = j or i = k, `′i meets `jk if and only if i = j
or i = k and `ij meets `km if and only if {i, j} ∩ {k,m} = ∅.

Remark 2.10. The notation used in Definition 2.9 already suggests one possibility for a
double-six: again, regard S as the blow-up of P2 in p1, . . . , p6. Let the `i be the exceptional
divisors corresponding to the points pi, let `′i be the strict transforms of the conics not
passing through pi and let `ij be the strict transforms of the lines through pi and pj.

We can now easily check that these choices do indeed give rise to a double-six. I will
work out two cases, the other four are even easier.

First I prove `′i ∩ `′j = ∅ if i 6= j. Fix two conics `′i, `
′
j. These meet in the four

distinct points p1, . . . , p̂i, . . . , p̂j, . . . , p6, so by Bézout they cannot have a double contact
in any of the remaining pk: equivalently, they intersect each pk at different slopes. By
an elementary property of blow-ups, this means that their strict transforms intersect `k
at different points. Since the blow-up map is an isomorphism outside the pk, the strict
transforms `′i, `

′
j do not intersect.

Now the proof that `′i meets `jk if and only if i = j or i = k. First, fix a line `ij and
a conic `k, where k /∈ {i, j}. Their points of intersection are pi and pj. By Bézout, these
intersections are single contacts, and so the strict transforms are disjoint on S. Secondly,
fix a line `ij and a conic `j. These meet in pi and none other of pk: either it has a
double contact at pi, or they intersect outside the union of the pk; either way, the strict
transforms intersect.

To see what is “behind” the double-six configuration, and to describe the symmetry
of the 27 lines (which for instance lead to more double-sixes), we need to delve a little
further into the geometry of surfaces and examine the concept of the Picard group of a
surface.

2.2 The symmetry of the 27 lines

Their elegant symmetry both enthralls and at the same time irritates;
what use is it to know, for instance, the number of coplanar triples of such
lines (forty-five) or the number of double Schläffli sixfolds (thirty-six)?

Manin ([5, p. 112])
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The 27 lines possess a remarkably high degree of symmetry. Not only does every of the 27
lines intersect exactly 10 of the other lines, but also does every pair of skew lines intersect
15 other lines, and every triple of skew lines intersect 18 other lines, and so on. We are
thus led to ask ourselves what the symmetry group of the lines is, that is, the group of all
permutations that preserve the incidence relations among the lines. This is formalized in
the notion of the collineation group of a set of lines:

Definition 2.11. Let L be a collection of lines (for example in P3) with intersection map
i : L × L → {0, 1} (0 denoting crossing lines and 1 denoting intersecting or equal lines).
Let Sym(L) be the permutation group on the elements of L. The collineation group of
L, denoted GL, is the subgroup of all elements σ ∈ Sym(L) satisfying i(σ(`1), σ(`2)) =
i(`1, `2) for all pairs `1, `2 ∈ L.

One way to get a good grip on the collineation group of the 27 lines is the double-six.
The first thing to establish is the answer to the following question: how many double-sixes
are there on a cubic surface?

Proposition 2.12. There are 36 double-sixes on a smooth cubic surface S.

Proof. We start out with any double-six, denoted in the same way as in Definition 2.9.
Claim: there are 72 sets of 6 pairwise disjoint lines on S. This can be verified by just
listing them all:

• 2 sets A1 and A2 given by A1 := {`1, `2, `3, `4, `5, `6} and A2 := {`′1, `′2, `′3, `′4, `′5, `′6},

• 30 sets Bij determined by a pair i, j satisfying 1 ≤ i 6= j ≤ 6, consisting of the 2
lines `i and `′i, and the 4 lines `jk, where k ∈ {1, . . . , 6}\{i, j},

• the 20 sets Cijk determined by a triple 1 ≤ i < j < k ≤ 6, consisting of the 3 lines
`i, `j, `k and the 3 lines `mn, where m,n /∈ {i, j, k}

• the 20 sets C ′ijk determined by a triple 1 ≤ i < j < k ≤ 6, consisting of the 3 lines
`′i, `

′
j, `
′
k and the 3 lines `mn, where m,n /∈ {i, j, k}

It is easy to see that there is no other way to get 6 pairwise skew lines on S. These 72
sets correspond to 36 double sixes in an obvious way: A1 goes with A2, Bij goes with Bji

and Cijk goes with C ′ijk.

With the above explicit description of the double-sixes on a smooth cubic surface
S, it is easy to derive the order of the collineation group GL. First off, any element
σ ∈ GL sends a double-six to a double-six, giving us 36 choices. This has to be multiplied
by the number of elements that sends the double-six to itself. Now, GL can act on a
double-six by interchanging the two sets {`1, `2, `3, `4, `5, `6} and {`′1, `′2, `′3, `′4, `′5, `′6} or
by any permutation of the elements of {`1, `2, `3, `4, `5, `6}, inducing the corresponding
permutation on {`′1, `′2, `′3, `′4, `′5, `′6}. This gives us a total of 36 · 2 · 6! = 51,840 elements
in GL.
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Important Remark 2.13. Using the above reasoning, we can now exploit the symme-
tries of the lines on S in the following way. As we have seen, given 6 pairwise skew lines on
S, there is a double-six on S that contains those lines. Therefore, whenever we encounter
6 lines that are pairwise skew, we can “embed” them into a double-six. From there, we
can make use of everything we know about double-sixes.

Even more is true. For 1 ≤ n ≤ 4, if we have n pairwise skew lines, we may embed
those into a double-six as the lines `1, . . . , `n! (The only thing to check is that we can
supply a set of 4 pairwise skew lines on a cubic surface with two more lines to make a
set of 6 pairwise skew lines.) This gives us a very convenient tool to settle all kinds of
enumerative questions concerning the 27 lines. As a little example, we take the following
question: how many lines intersect 2 given skew lines on a smooth cubic surface? Taking
the 2 skew lines to be `1, `2, we see that there are 5 lines intersecting both `1 and `2,
namely the lines `12, `3, `4, `5, `6.

2.3 The 27 lines and their images in the Picard group

Having defined and to some extent investigated the collineation group of the 27 lines, we
are still in search of its precise identity. We will define the Picard group associated to a
smooth cubic surface S, and show how to embed the 27 lines as elements of that group.
The collineation group acts on the images of the 27 lines in the Picard group, and this
action will turn out to be very easy to describe. Using these ideas, the collineation group
GL will be identified as a well-known finite group, a so-called Weyl group going by the
name W (E6).

2.3.1 Some definitions

We will set out to define the Picard group, but first there are a number of preliminary
definitions to be made.

Definition 2.14. Let C be the set of irreducible curves lying on S. The divisor group
of S (denoted Div(S)) is then the free abelian group on C, or equivalently, the group of
formal sums n1C1 + n2C2 + . . .+ nkCk where ni ∈ Z and Ci ∈ C.

Definition 2.15. An effective divisor on S is a divisor D that can be written as D =∑
ni · Ci, where ni > 0.

Remark 2.16. In other words, effective divisors correspond with codimension 1 subvari-
eties in a one-to-one way, counting irreducible components with multiplicity.

The divisor group is too large to be any kind of useful invariant, so we want to divide
out a large subgroup. The subgroup we are aiming for consists of the so-called principal
divisors. Principal divisors arise from functions on S. Let f be a function on S. Then
its associated principal divisor, denoted (f), is constructed in the following way: the
positive terms correspond to the irreducible curves on S where f is identically zero and
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the negative terms correspond to the irreducible curves where f is everywhere undefined;
the coefficient attached to an irreducible curve appearing in (f) equals the multiplicity of
the zero or pole.

Example 2.17. Let S be the smooth cubic surface given by x3 + y3 + z3 + w3 = 0 and
consider the function f = xy/z2 on S. Passing to the open affine set S ′ by intersecting
with w 6= 0 and passing to the new variables t = x/w, u = y/w, v = z/w, we can write
S ′ as t3 + u3 + v3 + 1 = 0 and f becomes tu/v2. Roughly speaking, the “zeros” of the
numerator correspond to the zeros of f , while the zeros of the denominator are the poles
of f , as long as we count multiplicities. Setting the numerator equal to zero gives us the
union of the irreducible curves C1 := Z(t, u3 + v3 + 1) and C2 := Z(u, t3 + v3 + 1). The
denominator vanishes doubly on C3 := Z(v, t3+u3+1). So we see that (f) = C1+C2−2C3.

The group of all principal divisors on S is denoted PDiv(S).

Definition 2.18. The Picard group of S, denoted Pic(S), is defined as Div(S)/PDiv(S).

The elements of Pic(S) are equivalence classes of divisors on S and are hence called
divisor classes. We denote the canonical map by ̂ : Div(S)→ Pic(S). Two divisors D1,
D2 are called linearly equivalent if they map to the same image in the Picard group under
the canonical map: we will write this as D1 ∼ D2, which is equivalent to D̂1 = D̂2.

Example 2.19. In Example 2.17, and using the same notation, we saw that C1+C2−2C3

is a principal divisor. Its divisor class is therefore the identity element in the Picard
group. Written as a formula, this is C1 +C2−2C3 ∼ 0, or, what comes to the same thing,
C1 + C2 ∼ 2C3, denoting the identity element in the Picard group simply by 0.

Example 2.20. We have Pic(P2) ∼= Z. (See for instance [9, Ch. 3, p. 154].) The
isomorphism simply sends the divisor class of the curve {F = 0}, where F is an irreducible
homogeneous polynomial, to degF ∈ Z. This means that all curves of the same degree
have the same class in the Picard group. We can convince ourselves of this in the following
way: let C1 := {F = 0} and C2 := {G = 0} be two curves such that F , G are irreducible
and of the same degree. Then f := F/G defines a function on P2 and its divisor (f) is
equal to (f) = C1−C2. Equivalently, C1 = C2 +(f), so C1 and C2 are linearly equivalent.
(More generally, Pic(Pn) ∼= Z.)

The Picard group on any surface comes equipped with an intersection form, that is, a
bilinear map i : Pic(S)×Pic(S)→ Z. This intersection form does exactly what its name

suggests: if C1, C2 are curves on S meeting transversally and Ĉ1, Ĉ2 are their classes in
Pic(S), then i(Ĉ1, Ĉ2) denotes the number of points of the intersection C1 ∩C2, counting
multiplicities.

Example 2.21. On P2, the intersection form satisfies i(`, `) = 1, where ` is the divisor
class of a line. Note that this makes sense, since two distinct lines meet in exactly one
point. Also, if Cm is a curve of degree m and Cn is a curve of degree n, then their classes
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in Pic(P2) are m` and n` respectively by Example 2.20. So their intersection product

becomes i(Ĉm, Ĉn) = i(m`, n`) = mn by the bilinearity of i, meaning that C1 and C2

meet mn times counting multiplicities. Of course, we already knew this from Bézout’s
theorem.

2.3.2 The Picard group of a cubic surface

To describe Pic(S), it is again useful to keep the blow-down morphism π : S → P2 in
mind. We use the same notation as in Theorem 2.8.

Theorem 2.22. Let S be a smooth cubic surface. Then Pic(S) ∼= Z7. Furthermore,
Pic(S) is freely generated by `, e1, e2, e3, e4, e5, e6, where ` is the divisor class of the strict
transform of a general line (not equal to any of the `ij) and the ei are the classes of the
`i.

Proof. I will only give the general idea. The result follows from the fact that we can
realise S as the result of six successive blow-ups of P2, which has Picard group Z, each
blow-up adding a direct summand Z, corresponding to the class of its exceptional curve.
For the details, see Hartshorne, ([4, p. 401]).

The intersection form on S is completely defined by the following relations: i(`, `) = 1,
i(`, ei) = 1 where 1 ≤ i ≤ 6 and i(ei, ej) = −δij, where δij is the Kronecker delta. (This
too is established in Hartshorne’s book ([4, pp.401-2]), but it is again an easy consequence
of the fact that S is a blow-up.) Using the intersection form on S, we may deduce the
divisor classes of the remaining 21 lines. Denote the divisor class of the `ij by eij and the
divisor class of the `′i by e′i.

Lemma 2.23. The divisor classes of the remaining 21 lines are as follows: (1) the class
of `ij is `− ei− ej (1 ≤ i < j ≤ 6) and (2) the class of `′i is 2`+ ej −

∑6
j=1 ej (1 ≤ i ≤ 6).

Proof. By our discussion of the intersection form, the classes of the eij and e′i are deter-
mined by the number of times they intersect the curves representing `, e1, . . . , e6. The line
`ij intersects both `i and `j, which means that i(eij, ei) = 1, i(eij, ej) = 1 and i(eij, ek) = 0
for k 6= i, j. Furthermore, `ij intersects the strict transform of a general line in P2 exactly
once, so i(eij, `) = 1. These 7 equations combined yield that eij = `− ei− ej. In the same
way, we find that e′i = 2`+ ei −

∑
j ej.

Remark 2.24. By applying the previous Lemma, we get that i(eij, eij) = −1 for all i, j
and i(e′i, e

′
i) = −1 for all i. This means that all 27 lines on S are exceptional curves by

Castelnuovo’s Contractibility Criterion ([1, Ch. 2, p. 21]).
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2.3.3 The Weyl group

In what follows, we will identify the Picard group of S with Z7, which inherits the bilinear
form i from Pic(S). Let ω := (−3, 1, 1, 1, 1, 1, 1) ∈ Z7, or equivalently, ω = −3` +

∑
i ei.

(This happens to be the canonical class of a smooth cubic surface, hence the notation.)
For the results in this subsection, which are stated entirely without proof, we refer to
Manin’s book ([5, Ch. 4, §23-26]).

Definition 2.25. We define the root system E6 ⊂ Z7 as the subset of all elements v ∈ Z7

satisfying i(v, ω) = 0 and i(v, v) = −2.

The set E6 is finite and has 72 elements. Of these, we define the elements v1 :=
(1, 1, 1, 1, 0, 0, 0), v2 := (0, 1,−1, 0, 0, 0, 0), v3 := (0, 0, 1,−1, 0, 0, 0), v4 := (0, 0, 0, 1,−1, 0, 0),
v5 := (0, 0, 0, 0, 1,−1, 0) and v6 := (0, 0, 0, 0, 0, 1,−1). Furthermore, for any w ∈ Z7 we
define φw : Z7 → Z7, the reflection through w, by

φw(a) := a− 2
i(w, a)

i(w,w)
w (1)

This is a linear transformation leaving the hyperplane Hw := {v ∈ Z7 : i(v, w) = 0} fixed.
Let the set Φ consist of the reflections through the vi, so Φ := {φv1 , φv2 , φv3 , φv4 , φv5 , φv6}.
Proposition 2.26. All elements of E6 can be obtained by taking one of the vi and
applying finitely many reflections of Φ. Furthermore, the reflections of Φ send elements
of E6 to elements of E6.

Viewing Z as a subset of Q, we can view Φ as a subset of GL7(Q). Therefore, the
elements of Φ generate a subgroup of GL7(Q) leaving E6 invariant. Also, as we can check
using Equation 1, the elements of Φ leave the divisor classes of the 27 lines invariant.

We are ready for the main theorem. Here, I6 is the set of divisor classes of the 27
lines.

Theorem 2.27. The following three groups are isomorphic:

• the subgroup of GL7(Q) sending Z7 to Z7 and preserving ω and i(·, ·)

• the group of permutations of the elements of I6 preserving their pairwise intersection
products given by i (this is exactly the collineation group of the 27 lines)

• the subgroup of GL7(Q) generated by the elements of Φ, also known as the Weyl
group W (E6)

We have now realized the collineation group of the 27 lines as a linear group acting
faithfully on a number of structures in 7-dimensional space, including the set of lines itself
as represented by the set I6. This very remarkable series of facts extends to blow-ups of
P2 in not just 6, but a given number of points (but from 9 points on strange things begin
to happen). More about root systems, Weyl groups and their application to blow-ups of
P2 are to be found in Manin’s book ([5]).

We close this chapter with a little application of the results found so far.
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2.4 Orbits of the 27 lines under Galois

Let S be a smooth cubic surface defined over a number field k. The absolute Galois group
G = Gal(Q/k) acts on S, but also on L, the set of lines on S, as lines have to go to lines.
Moreover, it preserves all incidence properties between the elements of L. This means
that the action of G on L factors through W (E6). This presents us with an easy corollary:

Theorem 2.28. Let S be a cubic surface. S does not contain a G-orbit of 7, 11, 13, 14,
17, 19, 21, 22, 23, 25 or 26 lines.

Proof. Since the cardinality of any orbit would have to divide 51,840.

The above result is pretty strong: orbits of all other cardinalities occur, except for one
consisting of 20 lines. This is stated and proven in Theorem 6.8.
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3 The Galois action on the 27 lines

As we will see, given a number field K, the action of Gal(Q/K) on the 27 lines determines
whether or not the surface is birational to P2 over K. Assuming some knowledge about
the birational geometry of surfaces, we can already see why this is true in a special case:
Suppose a smooth cubic surface S defined over K contains a K-rational point and a set of
6 skew lines defined over K. Using the fact that the exceptional curves on S are precisely
the 27 lines lying on it, we see that we can blow down these 6 lines over K. The resulting
blown-down surface is isomorphic to P2 over K = Q; moreover, it contains a K-rational
point, so it is isomorphic to P2 over K.

However, as we will see, a cubic surface does not have to be a blow-up of P2 over K to
be birational to P2 over K (we will establish this in Chapter 4). The precise conditions
for birationality to P2 are given by a theorem of Swinnerton-Dyer ([10]), as we will see in
the next section.

3.1 Swinnerton-Dyer’s theorem

Definition 3.1. We call a cubic surface birationally trivial over K if it is birationally
equivalent to P2(K). Occasionally, when the ground field K is evident from the context,
we will just say that a cubic surface is birationally trivial if it is birationally equivalent
to P2(K).

Theorem 3.2. Let S be a smooth cubic surface defined over a number field K. S is
birationally trivial if and only if (a) S contains a point defined over K and (b) S contains
a Gal(Q/K)-stable set of 2, 3 or 6 pairwise skew lines.

Proof. The proof consists of exhibiting a two-dimensional linear system of curves on S
satisfying certain properties; it mainly relies on the Riemann-Roch theorem and the ad-
junction formula. See Swinnerton-Dyer’s article ([10, pp. 12-15]).

3.1.1 Some consequences of the theorem

Using Swinnerton-Dyer’s theorem, we can partition the set of birationally trivial cubic
surfaces into five types. This is almost more of a semantical than a mathematical business,
but it simplifies the task of finding a parametrization if we look at one Type at a time.

We need a little lemma, which illustrates an important way of reasoning we shall use
over and over again:

Lemma 3.3. Suppose a smooth cubic surface S, defined over K, contains a stable set of
5 pairwise skew lines, such that there exists at least one line on S not intersected by any
of them. Then it contains two skew rational lines.

Proof. We can assume that the five skew lines are L := ∪5
i=1`i. Then we see that there is

a unique line intersecting none lines in L, namely `6. For any σ ∈ Gal(Q/K), the image
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of `6 under σ must be a line not intersecting any of the lines in σL, which is again L. So
we must have that σ`6 = `6, in other words, `6 is rational.

Furthermore, there is a unique line intersecting all of the lines in L, namely `′6. By
the same argument, `′6 is also rational. So we have the two rational lines `6 and `′6 on S,
and these are skew.

Proposition 3.4. (i) If a smooth cubic surface S is birationally trivial to K, it falls into
one of the following types of smooth cubic surfaces containing a K-rational point:

no. smooth cubic surfaces containing a K-rational point and
I 2 skew rational lines

II an orbit of 2 skew lines, and no set of 2 skew rational lines
III an orbit of 3 skew lines and no stable set of two or six

pairwise skew lines
IV 6 skew lines forming two orbits of order 3
V an orbit of 6 skew lines

(ii) A cubic surface can only be of one type.

Remark 3.5. Before we give the proof, a short remark is in order. Of course the type
of a cubic surface depends on the field K over which one works. By “a cubic surface of
Type N” we will mean a cubic surface of Type N over Q.

Proof. (i) First, we prove that the above types exhaust all smooth birationally trivial
cubic surfaces. Let S be a smooth birationally trivial cubic surface, so it has a K-rational
point and it contains a Gal(Q/K)-stable set of 2, 3 or 6 lines.

Suppose that S contains a stable set of 6 lines. Then these lines form a set of full Galois
orbits according to one of the following partitions of 6: 6 = 5 + 1 = 4 + 2 = 4 + 1 + 1 =
3+3 = 3+2+1 = 3+1+1+1 = 2+2+2 = 2+2+1+1 = 2+1+1+1+1 = 1+1+1+1+1+1.
We see that all partitions correspond to Type I, II, IV or V cubic surfaces (for 5 + 1 we
use Lemma 3.3).

We may now suppose that S does not contain a stable set of 6 lines. So S must contain
a stable set of 2 or 3 skew lines. First assume that S does contain a stable set of 2 skew
lines. Then S obviously falls into Type I or II. If S does not contain a stable set of 2 or
6 skew lines, it has to contain a stable set of 3 skew lines, which must be a 3-orbit. This
is precisely Type III.

(ii) So we have proven that Types I-V exhaust the class of birationally trivial cubic
surface. Now for their pairwise disjointness.

That Type III is disjoint from any of the others is obvious by the last condition in its
definition.

Also, we can check that Type V is disjoint from all the others by going through all
the possible Galois actions on a 6-orbit L6 (there are 16 of them, corresponding to the 16
transitive subgroups of the symmetric group S6). A given Galois action on L6 completely
determines the action on all 27 lines: the 6 skew lines uniquely determine a double six,
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which shows that a line on S is completely determined by how it intersects with the lines
in L6. We can now check if there is a Galois action giving rise to a configuration falling
under one of the Types I-IV, and it turns out that there isn’t. (The checking is done in
Remark 3.7.)

That Types I and II are disjoint is also obvious from the way they’re defined, so the
only non-trivial part of this Proposition is the fact that Type IV is disjoint from Types I
and II. For this, take a smooth cubic surface S with the orbits {`1, `2, `3} and {`4, `5, `6}.
Now every orbit on S has cardinality ≥ 3: the stable set {`12, `23, `13} must be an orbit
precisely because {`1, `2, `3} is: for instance if σ`1 = `2, then σ`23 = `13, etc. The set
{`45, `56, `46} is an orbit for the same reason. The set {`14, `24, `34, `15, `25, `35, `16, `26, `36}
seems to allow for a lot of different possible Galois actions, but at least we have that
any line intersecting `1 should be conjugate to a line intersecting `2 and to another line
intersecting `3, etc. From this we see that here too, every orbit has to have cardinality
≥ 3. This shows that we can’t have a stable set of cardinality 2 in this case, so we’re
done.

Remark 3.6. Moreover, over Q, every type is indeed represented by a smooth cubic
surface. We will show this by exhibiting examples of each type in Chapter 4.

Remark 3.7. In the table below I have computed the subdivision of the 27 lines on S in
distinct Galois orbits in the case where S contains an orbit of 6 skew lines {`1, `2, `3, `4, `5, `6}.
In that case, the set {`′1, `′2, `′3, `′4, `′5, `′6} is also an orbit, so the only lines left to consider
are the `ij for 1 ≤ i < j ≤ 6. The table is based on the well-known numbering first
used in the article [2]. For all groups 6TNN, I have started from a set of generators and
computed the conjugates of all lines `ij. This leads to a subdivision of the lines `ij into
orbits.

One more note on notation: the symbols ambncp . . . mean: an orbit of a within which
every line intersectsm others, etc. From this information we may conclude that no 3-orbits
of skew lines arise.

G orbits on S G orbits on S G orbits on S G orbits on S

6T1 60 60 63 63 32 6T5 60 60 94 63 6T9 60 60 94 63 6T13 60 60 94 63

6T2 60 60 63 32 32 32 6T6 60 60 125 32 6T10 60 60 94 63 6T14 60 60 156

6T3 60 60 63 63 32 6T7 60 60 125 32 6T11 60 60 125 32 6T15 60 60 156

6T4 60 60 125 32 6T8 60 60 125 32 6T12 60 60 156 6T16 60 60 156

3.2 Finding parametrizations

Having established the existence of a K-birational map f : S → P2, the next question is
of course: can we find such an f explicitly? In an abstract way, these maps can be defined
using linear systems associated to certain divisors on S, but this cannot be done without
a computer algebra system, and it does not admit of a nice geometric description.

The problem is then: for each birationally trivial smooth cubic surface S, find a K-
birational map f : S → P2 arising from a purely geometric construction.
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In this section, we will give partial results on this problem. We divide the problem
into three cases: we do Types I-II in Subsection 3.2.1, Types IV and V in Subsection 3.2.2
and Type III in Subsection 3.2.3.

3.2.1 Cubic surfaces of Type I or II.

This is the easiest case. Let S be a smooth cubic surface containing a stable 2-set of lines.
Manin ([5, Ch. 4, §31, pp. 191]) observes that it automatically has a point defined over
K (and hence infinitely many). To see this, assume `1, `2 are skew lines on S and form
an orbit under Galois (if they are rational, we are done). Intersect the S with a rational
plane to find a Galois orbit of two points on S. Consider the line through these points:
if the line is contained in S, it is rational; if not, it intersects S in a single, and hence
rational point. We state this as a lemma:

Lemma 3.8. If a smooth cubic surface S contains a set of two skew lines which is defined
over Q, then it has a rational point. Hence, it is birational to P2.

This observation also helps us in constructing a birational map φ : P2 → S. Let
{`1, `2} be a stable set of skew lines. Fix a point P on S, not on a line, and let F1, F2, F3

be linearly independent linear forms vanishing in P . Then to every M := (a : b : c) ∈ P2,
we associate the plane V(a:b:c) given by aF1 + bF2 + cF3 = 0. This gives us a bijection
between P2 and the planes passing through P . The plane V(a:b:c) intersects `1 and `2, say
in the points X1 and X2. Then the line ` intersects S in X1, X2 and a third point N ,
which we take to be φ(M). (The only way in which this can go wrong is if V(a:b:c) contains
`1 or `2, which happens for two choices of (a : b : c), or if ` happens to be a line on S,
which happens for five more choices of (a : b : c). So φ is well-defined outside these seven
points.)
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DD
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t
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It is obvious from the geometric way in which φ is defined that φ is rational. But φ also
has an inverse: given Q, we can find the line ` by the elementary fact that there is a
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unique line passing through Q and intersecting `1 and `2. Then take the plane through
P and `, and we get our point (a : b : c) back. So φ is a birational map.

3.2.2 Cubic surfaces of Type IV-V.

This case can be simply dealt with “in principle”, but not yet in practice. Let S be of
Type IV or V. Then we know that S is a blow-up over Q: this is because S contains a
set of 6 pairwise skew lines which is defined over Q, so these lines can be blown down
over Q. This means that we know that there is a birational map P2 → S given by four
cubic polynomials in x, y, z: this leaves us only 40 coefficients to determine! In his PhD
thesis ([7]), Josef Schicho points out that this method of constructing a (bi)rational map
is completely intractable from a computational point of view. He does, however, suggest
an alternative, which might or might not help us out, but due to a lack of time I have
been unable to sort this out.

3.2.3 Cubic surfaces of Type III.

Type III are not blow-ups by their definition. We try something similar to what we did
for Type I/II surfaces. Let S be a cubic surface of Type III and let {`1, `2, `3} be a 3-orbit
of pairwise skew lines. We will construct a rational map φ : P2 → S as follows.

V(a:b:c)

sP

sX1

s
X2 s

X3

Again, we fix a point P on S, again not lying not on a line, and we consider the set of
planes through P , which can be naturally identified with P2 in the same way as before.
For a point M := (a : b : c) ∈ P2, let V(a:b:c) again be the corresponding plane through
P . Then V(a:b:c) intersects S in a cubic curve C which is smooth for “most” points M
by Bertini’s theorem. Now, V(a:b:c) intersects the lines `1, `2, `3 in X1, X2, X3 respectively.
The points Xi also lie on C. Let C ′ be the conic lying in V(a:b:c), tangent to C at P
and passing through X1, X2, X3. Then by Bézout, C ′ intersects C in six points counting
multiplicities, so apart from P,X1, X2, X3 there is one remaining point of intersection.
Call it N . Then we define N := φ(M).
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V(a:b:c)

sP

sX1

s
X2 s

X3

s
N

The main question now is: is φ a birational map? This does not seem to be the case.
For a specific Type III cubic surface, namely the one to be constructed in Subsection 4.3.1,
we have computed a number of values of φ, since it was already impossible for Maple to
find a general expression for φ. For all points M ∈ P2, we found that there was exactly
one other point M ′ ∈ P2 satisfying φ(M) = φ(M ′). It seems, then, that the maps φ
constructed according to this method are 2:1 (so in particular, its image is Zariski dense
in S), but a rigorous proof of this I have not yet been able to find.

To clarify this situation, I see the following approaches. Let us assume for the moment
that the rational map has degree 2, as conjectured.

1. There exists an involution i : P2 → P2 such that φ = φ◦i. Computing this involution
for some values of M suggests that it is not of too complicated a nature, but it seems
a hard problem to determine it explicitly. Suppose it can be done, however, then
we have an explicit group Γ := {1, i} ⊂ Aut(P2) and a birational map φ̃ : P2/Γ→ S

such that φ = φ̃ ◦ κ where κ : P2 → P2/Γ is the natural map. My question is: can

we use κ to construct an Q-birational map κ′ : P2 → P2/Γ so that φ̃ ◦ κ′ : P2 → S
is birational?

2. Projection from P to a plane in P3 gives a 2:1 rational map π : S → P2. Together
with φ, this induces us a tower of inclusions: Q(P2) ↪→ Q(S) ↪→ Q(P2). This means
that Q(S) is squeezed in between two purely transcendental field extensions of Q:
Q(s, t) ↪→ Q(S) ↪→ Q(u, v). Questions: is Q(s, t) ⊂ Q(u, v) a Galois extension? Can
we use this picture to find two explicit generators for Q(S) over Q? Does Galois
theory help?

3. I have also tried a more “classical” approach. Given a point N on S, we would like
a purely geometric description of its preimages under φ. This doesn’t seem a dead
end by any means, and I have the distinct impression that it should work out. For
now it doesn’t however. To get some grip on what is going on, I considered two
surfaces Q1 and Q2 defined in the following way. Fix N ∈ S. We then define Q1 the
union of all conics which (i) lie in a plane V containing the line NP ; (ii) intersect
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N and P and (iii) intersect the lines `1, `2, `3. Next, define Q2 as as the the union
of all conics which (i) lie in a plane V containing the line NP ; (ii) are tangent to
V ∩ S in P and (iii) intersect the lines `1, `2, `3. Then the intersection of Q1 and
Q2 is a finite union of curves in P3, and contains the conics corresponding to the
preimages of N .

4. Finally, I want to mention a different way of defining φ. In effect, we replace the conic
curve in our previous construction, which was generally smooth, by a degenerate
one. For simplicity, it is useful to employ the following concept from Manin’s book
([5, Ch. 1, §1]): for any x, y on a cubic curve (or cubic surface) C, let ` be the
line through x and y: we define the composition law x ⊕ y to be the third point of
intersection of S ∩ `, if this exists and is unique. Now we can proceed: again we
consider a plane V through P and we consider the cubic curve V ∪ S, which is
generally smooth. On V ∩ S, we define X1, X2, X3 as before. What we do next
is, basically, we draw some lines, obtaining points of intersection, and draw more
lines through these: we define Y1 := P ⊕ X1, Y2 := X2 ⊕ X3, N

′ := Y1 ⊕ Y2 and
N := P ⊕ N ′. If V ∪ S is smooth, this N is the same one as we got before. This
can be proven by considering the divisor classes of the above points in Pic(V ∩ S),
but we will not do that here.

V(a:b:c)
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u
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4 Constructions of birationally trivial cubic surfaces

In this chapter we will mainly construct examples of birationally trivial cubic surfaces.
Among other things, we show that every type mentioned in Proposition 3.4 is indeed
represented by a smooth cubic surface.

Our examples will serve to answer another question that has come up: is a birationally
trivial surface over K also a blow-up defined over K? It will turn out that there are cubic
surfaces of Type I, II and III over Q that are not blow-ups over Q. (Of course, Type III
are never blow-ups by their definition, but it remains to show that they exist.)

4.1 Possible types of orbits on S

If a cubic surface is, say, of Type II, we know that it has an orbit of 2 skew lines. But
more can be said: trivially, it has to have a stable set of 25 lines. If we look even closer,
these stable set of 25 lines falls apart into stable sets of 5, 10 and 10 lines. But this is a
more complete characterization of Type II cubic surfaces: we have now divided the full
set of 27 lines into stable sets. In this section, we will do the same for all types (we did
Type V already did in Remark 3.7).

In this section, I will show what can be done using only the elementary combinatorial
properties of the 27 lines. The fundamental idea that we will constantly use is: if a line `
has some intersection properties with respect to a Galois stable set of lines, all conjugates
of ` will have those same properties. Let S be defined over K, then there are the following
lemmas:

Lemma 4.1. Let L be a stable set of lines on S. Let ` be a line intersecting m lines of
L. Then for any σ ∈ Gal(Q/K), σ` also intersects m lines of L.

Proof. If ` intersects `1, . . . , `m and does not intersect `m+1, . . . , `n, then σ` intersects
σ`1, . . . , σ`m and does not intersect σ`m+1, . . . , σ`n.

Lemma 4.2. Let O,O′ be two orbits of lines on S. Then there is m such that for any
` ∈ O, ` intersects exactly m lines of O′.

Proof. Pick any ` ∈ O and let m be the number of lines of O′ it intersects. Then σ` also
intersects m lines of O′ by the preceding Lemma.

Lemma 4.3. Let L be a Galois stable set of lines on S. Then the lines on S intersecting
m lines in L form a stable set.

Proof. Denote the set of lines intersecting m lines in L by O. Take ` ∈ O arbitrary. Then
for any σ ∈ Gal(Q/K), σ` intersects m lines in L, so σ` ∈ O.

Using these lemmas, we can now prove the following.
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Proposition 4.4. Let S be a cubic surface containing 2 skew rational lines. Then the
lines on S can be partitioned in 6 stable sets of lines, with cardinalities 1, 1, 5, 5, 5 and
10.

Proof. We will use Lemma 4.3 in combination with the double-six formalism. Assume
that `1 and `2 are rational and skew lines on S. Then, following Important Remark 2.13,
they form part of a double six, employing the usual notation for the other 25 lines on
S. Let L0 be the set of lines not intersecting `1 or `2. Then L0 is a Galois stable set by
Lemma 4.3. Similarly, let L1 be the set of lines intersecting `1 but not `2, L

′
1 the set of

lines intersecting `2 but not `1 and L2 the set of lines intersecting both `1 and `2. All these
sets are Galois stable, and moreover we can identify the members of all sets using the
standard double-six notation. The table below lists all six stable sets and their members,
showing that the cardinalities of the stable sets are as claimed.

set # property line(s)

1 `1
1 `2

L0 10 #(` ∩ {`1, `2}) = 0 `3, `4, `5, `6, `34, `35, `36, `46, `45, `56

L1 5 #(` ∩ `1) = 1,#(` ∩ `2) = 0 `13, `14, `15, `16, `
′
2

L′1 5 #(` ∩ `1) = 0,#(` ∩ `2) = 1 `23, `24, `25, `26, `
′
1

L2 5 #(` ∩ {`1, `2}) = 2 `12, `
′
3, `
′
4, `
′
5, `
′
6

What follows is a series of results analogous to Proposition 4.4. Their proofs follow
the same pattern entirely.

Proposition 4.5. Let S be a cubic surface containing an orbit of 2 skew lines. Then the
lines on S can be partitioned in 4 stable sets of lines, with cardinalities 2, 5, 10 and 10.

Proof. Let `1, `2 be skew lines on S forming a Galois orbit and forming part of a double-six
denoted in the usual way. For 0 ≤ i ≤ 2, let Li be the set of lines intersecting i lines of
{`1, `2}. Then we have the following subdivision of the 27 lines into stable sets:

set # property lines

2 `1, `2
L0 10 #(` ∩ {`1, `2}) = 0 `3, `4, `5, `6, `34, `35, `36, `46, `45, `56

L1 10 #(` ∩ {`1, `2}) = 1 `13, `14, `15, `16, `23, `24, `25, `26, `
′
1, `
′
2

L2 5 #(` ∩ {`1, `2}) = 2 `12, `
′
3, `
′
4, `
′
5, `
′
6

Proposition 4.6. Let S be a cubic surface containing an orbit of 3 skew lines. Then the
lines on S can be partitioned in 5 stable sets of lines, with cardinalities 3, 3, 6, 6 and 9.
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Proof. Let `1, `2, `3 be skew lines on S forming a Galois orbit and forming part of a double-
six denoted in the usual way. For 0 ≤ i ≤ 3, let Li be the set of lines intersecting i lines
of {`1, `2, `3}. Then we have the following subdivision of the 27 lines into stable sets:

set # property lines

3 `1, `2, `3
L0 6 #(` ∩ {`1, `2, `3}) = 0 `4, `5, `6, `45, `46, `56

L1 9 #(` ∩ {`1, `2, `3}) = 1 `14, `15, `16, `24, `25, `26, `34, `35, `36

L2 6 #(` ∩ {`1, `2, `3}) = 2 `12, `13, `23, `
′
1, `
′
2, `
′
3

L3 3 #(` ∩ {`1, `2, `3}) = 3 `′4, `
′
5, `
′
6

Proposition 4.7. Let S be a cubic surface containing an orbit of 3 skew lines and another
orbit of 3 skew lines, such that none of these six lines intersects another. Then the lines
on S can be partitioned in 7 stable sets of lines, with cardinalities 3, 3, 3, 3, 3, 3 and 9.

Proof. Let `1, `2, `3 be skew lines on S forming a Galois orbit, and let `4, `5, `6 be skew
lines on S forming a Galois orbit. They are part of a double-six, which we write in the
usual way. Then we have the following subdivision of the 27 lines into stable sets:

set # property lines

L′ 3 `1, `2, `3
L′′ 3 `4, `5, `6
L1 3 #(` ∩ L′) = 1, #(` ∩ L′′) = 0 `12, `23, `13

L′1 3 #(` ∩ L′) = 0, #(` ∩ L′′) = 1 `45, `56, `46

L2 9 #(` ∩ L′) = 1, #(` ∩ L′′) = 1 `14, `15, `16, `24, `25, `26, `34, `35, `36

L5 3 #(` ∩ L′) = 2, #(` ∩ L′′) = 3 `′1, `
′
2, `
′
3

L′5 3 #(` ∩ L′) = 3, #(` ∩ L′′) = 2 `′4, `
′
5, `
′
6

More obviously, we have the following version for a stable set of 6 skew lines:

Proposition 4.8. Let S be a cubic surface containing an orbit of 6 skew lines. Then the
lines on S can be partitioned in 3 stable sets of lines, with cardinalities 6, 6 and 15.

Proof. In fact, we have already established this a while back in Remark 3.7.

Using some of the results obtained in this section, we can prove the following:

Theorem 4.9. A smooth cubic surface does not contain a Galois orbit of 20 lines.

Proof. Suppose the contrary. Denote the set of all lines on S by L, denote the set of 20
lines forming a single orbit by L1, and let L2 denote the stable set formed by the other 7
lines. We focus our attention on the stable set L2 which has cardinality 7. Since a 7-orbit
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does not occur, we only have to exclude the further possibilities of a 1-orbit, a 2-orbit or
a 3-orbit, which we will do now.

Suppose first L2 contains a rational line `. Since ` intersects a total of 10 lines on S,
it has to intersect one of the lines of L1. But then, by the fact that all the lines of L1 are
conjugate, ` has to intersect them all. Contradiction, so there is no rational line.

If L2 contains an 2-orbit O2, then the two lines belonging to it must be skew, since
otherwise they would determine a rational line (i.e. the one that intersects them both).
But in this case, we know from Proposition 4.5 that the maximum cardinality of an orbit
is 10. So there is no 2-orbit.

Suppose next that L2 contains an orbit O3 consisting of 3 lines. These are either skew,
or they are coplanar. If they are coplanar, then each line in L\O3 intersects exactly one
of the lines in O3. Furthermore, any line in O3 should intersect the same number of lines
in L1. This would imply that #L1 is a multiple of 3, so again, contradiction. If the lines
are skew, we know from Proposition 4.6 that the maximum cardinality of an orbit is 9 in
this case.

4.1.1 4 or 5 skew lines on a cubic surface

In this short subsection, we consider the case of an orbit of 4 or 5 pairwise skew lines.
This will establish that cubic surfaces containing 4 or 5 skew lines are birationally trivial,
since we can find a stable set of 2 skew lines on them. (See tables.)

Example 4.10. Let L′ be a set containing 4 skew lines `1, `2, `3, `4 on a cubic surface
S, forming part of a double-six in the usual way. (There always exists a cubic surface
S containing these lines, since requiring S to contain a line imposes 4 conditions, and
the general cubic has 20 coefficients.) The table below, following the pattern of those in
Section 4.1, is easily verified:

set # property lines

L′ 4 `1, `2, `3, `4
L0 3 #(` ∩ L′) = 0 `5, `6, `56

L1 8 #(` ∩ L′) = 1 `15, `25, `35, `45, `16, `26, `36, `46

L2 6 #(` ∩ L′) = 2 `12, `13, `14, `23, `24, `34

L3 4 #(` ∩ L′) = 3 `′1, `
′
2, `
′
3, `
′
4

L4 2 #(` ∩ L′) = 4 `′5, `
′
6

Finally, consider 5 pairwise skew lines on a smooth cubic surface. These can be part
of a double-six in two ways: either we can take them to be `1, `2, `3, `4, `5, or else
`1, `2, `3, `4, `56. We deal with both cases in a table:



4 CONSTRUCTIONS OF BIRATIONALLY TRIVIAL CUBIC SURFACES 23

set # property lines

L′ 5 `1, `2, `3, `4, `5
L0 1 #(` ∩ L′) = 0 `6
L1 5 #(` ∩ L′) = 1 `16, `26, `36, `46, `56

L2 10 #(` ∩ L′) = 2 `12, `13, `14, `15, `23, `24, `25, `34, `35, `45

L3 0 #(` ∩ L′) = 3
L4 5 #(` ∩ L′) = 4 `′1, `

′
2, `
′
3, `
′
4, `
′
5

L5 1 #(` ∩ L′) = 5 `′6

set # property lines

L′ 5 `1, `2, `3, `4, `56

L0 0 #(` ∩ L′) = 0
L1 10 #(` ∩ L′) = 1 `5, `6, `15, `25, `35, `45, `16, `26, `36, `46

L2 0 #(` ∩ L′) = 2
L3 10 #(` ∩ L′) = 3 `12, `13, `14, `23, `24, `34, `

′
1, `
′
2, `
′
3, `
′
4

L4 0 #(` ∩ L′) = 4
L5 2 #(` ∩ L′) = 5 `′5, `

′
6

4.2 A blow-up of P2(Q)

In order to exhibit cubic surfaces falling into Type V, we will construct a blow-up of the
projective plane P2(Q). Actually, we will work over the ground field F2 and then lift our
results back to Q. Note that surfaces arising from this method necessarily fall into Type
V, so we cannot use it to complete the proof of Lemma 3.4.

Given six points in general position (see Definition 2.5) in the projective plane P2(F2),
Theorem 2.6 by Clebsch hands us an explicit way of constructing the blow-up of the plane
in these points. We will choose these six points to be a full Gal(F2/F2)-orbit, so that the
blow-up is defined over F2, and the six exceptional divisors resulting from the blow-up
are a single Galois orbit consisting of 6 lines.

4.2.1 The calculation

Since we are looking for a point in P2(F2) of degree 6 over F2, we will work over F64 = F26 .
This is a Galois extension of F2, with its Galois group ∼= Z/6Z generated by the Frobenius
automorphism (x 7→ x2). Denote G := Gal(F64/F2). To be able to do explicit calculations,
we fix a ζ ∈ F2 satisfying ζ6 + ζ + 1 = 0 and use the isomorphism F64

∼= F2(ζ).
Next, we pick an arbitrary point P := (1 : ζ3 : ζ5). Consider its set of G-conjugates,

i.e.

G · P = {(1 : ζ3 : ζ5), (1 : ζ + 1 : ζ5 + ζ4), (1 : ζ2 + 1 : ζ5 + ζ4 + ζ3 + ζ2),
(1 : ζ4 + 1 : ζ5 + ζ3 + ζ2 + ζ + 1), (1 : ζ3 + ζ2 + 1 : ζ5 + ζ2 + 1), (1 : ζ4 + ζ : ζ5 + ζ2)}
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The first thing to do is to check that no three of these points are on a line and not all
six are on a conic. This is equivalent to checking a finite set of matrices for invertibility.
Given a set of three points Pi = (Xi : Yi : Zi), 1 ≤ i ≤ 3, they are collinear if and only

if there is a triple (a, b, c) ∈ F3

2 such that aXi + bYi + cZi = 0 for 1 ≤ i ≤ 3, i.e. if and

only if the matrix

 X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

 has non-zero kernel. Let us check that the first three

points in the enumeration above are non-collinear. We check that the following matrix: 1 ζ3 ζ5

1 ζ + 1 ζ5 + ζ4

1 ζ2 + 1 ζ5 + ζ4 + ζ3 + ζ2


is invertible, so the points (1 : ζ3 : ζ5), (1 : ζ + 1 : ζ5 + ζ4), (1 : ζ2 + 1 : ζ5 + ζ4 + ζ3 + ζ2)
do not lie on a straight line. If we continue this for the other

(
6
3

)
− 1 = 14 lines, we find

that no three of the six conjugates of P lie on a straight line.
The check that six given points Pi = (Xi : Yi : Zi), 1 ≤ i ≤ 6 lie off any conic, follows a

similar pattern. The general equation of a conic is aX2+bY 2+cZ2+dXY +eXZ+fY Z =
0, so we should check that the matrix whose ith row is

X2
i Y 2

i Z2
i XiYi XiZi YiZi

has a kernel consisting only of the zero vector. This conditioned too is satisfied in the
case of the set G · P , so our six points are indeed in general position.

We proceed according to the construction suggested by Clebsch, so we determine
the F64-vector space VP of cubic forms vanishing on G · P . We will use a little short-cut,
namely, instead of determining the forms defined over F64 that vanish on all the conjugates
of P , where the vanishing on each separate point imposes another linear condition, we
determine the forms defined over F2 that vanish on P alone: since, however, such a form
is defined over F2, it also vanishes on all conjugates of P . Using Maple, we find that a
basis for VP is given by the four forms

f1 := x2z + xy2 + y2z, f2 := x2y + x2z + z3, f3 := x3 + x2y + xy2 + yz2,
f4 := x2y + x2z + xz2 + y3

The blow-up map is then the rational map φ : P2
Fp
→ P3

Fp
given by (ξ : η : ζ) 7→ (f1(ξ, η, ζ) :

f2(ξ, η, ζ) : f3(ξ, η, ζ) : f4(ξ, η, ζ)). A different choice of basis leads to a projective linear
transformation of the P3.

We want to find the equation belonging to the image of φ, or more precisely of its
closure. This we can do, at least in principle, by considering the general equation of a cubic
surface, which is a0x

3 + a1x
2y + a2x

2z + . . .+ a19z
3 and then substituting x = f1(ξ, η, ζ),

etc. The delicate point here is solving the resulting 55 equations in 20 unknowns over the
finite field F2. The point is that if we lift all 55 equations to Q, a solution may no longer
exist, since the rank of the system may increase! The correct way to proceed is to find a
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subset of 19 equations which has full rank: if we lift this to Q it still has full rank, and so
there is a unique non-zero solution up to scalar multiplication, which we can lift back to
the unique solution over F2. In the cases I considered it turned out just fine by selecting
the top-most 19 equations.

This finally gives us the equation (lifted to Q) of the cubic surface S1 as −x2y+xz2−
z3 − x2w + y2w + zw2 = 0. S1 contains a rational point, (1 : 1 : 1 : 1), which was not
guaranteed by its construction. Its 27 lines are contained in three orbits of 6, 6 and 15
lines, as can be checked by the Maple algorithm given in Section 5.2. Hence, S1 is of
Type 5. Also, we have a birational map φ : P2 → S1 defined over Q. The problem of
explicitly determining φ−1, i.e. a blow-down morphism, is still open.

The resulting surface is smooth by construction, hence it automatically lifts to a
smooth surface over Q (since singular points go to singular points when reducing to F2)
and sets of Gal(F2/F2)-conjugate lines lift to sets of Gal(Q/Q)-conjugate lines.

4.2.2 Another blow-up of P2(Q)

To obtain a surface of Type IV, we should blow up P2 in 6 points forming two Galois orbits
of order 3. Fixing the isomorphism F8

∼= F2[ζ], where ζ ∈ F2 satisfies ζ3 + ζ + 1 = 0,
we pick the points (1 : ζ : ζ2) and (1 : ζ2 : ζ) and their conjugates (1 : ζ2 : ζ2 + ζ),
(1 : ζ2 + ζ : ζ), (1 : ζ2 + ζ : ζ2), (1 : ζ : ζ2 + ζ). We do the same computation as above,
and obtain the smooth cubic surface −x3 − w3 + yzw − x2w + y2z + z2y = 0 over Q. It
has orbits of cardinality 3, 3, 3, 3, 3, 3 and 9 and contains the rational point (1 : 1 : 1 : 1).
Hence, it is of Type IV.

4.3 Some cubic surfaces that are not blow-ups

We now turn to cubic surfaces over Q belonging to Types I, II and III. Also, we will
construct a cubic surface that does not contain a stable set of six skew lines, hence is not
a blow-up over Q.

4.3.1 An orbit of 3 skew lines

We want to construct cubic surfaces containing a stable set of three skew lines. It turns out
that one can actually require S to contain three arbitrary skew lines, the only drawback is
that smoothness can only be checked afterwards. However, in all our constructions, there
is enough freedom in the choice of equation for us to try around and make sure that S is
smooth, has a Q-rational point and has other desirable properties.

First, in the presence of a 3-orbit, it is possible to say something about the decompo-
sition of the 27 lines into stable sets. As was shown in Proposition 4.6, there are at least 5
stable sets, having cardinalities 3, 3, 6, 6 and 9 We reproduce the table from Proposition
4.6 for convenience:
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set # property lines

L′ 3 `1, `2, `3
L0 6 #(` ∩ L′) = 0 `4, `5, `6, `45, `46, `56

L1 9 #(` ∩ L′) = 1 `14, `15, `16, `24, `25, `26, `34, `35, `36

L2 6 #(` ∩ L′) = 2 `12, `13, `23, `
′
1, `
′
2, `
′
3

L3 3 #(` ∩ L′) = 3 `′4, `
′
5, `
′
6

Let G := Gal(Q/Q) and denote by H the subgroup H ⊂ G acting trivially on the
{`1, `2, `3}. Then G/H ∼= Z/3Z or G/H ∼= S3. In the latter case, the stable set S0 breaks
up in two stable sets of three lines each, i.e. {`4, `5, `6} and {`45, `46, `56}. This would
imply that we have a stable set of six skew lines, so we would end up with a surface in
Type IV. So we need G/H ∼= Z/3Z. So the action of the Galois group has to be cyclic,
therefore, we need to work over a cyclic extension of Q of degree 3. The field E := Q(ζ7),
where ζ7 is primitive 7th root of unity has a degree 3 subfield, so we will work over E.

Let ζ7 be a primitive 7th root of unity, i.e. ζ7 satisfies ζ6
7 +ζ5

7 +ζ4
7 +ζ3

7 +ζ2
7 +ζ7 +1 = 0.

The field E has Galois group G cyclic of order 6. As a generator, we choose the element
σ satisfying σ : ζ7 7→ ζ3

7 .
The procedure is as follows. We will first pick a more-or-less arbitrary plane {F0 = 0}

in P3, such that F0 has 5 conjugates {σi(F0)}5i=1 other than itself in Q(ζ7)[x, y, z, w].
For 1 ≤ i ≤ 5, let Fi := σiF0. Then consider the three lines {`i}3i=1 determined by
Fi = σ3Fi = 0. By construction these make up a full Galois orbit. Also, it is easy to find
some (possibly singular) cubic surfaces, defined over Q, containing the `i, for instance the
polynomials

f1 := F0σ
2(F0)σ

4(F0) + σ(F0)σ
3(F0)σ

5(F0) (2)

and
f2 := F0σ(F0)σ

2(F0) + σ(F0)σ
2(F0)σ

3(F0) + . . .+ F0σ(F0)σ
5(F0) (3)

We can take linear combinations of these to avoid singular surfaces and make sure of
rational points.

We pick F0 := X + ζ7Y + ζ2
7Z + ζ3

7W . Then the conjugates of F0 are

F1 := X + ζ3
7Y + ζ6

7Z + ζ2
7W

F2 := X + ζ2
7Y + ζ4

7Z + ζ6
7W

F3 := X + ζ6
7Y + ζ5

7Z + ζ4
7W

F4 := X + ζ4
7Y + ζ7Z + ζ5

7W
F5 := X + ζ5

7Y + ζ3
7Z + ζ7W

Consider the lines defined by `1 := {F0 = F3 = 0}, `2 := {F1 = F4 = 0}, `3 := {F2 = F5 =
0}. Our choice was lucky, since `1, `2, `3 turn out to be pairwise skew. Hence, `1, `2, `3
form a Gal(Q/Q)-stable set of three skew lines.

With these Fi, we can compute the cubic forms f1 and f2 (see equations 2 and 3)
which contain the designated lines. With the help of Maple, we find:
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f1 := 2X3−X2Z −Y Z2−X2W −Z2W −XZ2−XW 2−X2Y −Y 2W −YW 2−ZW 2 +
5XZW − 2Y ZW − 2XY Z + 5XYW −XY 2 + 2W 3 + 2Z3 + 2Y 3 − Y 2Z
f2 := Y ZW +6X3 +8XY Z+XYW +XZW −3X2Y −3X2Z−3X2W −3XY 2−3XZ2−
3XW 2 + 4Y 2Z − 3Y 2W − 3Y Z2 + 4YW 2 + 4Z2W − 3ZW 2 − Y 3 − Z3 −W 3

We compute values of f1 and f2 for integral values of X, Y, Z,W and use these to find
a linear combination of f1 and f2 containing an integral point. We embark on the cubic
surface SIII given by 337f1 + 44f2 = 0. A check with Maple learns that SIII is smooth,
and that it contains Galois orbits of order 3, 3, 6, 6 and 9 lines, corresponding to the table
above.

In particular, SIII does not contain a stable set of 6 skew lines, so it can not be a
blow-up defined over Q.

4.3.2 An orbit of 2 skew lines

Just as we can require S to contain 3 skew lines, we can require it to contain 2 skew lines.
Take the conjugate lines `1 := (1 : t :

√
2 :
√

2t) and `2 := (1 : t : −
√

2 : −
√

2t) which
are obviously skew. The equation of `1 is F0 = Z −

√
2X = 0, F1 = W −

√
2Y = 0, the

equation of `2 is F2 = Z +
√

2X,F3 = W +
√

2Y = 0. From this, we get four quadrics
containing `1 and `2: Q1 : Z2 − 2X2, Q2 : W 2 − 2Y 2, Q3 : ZW − 2XY , Q4 : XW − Y Z.

We can construct a cubic surface containing `1 and `2 by taking a linear combination
of the 16 terms XQ1, Y Q1, . . ., WQ4. I ended up with F = 3XQ1 + 9XQ2 + 3Y Q2 −
46ZQ3 + 46XQ4 + 138Y Q4 + 230ZQ4 + 46WQ4. As the cubic surface S2 given by F = 0
has a stable set of 2 lines, it has a rational point; furthermore, a quick check learns that
it is smooth. Applying the algorithm from Section 5.1, we find that S2 contains Galois
orbits of 2, 5, 10 and 10 lines each. From Proposition 4.5, we reproduce the table that
gives the stable sets (which are exactly the orbits in this case) explicitly:

set # property lines

L′ 2 `1, `2
L0 10 #(` ∩ L′) = 0 `3, `4, `5, `6, `34, `35, `36, `46, `45, `56

L1 10 #(` ∩ L′) = 1 `13, `14, `15, `16, `23, `24, `25, `26, `
′
1, `
′
2

L2 5 #(` ∩ L′) = 2 `12, `
′
3, `
′
4, `
′
5, `
′
6

The conclusion is that S2 falls into Type II.

4.3.3 Two rational lines

We construct a cubic surface containing the two rational lines `1 given by X = Y = 0 and
`2 given by Z = W = 0. This is achieved by taking any linear combination of the terms
X2Z,XY Z,XZ2, XZW,X2W,XYW,XW 2, Y 2Z, Y Z2, Y ZW, Y 2W,YW 2.

We take S1 to be the cubic surface satisfying the (admittedly rather outlandish) equa-
tion: 175959X2Z + 518643XY Z − 131841XZ2 + 19XZW + 27X2W + 400653XYW +
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121068XW 2 + 52326Y 2Z + 11799Y Z2 + 383211Y ZW + 235467Y 2W + 108243YW 2. It
is smooth and contains a rational point, as in the previous computation. It contains six
orbits of 1, 1, 5, 5, 5 and 10 lines each. From Proposition 4.4, we reproduce the table
that gives the stable sets (which are exactly the orbits in this case) explicitly:

set # property line(s)

1 `1
1 `2

L0 10 #(` ∩ {`1, `2}) = 0 `3, `4, `5, `6, `34, `35, `36, `46, `45, `56

L1 5 #(` ∩ `1) = 1,#(` ∩ `2) = 0 `13, `14, `15, `16, `
′
2

L′1 5 #(` ∩ `1) = 0,#(` ∩ `2) = 1 `23, `24, `25, `26, `
′
1

L2 5 #(` ∩ {`1, `2}) = 2 `12, `
′
3, `
′
4, `
′
5, `
′
6

In particular, S1 is of Type I.
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5 Finding lines on a cubic surface

5.1 An algorithm

Given a cubic surface S defined by the polynomial F , we know that it contains a line.
We will now turn to the problem of actually finding it. In general, we might use the
observation made before that the condition for a line ` being on S can be expressed
algebraically in terms of the Plücker coordinates of ` ([9, Ch. 1, pp. 78-79]). But this will
give us not just one line, but all lines at once, while if we are given one line, it is easy to
find them all. Let us therefore try to make use of the fact that we only have to find one
line.

Let (p00 : · · · : p23) be the Plücker coordinates of the line ` we are looking for. First
observe that p00 = 0 if and only if ` intersects the line X = Y = 0, so we can assume
p00 6= 0, which will only exclude up to 11 lines. But this means that if P0 = (x0 : y0 : z0 :

w0) and P1 = (x1 : y1 : z1 : w1) are two points on `, then det

(
x0 y0

x1 y1

)
= p00 6= 0, so by

taking a suitable linear combination µP0 + νP1 of the two points, we find that two points
of the form (1 : 0 : a : b) and (0 : 1 : c : d) lie on S. Parametrizing, we find that we can
represent ` as (1 : λ : a + λc : b + λd). In order for ` to be contained in the surface S a
necessary and sufficient condition is that F (1 : λ : a + λc : b + λd) ≡ 0. Expanding this
and equating to zero coefficients of λi yields four equations in the four unknowns a, b, c, d.

Example 5.1. We want to find a line on the Fermat cubic X3 + Y 3 +Z3 +W 3 = 0. We
substitute X = 1, Y = t, Z = a+ ct, W = b+ dt, obtaining

(1 + c3 + d3)t3 + (3ac2 + 3bd2)t2 + (3a2c+ 3b2d)t+ 1 + a3 + b3 = 0

This yields the system

1 + c3 + d3 = 0

3ac2 + 3bd2 = 0

3a2c+ 3b2d = 0

1 + a3 + b3 = 0

Without further manipulation, we notice solutions like a = d = 0, b = c = −1, which
gives us the line (1 : 0 : t : −1) or X +W = Y = 0.

5.2 Implementation in Maple

The following algorithm for Maple finds the lines on a cubic surface given by F = 0,
following the discussion in the previous section. We need to equate the coefficients of ti,
which are polynomials in a, b, c, d, to zero. This means in other words that we have to
find the zero locus of an ideal IF ⊂ Q[a, b, c, d] in A4

Q. To simplify the calculation, we first
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determine a Groebner basis for IF , from which we can already read off the cardinality of
Galois orbits of the lines, for instance. The computation of the Groebner basis, and the
subsequent solution of the resulting system, are done in the last two lines.

The packages PolynomialTools and Groebner are used.

with(PolynomialTools): with(Groebner):
F:=xˆ3+yˆ3+zˆ3+wˆ3: # select the Fermat cubic
rule:={x=1,y=t,z=a+c*t,w=b+d*t}:

# search for lines of the form (1 : t : a+ ct : b+ dt)
F1a:=expand(subs(rule,F)):
F2a:=collect(F1a,t):
vect:=CoefficientVector(F2a,t):
F3a:=[vect[1],vect[2],vect[3],vect[4]]:
G1a:=gbasis(F3a,plex(a,b,c,d)):
sol:=solve({seq(G1a[i],i=1..4)},{a,b,c,d});

5.3 Worked example: the twisted Fermat

We now turn to the twisted Fermat cubic F2 defined by x3 + y3 + z3 + 2w3 = 0. This
surface has been investigated by Manin ([5, Ch. 4, §23, p. 113]), who shows that it is a
minimal surface, so it does not contain any Galois orbits of pairwise skew lines. Following
the algorithm described above, we find that the lines on F2 fall into six orbits: three of
order 3 and three of order 6. Choose elements ω1, η1 ∈ Q satisfying ω2

1−ω1 +1 = 0 (which
makes ω1 a primitive 6th root of unity) and 2η3

1 + 1 = 0. The conjugates of both elements
are ω2 = 1 − ω1 = −ω2

1 and η2 = −η1ω1 and η3 = −η1ω2. Furthermore, since ω1, ω2 are
roots of X2 −X + 1, their product satisfies ω1ω2 = 1.

Let inv(L) ⊂ Gal(Q/Q) be the subgroup of elements that leave all the lines on F2 fixed.

Then Qinv(L) ⊃ Q is a finite Galois extension. The Galois group G := Gal(Qinv(L)
/Q) is

isomorphic to S3, and we have G ∼= 〈σ, τ〉 where σ permutes the ηi cyclically (ση1 = η2,
etc.) and τ interchanges η1 and η2, leaving η3 fixed (which implies that τ also interchanges
the ωi). For convenience, we describe the isomorphism φ : S3

∼→ G explicitly:

S3 G

π(123) σ
π(132) σ2

π(12) τ
π(23) τσ = σ2τ
π(13) τσ2 = στ

G acts faithfully on the set {η1, η2, η3, ω1, ω2} and an element g of G is determined by
specifying g(ηi) and g(ωj) for some choice of i and j.

We now specify all Galois orbits of lines on F2, along with representatives of each
orbit. We have listed them in a table:
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orbit #orbit representative

a 3 l1 = (1 : t : −t : η1)
b 3 l2 = (1 : t : −1 : η1t)
c 3 l3 = (1 : −1 : t/η1 : t)
A 6 l4 = (1 : t : ω1t : η1)
B 6 l5 = (1 : t : ω1 : η1t)
C 6 l6 = (1 : ω1 : t/η1 : t)

In the following, we will investigate the intersection properties of the 27 lines listed
above. We will make some good use of the fact that G takes intersecting lines to inter-
secting lines. For instance, we only have to find out which lines are intersected by the six
li.

1. The lines intersected by l1 = (1 : t : −t : η1). In orbit (a), the two lines σl1 and σl2.
In orbit (b), the one line l2. In orbit (c), the one line l3. In orbit (A), tbe two lines
(1 : t′ : ω1t

′ : η1) and (1 : t′ : ω2t
′ : η1), so l4 and (τσ)l4. In orbit (B), tbe two lines

(1 : t′ : ω1 : η3t
′) and (1 : t′ : ω2 : η2t

′), i.e. σ2l5 and τ l5. In orbit (C), tbe two lines
(1 : ω1 : t′/η3 : t′) and (1 : ω2 : t′/η2 : t′), i.e. σ2l6 and τ l6.

2. The lines intersected by l2 = (1 : t : −1 : η1t). In orbit (a), the one line l1. In orbit
(b), the two lines σl2, σ

2l2. In orbit (c), the one line l3. In orbit (A), tbe two lines
(1 : t′ : ω1t

′ : η3) and (1 : t′ : ω2t
′ : η2), so σ2l4 and τ l4. In orbit (B), tbe two lines

(1 : t′ : ω1 : η1t
′) and (1 : t′ : ω2 : η1t

′), i.e. l5 and (τσ)l5. In orbit (C), tbe two lines
(1 : ω1 : t′/η2 : t′) and (1 : ω2 : t′/η3 : t′), i.e. σl6 and (τσ2)l6.

3. The lines intersected by l3 = (1 : −1 : t/η1 : t). In orbit (a), the one line l1. In orbit
(b), the one line l2. In orbit (c), the two lines σl3, σ

2l3. In orbit (A), the two lines
(1 : t′ : ω1t

′ : η2) and (1 : t′ : ω2t
′ : η3), so σl4 and (τσ2)l4. In orbit (B), tbe two

lines (1 : t′ : ω1 : η2t
′) and (1 : t′ : ω2 : η3t

′), i.e. σl5 and (τσ2)l5. In orbit (C), tbe
two lines (1 : ω1 : t′/η1 : t′) and (1 : ω2 : t′/η1 : t′), i.e. l6 and (τσ)l6.

4. The lines intersected by l4 = (1 : t : ω1t : η1). In orbit (A), tbe three lines
σl4 = (1 : t′ : ω1t

′ : η2), σ
2l4 = (1 : t′ : ω1t

′ : η3) and (τσ)l4 = (1 : t′ : ω2t
′ : η1). In

orbit (B) we have the lines l5 = (1 : t′ : ω1 : η1t
′) and (τσ2)l5 = (1 : t′ : ω2 : η3t

′). In
orbit (C), the lines σl6 = (1 : ω1 : t′/η2 : t′) and (τσ)l6 = (1 : ω2 : t′/η1 : t′).

5. The lines intersected by l5 = (1 : t : ω1 : η1t). Under point 4 we saw that l4
intersected l5 and (τσ2)l5, we reverse this to get that l5 intersects l4 and (τσ2)l4.
Furthermore, l5 intersects σl5, σ

2l5 and (τσ)l5. As to orbit (C), l5 intersects l6 =
(1 : ω1 : t/η1 : t) and τ l6 = (1 : ω2 : t/η2 : t).

6. The lines intersected by l6 = (1 : ω1 : t/η1 : t). We can just reverse the relevant
parts of the last two steps: as l4 intersects σl6 and (τσ)l6, we see that l6 intersects
σ2l4 and (τσ)l4. Similarly, as l5 intersects l6 and τ l6, l6 intersects l5 and τ l5. Lastly,
in orbit (C), l6 intersects σl6, σ

2l6 and (τσ)l6.
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Theorem 5.2. F2 is not birational to P2(Q).

Proof. In the above calculations we saw that all orbits contain intersecting lines (in fact,
each line l′ on F2 intersects σl′ and σ2l′), so theorem 3.2 with k = Q yields that F2/Q is
not birational to P2(Q).

Question 5.3. What can we say over Q(η1) and Q(ω1)?

As we are able to check using the table below, the two lines (1 : t : ω1t : η2) and
(1 : t : ω2t : η3) are skew and form a full Gal(Q/Q(η1))-orbit on F2. So F2 is birational to
P2(Q(η1)).

Over Q(ω1) however, we obtain 9 orbits of order 3 each, all of which contain intersecting
lines. So F2 is not birational to P2(Q(ω1)).

line intersects

l1 σl1, σ
2l1, l2, l3, l4, (τσ)l4, σ

2l5, τ l5, σ
2l6, τ l6

σl1 l1, σ
2l1, σl2, σl3, σl4, τ l4, l5, (τσ

2)l5, l6, (τσ
2)l6

σ2l1 l1, σl1, σ
2l2, σ

2l3, σ
2l4, (τσ

2)l4, σl5, (τσ)l5, σl6, (τσ)l6

l2 l1, σl2, σ
2l2, l3, σ

2l4, τ l4, l5, (τσ)l5, σl6, (τσ
2)l6

σl2 σl1, l2, σ
2l2, σl3, l4, (τσ

2)l4, σl5, τ l5, σ
2l6, (τσ)l6

σ2l2 σ2l1, l2, σl2, σ
2l3, σl4, (τσ)l4, σ

2l5, (τσ
2)l5, l6, τ l6

l3 l1, l2, σl3, σ
2l3, σl4, (τσ

2)l4, σl5, (τσ
2)l5, l6, (τσ)l6

σl3 σl1, σl2, l3, σ
2l3, σ

2l4, (τσ)l4, σ
2l5, (τσ)l5, σl6, τ l6

σ2l3 σ2l1, σ
2l2, l3, σl3, l4, τ l4, l5, τ l5, σ

2l6, (τσ
2)l6

l4 l1, σl2, σ
2l3, σl4, σ

2l4, (τσ)l4, l5, (τσ
2)l5, σl6, (τσ)l6

σl4 σl1, σ
2l2, l3, l4, σ

2l4, τ l4, σl5, (τσ)l5, σ
2l6, τ l6

σ2l4 σ2l1, l2, σl3, l4, σl4, (τσ
2)l4, σ

2l5, τ l5, l6, (τσ
2)l6

τ l4 σl1, l2, σ
2l3, (τσ)l4, (τσ

2)l4, σl4, τ l5, σ
2l5, (τσ)l6, σl6

(τσ)l4 l1, σ
2l2, σl3, τ l4, (τσ

2)l4, l4, (τσ)l5, σl5, (τσ
2)l6, l6

(τσ2)l4 σ2l1, σl2, l3, τ l4, (τσ)l4, σ
2l4, (τσ

2)l5, l5, τ l6, σ
2l6

l5 σl1, l2, σ
2l3, l4, (τσ

2)l4, σl5, σ
2l5, (τσ)l5, l6, τ l6

σl5 σ2l1, σl2, l3, σl4, (τσ)l4, l5, σ
2l5, τ l5, σl6, (τσ

2)l6
σ2l5 l1, σ

2l2, σl3, σ
2l4, τ l4, l5, σl5, (τσ

2)l5, σ
2l6, (τσ)l6

τ l5 l1, σl2, σ
2l3, τ l4, σ

2l4, (τσ)l5, (τσ
2)l5, σl5, τ l6, l6

(τσ)l5 σ2l1, l2, σl3, (τσ)l4, σl4, τ l5, (τσ
2)l5, l5, (τσ)l6, σ

2l6
(τσ2)l5 σl1, σ

2l2, l3, (τσ
2)l4, l4, τ l5, (τσ)l5, σ

2l5, (τσ
2)l6, σl6

l6 σl1, σ
2l2, l3, σ

2l4, (τσ)l4, l5, τ l5, σl6, σ
2l6, (τσ)l6

σl6 σ2l1, l2, σl3, l4, τ l4, σl5, (τσ
2)l5, l6, σ

2l6, τ l6
σ2l6 l1, σl2, σ

2l3, σl4, (τσ
2)l4, σ

2l5, (τσ)l5, l6, σl6, (τσ
2)l6

τ l6 l1, σ
2l2, σl3, (τσ

2)l4, σl4, τ l5, l5, (τσ)l6, (τσ
2)l6, σl6

(τσ)l6 σ2l1, σl2, l3, l4, τ l4, (τσ)l5, σ
2l5, l6, (τσ

2)l6, τ l6
(τσ2)l6 σl1, l2, σ

2l3, (τσ)l4, σ
2l4, (τσ

2)l5, σl5, τ l6, (τσ)l6, σ
2l6
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Using this table, we can find a set {`i}6i=1 of six skew lines as follows (equivalently, six
lines generating the subgroup of the Picard group generated by all 27 lines). Finding four
skew lines is not difficult: first off, `1 can be any line, then `2 can be any line skew to `1
(there are 16 of these), `3 can be any line skew to `1 and `1; for `4 still six choices are left.
Finally, there are now three lines left that are skew to `1, . . . , `4, of which one intersects
both of the others: this is `56, which makes the other two `5 and `6.

Following this procedure with `1 := l4, we select `2 := l2, `3 := σl3, `4 := (τσ2)l4. The
three lines skew to these four are τ l5, σl5 and l6. The first one intersects the second and
third, so we end up with `5 := σl5 and `6 := l6. We can now write all the other lines in
terms of the {`i}6i=1:

`1 `2 `3 `4 `5 `6 `12 `13 `14

l4 l2 σl3 (τσ2)l4 σl5 l6 l1 σ2l3 (τσ2)l5

`15 `16 `23 `24 `25 `26 `34 `35 `36

σl4 (τσ)l6 (τσ)l5 τ l4 (τσ2)l6 σ2l2 τ l6 σ2l5 σl1

`45 `46 `56 `′1 `′2 `′3 `′4 `′5 `′6
σ2`1 σ2l6 τ l5 l3 (τσ)l4 l5 σl6 σ2`4 σl2

The above table was compiled in a routine manner: we go through the complete list of
lines, and for each line we check which of the {`i}6i=1 are intersected by it.



6 SOME BIRATIONALLY NON-TRIVIAL CUBIC SURFACES 34

6 Some birationally non-trivial cubic surfaces

To get some perspective on how large the set of birationally non-trivial surfaces is, we will
take a closer look at them in this chapter. We will begin by constructing some examples,
and then prove a general result on the possible cardinalities of Galois orbits of lines on S.

6.1 The general cubic surface containing a set of lines

We have previously established that for n ∈ {7, 11, 13, 14, 17, 19, 20, 21, 22, 23, 25, 26}, an
n-orbit of lines on a smooth cubic surface does not exist. For all other n, a cubic surface
S with an n-orbit can be constructed. I will now outline my approach to doing this.

Fix a set L′ of lines in P3. (Usually, the lines in L′ are chosen so as to have some specific
Galois action.) Requiring S to contain the lines in L′ means imposing a set of linear
conditions on the coefficients of its defining polynomial F . Therefore, the polynomials F
that we are looking for form a vector space. We shall denote this vector space by VL′ .
Carrying out the ideas of the previous section, the lines in L′ give rise to stable sets of
lines on S whose cardinalities can be determined. The precise way in which this is done
depends a little on L′, but it is pretty straightforward. Next, we choose F ∈ VL′ and let S
be the corresponding cubic surface. If we are lucky, S is smooth, and the mentioned stable
sets of lines on S are actually orbits. It appears that if we choose F in a “sufficiently
general” way, this is indeed the case, but this is not something that I shall attempt to
prove.

Remark 6.1. As is clear from the above discussion, the cubic surface resulting from our
little procedure is not guaranteed to contain an orbit of the desired order. (It is not
guaranteed to be smooth, either.) We really have to check that our S has the wanted
properties.

This section I will mainly spend giving examples of my procedure, producing smooth
cubic surfaces with orbits of 8, 12, 16, 18 and 24 lines. But first, its most obvious
application is the one where L′ is the empty set:

Example 6.2. If L′ is the empty set, we do not require anything of S. Then VL′ is
just the vector space of homogeneous third-degree polynomials in x, y, z, w. We fix on
the following polynomial, which certainly looks sufficiently general: F27 = yzw − 2x3 +
3xyz − 4xyw + 5xzw − 6x2y + 7x2z − 8x2w + 9xy2 − 10xz2 + 11xw2 − 12y2z + 13y2w −
14yz2 + 15yw2 − 16z2w + 17zw2 − 18y3 + 19z3 − 20w3. The corresponding cubic surface
S27 is smooth. I claim furthermore that its 27 lines are contained in a single Galois orbit.
This can be checked by the algorithm described in Section 5.1.

Example 6.3. Let L′ be a set of 3 coplanar lines forming a Galois orbit. If S is a smooth
cubic surface containing L′, then the remaining lines cannot be distinguished by their
intersection properties relative to L′: all 24 lines intersect exactly one line in L′. This
suggests that a “general cubic surface” containing L′ has an orbit of 24 lines.
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To show this, we first have to find a suitable set L′. For this, let η, ω ∈ Q be algebraic
integers satisfying η3 − 2 = 0 and ω2 + ω + 1 = 0. We then define lines `1, `2, `3 as
`1 := (1 : t : t : η), `2 := (1 : t : t : ηω) and `3 := (1 : t : t : ηω2). These lines make up
a full set of conjugates under Gal(Q/Q) and are all contained in the plane y − z = 0, so
they indeed form a coplanar 3-orbit.

Now, consider the general cubic polynomial F := a0x
3 + a1x

2y + a2x
2z + . . .+ a19w

3.
To require that the surface given by F = 0 contains `1, for example, we substitute the
parametric equation of `1 into F . We then get 4 equations in the coefficients ai. We do the
same for `2 and `3, so that the ensuing system of linear conditions is Gal(Q/Q)-invariant,
and we can expect a solution over Q. Letting Maple do all the hard work, we get the
following solution: a0x

3 − a4yx
2 + (−a5 − a7)y

2x+ (−a9 − a8 − a6)y
3 + a4zx

2 + a5zyx+
a6zy

2 + a7z
2x+ a8z

2y + a9z
3 − a13wyx+ (−a14 − a15)wy

2 + a13wzx+ a14wzy + a15wz
2 −

a18w
2y+a18w

2z− 1
2
a0w

3. Choosing some wildly arbitrary values for the ai, we land on the
polynomial F24 = 222x3− 1110yx2− 3108y2x− 5774y3 + 1110zx2 + 1332zyx+ 1554zy2 +
1776z2x+1998z2y+2222z3−11110wyx−28886wy2 +11110wzx+13332wzy+15554wz2−
22222w2y + 22222w2z − 111w3. This gives a smooth cubic surface containing a 24-orbit.

We thus find that a “general” cubic surface S containing a coplanar 3-orbit contains
a large orbit. After Proposition 4.6, where a 3-orbit of pairwise skew lines breaks the
remaining lines up into 5 stable sets, this could come as somewhat of a surprise. Never-
theless, it could put us in mind of the following idea. We could suppose that, perhaps,
two coplanar 3-orbits could produce another large orbit. We investigate this next.

Example 6.4. Let L′ be a set of 3 coplanar lines forming a Galois orbit and let L′′ be
another such set. (Observe that not all combinations of L′ and L′′ are allowed. In the
previous example, let S contain L′, then all remaining lines intersect one of the lines in L′.
So if the lines in L′′ do not intersect lines in L′, there is no smooth cubic surface containing
the lines in L′ and L′′.) If every line in L′ intersects exactly one line in L′′, however, the
construction does work (see Proposition 6.9). In this case, consider the remaining 21 lines
on a cubic surface containing the lines in L′ and L′′. These 21 lines all intersect exactly
two lines in L′ ∪ L′′: one line in L′ and one in L′′. However, looking closer, 3 of the 21
lines intersect two lines that intersect each other (forming tritangent planes), while the
other 18 intersect two lines that are skew.

This time fix elements η, ω satisfying 2η3 + 1 = 0 and ω2−ω+ 1 = 0. For the lines L′,
we pick (1 : t : −t : η) and its conjugates (1 : t : −t : −ηω) and (1 : t : −t : −ηω2). For
L′′, take (1 : t : −1 : ηt) and its conjugates (1 : t : −1 : −ηωt) and (1 : t : −1 : −ηω2t).
The sets L′ and L′′ are admissible in the sense that there is a cubic surface containing all
their lines. (I did not pull these sets out of thin air: they lie on the twisted Fermat cubic
surface described in Section 5.3. This surface does not contain an 18-orbit, however.)

Then the general cubic surface containing the lines of L′ and L′′ is given by the third-
degree polynomial a3x

3 + a3y
3 + (2a11− 2a16 + 2a10 + a3)z

3 + 2a3w
3 + 2(−a11 + a16)x

2y+
2(−a11 + a16)x

2z + 2(a16 − a10)y
2x + 2(a16 − a10)y

2z + 2a10z
2x + 2a11z

2y + 2a19z
2w +

2a16xyz + 2a19xyw + 2a19xzw + 2a19wyz.



6 SOME BIRATIONALLY NON-TRIVIAL CUBIC SURFACES 36

Let F18 := 51x3 + 51y3 + 2z3 + 102w3−170x2y−170x2z+ 238y2x+ 238y2z−219z2x+
189z2y − 374z2w+ 19xyz − 374xyw− 374xzw− 374wyz. Then F18 determines a smooth
cubic surface containing an 18-orbit.

Example 6.5. For an orbit of 12 lines, we have to find a new approach. In Manin’s book
([5, §31, pp. 176-177]), we find the description of an element σ ∈ W (E6) for which the
action of the group 〈σ〉 on the 27 lines has 5 orbits of orders 1, 4, 4, 6 and 12. This
suggests that L′ should be a stable set of 1 or 4 lines. A rational line determines stable
sets of 1, 10 and 16 lines each, as can be easily checked by now, so that doesn’t work.
This suggests that we take L′ to be a Galois stable set of four lines. There are still some
possibilities here, as can be seen in the figure below (the vertices of the graphs represent
the lines; a pair of intersecting lines is joined by an edge).

r

r

r

r

r r

r

�
�
�
�
�
�

r

@
@

@
@
@
@

r r

r

�
�
�
�
�
�

@
@

@
@
@
@

r

The rightmost one turns out to be the one we are looking for; indeed, it divides the 27
lines into 5 stable sets of 1, 4, 4, 6 and 12 lines each. So now, we have to construct a Galois
orbit of four lines with these intersection properties. First, let ζ be a 5th root of unity. We
will work over Q(ζ) and let σ ∈ AutQQ(ζ) be the automorphism sending ζ 7→ ζ2. Now,
take any plane plane H whose minimal field of definition is Q(ζ), or equivalently, which
has an orbit of order 4 under the action of 〈σ〉. Then let ` := H ∩ σH. Then ` and σ`
both lie in σH, so they intersect. But ` and σ2` do not necessarily intersect, so for an
arbitrary H satisfying our previous conditions, we expect ` and σ2` to be skew. (If H is
given by the linear form G, an equivalent condition for this is that the 4×4-matrix, whose
ith row consist of the coefficients of σiG, is invertible. This is the case if and only if the
coefficients of G form a basis for the Q-vector space Q(ζ).) We choose H to be given by
the linear form G := x + ζy + ζ2z + ζ3w. Next, we set `1 := H ∩ σH, `2 := σH ∩ σ2H,
`3 := σ2H ∩ σ3H and `4 := H ∩ σ3H. These have the required intersection properties.

Again, we take F to be the general third-degree polynomial and substitute parametric
equations of the `i into F to derive the linear conditions on its coefficients. The result is
the following expression, whose main attraction is its sheer length: (−2a18−2a19 +2a16 +
6a10 − 2a9 + 2a8)x

3 + (2a19 + 2a18 + 2a9 + 4a8 + 12a1 + 4a16)yx
2 + (a18 − 4a16 − 3a10 +

a9 + 3a17 + 2a8 − 2a19)zx
2 + (−a18 − 3a17 − 8a16 − 9a10 + 5a9 − 8a8 − 6a1 + 2a19)wx

2 +
(−3a18− 3a17 + 3a10− 6a1− 3a9)xy

2 + 6a16xyz+ 6a17xyw+ 6a10xz
2 + 6a18xzw+ (6a10−

6a9− 6a1− 6a19)xw
2 + 6a1y

3 + 6a9y
2w+ 6a8y

2z+ (−3a18− 6a8− 3a17− 3a10− 3a9)yz
2 +

6a19yzw+ (2a18− 2a16− 4a9− 4a19− 2a8)yw
2 + (−2a19 + 6a1 + a9 + 3a10 + 2a16 + 3a17 +

a18 + 8a8)z
3 + (−8a8 − 2a16 + 2a9 − 4a18 − 6a1 − 6a10 + 2a19 − 6a17)wz

2 + (6a10 + 12a8 +
6a17 + 6a16 + 12a1)zw

2 + (−a18 + 2a19 − 2a16 − 2a8 + 5a9 − 3a10 − 3a17)w
3.

We pick F12 := 15x3 − 11y3 + 10z3 − 11w3 − 20x2y + 4x2z − 17x2w + 12y2x+ 7y2z +
3y2w + 12z2x− 18z2y − 18z2w + 21w2x− 5w2y + 15w2z − 2xyz + 13xyw − 6xzw −wyz,
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which looks a lot more civilized. This gives a smooth cubic surface with orbits of 1, 4, 4,
6 and 12 lines, as desired.

Example 6.6. In passing, we remarked that a rational line on a cubic surface induces a
stable set of order 16. Let L′ consist of just one rational line `, say x = y = 0. The cubic
polynomials giving rise to surfaces containing ` are just the cubic polynomials composed
of monomials containing at least one factor x or y. If we choose F16 := x3−2x2y+3x2z−
4x2w + 5xyz − 6xyw + 7xzw − 8xy2 + 9xz2 − 10xw2 + 11y3 − 12y2z + 13y2w − 14yz2 +
15yzw − 16yw2, the result is a smooth cubic surface containing a 16-orbit.

The number we haven’t yet encountered as the cardinality of a stable set is 8. This
can be obtained in a number of ways, the following probably being the easiest.

Example 6.7. Let L′ be a set consisting of 3 coplanar rational lines. For instance, take
`1 given by x = y = 0, `2 given by x = z = 0 and `3 given by x = w = 0. These all
lie in the plane x = 0. Furthermore, it is easy to describe the vector space of general
cubic polynomials belonging to this problem: it is generated by cubic monomials either
containing x as a factor, or being equal to yzw. So the general cubic polynomial we want
is a0x

3 +a1x
2y+a2x

2z+a3x
2w+a4xyz+a5xyw+a6xzw+a7xy

2 +a8xz
2 +a9xw

2 +a10yzw.
If we just choose F8 := x3 − 2x2y + 3x2z − 4x2w + 5xyz − 6xyw + 7xzw− 8xy2 + 9xz2 −
10xw2 + 11yzw, the result is a smooth cubic surface containing three 8-orbits.

From all the examples that we have seen in this thesis, together with Theorems 2.28
and 4.9, we can now infer the following:

Theorem 6.8. There is smooth cubic surface containing an orbit of n lines if and only if
n ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 24, 27}.

Proof. The negative part has previously been established. For n ≤ 6, we can take a
blow-up in 6 points in P2, which can have any Galois action of our choosing. For n =
8, 12, 16, 18, 24, 27 we just encountered examples. For n = 9, 10, 15, we refer to Section
4.3.1, Section 4.3.2 and Section 4.2 respectively. (Although for n = 9 or 15 we could also
take a blow-up of P2 over Q in a 6-orbit of points: see the table under Remark 3.7.)

6.1.1 A further way of constructing cubic surfaces

As mentioned in Example 6.4, we can also prove the existence of a surface that con-
tains “two prescribed tritangent” planes, that is: six prescribed lines partitioned into two
triples, such that (1) the lines making up a triple all lie in one plane, and (2) each of the
six lines intersects exactly one line of the other triple (this condition is always satisfied
by six lines lying in two tritangent planes of a cubic surface).

Proposition 6.9. Let l1, l2, l3, l
′
1, l
′
2, l
′
3 be six lines with the following intersection prop-

erties: l1, l2, l3 lie in the same plane; l′1, l
′
2, l
′
3 lie in the same plane; l1 intersects l′1; l2

intersects l′2 and l3 intersects l′3. Then there is a cubic surface containing l1, l2, l3, l
′
1, l
′
2, l
′
3.
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Proof. Suppose the cubic surface is given by F = 0. After a possible change of coordinates,
we may assume that the tritangent planes are X = 0, Y = 0, that is, they are given by
F (0, Y, Z,W ) = 0 and F (X, 0, Z,W ) = 0. Then F (0, Y, Z,W ) = l1l2l3 where the li are
linear polynomials of the form aiY + biZ+ ciW . Similarly we write F (X, 0, Z,W ) = l′1l

′
2l
′
3

and l′i = αiX + βiZ + γiW . We know that l1 intersects l′1, and l1 is given by X = 0,
a1Y + b1Z + c1W = 0; l′1 is given by Y = 0, α1X + β1Z + γ1W . So:

1 0 0 0
0 a1 b1 c1
0 1 0 0
α1 0 β1 γ1


is singular. By some elementary row operations we find that, also,

1 0 0 0
0 1 0 0
0 0 b1 c1
0 0 β1 γ1


is singular, or equivalently, det

(
b1 c1
β1 γ1

)
= 0. Similarly we derive det

(
b2 c2
β2 γ2

)
=

det

(
b3 c3
β3 γ3

)
= 0.

Now take the product l1l2l3, which is a polynomial in Y, Z,W , and consider the sum
of the terms not containing Y , these are given by (b1Z + c1W )(b2Z + c2W )(b3Z + c3W ).
Similarly, the sum of the terms in the product l′1l

′
2l
′
3 not containing X is (β1Z+γ1W )(β2Z+

γ2W )(β3Z + γ3W ). The three conditions on the det

(
bi ci
βi γi

)
= 0 imply that each

(biZ+ciW ) is a multiple of (βiZ+γiW ), so the product (b1Z+c1W )(b2Z+c2W )(b3Z+c3W )
is a multiple of the product (β1Z+γ1W )(β2Z+γ2W )(β3Z+γ3W ). After possibly dividing
some li by a constant (which does not alter the line that is determined by it), we get that
l1l2l3 − l′1l′2l′3 has no terms in Z and W alone.

In order for a cubic surface given by F = 0 to contain tritangent planes given by
F (0, Y, Z,W ) = l1l2l3, F (X, 0, Z,W ) = l′1l

′
2l
′
3, we must have F = Xq1+l1l2l3 = Y q2+l′1l

′
2l
′
3,

where q1 and q2 are quadratic polynomials. This is equivalent with the existence of
quadratic polynomials q1, q2 satisfying −Xq1 + Y q2 = l1l2l3 − l′1l′2l′3, which is equivalent
with l1l2l3 − l′1l′2l′3 not containing any terms containing only constants, Z and W .

Remark 6.10. We are even left with some freedom: we can add to q1 an arbitrary
polynomial of the form Y (aX + bY + cZ + dW ).

6.2 A cubic surface without rational points

In this section, I will describe my unsuccesful attempt to construct a cubic surface with
a stable set of 6 skew lines, but without a Q-rational point. It is expected that a similar
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approach should work, but with a different choice of group instead of A4.
To carry out the construction, I follow a suggestion from Manin’s book ([5, Ch. 4, §31,

pp. 191-2]). The following definition provides us with the key concept of a Severi-Brauer
surface:

Definition 6.11. A Severi-Brauer surface over Q is a surface which is isomorphic to P2

over Q.

The following proposition is a well-known fact about Severi-Brauer surfaces:

Proposition 6.12. Let X be a Severi-Brauer surface. If X has a point over Q, then X
is isomorphic to P2 over Q.

We will call such a Severi-Brauer surface trivial.
To obtain a smooth cubic surface without rational points, but with a stable set of 6

pairwise skew lines, we have to take a non-trivial Severi-Brauer surface X and blow this
up in a Galois stable set of 6 points. (Over Q, this is just a blow-up of P2.) In this section,
we will use some results about Severi-Brauer surfaces, for instance found in [3].

General facts about twists of P2

Fix the coordinates x, y, z on P2. Consider the Veronese embedding φ : P2 → P9 given
by (x : y : z) 7→ (x3 : x2y : x2z : xy2 : xyz : xz2 : y3 : y2z : yz2 : z3). Denote the
image of P2 in P9 by P (plane) and the coordinates on P by u0, . . . , u9. It is known
([3]) that any Severi-Brauer surface Ptwist can be embedded in P9 in such a way that
P and Ptwist are projectively isomorphic, that is, there exists M ∈ PGL10(Q) such that
(u0 : . . . : u9) 7→ M · (u0 : . . . : u9) is an isomorphism which we will also denote by
M : P

∼→ Ptwist for convenience. (Obviously, if Ptwist is a non-trivial twist, M can’t be an
element of PGL10(Q).) So we may without loss of generality restrict the definition of a
Severi-Brauer surface to subsets of P9 that are projectively isomorphic (over Q) to P .

Blowing up a Severi-Brauer surface

We now give an explicit description of a blow-up of a Severi-Brauer surface Ptwist. We
write the coordinates on Ptwist as v0, . . . , v9. Via the above discussion, we have a map
ψ : P2 → Ptwist defined by ψ := M ◦φ (this is just the Veronese embedding composed with
a projective transformation), which is not defined over Q if Ptwist is a non-trivial twist.

According to Clebsch’s result, to realise the blow-up of P2 as a cubic surface in P3,
we have to use functions in the vector space of cubic forms in x, y, z. Now ψ identifies
this vector space with the space of linear forms on Ptwist. So to construct a blow-up of
Ptwist in the points p′i, we need to look for forms

∑
i aivi vanishing in the p′i. Using the

map ψ, we can pull these functions back to cubic polynomials in x, y, z that vanish in the
six points ψ−1(p′i). Of course, in general, these cubic polynomials are not defined over Q
anymore: in this way, the rational map π : Ptwist → P3 is defined over Q, but not the
pull-back π∗ : P2 → P3.
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An embedding A4 ↪→ PGL3(Q)

To define the needed twist, we need a suitable finite subgroup of PGL3(Q). We start from
the standard representation of A4 on V := {(x1, x2, x3, x4) ∈ Q4 : x1 + x2 + x3 + x4 = 0}.
An element π ∈ A4 acts on Q4 by π (x1, x2, x3, x4) =

(
xπ(1), xπ(2), xπ(3), xπ(4)

)
. Further-

more, the action of A4 leaves V invariant, so we get an embedding A4 ↪→ GL3(Q) which
under the quotient map GL3(Q)→ PGL3(Q) gives an embedding i : A4 ↪→ PGL3(Q).

Here follows an explicit description of the embedding i.

element of A4 image in PGL3(Q) element of A4 image in PGL3(Q)

id

 1 0 0
0 1 0
0 0 1

 (234)

 1 0 0
0 0 1
−1 −1 −1


(12)(34)

 0 1 0
1 0 0
−1 −1 −1

 (243)

 1 0 0
−1 −1 −1
0 1 0


(13)(24)

 0 0 1
−1 −1 −1
1 0 0

 (124)

 0 1 0
−1 −1 −1
0 0 1


(14)(23)

 −1 −1 −1
0 0 1
0 1 0

 (142)

 −1 −1 −1
1 0 0
0 0 1


(123)

 0 1 0
0 0 1
1 0 0

 (134)

 0 0 1
0 1 0
−1 −1 −1


(132)

 0 0 1
1 0 0
0 1 0

 (143)

 −1 −1 −1
0 1 0
1 0 0


Let G denote the image of A4 in PGL3(Q).

Constructing Ptwist

We will use some general facts about twists of algebraic varieties to make a twist of P2.
For this, we identify P2 with P . The action of G on P2 induces an action of G on P . We
will therefore understand G to be a subgroup of Aut(P ) as well.

G ⊂ Aut(P ) is a subgroup isomorphic to A4. Let t1, t2 ∈ Q be two arbitrary zeros
of the polynomial f = t4 + 4t3 + 12t2 + 24t + 24, which has Galois group A4. Then the
remaining two roots are: t3 := −1

3
t22t1+ 2

3
t2t1+ 1

6
t2t

2
1− 1

12
t31t

2
2− 1

2
t22−t1− 1

6
t21t

2
2−4− 1

6
t21− 1

6
t31,

t4 := 1
2
t22 + 1

12
t31t

2
2 + 1

6
t21 + 1

6
t31 + 1

6
t21t

2
2 − t2 + 1

3
t22t1 − 2

3
t2t1 − 1

6
t2t

2
1. So Gal(Q(t1, t2)/Q) is

the splitting field of the polynomial f .
Consider the group isomorphism c : Gal(Q(t1, t2)/Q) → G arising from the fact that

each element σ ∈ Gal(Q(t1, t2)/Q) is an even permutation of the 4-tuple (t1, t2, t3, t4).
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Since the Galois action on the elements of G is trivial, the map c is actually a 1-cocycle de-
termining an element [c] ∈ H1(Gal(Q/Q),Aut(P )). We now define an action of Gal(Q/Q)
on Q[{ui}] = Q[{ui}] ⊗Q Q, the homogeneous coordinate ring of P9, as follows: let
σ̃ ∈ Gal(Q/Q) and let σ be the element of Gal(Q(t1, t2)/Q) obtained by restriction.
Then define the action of Gal(Q/Q) as σ̃(f ⊗ α) := c(σ)(f)⊗ σ̃(α).

Now according to the theory, we may obtain a full set of invariants in Q[{ui}] under
the action of Gal(Q/Q). We will produce invariants by just adding to an element of
Q[{ui}] its conjugates under the action of Gal(Q/Q):

v0 :=
∑

σ∈Gal(Q(t1,t2)/Q)

c(σ)(u0)

v1 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t1)⊗ c(σ)u0

v2 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t21)⊗ c(σ)u0

v3 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t31)⊗ c(σ)u0

v4 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t2)⊗ c(σ)u1

v5 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t1t2)⊗ c(σ)u1

v6 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t21t2)⊗ c(σ)u1

v7 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t31t2)⊗ c(σ)u1

v8 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t1t
2
2)⊗ c(σ)u1

v9 :=
∑

σ∈Gal(Q(t1,t2)/Q)

σ(t31t
2
2)⊗ c(σ)u1

One can check that the above linear transformation is invertible with determinant 226313,
so that the above equations determine an element of PGL10(Q(t1, t2)). This means that
we have obtained a birational map M0 : P → Ptwist (actually its inverse), defined over
Q(t1, t2), given by the above equations.

We have now arrived at our Severi-Brauer surface Ptwist: just take the image of P2

under the composition M0 ◦ φ. We will not bother about the defining equations of Ptwist,
the birational map will actually be all that we need.
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The result

To check that the image W of M0 is actually a trivial Severi-Brauer surface, we can just
blow W up in six points, without bothering about the points being in general position:
as long as we have a Q-birational map to a cubic surface S ′ in P3, we can check for the
presence or absence of Q-rational points on W by considering S ′ instead.

Starting from the points p1 := (1 : 0 : 0) and its conjugates under G, so p2 := (0 : 1 : 0),
p3 := (0 : 0 : 1), p4 := (1 : −1 : 0), p5 := (1 : 0 : −1), p6 := (0 : 1 : −1), we determine
the linear forms vanishing on the points (M0 ◦ φ)(pi) on W . This gives four linear forms
L1 := v6 + v8, L2 := v1 − 3v4, L3 := v0, L4 := v5, which is definitely what we want.

Via ψ we can pull back the forms Li to cubic forms Fi on P2. As we already noted,
these are no longer defined over Q, so we will not give them explicitly. From here, we
just have to substitute the X = F1, Y = F2, Z = F3,W = F4 in the general equation of
a cubic surface, that is in a0X

3 + a1X
2Y + . . . + a19W

3, and solve for the ai. We get
55 equations in 20 unknowns with coefficients in Q(t1, t2), but Maple turns up with a
solution anyway. It is

−3X3 + 12XY 2 + 8Y 3 − 30X2Z + 48Y 2Z − 96XZ2 − 128Z3 − 18X2W − 36XYW −
24Y 2W − 96XZW − 192Y ZW − 192Z2W + 96ZW 2 + 24W 3

The cubic surface S ′ corresponding to the above cubic form is non-singular, and a
verification using the line finding algorithm reveals that it indeed contains a Galois orbit
of 6 lines, none of which intersects another. However, considering the singular primes
p = 2 and p = 3 shows that all points over Fp can be lifted to Qp, so the Hasse principle,
which holds for these surfaces, tells us that S ′ has a rational point.

Comments and suggestions

I will now say something about the problems that occur when trying the above kind of
approach. This will make it clearer why I chose to embed A4 in GL3(Q), and not some
other group. The first thing to note is: a subgroup H of GL3(Q) with rational eigenvectors
is no good, because the image of H in PGL3(Q) leaves at least one point of P2(Q) fixed.
This means that the image of P2 under M0 would contain a rational point, which we don’t
want.

This already rules out some of the simplest choices of groups. For instance, any cyclic
group H has an eigenvector, and for small order cyclic groups this is always a rational
eigenvector. The irreducible representations of S3 have dimensions 1, 1 and 2, so the
image of any embedding S3 → GL3(Q) has a 1-dimensional invariant subspace containing
a rational eigenvector.

This means that we are forced to look for finite groups of higher order. As we saw,
our choice of embedding for A4 didn’t work either. Perhaps a different embedding would
work. The following question, too, is worth considering:
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Question 6.13. Fix a cocycle c : Gal(Q/Q) → PGL3(Q), factoring over a number field
K, and let φ be the associated rational map to Ptwist. Is there a systematic way to look
for rational points on Ptwist?

This can be answered just by looking at c and points of P2(K), for the usual action
of Gal(Q/Q) on Ptwist induces a “twisted” kind of Galois action on P2. Take a basis
1, ξ1, . . . , ξm for K, then we can write a point of P2(K) as (

∑
aiξi :

∑
biξi :

∑
ciξi). If we

require this point to be stable under an element σ ∈ Gal(Q/K), what kind of equations
does that give us? This doesn’t seem hard to find out, but I haven’t done it yet.
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7 Summary

My thesis concerns smooth cubic surfaces S over a number field K for which there is a
birational map f : S → P2 where f is defined over K. There is no material difficulty
involved in finding out whether or not an arbitrary S admits such a K-birational map
to P2. To construct such an f in a purely geometric way, however, is not so easy. We
have shown how it can be done for smooth cubic surfaces containing a Galois stable set
of 2 skew lines, and for cubic surfaces containing a stable set of 6 skew lines, we know
that there is a blow-down f defined over K. This leaves out the set of cubic surfaces
containing a stable set of 3 skew lines, but no stable sets of 2 or 6 lines. This set we have
shown to be non-empty.

Another focus point of this thesis are the different types of orbits and combinations of
orbits that arise on cubic surfaces. It was shown here that 20-orbits of lines do not exist
(over any ground field). Any other divisor ≤ 27 of 51,840 does occur as the cardinality of
an orbit of lines on a cubic surface.

An interesting phenomenon is formed by cubic surfaces which satisfy Swinnerton-
Dyer’s criterion, except for the existence of a K-rational point. The last part of the thesis
contains a possible approach to construct such surfaces.

7.1 Possibilities for further research

• It is possible (and to me seems probable) that the rational map for Type III surfaces
constructed in subsection 3.2.3 could lead to a birational map in one way or the
other. In subsection 3.2.3, I sketched many possible approaches, but it remains to
be seen how far one can get with these.

• In a similar vein, this construction could work a surface S of Type IV or V: take a
rational plane through a rational point P ∈ S and consider the plane cubic V ∩ S.
This cubic is intersected by 6 pairwise skew lines (forming a stable set) in X1, . . . , X6

and contains P . Take the plane cubic curve through P,X1, . . . , X6, which intersects
V ∩ S in X7 and X8 in addition to the points already mentioned. Then the line
through X7 and X8 intersects V ∩S in a rational point. Question: What kind of a
map is this? Can we do anything that parallels our discussion for Type III surfaces?

• My construction of a Severi-Brauer surface, which could be used to obtain a non-
trivial cubic surface with a Galois stable set of 6 pairwise skew lines, remains unfin-
ished. Is it possible to “fix” my approach?

• For Type IV and V surfaces over Q, we would like to construct an explicit blow-
down morphism over Q. The easiest case would be, given an explicit blow-up map,
to find its inverse. This can be done by an general inversion procedure for birational
maps, for instance found in [8]. However, we would like to have a more transparent
approach that uses the specific geometric properties of the cubic surface.
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