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Preface

This paper gives an impression of the work I did on this subject. Beside the work shown
in this paper there was resurch on different types of noise inputs. Furthermore, the
Mathlab program in chapter 5 was not able to make a success of this algorithm, the
computer speed and memory was to limited for all the calculations.

[ would like to thank Dr. Trentelman for all the support he gave me and the patience
he had.

Yours sincerely
Hans-Ruurd
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Chapter 1

Problem formulation

1.1 Introduction

In this paper we are looking at an identification process.

That means there exists a certain plant of which we don’t know much. We would like
to know more about this plant, so it will be possible to control it. For building a good
controller we need the transfer function of the plant. The algorithm provided in this
paper gives an approximation of this transfer function. The approximation is build up
as follows.

We begin with n starting points (inputs for our unknown system), which are uniformly
spread over the complex unit circle: z; = ¢'% | g, = 2nk/n for k = 0,...,n — 1. Mea-
suring the output we collect n point samples of this system: Ey,...,E,_;. Using linear
interpolation we get a piecewise linear function which contains our n point samples. We
design a continuous function which is an approximation of our piecewise linear function,
we do so by using Fourier series. This continuous function on the complex unit circle is
now extended to the complex unit disk. This extension is used as an approximation of
our unknown transfer function.

1.2 Problem formulation

The H identification problem from [1] is formulated as follows.
Starting with an unknown plant, we will call it A in the remainder of this paper, the
goal is to identify (make a good approximation of) the transfer function of the unknown

plant A.
We are looking in this paper at stable single-input single-output systems described by
the form y = h *u where u and y denote, respectively, the system’s input and output

and h their transfer function. This convolution (y = h * u) is defined by

o0

y(t) = h(t — t")u(t’)

t/=—

where h(k) = 0 for k < 0 and u(t') = ™',




0
y(t) = Z h(t — t')e™t
t'=—00

substitute k =t — ¢/
s

= Y h(k)ene

k=—00
00
= ¢t Z h(k)e~ "k
k=—00
= & ) h(k)e
k=0

Z h(k)z=* is the Z-transform of the sequence h(k). The corresponding transfer function
k=0

h, is described by
h(z) = h(k)z*
k=0

h defined above denote the Z-Transform of h evaluated at 1/z. Then y(t) = e'*th(e=").
This allows us to define stability in terms of analyticity on a disk (rather than the com-
plement of a disk) while at the same time leaving the unit circle invariant. .
Unfortunately noise or measurement errors occur on every input-output system, these

errors will be called noise. The output y of our system depends not only on u but also
on the noise w. We need to make some assumptions on our plant i and our noise w to

continue:

Assume:

e Plant h € H, where
Hy :=Ups1Hoop, Hp is the set of all complex functions that are analytic on a
disk D,. If h € Hy then h is analytic on |z| < p with p > 1.

e Noise w € [, where
lx denotes the normed space {f : Zyo — C | [|f]leo := SUPkez, , | f(K)| < oo}
with Z4 o := {k € Z : k > 0}. This means that the noise w is bounded during the
identification process.

Our transfer function A and the noise w must satisfy the assumptions made in Assume.
So there must be a disk D, with h bounded inside and a bound on the absolute value

of the noise.




We also need to know the number of point samples(experimental data) (E,) we start
with. Normally the accuracy of the algorithm depends on the number of samples. Every
point sample is just a measurement but is depending on the true transfer function of the
plant h and the noise w. We will write E, (h w) instead of F,,.

Given:

e Plant information in the form of a pair (p, M) € (1,50] x [0,00) for which it is
known that h € BH,, ,(M) := h¢€ {r€Hep:llzllH,, < M}. BHy (M) is
the set of all A which are analytic and bounded by M inside the circle D, with
radius p .

* A bound € € [0,00) on the absolute value of the noise w , i.e., w € Bl(¢).
Bl(€) := {w € C | ||lw||leo < €}

e For each information level n € Z, )
E, holder of the experimental data (h € H and noise w € l,), is defined by

En:Hy xloo — Taly (1.1)

where ) .
E,(h,w) :=Up,h + T,w (1.2)

with T}, : I, — Iy defined by (T, f)x := fx for k =0,1,...,n—1 and (i )i =10
for k > n.

Up : Hy — T,ly defined by (U, f)x := f(ez””‘/") for k = 0,1,...,n — 1 and
(Upnf)k :=0 for k > n.

The goal is to identify the transfer function of the unknown plant h. During the identi-
fication proces errors will be made. These errors are formed by noise w and truncations
in the algorithm. The algorithm we use must satisfy certain demands, if not, the ap-
proximation will not be useful.

The algorithm is useful if the error between the true transfer function and our approxi-
mation is small enough. We are using the H,, norm to measure this error. Minimizing
the He norm ||f|looc = sup.., |f(z)| means minimizing the maximum value(worst case).
Minimizing the worst case identification error is certainly a good bound on the error.
The error e, depends on the information level n, our algorithm A,, and the values of
p.M,e. The notation we use is e,(A,;p, M,¢€). The error is defined as the sup|| - ||oo of
the difference between the true transfer function h and our approximation A,(Ey). The
supremum is taken over h € BHo »and w € Bl (¢), all possible h and w. An algorithm
should converge to the true function if there is no noise(¢ — 0) and the number of steps
converges to infinity(n — o0). If M — 0 and € — 0 and p converges to infinity we have
the zero function to which the algorithm should also converge.




Find:

e A plan of algorithms A = {An}nez, such that for each information level n, the
algorithm A, : Ty,l, — H, maps the given experimental data into a transfer func-
tion estimate A, (FE,(h,w)) € H in such a way that the worst case identification
error

en(An;p, M, €):=  sup Hh — .1,7(1'.‘,,(/}.11'))]]\@ (1.3)
”'G‘h"\"_p
wE Blag(e€)

converges as follows
lim e, (An;p, M,€) =0 (1.4)
e—0

and
lim e,(An;p, M,€) =0 (1.5)

* Derive explicit bounds on e,(A,;p, M,¢) as a function of p, M,e and n.

6




Chapter 2

The Algorithm

The algorithm provided in this paper for the problem of identification in H., has a two-
step structure [1]. A pictorial representation of this structure is given in Fig. 2.1. The
algorithm’s goal is to identify the plant transfer function % using the given information
E,(h,w).

In the first step of the algorithm, n noisy point samples of the unknown stable plant are
taken to compute a L., approximation; n noisy point samples — lineair interpolation
— Fourier series — truncated Fourier series — L., approximation. The Fourier series
are truncated to enable us to use standard finite- dimensional methods in step 2.

In the second step of the algorithm, this L., approximation is mapped into a stable
real-rational H,, approximation to the unknown stable plant. It is this H., approxima-
tion which serves as the identified plant model. The H,, approximation is obtained by
computing the best H., approximation to the L., approximation decribed above. This
amounts to solving the so-called Nehari problem, and this task is carried out using the
AAK approximation theory [2][6].

2.1 Step1

In step 1 we only know the noisy point samples (experimental data) En(iz,w). They
are collected by taking n point samples uniformly spread over the complex unit circle.
When we use lineair interpolation on these noisy point samples we get a piecewise lineair
function. Calculating Fourier series of a function is easier when this function is (piece-
wise) lineair, that is why we use lineair interpolation. From [3, theorem 13.2d] we first
calculate the Fourier coefficients of E,(h,w) using Discrete Fourier Transform(DFT)
(step 1a) and then multiply them by a factor depending on the kind of interpolation
used (step 1b). This factor is in our case the Fourier Transform of the linear spline. So
step 1 gives us the truncated linear spline Fourier series.




"

Unknown Plant

Experiment

('n

Noisy
Point Frequency

Response Samples

RH,,

Identified plant

Linear Spline

Interpolant

Truncated Spline

Fourier Series

Lo Lioo

Figure 2.1: Two-step structure of the algorithm for identification in H..

2.1.1 Step la:

Select a value for N € Z,, N is the truncation of the Fourier serjes. Calculate the
DFT-coefficients ¢ of the noisy point samples E,(h,w) by:
n—1
& ==Y (En(h,w))ne~mkmin _N < k< N (2.1)

n
m=0

2.1.2 Step 1b:

Attenuate the DFT coefficients é using the attenuation factors 7 as follows:
Ck =TkCk, —N<Ek<KN (2.2)

where 79 = | and

Tk = (%)2 (Sin%k)2, k#£0

This attenuation factor 7, depends on the kind of interpolation which is used on the
noisy point samples [3, theorem13.2d]. 7, from (2.2) is the attenuation factor which
corresponds to the linear interpolation. The Fourier coefficients of the linear spline are
given by ck.




N e e

2.2 Step 2

In step 2 we start with the coefficients c; of the truncated Fourier series of the linear

spline (2.2) which forms the L., approximation ¢(z) = 3 er2* of our unknown plant.
k=-N

Now we are looking for the best approximation g € Hy to @ € Loo. This is called the
Nehari problem. From [6, §15.3] we see that:

— o Hof
o= g——

with H,f = P_(pf) where P_ is the orthogonal projection operator:
00 =
F. ( Z ckz") = Z cxzk (2.3)
k=—00 k=—0c0

and f a singular vector of H, corresponding to sk(H,) (singular value of operator H,,).
The Nehari problem is solved in two steps, with the AAK approximation theory [2][6
§16.3]

2.2.1 Step 2a:

Use the negative coefficients (ck);;v_l of (2.2) to form the Hankel matrix of H,

-1 -2 C_N
c_ ¢c_3 ... 0

H=| 7 7 (2.4)
ccy 0 0

and for this matrix obtain the maximum singular value & and the corresponding right
and left singular vectors r = [ryry...7x] s = [s182...sn]"

2.2.2 Step 2b:
Using these quantities, form the identified model
N-1
X a Z SN-k2
AV (En(h, w))(z) = Z e = (2:5)

~AV Z 7'k+12k
k=0

S

As a result of the Singular Value Decomposition (SVD) required in (2. 4) and the manner
in which the model is formed in (2.5), each algorithm AY is a nonlinear function of the
information E,(h,w).




In forming a plan of algorithms based on AY we wish to admit the possibility that for
each information level n a different value of the parameter N may be selected. Corre-
spondingly, let N(-) : Z; — Z, denote a particular parameter sequence, and then define
an associated plan of algorithms as follows:

N(- N(n
ANC) .= {AN( )},,EZ+




Chapter 3

Error bound & proof

3.1 Error bound

The global error properties of AN (2.5) as defined in (1.3) are given by:

AMr 1 Mrip+1) 1 AM +¢€) n?

N .

ALY a8 = o ... P o ML L - (3.
en(Ay 50, M,¢€) 2mm{(p 0 7 (= 1) 3 = N + 2¢ (3.1)

This is, what we where looking for, an explicit bound on en(A;y;p, M,¢€) as a function of

p, M, € and n. And as required in (1.4) and (1.5) they converge to 0 by suitably choosing
N(n).

lim e, (AN; p, M, €)
e—0

T [ AMr 1 Mrp+1) 1 AM+e) n?
=l e e R )

. o AMm 1 Mrip+1) 1 4M +¢€) n? b g
T (2"“"{@—1)'5’ (- 172 n_z} M 7 A

and

lim e,l(/l‘,?/:p, M, e)
€—0
M—o

4 2 2 A, 2
“n] (2n1in{ 1A’I7I' l wi} + wz’__ + 26)
n

=0 {p= 1) (p—=1) n? x* v
M—0
4) {72 4M ,2 ]
= Jim 2min{4hr -l,Mﬁ(p+21)-L2}+ lim 1(—:_6)‘%-{*1”!126
g-so0 (p—1) n (p—1) n oo ™ ] =0
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As a consequence of the form of this error bound (3.1), it is easy to see that if N(-) is

chosen so that

. n?
nll_.ngo N () =0 (3.2)

N . &
then AN ™ is a convergent plan of algorithms.
For example, if we chose N(n) = n3 then the global identification error becomes

cn(A‘,Y;p,A«[,e) = 2 + O{l} as n — 0o

n

3.2 Proof

3.2.1 L. Approximation from noisy point samples

In this subsection we will calculate the contribution of the error made in Step 1. The
proof follows the following steps:

L. In definition (3.1) and fact (3.2) we define a piecewise linear function.

2. In fact (3.3) we find the maximal error between the "original function” and the
piecewise linear function in terms of the derivatives.

3. In fact (3.4) we calculate the derivatives, making use of Cauchy’s formula for
derivatives.

4. In lemma (3.5) we substitude the above 3 in each other.

5. In fact (3.6) we describe the truncated linear spline Fourier series and the attanu-
ation factors.

6. In theorem (3.7) we calculate the error made by the truncation of the Fourier series
and give a complete maximal error made in Step 1.

Definition 3.1 Let f € lo = ({f : Z4p = C | ||flloo := SUpPrez, o [f(k)| < 0o}) and
n € Zy. The linear spline which interpolates the first n components of fi. at the points:
2 = €% @) = 2rk/n, k=0,...,n — 1 is the function g = S, f € Lo, = {g:6D - C |
g 1s measurable and ||g||o := esssup,esplg(z)| < oo} given by:

| fk+(0—0k)((f’“%) Ok <0< Oy k=0,...,n—2
g(e’) = o " fo (3.3)
Ja1+(0-6,y) m 01 <80<2m

12




Fact 3.2 For each n € Z,, the operator S, : loo = Lo, defined above is linear and has
induced norm ||S, || = SUP||fflee=1 90 flloo = 1

Proof:

Sn linear : The values f; appear linearly in the expression given for g(e?) in def. (3.1).
ISxll = 1: Let f € I with [|f]leo = 1 i.e. [|f]|oo := supiez, |fil = 1. g(e”) interpolates
fi thus: g(e)] < maxy—,..n—1{f} < 1 for 8 € [0,27]. g = Suf = [ISufllwo <1 (in
|

Equality is obtained by considering the sequence f € Tyl when
Si=1,k=0,....,.n-1, fr=0, k> n.

Fact 3.3 Let n € Z,, S, defined as in definition(3.3) and (U, f)x := f(e*>" /™) for
k=0,1,....,n—1 and (U,f)x := 0 for k > n. If f€ Hy, then:

I = $aUn s S min d E1 s (2)° (et 00) ) 00

Proof:
feH,and f=R+1il
From [4, Theorem 6.15] : d[f,g(A)]o < A||f'||oo With A = € and d[f,9(A)]w is the

maximum distance between f and g(e'’) (3.1) and

A := maxXock<n—1(2k41 — 2k) < X (k41— 2 = €041 _ s < i)
The maximal error, when using Linear Spline Interpolation, is the maximal derivative
of f times the maximal distance between two coefficients of i+
i 2 2
m '’ w ’
IR = SnUnRlloc £ —[IRlc £ =If lloo
n n
and 9 9
m ' m ’
—An/noo<—1r>o<_ 20
I = Sulallleo < Tl Now < Y7
If = SnlUnfllo = [|R4+ il = SpUn(R 4+ il)||o
Since Uyp f = U, R + iU, I and by the fact that
Sn is linear, this is equal to
= |[R= SaUnR + il —iS,U,I||o
S ”R_ SnUnR”f‘o + ”[_ SnUn[”')o
47[' '
& =
. < Zfls
" From [4, Theorem 6.15] : d[f,g(A)]o < %Hf"”,)c with A = ¢ and A := maxo<k<n—1(2k4+1—
%) < &
Thus,
(Zl)2 " 71'2 "
”R - SnUnR”oo S - ”R “00 S 2?”]. ”oo
13




and

L

(&)

||I - Sn(‘lyn[”"o S

2
" T "
Il < 550 Il
2n

So we get

v T 7r2 " | 4
1S = Salinfloo < SIS 1o - (35)
Of course, this implies
2
- g ' " y
1 = SaUnflloo < 25 (I llw + 15"l ) (3:6)

Why the writers of [1] have chosen for (3.6) instead of (3.5) is unclear.

Fact 3.4 Let (p,M) € (1,00] x [0,00) and k € Z,. If f € BHoo ,(M), then

k'M
(p— 1)

1P| <

Proof:
fe€BH, ,(M) = fis analytic and bounded by M inside the circle D,.
= [ is analytic in a disk containing D,_¢ for 0 < ¢ < p. Cauchy’s formula for

derivatives [5] gives that for any z € C with |z| = 1
k! f(w)
k) () = CAL . o 3.8
9 = o= [ L aw e<p (38)
-4
where I' = {w € C: |[w — z| = p — £ — 1} with £ small enough

(I inside D,_¢ = f analytic inside and on I' and z lies inside T').

Since f € BH, ,(M) we have Nf(2)Hw, < M.

Hence

k!

27i

k! M2n(p—£€—-1)

2t (p—€— L)FH1
k'M

(p—€— 1)

The result follows by taking the supremum over all |z| = 1, and then the limit as £ — 0.

M x (length T)
|w — z|k+1

If®(z) <

Lemma: 3.5 Let (p,M) € (1,00] X [0,00), € € [0,00) and n € Z,. If (h,w) €
BH.. ,(M) x Bly(¢€) then:

- b - ) At M ™2 (M(p+1) '
[|h = Sn(En(h, w))||oo < mm{ "1’ (n) (_—_(p— 2 ) }+e (3.9)

14




Proof:
From (1.2), fact (3.2) and the triangle inequality
lh = Sa(En(h,w)llo = Ik~ Sn(Unh + Tnw)]leo
= ||h = Sa(Us )— Sn(Trnw)||so
< |k = Sa(Unh)lloo + [|Sn(Taw)l|oo
< b = Su(Unh)||oo + €

From fact (3.3)

~ L& . 4 A[ T 2 a0 AN
= $u(Unile < min{ TR e, () (1A e+ 1 ) }

From fact (3.4)
) X At M ™2( M 2M
h —-'n /nh' o < i = % X3
I Sn(Unh)|| mm{ np-—1 (n) (p—1+(/’_1)2)}

. Ar M ™2/ M(p+1)
”““{ -0 () ((p—n'l ) }

- - . 4 M T2 1\[(p+1)
1 = Su(En(hyw))lloo < mm{ (%) <<p——1)2) }+e (3.10)

IA

We see that in the above error bound (3.10) from lemma (3.5) the terms due to n and
€ are decoupled. This means that as n — oo the linear spline approximation converges
to 0 within the constant tolerance e. It is not possible for this approximation to have a
worst case uncertainty error less than the worst case measurement error at any point. €
is a lower bound on the optimal identification error.

We will show that truncation of the linear spline Fourier series also provides an L.,
approximation to h. This extension, which makes use of attenuation factors, provides a
direct connection between the uniform samples (E, (h w)) and the Fourier series coeffi-
cients of the corresponding linear spline interpolant (S,) [3, theorem 13.2d].

The Fourier series coefficients of a function f € H, are glven by

2r

ck(f) := —/f(eig)eikadﬂ keZ
0

The DFT coefficients of the sample sequence (U, f),, are given for each n € Z, by

—2mikm

n—1
1
tk(Unf) 1= — L = keZ
&(Unf) ",,,Zzow fIme €
But we have the linear spline interpolant (S,) of U, f so we need cx(S,U, f).

15




Fact 3.6 Letne Z,. If f € Hy, then for each k € Z k(SnUnf) = 14éx(Un f) where

n\2 k2
i — <—1) (sin—) y k#0 19:=1 (3.11)
mk n
Proof:
[n [3, Attennuation Factors] we find the proof of this fact and that the Fourier coefficients
. of the linear spline interpolation are (3.11).

Theorem: 3.7 Let (p,M) € (1,00] X [0,00), € € [0,), n € Zy, N € Zy and let
Ck+Ck, and 1; be as defined above. If (h,w) € BH,, ,(M) x Bl,.(€) then:

FonN(En(h,w))(e®) := ck(Sn(En(h,w)))e'*? (3.12)

Thér( En(h, w))e'*?

k=-N
and
- . Lo . 4= M ™2 ([ M(p+1) 2(M + €)n?
h—F, N(En(h,w))||e < — [ = ———= e
lh— Fu N(En(h, w))|lso < mln{ (o — 1) (”) ((/)— 0)? ) } + N2 + ¢
(3.13)
Proof:

The first statement (3.12) follows directly from fact(3.6), the second statement is a little
more complex. We start with the Fourier expansion of S,(E,(h,w)) and the definition

of F,, n
Su(En(hyw))(€®) = 3 cx(Su(Enlh, w)))ei*?
k=—o00
. l\r - .
FaN(En(h,w))(e) := 3" ex(Su(En(h, w)))et*
k=-N
p—
X 7 i -N-1 X o) |
|Sn(En(h, w))(€”) = Fo N(En(h, w))(e'®)] < Y lek(Sn(En(h,w)))] + > lek(Sn(En(h, w)))|
k=—00 k=N+1
. lek(Su(Ea(hyw))] = |riék(En(h, w))|

|Tké(Unh + Tpw)|
|Te(Ex(Unh) + éx(T,w))|

< (M +¢€)]
n 2
< (77) W1+

16




—

-N-1 00
|Sn(En(h, w))(€®) = Fun(En(h,w))(e?)] < ( S+ Y i)><($)2(M+e)

IA
|
-
?~| o
LS}
u
k
=+
|
2\'3
==
L)
=
T
X
A
adl-
S
+
v

ol e L) /ny\2
< (FEE+ 2R) () 4o
1 1 ny 2
< <N ‘V)x(;) (M +¢)
2AM + €)n?
<
& Nn?

|h=Fo N ( En(hyw))loo < 1h=Sa( En(hy w))loo + 1Sn( En(hy w))(e®) = Fy x( En(h, w))(e®)]]o

-

? |
1h = Foy (En(hy 0))loo < min{ i (g)?(@) } g XM tgn?

n(p-1)° (p—-1p Nx? o

This is the maximal error made in Step 1.
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3.2.2 H, Identification from [, Approximation

[n the second step of the algorithm AN (2.4, 2.5), the L., approximation is mapped
into a stable real rational H., approximation to the plant. By L., approximation we
mean the truncated Fourier series of the piecewise linear approximation.

Corollary: 3.8 Let (p,M) € (1,00] x [0,00) , € € [0,00) n € Zy and N € Z,. If
(h,w) € BHo ,(M) x Bly(€) then

+ €

o 4 N 2 /A . 2
dist(Fy N (En(h,0)) , Hoo) < min{ L (B) ( ”P“)) } 2L+ 2jn

n(p—1)" \n (p—1)2 Nr?
(3.15)

where dist(a, B) := infyeg||a — b|| is the distance between a and B and F, N(En(h,w))
is defined as in (3.12).

Proof: Since h € H, (3.15) is a direct result of (3.14).

This result (3.15) is the reason why we take the best H ., approximation to the L., func-
tion F, n( En(il, w)) as the identified model, because dist(Fo Ny Hingey) < di.st(Fn,N,iz)
since h € H,,. The problem of finding the best H., approximation to the L, function
is called the Nehari problem. This problem can be solved using the AAK approximation
theory [2], a partial statement of this theory can be found in [6, §16.3]

Fact 3.9 Let ¢ € L.,. Define the Hankel operator H, : Hy — Ly & H, associated with
@ as follows

Hyf = P_(¢f)

where here P_ denotes the orthogonal projection (2.3) from Ly to Ly & H,.

Define a maximizing vector for H,, as an element [ € Hy satisfying; | Hyf|l2 = ||H,||||f|l2
Finally, suppose a maximizing vector f for H, exists, and define

_Hof
f

Under these conditions, ¥ € H,, and e — ¥llo = dist(p,Hy), ¥ is the best approxi-
mation of ¢ in H,.

Y = o

Applying fact (3.9) with ¢ = F, y(E,(h,w)) as defined in theorem (3.7), the
identified model AY(E,(h,w)) given in step 2b (2.5) is obtained, and the error
properties are the same as in Step 1.
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3.2.3 Error bound

The proof of the Error bound, described in the above two subsections is now complete.
We see that, due to the properties of the algorithm, the error bound depends on the
first step. In particular the choice of the piecewise linear function Sn, in the form of
the attenuation factors (see Step 1), is responsible for the form of the Error bound. By
changing the attenuation factors we can control the effects of the noise, in our experi-
mental data E,(h, w), on the identification.

The identification error is: < [|h — Fon(En(h,w))lloo + dist(Fon(En(h,w)), Ho)

M Mr? M 2
en(ANypaMaG) < 2mm{ 4 T -i, M.i}_{__u.l 2€
" (p—1) n (p—1) n? w3 N
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3.3 Comment on the algorithm

e It is natural to require that the identified model A‘,Y(E,l(iw., w)) from (2.5) is real
rational. This is only possible when the DFT-coefficients éx are real. We can
ensure this by requiring that (for n even)

(Ifn(iz.ln);+|+k)e‘2"”’"’/" = [(En(fz,117)%+1_k)82”km/"]' fork = 1,2,...,3 -1
(3.16)
- X A "
k‘n(h,zn)%+1+k = [F,'n(h,u')%ﬂ_k]' for k = 1,2,...,5 -1

and En(iz,w)l - E,,(iz.uv)gH being real. FE, must occur in conjugated pairs.
Without loss of generality we will take the random noise from 6D, instead of D.
with € € [0,00). Now define

2R1(R)72|+1+k
c-(e n ) forOS(R)§+1+k§n—l

as the random noise w € Bl (¢) which occours at sample 7 + 1+ k
(1.2) =

En(h-u-’)§+1+k = " "

R ( 27n(£+1+k)> ( 2"'"’“3, +1+k>
= hkie + €-|e

n n

Il

En(h, W)a 41—k

5 2xn(2+l_k) 2#:(R)g+]_k
h (e ) + €~ 1€

Il

n n

- 2ri(B+1+k) 2""mgﬂ--k
h(f ) sl K-

The DFT-coefficients ¢, from (2.1) must be real !
== En(h,ll')}q+l+k - En(h,w);H_k must be real.

2’”(R)g+l+k ‘21n(R)2+l_k
) and e - (e

= € <e n n ) must be complex conjugate.

= The ball of noise Bl.,(¢) should thus be taken those complex numbers which
satisfy the (3.16) complex conjugate symmetry. The noise, which can effect our
system, will be restricted on his randomness (complex conjugate). This is a neces-
sary restriction on the random occurence of the noise, but isn’t it to strong? Will
the general noise on our system satisfy these restrictions? This question will not
be answered in this paper.

The identified model given in (2.5) corresponds to a (2N — 1)th-order rational
transfer function (the Mc. Millan degree of AfY(En(fl, w))(z)is 2N —1). N causes
the truncation of the Fourier series and is there by a influence upon the identifi-
cation error. From (3.2) we see that N should be chosen large enough such that
lim,, /'v%) = 0. It might be advisable to use model reduction techniques on
the transfer function to obtain a reduced-order H,., approximation.
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Chapter 4

Recursive Algorithm

For the case where n(m) = 2™ m € Z, o, the frequencies corresponding to the set of
samples En(m)(iz, w) are also uniformly spread over the unit circle. If our approximation
is not accurate enough, we have to take more experimental data. To reduce the number
of calculations we want to make use of the approximation we already know. That is why
we have chosen n(m) = 2™ = n(m+ 1) = 2™t!, the new experimental data interleave
exactly so that the a posteriori information for level n(m + 1) can be given recursively by
adding n(m) point frequency response estimates to those of En(m)(il, w). Thus it should
be possible to redefine the Algorithm.

4.1 Step la
1l e - 2mikl
é(m) = o 3 (Eam(h,w))ie = —N(m) < k < N(m)
=0 SHEEL
~ —2mekl
e(m+1) = o Y. (Eymtr(hyw))e™ T —N(m+1)<k < N(m+1)
=0

We will try to express é(m + 1) in terms of éx(m) on —N(m) < k < N(m), outside this
range ¢x(m + 1) stays the same.

— a —=2mik2l
ék(m + 1) = 2m+l Z (E2m+](h,u1))2167"m_
1=0
2m—1
1 - ) —2mik(2l41)
+ om+1 Z (Eqm+1(h,w))ai41e” 27 (:= Ag(m + 1))
=0
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2m—1

" —2mik(2(41)
Zo(m) + o 3 (Egmss(hyw))iq1e™ 79— _N(m) <k < N(m)
ée(m+1) = sl g i=0
~ —2mskl
om+1 Z (Eymt1 (hyw))e 71 N(m) < k] < N(m +1)
(=0
(4.1)
4.2 step 1b

We were succesfull in redefining Step la into a recursive algorithm, now we have to do
the same with Step 1b.

omy 2 2
Tk(m) = (fr—k) (sin;r—:) —~N(m)<k<N(m)k#0 To(m) =1

gm+1 2 tk \?
w(m+1) = sin—— ~N(m+1)<k<Nm+1)k#£0 To(m+1)=1
Tk 2m+l

We will try to formulate 7i(m + 1) in terms of Tx(m) This is not possible in the same
way as in Step la, but we can use the information of Tk(m) in an other way.

o(m+1)=19(m) =1

om+1\ 2 ‘ 2 om\ 2 2
Tok(m+1) = <27r2k ) (sin;nzfl) = (fr_k) (sin;l:) = Tr(m) —N(m) <2k < N(m
gm+1 2 D 2
Tokr1(m+1) = (m) (sin%) —-N(m)<2k+1< N(m
gm+1Y 2 rk \?
(m+1) = < - ) (sianH) N(m)<|k| < Nm+1

We can combine Step 1a and Step 1b a little bit, we will do so on the interval —N(m) <
2k < N(m) k#0

Ta(m+1) = ne(m) =

" 1.
cak(m+1) = Ec'zk(m) + Ax(m+1)

1 .
cak(m+1) = m(m+1)-é(m+ 1) = irk(m)- ch((,;n)) + Tk(m+1)- Age(m + 1)

Cokpr(m+1) = mpp(m+1)-épp(m+1) + g (m+1)- Age(m + 1)
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This was not what we were looking for. If we want to redefine Step 1b we have to do it
in the same way as Step la, because we have to combine them. The only alternative is
to look at an other window function (attenuation factors). This new window function is
more convenient to make a recursive algorithm.

Te(m) = l—fvlkL —N(m)

(m)
k
w(m+1) = 1 - N(rln|+1)

N(m) "(m) =0 |k| > N(m)
Nm+1) n(m+1)=0 [k]>Nm+1)

Assume N(m + 1) = p- N(m) with p > 1, we can do this without loss of generallity.

r(m+1) = I—L -p-Nm)<k<p-N(m)
p-N(m)
k| (p=1)Ik| : i
= = — - N - - N
1 N(m)+ P N(m) p-N(m)<k<p-N(m)
= Tk(m)-f-M — N(m) <k < N(m)
p-N(m)
(m) + §(p _rvl),k' —N(m) <k < N(m)
(m+1)= Ik]p” (m)
1 — - —p-N(m)< k< —-N(m), N(m)< k< p-N(m)
p-N(m)

(4.2)

Combine Step la with this window function gives us:

ck(m) = m(m)-é(m) = é(m) =

|
ck(m+1) = §5k(m) + Ag(m + 1)

We will look at the interval — N(m) < k < N(m) because we can manipulate on it.

c(m+1) = m(m+1)-é(m+ 1)
= (Tk("l) + %) (%ék(m)) + m(m+ 1)Ag(m + 1)
= %rk(m)fk(m) + %%mm) + m(m 4+ 1)Ag(m + 1)
- %ck(m) + %(:—thk)l ::E:; + Te(m+ 1)Ag(m + 1)
- Lat s UL | iy
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1 - 1|k
— Tj("(m) 1 + (P UI , I + m(m+ 1)Ag(m + 1)
P+ N(m)- (1~ 5fts)
- 1 ,,),(P'JV(Tn)-}—IkI
- 2“( : p-N(m) + p|k|

) + (m+ 1)Ax(m + 1) (4.3)

On —px N(m) <k < —=N(m), N(m) < k < px N(m) everything stays the same.

rm+l_]
k 1 ’ ~ —2mikl
cm+1) = (1 a P X IV'(m)> gm+1 Z (Egm+1(h, w))e2m+
: i =0

For the beautiful case where p = 1 the recursive step of Step 1 looks like this:

1
ck(m+1) = ;—ck(m) + Te(m + 1)Ar(m + 1) (4.4)
4.3 Step 2a
c_1(m) c-2(m) ... c_n(m)(m)
c_z(m) c_3(m) ... 0
H(m) =
C_N(m)(m) 0 0
c_i(m+1) c_o(m+1) ... C_N(m+1)(m +1)
c_o(m+1) c_3(m+1) ... 0
Him+1)= . . ) .
(‘—A'\«'(m-}-l)(,n_*- 1) 0 0

We have to obtain the maximum singular value &(m + 1) and the corresponding right
and left singular vectors r(m+1)t, s(m+ 1) from H(m+ 1). It appears to be impossible
to make a recursive step from H(m), a(m), r(m)t, s(m)' to H(m + 1).

4.4 Step 2b
N(m)-1
" ) N(m) o Z S‘\'(m)_kzk
Anomy (En(hyw))(z) = 37 sk - — =0 (4.5)
k=-=N(m) zN(m) Z rk+12k
k=0
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As a consequence of the failure to write Step 2b as a recursive step, the only thing we
can do is to rewrite the linear part of (4.5).

- N(m)
Bn(s:;) = Z Ck(ﬁl)zk
k=-N(m)

We will do so by using the second window function

N N(m) -N(m) N(m+1)
B;z(irT:ll)) - Z ek(m+1)z% + Z cx(m+1)2* + Z ex(m + 1)zF
k=—N(m) k=—N(m+1) k=N (m)
N(m) )
L pN(m)+|k|) ) 3
= S¢k(m) - | ———— | + e(m+ 1)Ax(m+1)) 2
2 (2 i (pN(m)+p|k| kiS5
==N(m)
—N(m) pN(m)
' 3 Z ('k(m+1)zlr + Z (‘k(m—{-l)zk
k=—pN(m) k=N(m)
1 P K .
= Z Tck(m)‘(“ s Z Te(m + 1)Ag(m + 1)z
k=—N(m) 2 pN(m) + plk| k=N (m)
—N(m) pN(m)
+ ) alm+ 1)k 4 Y er(m+ 1)
k=—pN(m) k=N (m)

It is not possible to write this in terms of B ™) only for p = 1 we get

n(m) ?
1 N(m)
N(m+1 N(m
Bn(in-:l)) = §Bn(£n)) + Z )Tk(m + D) Ag(m + 1)2F (4.6)
k=—N(m

Instead of using (4.3) we will go back to (4.2)

N(m)
my = Y () + ZZE) (e + aum 4 1)
k=—N(m)
—-N(m) —-N(m+1)
+ z cx(m+1)zF + Z cx(m + 1)zF
k=—=N(m+1) k=N(m)
N(m)
= X (%rk(m)ek(m) ¥ %ek(m)% g rk<m+1)-Ak(m+1)) *
k=—N(m)
~N(m) ~N(m+1)
+ Z cx(m+1)zF + E cx(m +1)2*
k=—N(m+1) k=N(m)
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Bn\((n:n:ll)) = %Br‘z\;(rr’:;) + Z (%F ("')px—Tlil) + (m+1)- Ap(m + 1)) &
k=-N(m)
-N(m) ~N(m+1)
- Z cr(m + l):k - Z cr(m + 1):’c
k=—N(m+1) k=N (m)

4.5 Conclusion Recursive Algorithm

It is not possible to make a nice Recursive Algorithm in the terms of: we have an ap-
proximation A':;( ) and we are going to adjust it with the next recursive step. For the
case where N(m) = N(m + 1) a lot of problems disappear.

It is possible to redefine Step 1 into a recursive step if we have chosen a convenient
window function, see (4.3) and if N (m) = N(m+1) (4.4).

The nonlinear boha\lor of Sfep 2 makes it impossible to make a nice recursive step.
Only the linear part of A’ m’ namely B:;f:;) is convenient to redefine, see (4.7) and if
N(m) = N(m+ 1) (4.6).




Chapter 5

Matlab

5.1 Program

% System Identification

clear; % Clear memory
eps; % Increase accurasy
t = sqrt(-1); % Definition
rand(’normal’) % ”Rand”

l=0; % Initial

n=_0; % Initial

% Number of experimental data E,
% Number of DFT coefficients we want to calculate.

m = input(’Number of experimental data is two to the power:

n= 2™ %Number of experimental data
N = input(’ Number of DFT coefficients: ’);

% Input of the noise on the system.
% Calculate the experimantal data.

disp(’ ")

disp(’ Do you want noise on this system ? *)
disp(’ Yes : give the absolute value of the noise, ’)
disp(’ No : insert 0 7)

disp(’ ")
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fout = input(’Give the absolute value of the noise : ")

if fout < 0
error(’ The absolute value must be larger than zero !!! ")
else
disp(’ ")
disp(’ Calculate the experimantal data from the Transfer Fuction 7)
forl = 1:n

% E is uniformly spread over the complex unit circle
E = exp((2.*pi.*i.*(I-1))./n);
% The noise comes out of the complex bowl with radius fout
VERSTORING = fout.*rand. *exp(2.*pi.*i.*rand);
ENHW(1) = Function(E) + VERSTORING:
end
end

% Calculate the DFT coefficients
disp(’’)
disp(’ Calculate the DF T-coefficients *)

% Initial
forp = I:N, CKP(p) = 0;, end

% Calculate the DFT coefficients £ > 0
% CK P = coefficients C K with K Positive
for p = 1:N;
for]l = 1:n
DUMMY = CK P(p) + ENHW (1).*exp((-2.*pi.*i.*p.*(I-1))./n):
CKP(p) = DUMMY:
end

end

% DFT * window function (step 1b)

for p = 1:N;
DUMMY = (CKP(p))./n; % (definition)
CKP(p) = DUMMY .*((n./(pi.*p)).*sin((pi.*p)./n));

end
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% Calculate the DFT coefficients k = 0
% CKPN = coefficient C K with K Positive and Negative
7% Window function at k = 0 equals 1
CKPN = 0;
forl = L:n
DUMMY = CKPN + ENHW(l);
CKPN = DUMMY;
end

CKPN = DUMMY./n; % (Definition)

(/7;\ Initial
forp = 1:N, CKN(p) = 0;, end;

% Calculate the DFT coefficients & < 0
% CKN = coefficients C K with K Negative
for p =1:N
forl = 1:n
DUMMY = CKN(p) + ENHW(l).*exp((2.*pi.*i.*p.*(I-1))./n);
CKN(p) = DUMMY;
end
end

% DFT * window function (step 1b)
forp = 1:N
DUMMY = (CK N(p))./n; % (definitie)
CKN(p) = DUMMY.*((n./(-pi.*p)).*sin((-pi.*p)./n));
end

% Step 2a, singular value decomposition from the Hankel matrix.
% Calculate the corresponding right and left singular vector.
disp(’ )

disp(’ Calculate the HANKEL matrix’)

% The Hankel matrix is made of the coefficients C K with
% the negative index (C K N).

% Hankel is a command in matlab.

H = hankel(real(CK N));
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% Singular value decomposition

% svd is a command in matlab with § singular matrix

7% and U & V unitary matrices : H = U+ S+ V' .
disp(’ ")

disp(’ Calculate the Singular values’)

(U,S,V] = svd(H);

disp(’ Largest Singular value’), S(1,1)

% Step 2b, Calculate the approximation

MODEL = 0; % Real model without noise
HBENADERING =0; % Algorithm approximation (Hy)
LBENADFERING =0: % Approximation (L)

w=0:0.1:2.%m; % Plot accuracy

z=-ezp(i.* w); % Spread over the complex unit circle

disp(’Calculation of the Happroximation )

DUMMY1 = 0;

forp = I:N
DUMMY2 = DUMMY1 + CK P(p).*(zP);
DUMMY1 = DUMMY?2;
end
CKZKP = DUMMY; % CKZKP : coefficients CK * zK with K Positive

DUMMY1 = 0;

forp = 1I:N
DUMMY2 = DUMMY1 + CKN(p).*(z™P);
DUMMY1 = DUMMY?2;

end

CKZKN = DUMMY]1; % CKZKN : coefficients CK * ZK with K Negative

% SOM from K= -N till N of CK * zK

CKZK =CKZKN + CKPN + CKZKP;

30




% Calculate the numerator, U/ is left singular vector
% of singulare value S(1,1)
DUMMY1 = 0;
forp = I:N
DUMMY2 = DUMMY]1 + U(N-p+1,1).%(zP~1);
DUMMY1 = DUMMY?2;
end

TELLER = §(1,1).*DUMMY];

% Calculate the denumerator, V is right singular vector
% of singular value S(1,1)

DUMMY1 = o;

forp = 1:N
DUMMY?2 = DUMMY1 + V(1,p).¥(zP~1);
DUMMY1 = DUMMY2;

end

NOEMER = DUMMY1.*(zV);

% Approximation agorithm step 1la till 2b
HBENADERING = CKZK - (TELLER./NOEMER);

% Approximatio step 1 :
7% SOM from K= —N till N of CK * ZK
LBENADERING = CKZK;

% Real model without noise.
MODEFEL = Function(z);




% Pictures.
clg

subplot(221),

plot(w,MODEL,-g’,w, HBENADERING,’-.r’,w,LBENADERING, :w")
titleCIDENTIFICATION MODEL REAL’)

xlabel(” - : Model -. : Happroximation )

subplot(223),

plot(w,real BENADERING-MODEL),"-r’,w,real LBENADERING-MODEL),-g’)
title(CERROR REAL)

xlabel(” - : Happroximation - Model *)

subplot(222),

plot(w,imag( MODEL),-g’,w,imag(BENADERING),-r’,w,imag(LBENADERING),":w")
titleCIDENTIFICATION MODEL IMAG.")

xlabel(’ .. : Lapproximation ’)

subplot(224),
plot(w,imag(BENADERING-MODEL),r’,w,imag(LBENADERING-MODEL),-g’)
titleCERROR IMAGINARY”)

xlabel(’ - : Lapproximation - Model *)

meta plaatl

pause
clg

end
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