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Summary

The quadratic assignment problem we can see as a facility location problem. Assume we
have n facilities and n locations. We know the flows between each pair of facilities and the
distances between each pair of locations. To each location we want to assign a facility such
that the distance times the flow is minimized.

The quadratic assignment problem is an NP-hard optimization problem. This means
that there is no algorithm that can solve this problem in polynomial time. Heuristics are
algorithms which try to find the optimal solution or a solution that is close to the optimal
solution. There are a lot heuristics for the quadratic assignment problem and in my thesis
I discuss a few of them. Further I compare a new heuristic of Zvi Drezner with another
heuristic, tabu search.
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Chapter 1

The Quadratic Assignment Problem

The quadratic assignment problem (QAP) is an interesting combinatorial optimization prob-
lem. Koopmans and Beckmann [14] introduced this problem in 1957 as an economic location
problem. But nowadays the QAP has also a lot of applications in other fields and there are
many real life problems which can be modeled by QAP’s. Moreover, many other combinatorial
problems, such as the travelling salesman problem, can be formulated as a QAP.

Furthermore, the QAP is one of the great challenges in combinatorial optimization. This
is because the problem is very hard to solve and also hard to approximate.

This chapter follows the outline of [4, 2]

1.1 Problem Formulation

We can describe the QAP mathematically as follows. There are n facilities and n locations.
We denote the distance between location i and location j as dij and the flow or cost between
facility i and facility j as cij . To each location we will assign a facility such that the distance
times the flow, this we call the total costs, are minimized. So the QAP is to find a permutation
p of the set of facilities which minimizes the objective function (1.1).

n∑
i=1

n∑
j=1

cijdp(i)p(j) (1.1)

Here is p(i) the location of facility i.
An alternative way of formulating the QAP is the Koopmans-Beckmann formulation. This

formulation is more useful than the formulation presented here for some solution methods.
Koopmans and Beckmann define for this new formulation the matrix X. X is an n×n matrix
and its entries fulfill the following conditions.

n∑
i=1

xij = 1, 1 ≤ j ≤ n (1.2)

n∑
j=1

xij = 1, 1 ≤ i ≤ n

xij ∈ {0, 1}, 1 ≤ i, j ≤ n

1
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Now we can reformulate (1.1) as

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

cijdklxikxjl, (1.3)

where cij are still the costs between facility i and facility j and dij the distances between
location i and location j. Here the elements of matrix X satisfy the conditions of (1.2) and

xik =
{

1 if facility i is located at k.
0 otherwise

It is our goal to minimize (1.3) with respect to xik and xjl.

1.2 Applications

The QAP has applications in many fields. The major application is the QAP as facility
location problem, but a few other examples are scheduling, wiring problems in electronics,
transportation and design of controlpanels and type writer keyboards. We illustrate two of
these examples of the QAP.

Hospital Layout[6]

Hospital layout is an example of a facility location problem. In a hospital there are a number
of different departments and some patients have to travel from one department to another.
The QAP in this case is to minimize the total distance travelled by patients in a year.

We will model this problem as follows. We have n locations and n facilities, in this case
the facilities are the different departments, and we will place one facility at each location. We
know the yearly flow fik of patients between facility i and k and the distance djq between the
locations j and q. We define I as the set of facilities and J as the set of locations. We can
now formulate the problem as follows.

Minimize
∑
i,j

∑
k,q

fikdjqyijykq (1.4)

subject to
∑
j∈J

yij = 1 ∀i ∈ I

∑
i∈I

yij = 1 ∀j ∈ J

yij =
{

1 if facility i is located at j.
0 otherwise

The hospital layout-problem is now formulated as the Koopmans-Beckmann formulation.
So we can see (1.4) as a QAP.

Design of Type Writer Keyboards [17]

The design of type writer keyboards is still the same since 1873. We will allocate the letters
to keys in such a way that the typing time is minimal.
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In this example the letters are the facilities and the keys of the keyboard are the locations.
We define tkl as the elapsed time between typing two letters, indexed by k and l. This time
depends only on the previous letter pressed, here letter k, and it is independent of the letters
which are pressed before pressing letter k. Further, fij is the relative frequency of the i-th
j-th letter pair and ϕ(i) denotes the key with letter i. So the objective function we want to
minimize with respect to ϕ is ∑

k

∑
l

tklfϕ(k)ϕ(l). (1.5)

As we can see, this problem is now formulated in the same way as a QAP in formulation
(1.1).

Many other combinatorial problems can be formulated as QAP’s. For example the travel-
ling salesman problem and the maximum clique problem. We will now illustrate how we can
see the travelling salesman-problem as a QAP.

Travelling Salesman Problem Formulated as a QAP

There are n cities and we know the distances between each of these cities. In the travelling
salesman problem we want to visit each of these cities once, but in the mean time we want
to minimize the travel-distance.

We will formulate this problem as a QAP. Therefore we will see the travelling salesman
problem as a facility location problem. The cities we want to visit are now the locations and
our facilities are the numbers 1 till n. We assign to each city a number, a facility, and these
numbers represent when we visit this city. For example, when a particular city gets number
2, this city will be the second location we visit. We define cij as follows

cij =
{

1 if i = j − 1
0 otherwise

So cij = 1 if we travel from city i to j, because then i = j − 1, and otherwise zero. We define
the distances between the cities i and j as dp(i)p(j), where p(i) is the location of number i.
This means the i-th city we visit, is city p(i). In this way we can see the travelling salesman
problem as a QAP.

1.3 Computational Complexity

The QAP is one of the most difficult combinatorial optimization problems and in 1976 Sahi
and Gonzalez [19] proved that the QAP is strongly NP-hard. This means that there is no
algorithm for solving the QAP in polynomial time. An algorithm can solve a problem in
polynomial time, when its runningtime is bounded by a polynomial function of the problem
size. It is when the execution time is O(nk), where k is a constant.

Furthermore Sahi and Gonzalez [19] proved that the QAP is also NP-hard to approxiate.
Problems of size larger than about 20 can generally not be solved to optimality in reasonable
time. Also problems bigger than something like n = 30 are very hard to approximate.
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1.4 Heuristics

Exact algorithms are used to solve optimization problems to optimality. But exact algorithms
can only solve small problems and even for these small problems the most exact algorithms
have long runningtimes. Therefore we look at heuristics for QAP’s. Heuristics are algorithms
which try to find a solution that is the optimal or is at least close to the optimal solution.
The QAP is NP-hard and heuristics are needed in order to find an approximate solution for
this problem in reasonable time. Because of the need for heuristics, there is a lot of research
to find new heuristics for solving the QAP. We describe here a few heuristics.

1.4.1 Construction Methods

Construction methods are the oldest heuristics for QAP’s and were introduced by Gilmore [10]
in 1962. Construction methods are relatively simple to implement and have a short running
time, but unfortunately they have often poor results.

Construction methods start with an empty solution and iteratively we approach the op-
timal solution. A not yet located facility is assigned to a not yet occupied location. There
are different rules which can be used for choosing an assignment and a location. For example
we can use a local view-rule. This rule selects a facility i which has maximum costs with an
already placed facility j. This facility is assigned to a location such that cijdp(i)p(j) is mini-
mized. Another example is a global view-rule. Which facility and which location are selected
here depends not only on the already located facilities, but also on the other facilities.

An example of a construction method is the CRAFT [1], this heuristic is one of the oldest
heuristics in use. Another construction method that gets relatively good results is the method
of the increasing degree of freedoms [16].

1.4.2 Tabu Search Algorithms

In 1989 Tabu search was introduced by Glover [11, 12] as a local search technique for combi-
natorial optimization problems. Therefore Tabu search algorithms are not only heuristics for
QAP’s, but tabu search is also used for other hard combinatorial optimization problems.

Tabu search makes use of the neighbourhood structure of solutions. We will call the
operation, which gives a neighbour of a solution, a move. In the case of QAP’s a move is a
pair exchange. The basic idea of tabu search is to remember which solutions already have
been visited, therefore we make use of a tabu list. The tabu list is a list of forbidden moves.
This list avoids cycling, which means that one or more solutions are visited more than once.
During the iterations the tabu list is updated, some moves come in the list. Some moves are
also cancelled from the list, because otherwise the length of the list becomes too large. Which
moves are cancelled from the list is determined in different ways. For example we can use the
first-in-first-out rule.

Tabu search starts with an initial solution and we call this solution the current solution.
During an iteration we search for a best-quality solution. We look at all neighbours of the
current solution, except the ones which can not be reached, because its move is on the tabu list.
The best-quality solution is now the neighbour-solution with the best objective value. This
best-quality solution becomes the current solution, the tabu list is updated and the iteration
starts again. The best-quality solution is not always better than the current solution. The
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algorithm stops when the stop criterion is satisfies, often this stop criterion is a maximum
running time or a maximum number of iterations.

1.4.3 Simulated Annealing Approaches

Simulated annealing approaches are based on the analogy between combinatorial optimiza-
tion problems and many particle physic systems. We can see the feasible solutions of the
optimization problem as the states of the physical system and the objective function values
correspond to the energy of the states of this systems. In the physic model we want a low
energy state, so we want to minimize the energy.

We have a solid in a heath bath and we will use condensed matter physics annealing to get
this solid in a low energy state. This method consist of two phases. First, the temperature of
the bath is increased to a maximum value and secondly the temperature is carefully decreased
and we get the solid in the ground state, the lowest energy state. Simulated annealing process
is like this process. We want to decrease the objective value very slowly and carefully.

Let Ei be the energy level of the current state i, this is the same as the objective value of
the current solution i. With the neighbourhoodstructure of QAP’s we find a new state j, the
energy level of this state we call Ej . If Ej −Ei is negative, j becomes our new current state.

Otherwise there is a probability of exp
Ei − Ej
KBt

that j is accepted as the current state. Here

KB is the Boltzmann constant and t the temperature. If j does not become the current state
then i is still the current state and we will look at another neighbour of i.

Here we see that if the solution j is better than the current solution, we replace the current
solution by solution j. In this way we get a lower current objective value, that is a energy
state. But if the solution j is not better than the current solution there is still a change
that the center solution is updated. If this happens the current objective value increases,
but this is not bad. Because if we sometimes let the current objective value increase a bit,
the probability to get stuck in a local minimum with a poor quality becomes smaller. That
we some times replace the current solution by a worse one is part of carefully decreasing of
energy.

Simulated annealing approaches are usefull for a lot of optimization problems and for the
QAP.

1.4.4 Genetic Algorithms

The first genetic algorithm was applied to optimization problems by Holland [13] in 1975.
Because genetic algorithms can be used for a lot of optimization problems, there is still a lot
of research on these algorithms. We will see that genetic algorithms are inspired by nature.
The algorithm makes use of evolution mechanisms. We look at some feasible solutions as
individuals and they form together a population. In the population pairs of individuals get
children, new solutions, and these new solutions are applied to the population.

The genetic algorithm starts with a set of initial solutions, we will call this set the initial
population. We consider a solution in the current population as a member or an individual.
Like in nature, we select a pair of individuals from the current population and produce with
this pair of solutions a new solution. We can see now the pair of individuals as the parents
and the new solution as the child. For producing the new solution we use cross-over-rules.
Bad solutions or weak individuals are eliminated and so we get a new current population
with the best children and the best parents. This process is repeated until the stop criterion
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is satisfied. The stop criterion is often a time limit, limit of number of iterations or if the
population consist only of equal solutions or solutions with a small difference.

During the process a mutation or immigration is applied periodically. Because of this the
algorithm gets better solutions faster. Mutation means that some individuals are modified
and immigration is that a few new random individuals enter the current population.

1.4.5 Greedy Randomized Search

The greedy randomised adaptive search procedure, also called GRASP, was proposed by Feo
and Resende [7]. The GRASP is a heuristic for hard combinatorial optimization problems
and was in 1994 applied to the QAP by Li, Pardalos and Resende [15]. Some implementations
of GRASP yield best known solutions for most problems of QAPLIB [3] and even improves
the best known solution for a few problems.

GRASP is a two phase heuristic. The first phase is a construction phase. In this phase
we construct good solutions and in the second phase, the local improvement phase, we search
for better solutions in the neighbourhood of these solutions.

In the construction phase we assign two facilities i0, j0 to two locations k0, l0. We choose
this pair of assignments with the help of a greedy component. This greedy component chooses
these pairs in such a way that

ci0j0dk0l0 = min{cijdkl : i, j, k, l ∈ {1, 2, ..., n}, i 6= j, k 6= l},

where matrix C is the cost matrix, matrix D the distance matrix and n the size of the
problem. But in this way we do not have freedom in the search procedure and we can easily
get trapped in a locally optimal solution with poor quality. Therefore we choose the pair of
facilities i0, j0 and the locations k0, l0 a little different. Besides the greedy component we
make use of random elements. Therefore we define r = bβ(n2 − n)c, where 0 < β < 1 is a
control parameter and n the size of the problem. Then we look at the non-diagonal entries
of the cost matrix C and sort the r smallest entries non-decreasingly. So we get:

ci1j1 ≤ ci2j2 ≤ ... ≤ cirjr
in the same way, we take the non-diagonal entries of the distance matrix D and sorted the r
largest entries non-increasingly. Here we get:

di1j1 ≥ di2j2 ≥ ... ≥ dirjr
We define r′ = bαβ(n2−n)c, where 0 < α < 1 is again a control parameter. Next we sort the
costs of the possible pairs of assignments, ci1j1dk1l1 , ci2j2dk2l2 , ..., cirjrdkrlr , non-decreasingly.
Now we only take the smallest r′ costs of the possible pairs of assignment in account and
choose out of these pairs randomly the facilities i0, j0 and the locations k0, l0.

In the next steps of the construction phase we assign the remaining facilities to the re-
maining locations, one facility is assigned to one location at a time. We make use of the
intermediate costs ajl =

∑
(i,k)∈Γ (cijdkl + cjidlk) for choosing a facility j and a location l,

where Γ is the set of already assigned pairs of assignments. If there are m pairs (i, j) of
unassigned facilities and locations, we select one pair randomly from the bαmc smallest in-
termediate costs ajl. This is repeated until all facilities are assigned to a location.

The local improvement phase searches in the neighbourhood of the solution constructed in
phase one for possible improvements. This phase consists of a standard local search algorithm.
These two phases are repeated a certain number of times.
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1.4.6 Ant Systems

The last heuristic we discuss is ant systems. This heuristic is recently developed and has
produced good results for well known problems like the travelling salesman problem and the
QAP.

An ant system is, like the name says, based on the behaviour of an ant colony in search
for food. The ants of the ant colony first randomly search for food in the neighbourhood of
the nest. If an ant finds a source of food, she takes a bit of it and takes it back to the ant nest.
The way back to the nest she leaves a trail of pheromones. With this trail it is possible to find
the source again during a future search. The intensity of pheromones on the trail is related
to the number of ants who visited the food source and took food from it. So the intensity of
pheromones is also proportionally related to the amount of food in the food source.

Now we will imitate the behaviour of the ants. First we call the set of feasible solutions
the area searched by the ants. Further the amount of food in a food source is the value of
the objective function and the pheromone trail is a component of adaptive memory.

To illustrate the idea of ant systems, applied to a QAP, we make use of the algorithm
of Gambardella, Taillard and Dorigo [9]. The algorithm is iterative and in each iteration
we compute m solutions. Here m is the number of ants searching for food and so m is a
fixed control parameter. In the beginning the ants search randomly for food, so the first m
solutions are randomly generated. If the ants found food they leave a pheromone trail. We
translate this pheromone trail in the matrix T = τij . When ants generated solutions we can
see τij as the measure for the desirability of locating facility i at location j. Matrix T is in the
beginning a constant matrix. This constant is proportional to the inverse of the best found
solution so far.

During a next search for food the ants are influenced by the pheromone trails. So in
the next iterations we compute m solutions, but this time we make first use of the matrix
T and then we apply an improvement method. Further we update our matrix T after each
iteration, because if many ants have visited a food source the intensity of the pheromone
trail is increased. Therefore we define φ∗ as the best found solution so far and f(φ∗) as its
objective value. In the iterations the entries τiφ∗(i) of T are increased by a value which is
proportional to f(φ∗).

If there is no improvement of the best known solution after a lot of iterations, the whole
algorithm starts again with m different random solutions.
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Chapter 2

A New Heuristic for the Quadratic
Assignment Problem

This chapter is based on the article ‘A new heuristc for the quadratic assignment problem’ of
Zvi Drezner [5]. In his article, Zvi Drezner introduces a new heuristic for solving the quadratic
assignment problem. In the first section of this chapter we describe the heuristic and in the
second section we look at the short cuts in this algorithm. The results present in the article
we discuss in the last section of this chapter.

2.1 The Algorithm

This heuristic starts with a start solution, we call this solution the center solution. Before we
can discuss the algorithm of this heuristic we first have to define ∆p as the distance between
the center solution and the solution p. Here ∆p is the number of facilities in p that are not
in their center solution site or, equivalently, ∆p is the number of components of p that differs
from the components of the center solution. We call p a permutation of the center solution.

∆p has the following properties:

1. For all single pair exchanges of the center solution, that is if two facilities switch there
locations, ∆p = 2.

2. There are no permutations p with distance ∆p = 1. Because there can not be just one
facility out of place, there has to be at least a second facility out of place.

3. Let n be the length of a solution. Then ∆p ≤ n, because no more than n facilities can
be out of place.

4. We apply an additional pair exchange on a permutation p, call this new permutation
p+. Then ∆p+ = ∆p+ ∆∆p, where ∆∆p is the difference between ∆p and ∆p+. ∆∆p
is between −2 and +2 and only the additional pair of exchanged facilities affect the
value of ∆∆p.

Description of One Iteration

The algorithm of this new heuristic is iterative. Therefore we describe first a whole iteration.

9
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An iteration starts with a centersolution. We first search in the neighbourhood of this
centersolution and if we did not find a better solution we look to solutions with a larger
distance ∆p from our centersolution. We increases this search-distance, δp, till the distance
∆p is d, where d ≤ n is a parameter and we call d the depth of the search. If a better solution
than the centersolution is found during the search we replace the center solution by this new
found solution and the iteration starts from the beginning. If no better solution is found
during the search, the iteration is complete.

When we increase the search-distance δp we do not want to look at all solutions with
∆p = δp, because if we do that we will look at all solutions and that takes far to much time if
the problem becomes large. Therefore we make use of three lists and a control parameter K.
In these lists we put only the K best found solutions with the distances ∆p = δp, ∆p = δp+1
and ∆p = δp+ 2 respectively and in the next step, when our search depth is δp, we only look
at the pairexchanges of the solutions in the first list. If we do so, we look at solutions with
distance ∆p between δp− 2 and δp+ 2. Here we look only at the solutions with ∆p is δp+ 1
or δp+ 2 and not at all solutions.

Now we will describe this iteration step by step and in more detail.

1. We select a center solution.

2. Start with δp = 0. We make three lists with solutions, list0, list1 and list2. The
solutions in list0 all have distance ∆p = δp. The members of list1 and list2 have
respectively distances ∆p = δp + 1 and ∆p = δp + 2. Because δp = 0, list0 has just
one member, the center solution. The two other lists are empty, because we did not
find solutions with distances δp+ 1 and δp+ 2 yet. The best found solution is the new
centersolution.

3. Go over all the solutions in list0. For each solution of list0 evaluate all pair exchanges
for that solution. Note that if list0 is empty, we can ignore the rest of Step 3 till Step
6 because there are no solutions in list0 and so we can immediately go to Step 6.

If the exchanged solution is better than the best found solution, that is when the
objective value of the exchanged solution is less than the objective value of the best found
solution, then this exchanged solution becomes our best found solution. We proceed to
evaluate the rest of the exchanges, because there can be another permutation that is
even better than this new best found solution and in that case we will again update the
best found solution.

4. If in Step 3 a better best found solution is found by scanning all the exchanges of the
solutions from list0, set the center solution to the new best found solution and go to
Step 2.

5. We go again over all the solutions in list0. For each solution of list0 we evaluate all pair
exchanges for that solution and if the distance ∆p is δp or lower, ignore the permutation
and proceed the scan of the pair-exchanges of the solution in list0.

If its distance ∆p is δp+ 1 or δp+ 2, we will decide whether this solution has to be in
list1, list2 respectively. This is performed as follows:

• We first check whether the list is shorter than K or the solution is better than the
worst list member. If none of them is the case we just can ignore this permutation
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and we can proceed with the next pair exchange of the solution from list0. If at
least one from above conditions is satisfies go to the next point.

• Then we look whether the solution is not identical to a list member. We do this
by comparing its objective function value to those of list members, and only if it
is the same as that of a list member the whole permutation is compared.

• If an identical list member is found, ignore the permutation and proceed with
scanning the exchanges of permutation p.

• Otherwise,
A list consists of maximally K solutions, where K is a parameter of the algorithm.
So if the list is shorter than K the permutation is added to the list.
If the list is of length K, the permutation replaces the worst member of the list.

• A new worst list member is identified.

6. Once we look at all pairexchanges of the solutions in list0, we move list1 to list0, list2
to list1 and empty list2.

7. Set δp = δp+ 1.

8. If δp = d+ 1, where d is the depth of the search, we stop with the iteration.

9. If δp < d+ 1, our search is not depth enough yet, so we will return to Step 3.

We will apply short cuts to this iteration to make it faster. Later in this section we discuss
these shortcuts.

Description of the Algorithm

This algorithm repeats the iteration several times, here we describe step by step how to do
this.

1. We generate a start solution randomly. This solution is our center solution and it is
also the best found solution.

2. Set a counter c = 1.

3. The depth d ≤ n of an iteration is recommend to be d = n or very close to it, because
then we have a depth search. Therefore we select d randomly in [n− 4, n− 2]. Now we
perform an iteration on the center solution.

4. If the iteration improved the best found solution go to Step 2.

5. Otherwise, we increase the counter, so c = c+ 1, and

• If c = 1, 3 use the best found solution in the list with δp = d as the new center
solution. In the last iteration the list with δp = d is the old list0. Go to Step 3.

• If c = 2, 4 use the best solution found throughout the last iteration, which is
unequal to the old center solution and the best found solution so far, as the new
center solution. Go to Step 3.

• If c = 5 the whole algorithm is complete.
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Background of the Heuristic

This heuristic applies concepts from tabu search and genetic algorithms. In tabu search we
disallow backward tracking and so we force the search away from previous solutions. Tabu
search makes therefore use of a tabu list. Zvi Drezner does not use such a list, but he uses in
his heuristic the distance ∆p as tabu mechanism. We do not look at solutions with distance
∆p ≤ δp. In this way we proceed farther and farther away from the center solution because
∆p increases throughout the iteration. Like in tabu search we can only go back if a better
solution is found.

The lists in the heuristc consist of a maximum of K members. We can consider the
members of the list as the individuals of a population like in genetic algorithms. In genetic
algorithms two individuals get children, with two solutions is another solution found, and
the weak individuals or bad solutions are thrown out the population. In the new heuristic it
goes a little different. Here a new solution comes just from one solution in the list instead of
from two solutions, but like in genetic algorithms the bad solutions in the list are replaced by
better ones.

2.2 Short Cuts

In the beginning of this chapter we described a few properties of ∆p. The last property was
that if we apply an additional pair exchange on a permutation p, call this new permutation p+,
then ∆p+ = ∆p+∆∆p and ∆∆p is between−2 and +2. Only the additional pair of exchanged
facilities affect the value of ∆∆p. Therefore if we do a pair exchange on permutation p, we can
compute ∆p+ in an easy way. If we calculate ∆p+ with the definition of ∆p we need a running
time of O(n), but if we use the above mentioned property we can do it in a runningtime of
O(1). If we apply this smart method for calculating ∆p+ in Step 5 the algorithm becomes
faster.

Most QAP’s are symmetric, because usually the distance between location i and location j
is the same as the distance between location j and location i. Also the costs between facilities
i and j are the most of the time the same as the costs between facilities j and i. Furthermore
the diagonal of the matrices D and C are mostly equal to zero, because the distance between
identical locations is zero and the cost between a facility itself is also zero. Therefore we
introduce here two shortcuts for symmetric QAP’s with zero diagonal. Zvi Drezner uses this
short cuts in his heuristic. These short cuts are also explained in [20]. Note that if this
short cuts are implemented in the algorithm, the algorithm can only be used for symmetric
problems with zero diagonal.

Define ∆frs as the change in the value of the objective function f by exchanging the sites
of facilities r and s. In his article Zvi Drezner writes that we can calculate ∆frs in this way:

∆frs = 2
n∑
i=1

{cir[dp(i)p(s) − dp(i)p(r)] + cis[dp(i)p(r) − dp(i)p(s)]}

= 2
n∑
i=1

[cir − cis][dp(i)p(s) − dp(i)p(r)]



2.2. SHORT CUTS 13

But that is not correct, it has to be:

∆frs = 2
n∑

i=1,i 6=r,s
{cir[dp(i)p(s) − dp(i)p(r)] + cis[dp(i)p(r) − dp(i)p(s)]} (2.1)

= 2
n∑

i=1,i 6=r,s
[cir − cis][dp(i)p(s) − dp(i)p(r)]

We can verify this with equation (1.1). Say we have a solution p and we exchanged the pair
rs in p and so we get p′. Now we want to calculate the difference between the objective value
of p and the objective value of p′. We denote the objective value of p as fp. ∆frs = fp′ − fp
and so we get with equation (1.1):

∆frs =
n∑
i=1

n∑
j=1

cijdp′(i)p′(j) −
n∑
i=1

n∑
j=1

cijdp(i)p(j) (2.2)

We know that cij = cji and that dij = dij , because the problem is symmetric. Further we
know that cii = 0 and also dii = 0. The solution p is mostly equal to permutation p′, namely
p(i) = p′(i) for all i 6= r, s and further p(r) = p′(s) and p(s) = p′(r). If we combine all these
properties with equation (2.2) we get equation (2.1).

∆frs is equal to the objective value of frs minus objective value f . For calculating the
objective value of frs we can use equation (1.1). Calculating frs by using this equation
requires O(n2) time. But calculating ∆frs in a smarter way with (2.1) the calculation only
requires a calculating time of O(n).

But Taillard describes in his article [20] an even faster way for calculating ∆frs. He makes
therefore use of the pair that is exchanged before the pair uv, call this pair rs. Define ∆uvfrs
the change in the value of the objective function between the exchanged permutation by rs,
and an additional exchanged pair uv. This change in the value of the objective function can
be calculated in O(1) if the pairs rs and uv are mutually exclusive. Two pairs are mutually
exclusive if they cannot occur at the same time. For example two pairexchange of kl and km
are mutually exclusive, because they both change the location of facility k and that can not
happen at the same time.

We know from (2.1) that

∆fuv = 2
n∑
i=1

[ciu − civ][dp(i)p(v) − dp(i)p(u)]

Then, by checking which terms change if we exchange uv in the solution frs:

∆uvfrs = ∆fuv + 2[csu − csv − (cru − crv)][dp(r)p(v) − dp(r)p(u)]
+ 2[cru − crv − (csu − csv)][dp(s)p(v) − dp(s)p(u)]

We can write this as:

∆uvfrs = ∆fuv+ 2[csu − csv − (cru − crv)] (2.3)
[dp(s)p(u) + dp(r)p(v) − dp(s)p(v) − dp(r)p(u)]

We can use (2.1) for calculating ∆fuv in the equation ∆uvfrs. This way of calculating ∆uvfrs
is faster than first calculating ∆frs and then calculating ∆fuv. Now we have to calculate only
∆fuv and then we can compute very easily ∆uvfrs.
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2.3 Results

Zvi Drezner tested his algorithm for all symmetric problems in QAPLIB [3], the library for
QAP’s. He ran his algorithm 120 times for each problem and each value of K. Here we present
a part of his results. In table 2.1 is given how often the optimal solution is reached out of the
120 times and the runningtime of one run in seconds, a run consists of 120

K individual runs.
In the second table 2.2 is the percentage of average solution over the best solution, this is the
same as the difference between the average solution and the optimal solution divided by the
optimal solution.

Table 2.1: Results 1 from the article for population sizes (K = 1,2,4,10)
Problem Best K = 1 K = 2 K = 4 K = 10

Known n t n t n t n t

Kra30a 88900 62 3.4 70 3.2 53 3.0 33 2.8
Kra30b 91420 37 3.4 20 3.1 16 3.0 12 2.8
Nug30 6124 62 3.7 62 3.3 60 3.0 17 2.8
Tho30 149936 76 3.7 81 3.3 54 3.0 49 2.7
Esc32a 130 112 3.9 116 3.7 109 3.7 102 3.8
Esc32b 168 120 3.3 120 3.0 120 2.9 120 2.9
Esc32h 438 120 2.6 120 2.5 119 2.4 108 2.4
Tho40 240516 4 10.1 1 9.2 2 8.7 0 8.2
Esc64a 116 120 18.5 120 17.5 120 17.2 120 18.4
n Number of times out of 120 that the best known solution obtained
t Time in seconds per run (Each run consists of 120/K individual runs)

Table 2.2: Results 2 from the article for population sizes (K = 1,2,4,10)
Problem Best K = 1 K = 2 K = 4 K = 10

Known p p p p

Kra30a 88900 0.63 0.58 0.81 1.14
Kra30b 91420 0.08 0.12 0.15 0.26
Nug30 6124 0.04 0.03 0.05 0.13
Tho30 149936 0.09 0.09 0.15 0.20
Esc32a 130 0.10 0.05 0.17 0.28
Esc32b 168 0 0 0 0
Esc32h 438 0 0 0.00 0.05
Tho40 240516 0.19 0.23 0.23 0.30
Esc64a 116 0 0 0 0
p Percentage of average solution over the best known solution

Only for Tho40 with K = 10 the optimal solution is never obtained. The minimal solution
that was obtained is 240542 and this solution was obtained 12 times. The percentage of the
minimum solution over the best solution here is 0.01.

The results of this new heuristic are compared with the heuristics reported in [20]. The
quality of the best solution found with these heuristics is of the same quality, but the run
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times of the new heuristic are much faster.
The algorithm of these results was coded in Microsoft PowerStation Fortran 4.0 and ran

on a Portege Toshiba 600MHz Pentium III lap-top.
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Chapter 3

Implementation of the New
Heuristic

In this chapter we will test the heuristic of Zvi Drezner for a few problems of QAPLIB [3].
In section 3.1 we explain how the algorithm is implemented and in section 3.2 the results of
this implementation on the problems from QAPLIB are presented. In section 3.3 we compare
these results with the results of the article and we discuss the differences between them.

3.1 Implementation of the Algorithm

For the implementation of the algorithm in MATLAB we make use of a number of functions.
All these functions are in appendix A. Below we explain in detail for each function how we
implemented it.

∆p and ∆∆p

The computation of ∆p is implemented in two different ways. The first way follows from the
definition of ∆p. We look at all the entries of the solution and compare them with the entries
of the centersolution, then ∆p is the number of entries that the solution differs of the center
solution. The function which computes ∆p in this way we call deltap.

The other way for computing ∆p is with help of the short cut explained in the previous
chapter. If we do a pairexchange rk on a solution p, call this pair exchange p+, we can
calculate the ∆p+ from ∆p and ∆∆p, because ∆p+ = ∆p + ∆∆p. Sometimes we know
already ∆p, so this is then a better and faster way for calculating ∆p+. We call the function
which computes ∆∆p deltadeltap. In this function we start with ∆∆p = 0. Then we look
to the r− th entry of the centersolution and compare it with the r− th and the k− th entry
of the solution p. If p(r) is the same as the r − th entry of the centersolution the value of
deltadeltap increases with one, this is because then the r − th facility is in its centersolution
site and now we change the location of this facility and so there is one facility fewer in its
center side position (∆p increases with one). Further if p(k) is the same as the r − th entry
of the centersolution, the value of deltadeltap decreases with one, because facility r was not
on its center solution location in solution p and after the pairexchange it is, therefore ∆p
decreases with one. In the same way we compare the k − th entry of the centersolution with
the r − th and the k − th entry of the solution p.

17
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The Objective Value and the Difference in the Objective Value

Like ∆p we can calculate the objective value of a solution p in two different ways. We can
use (1.1) or (2.1). If we use (1.1), we can rewrite this equation for symmetric problems with
zero diagonals for a faster program. Therefore we rewrite (1.1) as:

n−1∑
i=1

n∑
j=i+1

cijdp(i)p(j) (3.1)

The function that is the implementation of (3.1) we call objectivevalue.
The other way of calculating the objective value makes use of the short cut presented in

(2.1). We calculate the change in objective value with this short cut, we call this function
deltaobv. The objective value of a pair exchange of solution p is now equal to the objective
value of p plus the change in the objective value.

In the implementation we did not use the even faster shortcut (2.3) of Taillard, since it
was not clear from the article where to use it.

New Best Found Solution

During an iteration we check all the pair exchanges of all solutions in list0. For this we have
the function newbfs. In this function we check all these pairexchanges and change the best
found solution if a better solution is found among the pair exchanges. We also indicate during
the run of this function the second best found solution, we need that later in the algorithm.

With the help of three for loops we go over all pairexchanges of all solutions in list0. If
during this search a better solution is found we update the best found feasible solution and
we clear all lists and put this new best found solution in list0. Now we go again over all
pairexchanges of list0, but this time list0 has only one member, the new solution. We repeat
this whole process until no better solution is found among all the pairexchanges.

A Solution in list1 or in list2

In Step 5 of the iteration described in section 2.1 we go over all the solutions in list0. For
each solution of list0 we evaluate all pair exchanges for that solution and if the distance ∆p
is δp or lower, we ignore the permutation and if its distance ∆p is δp + 1 or δp + 2, we will
decide of this solution has to be in list1, list2 respectively. We make this decision with the
functions lists and inlist.

The function lists looks at all pairexchanges of all solutions of list0 and checks whether
the pairexchanges have a distance of δp+ 1 or δp+ 2. If a solution has distance δp+ 1 it puts
this solution together with list1 in the function inlist and if a solution has distance δp+ 2
it puts this solution together with list2 in function inlist.

The function inlist checks now whether the solution has to be in the concerning list. If
the list is empty, that is when the list is set to 0, we put the solution in the list and define
the worst member of the list as this solution. Otherwise the function checks first whether the
concerning list is shorter than K or whether the solution is better than the worst member in
the list. If that is the case the solution is compared with all the solutions in the list. If it is
not the same as a member from the list we apply the solution to the list if the list was shorter
than K, otherwise we replace the worst list member with this solution. There after we define
a new worst member of the list.
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A Whole Iteration

The function QAPiter performs a whole iteration on a start solution. This function does the
same steps as explained in section 2.1 and uses for this the functions explained before. In this
function we define a list as a matrix, where the columns are the solutions in that concerning
list. If for example the list has two members, the list is a n× 2 matrix and the two columns
of this matrix are the two solutions of the list. If a list is empty, the list is set to 0.

Best Solution of the List Memory

In Step 5 of the algorithm we use the best solution in the list with δp = d as the new center
solution if c = 1 or 3. The function QAPiter gives as output this list as the list memory. With
the function bestmemory we can determine which solution from this list is the best one.

The Algorithm

The function QAP has as input the matrices C, D and the parameter K. The function tries to
find, in a way as described in section 2.1, the best feasible solution. We do one step different
than described in the article. In Step 4 of the algorithm description in section 2.1, Zvi Drezner
writes that we have to go back to Step 2, if we found a new better solution. But we think that
he meant something else, because it is not meaningfull to repeat Step 3. This is because if we
found during an iteration a better solution than the current center solution, we replace the
current solution with this better solution and we do all steps, except Step 1, of the iteration
again. So we have already perform a whole iteration on this new best found solution. It is
therefore not necessary to do the whole iteration again with this better solution as center
solution, because we will not find better or different results. So we changed Step 4 such that
we do again Step 2 but we skip Step 3. Step 4 is then: Set the counter c to zero and go
further with Step 5. We implemented this step in this way and not as described in the article.
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3.2 Results of this implementation

We coded the algorithm in MATLAB 7.6.0 (R2008a) and ran experiments on an Intel (R)
Core (TM) 2 Duo @ 2.33 GHz computer. In the tables 3.1, 3.2 and 3.3 our results are
presented. Table 3.1 shows how often the optimal solution is reached out of the 120 times
and the runningtime of one run in seconds, each run consists of 120

K individual runs. In table
3.2 the average solution and the percentage of the average solution over the best solution are
shown. Table 3.3 presents for the problems where the optimal solution was never found, the
minimum solution found and the percentage of the minimum solution over the best solution.

Table 3.1: Results 1 of this implementation for population sizes (K = 1,2,4,10)
Problem Best K = 1 K = 2 K = 4 K = 10

Known n t n t n t n t

Kra30a 88900 1 472.1 1 575.3 2 444.3 1 390.0
Kra30b 91420 0 465.3 0 575.6 1 447.5 2 413.1
Nug30 6124 0 482.5 1 570.7 3 428.8 1 374.0
Tho30 149936 1 437.5 2 506.8 0 404.3 4 343.3
Esc32a 130 6 580.00 5 797.8 11 594.4 12 603.5
Esc32b 168 55 434.6 46 480.0 54 426.5 63 430.0
Esc32h 438 14 339.5 14 425.6 10 353.6 19 331.0
Tho40 240516 0 1336.9 0 1652.2 0 1224.0 0 1136.1
Esc64a 116 119 2674.7 120 3397.0 120 2791 120 2693.5
n Number of times out of 120 that the best known solution obtained
t Time in seconds per run (Each run consists of 120/K individual runs)

Table 3.2: Results 2 of this implementation for population sizes (K = 1,2,4,10)
Problem Best K = 1 K = 2 K = 4 K = 10

Known a p a p a p a p

Kra30a 88900 93086 4.71 92801 4.39 92647 4.21 92545 4.10
Kra30b 91420 93759 2.56 9379 2.60 93637 2.43 93574 2.36
Nug30 6124 6202 1.28 6190 1.08 6194 1.14 6194 1.14
Tho30 149936 153120 2.12 153153 2.15 153083 2.10 153040 2.07
Esc32a 130 137 5.74 137 5.04 136 4.37 137 5.08
Esc32b 168 179 6.76 180 7.18 178 6.19 177 5.56
Esc32h 438 452 3.18 449 2.51 451 2.95 447 2.10
Tho40 240516 244590 1.70 244271 1.56 244203 1.53 243600 1.28
Esc64a 116 116 0.03 116 0 116 0 116 0
a Average solution found
p Percentage of average solution over the best known solution
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Table 3.3: Results 3 of this implementation for population sizes (K = 1,2,4,10)
Problem Best K = 1 K = 2 K = 4 K = 10

Known min pmin min pmin min pmin min pmin

Kra30a 88900 - - - - - - - -
Kra30b 91420 91490 0.08 91580 0.1750 - - - -
Nug30 6124 6128 0.07 - - - - - -
Tho30 149936 - - - - 150280 0.23 - -
Esc32a 130 - - - - - - - -
Esc32b 168 - - - - - - - -
Esc32h 438 - - - - - - - -
Tho40 240516 241054 0.22 240542 0.01 240620 0.04 240716 0.08
Esc64a 116 - - - - - - - -
min Minimum solution found
pmin Percentage of minimum solution over the best known solution

3.3 Discussion of the Results

When we compare the results of the article, presented in section 2.3, and the results of our
own implementation of the algorithm, presented in the previous section, it is clear that our
own results are much worse than the results of the article. For instance for the problem
Esc32b Zvi Drezner obtained 120 times the best known solution for K = 1, 2, 4, 10, but we
found respectively 55, 46, 54 and 63 times the best known solution. For the problems Kra30a,
Kra30b, Nug30 and Tho30 we obtained at most 3 times the best solution for K = 1, 2, 4, 10
in contrast with Zvi Drezner who obtained at least 12 times the best known solution for these
problems and K = 1, 2, 4, 10. For the problems Esc32a, Esc32b and Esc32h we found at most
63 times the best known solution and Zvi Drezner obtained for most of these problems 120
times the best known solution. The problem Tho40 gives bad results for both codes, but Zvi
Drezner obtained a little better results because we never obtained the best known solution for
this problem. Like Zvi Drezner we got good results for the problem Esc64a for K = 2, 4, 10.

Like the number of times we obtained the best known solution, our average value of the
found solutions is much worse than the average value of the solutions of Zvi Drezner. He got
at most a percentage of 1.14 of the average solution over the best found solution of 1.14 and
we got at most a percentage of 7.18.

For the problems and K-value’s where the optimal solution was never found the percentage
of the minimal found solution over the best known solution is at most 0.23.

We do not know why the results are worse than the results in the article. A possibility
is the random choice of the start solution of the algorithm. Zvi Drezner does not describe
how the random start solution is chosen. We implement it completely random, but it is also
possible to use, for instance, a construction method. When we start with a relatively good
solution the probability for finding the best solution known is larger.

The running time of our code was much longer than the runningtimes presented in the
article. There are four things which can clarify these results, the programming language, the
memory, an error in the implementation and the description of the shortcuts in the article.
Matlab is an interpreted language and Fortran, the Language Zvi Drezner has used, is a
compiled language. Codes written in a compiled language are mostly faster. At the same
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time for large problems the computer needs a lot of memory and this can slow the run.
That the computer needs so much memory is due to the programm language and the way we
implemented it. Further Zvi Drezner described in his article which short cuts he used, but he
did not write where he applied these shortcuts and therefore there is a change that we did not
apply the shortcuts everywhere were it was possible. Also it is possible that we implemented
some things not in a fast way.



Chapter 4

Tabu search

We have already introduced tabu search in chapter 1. In this chapter we will implement
a tabu search algorithm and compare the results of this algorithm with the results of the
implementation of the previous chapter. In the first and second sections of this chapter we
described the used algorithm and the implementation of this algorithm. In section 3.4 we
present the results and in the last section we compare these results with the results of our
own implementation of the new heuristic of Zvi Drezner.

4.1 The Algorithm

Tabu search has two control parameters K and imax, where K is the maximum length of the
tabu list and imax the maximum number of iterations.

Tabu search makes use of a tabu list. In this algorithm the tabu list is a set of 2K or less
numbers, where the numbers are different integers from the interval [1,n]. If a number i is on
the tabu list, the pair exchanges ij for all j are forbidden moves.

Description of the Algorithm

1. We randomly select a start solution. Call this the center solution. This solution is the
best found solution. The tabu list is empty and i, the number of iterations, is set to
one.

2. Go over all the pairexchanges of the center solution. If the objective value of a pairex-
change is better than the objective value of the best found solution so far, replace the
best found solution with this solution. Go further with checking the rest of the pair
exchanges.

3. If a better solution is found during Step 2, replace the center solution with this solution.
Clear the tabu list and set i again to one. Go to Step 2.

4. If no better solution is found, replace the center solution with the best permitted pairex-
change kl of the center solution. A pairexchange ij is permitted if neither i nor j are
in the tabu list.

5. We will now update the tabu list. Say kl was the best permitted pairexchange of the
old center solution, then:

23
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• If the tabulist already has 2K numbers, we use the first-in-first-out rule. So we
replace the numbers which are longest in the list with k and l.

• If the tabu list is not full yet, we add the numbers k and l to it.

6. If i is smaller than (imax+ 1), go to Step 2. Otherwise stop the algorithm.

4.2 The Implementation

For the implementation of the algorithm in MATLAB we make use of two functions. These
functions are in appendix B. First we will explain how we implemented the tabu list and after
that we will discuss the two functions in more detail.

Tabu list

Tabu search makes use of a tabu list. We implement this list with two matrices. One matrix
is an n-vector, call this vector tL. The entries of the vector tL satisfy the following condition.

tLi =
{

1 there is a j for which we have done a pairexchange ij in the last K iterations
0 otherwise

where K is the length of the tabu list. The second matrix is an (imax, 2)-matrix. We call
this matrix tL2. The i − th row of this matrix consists of the numbers of the entries of the
solution that are exchanged in the i− th iteration.

An Iteration

In the function iterationts all objective values of the pairexchanges of the center solution
are compared with the objective value of the best found solution so far. After that we search
for the best pair exchange of the center solution that is not on the tabu list. A pairexchange
ij is not on the tabu list if tLi and tLj are both equal to zero.

At the end of this function we update the tabu list. Therefore we change tLi and tLj into
1, if ij was the best permitted pairexchange of the old centersolution. The next K iterations
i and j can not be exchanged. Further we set the i − th row of the matrix tL2 equal to the
entries i and j. The length of the tabu list may not be larger than K. Therefore we make
use of the matrix tL2. If i, the number of iterations we have done, is bigger than K we look
at the (i −K) − th row of the matrix tL2. The numbers of this row we call v and w. Now
we set the v− th and w− th entries of the vector tL equal to zero, such that v and w can be
exchanged again.

The Algorithm

The function tabusearch performs tabu search on a random solution. The input arguments
of this function are the matrices C, D, the tabu list length K and the maximum number of
iterations imax.
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4.3 The Results of Tabu Search

The tabu search algorithm makes use of two parameters, the length of the tabu list and the
maximum number of iterations. We tried for each parameter two different values, 100 and
500 maximum iterations and 5 and 10 as maximum length of the tabu list. The results of the
tabu search-implementation are present in three tabels. In the tables 4.1 and 4.2 are shown,
respectively for 100 and 500 iterations, how often the optimal solution is reached out of the
120 times, the runningtime of 120 individual runs, the average solution and the percentage
of the average solution over the best solution. Table 4.3 presents for the problems where the
optimal solution was never found, the minimum solution found and the percentage of the
minimum solution over the best solution. Like the heuristic of Zvi Drezner, we coded the
algorithm in MATLAB 7.6.0 (R2008a) and ran it on the same computer.

Table 4.1: Results 1 for tabu search for (K = 5,10) and 100 iterations
Problem Best K = 5 K = 10

Known n t a p n t a p

Kra30a 88900 0 28.6 94588 6.40 0 32.1 94169 5.93
Kra30b 91420 0 28.7 95640 4.62 0 32.6 95018 3.94
Nug30 6124 0 35.4 6284 2.61 0 35.2 9275 2.46
Tho30 149936 0 34.7 155320 3.59 0 32.8 155150 3.48
Esc32a 130 0 33.6 148 13.65 0 33.62 146 12.65
Esc32b 168 15 33.1 191 13.79 9 35.3 192 14.09
Esc32h 438 6 30.0 451 3.02 4 30.9 454 3.76
Tho40 240516 0 83.9 248050 3.13 0 89.9 247490 2.90
Esc64a 116 73 182.1 117 0.92 96 174.0 116 0.39
n Number of times out of 120 that the best known solution obtained
t Time in seconds per run (Each run consists of 120 individual runs)
a Average solution found
p Percentage of average solution over the best known solution
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Table 4.2: Results 2 for tabu search for (K = 5,10) and 500 iterations
Problem Best K = 5 K = 10

Known n t a p n t a p

Kra30a 88900 0 115.5 94410 6.20 0 122.3 94165 5.92
Kra30b 91420 0 115.4 95479 4.44 0 120.1 95294 4.20
Nug30 6124 1 130.1 6274 2.45 0 132.0 6260 2.22
Tho30 149936 0 119.7 155080 3.43 0 122.3 154900 3.31
Esc32a 130 0 134.1 148 13.81 0 151.0 146 11.96
Esc32b 168 13 134.3 193 14.94 18 147.4 189 12.64
Esc32h 438 8 131.1 454 3.71 8 131.3 453 3.52
Tho40 240516 0 255.8 248420 3.29 0 321.1 246540 2.50
Esc64a 116 85 756.5 117 0.73 106 779.1 116.3 0.23
n Number of times out of 120 that the best known solution obtained
t Time in seconds per run (Each run consists of 120 individual runs)
a Average solution found
p Percentage of average solution over the best known solution

Table 4.3: Results 3 for tabu search for (K = 5,10) and 100, 500 iterations
Problem Best K = 5 K = 10

Known i = 100 i = 500 i = 100 i = 500
min pmin min pmin min pmin min pmin

Kra30a 88900 90700 2.02 90090 1.34 90500 1.80 90220 1.48
Kra30b 91420 91580 0.18 92060 0.70 91580 0.18 91490 0.08
Nug30 6124 6150 0.42 - - 6128 0.07 6136 0.20
Tho30 149936 150280 0.23 150280 0.23 150554 0.41 150216 0.19
Esc32a 130 132 1.54 136 4.62 134 3.08 132 1.54
Esc32b 168 - - - - - - - -
Esc32h 438 - - - - - - - -
Tho40 240516 242814 0.96 243708 1.33 241266 0.31 241290 0.32
Esc64a 116 - - - - - - - -
min Minimum solution found
pmin Percentage of minimum solution over the best known solution

4.4 Comparison of the results

If we compare the results of our own implementation of the heuristic of Zvi Drezner and the
results of tabu search, it seems that the heuristic of Zvi Drezner gets better results because out
of the 120 times the optimal solution is more often reached. But if we look at the runningtimes
of both heuristics, we see that tabu search is much faster than the other heuristic. To compare
the results we calculate how often an optimal solution is reached per second. So we divided
the number that the optimal solution is reached with the runningtime of 120 individual runs,
we denote this value as n/t.

We calculate for each problem and each heuristic for which values of the parameters the
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best n/t value is reached. These parameters and the corresponding n/t values are present in
table 4.4. The n/t values are also present in figure 1.

Table 4.4: n/t-values for both heuristics
Problem Zvi Drezner Tabu search

K n/t k i n/t

Kra30a 1 0.0021 - - 0
Kra30b 4 0.0006 - - 0
Nug30 4 0.0017 5 500 0.0077
Tho30 1 0.0023 - - 0
Esc32a 1 0.0103 - - 0
Esc32b 1 0.1266 5 100 0.4545
Esc32h 1 0.0412 5 100 0.2000
Tho40 - 0 - - 0
Esc64a 1 0.0445 10 100 0.5517
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data heuristic Zvi Drezner

data tabu search

In the table and the figure we see that the n/t-value for the problems Kra30a, Kra30b,
Tho30 and Esc32a are higher for the heuristic of Zvi Drezner than these values for tabu search.
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In all these cases tabu search never finds the optimal solution and in most of the cases the
heuristic of Zvi Drezner found the optimal solution just once. That is why we have to remark
that the time needed for a run of the heuristic of Zvi Drezner is much more than the time
needed for a run of tabu search. So in the runningtime of the heuristic of Zvi Drezner we
can run tabu search a couple of times and if we run tabu search more often the probability of
finding the optimal solution increase. So if we run both heuristics a certain time it is possible
to find more often the optimal solution with tabu search, but this we did not study that. For
the problems Nug30, Esc32b, Esc32h and Esc64h the n/t-values are much higher than the
values obtained with the heuristic of Zvi Drezner. This is because tabu search is so much
faster.

Until now we only compare the runningtimes and the number of times the optimal solution
is reached out of 120 times for both heuristics. Now we will compare the percentage of the
average solution over the best known solution and the percentage of the minimum solution
found over the best known solution. The results of the percentage of the average solution are
presented in the table 4.5 and figure 2. The results of the percentage of the minimum solution
are presented in the table 4.6.

Table 4.5: percentage of the average solution for both heuristics
Problem Zvi Drezner Tabu search

K p k i p

Kra30a 10 4.10 10 500 5.92
Kra30b 10 2.36 10 100 3.94
Nug30 2 1.08 10 500 2.22
Tho30 10 2.07 10 500 3.31
Esc32a 2 5.04 10 500 11.96
Esc32b 10 5.56 10 500 12.64
Esc32h 10 2.10 5 100 3.02
Tho40 10 1.28 10 500 2.50
Esc64a 10 0 10 500 0.23

Table 4.6: percentage of the minimum solution for both heuristics
Problem Zvi Drezner Tabu search

K p k i p

Kra30a - 0 5 500 1.34
Kra30b 4, 10 0 10 500 0.08
Nug30 2, 4, 10 0 5 500 0
Tho30 1, 2, 10 0 10 500 0.19
Esc32a - 0 5, 10 100, 500 1.54
Esc32b - 0 - - 0
Esc32h - 0 - - 0
Tho40 2 0.01 10 100 0.31
Esc64a - 0 - - 0

In these two tables and the figure we can see that the heuristic of Zvi Drezner for either
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the average percentage as the minimum percentage for all problems yields better results.
In the figure we see that especially for the problems Esc32a and Esc32b the percentage of
the average solution over the optimal solution the heuristic of Zvi Drezner has much better
results. But again we have to take into account that the running time of the heuristic of Zvi
Drezner is much more than the running time of tabu search.

It is difficult to compare the results of both heuristics, tabu search found for 5 problems
not the optimal solution but it is much faster than the other heuristic. The heuristic of Zvi
Drezner found more often the optimal solution, but due to the speed its n/t-values are very
low. Further we see that the percentage of the average solution as well as the percentage of
the minimum solution are better for the heuristic of Zvi Drezner.
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Chapter 5

Conclusion and Discussion

In this thesis we wanted to compare the new heuristic of Zvi Drezner with tabu search.
We implemented both heuristics in MATLAB and ran the implementations on the same
computer. First we compared the results of our own implementation of the heuristic of Zvi
Drezner with the results of this heuristic presented in the article. There are big differences
between these results. Our implementation did not often find the optimal solution while Zvi
Drezner did, and our runningtime was much longer. Things which can clarify these differences
are the programming language, the memory of the computer, the way of programming and
the description of the algorithm in the article.

The implementation of the heuristic of Zvi Drezner and the implementation of tabu search
were implemented both in MATLAB and run on the same computer. We compared the results
we got with both heuristics, but we can not conclude that one heuristic is better than the
other. That is because of the big differences in runningtime. Tabu search found for some
problems optimal solutions in less times than the heuristic of Zvi Drezner, but for some
problems the optimal solution was never obtained. While the heuristic of Zvi Drezner found
for all, except one, problems the optimal solutions at least once, but the runningtime was
very long and due to this its n/t-values was very low.

In his article Zvi Drezner writes that his heuristic has equal results as other heuristics for
most problems, but that his running time is much faster. Our results do not verify this, but
our results of the heuristic of Zvi Drezner were worse than his results so with his results it
can be possible.

It would be interesting to research which heuristic finds the most times the optimal solution
within a certain time. Because then we do not have the big difference between runningtimes
and is it easier to compare the heuristics. Further it may be interesting to implement the
tabu search in a different way than we did now. For example we can make a tabu list which
permits more moves or we can implement tabu search in such way that it performs more often
a single tabu search on different random solutions and than only give the best solution found.
This last change in the implementation of tabu search will certainly decrease the average
solution found and maybe also the minimum solution such that the optimal solution is more
often reached, but it will also increase the runningtime.
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Appendix A

Matlab: New Heuristic

f unc t i on [ de l tap ] = de l tap (x , c e n t e r s o l u t i o n )

% Function for c a l c u l a t i n g de l t a p o f a s o l u t i o n x . The d i s tance , d e l t a p , i s
the number o f f a c i l i t i e s in x that are not in t h e i r c en t e r s o l u t i o n s i t e .

de l tap = 0 ;

for i = 1 : l ength (x )
i f x ( i ) − c e n t e r s o l u t i o n ( i ) ˜= 0

de l tap = de l tap + 1 ;
end

end

end

func t i on [ d e l t ad e l t ap ] = de l t ad e l t ap ( x , c en t e r s o l u t i on , r , k )

% This func t i on computes the d i f f e r e n c e in de l t a p between the s o l u t i o n x
% and the rk−pairexchange o f x .

d e l t ad e l t ap = 0 ;

i f x ( r ) == c en t e r s o l u t i o n ( r )
d e l t ad e l t ap = 1 ;

e l s e i f x ( k ) == cen t e r s o l u t i o n ( r ) ;
d e l t ad e l t ap = −1;

end

i f x (k ) == c en t e r s o l u t i o n (k )
d e l t ad e l t ap = de l t ad e l t ap + 1 ;

e l s e i f x ( r ) == c en t e r s o l u t i o n (k ) ;
d e l t ad e l t ap = de l t ad e l t ap − 1 ;

end

end
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f unc t i on [ obv ] = ob j e c t i v e va l u e (x , C, D)

% This func t i on c a l c u l a t e s the ob j e c t i v e va lue o f a s o l u t i o n x . Note that
% the problem has to be symmetric with a zero d iagona l .

obv = 0 ;
n = length (x ) ;

for i = 1 : n−1
for j = i +1:n

obv = obv + 2 ∗ C( i , j ) ∗ D(x ( i ) , x ( j ) ) ;
end

end

end

func t i on [ de l taobv ] = deltaobv ( r , s , w, C, D)

% This func t i on computes the d i f f e r e n c e in ob j e c t i v e va lue between the
% so l u t i o n w and the rs−pairexchange o f w. Note that the problem has to be
% symmetric with zero d iagona l .

sum = 0 ;

for i = 1 : l ength (w)
i f i ˜= r && i˜= s

sum = sum + (C( i , r ) − C( i , s ) ) ∗ (D(w( i ) , w( s ) ) − D(w( i ) , w( r ) ) ) ;
end

end

de l taobv = 2 ∗ sum ;

end
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f unc t i on [ bfs , obvbfs , secondbfs , secondbfsv ] = newbfs ( l i s t 0 , obvbfs , C, D, bfs ,
secondbfs , secondbfsv )

% Evaluate a l l pa i r exchanges for the s o l u t i o n s in l i s t 0 . I f the exchanged
% so l u t i o n i s b e t t e r than the best found so lu t i on , update the best found
% so l u t i o n and proceed to eva luate the r e s t o f the exchanges . I f a new best
% found s o l u t i o n i s found by scanning a l l the exchanges , s e t the cente r
% so l u t i o n to the new best found s o l u t i o n ( i s l i s t 0 ) and do t h i s i t e r a t i o n

again .

newbfs = 1 ;
v = s i z e ( l i s t 0 ) ;
x = 0 ;

while newbfs == 1
newbfs = 0 ;
for i = 1 : v (2 )

i f x == 0 ;
obv l i s t 0 = ob j e c t i v e va l u e ( l i s t 0 ( : , i ) , C, D) ;

end
for j = 1 : v (1 )−1

for k = j +1:v (1 )

obvw = deltaobv ( j , k , l i s t 0 ( : , i ) , C, D) + obv l i s t 0 ;

i f obvw < obvbfs
b f s = l i s t 0 ( : , i ) ;
h = b f s ( j ) ;
b f s ( j ) = b f s ( k ) ;
b f s ( k ) = h ;
obvbfs = obvw ;
newbfs = 1 ;

e l s e i f obvw < secondbfsv | | secondbfsv == 0
secondbf s = l i s t 0 ( : , i ) ;
h = secondbf s ( j ) ;
s econdbf s ( j ) = secondbf s ( k ) ;
s econdbf s ( k ) = h ;
secondbfsv = obvw ;

end
end

end
end
i f newbfs ==1

l i s t 0 = b f s ;
o b v l i s t 0 = obvbfs ;
x = 1 ;
v (2 ) = 1 ;

end
end
end
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f unc t i on [ l i s t 1 , l i s t 2 , worstmember2 , obvworstmember2 ] = l i s t s ( l i s t 0 , C, D, K,
l i s t 1 , worstmember1 , obvworstmember1 , l i s t 2 , dp , b f s )

% This func t i on l ooks at a l l pa ir−permutat ions and determines with the
% i n l i s t −f unc t i on o f they w i l l be app l i ed to l i s t 1 or l i s t 2 or to none l i s t .

v = s i z e ( l i s t 0 ) ;

worstmember2 = 0 ;
obvworstmember2 = 0 ;

for i = 1 : v (2 )
obv l i s t 0 = ob j e c t i v e va l u e ( l i s t 0 ( : , i ) , C, D) ;
for j = 1 : v (1 )−1

for k = j +1:v (1 )

deltapw = dp + de l t ad e l t ap ( l i s t 0 ( : , i ) , bfs , j , k ) ;

i f deltapw == dp + 1
w = l i s t 0 ( : , i ) ;
h = w( j ) ;
w( j ) = w(k ) ;
w(k ) = h ;
obvw = obv l i s t 0 + deltaobv ( j , k , l i s t 0 ( : , i ) , C, D) ;
[ l i s t 1 , worstmember1 , obvworstmember1 ] = i n l i s t ( l i s t 1 , w, obvw ,

C, D, K, worstmember1 , obvworstmember1 ) ;
e l s e i f deltapw == dp + 2

w = l i s t 0 ( : , i ) ;
h = w( j ) ;
w( j ) = w(k ) ;
w(k ) = h ;
obvw = obv l i s t 0 + deltaobv ( j , k , l i s t 0 ( : , i ) , C, D) ;
[ l i s t 2 , worstmember2 , obvworstmember2 ] = i n l i s t ( l i s t 2 , w, obvw ,

C, D, K, worstmember2 , obvworstmember2 ) ;
end

end
end

end

end
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f unc t i on [ l i s t , worstmember , obvworstmember ] = i n l i s t ( l i s t , p , obvp , C, D, K,
worstmember , obvworstmember )

% This func t i on determines o f a s o l u t i o n p i s app l i ed to the l i s t .

v = s i z e ( l i s t ) ;

i f l i s t (1 , 1) == 0
l i s t = p ;
worstmember = 1 ;
obvworstmember = obvp ;

e l s e i f v (2 ) < K | | obvp < obvworstmember
for i = 1 : v (2 )

obv ( i ) = ob j e c t i v e va l u e ( l i s t ( : , i ) , C, D) ;
he lp = 1 ;
i f obvp − obv ( i ) == 0 && de l tap (p , l i s t ( : , i ) ) == 0

help = 0 ;
end

end

i f help == 1
i f v (2 ) < K

l i s t = [ l i s t p ] ;
v (2 ) = v (2) + 1 ;
i f obvp > obvworstmember

obvworstmember = obvp ;
worstmember = v (2) + 1 ;

end
else

l i s t ( : , worstmember ) = p ;
obv (worstmember ) = obvp ;

obvworstmember = obv (1) ;
worstmember = 1 ;
i f K ˜= 1

for i = 2 : v (2 )
i f obv ( i ) > obvworstmember

obvworstmember = obv ( i ) ;
worstmember = i ;

end
end

end
end

end
end

end
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f unc t i on [ bfs , obvbfs , memory , secondbf s ] = QAPiter ( c en t e r s o l u t i on , K, d , C, D,
n)

% This func t i on i s a whole i t e r a t i o n .

dp = 0 ;
l i s t 0 = c en t e r s o l u t i o n ;
l i s t 1 = 0 ;
l i s t 2 = 0 ;
b f s = c en t e r s o l u t i o n ;
obvbfs = ob j e c t i v e va l u e ( bfs , C, D) ;
secondbfsv = 0 ;
secondbf s = 0 ;
worstmember1 = 0 ;
obvworstmember1 = 0 ;

while dp <= d

[ bfs , obvchange , secondbfs , secondbfsv ] = newbfs ( l i s t 0 , obvbfs , C, D, bfs ,
secondbfs , secondbfsv ) ;

i f obvchange − obvbfs ˜= 0
obvbfs = obvchange ;
l i s t 0 = b f s ;
l i s t 1 = 0 ;
l i s t 2 = 0 ;
dp = 0 ;
worstmember1 = 0 ;
obvworstmember1 = 0 ;

end

[ l i s t 1 , l i s t 2 , worstmember2 , obvworstmember2 ] = l i s t s ( l i s t 0 , C, D, K, l i s t 1
, worstmember1 , obvworstmember1 , l i s t 2 , dp , b f s ) ;

i f l i s t 1 (1 , 1) == 0
memory = l i s t 0 ;
l i s t 0 = l i s t 2 ;
l i s t 1 = 0 ;
l i s t 2 = 0 ;
dp = dp + 1 ;
worstmember1 = 0 ;
obvworstmember1 = 0 ;

else
memory = l i s t 0 ;
l i s t 0 = l i s t 1 ;
l i s t 1 = l i s t 2 ;
l i s t 2 = 0 ;
worstmember1 = worstmember2 ;
obvworstmember1 = obvworstmember2 ;

end
dp = dp + 1 ;

end

end
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f unc t i on [ c e n t e r s o l u t i o n ] = bestmemory (memory , C, D)

% This func t i on determines which s o l u t i o n i s the best from the l i s t memory .

mem = s i z e (memory) ;
obj = ob j e c t i v e va l u e (memory ( : , 1 ) , C, D) ;
x = 1 ;

i f mem(2) >= 2
for i = 2 :mem(2)

i f obj > ob j e c t i v e va l u e (memory ( : , i ) , C, D) ;
obj = ob j e c t i v e va l u e (memory ( : , i ) , C, D) ;
x = i ;

end
end
end

c en t e r s o l u t i o n = memory ( : , x ) ;

end
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f unc t i on [ bfs , obvbfs ] = QAP(K, C, D)

% This func t i on i s the whole a lgor i thm . Note that in t h i s a lgor i thm short
% cuts for symmetric problems with zero d iagona l are appl ied , so the input
% matr i ce s C, D have to be symmetric with zero d iagona l .

n = s i z e (C) ;

% Se l e c t a random cente r s o l u t i o n .
% Randperm(n (1) ) ’ g i v e s a vec to r with a permutation o f n numbers .
c e n t e r s o l u t i o n = randperm (n (1 ) ) ’ ;

b f s = c en t e r s o l u t i o n ;
obvbfs = ob j e c t i v e va l u e ( bfs , C, D) ;

c = 0 ;

while 1

% Se l e c t d randomly in [ n−4, n−2] .
% Rand(1) g i v e s a random number o f the i n t e r v a l (0 , 1) , so 3∗ rand (1 ) g i v e s
% a random number o f the i n t e r v a l (0 , 3) . Ce i l round o f f upwards these
% numbers , so c e i l (3∗ rand (1 ) ) g i v e s the i n t e g e r numbers 1 , 2 and 3 . So
% c e i l (3∗ rand (1 ) ) + n − 5 g i v e s then a number randomly in [ n−4, n−2] .
d = c e i l (3∗ rand (1 ) ) + n (1) − 5 ;

[ bfs2 , obvbfs2 , memory , x ] = QAPiter ( c en t e r s o l u t i on , K, d , C, D, n (1 ) ) ;

i f obvbfs > obvbfs2
c = 0 ;
b f s = bf s2 ;
obvbfs = obvbfs2 ;

end

c = c+1;
i f c == 1 | | c == 3

c en t e r s o l u t i o n = bestmemory (memory , C, D) ;
e l s e i f c == 2 | | c == 4

c en t e r s o l u t i o n = x ;
else

break ;
end

end

end
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Matlab: Tabu Search

f unc t i on [ bfs , obvbfs ] = tabusearch (C, D, K, i max )

% Here i s K the l ength o f the t a b u l i s t and i max i s the maximum number o f
% i t e r a t i o n s . K has to be sma l l e r than n/2 − 2 .

nhelp = s i z e (C) ;
n = nhelp (1 ) ;
x = randperm (n (1 ) ) ’ ;
i = 1 ;
tL = ze ro s (n , 1) ;
tL2 = ze ro s ( i max , 2) ;
b f s = x ;
obvx = ob j e c t i v e va l u e (x , C, D) ;
obvbfs = obvx ;

whi l e ( i <= i max )

[ nieuwbfs , nieuwbfsv , twbfs , twbfsv , tL , tL2 ] = i t e r a t i o n t s (x , obvx , C, D,
bfs , obvbfs , tL , tL2 , K, i , i max )

i f nieuwbfsv < obvbfs
i= 1 ;
b f s = nieuwbfs ;
obvbfs = nieuwbfsv ;

end

x = twbfs ;
obvx = twbfsv ;
i = i + 1 ;

end

end
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f unc t i on [ bfs , obvbfs , twbfs , twbfsv , tL , tL2 ] = i t e r a t i o n t s (x , obvx , C, D, bfs ,
obvbfs , tL , tL2 , K, i , i max )

n = length (x ) ;
nieuwbfs = 1 ;

while nieuwbfs == 1
nieuwbfs = 0 ;
twbfsv = 0 ;

for j = 1 : n−1
for k = j +1:n

obvw = deltaobv ( j , k , x , C, D) + obvx ;
i f obvw < obvbfs

b f s = x ;
h = b f s ( j ) ;
b f s ( j ) = b f s ( k ) ;
b f s ( k ) = h ;
obvbfs = obvw ;
nieuwbfs = 1 ;

end
i f obvw < twbfsv | | twbfsv == 0

i f tL ( j ) == 0 && tL (k ) == 0
twbfs = x ;
h = twbfs ( j ) ;
twbfs ( j ) = twbfs ( k ) ;
twbfs ( k ) = h ;
twbfsv = obvw ;
a = j ;
b = k ;

end
end

end
end

i f nieuwbfs ==1
x = bf s ;
obvx = obvbfs ;
twbfsv = 0 ;
tL = ze ro s (n , 1) ;
tL2 = ze ro s ( i max , 2) ;
i = 1 ;

end
end

tL ( a ) = 1 ;
tL (b) = 1 ;
tL2 ( i , : ) = [ a b ] ;
i f i > K

aold = tL2 ( i − K, 1) ;
bold = tL2 ( i − K, 2) ;
tL ( aold ) = 0 ;
tL ( bold ) = 0 ;

end

end
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