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Abstract

Dupin cyclides are surfaces all lines of curvature of which are circular. We study, from an idiosyn-
cratic approach of inversive geometry, this and more geometric properties, e.g., symmetry, of these
surfaces to obtain a clear geometric description of Dupin cyclides. Furthermore, we investigate in
terms of inversive geometry the application of Dupin cyclides in Computer Aided Geometric Design
(CAGD) in blending between intersecting natural quadrics. Nowhere else in the literature, we found
such a method and results of blending intersecting natural quadrics.
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Chapter 1
Introduction

Dupin cyclides
In the 19th century the French mathematician Charles Pierre Dupin discovered surfaces all lines
of curvature of which are circular. He called these surfaces cyclides in his book Applications de
Géometrie (1822).
Dupin cyclides have been studied by several mathematicians like Cayley [Cayley] and Maxwell
[Max]. These mathematicians studied Dupin cyclides in the late 19th century which resulted in an
enormous list of properties of Dupin cyclides.
Interest in cyclides revived in the 1980’s. It was motivated by research in Computer Aided Geometric
Design (CAGD) and from the viewpoint of Lie Sphere Geometry by Pinkall, Cecil and Ryan. In
CAGD Dupin cyclides are used among others in blending intersecting natural quadrics (cones,
cylinders, planes and spheres).

Problem statement and main results
Studying the paper of Chandru, Dutta and Hoffmann [ChDuHo] it becomes clear that the paper is
quite intuitive and contains faults. Chandru, Dutta and Hoffmann state six definitions of a Dupin
cyclide in [ChDuHo] and try to show the equivalence between these definitions. We state four
of these six definitions of a Dupin cyclide and provide, in an idiosyncratic approach of inversive
geometry, a rigorous mathematical proof for the equivalence between these four definitions. From
this we obtain geometric properties of Dupin cyclides concerning (i) existence, (ii) uniqueness, (iii)
lines of curvature, (iv) symmetry and (v) classes, i.e., different types of Dupin cyclides. Then we
prove in terms of inversive geometry the existence of cyclide blends in the case of (i) two intersecting
spheres, (ii) an intersecting sphere and a plane, (iii) an intersecting cylinder and a plane and (iv) an
intersecting cone and a plane. It follows from these proofs that these cases are equivalent blending
problems. This is a result which hitherto was not known.
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Related work
The main article for our study is the paper by Hoffmann, Dutta and Chandru [ChDuHo]. Their
work is based on Maxwell [Max], Cayley [Cayley] and Boehm [Boehm I]. In Pratt [Pratt], Pottmann
[Pott], Krasauskas [KrasMä], Boehm [Boehm II] and Cecil [Cecil], (Dupin) cyclides are studied from
the viewpoint of Laguerre Geometry.
In a series of two papers [AllDut I] and [AllDut II] Allen and Dutta give an extensive overview of
Dupin cyclides in blending intersecting natural quadrics. In [AllDut I] theoretical aspects of cyclides
in blending intersecting natural quadrics are studied. In [AllDut II] Allen and Dutta consider cyclide
blends in all possible cases of intersecting natural quadrics.

Overview
In chapter 2 we study the geometry of Dupin cyclides. First, we give in section 2.1 the definition of
a cyclide according to Dupin. Then we give in section 2.2 an introduction to inversive geometry in
R3. In section 2.3 we study the image of a torus, defined as in the appendix, under inversion in R3.
With this knowledge we prove in section 2.4 the equivalence between four different definitions of a
Dupin cyclide in R3. To conclude chapter 2, we study from the viewpoint of inversive geometry in
section 2.5 the main geometric properties of Dupin cyclides concerning (i) existence, (ii) uniqueness,
(iii) lines of curvature, (iv) symmetry and (v) classes.
In chapter 3 we consider the application of Dupin cyclides in blending intersecting natural quadrics.
In section 3.1 we start with an informal discussion of cyclide blends. Then we give a formal definition
of a cyclide blend and we give a definition that reduce the problem of blending intersecting natural
quadrics to the problem of finding two so-called extreme circles. In section 3.2 we prove from the
viewpoint of inversive geometry the existence of a cyclide blend in the case of (i) two intersecting
spheres, (ii) an intersecting sphere and a plane, (iii) an intersecting cylinder and a plane and (iv)
an intersecting cone and a sphere. From this proof it follows that all these cases are equivalent
blending problems.
In chapter 4 we give suggestions for further research and our conclusions.



Chapter 2
On Dupin cyclides

According to Dupin a cyclide is the envelope surface of a 1-parameter family of spheres tangent
to three fixed spheres. In this chapter we state four definitions of a Dupin cyclide and provide a
mathematical proof for the equivalence between these definitions from an idiosyncratic approach of
inversive geometry. Furthermore, we give the main geometric properties of Dupin cyclides. This is
not only for theoretical interest, practically this means that Dupin cyclides can be constructed in
several ways.

2.1 Dupin cyclides according to Dupin
First we introduce some definitions. In the appendix we give some deviations from standard termi-
nology which we use frequently throughout the text.

Definition 1. A 1-parameter family of spheres is a collection of spheres S(t) ⊂ R3 defined by

‖x− c(t)‖ − r(t) = 0,

where c : [a, b] ⊂ R→ R3, t 7→ (c1(t), c2(t), c3(t)) is the center of S(t), r : I ⊆ R→ R, t 7→ r(t) is
the radius of S(t), where I is an interval in R and t is a parameter.

Unless otherwise stated d is the standard Euclidean distance, ||.|| is the standard Euclidean
norm and 〈., .〉 is the standard inner product.

Definition 2. A sphere S ⊂ R3 with radius r is proper if 0 < r <∞ and S is non-proper if r = 0
or r =∞.

Therefore, a point in R3 and a plane in R3 are non-proper spheres.

Definition 3. The envelope surface of a 1-parameter family of spheres is the boundary of the union
of the spheres in the 1-parameter family.
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DUPIN CYCLIDES ACCORDING TO DUPIN 5

Consider two surfaces S1 and S2 from a 1-parameter family of spheres F defined by an implicit
equation F (x, y, z; t) = 0 and an implicit equation F (x, y, z; t+ε)=0, respectively. The set of points
that belongs to both S1 and S2 satisfies F (x,y,z;t+ε)−F (x,y,z;t)

ε = 0. When we take the limit ε → 0
we obtain ∂F

∂t = 0. Assume that ∂2F
∂t2 6= 0, then solving ∂F

∂t = 0 for t gives t(x, y, z).
The envelope surface of F is defined by F (x, y, z; t(x, y, z)) = 0. Therefore, the envelope surface
consists of those points which belong to each pair of infinitely near surfaces in the 1-parameter
family.

Example (envelope surfaces) The 1-parameter family of spheres F defined by the implicit
equation F (x, y, z; t) = (x− t)2 + (y− t)2 + (z− t)2− t2 = 0 consists of spheres with center on a line
l parameterized by l(t) = (t, t, t) and radius r(t) = t. Let t ∈ [−a, a] where a ∈ R, then the envelope
surface of the 1-parameter family is a right circular cone (figure 2.1)and the envelope surface of the
1-parameter family according to definition 3 is a cone with spheres on the ends (figure 2.2).

Figure 2.1: The en-
velope surface accord-
ing to the formal def-
inition.

Figure 2.2: The en-
velope surface accord-
ing to definition 3.

The difference between these envelope surfaces arises because t ∈ [−a, a] ⊂ R. If we let t ∈ R then
there is no difference between the envelope surface and the envelope surface according to definition 3.

Definition 4 (Dupin). A cyclide is the envelope surface of a 1-parameter family of spheres tangent
to three fixed spheres.

Examples (Dupin cyclides) Let P1, P2 and P3 be three fixed planes in R3 such that P1 is
parallel to P2 and P3 is perpendicular to P1. All 1-parameter spheres in R3 tangent to P1, P2 and
P3 have their center on a line l ⊂ R3 parallel to P1, P2 and P3. Furthermore, d(l, P1) = d(l, P2) =
d(l, P3) = r, where r is the radius of all spheres tangent to P1, P2 and P3 (figure 2.3). The set of
these spheres is 1-parameter family of spheres in R3 and the envelope surface of the 1-parameter
family is a cylinder in (figure 2.4).
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Figure 2.3: Spheres
tangent to the three fixed
planes P1, P2 and P3.

Figure 2.4: The
envelope surface of a
1-parameter family of
spheres (a cylinder)
tangent to P1, P2 and
P3.

Let P ′1 ⊂ R3 be the plane defined by x+ y = 0, let P ′2 ⊂ R3 be the plane defined by x− y = 0
and let P ′3 ⊂ R3 be the plane defined by z − x = 0. A 1-parameter family of spheres in R3 tangent
to P ′1, P

′
2 and P ′3 consists of spheres with centers on a line l′ ⊂ R3 parameterized by l′(t) = (t, 0, 0)

and radius r(t) = t for t ∈ R (figure 2.5). Hence, the envelope surface of the 1-parameter family is
a cone (figure 2.6).

Figure 2.5: Spheres
tangent to the three
fixed planes P ′

1, P
′
2 and

P ′
3.

Figure 2.6: The
envelope surface of
a 1-parameter family
of spheres (a cone)
tangent to P ′

1, P
′
2 and

P ′
3.

Let S1, S2 and S3 be three fixed spheres in R3 such that S1 and S2 (not necessarily of the same
radius) are contained in S3 and let the center of S1, S2 and S3 be on a line l′′ ⊂ R3. Then there
exists a 1-parameter family of spheres in R3 tangent to S1, S2 and S3 (figure 2.7). Moreover, the
centers of spheres from the 1-parameter family lie on a circle and the radius of these spheres is
constant (figure 2.8). Hence, the envelope surface of the 1-parameter family is a torus in R3.
Therefore, a cylinder, a cone and a torus are the envelope surfaces of a 1-parameter family of spheres
tangent to three fixed spheres. Hence, a cylinder, a cone and a torus are Dupin cyclides.
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Figure 2.7: Spheres tan-
gent to the three fixed
spheres S1, S2 and S3.

Figure 2.8: The en-
velope surface of a
1-parameter family of
spheres (a torus) tangent
to S1, S2 and S3.

In particular, natural quadrics (a plane, a sphere, a cylinder and a cone) are Dupin cyclides.
Moreover, it is not always possible to find a Dupin cyclide as the envelope surface of a 1-parameter
family of spheres in R3 tangent to three fixed spheres in R3. Consider for example three concentric
fixed spheres S1, S2 and S3 in R3. Assume without loss of generality that S1 and S2 are both
contained in S3. It follows that a 1-parameter family of spheres in R3 tangent to S1 and tangent to
S2 cannot be tangent to S3. Hence, not every triple of fixed spheres in R3 defines a Dupin cyclide.
In the following section we give a brief introduction to inversive geometry in R3. From this we
obtain four equivalent definitions of a Dupin cyclide and their main geometric properties, e.g.,
curvature and symmetry.

2.2 Inversion
In this section we define inversion in R3 and give properties of these inversions. These properties
are used to provide a rigorous mathematical proof for the equivalence between four definitions of a
Dupin cyclide and their main geometric properties.

Definition 5. Let S ⊂ R3 be a sphere with center O and radius k. Inversion i with respect to S is
the map i : R3 \ {O} → R3 \ {O} given by

p′ = i(p) = O + k2 · p−O
||p−O||2

, ∀p ∈ R3 \ {O}.

We call p′ the inverse of p with respect to the sphere S. The point O is called the center of inversion,
k is called the radius of inversion and S is called the sphere of inversion.

Let S ⊂ R3 be a sphere of inversion with center O and radius k and let p = (p1, p2, p3) ∈ R3\{O}.
Note that p′ is the point on the line Op that lies on the same side of p such that d(O, p)·d(O, p′) = k2.
In other words, inversion in R3 with respect to a sphere S ⊂ R3 maps the inside of S onto the
outside of S and vice versa, i.e., inversion is a kind of reflection in a sphere.

In the following proposition we list those properties of inversion in addition to other properties
of inversion that enable use to obtain four equivalent definitions of Dupin cyclides and which reveals
their main geometric properties.
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Figure 2.9: Inversion of a point A with respect to a sphere of inversion S with center O and radius k.

Proposition 1. Let S ⊂ R3 be a sphere of inversion with center O, then inversion with respect to
S maps

1. a plane through O onto itself,

2. a plane not through O onto a sphere through O,

3. a sphere through O onto a plane not through O,

4. a sphere not through O onto a sphere not through O, and

5. a sphere which intersect S orthogonally onto itself.

Furthermore, inversion is a conformal bijective map.

Proof. We prove statement 4. Let S ⊂ R3 be a sphere of inversion with center O and radius k and
let S′(c, r) ⊂ R3 be a sphere with center c and radius r, i.e., S′(c, r) = {p ∈ R3| ||p− c||2 = r2}.
Let p ∈ S′(c, r) and let i be the inversion with respect to S. If ||i(p)− e · c||2 = r̃2 with e and r̃
constants to be determined, then i maps S′(c, r) onto a sphere. From the definition of inversion it
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follows that

||i(p)− e · c||2 =

∣∣∣∣∣
∣∣∣∣∣
(
O + k2 p−O

||p−O||2

)
− e · c

∣∣∣∣∣
∣∣∣∣∣
2

=

〈(
O + k2 p−O

||p−O||2

)
− e · c,

(
O + k2 p−O

||p−O||2

)
− e · c

〉

=

〈
O + k2 p−O

||p−O||2
, O + k2 p−O

||p−O||2

〉

−2e

〈
c,O + k2 p−O

||p−O||2

〉
+ e2 ||c||2

= ||O||2 +
2k2

||p−O||2
(
〈O, p〉 − ||O||2

)
+

2ek4

||p−O||2
〈c, p〉

+e2 ||c||2

=
k2

||p−O||2
(
−2 ||O||2 + 2 〈O, p〉+ k2 + e (2 〈c,O〉 − 2 〈c, p〉)

)
+ ||O||2 − 2e 〈c,O〉+ e2 ||c||2 . (2.1)

Assume without loss of generality that O is the origin. Then equation (2.1) becomes

||i (p)− e · c||2 =
k2

||p||2
(
k2 − 2e 〈c, p〉

)
+ e2 ||c||2 . (2.2)

From p ∈ S′ (c, r) it follows that

r2 = ||p− c||2 = 〈p− c〉 = ||p||2 − 2 〈p, c〉+ ||c||2 (2.3)

which implies that
−2 〈p, c〉 = r2 − ||p||2 − ||c||2 . (2.4)

Substitution of equation (2.4) into equation (2.2) gives

||i (p)− e · c||2 =
k2

||p||2
(
k2 + e

(
||p||2 + ||c||2 − r2

))
+ e2 ||c||2

=
k2

||p||2
(
k2 + e ||c||2 − er2

)
+ k2e− e2 ||c||2 . (2.5)

From O 6∈ S′ (c, r) it follows that ||c||2 6= r2. Therefore, set e = k2

||c||2−r2 . Then it follows that
equation (2.5) is the equation of a sphere.
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Remark Consider a 1-parameter family of spheres in R3 tangent to three fixed spheres in R3.
Let the center of inversion be the origin of R3 and let the origin be contained in one of the three
fixed spheres. Then it follows that none of the spheres from the 1-parameter family passes through
the origin. Hence, we can always compute the image of the center of a sphere from the 1-parameter
family after inversion with the method of the proof of proposition 1.

Another property of inversion in R3 that will be used to obtain four equivalent definitions of a
Dupin cyclide and their main geometric properties is that it maps two disjoint spheres in R3 onto
two concentric spheres in R3.

Lemma 1. There exist infinitely many inversions which map two disjoint spheres in R3 onto two
concentric spheres in R3.

Proof. Let S1 and S2 in R3 be two disjoint spheres. Then there exist two spheres S3 and S4 in
R3 such that the angle between Sl and Sj for l = 1, 2 and j = 3, 4 is right, i.e., the center of Sj
for j = 3, 4 lies on the power line of S1 and S2. Let the center of inversion O be a point on the
intersection curve S3 ∩ S4. Then it follows from proposition 1 that the image of S3 and the image
of S4 under inversion i with respect to O are two planes which intersect both spheres i(S1) and
i(S2) at a right angle. Hence, i(S1) and i(S2) are concentric spheres.
Because the center of Sj for j = 3, 4 lies on the power line of Sl for l = 1, 2 and because O is a
point on the intersection curve S3 ∩ S4 it follows that there exist infinitely many inversions in R3

which map S1 and S2 onto two concentric spheres.

From the proof that inversion in R3 maps a sphere in R3 onto a sphere in R3 we obtain a formula
for the center and a formula for the radius of a sphere after inversion. From these formulas and the
properties of inversion in R3 given in this section we obtain four equivalent definitions of a Dupin
cyclide and their main geometric properties.
Consider a 1-parameter family of spheres F with the centers of spheres on a plane curve c(t) ⊂ R3,
where t is a parameter. Let S ⊂ R3 be a sphere of inversion with the center at the origin O and
radius k. Then inversion with respect to S maps a sphere S(t) from F onto a sphere with center
c′(t) = k2

c1(t)2+c2(t)2−r(t)2 c(t). Therefore, c′(t) ⊂ R3 is a constant multiple of c(t) for all t ∈ R, i.e.,
the centers of the spheres from F under inversion are contained in a plane.
Moreover, from the proof of statement 4 of proposition 1 we obtain the radius of a sphere S(t) from
F under inversion. Substitution of e = k2

||c||2−r2 into equation (2.5) gives

∣∣∣∣∣
∣∣∣∣∣i(p)− k2c

||c||2 − r2

∣∣∣∣∣
∣∣∣∣∣
2

= k2 k2

||c||2 − r2
− (

k2

||c||2 − r2
)2 ||c||2 =

(
kr

||c||2 − r2

)2

. (2.6)

Hence, the radius of a sphere S(t) from F under inversion is given by k2r
||c||2−r2 , where k is the

radius of inversion, c the center of the original sphere and r the radius of the original sphere. We
conclude that if the center of inversion is the origin of R3, then for a sphere S from a 1-parameter
family of spheres in R3 it follows that

1. the image of the center of S under inversion is

c′(t) =
k2c(t)

||c(t)||2 − r(t)2
, and (2.7)
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2. the image of the radius of S under inversion is

r′(t) =
k2r(t)

||c(t)||2 − r(t)2
, (2.8)

where k is the radius of inversion, c(t) the locus of the centers of the original spheres from the
1-parameter family and r(t) the radius of the original spheres from the 1-parameter family.
In the following section we study with formula (2.7) what kind of locus of the centers of spheres
from a 1-parameter family of spheres such that the envelope surface of the 1-parameter family is a
Dupin cyclide define.

2.3 The image of a torus in R3 under inversion
In this section we study the image of a torus in R3 under inversion with respect to the origin of R3.
First, we prove that the image of a torus given as the envelope surface of two 1-parameter families
of spheres tangent to three fixed spheres is a cyclide according to the definition of Dupin. Finally,
we consider the image of the locus of the centers of spheres from the two 1-parameter families of
spheres which define the torus.

Lemma 2. Inversion maps a torus in R3 onto a Dupin cyclide in R3.

Proof. Let T ⊂ R3 be a ring torus, a horn torus or a spindle torus given as the envelope surface of
a 1-parameter family of spheres F tangent to three fixed spheres S1, S2 and S3. Let without loss
of generality i be an inversion with respect to the origin O of R3 and let O be contained in one of
the three fixed spheres S1, S2 or S3. Then i maps any sphere S from F onto a sphere tangent to
the spheres i(S1), i(S2) and i(S3). Hence, the envelope surface of the image of F under inversion i
is a cyclide according to the definition of Dupin.

From lemma 2 and formula (2.7) we obtain the locus of the centers of spheres from a 1-parameter
family of spheres tangent to three fixed spheres. Moreover, we prove that this locus is a conic, i.e.,
we prove that the centers of spheres from a 1-parameter family of spheres such that the envelope
surface of the 1-parameter family is a Dupin cyclide lie on a conic.

Corollary 1. Let a torus T in R3 be the envelope surface of two 1-parameter families of spheres
F1 and F2 in R3 with the centers of spheres on a circle and a line, respectively. Then inversion
with respect to the origin of R3 maps F1 and F2 onto a 1-parameter family of spheres in R3 with
the centers of spheres on a conic. Moreover, this conic is independent of the radius of inversion.

Proof. Consider a torus T in R3 (the standard axis system) and let T be the envelope surface of
two 1-parameter families of spheres F1 and F2 in R3 such that the locus of the centers of spheres
from F1 is the circle c and the locus of the center of spheres from F2 is the line l. Assume without
loss of generality that c is contained in the z = 0 plane and that the center of c lies on the x-axis
(figure 2.10).
It follows that c can be parameterized by c(t) = (R cos t+ a,R sin t, 0) and that l can be param-
eterized by l(t) = (a, 0, t). From formula (2.7) it follows that the image of c(t) and the image
of l(t) under inversion with respect to the origin of R3 is given by c′(t) = k2

||c(t)||2−r(t)2 · c(t) and

l′(t) = k2

||l(t)||2−r(t2) · l(t), respectively. Furthermore, the spheres with center on c which define T



THE IMAGE OF A TORUS IN R3 UNDER INVERSION 12

Figure 2.10: The torus
T , the circle c and the line
l.

Figure 2.11: The inter-
section of the torus T with
the x = 0 plane.

have equal radius. Assuming that R = 1, i.e., if 0 < r < 1 then T is a ring torus, if r = 1 then T is
a horn torus and if r > 1 then T is a spindle torus, it follows that

c′(t) = k2

(
cos t+ a

2a sin t+ 1 + a2 − r2
,

sin t
2a sin t+ 1 + a2 − r2

, 0
)
, (2.9)

where r is the radius of spheres with center on c.
Now consider the intersection of T with the x = 0 plane (figure 2.11). It follows that the radius of
spheres with center on l which define T is given by r(t) = d (T, (a, t)) =

√
1 + t2 − r2. Hence,

l′(t) = k2

(
a

2r
√

1 + t2 + a2 − 1− r4
, 0,

t

2r
√

1 + t2 + a2 − 1− r4

)
. (2.10)

From equation (2.9) it follows that in R3 (the standard axis system)

(x, y, z) =
(

k2(cos t+ a)
2a sin t+ 1 + a2 − r2

,
k2 · sin t

2a sin t+ 1 + a2 − r2
, 0
)
. (2.11)

Solving cos t and sin t in terms of x and y with equation (2.11) it follows that

cos t =
−ak2 − x− a2x+ r2x− 2ay2

k2 − 2ay
,

sin t =
−y − a2 + r2y

k2 − 2ay

From these expressions of cos t and sin t and from the equality cos2 t+sin2 t = 1 we obtain a rational
equation in x and y

1
(k2−2ay)2 (−k2 + a2k4− 2ak2x− 2a3k2x+ 2ak2r2x+ x2 + 2a2x2 + a4x2− 2r2x2− 2a2r2x2 + r4x2 +
4ak2y − 4a3k2y + 4a2xy + 4a4xy − 4a2r2xy + y2 − 2a2y2 + 5a4y2 − 2r2y2 − 2a2r2y2 + r4y2 = 1.

The numerator of this expression is a quadratic equation in x and y, so its zero set is a conic

Ax2 + 2Bxy + Cy2 +Dx+ Ey + F = 0,
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where

A =
(
1 + a2 − r2

)2
,

B = 2a2(1 + a2 − r2),

C = 5a4 +
(
r2 − 1

)2 − 2a(1 + r2),

D = −2ak2(1 + a2 − r2),
E = −4ak2

(
a2 − 1

)
, and

F = k2(a2 − 1). (2.12)

Furthermore, c′(t) is

1. an ellipse if A2 − 4BC < 0,

2. a circle if A = C and B = 0,

3. a parabola if A2 − 4BC = 0, and

4. a hyperbola if A2 − 4BC > 0.

Therefore, if we plot the expression A2 − 4BC for a and r we get a surface from which we obtain
what type of conic c′(t) is for given a and r (figure 2.12). Moreover, the expression A2 − 4BC is
independent of the radius of inversion k. Hence, the type of conic which we obtain from c(t) after
inversion is independent of the radius of inversion.

Figure 2.12: Some plots of the expression A2 − 4BC.

Similarly, it follows that l′(t) is a conic. Hence, inversion with respect to the origin of R3 maps the
1-parameter families F1 and F2 onto 1-parameter families of spheres such that the centers of these
spheres lie on a conic which is independent of the radius of inversion.

From the results of this section it follows that we can compute what the locus of the centers of
spheres from a 1-parameter family of spheres tangent to three fixed spheres is, i.e., we can compute
the locus of the centers of spheres which define a dupin cyclide defined as the envelope surface of a
1-parameter family of spheres tangent to three fixed spheres. Among others, we use these results to
obtain four equivalent definitions of a Dupin cyclide and to obtain the main geometric properties
of these surfaces.
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2.4 Equivalent definitions of Dupin cyclides
In this section we state four definitions of Dupin cyclides and provide a proof in terms of inversive
geometry for the equivalence between them. First we introduce the concept of a pair of anti-conics.

Definition 6. Two conics c1 and c2 form a pair of anti-conics if

1. c1 and c2 lie in mutually perpendicular planes and

2. the vertices (on the major axes) of c1 are the foci of c2, and vice versa.

There exist four types of pairs of anti-conics. These pairs consist of (i) an ellipse and a hyperbola,
(ii) two parabolas, (iii) a (straight) line and a circle or (iv) a pair of (straight) lines.

Theorem 1. A Dupin cyclide is

1. the envelope surface of a 1-parameter family of spheres tangent to three fixed spheres,

2. the envelope surface of two 1-parameter families of spheres tangent to three fixed spheres,

3. the envelope surface of a 1-parameter family of spheres with center in a plane and tangent to
two fixed spheres, and

4. the envelope surface of a 1-parameter family of spheres with center on a conic and tangent to
a fixed sphere.

Remark From the proof of theorem 1 it follows that a Dupin cyclide is the envelope surface of
a 1-parameter family of spheres with center on a conic and tangent to a sphere with the center on
another conic such that these conics forms a pair of ant-conics.

In this section we only consider Dupin cyclides obtained from three proper, disjoint fixed spheres.
Moreover, in figure 2.13 and in figure 2.14 we give Dupin cyclides such that their pair of anti-conics
consists of two parabolas. Furthermore, the lines on the left Dupin cyclides in figure 2.13 and in
figure 2.14 are (circular) lines of curvature on the cyclides.

Figure 2.13: Dupin cyclides defined by two parabolas.
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Figure 2.14: Dupin cyclides defined by two parabolas.

Proof. Definition (1) is the definition of a cyclide according to Dupin and it follows directly that
(2)⇒ (1). We now prove that (1)⇒ (2)⇒ (3)⇒ (4). Therefore, let S1, S2 and S3 be three proper,
disjoint fixed spheres in R3, let the origin O ∈ R3 be the center of inversion and let i be an inversion
with respect to O. From lemma 1 it follows that there exists an inversion i with respect to O such
that without loss of generality i(S1) and i(S2) are concentric spheres. Let (xj , yj , zj) be the center
of Sj and let rj the radius of Sj for j = 1, 2, 3. Let S be a sphere with center (x, y, z), radius r and
tangent to the spheres S1, S2 and S3, then

(x− xj)2 + (y − yj)2 + (z − zj)2 = (r ± rj)2 for j = 1, 2, 3. (2.13)

Given that S1, S2 and S3 are disjoint it follows that the system of equations (2.13) have at least
one solution, i.e., there exists a sphere S tangent to S1, S2 and S3. Hence, i(S3) is contained in the
annulus of i(S1) and i(S2) because i(S) is tangent to i(Sj) for j = 1, 2, 3.
It follows that the centers of the 1-parameter spheres tangent to i(Sj) for j = 1, 2, 3 lie on a circle
c and have constant radius (figure 2.15). Hence, there exists a 1-parameter family of spheres F1

with center on a circle, constant radius and tangent to i(Sj) for j = 1, 2, 3. Therefore, the envelope
surface of F1 is a torus T (figure 2.16). From lemma 2 it follows that the envelope surface of i(F1)
is a cyclide according to the definition of Dupin. Furthermore, it follows from corollary 1 that the
centers of spheres from i(F1) lie on a conic c′. Moreover, the centers of the spheres i(S1), i(S2) and
i(S3) lie on a straight line l since i(S1) and i(S2) are concentric spheres. Furthermore, the spheres
i(Sj) for j = 1, 2, 3 are tangent to all spheres from F1. Hence, l is the locus of the center of spheres
from a 1-parameter family of spheres F2 tangent to the envelope of F1. Hence, the envelope surface
of F1 and the envelope surface of F2 are equal. Therefore, the envelope surface of i(F1) and the
envelope surface of i(F2) are equal. Hence, i(F1) and i(F2) determine the same Dupin cyclide. It
follows from corollary 1 that the centers of spheres from i(F2) lie on a conic l′. Hence, a Dupin
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Figure 2.15: Two spheres
with center on a circle
and equal radius tangent to
i(Sj) for j = 1, 2, 3.

Figure 2.16: The
envelope surface of a
1-parameter family of
spheres (a ring torus)
tangent to i(Sj) for
j = 1, 2, 3.

cyclide is the envelope of (1) two 1-parameter families of spheres tangent to three fixed spheres, (2)
a 1-parameter family of spheres tangent to two fixed spheres with center in a plane (figure 2.17)
and (3) a 1-parameter family of spheres with center on c′ and tangent to a sphere with center l′ or
a 1-parameter family of spheres with center on l′ and tangent to a sphere with center on a c′(figure
2.18). Hence, (1) ⇒ (2) ⇒ (3) ⇒ (4). Moreover, it follows directly from this proof that (4) ⇒ (3)
and (4)→ (3).

Figure 2.17: The torus
defined by the circle c and
two fixed spheres.

Figure 2.18: The torus
defined by the circle c and
one fixed sphere.

Hence, it remains to prove that the conics c′ and l′ form a pair of anti-conics. Therefore, let
c′ be parameterized by c′(t) and let l′ be parameterized by l′(t). Furthermore, let the circle c be
parameterized by c(t) and let c be contained in a plane P1. Similarly, let the line l be parameterized
by l(t) and let l be contained in a plane P2. Because T is a torus it follows that P1 and P2 are
perpendicular to each other. Moreover, from formula (2.7) it follows that c′(t) is a multiple of c(t)
and l′(t) is a multiple of l(t) for given t. Hence, c′(t) is contained in P1 and l′(t) is contained in P2.
Therefore, the conics c′ and l′ are contained in planes which are perpendicular to each other. An
explicit calculation of the length of the major axis and minor axis of these conics shows that the
vertices on the major axis of c′ are the foci of l′ and it shows that the foci of c′ are the vertices on
the major axis of l′. Therefore, the conics c′ and l′ form a pair of anti-conics.
Hence, it follows that (1)⇔ (2)⇔ (3)⇔ (4).
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2.5 Miscellaneous about Dupin cyclides
In this section we study first, from the viewpoint of inversive geometry some configurations of three
fixed spheres. For example, three disjoint fixed spheres or three mutually intersecting fixed spheres,
which define Dupin cyclides as the envelope surface of a 1-parameter family of spheres tangent to
these fixed spheres. Indeed, we study the existence and uniqueness of Dupin cyclides given as the
envelope surface of a 1-parameter family of spheres tangent to three fixed spheres. Then we prove
that there exist three classes of Dupin cyclides given that their pair of anti-conics consists of an
ellipse and a hyperbola. After that we prove that all lines of curvature on a Dupin cyclide are
circular and we conclude this section by proving that Dupin cyclides have at least two planes of
symmetry.
Nowhere else in the (studied) literature, we found a similar approach to obtain these geometric
properties of Dupin cyclides.

Existence and uniqueness of Dupin cyclides
Let three proper, disjoint fixed spheres be given. It follows from the proof of theorem 1 that there
exists a Dupin cyclide such that the cyclide is the envelope surface of a 1-parameter family of
spheres tangent to three fixed spheres. Let three proper fixed spheres which are mutually tangent
be given and let three fixed spheres which are mutually intersecting be given. In this paragraph
we examine the existence and uniqueness of a Dupin cyclide given as the envelope surface of a
1-parameter family of spheres tangent to these configurations of three fixed spheres.

Proposition 2. Let S1, S2 and S3 be three fixed spheres. Let, without loss of generality, S1 be
tangent to S2, S2 be tangent to S3 and let S3 be disjoint with respect to S1 and S2, then there exist
two Dupin cyclides such that the cyclides are the envelope surface of a 1-parameter family of spheres
tangent to these fixed spheres.

Proof. Let O be the point of tangency of S1 and S2 and let i be the inversion with respect to O.
Then S′1 = i(S1) is a plane parallel to the common tangent plane of S1 and S2 at O and S′2 = i(S2)
is a plane parallel to the common tangent plane of S1 and S2 at O. Furthermore, S′3 = i(S3) is a
disjoint sphere with respect to S′1 and S′2 (figure 2.19).

Figure 2.19: Left: the three fixed spheres S1, S2 and S3. Right: the image of S1, S2 and S3 under inversion
i.
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Hence, the centers of spheres tangent to S′1 and S′2 lie in a plane P1 parallel to S′1 and parallel
to S′2 such that d(P, S′1) = d(P, S′2) = 1

2d(S′1, S
′
2). Therefore, all spheres tangent to S′1 and S′2 have

radius R = 1
2d(S′1, S

′
2). Let c be the center of S′3, let r be the radius of S3 and let P2 be a plane

which contains c. Consider the intersection of P2 with P1, S
′
1, S
′
2 and S′3 (figure 2.20).

Figure 2.20: The intersection of P2 with P1, S
′
1, S

′
2 and S′

3.

Let C1(m1, R) and C2(m2, R) be two circles contained in P2 and tangent to S′1, S
′
2 and S′3. It follows

that the centers of these circles lie on a circle c1(m, r̃1) contained in P1, where m is the center of

c1 and the orthogonal projection of c onto P1 and r̃1 =
√

(R+ r)2 − d (c,m)2 is the radius of c1.
Similarly, there exist two circles C3(m3, R) and C4(m4, R) with center on a circle c2(m, r̃2) contained

in P1, where m is the center of c2 and r̃2 =
√

(R− r)2 − d (c,m)2 the radius of c2. Hence, there
exist two 1-parameter families of spheres F1 and F2 tangent to S′1, S

′
2 and S′3. Therefore, i(F1) and

i(F2) are two 1-parameter families of spheres tangent to S1, S2 and S3. Hence, the envelope surface
of i(F1) and the envelope surface of i(F2) are Dupin cyclides D1 and D2, respectively. Moreover,
because r̃1 6= r̃2 it follows that the envelope surface of F1 is not the same as the envelope surface
of F2. Hence, D1 and D2 are different Dupin cyclides.

Proceeding as in the proof of proposition 2 one can prove the following proposition.

Proposition 3. Let S1, S2 and S3 be three proper, fixed spheres.

1. If S1, S2 and S3 are pairwise tangent to each other, then there exists one Dupin cyclide such
that the cyclide is the envelope surface of a 1-parameter family of spheres tangent to S1, S2

and S3.

2. If, without loss of generality, S1 is tangent to S2, S2 is tangent to S3 and S3 is not tangent
to S1 nor intersects S1, then there exists two Dupin cyclides such that these cyclides are the
envelope surface of a 1-parameter family of spheres tangent to S1, S2 and S3.

Remark If we count also the degenerate Dupin cyclides (spheres, cylinders and cones), then we
find instead of one Dupin cyclide in the case of (1) of proposition 3 two Dupin cyclides.

Instead of a combination of tangent and disjoint fixed spheres we now study the existence and
uniqueness of Dupin cyclides defined as the envelope surface of a 1-parameter family of spheres
tangent to three fixed spheres such that these fixed spheres intersect each other.



MISCELLANEOUS ABOUT DUPIN CYCLIDES 19

Proposition 4. Let S1, S2 and S3 be three fixed spheres. Assume, without loss of generality, that
S1 intersects S2, S1 intersects S2 and assume that S3 is disjoint with respect to S1 and S2, then
there exist two Dupin cyclides such that the cyclides are the envelope surface of a 1-parameter family
of spheres tangent to these fixed spheres.

Proof. Let c be the intersection curve of S1 ∩ S2 and take a point O on c as the center of inversion
and let i be an inversion with respect to O. Then S′1 = i(S1) is a plane parallel to the tangent plane
of S1 at O and intersects the plane S′2 = i(S2) which is a plane parallel to the tangent plane of S2

at O. Furthermore, i maps the sphere S3 onto the sphere S′3 between S′1 and S′2 (figure 2.21).

Figure 2.21: Left: the three fixed spheres S1, S2 and S3. Right: the image of S1, S2 and S3 under inversion
i.

Hence, the center of spheres tangent to S′1 and S′2 lie in a plane B1 or in a plane B2 such that
∠(Bk, S′1) = ∠(Bk, S′2) for k = 1, 2. Let P be the equatorial plane of S′3 perpendicular to Bk for
k = 1, 2. Consider the intersection of P with S′1, S

′
2 and S′3 (figure 2.22).

Figure 2.22: The intersection of P with B1, B2, S
′
1, S

′
2 and S′

3.

Let Cr1(m1, R1) and Cr2(m2, R2) be two circles contained in P and tangent to S
′

1, S
′

2 and S
′

3 (figure
2.22). Furthermore, let Cr3(m3, R3) be a circle contained in P with center m3 in B1 tangent to
Cr1(m1, R1) and Cr2(m2, R2). Then the ellipse E1 contained in B1 such that m1 and m2 are
the vertices and m3 is a focal point of E1 is the locus of the center of spheres tangent to S

′

1, S2
′

and S
′

3, i.e., the length of the major axis of E1 is R1 + R2 + 2R3 and the length of the minor

axis is
√

( 1
2 (R1 +R2 + 2R3))2 − (R1 +R3)2. Similarly, there exists two circles C4(m4, R4) and

C5(m5, R5) which define an ellipse E2 which is the locus of the center of spheres tangent to S
′

1, S
′

2
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and S
′

3. Hence, there exist two 1-parameter families of spheres F1 and F2 with the center of spheres
on E1 and E2, respectively, and tangent to S

′

1, S
′

2 and S
′

3. Therefore, the 1-parameter families i(F1)
and i(F2) are tangent to S1, S2 and S3. Hence, the envelope surface of i(F1) and the envelope
surface of i(F2) are two different cyclides D1 and D2, respectively, according to the definition of
Dupin.

Proceeding as in the proof of proposition 4 one can prove the following proposition.

Proposition 5. Let S1, S2 and S3 be three proper, fixed spheres.

1. If S1, S2 and S3 intersect each other pairwise, then there exist four Dupin cyclides such that
these cyclides are the envelope surface of a 1-parameter family of spheres tangent to S1, S2

and S3.

2. If, without loss of generality, S1 intersects S2, S2 intersects S3 and if S3 does not intersects
S1, then there exist four Dupin cyclides such that these cyclides are the envelope surface of a
1-parameter family of spheres tangent to S1, S2 and S3.

Remark In the case of statement (2) of lemma 5 one can argue that in a certain case there exist
two Dupin cyclides, i.e., in the case that the planes obtained from inversion both passes through
the origin of the fixed sphere after inversion and if the angle between these planes is right. Indeed,
if the three fixed spheres intersect each other at a right angle, then there exist two Dupin cyclides
according to the definition of Dupin.

Classes of Dupin cyclides
From the proof of lemma 2 it follows that a Dupin cyclide defined as the envelope surface of a
1-parameter family of spheres tangent to three fixed spheres is the image of a torus under inversion.
In the appendix we have defined three classes of tori. From these three classes of torii and formula
(2.8) we define three classes of Dupin cyclides. Nowhere else in the literature, we found such an
approach to define different types (classes) of Dupin cyclides.

Corollary 2. There exist three classes of Dupin cyclides such that the cyclides are the envelope
surface of a 1-parameter family of spheres tangent to three fixed spheres.

Proof. Let O = (0, 0, 0) ∈ R3 be the center of inversion, let F1 and F2 be two 1-parameter families
of spheres and let E be the envelope surface of F1 and the envelope surface of F2. From equation
(2.8) it follows that the radius of spheres after inversion with respect to O is a constant multiple
of the original spheres. From the proof of lemma 2 it follows that a Dupin cyclide given as the
envelope surface of a 1-parameter family of spheres tangent to three fixed spheres is the image of a
torus under inversion.
First, let the envelope surface E be a ring torus. Then all spheres from F1 and F2 which contribute
to E have radius different from zero. Hence, none of the spheres which define the Dupin cyclide as
the envelope surface of a 1-parameter family of spheres tangent to three fixed spheres, which is the
image of E under inversion with respect to O, is equal to a point.
Secondly, let the envelope surface E be a horn torus. Then there exists a sphere equal to a point
which defines E as the envelope surface of a 1-parameter family of spheres. Therefore, a Dupin
cyclide defined as the envelope surface of a 1-parameter family of spheres tangent to three fixed
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spheres, which is the image of E under inversion with respect to O, consists of a point.
Finally, let the envelope surface E be a spindle torus. Similarly, there exist two spheres equal to
two different points contained in a 1-parameter family of spheres such that the envelope surface of
the 1-parameter family is a Dupin cyclide.

From corollary 2 it follows that there exist three classes of Dupin cyclides. We will refer to these
three classes of Dupin cyclides as

1. a ring cyclide if none of the spheres from the two 1-parameter families of spheres which define
the Dupin cyclide consist of a sphere which is equal to a point,

2. a horn cyclide if there exists a sphere such that the sphere is equal to a point and contained
in one of the two 1-parameter families of spheres which define the Dupin cyclide, and

3. a spindle cyclide if there exists two spheres such that these spheres are equal to two different
points and are contained in one of the two 1-parameter families of spheres which define the
Dupin cyclide.

A Dupin cyclide defined as the envelope surface of a 1-parameter family of spheres tangent to
three fixed spheres is the image under a conformal map of a ring torus, a horn torus and a spindle
torus. Hence, it follows from corollary 2 that a Dupin cyclide is a ring cyclide, a horn cyclide or a
spindle cyclide if it is the image of a conformal map of a ring torus, a horn torus or a spindle torus,
respectively.

Lines of curvature on a Dupin cyclide
A cylinder, a cone and a torus are in particular Dupin cyclides. All lines of curvature on these
surfaces are circular. We extend this observation for any Dupin cyclide.

Lemma 3. All lines of curvature on a Dupin cyclide such that the cyclide is the envelope surface
of a 1-parameter family of spheres tangent to three fixed spheres are circular.

Proof. It follows from the theory of smooth surfaces in R3 [Gray] that a conformal transformation
of R3 maps lines of curvature on any smooth surface to lines of curvature on the image surface. In
lemma 2 we proved that any Dupin cyclide defined as the envelope surface of a 1-parameter family
of spheres tangent to three fixed spheres is the image a torus T given as the envelope surface of a
1-parameter family of spheres tangent to three fixed spheres under inversion. An inversion of R3 is
in particular a conformal transformation of R3 and all lines of curvature on the smooth surface T
are circular, i.e., the intersection curve of infinitely near intersecting spheres from the 1-parameter
family which defines T . Because inversion maps intersecting spheres onto intersecting spheres and
lines of curvature on a smooth surface onto lines of curvature on the image surface it follows that
all lines of curvature on the Dupin cyclide are circular.
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Figure 2.23: From top to bottom: a ring cyclide, two horn cyclides and two spindle cyclides. Left: lines
of curvature on the Dupin cyclides. Right: the pair of anti-conics of the Dupin cyclides.
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Symmetry of a Dupin cyclide
A cylinder, a cone and a torus have infinitely many planes of symmetry. We prove that in general
a Dupin cyclide has two planes of symmetry.

Lemma 4. A Dupin cyclide such that the cyclide is the envelope surface of a 1-parameter family
of spheres tangent to three fixed spheres has at least two planes of symmetry.

Proof. Let the envelope surface of two 1-parameter families of spheres F1 and F2 be a Dupin cyclide.
From theorem 1 it follows that the centers of spheres from F1 lie on a conic in a plane P1 and the
centers of spheres from F2 lie on a conic in a plane P2. From the symmetry of these conics and
from the symmetry of the spheres from the 1-parameter families which define the cyclide it follows
that P1 and P2 are planes of symmetry of the cyclide.

Figure 2.24: The planes of symmetry of a ring cyclide.

It is easily seen that a torus, a cylinder, a cone and a sphere are examples of Dupin cyclides
which has infinitely many planes of symmetry such that these cyclides are defined as the envelope
surface of a 1-parameter family of spheres tangent to three fixed spheres.



Chapter 3
Dupin cyclides in blending

In this chapter we consider an application of Dupin cyclides such that their pair of anti-conics
consists of an ellipse and a hyperbola in blending intersecting natural quadrics (cones, cylinders,
spheres and planes). Cyclide blends are important in design both for functional reasons, i.e.,
simplifying manufacture, and for cosmetic reasons. For other applications of Dupin cyclides we
refer to DePont [DePont] and Martin [Mart].

3.1 Dupin cyclides in blending between intersecting natural quadrics
For a detailed introduction to cyclide blends we refer to Allen and Dutta [AllDut I] and [AllDut II].
We only state the formal definition of a cyclide blend according to Allen and Dutta [AllDut I]
and give an intuitive description of Dupin cyclides in blending intersecting natural quadrics. Fur-
thermore, we state the so-called extreme circle condition of blending according to Allen and Dutta
[AllDut I]. This condition reduces the problem of blending intersecting natural quadrics with Dupin
cyclides to the problem of finding appropriate extreme circles of a Dupin cyclide (definition 9).
Intuitively, a cyclide blend can be considered as a transition surface between intersecting natural
quadrics such that the connection between them becomes smooth, i.e., tangent continuous. We
require that the cyclide blend follows approximately the intersection curve of the surfaces being
blended, i.e., the blend surface should roughly have the same shape as the intersection curve.
Moreover, by the tangent continuously property and the requirement that the blend surface follows
the intersection curve of the surfaces being blended it follows that the blend surface stays on one
side of each of the surfaces being blended (see Allen and Dutta [AllDut I]). Furthermore, we assume
that the intersection curve of the intersecting surfaces being blended is a non-empty closed curve.

Definition 7. Latitudinal lines of curvature on a Dupin cyclide such that its pair of anti-conics
consists of an ellipse and a hyperbola are lines of curvature obtained from spheres with their center
on the hyperbola of the cyclide. Longitudinal lines of curvature on a Dupin cyclide are lines of
curvature obtained from spheres with their center on the ellipse of the cyclide.

The intuitive description of cyclide blends between intersecting natural quadrics in the beginning
of this section and definition 7 leads Allen and Dutta to the following formal definition of a cyclide
blend between intersecting natural quadrics.

24
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Definition 8 (Cyclide blend). A ring cyclide blends two intersecting natural quadrics when

1. the intersection curve of the two natural quadrics being blended is a non-empty closed curve,

2. the cyclide is tangent to each natural quadric along a latitudinal line of curvature and

3. the intersection curve of the natural quadrics being blended wrap around the axis of each axial
natural quadric (a cylinder of a cone).

Allen and Dutta proved that in any case of intersecting natural quadrics their exits a cyclide
blend between these intersecting natural quadrics such that the Dupin cyclide is a ring cyclide.
Therefore, it is sufficient to consider ring cyclides as cyclide blends between intersecting natural
quadrics.
As noted before, Allen and Dutta simplify the problem of blending intersecting natural quadrics to
the problem of finding two so-called extreme circles of a Dupin cyclide.

Definition 9. The extreme circles of a Dupin cyclide are all circles obtained from intersecting the
cyclide with its planes of symmetry.

In particular, the extreme circles of a Dupin cyclide such that its pair of anti-conics consists of
an ellipse and a hyperbola are the circles obtained from intersecting the cyclide with its planes of
symmetry. Moreover, any Dupin cyclide consists of at least four extreme circles.

Definition 10 (Extreme circles conditions). Let Q be a natural quadric and let P be a plane. Two
circles c1 and c2 contained in P satisfy the extreme circles conditions when

1. c1 and c2 are disjoint,

2. both c1 and c2 are tangent to the intersection Q ∩ P , and

3. both c1 and c2 lie either entirely inside or entirely outside Q.

For axial natural quadrics Allen and Dutta give the following extreme circles conditions.

Definition 11 (Axial extreme circles conditions). Let Q be an axial natural quadric and let P be
a plane such that the axis of Q is contained in P . Two circles c1 and c2 contained in P satisfy the
extreme circles conditions when

1. c1 and c2 satisfy the extreme circles conditions with respect to Q, and

2. if ci is tangent to Q for i = 1, 2 at a point ti, then the line t1t2 is perpendicular to the axis of
Q.

Theorem 2. There exist two circles which satisfy the extreme circles conditions with respect to
intersecting natural quadrics iff there exist a cyclide blend between the intersecting natural quadrics.

For a proof of theorem 2 we refer to Allen and Dutta [AllDut I]. Moreover, our aim is to
study cyclide blends from the viewpoint of inversive geometry which have never previously be done.
Therefore, we not give a rigorous mathematical proof of theorem 2, but we refer to the intuitive
proof of Allen and Dutta.
From theorem 2 if follows that the problem of finding a Dupin cyclide which blends two intersecting
natural quadrics is reduced to the problem of finding two circles which satisfy the extreme circles
conditions. Therefore, we use in the following section the definition of (axial) extreme circles
conditions and theorem 2 to prove the existence of cyclide blends between intersecting natural
quadrics.
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3.2 Existence of cyclide blends
In this section we prove the existence of cyclide blends in the case of (i) two intersecting proper
spheres, (ii) an intersecting proper sphere and a plane, (iii) an intersecting cylinder and a plane
and (iv) an intersecting cone and a plane. In the case of two proper spheres we prove the existence
of a cyclide blend using of inversive geometry. From this it follows that all four cases are equivalent
blending problems, this is an approach which hitherto was not known. For other cyclide blends
between intersecting natural quadrics we refer to Allen and Dutta [AllDut II]. For a detailed
description of a cyclide blend between two intersecting cones we refer to Pratt [Pratt] and Srinivias
and Dutta [Srin].

Theorem 3. Let S1 and S2 be two intersecting, proper spheres, then there exists a cyclide blend
between S1 and S2. Furthermore, the cyclide blend between S1 and S2 is not unique.

Proof. Let S1 and S2 be intersecting, proper spheres. Consider the intersection of S1 and S2 with a
plane P which contain the center of Sj for j = 1, 2. Let qj for j = 1, 2 be the points of intersection
of S1 and S2 in P and let tj be the tangent to Sj at qj (figure 3.1). Let Cj for j = 1, 2 be a circle

Figure 3.1: The intersection of two intersecting proper spheres with a plane which contain the center of
these proper spheres.

of inversion with center qj and let ij be an inversion with respect to Cj for j = 1, 2. Then i1 maps
Sj for j = 1, 2 onto two straight lines l1 and l2, respectively, and i2 maps Sj for j = 1, 2 onto two
straight lines l3 and l4, respectively. Let b1 be a bisector of the angle between l1 and l2 and let b2
be ta bisector of the angle between l3 and l4. Any point p on b1 is the center of a circle Cp tangent
to l1 and l2 and any point q on b2 is the center of a circle Cq tangent to l3 and l4. Hence, there
exist infinitely many pairs of circles (ij(Cp), ij(Cq)) for j = 1, 2 which satisfy the extreme circles
conditions with respect to S1 and S2. Therefore, if follows from theorem 2 that there exist infinitely
many Dupin cyclides such that these cyclides are blending surfaces between the intersecting, proper
spheres S1 and S2.
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Figure 3.2: A cyclide blend between two intersecting, proper spheres.

The intersection of a proper sphere with a plane is circular. From theorem 3 it follows that
there exist infinitely many cyclide blends between a plane and a proper sphere which intersects
each other. Furthermore, two planes cannot be blended because their intersection curve is empty or
their intersection curve is not closed, i.e., the planes are parallel or the planes intersect each other.

Figure 3.3: A cyclide blend between a intersecting proper sphere and a plane such that the sphere and the
plane are tangent to each other, i.e., the intersection curve of the sphere and the plane is a point.

Theorem 4. Let C be a cylinder and let P be a plane such that C and P intersect each other. The
axis of C is not parallel to P iff there exists a cyclide blend. Furthermore, the cyclide blend between
C and P is not unique.

Proof. Let C be a cylinder and let P be a plane such that C and P intersect each other. First,
assume that the axis a of C is parallel to P , i.e., a is contained in P or there exists a line in P
parallel to a. If a is contained in P then the intersection of C with P is a pair of straight lines.
Moreover, if there exists a line l in P parallel to a, then the intersection of C with P is a (pair of)
straight line(s). Hence, there does not exists a cyclide blend if P is parallel to the axis of C.
Secondly, assume that P is not parallel to the axis a of C and let P ′ be a plane that contains the
axis a, i.e., P 6= P ′. Consider the intersection C ∩ P ′ (figure 3.4).
Assume without loss of generality that b1 is a bisector of the angle between C1 ∩P ′ and P ∩P ′ and
assume that b2 is a bisector of the angle between C2 ∩ P ′ and P ∩ P ′. Any point p1 on b1 is the
center of a circle c1i for i ∈ N tangent to C1 and tangent to P and any point on b2 is the center of
a circle c2j for j ∈ N tangent to C2 and tangent to P . Moreover, for any p1 on b1 there exists a p′1
on b2 such that p1p

′
1 is perpendicular to a. Hence, there exist pairs of circles consisting of a circle
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Figure 3.4: The intersection of the cylinder C and the plane P with the plane P ′ which contains the axis
C.

c1i and a circle c2j for i, j ∈ N which satisfy the extreme circles conditions with respect to C and
P . Therefore, it follows from theorem 2 that there exist infinitely many Dupin cyclides which are
the blending surfaces between the intersecting cylinder C and the plane P .

Figure 3.5: A cyclide blend between a cylinder and a plane which intersect each other.

Similarly as in the proof of theorem 4, it follows that there exists a cyclide blend between a cone
and a plane if the plane is not parallel to the axis of the cone.

Figure 3.6: A cyclide blend between a cone and a plane which intersect each other.

Furthermore, from the proof of theorem 3 and from the proof of theorem 4 it follows that finding
a cyclide blend in the case of (i) two intersecting proper spheres and (ii) an intersecting cylinder
and a plane can be reduced to the problem of finding pairs of circles consisting of disjoint circles
tangent to two straight lines, i.e., finding pairs of circles which satisfy the extreme circles conditions



EXISTENCE OF CYCLIDE BLENDS 29

with respect to two straight, intersecting lines. Similarly, finding a cyclide blend in the case of (i)
an intersecting proper sphere and a plane and (ii) an intersecting cone and a plane is equivalent
to the problem of finding pairs of circles which satisfy the extreme circles conditions with respect
to two straight, intersecting lines. Hence, finding a cyclide blend in the case of (i) two intersecting
proper spheres, (ii) an intersecting proper sphere and a plane, (iii) an intersecting cylinder and a
plane and (iv) a intersecting cone and a plane are equivalent blending problems.



Chapter 4
Conclusions

In this chapter we give suggestions for further research and we give our main conclusions.

4.1 Suggestions for further research
Inversion in R3 reveals the main geometric properties of Dupin cyclides in R3 such that the cyclide
is the envelope surface of two 1-parameter families of spheres both tangent to three fixed spheres.
Therefore, one can study all surfaces defined as the envelope surface of an m-parameter family
of spheres in R3 for m ∈ N with inversive geometry to obtain, probably, their main geometric
properties, e.g., symmetry and (lines of) curvature. More generally, one can study the envelope
surface of an l-parameter family of surfaces in R3 for l ∈ N with inversive geometry in R3 to obtain,
probably, their main geometric properties, e.g., symmetry and (lines of) curvature.
Similarly as we did in section 2.2, one can define inversion in Rn for n > 2. We believe that this can
be used to study the main geometric properties of Dupin cyclides in Rn for n > 2, e.g., the envelope
hypersurface of a 1-parameter family of spheres contained in R4 tangent to four fixed spheres in
R4. Moreover, the extension to higher dimensional Dupin cyclides leads to a natural extension of
higher dimensional natural quadrics.
In section 2.5 we proved the existence and uniqueness of Dupin cyclides in R3 given three proper
fixed spheres in R3. Therefore, we have to examine the existence and uniqueness in the case of non-
proper fixed spheres or three fixed spheres consisting of a combination of proper and non-proper
fixed spheres, i.e., studying the problem of Apollonius (finding circles tangent to three fixed circles)
instead of R2 in R3.
In section 3.2 we proved that the problem of finding a cyclide blend in the case of (i) two intersecting
proper spheres, (ii) an intersecting proper sphere and a plane, (iii) an intersecting cylinder and
a plane and (iv) an intersecting cone and a plane is equivalent to the problem of finding two
extreme circles tangent to two straight, intersecting lines. Therefore, one can examine if there
exists more pairs of intersecting natural quadrics which can be reduced to the problem of finding
two extreme circles tangent to two straight, intersecting lines. Indeed, one can classify the ten cases
of intersecting natural quadrics into equivalent blending problems.

30



MAIN CONCLUSIONS 31

4.2 Main conclusions
We conclude that inversion in R3 reveals quite simply the main geometric properties of Dupin
cyclides in R3 defined as the envelope surface of a 1-parameter family of spheres tangent to three
fixed spheres. These geometric properties concerning (i) existence and uniqueness, (ii) lines of cur-
vature and (iii) classes, and (iv) symmetry. Moreover, inversion in R3 reduces the number of fixed
spheres in R3 which define a Dupin cyclide given as the envelope surface tangent to these fixed
spheres from three fixed spheres to one fixed sphere, with the additional condition that spheres
from the 1-parameter family have their center on a conic and the fixed spheres have its center on
another conic such that these conics form a pair of anti-conics. It is this definition which simplifies
the construction of a Dupin cyclide and therefore among others simplifies the process of blending
intersecting natural quadrics.
Using inversion in R3 in blending intersecting natural quadrics we proved that finding a cyclide
blend in the case of (i) two intersecting proper spheres, (ii) an intersecting proper sphere and a
plane, (iii) an intersecting cylinder and a plane and (iv) an intersecting cone and a plane are equiv-
alent blending problems.
Beyond these results we managed to give mathematically rigorous proofs of statements made by
Chandru, Dutta and Hoffmann in [ChDuHo] and to omit their flawed assumptions. Therefore,
conclusions that follow from these assumptions are omitted or made mathematically rigorous. Sub-
sequently, this is important because many articles refer to the article of Chandru, Dutta and
Hoffmann [ChDuHo]. Moreover, all statements in the article by Chandru and Dutta [AllDut I]
and [AllDut II] concerning blending intersecting natural quadrics are correct. But some of these
arguments are far from mathematically rigorous or can be done much easier. To conclude, the
process of classifying equivalent blending problems in the case of intersecting natural quadrics is
mentioned nowhere else.
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Chapter 6
Appendix

In this chapter we give deviations from standard terminology which will be frequently used through-
out the text. We define disjoint spheres and we distinguish three types of torii.

Definition 12. The spheres S1, . . . , Sn ⊂ R3 for n ∈ N are disjoint when

1. Si ∩ Sj = ∅ for i, j ∈ N and

2. neither Si is contained in Sj nor Sj is contained in Si for i, j ∈ N.

In standard notation the spheres S1, . . . Sn for n ∈ N are disjoint if statement (1) of definition
12 holds.
Now we distinguish three classes of tori in R3. A ring torus in R3 is the envelope surface (definition
3) of two 1-parameter families of spheres in R3 such that none of the spheres from the two 1-
parameter families which contribute to the envelope surface are a point (figure 6.1). Similarly, a
horn torus in R3 is the envelope surface of two 1-parameter families of spheres R3 such that one
of the two 1-parameter families contains one sphere that is equal to a point and contributes to the
envelope surface of the two 1-parameter families (figure 6.1). Finally, a spindle torus in R3 is the
envelope surface of two 1-parameter families of spheres R3 such that one of the two 1-parameter
families contains two spheres which are equal to different points and contribute to the envelope
surface of the two 1-parameter families (figure 6.1).

Figure 6.1: From left to right: a ring torus, a horn torus and a spindle torus.

In standard notation a torus in R3 is equal to our ring torus, i.e., a non-singular surface. Therefore,
we allow a torus given as the envelope surface of two 1-parameter families of spheres in R3 to be a
singular surface. For the purpose we refer to a torus as one of these (non-)singular surfaces.
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