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Chapter 1

Introduction

Hollandse Signaalapparaten B.V. in Hengelo is a company specialized in designing and pro-
ducing advanced communication and defense systems.
Most of the work is focused on naval combat systems, for instance the design of command
and control systems, sensors and radar.
In the development of these systems, feedback control theory plays an important role.
For example, a camera on a sailing ship, subject to roll motions should be stabilized at a
certain fixed position.
Another example can be found in the design of radar systems. These systems use the tech-
nique of so called servo systems to track an airplane.

In general, the objective in designing a control system is to make a certain output y be-
have in a desired way by manipulating the input u.
The resulting feedback system should be stable and should meet certain design specifications.
These design specifications partly consist of performance criteria, which specify the desired
behaviour of the system. They also consist of certain stability requirements which guarantee
robust stability.

The design of such a feedback system could be done by solving the well known mixed sensi-
tivity problem.
This problem deals with finding a stabilizing controller which minimizes the weighted H-
norm of the sensitivity function S and the complementary sensitivity function T. The func-
tions S and T represent the 'performance' of the system.
Weighting functions are used to shape S and T such that the design specifications are met.

There exist standard H methods to solve the mixed sensitivity problem.
The problem with these methods is that continuous, stable, rational weighting functions are
required, whereas in practice these weighting functions are not known. Usually the weights
are given by frequency dependent bounds derived from the design specifications.
As will be explained in this report, this fact makes the classical H methods very impractical
for the design of low-order controllers.
It must be noticed that there is not much literature available about the mixed sensitivity
problem when the weights are not given by continuous, stable, rational functions.
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At Hollandse Signaalapparaten B.V. a Minirnax optimization method was developed to be
able to perform direct, low-order controller design.
Although this direct low-order controller design seems to be a very practical and interesting
method, the resulting optimization problem is a very complex, non-convex problem.

In this report the possibility of using the Youla parameterization is investigated to simplify
this minimax optimization problem.
The Youla parameterization is a parameterization of all stabilizing controllers, which uses the
theory of coprime factorizations. The motivation for using this parameterization is that the
original minimax optimization can now be converted to an easier, better posed optimization
problem.

Chapter 2 describes the mixed sensitivity problem and the minimax approach (K-optimization)
used by Hollandse Signaalapparaten.

After some theory about coprime factorizations and the introduction of the famous Youla
parameterization, chapter 3 presents the new Youla minimax optimization method.

Finally, chapter 4 gives the obtained numerical results of this method when implemented
in MATLAB.
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Chapter 2

The Mixed Sensitivity Problem

In control system design one of the most discussed problems is ioop shaping. This concerns
important issues such as stabilization, tracking and disturbance attenuation.
In general, in designing a control system, the aim is to manipulate the control action u such
that the output y behaves in a desired way. For example, a control objective in the servo
problem is that the output tracks a reference input as closely as possible.

The question whether these and other design specifications can be met, using the technique
of loop shaping, is discussed in this chapter.

2.1 Loop Shaping

Consider the following feedback configuration, where G(z) is a real rational proper transfer
function of a plant, and K(z) is the transfer function of the controller.

Figure 2.1: Standard feedback configuration.

In this figure y is the observed output, u is the control input and r is the reference in-
put. The tracking error e is defined as r — y.
In radar systems for example, one can think of this tracking error as being the error between
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the estimated position and the actual position of an airplane. It is obvious that for good
tracking, this error should be as small as possible. The problem of keeping this error small is
called the servo problem.

In this report we only consider single-input/single-output (SISO) systems, which means that
all signals (u, r, y, e) are scalars.
The closed ioop transfer function T (from r to y), is equal to GK(1 + GK)':

y GKy=GKe=GK(r-y) r1+GK
This transfer function T represents the output behaviour of the system. Keeping the servo er-
ror e close to zero in a certain frequency range corresponds to T being nearly one in that range.

The basic problem we consider in feedback system design is the following:

Find a controller K such that the closed ioop system

(1) is stable and,
(2) acquires some additional desired properties.

The first part of this problem (stability) is of course essential. A controller which does not
stabilize our plant is in fact useless.
The latter part concerns an equally important issue in feedback system design: Loop shaping.

We now concentrate on stability. Before this can be defined we need some other defini-
tions. We first introduce the function space H and the H-norm for discrete-time systems.

Let V denote the closed unit disc

V={zEC
I

z1}
The complement of V in C is denoted by:

DC'={zEC
I IzI>1}

A function F : DC C is bounded on DC if

B r > 0 such that IF(z)I � r Vz E DC

Definition 2.1
A function F : Dc -+ C is in the function space H if F is analytic and bounded on DC
i.e.,

sup IF(z)I <00 (2.1)
ZEDC

If F E H we can use the maximum modulus theorem to replace DC by OD in (2.1), where
.9D denotes the unit circle:

i9D={zEC
I IzI=l}
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and therefore
F = sup IF(z)I = sup F(z)I

ZEDC zEOD

For single-input/single-output (SISO) systems this H-norm is simply the peak value of the
magnitude plot of F(z).

Definition 2.2

Figure 2.2: H-norm.

A transfer function F is called stable if F E H.

The fact that F is in H implies that F is proper (IF(oo)I
inside the unit disc D.

is finite) and F has all its poles

Definition 2.3
Suppose M is a transfer matrix whose components are transfer functions. Then this transfer
matrix M is called stable if all components are in H.
With MH we denote the class of matrices with components in H.
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From now on, suppose that G(z) is a linear, time-invariant, discrete-time SISO system.
Consider the feedback system given in figure 2.3.
In terms of transfer matrices this system is described by:

— (1—GK) K(1—GK) 1 lvi
yj — G(1—GK) (1—GK) j [v

Definition 2.4
The closed loop system shown in figure 2.3 is said to be stable if the transfer matrix

1 (1 — GK) K(1 —
G(1 - GK)' (1- GK)'

from (v1 v2)T to (u )T belongs to MHX.

If the system is stable, then for all bounded inputs (vi v2)T, the outputs u and y are also
bounded.

Under the constraint of K being stabilizing, the main issue in the design is loop shaping.
As mentioned above, one of the design objectives is to make the tracking error as small as
possible. Another design specification is to minimize the influence of the measurement noise.
To meet these (and other) design objectives loop shaping is a useful tool.
In general, the idea in loop shaping is to put conditions on certain closed loop functions by
choosing appropriate weighting functions.
We will first specify which closed loop functions we consider and explain why we do this.

2.1.1 Sensitivity Functions

In the process of loop shaping, two functions play an important role: The sensitivity function
and the complementary sensitivity function.

The sensitivity function S is defined as (1 + GKY' and is equal to the transfer function
from r to e:

e 1e=r-y=r-GKe =1+GK
This function characterizes the sensitivity of the control system output to external distur-
bances. More explicitly it gives you information about how sensitive the closed loop transfer
function T is to an infinitesimal perturbation in G. [1]
To see this, take the limiting ratio of a relative perturbation in T () to a relative pertur-
bation in C (%):

IT/T dTG 1

lzmtc4oG/G = dCT = 1+GK =

As we see, T = 1 — S, and this is the reason that T is called the complementary sensi-
tivity function.
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Both S and T have certain desired characteristics which we will discuss later on, but the
fact that

S+T=1
already gives us some idea about the problems we meet when we wish to shape S and T
simultaneously.
For optimal disturbance attenuation (i.e., the closed loop system is not sensitive for output
disturbances), S should be equal to 0 at all frequencies.
In contrast, to make the output insensitive for measurement noise, T should be small at high
frequencies. Evidently, as S and T are complementary functions, the above requirements are
conflicting.

To shape S and T we introduce weighting functions W1 and W2 such that if

Isi <w1-'

TI <W2'
S and T have the desired shape and the design specifications are met.
For instance, to shape S we use certain performance criteria, which are a measure for 'good-
ness of tracking'.

Suppose that the following specifications guarantee good performance
(Continuous-time system)

5 IS(iw)I�S 0<w<w
1. S(jw)<'y V>w

where is some fixed frequency point.
As S is a real rational transfer function, we have IS(—iw)I = IS(iw)I. We therefore only
consider positive frequencies w. and y are constants with 0 < ö < 1, y> 1.
\Ve can rewrite these criteria by choosing a frequency dependent weighting function W1:

IW1(iw)S(iw)I � 1 Vw >0

with
15_i O<W<Wf3

Wi(3w)=<
1 —

LY Vw>w0

Choosing the weights W1 and W2 is quite an important issue as by designing W1 and W2 we
actually design S and T.

2.1.2 Robust Stability and Performance
Assume that we have constructed a controller K that stabilizes G.
In control theory we always work with models of, for example, a physical system. In practice,
we never have an exact description of the system, we never know the precise value of the
parameters of the model.
Because of this parametric uncertainty we do not only want our controller to stabilize the
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original system G, but also a slightly perturbed system G.
This property is what we call robust stability.

Consider the following set F of perturbed plant transfer functions:

F={G:G=(l+LJV2)G}

where C is the nominal plant transfer function, W2 is a fixed stable weighting function, and
i. is a perturbation, a variable stable transfer function with fl� 1.

This uncertainty model (Multiplicative perturbation) is a disc-like uncertainty model and
LW2 is the normalized plant perturbation away from 1:

A controller K stabilizes C robustly if it stabilizes every O in F.
The next theorem states the robust stability condition1.

Theorem 2.5
K stabilizes C robustly if and only if

W2T j< 1 (2.2)

Another very important feature is performance.
The performance of, for example, a tracking system could be measured by the size of the
tracking error signal. In general, the performance of a system is measured by the sensitivity
function S, and is considered satisfactory if

W1S 1100< 1 (2.3)

where TV1 is a suitable weighting function.

Combining (2.2) and (2.3) gives us a condition for simultaneously achieving performance
and robust stability: (See [1])

max(W1Sj, IW2TI) Ioo< 1 (2.4)

This last inequality which consists of conditions on both S and T leads us to a well-known
problem in H00-control theory, the mixed sensitivity problem, which we discuss in the next
section.

'For explanation and proof see for example [1]
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2.2 The Mixed Sensitivity Problem

The mixed sensitivity problem is defined as:

Find a controller K that stabilizes G and minimizes the H00-norm of

[wis
[W2T

This is a special case of the standard H00 problem and deals with minimizing the weighted
H00-norm of both S and T.

w1s
Although I , I

is equal to
J

sup /IWi(jw)S(jw)I2 + 1W2(jw)T(jw)12 (2.5)
wELt

and this is not exactly the condition for performance and robust stability we stated in the
last section, we have the following inequality (compare (2.4)):

(IWiSI2 + W2TI2) <max(IW1SI, IW2TI) � (IW1SI2 + IW2TI2) (2.6)

Clearly these norms are not the same, but they are equivalent. Moreover, the actual solutions
we obtain solving the optimization problem using different norms have the same qualitative
properties. [1]

By solving the mixed sensitivity problem, we basically use the technique of loop shaping.
We choose appropriate frequency dependent weighting functions W1 and W2 such that if
SI < Wi, TI < W2 the design specifications are met. We now solve the mixed sensitivity

problem with W1 = W1', W2 = W2'.

If we find a stabilizing K such that

Iw1sl
I W2TJ 00<1

the functions ISI and ITI will have the desired characteristics.

One of the factors that makes the problem of simultaneously minimizing the (weighted) S
and T complicated is the following.
If we make S nearly zero (for good disturbance rejection), then T will be nearly one, which
means measurement noise is not filtered out. Conversely, making T small results in S being
nearly one. This means there always is a trade-off between these conflicting requirements.
This problem is partially solved by keeping S and T small in a certain frequency range. This
is illustrated in figure 2.4.
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Figure 2.4: Typical graphs of S and T respectively.

2.3 Standard H Methods
Solving the mixed sensitivity problem standard H methods could be used. There are good
numerical methods to design an optimal H controller (See for example MATLAB : robust
control toolbox).
We now briefly discuss these standard methods.

Suppose that P (see figure 2.5) is partitioned as

rP'1 P12

LP21 P22

Figure 2.5 represents the following algebraic equations:

z = P11w + P12u

y = P21w + P22u

u=Ky

11
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The transfer function of the actual process or plant is the sub matrix P22.
By eliminating y and u and using u = Ky it is easily seen that

z = [P11 + P12K(I — P22K)'P21]w (2.7)

If H is defined as [P11 + P12K(I — P22K)P21], the standard H problem is defined as:

minimize H (2.8)

for all stabilizing K.

Defining C and K as in figure 2.1 and comparing (2.7) with the mixed sensitivity problem
defined in section 2.2. it is easy to deduce we should choose

[w1] 1-WiG]
o j P12__L W2G j P21=I, P22=—G

To use standard H methods it is necessary to design appropriate continuous, rational,stable
weighting functions W1 and 1l2. The plant augmented with these weighting functions forms
the generalized plant.
Now an optimal Hm controller is computed for this generalized plant. The order of the con-
troller obtained by this method is equal to the order of the generalized plant.

Suppose the question is now to solve the mixed sensitivity problem described above, but
the order of the controller is fixed:

Find a compensator K of order k, that stabilizes G and minimizes the H-norm of

1w1s 29W2T (.)
where k is some fixed constant.

This is not an unreasonable assumption, as in practice (i.e., we actually design a controller
for a given physical system), low controllers are preferable, so we fix the order at some low
constant k.
In the remainder of this report we will consider this fixed order mixed sensitivity problem.

We also make the assumption that the weighting functions are defined by frequency de-
pendent bounds derived from the design specifications.
In general these functions are not described by continuous, stable, rational transfer functions.
For example, a design objective for T might be that 2

O<w�wfl

where w E Q = [0,... , a frequency vector.
f3 denotes the sample frequency and 0 < < ff3.

2Discrete-time specifications, for more information about discrete-time systems see [2]
f3 is the Nyquist frequency, see [2]
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To filter out measurement noise T is required to roll off at 2 decade/decade for w � wjj.
This means the slope of the line is —2 on a log-log scale. (See figure 2.6)

To be able to apply standard H methods to this modified design problem, we first have
to fit a continuous, stable, rational transfer function on the bounds on T described above. As
this function is not differentiable at w, it is hard to make a good continuous stable rational
approximation of this function.

Generally speaking, to get a reasonable fit on specification bounds, the order of the fitted
transfer function will be high. As a result, due to these high order weighting functions, the
H optimization results in a very high order controller, approximately of the order of the
plant C plus the order of the weighting functions.
As we required a low order controller, the H design is not practical.
It is of course possible to reduce the order of this high order controller using model reduction
techniques. Obviously, this reduced controller is no longer optimal, and if the desired order is
much smaller than the order of obtained high-order controller, it is even doubtful if this low
order controller still meets the specifications.

The question arises whether there is a more efficient, reliable way of low-order controller
design.

2.4 The Minimax Optimization Method
A possible solution for the problems described in the preceding section is to rewrite the mixed
sensitivity problem as described in (2.9) as a minimax optimization problem.
This is the method currently used at Hollandse Signaalapparaten. One of the advantages is
that it is now possible to do direct low order design.

In general, a minimax problem has the following structure:

mm max F(x,y) such that G(x) � 0 (2.10)
a: y

13
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In this problem F(x) is the goal function, whose maximum, with respect to y, should be
minimized, with respect to x. G(x) is a constraint function.

Let us first try to reformulate the mixed sensitivity problem as a minimax problem. By
comparing (2.9) and (2.10) we obtain the following minimax problem:

mm max /IWi(i,)S(i)I2 + 1W2(iw)T(iw)12 (2.11)
REF E1R

such that K is a stabilizing controller.

r consists of all controllers K of a certain fixed order k. In this ininimax problem the
goal function is the weighted H-norm of S and T and the constraint function is that the
closed loop system is stable.
In section 2.2 we discussed different, but equivalent norms, and we have seen from equation
(2.6) that the following is is an equivalent problem:

mm max {max (lV(jw)S(jw), JW2(jw)T(j)j ) } (2.12)
KEI' wER

such that K is a stabilizing controller.

From now on this optimization criterion will be used to design a sub-optimal controller.

The goal function is:

max {IWiS,IW2TI}=max { w1l 'GK W2lK }
The optimization criterion is now exactly the criterion for simultaneously achieving perfor-
mance and robust stability described in (2.4) instead of (2.5).

The idea of this minimax approach, which we will call the K-optimization method from
now on, is to use the parameters of the controller K as tuning parameters. By varying these
parameters the value of the goal function max(IW1SI, W2Tl) changes.

As in practice the question is to design a digital controller for a discrete time system we
now apply the minimax approach to discrete time systems.
The optimization constraint is that K stabilizes G, so for discrete time systems the constraint
function is that all closed loop eigenvalues have modulus less than one:

I)t(Ad)I < 1

where Ad is the A-matrix of the closed loop system.

Since numerically we can only maximize over a certain grid, we replace w E R by E f,
where ! is a discrete frequency grid.

An essential difference between the K-optimization method used at Signaal and the clas-
sical H approach described in section 2.3 lies in the description of the weighting functions.
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The H methods required continuous, stable, rational weighting functions. Since in practice
we do not know the weighting functions Wi and W2, the weights first have to be constructed.
This fact is, as explained before, a major disadvantage in the standard H algorithms.

In the K-optimization method the weights are represented by a set of discrete frequency
points which determine the upper bounds on S and T. Instead of using continuous weight-
ing functions of the complex variable z = e2", the weighting functions are now designed
graphically on a frequency grid Il of the real variable w.
The idea is to 'draw' the weights directly on the screen, by specifying their magnitude IW1(z)I
and T(z)I. This is illustrated by figure 2.7.

An advantage of this approach is that design specifications can now be directly converted
into weighting functions. So instead of defining weighting functions W1 and W2 of the com-
plex variable z and then taking the absolute value we now directly define (graphically) the
magnitude functions

IW1(z)I := Wi(w)

1W2(z)l := W2(w)

According to these new weighting functions it makes sense to solve the following:

mm max {max ( Wi(w)IS(z),W2(,)jT(z)I ) }KEI' wEf

As a consequence of the description of the weighting functions, there is no need for a contin-
uous stable approximation of the weights and direct low order control design is possible.

The minimax problem described in (2.13) is implemented in MATLAB.
After having fixed a starting estimate of a stabilizing controller of order k, the function MINI-
MAX from the MATLAB Optimization Toolbox is used to optimize the goal function over this
grid of frequency points.

15
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Although the advantage of doing direct low-order design is evident, we also face some difficult
problems.
The set of all stabilizing controllers has quite a complicated structure. It is possible that
varying the parameters of a stabilizing controller slightly may result in a destabilizing con-
troller.
Another problem is that we are optimizing over a non-convex subspace.
Due to the non-convexity of this problem, the algorithm may converge to a local optimum.
Different starting estimations converge to different optima, so we can never tell whether we
found the optimal controller or not.

Because of the complexity of this problem, in the next chapter the possibility of using a
paraineterization of all stabilizing controllers is investigated to simplify the optimization cri-
terion.
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Chapter 3

The Youla Parameterization
Approach

In this chapter we investigate the possibility of using a parameterization of all stabilizing
controllers to solve the minimax optimization problem described in chapter 2. The param-
eterization we use is the famous Youla parameterization. After we have done this we can
rewrite (2.13) as an easier, linear optimization problem.

The idea behind this parameterization is to parameterize all controllers K which stabilize
G, via a parameter matrix Q in MH.

To do this we need some theory about coprime factorizations. By using state space for-
mulas for doubly coprime factorizations of stabilizable systems we find an observer-based
controller which, together with the parameter, Q leads to the Youla parameterization.

3.1 Coprime Factorizations

Let G be a linear, time-invariant, discrete-time SISO system described by:

Xk+1 = Axk+Buk (3.1)

Yk = CXk + DUk (3.2)

I.e. G(z) = C(zI - A)'B + D

Suppose G(z) is stabilizable and detectable.
The fact that C is stabilizable means that there exists a matrix F such that A + BF is stable.
Detectability implies that there exists a matrix H such that A + HG is stable.
For discrete-time systems, a matrix X is stable if and only if all its eigenvalues are inside the
open unit disc V. (IA(X)I < 1)

We now formulate some important definitions and lemmas, without proof.
Proofs and more information about coprime factorizations can be found in for instance [3]
and [4]
All matrices denote matrices whose components are transfer functions.
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Definition 3.1
Two matrices F, C in MHcO are right coprime if they have equal number of columns and
there exist matrices X, Y in MH such that

XF+YG=I
Such an equation is called a Bezout identity.
Two matrices F,G in MH,Q are left coprime if they have equal number of rows and there
exist matrices X, Y in MH such that

FX+GY=I

Lemma 3.2
For each proper real-rational matrix G we can find eight matrices in MH satisfying the
following equations:

G = NM' = M'N (3.3)

1x -Y][MY -I 4L-' iijN x - (3.)

The above equations constitute a doubly coprime factorization of G.

Now define eight functions in MH by:

[ i](z=[, ]+[](ZI_AF)'[B —H] (3.5)

[ ' ] (z) = [ ] + [ j
(zI — AHY' [ —BH H ] (3.6)

where AF = A + BF
A11 =A+HC
CF=C+DF
BH=B+HD.

As mentioned before, AF and AH are assumed to be stable matrices.

Lemma 3.3
The eight functions defined as in (3.5) and (3.6) satisfy (3.3) and (3.4) and therefore consti-
tute a doubly-coprime factorization.

Although we will not prove this lemma, it can be easily shown that
C = NM':
Define a vector vk := Uk — Fxk. Then from (3.1) and (3.2) we get:

= AFXk + BVk

Uk = Fxk+vk
Yk = CFxk+Dvk

18



Evidently the transfer functions from v to y, resp. from v to u are given by:

Therefore

y = NM'u G=NM'

Theorem 3.4 (Youla Parameterization)
Let G have the doubly-coprime factorization given by (3.5) and (3.6).
Assume that det(X — NQ) and det(X — QN) are not identically zero, which guarantees
(X — NQ) and (X — QN) have well-defined inverses.

For Q = 0, we simply have an observer-based controller. So basically this parameteriza-
tion consists of an observer-based stabilizing controller K and a free design parameter Q.
Figure 3.1 represents the observer-based controller K.

Now an arbitrary system Q e MH is connected from the additional output v1 to the addi-
tional input V2, where Q is the Youla parameter.

N= CF(ZI-AF)'B + D
M= F(zI-AF)'B + I

y=Nv
u = Mv

Then the set of all proper, real rational controllers K stabilizing G is given by

K = (Y - MQ)(X - NQ)1 = (t - QN)1(Y - QicI)

where Q is an arbitrary parameter in MH

(3.7)

Figure 3.1 The observer-based controller K.
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Figure 3.2

The block diagram in figure 3.2 shows the resulting stabilizing controller K obtained from
the Youla parameterization.
Figure 3.3 represents the resulting closed loop system.

v'

Figure 3.3 Plant C with stabilizing controller.

3.2 Closed Loop Maps

From now on we use a positive feedback convention as shown in figure 3.4.

Figure 3.4

The beauty of the Youla parameterization lies in the fact that all admissible closed loop maps
are afilne in the parameter Q.
This can be verified by direct substitution, for example

S = (I — GKY' = ((I — NM'(X — — QJcf)y'

= (I - (M - MQN)'(N - NQM))'

20



= ((Mi - MQN)1 (MX - MQN - NY + NQM)Y' (3.8)

From lemma 3.3 we have MX — NY = I and MQN = NQM.
So (3.8) reduces to -

S = M(X — QN) (3.9)

Similarly, we can derive -

T = N(Y - QM) (3.10)

We now substitute (3.9) and (3.10) in our original problem formulated in section 2.4

mm max {max (W1IM()? — Q')I W2IN(Y — QAf) )} (3.11)
QEMH,Q wEfl

The motivation for using the Youla pararneterization is that our goal function is now affine
in Q. and therefore the optimization problem is linear.
Another advantage is that to ensure K stabilizes G, we only need to choose Q MH, so
we are optimizing over a convex subspace.
In other words, this is a better posed optimization problem than the original problem formu-
lated in section 2.4.

3.3 Design Parameter Q
As stated before the idea of the Youla parameterization is to stabilize the plant first by choos-
ing appropriate matrices F and H.
A first attempt was to keep F and H fixed and to modify the stabilized plant by varying the
parameter Q, where Q E MHQ.
Implementation of this principle at the minimax optimization problem turned out not to give
satisfactory results. The reason why this did not work well is given below.

Lemma 3.5
Suppose G has order g and Q has order q.
Then

order(K) = g + q

Proof
This can be easily seen from K = (Y — MQ)(X — NQ)—'

The converse of this lemma is not true:
If K has order k then the corresponding Q does not necessarily have order k — g.
Consequently, varying Q E MH, but keeping the order of Q fixed (as required by the mm-
imax algorithm) does not capture all stabilizing controllers of order g + q.
So once we fix the order of K by fixing the order of Q, we limit the set of kth order stabilizing
controllers.
This is illustrated by counting the tuning parameters of respectively K and Q.
Suppose G(z) is a first order plant and the question is to design a second order proper con-
troller:

K — a2z2 + a1z + ao

— b2z2+biz+1
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As g + q = k = 2 we choose a first order proper Q:

cY2+/3
— z + 1

In this case the number of tuning parameters k of the controller K is 5, while Q has only
three tuning parameters (nq = 3).
In general,

flq=2q+l nk=2k+1 =2(g+q)+1
— 2g

Therefore we may conclude that Q has too few optimization parameters and does not give
you a full parameterization of all kth order stabilizing controllers.
Obviously this method fails to find the optimal controller, so we tried a second approach.

3.4 Design Parameters Q, F and H
To compensate the fact that, when varying Q alone, the number of optimization parameters
is too few, F and H are also considered as optimization parameters.
F and H each consist of g parameters where g is the order of G(z). The total number of
parameters is now

flq + 2g =

The number of optimization parameters is now equal to k, the number of parameters when
optimizing over K. So this could give us a full parameterization of all kth order stabilizing
controllers.
Whether or not this is the case remains an open question. Our numerical results indicate that
it does provide us with a sufficiently rich class of kth order controllers for our applications.
This concept will be implemented in MATLAB to perform the Minimax optimization.

Implementation

In this section an outline of the program' using Minimax from the MATLAB Optimization
Toolbox is given.

Using Q, F and H as design parameters, The minimax problem is the following:

mm max {max (W1M( — Q')I W2IN(Y — QM)I )} (3.12)
Q,F,H wEI

where Q MH and F, H are such that respectively AF and AH are stable.

The goal function

The goal function calculates the frequency responses of

(W1IM(X — QN)I,W2IN(' — QM)I) for w E Q

'See also Appendix B
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for a given vector x where x contains the parameters of respectively F, H and Q in state
space representation.
For example if G is a second order plant, we have F = Eli 12] and H = [hi h2JT.

Suppose that the algorithm is started with a second order Q:

A
ai a b1

= [ ] = a3 a b2 (3.13)
q

C1 C2 d

This representation of Q is an overparameterization of Q represented as a transfer function.
This can be seen by counting the number of parameters:
In state space representation this second order Q has nine optimization parameters, whereas
in transfer function representation a second order Q has only five parameters. (See section
3.3)
Why we use this state space representation is explained below in the section parameter re-
duction.
The vector x is defined as [Ii 12 h1 h2 ai a3 c1 a2 a4 C2 b1 b2 d].

f2 is a discrete frequency grid, which should be chosen dense enough to prevent S and T
from having a peak value between two frequency points.

The goal function also computes the constraint function.
To guarantee stability of the closed loop system Q has to be in MH. i.e., IA(Aq)I < 1, where
Aq is the A matrix of the parameter Q.
We also have (from the Youla parameterization)

IA(AF)I <1 IA(AH)I <1

To construct the necessary coprime factorizations the formulas given in (3.5) and (3.6) are
implemented.
To get a reasonable starting estimate of F and H such that AF and AH are stable, the
function 'dlqr' from the Control Toolbox is used. This function performs linear-quadratic
regulator design for discrete-time systems and calculates the optimal gain matrix F such that
the state-feedback law k = —Fxk minimizes the cost function J = >(xTQx + uTRu).

• The gradient function

Minimax uses line and gradient search to find the optimum. In general, gradient meth-
ods use information about the slope of the function to determine the correct search direction.
If no gradient function is provided, the calculation of these gradients is performed numerically
by finite difference approximation.
To improve accurateness and efficiency an analytically computed gradient function can be
supplied by the user.
This gradient function computes the gradients of the objective function with respect to the
optimization parameters.
In this case, the gradient function calculates the partial derivatives of W1ISI and W2ITI with
respect to the elements of F, H and Q.
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It also calculates the gradient of the constraint. Because the singular values of a matrix are
continuous and eigenvalues are not, we use the following:

lirn a(AP) = i

where a denotes the largest singular value.
So if 4'/a(AP) < 1 for p large enough, A is stable.

• Parameter reduction

As described iii the preceding section, the number of parameters of a qth order Q repre-
semited as a transfer function is equal to 2q+ 1. The system is completely determined by these
parameters.
Using MATLAB it is not recommended to use transfer function representations as they have
poor numerical properties.
Therefore the vector x contains Q in state space representation. In state space representation,
Q contains (q + 1)2 parameters. (see for instance (3.13) for q = 2)

This means there are (q + 1)2 — (2q + 1) = q2 parameters too many when Q is given in state
space form.

The idea is now to reduce the original set of parameters given by the vector x to a smaller,
reduced set of parameters. The resulting reduced vector Xred contains all important search
directions.
The non reduced vector x contains (q + 1)2 + 2g parameters where g denotes the order of the
plant G.
To reduce the set of parameters a singular value decomposition2 of the gradient of the goal
function is used:

Vf(xo)=USVT= [U1 U2] ['
52] [] (3.14)

S is partitioned in two blocks S1 and S2 where S1 has dimension 2q + 1 + 2g and 52 has
dimension q2.
From this singular value decomposition we can derive the principal directions of the gradient.

2S Appendix A
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It turns out that S2 is equal to zero.
This means that there are only 2q + 1 + 2g important directions, exactly the number of
parameters which we expected from the transfer function representation. Varying x in the
other directions has no influence on the value of the goal function.
Suppose we start the optimization routine with x = x0.
Then from (3.14) we have

Vf(xo) = U1 S1 V

Suppose now
TiS = X + V10 5red

where 5red has dimension 2q + 1 + 2g, then

f(s) = f(xo + V1SI'xred) f(50) + Vf(XO)V1Si'Xred = f(xo) + UlXred

f(xo) is a constant vector and f(s) is now a function of the reduced vector 5red The opti-
mization procedure is now performed for the reduced set of parameters given by 5red•

As the 2q + 1 + 2g directions we found depend on o, the singular value decomposition
of the gradient is done again whenever mast xt — redI > /3 where /3 is a bound and x is
the optimized 5,ed obtained from the minimax algorithm.
The bound /3 is determined by numerical experiment. If /3 is chosen too large, the singular
value decomposition is no longer valid. On the other hand, if /3 is too small, the algorithm
converges very slowly.
The transformation V1Sj' is used to find the resulting (unreduced) vector x.
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Chapter 4

Sub-optimal Design

In this chapter the application of the method described in section 3.4 is illustrated by solving
the minimax optimization problem for a concrete system. By studying a design example all
the aspects treated in the preceding chapters, such as loop shaping and performance are used
to find a sub-optimal low order controller.

Finally the Youla approach is compared with the already existing K-optimization method
at Signaal discussed in section 2.4.

4.1 A design example:
The double integrator

The double integrator is described by the following differential equation:

d2J=u (4.1)

Physically, this equation represents Newtons second law:

F = ma

where F represents the force, a is the acceleration and m is a mass, which is set to one in
equation (4.1).
Using the Laplace transform, (4.1) , with zero initial conditions (,(O) = y(O) = 0), we obtain
the transfer function:

u(s) s2

If we define the state vector x as

x := I 1 1 = I I

[X2j [Y

where y is the position and i is the velocity, (4.1) is equivalent to the following state space
representation:
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=[ ]x+[?]u (4.2)

y=[1 O]x (4.3)

As we are considering discrete time systems, we use the z-transform to rewrite (4.3) and (4.4)
as a discrete time system, with sampling time 1.

Ii ii 10.5
Xk+1

= L 1 j
Xk +

L
1

Uk (4.4)

Yk[1 O}xk (4.5)

As the eigenvalues of the A-matrix of this system are equal to 1, the system has two poles on
the unity circle, which means the system is unstable.

4.1.1 Design of a third order controller
Suppose we have the following problem:

• Find a sub-optimal, proper, third order controller which stabilizes the system described
above, sampled at a sample frequency of 1000 Hz.

Our first aim is to find appropriate initial values for the parameters Q, F and H which form
an initial stabilizing 'controller' K0. After this is done the optimization algorithm described
in section 3.4 is used to design a sub-optimal stabilizing controller.

We have performed many designs of a controller with the algorithm using different initial
estimates. We first give the results obtained when using an (arbitrary) initial estimate of the
parameters Q, F and H.

As the order of the controller is equal to the order of the plant(= 2) plus the order of Q, the
optimization algorithm is started with a stable Q of order one.
We choose'

Qo = [0.1 9 8 —2].

Since the A-matrix of this Qo is equal to 0.1, and 10.11 < 1 Qo belongs to H.
To determine F0 and H0 we have to choose values for r and r2. These variables are used by
the function 'dlqr' from the Control Toolbox.
For example if we choose r1 = 10000, 'dlqr' calculates the optimal gain matrix F0 such that
the state-feedback law Uk = —FOxk minimizes the cost function J = (xTQx±uTr,u), where
Q is set to 1.
This results in

F0 = [—0.0093 — 0.1368], IA(A + BF0)I
= { ]

'for explanation see section 3.4 and Appendix B.
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hi a similar way, the variable r2 determines H0. Choosing r2 = 10000 corresponds with

1 —0.1415 1 1 0.9315
H0

= L —0.0093 ]
' IA(A + H0C)l

= [ 0.9315

We now design the weighting functions.

As described in section 3.4, the design is done graphically. Of course there are many possible
designs. depending on the choice of the specification bounds. In this example the following
specifications are used:
For good tracking performance we choose a closed loop bandwidth w of 20 Hz. Up to this
frequency the system will respond well to a reference signal.
Above this frequency we let the weight for T roll off at 2 decade/decade to reduce the
influence of measurement noise and to guarantee robust stability.

The algorithm converges, and a sub-optimal third order, stable controller is found:

— —0.03963z3 + 0.07451z2 — 0.03173z — 0.003173
K1

— z3 — 0.9847z2 — 0.5546z + 0.5429
(4.6)

The corresponding complementary sensitivity function is:

T — 0.01981z4 — 0.01744z3 — 0.02139z2 + 0.01745z + 0.001587
1

— z5 — 2.965z4 + 2.397z3 + 0.646z2 — 1.623z + 0.5445
(4.7)

The resulting sub-optimal controller K1 is now substituted in the optimization criterion
max{W1JSJ, W2ITI}. We define the corresponding /A-value as the maximum of this opti-
mization criterion evaluated with the obtained sub-optimal controller on the grid ft
In this case we have, for K1:

max{max(Wi jS1, WTi)} = 0.9220 (4.8)

Furthermore, as the value of j is smaller than one, we have:

IS1I<Wi, IT1I<W2,

so the design specifications are met.

The peak value of the sensitivity function IS1I is equal to 1.2821. The peak value of the
complementary sensitivity function IT1

I
is 1.3069, which represents the maximum gain of a

signal.
In figure 4.1 the weighting functions and the optimized S and T are shown.

In this figure, the straight lines are the weighting functions.
The sensitivity function S is the curved line, increasing to one. The complementary sensitivity
T is the curved line which starts at one for low frequencies and rolls off for frequencies
w�w=20.
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Figure 4.1: S and T after optimization.

The step response of the optimized closed ioop system is drawn in figure 4.2.
The overshoot is small and the settling time is only 0.1 seconds.(i.e., the output of the system
settles down to its steady state value 1 in 0.1 sec.)

Figure 4.2: Step response of the optimal system, sampled at 1000 Hz.

The value of p given above is in fact the smallest value for p we found using the algorithm
for this design example.
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When we start with different initial estimates the algorithm may converge to different, local
optima. This illustrated by table 4.1. This table gives the obtained results with respect to p
when the algorithm was started with six different initial estimates for Qo, r1 and r2.

[ Qo r1 r2 p
0.1 9 8 —2] 10000 10000 0.9220

—0.9 9 8 —2] 1000 1000 0.9223
0.1 9 8 —2] 1000 1000 0.9788
0.5 5 10 6] 1000 1000 0.9222
0.5 5 10 6] 1000 10000 0.9304
0.8 3 4 5] 10000 10000 0.9222

Table 4.1

We see that, except for one case, the variations in p are small.
Although these variations are small, due to the non-convexity of this optimization problem,
the possibility of converging to a local optimum always exists.
It is therefore recommendable to perform more than one design using different initial esti-
mates.

4.1.2 Designing higher order controllers

After comparing different third order controllers, higher order controllers are compared with
the third order controller K1 found in (4.6).
Increasing the order k of the controller by increasing the order q of the Q-parameter results
in slightly smaller values for p:

7 k q I max(S) I max(T) I
K1 3 1 0.9220 1.2821 1.3069
K2 4 2 0.9184 1.2768 1.3015
K3 5 3 0.9180 1.2761 1.3008

Table 4.2
k,q :orderofresp. KandQ.
p : p-value after Youla-optimization.

The resulting fourth (K2) and fifth (K3) order sub-optimal controllers are:

—0.044hz4 + 0.07856z3 — 0.02225z2 — 0.01651z + 0.004285K2
= — 0.7393z3 — 0.9968z2 + 0.7384z + 0.001201

—0.04389z5 + 0.1201z4 — 0.1025z3 + 0.01526z2 + 0.01583z — 0.004763K3
= z5 — 1.703z4 — 0.1452z3 + 1.594z2 — 0.8414z + 0.09616
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K2 was found by using the initial estimate: Qo = [0.1 0 2 3 0.2 3 4 5 6] and r1 = r2 = 100000.
ForK3 weusedQo={—0.800590.106970.99432 l],ri=r2=l000.
Table 4.2 only gives the best results for p. As described above, different initial values for Qo,
r1 and r2 may converge to different optima.

4.2 Results:
Youla compared with K-optimization

In this section the results obtained in table 4.2 are compared with the results obtained when
using minimax optimization for the original problem as described in section 2.4, the K-
optimization metl1od used at Signaal.

As both algorithms may find local optima and in some case do not even converge, the algo-
rithms were tested with several starting estimates.
In the original K-optimization problem, used at Signaal, the algorithm was tested with several
estimates for K0. The starting estimates Qo, F0 and H0 of the Youla optimization method
were also varied to find a sub-optimal controller.
The best results, with respect to the value for p are given in table 4.3.

kIq Py1a Pk
I

3 1 0.9220 0.9303
4 2 0.9184 0.9222
5 3 0.9180 0.9222

Table 4.3
k , q order of resp. K and Q.

iUyoula : p-values after resp. K and Youla-optimization.

Table 4.3 shows that the values for p using the Youla parameterization are slightly smaller
than the values for Pk, which means the sub-optimal controllers we obtained from the Youla
optimization are slightly better then the sub-optimal controllers resulting from K-optimization.
The variations in Pyoizla are small, for k = 4 and k = 5 we always have Pyoula <0.93.

One of the advantages of the method using Youla is the following fact:
The algorithm appears to be less sensitive to variations in the initial estimate. Even if the
initial values of the sensitivity function So and complementary sensitivity function T0 are far
above the the desired Wj' and W' (i.e., p is large), the algorithm does converge quickly to
the optimal controller.

The algorithm used at Signaal requires a good starting guess for the initial estimate K0. This
K0 is designed by defining the poles and zeros of So and T0.
If Pk is large for K0, the algorithm converges slowly and the optimum found is often a local
optimum.
This is illustrated by the following example.
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First an arbitrary stable (required for K-optimization) initial K0 was designed. Then both
algorithms were started with this K0.
Table 4.4 shows the results.

I
/10

I
/1k

I
Nk

I
/1youla

I
Nyouia

7.3475 0.9842 90 0.9222 54

5.7194 0.9841 154 0.9222 31

initial value of z.
p-values after resp. K and You/a-optimization.
Number of iterations used in the optimization procedure for
resp. K and Yonla-optimization.

Obviously the optimum 1k is a local optimum, as the optimum /1y1a is smaller than /1k,
whereas the number of iterations Nk to find this local optimum is larger than Nyia.

In figure 4.3 S0 and T0 (left) and the resulting S and using Youla, (right) are shown.
Figure 4.4 demonstrates the difference between the weighted S and T obtained from respec-
tively K- and Youla-optimization.

Table 4.4
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4.3 Conclusions

Although the direct low-order design by the minimax optimization method evidently has
some important advantages, the resulting K-optimization problem is a non-convex, complex
problem.

By using the Youla parameterization, the problem was rewritten as a better posed opti-
mization problem.
Considering Q as the only optimization parameter did result in a convex optimization prob-
lem. Unfortunately, fixing the order of Q, reduced the set of stabilizing controllers and did
not provide us with a full paraineterization of all stabilizing controllers of a given order.
\Ve therefore introduced the feedback matrices F and H as additional optimization parame-
ters.
Whether or not this actually gives us a full parameterization of all stabilizing controllers of a
fixed order k would be an interesting issue for further research.
The numerical results do in fact indicate that the obtained class of kth order stabilizing con-
trollers is sufficiently rich for our purposes.

Compared with the original K-optimization method, the Youla optimization method results
in slightly smaller (i.e. better) values for the optimization criterion

max{max(W1ISI, W2ITI)}Er
Another advantage is that the algorithm seems to be less sensitive for variations in the initial
estimate of a stabilizing controller.
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Appendix A

Singular Value Decomposition

A useful tool in matrix analysis is singular value decomposition. The following theorem
states that every matrix A in has a singular value decomposition.

Theorem
Let A E RXfl. There exist unitary' matrices

rr r 1 lmmxmU = LU1,U2 ,tLmJ Eii

1 lmnXn
V — ,VmJ E IL

such that
A=UEVT, E=[El 0]

where
a1 0 ... 0

0 a2 ... 0

0 0 ...
and

a1 � 02 � � a, � 0, p min{m, n}

Proof
See for example [5]

The largest singular value of A is often denoted as

U(A) = a, = a1

From a geometrical point of view, the singular values of a matrix A are precisely the lengths
of the semi-axes of the hyperellipsoid E defined by £ = {y y = Ax, x E C's, lixil = 1).
This means v is the direction in which fly is largest for all lixil. Conversely, vi-, is the direc-
tion in which IIfl is smallest for all lix II.

This principle is applied in the parameter reduction method (section 3.4) to find the principal
directions of the gradient of the goal function.

IUTU = I = UUT
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Appendix B

Program Description

In section 3.4 a description of the implementation of the minimax method has been given.
This method is implemented in MATLAB. The optimization procedure is performed in the
program Optimize. The structure and subroutines of Optimize are discussed in this ap-
pendix.

OPTIMIZE

Given a system [A, B, C, D], a starting estimate for the parameters Q , F and H and weight-
ing functions wi and w2 on a discrete frequency grid z, this function calculates a sub-optimal
low-order controller for the mixed sensitivity problem. The main routine used in this program
is minimax from the MATLAB Optimization Toolbox.

MINIMAX

The MATLAB function minimax is a numerical search algorithm which uses goalfwi_red
and gradfun_red to calculate the optimal vector FHQ_opt which contains F_opt, H_opt and
Q_opt.
Syntax: FHQ_opt = minimax('goalfi.m_red', FHQ_red, 'gradfun_red')
The vector FHQ_red contains the reduced parameter set for F, H and Q.

GOALFUNRED

Goal function for minimax optimization which calculates frequency response of the weighted
sensitivity function S and complementary sensitivity function T for the reduced parameter
set FHQ_red on a given discrete frequency grid z, where

S=M(X-NQ), T=N(Y-QM)

This function calls coprimef actor to calculate the necessary coprime factors.

GRADFUNRED

The function gradfun_red computes the derivatives of the weighted sensitivity function S
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and the weighted complementary sensitivity function T with respect to the reduced set of
optimization parameters FHQ_red.

COPRIMEFACTOR

This function calculates the frequency responses of a doubly coprime factorization for a given
discrete-time system G = (A, B, C, D) and matrices F and H such that

G(z) = N(z)M(zY' = z)'I(z)
and fX —Y][MY —IL-' JCIflN X -
Coprimefactor uses the functions described in equations (3.5) and (3.6).

TRANSFORMATION

The function transformation computes the transformation matrix trans = V1Sj' needed
for the parameter reduction method as described in section 3.4.
This transformation matrix is used to calculate the reduced vector FHQ_red from the original
full parameter set FHQ before the optimization procedure is started. Minimax then computes
the reduced optimal vector FHQ_opt which is then transformed back to the non-reduced op-
timal vector.
This function calls gradf unction which computes derivatives of the weighted sensitivity func-
tion S and the weighted complementary sensitivity function T with respect to the full set of
optimization parameters FHQ.

MAKECONTR

Makecontr calculates the transfer function of the optimal controller contr_opt from the
parameters F_opt, H_opt and Q_opt resulting from the minimax optimization.
To do this we use

K = (Y - MQ)(X - NQ)1
(See theorem 3.4: The Youla parameterization)
It also computes the resulting closed loop system sysciosed_opt (T), and the sensitivity
function S_opt.

GRAPH

Given a system C = (A, B, C, D) and a vector FHQ containing F, H and Q, this function
plots the graphs of S and T together with the weighting functions vi and v2 on a log-log
scale.
The function coprimef actor is used to calculate the necessary coprime factors.
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