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Preface
This paper has been written as a master thesis to complete my study at the
mathematics department of the University of Groningen.

I studied the problem of similarity to contractions, which has been studied be-
fore by a lot of mathematicians. So it wasn't difficult to collect enough data
about this subject.

In the first chapter I have enumerated some important results of this century
followed by a few examples of applying these results. The most important result
is Paulsen's theorem about completely polynomially boundedness. That's why
I proved this theorem in Chapter 2.

Of course, I supposed that the reader of this essay knows something about
Hubert and Banach spaces but I tried to be as complete as possible.

I wish to thank Prof.dr.ir. A. Dijksma for his enthousiastic supervision and the
time he spent on this subject.

I hope you'll enjoy reading this essay.
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Chapter 1
This essay is about similarity to contractions. The problem is as follows:

When is an operator in a Hubert space similar to a contraction in a Hubert
space?

The question is easy but the answer is quite difficult. There have already been
many mathematicians who studied this problem and there have been found some
elegant results.

1.1 Results

First we have to explain what we mean by similarity to an operator and what
is called a contraction. All operators are considered in the same Hilbert space
(7L, (.,.)) and are bounded.

Definition 1.1: An operator T in IL is called similar to an operator T1 in IL
if there exists an invertible operator S : Ii — IL such that T = ST1S'.
By the notation T — T1 we will mean that T is similar to the operator T1.

Definition 1.2: An operator C in IL is called a contraction if C 1.

There is an equivalent statement:

Theorem 1.3: Let T : IL '— IL be an operator. The operator T is similar to
a contraction if there is an equivalent Hilbertian norm for which T is a
contraction.

Proof: (=) Let T C with C a contraction. Then there exists an invertible
operator S : IL '-* IL such that T = S-'CS. Define [u,v) = (Su, Sv). This
is an inner product and =11 Su 112 < II S 11211 u 112 so S II

hull.
Also follows II u = S'Su 112 < II S' 11211 Si.i 112 = II S' 112 so
u < S'

Together these results show and are equivalent norms and
(IL, (.,.)) is a Hilbert space implies that (IL, []) is also a Hubert space.
It remains to show that T is a contraction on (IL, [,.]). This is easy to
see:

[S'CSu,S'CSu]
= (CSu, CSu) (Su, Su) = [U, u]

=

[u, v] is an inner produkt on ii, continu in both variables:
I

[u,v] 12� M2 u v I. Riesz Lemma tells us that there is a
G e B(IL) such that

[u,v] = (Gu,v)

C is invertible and > 0:

(Gu,u) = [u,u] � 0
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so G is injective andG> 0.
(Gu,v) = [u,v] = [v,u] = (Gv,u) = (u,Gv) = (Gu,v) so G = G*.
Take vJsanG then : 0 = (Gu,v) = [u,vJ Vu which implies that v = 0
and Fi1G =
We claim that ifGx — y then ye ranG i.e. 3 xc 1I such that y = Gx
which means that G is surjective. This is proved as follows:
If Gx —* y then Gx is Cauchy: Vv (Gx — Gxm,V) -4 0 if n,m —+ 00.
But (Gx — GXm, v) = [x — Zm, v] and then the theorem about weak
convergence says z,, — x in 11 and Gx — Gx. Since also Gx — y
follows Gx = y.
Now we take S = G"2. Given is that T is a contraction with respect
to {., .]. Define C = G"2TG"2 then T C and C is a contraction on
(7, (., )):

(Cx, Cx) = (G"2TG"2x, G112TG"2x)
= (GTG'/2x, TG'/2x) = [TG'/2x, TG- '/2x]

< [G'/2x, G'/2xJ = (GG'/2x, G'/2x)
= (G'/2GG'/2x,x) = (x,x)

In the history three notions play an important role:

Definition 1.4: An operator T is called power bounded (p.b.) if 3 M such that
for all n � 0

IIT"II� M

Definition 1.5: An operator T is called polynomially bounded (pol.b.) if 3 M �
0 such that V polynomials p(z)

IIp(T) < M sup Ip(z) I = M sup Ip(z) I
IzI=1 izt1

where the equality follows by the maximum modulus principle.

Definition 1.6: An operator T is called completely polynomially bounded (c.pol.
b.) if 3 M such that Vn and Vn x n matrices P(z) = (P)_.1 with poly-
nomial entries

P(T) IIB(1) < M sup II P(z) IIB(C')
IzI1

where 1L is the Hubert space {x
= (

:'

)
,x e IL) with inner product

f
(x,y)=I'

II P(T)h IIP(T) !lB(N) = 5U

and V z e II) = {x I I x 1}, II P(z) IIB(C') =
IIF(ZZII where

II lie is the Euclidian norm in C's.
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Remark: Completely polynomially boundedness = polynomially bounded-
ness power boundedness. Indeed the first implication follows by taking
n = 1 and the second by considering the polynomials p(z) = z'.

These definitions lead us to three theorems:

Theorem 1.7: If T is similar to a contraction C, then T is p.b..

Theorem 1.8: If T is similar to a contraction C, then T is pol.b..

Theorem 1.9: If T is similar to a contraction C, then T is c.pol.b..

By the above remark Theorems 1.7 and 1.8 follow from Theorem 1.9, but we
shall prove each theorem separately.

Proof of Theorem 1.7: This is easy to see:
T C means there is S such that T = SCS' hence T' = SC'S—' and

II 1" 11=11 SC.'S' S liii C" fill S' II
< S liii S' C II" < S liii S' "In = 0, 1,2,

which means that II T'2 fi<fi S liii S 11= Al V n.

Proof of Theorem 1.8: This is an application of von Neumann's inequality
which is the following:
if C a contraction in 11 then V polynomials p(z)

llp(C) 11< sup Ip(z) I
IzI=i

The proof is included in Appendix A. T is similar to a contraction C so
there is an S such that T = SCS' hence p(T) = Sp(C)S' and

p(T) < II 1111 p(C) liii 5—' II

S Ill s_ill sup11=1 I
p(z)

I
Al' sup12_1 I p(z)

I

with M =11 S iiii s—ill.

Proof of Theorem 1.9: By the dilation theorem (see Appendix A) there is a
unitary operator U on a Hilbert space 1t ?L such that U is a unitary
dilation of T.

Let us denote by C (resp. .A(D)) the space of all continuous functions on
011), C = {f : Oil) e- C I f(z) cont } (resp. the closed linear span in
C of the functions {e"t

I
n � 0}, A(D) = closure{> _o a,,e1"

I
k =

0,1,2,...a e C} ). We equip C (or A(D)) with the sup norm which we
denote by II lI,: I 1= sup1,

I 1(z) I. Note that A(D) is a subalgebra
of C, it is called the disc algebra.

C is a C-algebra (see Appendix B).
f C can be identified with the multiplication operator Mj : L2(OD) —*
L2(OD), Mju = fu and N. Young [11] proved that there holds

Lemma 1: Il f lI = II M1 llB(L2(8D).
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F e M(C) = {F = (f,)=1 e C} can be interpreted as the linear
map F: (L2(OD))' '—p (L2(OD))' given by (Fit)2 = M1,u,, I =

1,...,n, where u
= (

:'

)
(L2(OD))hz. With this interpretation M(C)

becomes a C'-algebra with norm

V fr (F(e*c))u(eic) ll d'
F liB((L2(8D))) = SU

(L2(OD))" ./1 f2W u(e'P) ft d

where lie again is the Euclidian norm in C' like in Definition 1.6.

Lemma 2: Ii F llB(L2(OD))_< SUP,€IO2,r] Ii (F(e1')) IIB(C')
= sup1_1 II (F(z)) liB(C')

Proof: Ii
(F(e*))tt(e*) ll < F(e) llB(C')l u(e') iI

< sup11 II (F(z)) IIB(C') II u(e) li.

II F IlB((L2(oD)))

sup12 II (F(z)) llB(c") f" u(e'c°) Il d,
� sup

tL0 f u(e"°) ll d
= sup (F(z)) llB(C)

IzI=1

Let U B(fl) be unitary. The polynomials p(z, 2) in z and 2 are dense in
C (Stone-Weierstrafl).
uu : p(z, 2) '-+ p(U, U') is linear and bounded and we have uu(pq) =
uu(p)uu(q), uu(P) = (uu(p))'
Boundedness follows from:

(*) tLu(p(z, 2)) II = II p(U, U) IIB(fl) � sup I p(z, 2) I
IzI=1

(because U = f' eitdEt, U" = j entdEt, U" = J' e_inhdEt, so
II p(U, U') Ii = II f"p(e'°,e"°)dEg II � sup,11 lp(z,2) I).
So if p(z, 2) —+ 1(z) in C then p(U, U') is convergent in B(7L). Indeed be-
cause (*) II p(U, U') pm(U,U') llB()� SU)111 IPn(Z,2)Pm(Z,2) 1<
e V n, m N(e) (p,, —p f) so p(U, U') is Cauchy in B(li) and B(1L)
is complete so p(U, U') is convergent. We define

(**) 1(U) = lim p(U,U') in B(1-L)
n—p

We obtain a *-representation

uu : C '-+ B(11)
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with uu(f) = 1(U) such that uu(J) = uu(f)* and uu(fg) = uu(f)uu(g).
This is checked as follows:

_____

uu(J) = uu(lim,) = limn_,p(z,E). = >akjU*kUJ =
(>akjUkU*i)* = (1imn..,,op(z,)I = (uu(1imn.,p))* =
uu(f) and
uu(fg) = = Iimn...uu(pnqn) = lim
uu(pn)uu(qn) uu(f)uu(g) and this defines a *-representation on C(OD)
(see Appendix B).
About *-representations we have the following Lemma:

Lemma 3: Let p: A B(1L) be a *-representation on a C-algebra A
and assume A has a unit. Then necessarily p II = sup00 A

IIP1l(
< 1.

For the proof see Appendix B.

Now to matrices.
Let Üu: M(C) i-+ B(L) be defined by

= F(U) = (f1(U))_1 (F(z) =
We have seen on page 6 that M(C) is a C*algebra. ÜU is a *-representation
sollüull< 1 or

II F(U) IIB(1i) � II F IIB((L2(aD)).) < sup II (f1,(z)) IIB(C")
IzI=i

(II u sup IIüu(F)II = sup IFW)II < 1).
What we wanted to prove is if T B(1L) and T C where C is a con-
traction then T is completely polynomially bounded (c.pol.b.) i.e.
3 M such that for all n and all n x n matrices P = (P13) with polynomial
entries we have

P(T) IIB(fln) S At sup II P(z) IIB(C')
IzI�l

This can be proved as follows:
s—i

P(T) = (P1(T))1 = (P11(S'CS))1 =
s—I

(P22(C)) ( ) and by the dilation theorem (C = PU) this

becomes
S / P, / S

=
I

I P(U) lB(7.)
I

s—' k k s

Then II P(T) II II s—ill .1. II P(U)IB (fl) lilt S II S' liii P,(U) II

S . We have proved above F(U) < sup1..1 (f11(z)) llB(c') and
we apply this result to F = P.
So we get P(T) S S sup1511 (P11(z)) llB(c).
If we define M : S'llll S we see that T is c.pol.b..

Now we go back to the history of similarity to contractions.

Already in 1946 B. Sz.-Nagy proved the following theorem:
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Theorem 1.10: Let T be a linear transformation in Hubert space 11 such that
its powers T' (n = 0, ±1, ±2,...) are defined everywhere in Ii and are
uniformly bounded, i.e. T k for some constant k. Then there
exists a selfadjoint transformation Q such that

< Q < kI

and QTQ' is a unitary transformation.

This means that T is similar to a unitary operator U. The question arises:

What remains if only half of the condition holds, T is p.b.?

T is not similar to a unitary operator, because then T' is similar to a unitary
operator which means T and T' are p.b.. B.Sz.-Nagy proved that if T is p.b.
and compact then T is similar to a contraction. So with some extra conditions
T is similar to a contraction. However if T only is p.b., it does not hold in
general. In 1964 S.R. Foguel gave an example of an operator, in a Hilbert
space, with uniformly bounded powers which is not similar to a contraction [3]
so the converse of Theorem 1.7 does not hold in general.

Lebow showed that Foguel's example is not polynomially bounded. This lead
P.R. Halmos to ask in [2] (problem 6) the following question:

Is every polynomially bounded operator similar to a contraction?

The answer is no. In 1997 G. Pisier gave a very complicated example of a
polynomially bounded operator which is not similar to a contraction [6]. So the
converse of Theorem 1.8 is not true either.

However the converse of Theorem 1.9 is true. In 1984 V.1. Paulsen was the first
who proved this converse [4]. In 1996 G. Pisier gave a different proof [9]. This
is included in Chapter 2.

1.2 Examples

Now we go back to Theorem 1.7. There are some interesting cases for which the
converse is true. For the first example we recall Theorem 1.10.

Example 1: Let 1L, be Hilbert spaces and T e B(7i). Then W e B(G) is
called a dilation of T if
(a) 1L c G is a closed subspace
(b) T' = PNW1T2 V n � 0. This is equivalent with: there exist 2 Hubert
spaces Ui and 112 such that

1W11 * * \ f1-I\ 11Ii
W 0 T * 1:1 11 Ii

\ 0 0 W22) k21 1L2
andg =
Now the following statements are equivalent:
(i) T C with C a contraction
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(ii) 3 dilation W of T with W invertible and W and W are power
bounded.
(i) (ii) T C means BS such that T = S1CS. The dilation theorem
in Appendix A tells us that C has a unitary dilation U or in other words

(U11 * * \ / U11 * *

C=Pij( 0 C * withU=I 0 C *

0 U22J \ 0 0 U22

Then define

/1 0 o\ (U11 * * \ /1 0 0w=fo S—' o( 0 C * 110 SO
\o 0 i)\ 0 0 U22J\o 01
/ U11 * * \ (U11 * *

=1 0 S'CS * 1=1 0 T *

\ 0 0 u221 \ 0 0 U22

so W is a dilation of T.
As you can see W is invertible and

II 0 o\ II 0 0

= 1
0 S—1 0

1 1
0 S 0'0 0 iJ \o 0 I

U <M so W' <N which means that U' and W' are power
bounded.
(ii) = (i). Let W be a dilation of T with W invertible and W and W'
are power bounded. By Theorem 1.10 there is a selfadjoint operator Q
such that Ii = QWQ is a unitary transformation and I � Q � kI
or in other words II' is similar to a unitary operator U on

W = Q'UQ

'is a dilation of T so there exist 2 Hilbert spaces 1 and IL2 such that

* *\ f1ii\ (1.Li
W=I 0 T * 1:1 IL J.—( IL

\o 0 *J \2J \1.L2

andQ = N1Ef1iIL2.Then

( ; ) = Q1UQ1,(1,

We define Ql : iL1 IL i- ranQj. Then U maps ranQi into
itself and Qj Q' : ranQ1 -+ 111 IL so we have

( ;)= Qi'UiQi:( )+()
where U1 := UIr.flQi is an isometry. We see that T = QtUlQjIH hence
T* = (QjUlQlIH) = (QUQ)r = QUr(Qflr1. Let Q2 = (Q)
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1-1 '—* ranQ2 then Q2T* = UrQ2 implies that 1'2 := U1Q is a con-
traction from ran Q2 into itself and we have T* = Q1T2Q2. Finally, let
Q2 = Uo I Q2 I be the polar decomposition of Q2 where Uo is unitary
and I Q� acts on fl. Then T* =1 Q2 L' UT2U0 I Q� I and if we set
S =1 Q2 and T0 = UTU0 we see that T0 is a contration on 1 and so
T = S'T0S is similar to a contraction.

Example 2: Let T in ('IL, (•,)) be expansive, i.e. Tx II�Il x and let C be a
contraction. Then T C T is p.b. and C is isometric.
(=) is always true (see Theorem 1.7).
(4) II x 112�II Tx 112� 112� 112 and T'x II is
an increasing sequence bounded from above so lim Tzx exists.
Define [x, y] = lim,0 (T'1x, Toy) . The polarisation formula shows that
this limit exists:

(T"x, Toy) = II T'(x + k) 112 <

[x, y] is in fact an inner product and and liii are equivalent norms:

urn II T"x 112 < ji,jr 112
n—,00

and
lim T'x 112 > x 112

n—,00

(II T'3x is increasing, take n = 0).
Also follows [Tx,Tx] = limflO II T'Tx 112= lim, Tx 112= [x,x]
which means that for the norm T is a contraction and isometric. By
Theorem 1.3 it follows that for the norm li T is similar to a contraction
which we wanted to prove.

Example 3: Let T B(1-L) be a Jordan matrix in C".
Then T .-.' C T is p.b.
(=>) is always true (see Theorem 1.7).
(4=) Let J be a Jordan matrix in C" with eigenvalue A:

Al 0
J=

1

0 A

A2 2). 1 Q
).3 3).2

2).

ThenP= ... .J3=
3).2

2). 0
0

).

andsoJ' =
0
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Let (es) be the usual orthonormal basis.

Je2 112 = II ° 112 = I
n-1 12 + I A

0

We distinguish 4 different cases:
IAI>1: IlJe2lI—+ooforn—*oobyIA2l

IAI=landp=1: JT1=Aandthisisbounded
I\I<1:lIJIkM Vn
So a Jordan block is p.b. A 1< 1, p � 1 or

I
A 1S 1, p = 1.

Ifp = 1 J: C i— C, J = A is similar to a contraction because I A I� 1.
Nowforp>1,J=AI+S IAI<1.
Then J' = J(A)'2 = (Al + S) = 0(AI)7_ISc

( ) where p = n — 1

and lim J(A)" 111/k r(J(A)) < 1 where r(J(A)) is the spectral radius:
r(J(A)) = max I a(J(A)) 1=1 A 1< 1.
So B/co such that Vk � k, II J(A)k 111/k< r < 1 and j(A)k lI� r'.
Define [x,y] = 0(J(A)x,J(A)ky) an inner product op (n•
Then

I
J(A)Ix,J(A)ky) I I 1111 J(A)'y II

� II J(A)k 1111 x J(A)k III I/Il

�iIIJ(A)kIl2IIxIIIIylI + >
r2kJxfflyI

k=O k=ko+1

<K lIxIlIlylI

so K II II and II j(') 112�II J(A)°x 112=11 x 112.
This means that and liii are equivalent norms.
Also

(J(A)'J(A)z, J(A)kJ(A)z)

S (J(A)kx,J(A)lcx) =

which means that for the norm J(A) is a contraction. By Theorem
1.3 it follows that for the norm J(A) is similar to a contraction and so
isT.

We mentioned before B. Sz.-Nagy's example if T is p.b. and compact then T is
similar to a contraction, but we are not going to prove this.

There is also an application of Theorem 1.9 by B. Sz.-Nagy and C. Foias [10].
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Example 4: Let T B(?-L). Assume B 1L and U B(1) unitary and B p � 1
such that T" = p P U Vn where is the orthogonal projection of ?-
onto Ii. (This is called a p-dilation)
Then T is similar to a contraction C.

We will show T is c.pol.b. then by Paulsen's criterion about the converse
of Theorem 1.9 which is also true follows that T C.
Let P(z) be a nxn matrix with polynomial entries. Then P(T) — P(O) = p
fP,(

I

•.. (P(U) — P(O))1, and

fP,
P(T) = •. I'W)' + (1— )I

From this follows

P(T) IIB(1(")

� p P P(U) iIB(U) + I 1 — p
I II P1 III P(O) llB()

< p P(U) IIB(i(n) + I 1 — p I II P(O) IlB(n)
< p sup II P(z) lie + I 'pI IIP(0) lie

Izl�1
(p + 1 — p I) sup II P(z) 1k

IzII

where Ii lie again is the Euclidian norm in C's. This means that T is
c.pol.b..
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Chapter 2
In this chapter we are going to prove that the converse of Theorem 1.9 is also
true.

Theorem 2.1: T C T is c.pol.b.

Proof: (=) See chapter 1, the proof of Theorem 1.9.
(=) We will need some theory about completely bounded maps and com-
pletely bounded homomorphisms.

2.1 Completely bounded maps

We will start by mentioning the Hahn-Banach theorem:

Theorem 2.2: (Hahn-Banach) Let A be a real vector space. Let p: A '—* IR be
a sublinear map, i.e. a map such that

Vx,yeA p(x+y) � p(x) + p(y)

V x A V t � 0 p(tx) = tp(x)
Then there is a R-linear functional f: A '— R such that

VxA 1(x) < p(x)

Corollary 2.3: Let A+ be a convex cone in a real vector space A. Let q: A+ —÷
IR be a superlinear map i.e. a map such that

Vx,yfA q(x) + q(y) � q(x+y)

V x A V t � 0 q(tx) = tq(x)
Let p: . '—+ R be a sublinear map. If q(x) p(x) for all x in A then
there is a R-linear functional f : A —+ IR such that

Yx€A q(x) � 1(x)
VxEA f(x) � p(x)

Proof: Let r(x) = inf {p(x + y) — q(y) I y A} for x A. Then r is sublinear:
r(tx) inf{p(tx+y)—q(y) I y A} = inf{tp(x+3-y)—tq(fy) I y A} =
inf{tp(x+z)—tq(z) I z fA+ = A} = t inf{p(x+z) —q(z) I z A) =
tr(x) Vt�Oand
p(x+y)—q(y)+p(z+v)--q(v)�p(x+z+y+v)--q(y+v)=p(x+z+
w)—q(w)�r(x+z) Vy,v€A andw=y+v. Now wecan takethe
infimum on the left side over y E A÷ and v A+:
r(x)+r(z) = inf{p(x+y)—q(y) I y A}+inf{p(z+v)—q(v) I v A+} �
r(x + z).
Also follows r(x) = inf (p(x + y) — q(y) I y A} <p(x + 0) — q(0) = p(x)
and —p(—x) = —p(—x)—p(y)+p(y) � p(y) —p(—x+y) p(y)—q(--x+y)
if we take y arbitrary but so that —x + y A÷. The inequality holds for
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all —x + y e A+ so we can take the infumum:
—p(—x) < inf{p(y) — q(—x + y) I

—x + y A} = inf{p(x + z) — q(z)
I

z A+} = r(x)
Together these results give:

(2.1) —p(--x) < r(x) < p(x)

which means that r(x) is finite V x e A.
r(—y) = inf{p(—y+z)—q(z) zA+} p(—y+y)—q(y) = —q(y) VyEA.
By the Hahn-Banach theorem there is a linear functional f : A '-4 R such
that f(x) <r(x) for all x e A. By (2.1) follows f(x) <p(x) for all x A

and —1(y) = f(—y) r(—y) � —q(y) for all y A. This yields the
announced result.

Let 7-1, K1 be Hubert spaces. Let S C B(7-L) be a subspace. For any n > 1 we
denote by Me(S) the space of all n x n matrices (a13) with coefficients in S
with the norm

1/2

= sup (>i ii 112)

where the supremum runs over all x1,... ,x in 7-1 such that > x3 Il 1.

Let u : S —* B(1) then we define u, : Me(S) M(B(A)) by u((a23)) =
(u(a13)) for (a13) Ma(S). Then u is called completely bounded (in short c.b.)
if there is a constant K such that the maps u, are uniformly bounded by K i.e.
if we have

SU U IIM(S)—M(B(K)) <K
n>1

and the c.b. norm u IIcb is defined as the smallest constant K for which this
holds.
When tz !Icb� 1, we say that u is completely contractive (or a complete con-
traction).

It is quite straightforward to extend the usual definitions to the Banach space
case as follows. Let X, Y be Banach spaces. We denote by B(X, Y) the space of
all bounded operators from X into Y, equipped with the usual operator norm.
Let X1, Y1 be an other couple of Banach spaces. Let S C B(X1,y1) be a
subspace and let u : S '—* B(X,y) be a linear map. Let us define 11(a13) IIM(s)
in the same way and u, : Ma(S) '-+ M(B(X,Y)) by u((a1)) = (u(a13)). We
will say again that u is c.b. if the maps u are uniformly bounded and we define

IIuIIcb = sup hun II
n>1

The following theorem is a fundamental factorization of c.b. maps.

Theorem 2.4: Let 7-1 be a Hilbert space and let S C B(11) be a subspace. Let
X, Y be Banach spaces. Let u : S '—* B(X,Y) be a cb. map. Then there
is a Hilbert space 7-1, a *-representation ir : B(U) i-+ B(7-1) with ir(1) = 1

andoperatorsVj :X47-1and V2:7L'-+Ywithll V1 II II V211 �IIuIIcb
such that

(2.2) Vaf S u(a) = V2ir(a)Vi
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Conversely, any map of the form (2.2) satisfies

II u 1kb < V2 ffl V1 II

Formula (2.2) is easier to understand if you look at the following diagram:

vlt v2xy
We know ir has special properties:
(i) ir is defined on all of B(1L)
(ii) ir is a 'ic_representation
(iii) ir(1) = 1
We can also say: "u(a) looks like a piece of 7r(a)".

For the proof of Theorem 2.4 we will introduce some notations. Let a S and let
I be the space B(X,1L). Let XS be the dual space of X, X = {i: X i—p Ck
linear } and let S® X be their algebraic tensor product. If a® x1 S® X
and h, 0 e 7L® X then we define

(2.3) (>a1®x$,>hk®?,k) >1,k(xi)ai(hk)

where a(hk) f IL and ?)k(X1) f C.

Remark: If a 0 x, h, 0 Ilk) = 0 V ( hk 0 '1k) then follows
a 0 x2 = 0. Indeed, if z = a 0 x1 we may suppose that (xe)

are linearly independent:
Assume x1 = b2x2 + ... + bx then

z = a1 Ox1 + a®x =

= :-2 Cj ® i, with x2,. .. , x, linearly independent.
There exists an X such that i(xi) = land i(x1) 0 for i = 2,...
and 0 = a2 0 x2, h 0 I) = >, i(x2)a1(h) = aj(h) V h 1L. This
implies that aj(h) = 0 V h ?L so a1 : fl '—* IL is the 0-operator. We can
do the same for a2,... ,a.
So if (E-, a hk 011k) = 0 V(Ekhk 011k) then

z = >a1®x = 0®x1 = 0

NowforfIandz=1aI®xu€S®Xwedefine.:S®X'-4ILaS

=

where (x1)

16



Lemma 2.5: Assume x1,. . . ,x, are linearly independent in X and z S® X
has the property:

Iand(x1)=Ofori= 1,...,nimplies.z—O
then B a1 S such that

z = >aj®xj

Proof: This is checked as follows:
Take z = bi ® Uk f S ® X. We are going to prove

z' := z — >ajØxj = 0

Choose x f i' such that x(x2) = ö (i.e. x,(x1) = 1 for i = j and
x(x1) = 0 for i j). Define

a3 = >bkx(uk) fS

Then z' = bk®Uk—>_i a3®x3 = bk®uk—>2i x(u,)
bk ® x3. Choose q' X and y Ii. Form tj = if — ij'(x,)x £X.
Define e I with y in 9L arbitrary by

(x) =
Then follows (x1) = ?J(Xj)y = (i,'(x1) — t'(x)x(x)) y = (i'(z2) —

= 0 . y = 0 V x1. This implies .z = 0 as we assumed i.e.

0 = .z = >bkl)(uk)y = >2?)(uk)bk(y)

and

(z',y®q') = (>bk®uk — >x(uk)bk®xj,y®q')
k k j

= >21?'(Uk)bk(Y) — >>x;(Uk)'(X)bk(y)
k k j

= rl(uk)bk(y) +
k k j

—

k j

= E1)(uk)bk(y) = 0

And then by the Remark follows z' = 0.

Lemma 2.6: Let (z)1< be a finite sequence in S ® X and let (Xt)j<m be a
finite sequence in X. Then

(2.4) .zj II e(x) II V I

17



(ai...an)P( ) = 0

which implies (ai a)P = (0. .0).
There also holds

(

So we replace K by

c C' and let P =

it follows

V x'

holds if there is a matrix (as,) in Ma(S) with 11(a12) llM(s)� 1 such
that

= a1®x Vi=1,2,...,n

Proof: Assume (2.4). If. I then (x) = 0 V i = 1,...,n implies e.z =
0 V i = 1,... ,n, so we can apply Lemma 2.5: BK = (k13) S such that

zj=>kj®xj Vi=1,...,n

In general this K does not satisfy K IIM(s)< 1.
one that has this property.

Define E ci {x*
(

:'

) = (
:

i)

)
x f X*}

(Pjk)kl be the orthogonal projection on E. Then

x(P (
:1

)

) = Px*
( '

) = x
(

because x
( )

E
( :: ) = ( : )

If >ajx1 = 0 then (at. ..a)P = (O.0). Indeed, >ajx(xj) =

(a1 . an)x*
(

:'

)
= 0 but x is arbitrary, hence

V y1

so

) = (ai .. .a)P
(

:: ) = (ai .. .a)
( : ) =

= 0 (ai...a)P = (00)

Now defineE 1T { ( :)
= ( )

j c fl

WeclaimE = R:={(
)
€nl( )=(

( : ) = (P ( : ) ( :
CR.

Now we claim that also R CE. Assume ( : ) W' and P

I hj \
. WewanttoconstructaIsuchthat

h, I

18



e ( :: ) = ( :: )

Therefore we define 'y : span(xj,. . . , x,) '-+ span(hj,. . . , h,) such that
'y(1axj) = >1ajhj (especially y(x1) = h1,. . . ,y(Xn) = ha).

ax = 0 implies (aj a)P = (0. .0) like we have seen before so

(ai a,) = (aj a)P
: = 0

kh,,1

and this means that -y is well defined (y(0) = 0).
From the definition it follows that is linear and surjective. Let IV be a
subspace of span(xi,. .. , x,) such that span(x1,. . . , x,) is the direct sum
span(xi,...,xn) = W+ker'y. Then 7I : W span(hi,...,h) is a
bijective map.
Choose (vi,.. .,Vm) a basis of span(hi, . . . ,h) with m = dimW <n and

,Wm in W such that 7(w2) = v1. Then is (w1,.. . ,Wm) a basis
of W. Choose (Wm+i,.. . , Wr) a basis of ker -y with r < n — m then
(to1,... ,Wm,Wm+i,...,Wr) is a basis ofspan(xi,...,x) CX.
Take w,* X such that w,(w1) = ö and define I by

(x) =

This means (w) = v V i = 1,.. .,m and (w1) = 0 V i = m + 1,..
butalso7(w)=vVj=1,...,mand-y(w,)=0Vj=m+1,...,r
and and 'y are both linear. (w1,. . , to,.) is a basis of span(xi, . . . , z,) so

with (x1) = -y(x1) = h1 V i = 1,... ,n and this proves the above claim./h,\ — fhi\ (.1
Take

: fR=Ethen2€IsuchthatPI : =

Nowwewanttoshowthatll A ( )j <
(

)Ilforan A =

because this implies A IIB(w.) � 1.

\Ve have seen before that z2 = ® z, and because (
' )

= p

(
) we

have

®

=
i: k,, ® P,x,

= () ®x, = >(KP)u ®x,
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Define A = (a11),,_1 = KP then

zi =

2 " 2We assumed (2.4): > ..z1 > . This implies

f h \ I (=i)
II AP

I
1112 = II A

J

112 = II —i ajji(x) 112

I.,, I f (i) / h \
< > II e(x) 112 = II

I

112 = II I
1112

\ % h, /

and AP = KPP = KP2 = KP = A because P is a projection which
means

/ h1 \ f h1

II A
I

1112 <
I

I1
kh

/hj\ fhi\ /h1\ /hi\ fhi\
IIPI 1112= (I I'I I) = (I 1,1 ) �IIP

kh,,J \h,,) \h,,J \h,,//h1\ fhi\
I 111111 I

II so

kh,I \h,.I
fhi\

IlPI III�III III

Applying this result we get

/ 1 / hi \
A

I
1112 � II

I
1112kh/

which means II A IIB() � 1.
This shows the "only if" part. The "if" part is easy. If there is a matrix
(a,) in Ma(S) with (as,) IIM(s)� 1 such that V & = 1,2,..

=

then

112 = II a13e(x3) 112

< (as,) Il(s) :i: ii (z) 112 � > II (x,) 112

ProofofTheorem 2.4: LetC=IulI6andA=(çb:II—IRI2xi,...,zfX
s.t. q5() 1< > (x1) 112 V e I). Clearly A is a real vector space and
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A is not empty. For example take x0 X and define 4 by q) =11 (x0) 112.
Then A.
Let A = {45 A I � 0). The preceding example is also suitable for A÷
so A is not empty either.
We define ü : S ® X i— J) as follows:
Let z = a ® x S® X then

11(z) = .2u(aj)xj Y

for u : S '- B(X,Y).
Now we define

Y€A p() = inf{C2 II x 112, x€X, () <> I(xj) 112, ye

and

V 4 e A q() = sup{ ü(z) 1121 z,S®X, 12< V &'}

The set in the definition of p is not empty because we can take the example
=11 C(xo) 112 for xo X again and C2 x 112? 0 so p(q) � 0.

The set in the definition of q is not empty because z1 = 0 ® x1 satisfies
IIC.zII2 = II0e(x) 12 = 0 < cb(e) VIandEIIu(z1)lI2=

u(0)x1 112= 0 is an element of this set. q() <00 because by Lemma
2.6 we have for (z1)1 S®X and (x1)..1 e X

II C.z1 112 � >21 e(x) 112 > II ü(zj 112 C2 >211 x

(if m < n make a n-vector of z by supplying zero's at the end: (z1,. . . ,Zm,
0, . . . , 0) and do the same for x if n <m ).
Indeed if >, .z1 Il2 E, II C(xj) 112 then by Lemma 2.6 there is a
matrix (a13) in Ma(S) with 11(a13) IIM(s)< 1 such that

z = >2ajj®xj Vi=1,2,...,m

and if u = u for (a13) is a n x n matrix

II 1i(z) 112 = II 1i(, ® x,) 112 = IIE, u(a)x 112

= II > u(a)x 112 = II n (
) ( )

112

II u II1l ( ) 11
< sup,,) Un 11211 (

' ) ii2

— 2 (.'2_rv2c' .2
— U cb

:
— " L.,j X3

This implies that q(4) <00 and also q(4) p(q) for all 4S A.
p is subadditief on A:
if(C) � IIC(x) 112 and tI'(C) � E IIC(y) 112 VC€Ithen (t+(')e=
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<> II e(x) 112 + II (vj) 112 Ve e land p(cb+t,b) <C2>
x1 fl y2 112 so we can take the infimum on the right side and

we get:

p(4 + ') inf{C2 II x 1121 x x, i II (;) III, V }
+ inf{C2 II lIz 1121 y1 X, 1(e) < II (y) 112, V }
= p() +p(&)

Assumeq() <II(x) V. ThenVt>O:
t(e) � > II e(vz) 112

and p(t) C2 II /x1 112= t C2 > II x1 112 V x, so it also holds for
the infimum:

p(t) < t inf{C2 > II 1121 x X, () � >211 (xi) 112, V .} = tp()

On the other hand V t > 0:

tp(Ø) = tp(t4) < tp(tØ) = p(t)

Both results give tp(q5) = p(t) V t > 0.
For t = 0, x = 0 V i satisfies 0 < (x2) 112 V I so p(O) = 0
which implies that p(t) = tp(q) holds also for t = 0.

q is sup eradditief on
if > I12� 4) and II 1I2� ib(e) V I then (q + i') =
'(.) +t,1'() � > II

112 + II 112 V land q(*+t/) � > ü.z1 112

+ > ü.w 112 so we can take the supremum on the right side and we get:

q( + ) � sup{>2 ü(z1) 1121 z S® X, >2 e.zj 112< (e) V }
+ sup{>2 II ü(w) 1121 w S® x, >2 II e.w 112� (e), V }

Assume >2 II e.zt 1I2s cS(e) V e. Then V t � 0:
>2 II 112� t()
and q(t) � >2 II ü(s,fizj) 112= t >211 u(z1) 112 V x
so it also holds for the supremum:

q(t*) � tsup{>2 II ü(z2) 1121 z S®X, >2 II .Zj II2� V } = tq(4)

On the other side V t > 0:

tq() = tq(tçb) � tq(tçb) = q(t)

Both results give tq() = q(t4) V t > 0.
For t = 0, >2 II .z1 112S 0 implies z2 = 0 V i so q(0) = 0 which implies
that q(t) = tq(q) also holds for t = 0.

Hence by Corollary 2.3 there is a linear form f : A '—* R such that

(2.5) q(q) � f(q5) < p() VA
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and actually f(q) <p(qS) holds V S e A.
Let us denote by A + iA = {A + ip I A, z A) the complexification of A.
We can extend I by linearity to a C-linear form on A + iA in the following
way: f : A+iAi-+C, f(A+ip)=f(A)+if(i) VA, u A.

f is C-linear because f((A+it)+(x+iy)) = f((A+x)+i(ji+y)) = f(A+x)+
if(p+y) = f(A)+f(x)+if(i)+if(y) = f(A+ip)+f(x+iy) VA,1z,z,yeA
and f(c(A + ip)) = f(cA + icp) = f(cA) + if(cp) = c(f(A) + if(p)) =
cf(A + ip) V A,p e A, V c C and if (A + iji), (x + iy) e A + iA then
(A + ip)(x + iy) = Ax — py + i(px + Ay) e A + iA.

Now we define K = {g : I '— Ii
I HI () 112 f A). This set is not

empty. Take for example x0 X and define g() = e(xo) V e e I. Then
=11 o() 112=11 (XO) 112 satisfies I () 111 e(xo) 112 so A.

Choose a g andy' K then 4i: I —* C with qS() = ((e)g'(e)) is in A+iA.
Indeed, by Cauchy-Schwartz

Re4 I I 4(e) I = I (().c"(e)) I � II () liii "() II
(II () 112 + g'() 112) II y() 112 + II g'() 112

< II
(x) 112 + II (y,) 112

for X,j e X and also I Im � > II (x) 112 + II (y) 112. So Re
and Im A and this implies A + iA. Now we can define

(g,g') = f(b)

with q5() = (g(), g'()). This is a semi-inner product on K:
(91 + 92,9') = f(((i + gz)(.), g' (.))) = f((g' (•) + g (), g'())) = f((g (.),
g'()) + (g(), g'(•))) = f((g' (.), g'(.))) + f((g2(), g'(.))) = (91,9')+ (ga, 9')l) = f((clg(.), g'(.))) = f(cz(g(.), '(.))) = of((g(.),g'(.))) = cl(g, 9')

= f(((.),I(.))) = f(((.),'(.))) = f(((.),(.))) = (91,9)

_____

(because f(A + ip) = f(A) + if(p) = f(A)—if(p) = f(A—ip) = f(A + ip))
(g,g) = f((g(•),g())) = f(II g(•) 112) f() � q&') � II ü(z) 112? 0
but (g,g) = 0 = g = 0 does not hold in general.
The inequality of Cauchy-Schwartz also holds for semi-inner products

I
(g,h)

I
<

so if (y,g) = 0 then also (g, h) = 0 V h e K and conversely (g, h) =
0 Vh€Kimplies(g,g)=O(takeh=g) (*)

Define N = {g I() = 0} and A = K/N = { I. = g+ N).
N is a linear space: if g N then g N because (ag,ay) = aã(g,g) = 0
and if N then (9i + 92,91 + 92) = (91,9') + (91,92) + (92,91) +
(92,92) = 0 because of(*) sO 91 +92 N.

(, iz) (g, h) for a g and a h i&. This definition does not depend on
the choice of g and h. This is checked as follows:
Choose also 91,h, such that (,h) = (g1,h1). Then 9—9' = n N and
h — h, = m N so (g,,h1) = (g — n,h — m) = (g,h) — (g,m) — (n,h) +
(n, m) = (g, h) because of (*).
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If 0 = () = (g,g) then g N and = g + N = N so N is the zero-
element of K:. -

After completing the space K: we obtain a Hilbert space 11.
For x e X, let I e K: be defined by i() = (x). By the second inequality
in (2.5) applied to with () =fl I() 112 where () = I() 112=

lI(x)II2 EAwehave

(1,1) = f() < p() < C2z2
Let I be the equivalent class containing i. Then {{x,I} I z X ) C X
x7L is the graph of a linear map V1: X -÷ 1 defined by

V1x = I
and II VjxlI=llIll=llilJ<Cilxll soil Viii �C.
On the other hand, if we take 4(e) =11 > a2I1() 112 then V a2 e S, V x1 X

= II a1I1() 112 = II > a(x) 112
< ( a (x) )2

< > a 112 II .(x) 112 = II e(/x1) 112

(where = a 112) and by the first inequality in (2.5) we have

(2.6) II u(a)x 112 = Ii ii (> a ® 112 < q() < f()
and we will use this later.
We define

B(9L)H B(1I)

by setting
=

for a f B(7-L), ir(a) B(7t), g K: and this is a unit preserving *-represeritation.
Let us check this and see that ir is well defined.
IfgK:then€1andag€K: VaflL:

i—+ ag() 112 a 11211 g() 112 e A (because II a 112 (i).
Letg,hfACand=g+N=h=h+N. Thisimpliesn=g—hfNand
an=ag—ahso (an,k) = (n,a*k)=0 VkeK:and an N. This means
=ah. Soif=hthen=ah.
ir is unit preserving because ir(1) = V

ir also is a *-representation because
ir(st) = stg = s(tg) = ir(s)tg = ir(s)ir(t) and
(ir(a),h) = = (ag,h) = f((ag(.),h(.))) = f((g(.),a
h(•))) = (g,ah) = (,ah) = (4,ir(a)ii) = (7r(a),I)
which implies 1r(a*)n = ir(a) V g, K: and if h -÷ h for n -4 oo and

-4 g then follows ir(a) = ir(a) V g IL.
The last thing we have to check is that ir is bounded i.e. (ir(a), ir(a)) <
const.(, ) V . Then 7r(a) can be extended by continuity to all of
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1 and this extension is linear and bounded with the same bound. In this
sense ir(a) B(fl).

(ir(a),ir(a)) = = (agn,agn) = f((ag(.),ag(.)))
= f((aag(.), gn())) = f(('gn(), gn()))I2

_ _

— II Va a f((11 b,,——.
II

= a 112 f((bg(.),_bg(.))) = a 112 f((g(.), gn()))

— a 112 f((i1 — b2g(.),iv'1 — b2g(.))) = II a fl2
(gn,gn)

— a 112 (i1 — b2g,iV1 — b2g) a 112 (gn,gn)

= a 112

where b = so b = b and b 11= 1.

Because ata 0 we can take the squareroot and II 112 = a 112 and

(bg(), bg()) = ((b+iV'l — b2)g(.),_(b+iV'l — — b2g(),
— b2g())—(iv'l — b2g(),is/l — b2g()) = (gn(),

— (iv'l — b2g(.), iVl — b2g()) and this last inner product > 0.If - for n -4 00 then (7r(a),ir(a)) < a 11211 112 so ir(a) B(fl).

By (2.6) follows t(a)x 112 < f(çb) = 1(11 112) = 112

= >a,i, 112 = II 112 = Eir(a1)Vixi 112 V a, S, x, x
and >ir(a1)Vix, span(7r(S)V1X) and >2u(a2)x,
This allows us to define a linear map

V2 : ii(ir(S)ViX) '-* Y

such that

(2.7) u(a)x = V2 (>7r(ai)Vix*)

Finally, we can extend V2 to an operator V2 : ?L '—p Y with norm < 1 by
defining V2 = 0 on (fi(ir(S)V1X)1 = Keir(S)V1X.
By omitting the sum and x, in (2.7) we get the required result (2.1).

The converse is easy:
because ir is a *-representation follows from the proof of Theorem 1.9,
Lemma3thatllxll < land

II irUa,)) IIB(X')
(2.8) II IIcb = sup ir,1 = sup sup / 1

n�1 (a.,)M(A) B(A")

and so
IlulIcb � 11V2 1111 ir V1 II 11V2 1111 V1
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2.2 Completely bounded homomorphisms

Let us now go to the study of compressions of homomorphisms.

Let X be a Banach space, and let E2 C Ei C X be closed subspaces. Let T: X
X be a bounded operator and assume that £ and E2 are T-invariant i.e.

T(E1) C E and T(E2) CE2.
ThenEi/E2 = {i

I
={x+(2}, xeEi) with

iiii= inf iiz+eiI

This norm is well defined:
iiiil�O
iIil=O=infee2 Iix+eli = 2e, (E2 such that x+e —*Owhich means
e -+ —x and this implies x e E2 so I = 0
ife iC, I,
ii C 11= infe2 cx + e 11=1 c inf!ie2_e2 Ii X + 11=1 C flJ X

II I+ (x+yflj= infe€z x+y+e jl< z+e'+y+e" IIII x+e' ii + y+e"
this holds Ye', e" (2 so we can take the infimum, which implies
iii+ii�DIii + iiil
Let Q : Ei —+ (1/(2 be the canonical surjection defined by Q(x) = I and let
T B(E1/E2) be such that TQ = QTi. Then Q(x) ii = Ii I = infe2

x + e x so Q 1 and we can make the following diagram:

1/e2 _+ (1/(2
and Tx=TQx=QTx=(TzT Vxe(1.
Then

llirIli=ll(TxflI= infllTx+ell<infllTx+Tell
eC2

< inf 7' x—f eli = 111' inf liz—fell = 111' liii ill
eE2 e€2

V x e (1 so II T lle1ie2 < II T lie, < II T lix.
This characterization brings us to the following proposition

Proposition 2.7: Let A be a Banach algebra and let u : A '—+ B(X) be a
bounded homomorphism, i.e. u is bounded linear and

V a, b A u(ab) = u(a)u(b)

Let £2 C £ C X be closed subspaces and let Ei and (2 be u-invariant i.e.
Li and (2 are u(a)-invariant V a e A. Then the map ü: A B(E1/E2)
defined by ü(a) = (u(a))is a homomorphism with ü . Moreover,
if A is a subalgebra of B(7-I) (with fl Hilbert) and if u is c.b. then ü also
is c.b. and II ü llcb � II IL llcb.
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Proof: Va,b€Awe have

ü(ab)Q = Qu(ab) = Qu(a)u(b) = u(a)Qu(b) = u(a)u(b)Q

which shows that ü also is a homomorphism.
We have seen before

u(a) lIB(61/E2) < II u(a) lla(e1) < II u(a) IIB(X)

hence hull � lull.
Define u, : A' '—p B(X') as u((A)) = (u(a,,)) where A = (a1)..1 e Atm.
Then

- II u((a)) IlB(e/e;)
llUhIcb = SUPUn = 5USUJ

n�1 (a.,) 11(a13) lIB(An)

(ü(a,,)) lIB(er/e')= sup sup
n�1 (a) 11(a13) hIB(A)

Now apply the previous result by replacing u by (u(a13)), A by Atm, X by
E by and e2 by £. This implies II ü((a,)) II u((a,3)) II

V (a13) V n and if we take the supremum over (a1) and n> 1 we get:

II u,((a,,)) IlB(e
II u lIcb < SU SU

n�1(a,,) aI) B(A")
II u((a,)) hIB(x)< sup sup = II u

�1 (a.,) II (at,) hlB(An)

ü will be called the compression of u to e1/e2.

Remark: If A C B(7L) and if u : A u—* B(G) ( Hilbert) is the restriction to A
of a *-representation 71 : B(?L) '—i B(G), then we have

II ü hIcb < u hIcb � II 11 hlcb < 1

Indeed, the first inequality follows by Proposition 2.7. If we define u, as
above and ir in the same way we get

II u,,((a,,)) II
II u = sup l u = sup sup

n�1 (a)A a1

II ir((a,)) II —< sup sup — I7tIcbn�I (B(7)
which explains the second inequality.
We have seen in (2.8) that II ir hIcb � 1.

Proposition 2.8: Let A be a Banach algebra. Let X, Z be two Banach spaces,
let 71 : A i— B(Z) be a bounded homomorphism, and let w1 : X '-9 Z and

Z i— X be operators such that w2w1 = Ix .Assume that the map
u : A '- B(X) defined by

u(a) = w2ir(a)w1 V a f A
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is a homomorphism. Then u is similar to a compression of ir. More pre-
cisely, there are ir-invariant subspaces (2 C ( C Z and an isomorphism
S : X '-4 (1/62 such that

II liii S II II tVi liii tV

and such that the compression i of ir to (1/62 satisfies

u(a) = S'*(a)S V a E A

Proof: Let

(1 = äi[wl(X),Ua(Air(a)wl(X)]

By definition ( is a closed subspace of Z. ( also is ir-invariant. This is
checked as follows:
An element y of 6i can be written as

y = lim (w1(x) + 7r(atfl)wl(xlfl))

for some x, x X, a1 A because biwi(x1) + ... + bw(x) =
wi(bixi + ... + bx,) = w1(x) and V b e A

ir(b)y = urn (lr(b)wl(xfl) + ir(b) 1r(ain)wi(xin))

= lim (lr(b)wl(xn) + 7r(ba*n)wl(xin))

Let (2 = (i fl ker(w2) then (2 C (i C Z. We claim that (2 also is
ir-invariant. Indeed, consider z 6 such that w2(z) = 0. In the same way
as above we can write z as

z = lim (wl(x) +

Then because w2(z) = 0, w2w1 = Ix and u(a) = w2ir(a)wi

0 = w2(z) = tim (w2wl(xfl) + w21r(ain)wl(zin))

= lirn + >u(ain)xin) (*)

Hence for all a A

ir(a)z = tim (r(a)wizn + 7r(a)1r(ain)wi(zin))

= urn (lr(a)wlxn + ir(aain)wi(xin))
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and so

w2ir(a)z = urn (w2ir(a)wixn + >w27r(aain)wl(xifl))

= lim (u(a)xn + >u(aain)xin)

= lim (u(a)xn + >2tL(a)u(ain)xin)

= limu(a) + u(ain)xin) 0

because of (*). Since z e Li, ir(a)z also is in 6 and w2ir(a)z = 0 which
means that ir(a)z e ker(w2). This implies that ir(a)z L2 Va and proves
the claim.
Let Q Li e—* L1/L2 be the canonical surjection. Define S = Qw1 : X
'—* L/L2 by

S(x) =Qwi(x) VxeX
Li '- X is surjective. Take ax X, then y := wi(x) e L1 and since

w2wj = Ix w2(y) = x. So for every x X 3 y eLi such that w2(y) = x.
Now there is a unique isomorphism R L1/L2 X with R ii Ii Ii

namely R() = w2(x+L2) = w2(x+kerw2) ( = x+L2 C x+kerw2) since
fore L2 ii R(i) Ii = II w2(x+e) ii ii liii x+e ii soil Ii ii W2 liii ii

such that RQ = W21t. Then we have RQw1 = W2W1 = Ix hence
RS = Ix. This implies that R is surjective. R also is injective:
0 = R() = w2(x0 + kerw2I ) x0 + kerw2i e kerw2
also xo + kerw211 e L1 so xc, + kerw2lei e L2 and this implies i = 0.

Surjective and injective is the same as invertible and since RS = Ix, R =
S. This implies that S also is invertible and S' R. Moreover we have

11.911115' ii = IlQu'i liliRll � llti liii W2 II

and

= S'(a)Qwi
= RQir(a)wi
= w2r(a)wi
= u(a) VaeA

We now come to a theorem which we will need to prove Theorem 2.1

Theorem 2.9: Let 1, K be Hilbert spaces. Let A C B('H) be a subalgebra
containing a unit 1 and let u A '— B(K) be a bounded homomorphism
with u(1) = I,. Let K be any constant. The following are equivalent:
(i) The map u is c.b. with u llcb K
(ii) There is an isomorphism R : K '—* K with II R ll R II � K such
that the map a '-3 R'u(a)R is c.b. with c.b. norm <1.
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Proof: (ii) (i): Let v(a) = R'u(a)R with R liii R' < K and II v IIcb� 1.

Then u(a) = Rv(a)R1 and let v, : A'2 '—* B(K'2) defined by v(A) =
(v(a,)) for A = (a)1_1 A'2.

fR R 0

Then u(a1) = (
v,(a13) -.

RI o

IIRII IIv (a. ) 111R 'II
SO U IIcb � Sup,>1 suP(a.)An II(a.,) I

R V IIcbII R' II < K.
(i) (ii): Assume (i). By Theorem 2.4 with S = A and X = Y = AC there
is a Hilbert space 1L, a *-representation ir B(1L) '—+ B(H) with ir(1) = 1
and operators w1 : K '—p H and w2 : fl '— AC with w2 u IIcb
such that

u(a) = wiir(a)w2 VafA
By definition of *-representations ir is a homomorphism and this implies
u(a) also is a homomorphism. Ip u(1) = wjir(1)w2 = W1W2 so we
can apply the preceding result for X= AC and 2= fl: u is similar to a
compression * of or in other words

u(a) = R(a)R' V a E A

and liii II II Wi III W
But Iffi 11)2 II II '-' IIcb < K and this implies R R' < K. By
Proposition 2.7 II IIcb II IIcb � 1 and

*(a) = R'u(a)R
so the map a R'u(a)R is c.b with c.b. norm < 1

2.3 Proof of Theorem 2.1
We can apply the preceding result to Theorem 2.1 which we wanted to prove.
Assume T is c.pol.b. then the homomorphism P i—+ P(T) where P is a poly-
nomial defines a completely bounded homomorphism 11T (UT(P) = P(T)) from
the disc algebra A into B(1). Indeed, T is c.pol.b. means 3 K such that V n
and V n x n matrices (P1,) with polynomial entries we have

(P11(T)) IB(fl) < K sup II (P11(z)) IIB(C')
IzI�1

Define UTn : A'2 '— B(1L'2) as UT((P1j)) = (uT(P1)) then

II U7'((PJ)) IIB(R)
II UT IIcb = SU UTn II = SUJ SU

n�1 Vi1) A

(u(P,)) IIB(n) (P1,(T)) IIB(N')
= sup sup = sup sup

ni (P.1) II (Ps,) IIA n�i II (P12) IIA°

Ksupi1<1 II (P1,(z)) IIB(C')supsup -
n1 (P.,) (P3) IIA

Ksupii<i II (Pj(z)) IIB(C')= supsup —

T�1 (P.,) sup11<1
II(PI,(z))IIBc

<K
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which means that UT iS c.b. with u' ILb <K.
By Theorem 2.9 there is an isomorphism R: K —* K with fi R IflJ II < K
such that the map P '—3 R'UT(P)R is c.b. with R'UTR 1kb < 1. Take
P = I the identity then uT(I) = 1(T) = T and

R'TR II = R'uT(I)R II II R'UTR lIcb � 1

so T is similar to a contraction.
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Appendix A
Dilation theorem: Let T : fl '-+ U be a contraction. Then there is a Hubert

space fl containing 1L isometrically as a subspace and a unitary operator
U : 7 —* Ii such that
Vn > 0 T'1 = PNU1
(where P is the projection on IL).
When this holds, U is called a unitary dilation of T (one also says that U
dilates T).

Proof: For any n in Z let IL = IL, and consider the Hilbertian direct sum

IL = en(Z = On IL we introduce the operator U : IL 'H

defined by the following matrix with operator coefficients

0I 0
U= 0DTT

T DT.
0 0I

0 I

where T stands as the (0,0)-entry and Di' = (1 — TT)'/2 and
DT. = (1 — TT)'/2. Equivalent any (h)z is mapped into U[(hn)n€z]
= (h)z with h' defined by

( h,, ifn {—1,0}
(*) h = DTh0 — Th1 if n = —1

( Th0 + DT.hl ifn = 0

We identify IL with 'H C IL so that we have P1.1U1 = T and more
generally PflU(( = T for all n � 0 (note that U has a triangular form,
so the diagonal coefficients of U' are the obvious ones).
We claim that for all (h)z in 11 and (h)z = U[(h)zJ as above
we have

h'.1 112 + II h 112 = II h0 112 + II hi 112

Indeed, first note the following identities

T*DT. = DTT* (and TDT = DT.T).

Note that D. = f(TT) and DT = f(TT) with I continuous.
By Stone-Weierstra/3 we can write f as the uniform limit of polynomials
P: DT. f(TT*) = limP(TT). Then we have
T*DT. = T*limPn(TT*) = T*lim>an(TT*)n = limT*>an(TT*)z
= lim>a(TT)ThT = limPn(T*T)T* = DT
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(and analogous TDT = DT.T).
Then we can develope h Jj2 + II h 112 using (*):

h1 112 + II h 112 = DThO — Th1 112 ÷ Th + DT.hl 112=
(DThO — T*hl,DThO — Tah1) + (Th0 + DT.hl,ThO + DT.hi) = ((1 —

T*T)ho,ho) — (DTT*hl,ho) — (TDho,hi) + (TTh1,h1) + (T'Th0,h0)
+ (TDT.hl,hO) + (DT.Tho,hl) + ((1 — TT*)hi,hi) = II ho 112 +
II h 112.

As a consequence, we find that U is an isometry. Moreover U is surjective
since it is easy to invert U. Given h' = (h')€z in 1, we have h' = Uh
with h = (h)z defined by h = h_1 if n {O, 1}, h0 = DThl +
Th and h1 = —Th1 + DT.h. Equivalently it is clear that U is in-
vertible from the following identity for 2 x 2 matrices with operator entries

I r n \ I r' 'r* \ I r 'ra(1 U ( -'T 1 It -'T AO I) T DT.)—T DT./ r 'i* \ I rt 'i'sI ItT 1-T DT.) T DT.

Therefor we conclude that U is a surjective isometry, hence a unitary
operator.

Von Neumann's inequality: Let C be a contraction in Ii. Then

lIp(C) < sup Ip(z) I
Izl=l

V polynomials p.

Proof: First we will prove this for a unitary operator U on K.
Uf = f' e*tdE(t)f = lim e"' (E(t,) — E(t3_i ))f, E(t) : R i—* L(K)
E(t) isaprojectionsoE(t) = E(t) and E(t)2 = E(t). E(t)E(s) = E(s)
E(t) = Emin(t,S). You can also write E(t) = lim9t E(s). It's easy to see
that E(t) = I if t > 2ir and E(t) = 0 if t < 0.2 itNow you can write p(U)f as f p(e )dE(t)f and

,2ir

IIp(U)f II � J Ip(ei) dE(t)f � sup Ip(e't) Ill] ldE(t)f II =
0 t1O,2ir] 0

= sup I p(e't) E(2ir)f — E(0)f = sup I p(e't) I f
k[O,21 h[0,2,rJ

So II p(U) II � supi1=1 I p(z) I V polynomials p.
Now take C a contraction. By the Dilationtheorem there is a Hilbert
space IL containing IL isometrically as a subspace and a unitary operator
U:IH'flsuchthatVn � 0 C' =
From this follows:

p(C) = P p(U)j., < p(U) < sup I p(z) I
IzI=i

V polynomials p.
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Appendix B
Definition: A space A

(a) is called an algebra over C if
A is a linear space over C
there is a multiplication with properties:
(xy)z = x(yz)
A(xy) = (Ax)y = x(Ay)
x(y + z) = xy + xz; (y + z)x = yx + zx V x, y, z A, A C.

(b) is called commutative if V x, y A xy = yx.

(c) has a unit if 3 e e A such that ea = ae = a V a e A.

(d) is normed if there is a norm on A with V z,y A

I xy I S IIxIIlIyII.
(e) is called a Banach algebra if A is an algebra and (A, liii) is complete.

(f) is called a s-algebra if A is an algebra and 3 * : A '—+ A with properties:
(x')' = x
(x+y)' .i• + ,*

(Ax)' = Ax'
(xy)' = yx Vx,yf A, Af C.

(g) is unitary if A is a s-algebra with unit and V u A U'U = uu' = e.

(h) is selfadjoint if A is a s-algebra and x' = x V x A.

(j) is called a Banach'-algebra if
(i) A is a Banach space
(ii) A is a s-algebra
(iii)VxA II.r II = IIxII.

(k) is called a C'-algebra if A is a Banach'-algebra and V x e A
II xx = x 112.

Examples: There are some examples of C'-algebras which we used in this
essay. These are:
B(1-L), C(OD) and the disc algebra A

Definition: A map q5: A -* B is called

(a) a homomorphism if
(x+y) = (x) + (y)
çt(Ax) =
ç/(xy) = q(x)çi(y) Vx,yf A, AC

(b) a s-homomorphism if
(i) i is a homomorphism
(ii) 4(x') = 4(x)' V x A.

Definition: (a) A map ir : G '- B(7L) where G is a group and 1L a Hilbert
space is called a representation if
ir(1) = I
ir(st) = lr(s)7r(t)
and ir is unitary if also ir(t)' = ir(t)'.
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(b) A map p: A '—* B(1-i) where A is a *-algebra and 1 a Hubert space
is called a *-representation if
(i) p is linear
(ii) p is a representation
(iii) p(a*) = p(a)*.

(c) A map p: A i-+ B(7L) is called a C*algebraic representation if A is a
C*algebra, 11 a Hubert space and p is a *-representation.

About *-representations we have the following Lemma:

Lemma: Let p : A '—p B(11) be a *-representation on a C*algebra A and
assume A has a unit. Then necessarily p = €A hh1a :� 1.

Proof: Clearly p maps unitaries to unitaries:
p(u)p(u)* = p(uu*) = p(e) = I = p(e) = p(uu) = p(u)*p(u) for

= = e.
Hence p(ti) < 1 for any unitary u. Let x be a hermitian element:
x = x and x 11< 1. Then any u = z+is./1 — x2 is unitary and x = Reu.
Also follows II p(x) = p(Re u) = p(f_) < p(u)

1 +
II p(u) < 1 + 1 = 1.
Hence p(x) < 1 for any hermitian in the unit ball. Finally,
II II = II u 112, so that

II p(x) 112 = p(x)*p(x) II = II p(x*x) II = II xx p(110) II II x 112,

and 1Lj.1I � 1 V z which means p II � 1.
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