Similarity to contractions

Tineke de Vries

Department of Mathematics

Preface

This paper has been written as a master thesis to complete my study at the mathematics department of the University of Groningen.

I studied the problem of similarity to contractions, which has been studied before by a lot of mathematicians. So it wasn't difficult to collect enough data about this subject.

In the first chapter I have enumerated some important results of this century followed by a few examples of applying these results. The most important result is Paulsen's theorem about completely polynomially boundedness. That's why I proved this theorem in Chapter 2.

Of course, I supposed that the reader of this essay knows something about Hilbert and Banach spaces but I tried to be as complete as possible.

I wish to thank Prof.dr.ir. A. Dijksma for his enthousiastic supervision and the time he spent on this subject.

I hope you'll enjoy reading this essay.

Contents

Chapter 1 4
1.1 Results 4
1.2 Examples 9
Chapter 2 14
2.1 Completely bounded maps 14
2.2 Completely bounded homomorphisms 26
2.3 Proof of Theorem 2.1 30
Appendix A 32
Appendix B 34
References 36

Chapter 1

This essay is about similarity to contractions. The problem is as follows:
When is an operator in a Hilbert space similar to a contraction in a Hilbert space?

The question is easy but the answer is quite difficult. There have already been many mathematicians who studied this problem and there have been found some elegant results.

1.1 Results

First we have to explain what we mean by similarity to an operator and what is called a contraction. All operators are considered in the same Hilbert space ($\mathcal{H},\langle\cdot, \cdot\rangle)$ and are bounded.

Definition 1.1: An operator T in \mathcal{H} is called similar to an operator T_{1} in \mathcal{H} if there exists an invertible operator $S: \mathcal{H} \rightarrow \mathcal{H}$ such that $T=S T_{1} S^{-1}$. By the notation $T \sim T_{1}$ we will mean that T is similar to the operator T_{1}.

Definition 1.2: An operator C in \mathcal{H} is called a contraction if $\|C\| \leq 1$.
There is an equivalent statement:
Theorem 1.3: Let $T: \mathcal{H} \mapsto \mathcal{H}$ be an operator. The operator T is similar to a contraction iff there is an equivalent Hilbertian norm for which T is a contraction.

Proof: (\Rightarrow) Let $T \sim C$ with C a contraction. Then there exists an invertible operator $S: \mathcal{H} \mapsto \mathcal{H}$ such that $T=S^{-1} C S$. Define $[u, v]=\langle S u, S v\rangle$. This is an inner product and $[[u]]^{2}=\|S u\|^{2} \leq\|S\|^{2}\|u\|^{2}$ so $[[u]] \leq\|S\|$ $\|u\|$.
Also follows $\|u\|^{2}=\left\|S^{-1} S u\right\|^{2} \leq\left\|S^{-1}\right\|^{2}\|S u\|^{2}=\left\|S^{-1}\right\|^{2}[[u]]^{2}$ so $\|u\| \leq\left\|S^{-1}\right\|[[u]]$.
Together these results show that[[]] and \|| \| are equivalent norms and $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space implies that $(\mathcal{H},[\cdot, \cdot])$ is also a Hilbert space. It remains to show that T is a contraction on $(\mathcal{H},[\cdot, \cdot])$. This is easy to see:

$$
\begin{gathered}
{[[T u]]^{2}=\left[\left[S^{-1} C S u\right]\right]^{2}=\left[S^{-1} C S u, S^{-1} C S u\right]} \\
=\langle C S u, C S u\rangle \leq\langle S u, S u\rangle=[u, u] \\
=[[u]]^{2}
\end{gathered}
$$

$(\Leftrightarrow)[u, v]$ is an inner produkt on \mathcal{H}, continu in both variables:
$|[u, v]|^{2} \leq[[u]][[v]] \leq M^{2}\|u\|\|v\|$. Riesz Lemma tells us that there is a
$G \in B(\mathcal{H})$ such that

$$
[u, v]=\langle G u, v\rangle
$$

G is invertible and >0 :
$G u=0 \Rightarrow\langle G u, u\rangle=0=[u, u] \Rightarrow u=0$
$\langle G u, u\rangle=[u, u] \geq 0$
so G is injective and $G>0$.
$\langle G u, v\rangle=[u, v]=\overline{[v, u]}=\overline{\langle G v, u\rangle}=\langle u, G v\rangle=\left\langle G^{*} u, v\right\rangle$ so $G=G^{*}$.
Take $v \perp \operatorname{ran} G$ then : $0=\langle G u, v\rangle=[u, v] \quad \forall u$ which implies that $v=0$ and $\overline{\operatorname{ran}} G=\mathcal{H}$.
We claim that if $G x_{n} \rightarrow y$ then $y \in \operatorname{ran} G$ i.e. $\exists x \in \mathcal{H}$ such that $y=G x$ which means that G is surjective. This is proved as follows:
If $G x_{n} \rightarrow y$ then $G x_{n}$ is Cauchy: $\forall v\left\langle G x_{n}-G x_{m}, v\right\rangle \rightarrow 0$ if $n, m \rightarrow \infty$.
But $\left\langle G x_{n}-G x_{m}, v\right\rangle=\left[x_{n}-x_{m}, v\right]$ and then the theorem about weak convergence says $x_{n} \rightharpoonup x$ in \mathcal{H} and $G x_{n} \rightharpoonup G x$. Since also $G x_{n} \rightharpoonup y$ follows $G x=y$.
Now we take $S=G^{1 / 2}$. Given is that T is a contraction with respect to $[\cdot, \cdot]$. Define $C=G^{1 / 2} T G^{-1 / 2}$ then $T \sim C$ and C is a contraction on $(\mathcal{H},\langle\cdot, \cdot\rangle)$:

$$
\begin{gathered}
\langle C x, C x\rangle=\left\langle G^{1 / 2} T G^{-1 / 2} x, G^{1 / 2} T G^{-1 / 2} x\right\rangle \\
=\left\langle G T G^{-1 / 2} x, T G^{-1 / 2} x\right\rangle=\left[T G^{-1 / 2} x, T G^{-1 / 2} x\right] \\
\quad \leq\left[G^{-1 / 2} x, G^{-1 / 2} x\right]=\left\langle G G^{-1 / 2} x, G^{-1 / 2} x\right\rangle \\
=\left\langle G^{-1 / 2} G G^{-1 / 2} x, x\right\rangle=\langle x, x\rangle
\end{gathered}
$$

In the history three notions play an important role:
Definition 1.4: An operator T is called power bounded (p.b.) if $\exists M$ such that for all $n \geq 0$

$$
\left\|T^{n}\right\| \leq M
$$

Definition 1.5: An operator T is called polynomially bounded (pol.b.) if $\exists M \geq$ 0 such that \forall polynomials $p(z)$

$$
\|p(T)\| \leq M \sup _{|z|=1}|p(z)|=M \sup _{|z| \leq 1}|p(z)|
$$

where the equality follows by the maximum modulus principle.
Definition 1.6: An operator T is called completely polynomially bounded (c.pol. b.) if $\exists M$ such that $\forall n$ and $\forall n \times n$ matrices $P(z)=\left(P_{i j}\right)_{i, j=1}^{n}$ with polynomial entries

$$
\|P(T)\|_{B\left(\mathcal{H}^{n}\right)} \leq M \sup _{|z| \leq 1}\|P(z)\|_{B\left(\mathrm{C}^{n}\right)}
$$

where \mathcal{H}^{n} is the Hilbert space $\left\{x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), x_{i} \in \mathcal{H}\right\}$ with inner product

$$
\left.\begin{array}{rl}
\langle x, y\rangle=\left(\begin{array}{c}
\left(z_{1}, y_{1}\right\rangle \\
\vdots \\
\left\langle z_{n}, y_{n}\right\rangle
\end{array}\right.
\end{array}\right) \text { and } \quad \begin{aligned}
& \|P(T)\|_{B\left(\mathcal{H}^{n}\right)}=\sup _{h \neq 0 \in \mathcal{H}^{n}} \frac{\|P(T) h\|}{\|h\|}
\end{aligned}
$$

and $\forall z \in \mathbb{D}=\{x| | x \mid \leq 1\},\|P(z)\|_{B\left(C^{n}\right)}=\sup _{x \neq 0 \in \mathbf{C}} \frac{\|P(z) x\|_{e}}{\|x\|_{e}}$ where $\left\|\|_{e}\right.$ is the Euclidian norm in \mathbb{C}^{n}.

Remark: Completely polynomially boundedness \Rightarrow polynomially boundedness \Rightarrow power boundedness. Indeed the first implication follows by taking $n=1$ and the second by considering the polynomials $p(z)=z^{n}$.

These definitions lead us to three theorems:
Theorem 1.7: If T is similar to a contraction C, then T is p.b..
Theorem 1.8: If T is similar to a contraction C, then T is pol.b..
Theorem 1.9: If T is similar to a contraction C, then T is c.pol.b ..
By the above remark Theorems 1.7 and 1.8 follow from Theorem 1.9, but we shall prove each theorem separately.

Proof of Theorem 1.7: This is easy to see:
$T \sim C$ means there is S such that $T=S C S^{-1}$ hence $T^{n}=S C^{n} S^{-1}$ and

$$
\begin{aligned}
& \left\|T^{n}\right\|=\left\|S C^{n} S^{-1}\right\| \leq\|S\|\left\|C^{n}\right\|\left\|S^{-1}\right\| \\
& \quad \leq\|S\|\left\|S^{-1}\right\|\|C\|^{n} \leq\|S\|\left\|S^{-1}\right\| \quad \forall n=0,1,2, \ldots
\end{aligned}
$$

which means that $\left\|T^{n}\right\| \leq\|S\|\left\|S^{-1}\right\|=M \quad \forall n$.
Proof of Theorem 1.8: This is an application of von Neumann's inequality which is the following:
if C a contraction in \mathcal{H} then \forall polynomials $p(z)$

$$
\|p(C)\| \leq \sup _{|z|=1}|p(z)|
$$

The proof is included in Appendix A. T is similar to a contraction C so there is an S such that $T=S C S^{-1}$ hence $p(T)=S p(C) S^{-1}$ and

$$
\begin{aligned}
& \|p(T)\| \leq\|S\|\|p(C)\|\left\|S^{-1}\right\| \\
& \quad \leq\|S\|\left\|S^{-1}\right\| \sup _{|z|=1}|p(z)|=M \sup _{|z|=1}|p(z)|
\end{aligned}
$$

with $M=\|S\|\left\|S^{-1}\right\|$.
Proof of Theorem 1.9: By the dilation theorem (see Appendix A) there is a unitary operator U on a Hilbert space $\tilde{\mathcal{H}} \supset \mathcal{H}$ such that U is a unitary dilation of T.

Let us denote by \mathcal{C} (resp. $\mathcal{A}(\mathbb{D})$) the space of all continuous functions on $\partial \mathbb{D}, \mathcal{C}=\{f: \partial \mathbb{D} \mapsto \mathbb{C} \mid f(z)$ cont $\}$ (resp. the closed linear span in \mathbb{C} of the functions $\left\{e^{i n t} \mid n \geq 0\right\}, \mathcal{A}(\mathbb{D})=\operatorname{closure}\left\{\sum_{n=0}^{k} a_{n} e^{i n t} \mid k=\right.$ $\left.0,1,2, \ldots a_{n} \in \mathbb{C}\right\}$). We equip \mathcal{C} (or $\mathcal{A}(\mathbb{D})$) with the sup norm which we denote by $\left\|\left\|_{\infty}:\right\| f\right\|_{\infty}=\sup _{|z|=1}|f(z)|$. Note that $\mathcal{A}(\mathbb{D})$ is a subalgebra of \mathcal{C}, it is called the disc algebra.
\mathcal{C} is a C^{*}-algebra (see Appendix B).
$f \in \mathcal{C}$ can be identified with the multiplication operator $M_{f}: L^{2}(\partial \mathbb{D}) \rightarrow$ $L^{2}(\partial \mathbb{D}), M_{f} u=f u$ and N . Young [11] proved that there holds
Lemma 1: $\|f\|_{\infty}=\left\|M_{f}\right\|_{B\left(L^{2}(\partial \mathrm{D})\right)}$.
$F \in \mathcal{M}_{n}(\mathcal{C})=\left\{F=\left(f_{i j}\right)_{i, j=1}^{n} \mid f_{i j} \in \mathcal{C}\right\}$ can be interpreted as the linear $\operatorname{map} F:\left(L^{2}(\partial \mathbb{D})\right)^{n} \mapsto\left(L^{2}(\partial \mathbb{D})\right)^{n}$ given by $(F u)_{i}=\sum_{j=1}^{n} M_{f_{i j}} u_{j}, i=$ $1, \ldots, n$, where $u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right) \epsilon\left(L^{2}(\partial \mathbb{D})\right)^{n}$. With this interpretation $\mathcal{M}_{n}(\mathcal{C})$ becomes a C^{*}-algebra with norm

$$
\|F\|_{B\left(\left(L^{2}(\partial \mathrm{D})\right)^{n}\right)}=\sup _{u \neq 0} \frac{\sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi} \|\left(L^{2}(\partial \mathrm{D})\right)^{n}}}{\sqrt{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \| u\left(e^{i \varphi}\right)\right) u\left(e^{i \varphi}\right) \|_{e}^{2} \mathrm{~d} \varphi} \|_{e}^{2} \mathrm{~d} \varphi}
$$

where $\left\|\|_{e}\right.$ again is the Euclidian norm in \mathbb{C}^{n} like in Definition 1.6.

Lemma 2: \|F $\left\|_{B\left(L^{2}(\partial D)^{n}\right)} \leq \sup _{\varphi \in[0,2 \pi]}\right\|\left(F\left(e^{i \varphi}\right)\right) \|_{B\left(C^{n}\right)}$

$$
=\sup _{|z|=1}\|(F(z))\|_{B\left(C^{n}\right)}
$$

Proof: $\left\|\left(F\left(e^{i \varphi}\right)\right) u\left(e^{i \varphi}\right)\right\|_{e}^{2} \leq\left\|F\left(e^{i \varphi}\right)\right\|_{B\left(C^{r}\right)}^{2}\left\|u\left(e^{i \varphi}\right)\right\|_{e}^{2}$

$$
\leq \sup _{|z|=1}\|(F(z))\|_{B\left(C^{n}\right)}^{2}\left\|u\left(e^{i \varphi}\right)\right\|_{e}^{2}
$$

$$
\begin{aligned}
\| F & \|_{B\left(\left(L^{2}(\partial \mathrm{D})\right)^{n}\right)} \\
& \leq \sup _{u \neq 0} \frac{\sup _{|z|=1}\|(F(z))\|_{B\left(\mathbb{C}^{n}\right)} \sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u\left(e^{i \varphi}\right)\right\|_{e}^{2} \mathrm{~d} \varphi}}{\sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|u\left(e^{i \varphi}\right)\right\|_{e}^{2} \mathrm{~d} \varphi}} \\
& =\sup _{|z|=1}\|(F(z))\|_{B\left(\mathrm{C}^{n}\right)}
\end{aligned}
$$

Let $U \in B(\mathcal{H})$ be unitary. The polynomials $p(z, \bar{z})$ in z and \bar{z} are dense in \mathcal{C} (Stone-Weierstra β).
$u_{U}: p(z, \bar{z}) \mapsto p\left(U, U^{*}\right)$ is linear and bounded and we have $u_{U}(p q)=$ $u_{U}(p) u_{U}(q), u_{U}(\bar{p})=\left(u_{U}(p)\right)^{*}$
Boundedness follows from:
(*) $\quad\left\|u_{U}(p(z, \bar{z}))\right\|=\left\|p\left(U, U^{*}\right)\right\|_{B(\mathcal{H})} \leq \sup _{|z|=1}|p(z, \bar{z})|$
(because $U=\int_{0}^{2 \pi} e^{i t} \mathrm{~d} E_{t}, U^{n}=\int_{0}^{2 \pi} e^{i n t} \mathrm{~d} E_{t}, U^{* n}=\int_{0}^{2 \pi} e^{-i n t} \mathrm{~d} E_{t}$, so $\left.\left\|p\left(U, U^{*}\right)\right\|=\left\|\int_{0}^{2 \pi} p\left(e^{i \varphi}, e^{-i \varphi}\right) \mathrm{d} E_{t}\right\| \leq \sup _{|z|=1}|p(z, \bar{z})|\right)$.
So if $p_{n}(z, \bar{z}) \rightarrow f(z)$ in \mathcal{C} then $p_{n}\left(U, U^{*}\right)$ is convergent in $B(\mathcal{H})$. Indeed because (*) $\left\|p_{n}\left(U, U^{*}\right)-p_{m}\left(U, U^{*}\right)\right\|_{B(\mathcal{H})} \leq \sup _{|z|=1}\left|p_{n}(z, \bar{z})-p_{m}(z, \bar{z})\right|<$ $\varepsilon \quad \forall n, m \geq N(\varepsilon) \quad\left(p_{n} \rightarrow f\right)$ so $p_{n}\left(U, U^{*}\right)$ is Cauchy in $B(\mathcal{H})$ and $B(\mathcal{H})$ is complete so $p_{n}\left(U, U^{*}\right)$ is convergent. We define

$$
(* *) f(U)=\lim _{n \rightarrow \infty} p_{n}\left(U, U^{*}\right) \text { in } B(\mathcal{H})
$$

We obtain a *-representation

$$
u_{U}: \mathcal{C} \mapsto B(\mathcal{H})
$$

with $u_{U}(f)=f(U)$ such that $u_{U}(\bar{f})=u_{U}(f)^{*}$ and $u_{U}(f g)=u_{U}(f) u_{U}(g)$. This is checked as follows:
$u_{U}(\bar{f})=u_{U}\left(\lim _{n \rightarrow \infty} \bar{p}\right)=\lim _{n \rightarrow \infty}{\overline{p(z, \bar{z}})_{l_{z=U, E=U}}=\sum \bar{a}_{k j} U^{* k} U^{j}=}=$ $\left(\sum a_{k_{j}} U^{k} U^{* j}\right)^{*}=\left(\lim _{n \rightarrow \infty} p(z, \bar{z})_{l_{i=U, i=\boldsymbol{U}^{*}}}\right)^{*}=\left(u_{U}\left(\lim _{n \rightarrow \infty} p\right)\right)^{*}=$ $u_{U}(f)^{*}$ and
$u_{U}(f g)=u_{U}\left(\lim _{n \rightarrow \infty} p_{n} \lim _{n \rightarrow \infty} q_{n}\right)=\lim _{n \rightarrow \infty} u_{U}\left(p_{n} q_{n}\right)=\lim _{n \rightarrow \infty}$
$u_{U}\left(p_{n}\right) u_{U}\left(q_{n}\right)=u_{U}(f) u_{U}(g)$ and this defines a $*$-representation on $\mathcal{C}(\partial \mathbb{D})$ (see Appendix B).
About *-representations we have the following Lemma:
Lemma 3: Let $\rho: A \mapsto B(\mathcal{H})$ be a *-representation on a C^{*}-algebra A and assume A has a unit. Then necessarily $\|\rho\|=\sup _{a \neq 0} \epsilon \frac{\|\rho(a)\|_{\mathcal{H}}}{\|a\|}$ ≤ 1.

For the proof see Appendix B.
Now to matrices.
Let $\tilde{u}_{U}: \mathcal{M}_{n}(\mathcal{C}) \mapsto B\left(\mathcal{H}^{n}\right)$ be defined by
$\tilde{u}_{U}(F(z))=F(U)=\left(f_{i j}(U)\right)_{i, j=1}^{n} \quad\left(F(z)=\left(f_{i j}(z)\right)_{i, j=1}^{n}\right)$
We have seen on page 6 that $\mathcal{M}_{n}(\mathcal{C})$ is a C^{*}-algebra. \tilde{u}_{U} is a *-representation so $\left\|\tilde{u}_{U}\right\| \leq 1$ or

$$
\|F(U)\|_{B\left(\mathcal{H}^{n}\right)} \leq\|F\|_{B\left(\left(L^{2}(\partial \mathrm{D})\right)^{n}\right)} \leq \sup _{|z|=1}\left\|\left(f_{i j}(z)\right)\right\|_{B\left(\mathrm{C}^{n}\right)}
$$

$\left(\left\|\tilde{u}_{U}\right\|=\sup \frac{\left\|\bar{u}_{U}(F)\right\|}{\|F\|}=\sup \frac{\|F(U)\|}{\|F\|} \leq 1\right)$.
What we wanted to prove is if $T \epsilon B(\mathcal{H})$ and $T \sim C$ where C is a contraction then T is completely polynomially bounded (c.pol.b.) i.e.
$\exists M$ such that for all n and all $n \times n$ matrices $P=\left(P_{i j}\right)$ with polynomial entries we have

$$
\|P(T)\|_{B\left(\mathcal{H}^{n}\right)} \leq M \sup _{|z| \leq 1}\|P(z)\|_{B\left(\mathbf{C}^{n}\right)}
$$

This can be proved as follows:
$P(T)=\left(P_{i j}(T)\right)_{i, j=1}^{n}=\left(P_{i j}\left(S^{-1} C S\right)\right)_{i, j=1}^{n}=\left(\begin{array}{lll}s^{-1} & & \\ & \ddots & \\ & & s^{-1}\end{array}\right)$
$\left(P_{i j}(C)\right)\left(\begin{array}{ccc}s & & \\ & \ddots & \\ & & s\end{array}\right)$ and by the dilation theorem $\left(C^{n}=P_{\mathcal{H}} U_{\mid M}^{n}\right)$ this becomes
$=\left.\left(\begin{array}{lll}s^{-1} & & \\ & \ddots & \\ & & s^{-1}\end{array}\right)\left(\begin{array}{lll}P_{\mathcal{H}} & & \\ & \ddots & \\ & & P_{\mathcal{H}}\end{array}\right) P(U)\right|_{B\left(\mathcal{H}^{\mathrm{n}}\right)}\left(\begin{array}{lll}s & & \\ & \ddots & \\ & & s\end{array}\right)$.
Then $\|P(T)\| \leq\left\|S^{-1}\right\| \cdot 1 \cdot\left\|P(U)_{\left.\right|_{B\left(\mu^{n}\right)}}\right\|\|S\| \leq\left\|S^{-1}\right\|\left\|P_{i j}(U)\right\|$ $\|S\|$. We have proved above $\|F(U)\| \leq \sup _{\{z \mid=1}\left\|\left(f_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}$ and we apply this result to $F=P$.
So we get $\|P(T)\| \leq\left\|S^{-1}\right\|\|S\| \sup _{|z|=1}\left\|\left(P_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}$.
If we define $M:=\left\|S^{-1}\right\|\|S\|$ we see that T is c.pol.b..

Now we go back to the history of similarity to contractions.
Already in 1946 B. Sz.-Nagy proved the following theorem:

Theorem 1.10: Let T be a linear transformation in Hilbert space \mathcal{H} such that its powers $T^{n}(n=0, \pm 1, \pm 2, \ldots)$ are defined everywhere in \mathcal{H} and are uniformly bounded, i.e. $\left\|T^{n}\right\| \leq k$ for some constant k. Then there exists a selfadjoint transformation Q such that

$$
\frac{1}{k} I \leq Q \leq k I
$$

and $Q T Q^{-1}$ is a unitary transformation.
This means that T is similar to a unitary operator U. The question arises:
What remains if only half of the condition holds, T is p.b.?
T is not similar to a unitary operator, because then T^{-1} is similar to a unitary operator which means T and T^{-1} are p.b.. B.Sz.-Nagy proved that if T is p.b. and compact then T is similar to a contraction. So with some extra conditions T is similar to a contraction. However if T only is p.b., it does not hold in general. In 1964 S.R. Foguel gave an example of an operator, in a Hilbert space, with uniformly bounded powers which is not similar to a contraction [3] so the converse of Theorem 1.7 does not hold in general.

Lebow showed that Foguel's example is not polynomially bounded. This lead P.R. Halmos to ask in [2] (problem 6) the following question:

Is every polynomially bounded operator similar to a contraction?
The answer is no. In 1997 G. Pisier gave a very complicated example of a polynomially bounded operator which is not similar to a contraction [6]. So the converse of Theorem 1.8 is not true either.

However the converse of Theorem 1.9 is true. In 1984 V.I. Paulsen was the first who proved this converse [4]. In 1996 G. Pisier gave a different proof [9]. This is included in Chapter 2.

1.2 Examples

Now we go back to Theorem 1.7. There are some interesting cases for which the converse is true. For the first example we recall Theorem 1.10.

Example 1: Let \mathcal{H}, \mathcal{G} be Hilbert spaces and $T \in B(\mathcal{H})$. Then $W \in B(\mathcal{G})$ is called a dilation of T if
(a) $\mathcal{H} \subset \mathcal{G}$ is a closed subspace
(b) $T^{n}=P_{\mathcal{H}} W_{\left.\right|_{\mathcal{K}}}^{n} \quad \forall n \geq 0$. This is equivalent with: there exist 2 Hilbert spaces \mathcal{H}_{1} and $\mathcal{H}_{2}{ }^{\mathcal{K}}$ such that

$$
W=\left(\begin{array}{ccc}
W_{11} & * & * \\
0 & T & * \\
0 & 0 & W_{22}
\end{array}\right):\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H} \\
\mathcal{H}_{2}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H} \\
\mathcal{H}_{2}
\end{array}\right)
$$

and $\mathcal{G}=\mathcal{H}_{1} \oplus \mathcal{H} \oplus \mathcal{H}_{2}$.
Now the following statements are equivalent:
(i) $T \sim C$ with C a contraction
(ii) \exists dilation W of T with W invertible and W and W^{-1} are power bounded.
(i) \Rightarrow (ii) $T \sim C$ means $\exists S$ such that $T=S^{-1} C S$. The dilation theorem in Appendix A tells us that C has a unitary dilation U or in other words

$$
C=\left.P_{\mathcal{H}}\left(\begin{array}{ccc}
U_{11} & * & * \\
0 & C & * \\
0 & 0 & U_{22}
\end{array}\right)\right|_{\mathcal{H}} \text { with } U=\left(\begin{array}{ccc}
U_{11} & * & * \\
0 & C & * \\
0 & 0 & U_{22}
\end{array}\right)
$$

Then define

$$
\begin{aligned}
W & =\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & S^{-1} & 0 \\
0 & 0 & I
\end{array}\right)\left(\begin{array}{ccc}
U_{11} & * & * \\
0 & C & * \\
0 & 0 & U_{22}
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & S & 0 \\
0 & 0 & I
\end{array}\right) \\
& =\left(\begin{array}{ccc}
U_{11} & * & * \\
0 & S^{-1} C S & * \\
0 & 0 & U_{22}
\end{array}\right)=\left(\begin{array}{ccc}
U_{11} & * & * \\
0 & T & * \\
0 & 0 & U_{22}
\end{array}\right)
\end{aligned}
$$

so W is a dilation of T.
As you can see W is invertible and

$$
W^{ \pm n}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & S^{-1} & 0 \\
0 & 0 & I
\end{array}\right) U^{ \pm n}\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & S & 0 \\
0 & 0 & I
\end{array}\right)
$$

$\left\|U^{ \pm n}\right\|<M$ so $\left\|W^{ \pm n}\right\|<N$ which means that W and W^{-1} are power bounded.
(ii) \Rightarrow (i). Let W be a dilation of T with W invertible and W and W^{-1} are power bounded. By Theorem 1.10 there is a selfadjoint operator Q such that $U=Q W Q^{-1}$ is a unitary transformation and $\frac{1}{k} I \leq Q \leq k I$ or in other words W is similar to a unitary operator U on \mathcal{G} :

$$
W=Q^{-1} U Q
$$

W is a dilation of T so there exist 2 Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} such that

$$
W=\left(\begin{array}{ccc}
* & * & * \\
0 & T & * \\
0 & 0 & *
\end{array}\right):\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H} \\
\mathcal{H}_{2}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H} \\
\mathcal{H}_{2}
\end{array}\right)
$$

and $\mathcal{G}=\mathcal{H}_{1} \oplus \mathcal{H} \oplus \mathcal{H}_{2}$. Then

$$
\left(\begin{array}{cc}
* & * \\
0 & T
\end{array}\right)=Q^{-1} U Q_{\mid \mathcal{x}_{1} \oplus \mathcal{H}}
$$

We define $Q_{1}:=Q_{\mathcal{H}_{1} \oplus \mathcal{H}}: \mathcal{H}_{1} \oplus \mathcal{H} \mapsto \operatorname{ran} Q_{1}$. Then U maps ran Q_{1} into itself and $Q_{1}^{-1}:=Q^{-1}: \operatorname{ran} Q_{1} \mapsto \mathcal{H}_{1} \oplus \mathcal{H}$ so we have

$$
\left(\begin{array}{cc}
* & * \\
0 & T
\end{array}\right)=Q_{1}^{-1} U_{1} Q_{1}:\binom{\mathcal{H}_{1}}{\mathcal{H}} \mapsto\binom{\mathcal{H}_{1}}{\mathcal{H}}
$$

where $U_{1}:=U_{\mid \text {ron } Q_{1}}$ is an isometry. We see that $T=Q_{1}^{-1} U_{1} Q_{\left.1\right|_{\mathcal{H}}}$ hence $T^{*}=\left(Q_{1}^{-1} U_{1} Q_{\left.1\right|_{\mathcal{H}}}\right)^{*}=\left(Q_{1}^{-1} U_{1} Q_{1}\right)_{\left.\right|_{\mathcal{H}}}^{*}=Q_{1}^{*} U_{1}^{*}\left(Q_{1}^{*}\right)_{\mid \mathcal{H}}^{-1}$. Let $Q_{2}=\left(Q_{1}^{*}\right)_{\left.\right|_{\mathcal{H}}}^{-1}$:
$\mathcal{H} \mapsto \operatorname{ran} Q_{2}$ then $Q_{2} T^{*}=U_{1}^{*} Q_{2}$ implies that $T_{2}:=U_{1 \mid \mathrm{ran} Q_{2}}^{*}$ is a contraction from $\operatorname{ran} Q_{2}$ into itself and we have $T^{*}=Q_{2}^{-1} T_{2} Q_{2}$. Finally, let $Q_{2}=U_{0}\left|Q_{2}\right|$ be the polar decomposition of Q_{2} where U_{0} is unitary and $\left|Q_{2}\right|$ acts on \mathcal{H}. Then $T^{*}=\left|Q_{2}\right|^{-1} U_{0}^{*} T_{2} U_{0}\left|Q_{2}\right|$ and if we set $S=\left|Q_{2}\right|^{-1}$ and $T_{0}=U_{0}^{*} T_{2}^{*} U_{0}$ we see that T_{0} is a contration on \mathcal{H} and so $T=S^{-1} T_{0} S$ is similar to a contraction.

Example 2: Let T in $(\mathcal{H},(\cdot, \cdot))$ be expansive, i.e. $\|T x\| \geq\|x\|$ and let C be a contraction. Then $T \sim C \Longleftrightarrow T$ is p.b. and C is isometric.
(\Rightarrow) is always true (see Theorem 1.7).
$(\Leftarrow)\|x\|^{2} \leq\|T x\|^{2} \leq\left\|T^{2} x\right\|^{2} \leq \cdots \leq\left\|T^{n} x\right\|^{2} \leq M\|x\|^{2}$ and $\left\|T^{n} x\right\|$ is an increasing sequence bounded from above so $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|$ exists.
Define $[x, y]=\lim _{n \rightarrow \infty}\left\langle T^{n} x, T^{n} y\right\rangle$. The polarisation formula shows that this limit exists:

$$
\left\langle T^{n} x, T^{n} y\right\rangle=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|T^{n}\left(x+i^{k} y\right)\right\|^{2}<\infty
$$

$[x, y]$ is in fact an inner product and [[]] and || || are equivalent norms:

$$
[[x]]^{2}=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{2} \leq M\|x\|^{2}
$$

and

$$
[[x x]]^{2}=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{2} \geq\|x\|^{2}
$$

($\left\|T^{n} x\right\|$ is increasing, take $n=0$).
Also follows $[T x, T x]=\lim _{n \rightarrow \infty}\left\|T^{n} T x\right\|^{2}=\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{2}=[x, x]$ which means that for the norm [[]] T is a contraction and isometric. By Theorem 1.3 it follows that for the norm \|\| $|\mid$ is similar to a contraction which we wanted to prove.

Example 3; Let $T \epsilon B(\mathcal{H})$ be a Jordan matrix in \mathbb{C}^{p}.
Then $T \sim C \Longleftrightarrow T$ is p.b.
(\Rightarrow) is always true (see Theorem1.7).
(\Leftarrow) Let J be a Jordan matrix in \mathbb{C}^{p} with eigenvalue λ :

$$
J=\left(\begin{array}{cccc}
\lambda & 1 & & \bigcirc \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
\bigcirc & & & \lambda
\end{array}\right)
$$

Let $\left(e_{i}\right)$ be the usual orthonormal basis.
$\left\|J^{n} e_{2}\right\|^{2}=\left\|\left(\begin{array}{c}n \lambda^{n-1} \\ \lambda_{0}^{n} \\ 0 \\ \vdots \\ 0\end{array}\right)\right\|^{2}=\left|n \lambda^{n-1}\right|^{2}+\left|\lambda^{2 n}\right|$.
We distinguish 4 different cases:
$|\lambda|>1:\left\|J^{n} e_{2}\right\| \rightarrow \infty$ for $n \rightarrow \infty$ by $\left|\lambda^{2 n}\right|$
$|\lambda|=1$ and $p>1:\left\|J^{n} e_{2}\right\| \rightarrow \infty$ for $n \rightarrow \infty$ by $\left|n \lambda^{n-1}\right|$
$|\lambda|=1$ and $p=1: J^{n}=\lambda^{n}$ and this is bounded
$|\lambda|<1:\left\|J^{n}\right\|<M \quad \forall n$
So a Jordan block is p.b. $\Longleftrightarrow|\lambda|<1, p \geq 1$ or $|\lambda| \leq 1, p=1$.
If $p=1 J: \mathbb{C} \mapsto \mathbb{C}, J=\lambda$ is similar to a contraction because $|\lambda| \leq 1$. Now for $p>1, J=\lambda I+S \quad|\lambda|<1$.
Then $J^{n}=J(\lambda)^{n}=(\lambda I+S)^{n}=\sum_{k=0}^{p}(\lambda I)^{n-k} S^{k}\binom{n}{k}$ where $p=n-1$ and $\lim \left\|J(\lambda)^{k}\right\|^{1 / k}=r(J(\lambda)) \leq 1$ where $r(J(\lambda))$ is the spectral radius: $r(J(\lambda))=\max |\sigma(J(\lambda))|=|\lambda|<1$.
So $\exists k_{0}$ such that $\forall k \geq k_{0}\left\|J(\lambda)^{k}\right\|^{1 / k} \leq r<1$ and $\left\|J(\lambda)^{k}\right\| \leq r^{k}$.
Define $[x, y]=\sum_{k=0}^{\infty}\left\langle J(\lambda)^{k} x, J(\lambda)^{k} y\right\rangle$ an inner product op \mathbb{C}^{n}.
Then

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty}\left\langle J(\lambda)^{k} x, J(\lambda)^{k} y\right\rangle\right| \leq \sum_{k=0}^{\infty}\left\|J(\lambda)^{k} x\right\|\left\|J(\lambda)^{k} y\right\| \\
& \quad \leq \sum_{k=0}^{\infty}\left\|J(\lambda)^{k}\right\|\|x\|\left\|J(\lambda)^{k}\right\|\|y\| \\
& \quad \leq \sum_{k=0}^{k_{0}}\left\|J(\lambda)^{k}\right\|^{2}\|x\|\|y\|+\sum_{k=k_{0}+1}^{\infty} r^{2 k}\|x\|\|y\| \\
& \quad \leq K\|x\|\|y\|
\end{aligned}
$$

so $[[x]] \leq K\|x\|$ and $[[x]]^{2}=\sum_{k=0}^{\infty}\left\|J(\lambda)^{k} x\right\|^{2} \geq\left\|J(\lambda)^{0} x\right\|^{2}=\|x\|^{2}$. This means that [[]] and || || are equivalent norms.
Also

$$
\begin{aligned}
& {[[J(\lambda) x]]^{2}=\sum_{k=0}^{\infty}\left\langle J(\lambda)^{k} J(\lambda) x, J(\lambda)^{k} J(\lambda) x\right\rangle} \\
& \quad \leq \sum_{k=0}^{\infty}\left\langle J(\lambda)^{k} x, J(\lambda)^{k} x\right\rangle=[[x]]^{2}
\end{aligned}
$$

which means that for the norm [[]] $J(\lambda)$ is a contraction. By Theorem 1.3 it follows that for the norm \|\| \| $J(\lambda)$ is similar to a contraction and so is T.

We mentioned before B. Sz.-Nagy's example if T is p.b. and compact then T is similar to a contraction, but we are not going to prove this.

There is also an application of Theorem 1.9 by B. Sz.-Nagy and C. Foias [10].

Example 4: Let $T \in B(\mathcal{H})$. Assume $\exists \overline{\mathcal{H}}$ and $U \epsilon B(\overline{\mathcal{H}})$ unitary and $\exists \rho \geq 1$ such that $T^{n}=\rho P_{\mathcal{H}} U_{\left.\right|_{\mathcal{A}}}^{n} \quad \forall n$ where $P_{\mathcal{H}}$ is the orthogonal projection of $\tilde{\mathcal{H}}$ onto \mathcal{H}. (This is called a ρ-dilation)
Then T is similar to a contraction C.
We will show T is c.pol.b. then by Paulsen's criterion about the converse of Theorem 1.9 which is also true follows that $T \sim C$.
Let $P(z)$ be a $n \times n$ matrix with polynomial entries. Then $P(T)-P(0)=\rho$ $\left(\begin{array}{lll}P_{\mathcal{H}} & & \\ & \ddots & P_{\mathcal{X}^{\prime}}\end{array}\right)(P(U)-P(0))_{\left.\right|_{\mathcal{H}^{n}}}$ and
$P(T)=\rho\left(\begin{array}{lll}P_{\mathcal{H}} & & \\ P_{\mathcal{H}} & & \\ & \ddots & \\ & & P_{\mathcal{H}}\end{array}\right) P(U)_{\mathcal{X}^{\mathrm{n}}}+(1-\rho)\left(\begin{array}{lll}P_{\mathcal{H}} & & \\ & \ddots & \\ & & P_{\mathcal{H}}\end{array}\right) P(0)_{\left.\right|_{\mathcal{H}^{\mathrm{n}}} .}$.
From this follows
$\|P(T)\|_{B\left(\mathcal{H}^{\mathrm{n}}\right)}$

$$
\leq \rho\left\|P_{\mathcal{H}}\right\|\|P(U)\|_{B\left(\mathcal{H}^{n}\right)}+|1-\rho|\left\|P_{\mathcal{H}}\right\|\|P(0)\|_{B\left(\mathcal{H}^{n}\right)}
$$

$$
\leq \rho\|P(U)\|_{B\left(\overline{\mathcal{H}}^{\mathrm{n}}\right)}+|1-\rho|\|P(0)\|_{B\left(\mathcal{H}^{\mathrm{n}}\right)}
$$

$$
\leq \rho \sup _{|z| \leq 1}\|P(z)\|_{e}+|1-\rho|\|P(0)\|_{e}
$$

$$
\leq(\rho+|1-\rho|) \sup _{|z| \leq 1}\|P(z)\|_{e}
$$

where $\left\|\|_{e}\right.$ again is the Euclidian norm in \mathbb{C}^{n}. This means that T is c.pol.b.

Chapter 2

In this chapter we are going to prove that the converse of Theorem 1.9 is also true.

Theorem 2.1: $T \sim C \Longleftrightarrow T$ is c.pol.b.
Proof: (\Rightarrow) See chapter 1, the proof of Theorem 1.9.
(\Leftarrow) We will need some theory about completely bounded maps and completely bounded homomorphisms.

2.1 Completely bounded maps

We will start by mentioning the Hahn-Banach theorem:
Theorem 2.2: (Hahn-Banach) Let Λ be a real vector space. Let $\rho: \Lambda \mapsto \mathbb{R}$ be a sublinear map, i.e. a map such that

$$
\begin{aligned}
& \forall x, y \in \Lambda \quad p(x+y) \leq p(x)+p(y) \\
& \forall x \in \Lambda \forall t \geq 0 \quad p(t x)=t p(x)
\end{aligned}
$$

Then there is a \mathbb{R}-linear functional $f: \Lambda \mapsto \mathbb{R}$ such that

$$
\forall x \in \Lambda \quad f(x) \leq p(x)
$$

Corollary 2.3: Let Λ_{+}be a convex cone in a real vector space Λ. Let $q: \Lambda_{+} \mapsto$ \mathbb{R} be a superlinear map i.e. a map such that

$$
\begin{aligned}
& \forall x, y \in \Lambda_{+} \quad q(x)+q(y) \leq q(x+y) \\
& \forall x \in \Lambda_{+} \forall t \geq 0 \quad q(t x)=t q(x)
\end{aligned}
$$

Let $p: \Lambda \mapsto \mathbb{R}$ be a sublinear map. If $q(x) \leq p(x)$ for all x in Λ_{+}then there is a \mathbb{R}-linear functional $f: \Lambda \mapsto \mathbb{R}$ such that

$$
\begin{array}{ll}
\forall x \in \Lambda_{+} & q(x) \leq f(x) \\
\forall x \in \Lambda & f(x) \leq p(x)
\end{array}
$$

Proof: Let $r(x)=\inf \left\{p(x+y)-q(y) \mid y \in \Lambda_{+}\right\}$for $x \in \Lambda$. Then r is sublinear: $r(t x)=\inf \left\{p(t x+y)-q(y) \mid y \in \Lambda_{+}\right\}=\inf \left\{\left.t p\left(x+\frac{1}{t} y\right)-t q\left(\frac{1}{t} y\right) \right\rvert\, y \in \Lambda_{+}\right\}=$ $\inf \left\{\operatorname{tp}(x+z)-t q(z) \left\lvert\, z \in \frac{1}{t} \Lambda_{+}=\Lambda_{+}\right.\right\}=t \inf \left\{p(x+z)-q(z) \mid z \in \Lambda_{+}\right\}=$ $\operatorname{tr}(x) \quad \forall t \geq 0$ and
$p(x+y)-q(y)+p(z+v)-q(v) \geq p(x+z+y+v)-q(y+v)=p(x+z+$ $w)-q(w) \geq r(x+z) \forall y, v \in \Lambda_{+}$and $w=y+v$. Now we can take the infimum on the left side over $y \in \Lambda_{+}$and $v \in \Lambda_{+}$:
$r(x)+r(z)=\inf \left\{p(x+y)-q(y) \mid y \in \Lambda_{+}\right\}+\inf \left\{p(z+v)-q(v) \mid v \in \Lambda_{+}\right\} \geq$ $r(x+z)$.
Also follows $r(x)=\inf \left\{p(x+y)-q(y) \mid y \in \Lambda_{+}\right\} \leq p(x+0)-q(0)=p(x)$ and $-p(-x)=-p(-x)-p(y)+p(y) \leq p(y)-p(-x+y) \leq p(y)-q(-x+y)$ if we take y arbitrary but so that $-x+y \in \Lambda_{+}$. The inequality holds for
all $-x+y \epsilon \Lambda_{+}$so we can take the infumum:
$-p(-x) \leq \inf \left\{p(y)-q(-x+y) \mid-x+y \in \Lambda_{+}\right\}=\inf \{p(x+z)-q(z) \mid$ $\left.z \in \Lambda_{+}\right\}=r(x)$
Together these results give:

$$
\begin{equation*}
-p(-x) \leq r(x) \leq p(x) \tag{2.1}
\end{equation*}
$$

which means that $r(x)$ is finite $\forall x \in \Lambda$.
$r(-y)=\inf \left\{p(-y+z)-q(z) \mid z \epsilon \Lambda_{+}\right\} \leq p(-y+y)-q(y)=-q(y) \forall y \epsilon \Lambda_{+}$. By the Hahn-Banach theorem there is a linear functional $f: \Lambda \mapsto \mathbb{R}$ such that $f(x) \leq r(x)$ for all $x \in \Lambda$. By (2.1) follows $f(x) \leq p(x)$ for all $x \in \Lambda$ and $-f(y)=f(-y) \leq r(-y) \leq-q(y)$ for all $y \in \Lambda_{+}$. This yields the announced result.

Let \mathcal{H}, \mathcal{K} be Hilbert spaces. Let $S \subset B(\mathcal{H})$ be a subspace. For any $n \geq 1$ we denote by $\mathcal{M}_{n}(S)$ the space of all $n \times n$ matrices ($a_{i j}$) with coefficients in S with the norm

$$
\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{n}(S)}=\sup \left(\sum_{i}\left\|\sum_{j} a_{i j} x_{j}\right\|^{2}\right)^{1 / 2}
$$

where the supremum runs over all x_{1}, \ldots, x_{n} in \mathcal{H} such that $\sum\left\|x_{j}\right\|^{2} \leq 1$.
Let $u: S \mapsto B(\mathcal{K})$ then we define $u_{n}: \mathcal{M}_{n}(S) \mapsto \mathcal{M}_{n}(B(\mathcal{K}))$ by $u_{n}\left(\left(a_{i j}\right)\right)=$ $\left(u\left(a_{i j}\right)\right)$ for $\left(a_{i j}\right) \in \mathcal{M}_{n}(S)$. Then u is called completely bounded (in short c.b.) if there is a constant K such that the maps u_{n} are uniformly bounded by K i.e. if we have

$$
\sup _{n \geq 1}\left\|u_{n}\right\|_{\mathcal{M}_{\mathrm{n}}(S) \mapsto \mathcal{M}_{\mathrm{n}}(B(\mathcal{K}))} \leq K
$$

and the c.b. norm $\|u\|_{c b}$ is defined as the smallest constant K for which this holds.
When $\|u\|_{c b} \leq 1$, we say that u is completely contractive (or a complete contraction).
It is quite straightforward to extend the usual definitions to the Banach space case as follows. Let \mathcal{X}, \mathcal{Y} be Banach spaces. We denote by $B(\mathcal{X}, \mathcal{Y})$ the space of all bounded operators from \mathcal{X} into \mathcal{Y}, equipped with the usual operator norm. Let $\mathcal{X}_{1}, \mathcal{Y}_{1}$ be an other couple of Banach spaces. Let $S \subset B\left(\mathcal{X}_{1}, \mathcal{Y}_{1}\right)$ be a subspace and let $u: S \mapsto B(\mathcal{X}, \mathcal{Y})$ be a linear map. Let us define $\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{n}(S)}$ in the same way and $u_{n}: \mathcal{M}_{n}(S) \mapsto \mathcal{M}_{n}(B(\mathcal{X}, \mathcal{Y}))$ by $u_{n}\left(\left(a_{i j}\right)\right)=\left(u\left(a_{i j}\right)\right)$. We will say again that u is c.b. if the maps u_{n} are uniformly bounded and we define

$$
\|u\|_{c b}=\sup _{n \geq 1}\left\|u_{n}\right\|
$$

The following theorem is a fundamental factorization of c.b. maps.
Theorem 2.4: Let \mathcal{H} be a Hilbert space and let $S \subset B(\mathcal{H})$ be a subspace. Let \mathcal{X}, \mathcal{Y} be Banach spaces. Let $u: S \mapsto B(\mathcal{X}, \mathcal{Y})$ be a c.b. map. Then there is a Hilbert space $\hat{\mathcal{H}}$, a $*$-representation $\pi: B(\mathcal{H}) \mapsto B(\hat{\mathcal{H}})$ with $\pi(1)=1$ and operators $V_{1}: \mathcal{X} \mapsto \hat{\mathcal{H}}$ and $V_{2}: \hat{\mathcal{H}} \mapsto \mathcal{Y}$ with $\left\|V_{1}\right\|\left\|V_{2}\right\| \leq\|u\|_{c b}$ such that
(2.2) $\quad \forall a \in S \quad u(a)=V_{2} \pi(a) V_{1}$

Conversely, any map of the form (2.2) satisfies

$$
\|u\|_{c b} \leq\left\|V_{2}\right\|\left\|V_{1}\right\|
$$

Formula (2.2) is easier to understand if you look at the following diagram:

$$
\begin{array}{lllll}
& \hat{\mathcal{H}} & \xrightarrow{\pi(a)} & \hat{\mathcal{H}} & \\
V_{1} & \uparrow & & \downarrow & V_{2} \\
& \mathcal{X} & \xrightarrow{u(a)} & \mathcal{Y} &
\end{array}
$$

We know π has special properties:
(i) π is defined on all of $B(\mathcal{H})$
(ii) π is a *-representation
(iii) $\pi(1)=1$

We can also say: " $u(a)$ looks like a piece of $\pi(a)$ ".

For the proof of Theorem 2.4 we will introduce some notations. Let $a \epsilon S$ and let I be the space $B(\mathcal{X}, \mathcal{H})$. Let \mathcal{X}^{*} be the dual space of $\mathcal{X}, \mathcal{X}^{*}=\{\eta: \mathcal{X} \mapsto \mathbb{C} \mid \eta$ linear \} and let $S \otimes \mathcal{X}$ be their algebraic tensor product. If $\sum_{i=1}^{n} a_{i} \otimes x_{i} \in S \otimes \mathcal{X}$ and $\sum_{k=1}^{m} h_{k} \otimes \eta_{k} \in \mathcal{H} \otimes \mathcal{X}^{*}$ then we define

$$
\begin{equation*}
\left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, \sum_{k=1}^{m} h_{k} \otimes \eta_{k}\right\rangle \stackrel{\text { def }}{=} \sum_{i, k} \eta_{k}\left(x_{i}\right) a_{i}\left(h_{k}\right) \quad \in \mathcal{H} \tag{2.3}
\end{equation*}
$$

where $a_{i}\left(h_{k}\right) \in \mathcal{H}$ and $\eta_{k}\left(x_{i}\right) \in \mathbb{C}$.

Remark: If $\left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, \sum_{k=1}^{m} h_{k} \otimes \eta_{k}\right\rangle=0 \quad \forall\left(\sum h_{k} \otimes \eta_{k}\right)$ then follows $\sum_{i=1}^{n} a_{i} \otimes x_{i}=0$. Indeed, if $z=\sum_{i=1}^{n} a_{i} \otimes x_{i}$ we may suppose that $\left(x_{i}\right)$ are linearly independent:
Assume $x_{1}=b_{2} x_{2}+\cdots+b_{n} x_{n}$ then

$$
z=a_{1} \otimes x_{1}+\sum_{i=2}^{n} a_{i} \otimes x_{i}=\sum_{i=2}^{n}\left(a_{i}+b_{i} a_{1}\right) \otimes x_{i}
$$

so $z=\sum_{i=2}^{n} c_{i} \otimes x_{i}$ with x_{2}, \ldots, x_{n} linearly independent.
There exists an $\hat{\eta} \in \mathcal{X}^{*}$ such that $\hat{\eta}\left(x_{1}\right)=1$ and $\hat{\eta}\left(x_{i}\right)=0$ for $i=2, \ldots, n$ and $0=\left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, h \otimes \hat{\eta}\right\rangle=\sum_{i} \hat{\eta}\left(x_{i}\right) a_{i}(h)=a_{1}(h) \quad \forall h \in \mathcal{H}$. This implies that $a_{1}(h)=0 \forall h \in \mathcal{H}$ so $a_{1}: \mathcal{H} \mapsto \mathcal{H}$ is the 0 - operator. We can do the same for a_{2}, \ldots, a_{n}.
So if $\left\langle\sum_{i=1}^{n} a_{i} \otimes x_{i}, \sum_{k=1}^{m} h_{k} \otimes \eta_{k}\right\rangle=0 \quad \forall\left(\sum_{k} h_{k} \otimes \eta_{k}\right)$ then

$$
z=\sum_{i=1}^{n} a_{i} \otimes x_{i}=0 \otimes \sum_{i=1}^{n} x_{i}=0
$$

Now for $\xi \epsilon I$ and $z=\sum_{i=1}^{n} a_{i} \otimes x_{i} \epsilon S \otimes \mathcal{X}$ we define $\xi .: S \otimes \mathcal{X} \mapsto \mathcal{H}$ as

$$
\xi . z=\sum_{i=1}^{n} a_{i} \xi\left(x_{i}\right) \quad \epsilon \mathcal{H}
$$

where $\xi\left(x_{i}\right) \in \mathcal{H}$.

Lemma 2.5: Assume x_{1}, \ldots, x_{n} are linearly independent in \mathcal{X} and $z \epsilon S \otimes \mathcal{X}$ has the property:
$\xi \in I$ and $\xi\left(x_{i}\right)=0$ for $i=1, \ldots, n$ implies $\xi . z=0$
then $\exists a_{j} \in S$ such that

$$
z=\sum_{j=1}^{n} a_{j} \otimes x_{j}
$$

Proof: This is checked as follows:
Take $z=\sum_{k=1}^{m} b_{k} \otimes u_{k} \in S \otimes \mathcal{X}$. We are going to prove

$$
z^{\prime}:=z-\sum_{j=1}^{n} a_{j} \otimes x_{j}=0
$$

Choose $x_{j}^{*} \in \mathcal{X}^{*}$ such that $x_{j}^{*}\left(x_{i}\right)=\delta_{i j}$ (i.e. $x_{j}^{*}\left(x_{i}\right)=1$ for $i=j$ and $x_{j}^{*}\left(x_{i}\right)=0$ for $i \neq j$). Define

$$
a_{j}=\sum_{k=1}^{m} b_{k} x_{j}^{*}\left(u_{k}\right) \quad \epsilon S
$$

Then $z^{\prime}=\sum_{k=1}^{m} b_{k} \otimes u_{k}-\sum_{j=1}^{n} a_{j} \otimes x_{j}=\sum_{k=1}^{m} b_{k} \otimes u_{k}-\sum_{k=1}^{m} \sum_{j=1}^{n} x_{j}^{*}\left(u_{k}\right)$ $b_{k} \otimes x_{j}$. Choose $\eta^{\prime} \in \mathcal{X}^{*}$ and $y \in \mathcal{H}$. Form $\eta=\eta^{\prime}-\sum_{j=1}^{n} \eta^{\prime}\left(x_{j}\right) x_{j}^{*} \in \mathcal{X}^{*}$. Define $\xi \in I$ with y in \mathcal{H} arbitrary by

$$
\xi(x)=\eta(x) y
$$

Then follows $\xi\left(x_{i}\right)=\eta\left(x_{i}\right) y=\left(\eta^{\prime}\left(x_{i}\right)-\sum \eta^{\prime}\left(x_{j}\right) x_{j}^{*}\left(x_{i}\right)\right) y=\left(\eta^{\prime}\left(x_{i}\right)-\right.$ $\left.\eta^{\prime}\left(x_{i}\right)\right) y=0 \cdot y=0 \quad \forall x_{i}$. This implies $\xi . z=0$ as we assumed i.e.

$$
0=\xi \cdot z=\sum_{k=1}^{m} b_{k} \eta\left(u_{k}\right) y=\sum_{k=1}^{m} \eta\left(u_{k}\right) b_{k}(y)
$$

and

$$
\begin{aligned}
&\left\langle z^{\prime}, y\right.\left.\otimes \eta^{\prime}\right\rangle=\left\langle\sum_{k} b_{k} \otimes u_{k}-\sum_{k} \sum_{j} x_{j}^{*}\left(u_{k}\right) b_{k} \otimes x_{j}, y \otimes \eta^{\prime}\right\rangle \\
&= \sum_{k} \eta^{\prime}\left(u_{k}\right) b_{k}(y) \\
&=\sum_{k} \eta\left(\sum_{k} \sum_{j} x_{j}^{*}\left(u_{k}\right) b_{k}(y)\right.+\eta_{k}\left(x_{j}\right) b_{k}(y) \\
&-\sum_{k} \eta^{\prime}\left(x_{j}\right) x_{j}^{*}\left(u_{k}\right) b_{k}^{*}(y) \\
&= \sum_{k} \eta \eta^{\prime}\left(x_{j}\right) b_{k}(y) \\
& \eta\left(u_{k}\right) b_{k}(y)=0
\end{aligned}
$$

And then by the Remark follows $z^{\prime}=0$.
Lemma 2.6: Let $\left(z_{i}\right)_{i \leq n}$ be a finite sequence in $S \otimes \mathcal{X}$ and let $\left(x_{i}\right)_{i \leq m}$ be a finite sequence in \mathcal{X}. Then

$$
\begin{equation*}
\sum_{i}\left\|\xi \cdot z_{i}\right\|_{\mathcal{H}}^{2} \leq \sum_{j}\left\|\xi\left(x_{j}\right)\right\|_{\mathcal{H}}^{2} \quad \forall \xi \in I \tag{2.4}
\end{equation*}
$$

holds iff there is a matrix $\left(a_{i j}\right)$ in $\mathcal{M}_{n}(S)$ with $\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{\mathrm{n}}(S)} \leq 1$ such that

$$
z_{i}=\sum_{j=1}^{m} a_{i j} \otimes x_{j} \quad \forall i=1,2, \ldots, n
$$

Proof: Assume (2.4). If $\xi \in I$ then $\xi\left(x_{i}\right)=0 \quad \forall i=1, \ldots, n$ implies $\xi . z_{i}=$ $0 \forall i=1, \ldots, n$, so we can apply Lemma 2.5: $\exists K=\left(k_{i j}\right) \epsilon S$ such that

$$
z_{i}=\sum_{j} k_{i j} \otimes x_{j} \quad \forall i=1, \ldots, n
$$

In general this K does not satisfy $\|K\|_{\mathcal{M}_{\mathrm{n}}(S)} \leq 1$. So we replace K by one that has this property.
Define $E \stackrel{\text { def }}{=}\left\{\left.x^{*}\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=\left(\begin{array}{c}z^{*}\left(x_{1}\right) \\ \vdots \\ z^{*}\left(z_{n}\right)\end{array}\right) \right\rvert\, x^{*} \in \mathcal{X}^{*}\right\} \subset \mathbb{C}^{n}$ and let $P=$ $\left(P_{j k}\right)_{j, k=1}^{n}$ be the orthogonal projection on E. Then it follows

$$
x^{*}\left(P\left(\begin{array}{c}
\tilde{x}_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right)=P x^{*}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x^{*}\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) \quad \forall x^{*}
$$

because $x^{*}\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right) \in E$ so $P\left(\begin{array}{c}z_{1} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ \vdots \\ z_{n}\end{array}\right)$.
If $\sum_{j} a_{j} x_{j}=0$ then $\left(a_{1} \cdots a_{n}\right) P=(0 \cdots 0)$. Indeed, $\sum_{j} a_{j} x^{*}\left(x_{j}\right)=$ $\left(a_{1} \cdots a_{n}\right) x^{*}\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=0$ but x^{*} is arbitrary, hence

$$
\left(a_{1} \cdots a_{n}\right) P\left(\begin{array}{c}
y_{1} \\
\vdots \\
\nu_{n}
\end{array}\right)=0 \quad \forall y_{i}
$$

which implies $\left(a_{1} \cdots a_{n}\right) P=(0 \cdots 0)$.
There also holds
$(0 \cdots 0)\left(\begin{array}{c}x_{1} \\ \vdots \\ z_{n}\end{array}\right)=\left(a_{1} \cdots a_{n}\right) P\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=\left(a_{1} \cdots a_{n}\right)\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=\sum_{i} a_{i} x_{i}$
so

$$
\sum_{i} a_{i} x_{i}=0 \Longleftrightarrow\left(a_{1} \cdots a_{n}\right) P=(0 \cdots 0)
$$

Now define $\tilde{E} \stackrel{\text { def }}{=}\left\{\left.\xi\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=\left(\begin{array}{c}\varepsilon\left(z_{1}\right) \\ \vdots \\ \epsilon\left(z_{n}\right)\end{array}\right) \right\rvert\, \xi \in I\right\} \subset \mathcal{H}^{n}$.
We claim $\tilde{E}=R:=\left\{\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right) \in \mathcal{H}^{n} \left\lvert\,\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)=P\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)\right.\right\}$.
$P \xi\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=\xi\left(P\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)\right)=\xi\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)$ so $\tilde{E} \subset R$.
Now we claim that also $R \subset \tilde{E}$. Assume $\left(\begin{array}{c}n_{1} \\ \vdots \\ h_{n}\end{array}\right) \in \mathcal{H}^{n}$ and $P\left(\begin{array}{c}h_{1} \\ \vdots \\ n_{n}\end{array}\right)=$ $\left(\begin{array}{c}h_{1} \\ \vdots \\ n_{n}\end{array}\right)$. We want to construct a $\xi \in I$ such that

$$
\xi\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
i_{1} \\
\vdots \\
n_{n}
\end{array}\right)
$$

Therefore we define $\gamma: \operatorname{span}\left(x_{1}, \ldots, x_{n}\right) \mapsto \operatorname{span}\left(h_{1}, \ldots, h_{n}\right)$ such that $\gamma\left(\sum_{i} a_{i} x_{i}\right)=\sum_{i} a_{i} h_{i}$ (especially $\left.\gamma\left(x_{1}\right)=h_{1}, \ldots, \gamma\left(x_{n}\right)=h_{n}\right)$.
$\sum_{i} a_{i} x_{i}=0$ implies $\left(a_{1} \cdots a_{n}\right) P=(0 \cdots 0)$ like we have seen before so

$$
\left(a_{1} \cdots a_{n}\right)\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)=\left(a_{1} \cdots a_{n}\right) P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)=0
$$

and this means that γ is well defined $(\gamma(0)=0)$.
From the definition it follows that γ is linear and surjective. Let W be a subspace of $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$ such that $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$ is the direct sum $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)=W+\operatorname{ker} \gamma$. Then $\gamma_{\mid w}: W \mapsto \operatorname{span}\left(h_{1}, \ldots, h_{n}\right)$ is a bijective map.
Choose $\left(v_{1}, \ldots, v_{m}\right)$ a basis of $\operatorname{span}\left(h_{1}, \ldots, h_{n}\right)$ with $m=\operatorname{dim} W \leq n$ and w_{1}, \ldots, w_{m} in W such that $\gamma\left(w_{i}\right)=v_{i}$. Then is $\left(w_{1}, \ldots, w_{m}\right)$ a basis of W. Choose $\left(w_{m+1}, \ldots, w_{r}\right)$ a basis of $\operatorname{ker} \gamma$ with $r \leq n-m$ then $\left(w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{r}\right)$ is a basis of $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right) \subset \mathcal{X}$.
Take $w_{j}^{*} \in \mathcal{X}^{*}$ such that $w_{j}^{*}\left(w_{i}\right)=\delta_{i j}$ and define $\xi \in I$ by

$$
\xi(x)=\sum_{j=1}^{m} w_{j}^{*}(x) v_{j} \quad \epsilon I
$$

This means $\xi\left(w_{i}\right)=v_{i} \quad \forall i=1, \ldots, m$ and $\xi\left(w_{i}\right)=0 \quad \forall i=m+1, \ldots, r$ but also $\gamma\left(w_{j}\right)=v_{j} \quad \forall j=1, \ldots, m$ and $\gamma\left(w_{j}\right)=0 \quad \forall j=m+1, \ldots, r$ and ξ and γ are both linear. $\left(w_{1}, \ldots, w_{r}\right)$ is a basis of $\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$ so

$$
\xi_{\left.\right|_{\operatorname{span}\left(z_{1}, \ldots, z_{n}\right)}}=\gamma
$$

with $\xi\left(x_{i}\right)=\gamma\left(x_{i}\right)=h_{i} \quad \forall i=1, \ldots, n$ and this proves the above claim.
Take $\left(\begin{array}{c}h_{1} \\ \vdots \\ n_{n}\end{array}\right) \in R=\tilde{E}$ then $\exists \xi \in I$ such that $P\left(\begin{array}{c}n_{1} \\ \vdots \\ h_{n}\end{array}\right)=\xi\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)$.
Now we want to show that $\left\|A\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)\right\| \leq\left\|\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)\right\|$ for an $A=\left(a_{i j}\right)_{i, j=1}^{n}$ because this implies $\|A\|_{B\left(\mathcal{H}^{n}\right)} \leq 1$.
We have seen before that $z_{i}=\sum_{j=1}^{n} k_{i j} \otimes x_{j}$ and because $\left(\begin{array}{c}x_{1} \\ \vdots \\ z_{n}\end{array}\right)=P$ $\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)$ we have

$$
\begin{aligned}
& \sum_{j=1}^{n} k_{i j} \otimes x_{j}=\sum_{j=1}^{n} k_{i j} \otimes \sum_{l=1}^{n} P_{j l} x_{l} \\
& \quad=\sum_{l=1}^{n}\left(\sum_{j=1}^{n} k_{i j} P_{j l}\right) \otimes x_{l}=\sum_{l=1}^{n}(K P)_{i l} \otimes x_{l}
\end{aligned}
$$

Define $A=\left(a_{i l}\right)_{i, l=1}^{n}=K P$ then

$$
z_{i}=\sum_{l=1}^{n} a_{i l} \otimes x_{l}
$$

We assumed (2.4): $\sum_{i=1}^{n}\left\|\xi . z_{i}\right\|^{2} \leq \sum_{l=1}^{n}\left\|\xi\left(x_{l}\right)\right\|^{2}$. This implies

$$
\begin{aligned}
& \left\|A P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2}=\left\|A\left(\begin{array}{c}
\xi\left(x_{1}\right) \\
\vdots \\
\varepsilon\left(z_{n}\right)
\end{array}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|\sum_{l=1}^{n} a_{i l} \xi\left(x_{l}\right)\right\|^{2} \\
& \leq \sum_{l=1}^{n}\left\|\xi\left(x_{l}\right)\right\|^{2}=\left\|\left(\begin{array}{c}
\xi\left(z_{1}\right) \\
\vdots \\
\xi\left(x_{n}\right)
\end{array}\right)\right\|^{2}=\left\|P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2}
\end{aligned}
$$

and $A P=K P P=K P^{2}=K P=A$ because P is a projection which means

$$
\begin{gathered}
\left\|A\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2} \leq\left\|P\left(\begin{array}{c}
n_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2} \\
\left\|P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2}=\left\langle P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right), P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\rangle=\left\langle P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right),\left(\begin{array}{c}
h_{1} \\
\vdots \\
\vdots \\
h_{n}
\end{array}\right)\right\rangle \leq\left\|\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\| \text { so } \\
\left\|P\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\| \leq\left\|\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|
\end{gathered}
$$

Applying this result we get

$$
\left\|A\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2} \leq\left\|\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)\right\|^{2}
$$

which means $\|A\|_{B\left(\mathcal{H}^{n}\right)} \leq 1$.
This shows the "only if" part. The "if" part is easy. If there is a matrix $\left(a_{i j}\right)$ in $\mathcal{M}_{n}(S)$ with $\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{n}(S)} \leq 1$ such that $\forall i=1,2, \ldots, n$

$$
z_{i}=\sum_{j} a_{i j} \otimes x_{j}
$$

then

$$
\begin{aligned}
& \sum_{i}\left\|\xi \cdot z_{i}\right\|^{2}=\sum_{i}\left\|\sum_{j} a_{i j} \xi\left(x_{j}\right)\right\|^{2} \\
& \quad \leq\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{\mathrm{n}}(S)}^{2} \sum_{j}\left\|\xi\left(x_{j}\right)\right\|^{2} \leq \sum_{j}\left\|\xi\left(x_{j}\right)\right\|^{2}
\end{aligned}
$$

Proof of Theorem 2.4: Let $C=\|u\|_{c b}$ and $\Lambda=\left\{\phi: I \mapsto \mathbb{R} \mid \exists x_{1}, \ldots, x_{n} \in \mathcal{X}\right.$ s.t. $\left.|\phi(\xi)| \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2} \forall \xi \epsilon I\right\}$. Clearly Λ is a real vector space and
Λ is not empty. For example take $x_{0} \in \mathcal{X}$ and define ϕ by $\phi(\xi)=\left\|\xi\left(x_{0}\right)\right\|^{2}$. Then $\phi \in \Lambda$.
Let $\Lambda_{+}=\{\phi \in \Lambda \mid \phi \geq 0\}$. The preceding example is also suitable for Λ_{+} so Λ_{+}is not empty either.
We define $\hat{u}: S \otimes \mathcal{X} \mapsto \mathcal{Y}$ as follows:
Let $z=\sum_{i=1}^{n} a_{i} \otimes x_{i} \in S \otimes \mathcal{X}$ then

$$
\hat{u}(z)=\sum_{i=1}^{n} u\left(a_{i}\right) x_{i} \quad \epsilon \mathcal{Y}
$$

for $u: S \mapsto B(\mathcal{X}, \mathcal{Y})$.
Now we define
$\forall \phi \epsilon \Lambda \quad p(\phi)=\inf \left\{C^{2} \sum\left\|x_{i}\right\|^{2} \mid x_{i} \epsilon \mathcal{X}, \phi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}, \forall \xi \in I\right\}$
and
$\forall \phi \epsilon \Lambda_{+} q(\phi)=\sup \left\{\sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \mid z_{i} \epsilon S \otimes \mathcal{X}, \sum\left\|\xi \cdot z_{i}\right\|^{2} \leq \phi(\xi), \quad \forall \xi \epsilon I\right\}$
The set in the definition of p is not empty because we can take the example $\phi(\xi)=\left\|\xi\left(x_{0}\right)\right\|^{2}$ for $x_{0} \in \mathcal{X}$ again and $C^{2} \sum\left\|x_{i}\right\|^{2} \geq 0$ so $p(\phi) \geq 0$. The set in the definition of q is not empty because $z_{i}=0 \otimes x_{i}$ satisfies $\sum\left\|\xi \cdot z_{i}\right\|^{2}=\sum\left\|0 \xi\left(x_{i}\right)\right\|^{2}=0 \leq \phi(\xi) \quad \forall \xi \epsilon I$ and $\sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2}=$ $\sum\left\|u(0) x_{i}\right\|^{2}=0$ is an element of this set $\cdot q(\phi)<\infty$ because by Lemma 2.6 we have for $\left(z_{i}\right)_{i=1}^{m} \in S \otimes \mathcal{X}$ and $\left(x_{j}\right)_{j=1}^{n} \in \mathcal{X}$

$$
\sum_{i}\left\|\xi \cdot z_{i}\right\|^{2} \leq \sum_{j}\left\|\xi\left(x_{j}\right)\right\|^{2} \Rightarrow \sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \leq C^{2} \sum\left\|x_{j}\right\|^{2}
$$

(if $m<n$ make a n-vector of z by supplying zero's at the end: $\left(z_{1}, \ldots, z_{m}\right.$, $0, \ldots, 0$) and do the same for x if $n<m$).
Indeed if $\sum_{i}\left\|\xi \cdot z_{i}\right\|^{2} \leq \sum_{j}\left\|\xi\left(x_{j}\right)\right\|^{2}$ then by Lemma 2.6 there is a matrix $\left(a_{i j}\right)$ in $\mathcal{M}_{n}(S)$ with $\left\|\left(a_{i j}\right)\right\|_{\mathcal{M}_{n}(S)} \leq 1$ such that

$$
z_{i}=\sum_{j} a_{i j} \otimes x_{j} \quad \forall i=1,2, \ldots, m
$$

and if $u=u_{n}$ for $\left(a_{i j}\right)$ is a $n \times n$ matrix

$$
\begin{gathered}
\sum_{i}\left\|\hat{u}\left(z_{i}\right)\right\|^{2}=\sum_{i}\left\|\hat{u}\left(\sum_{j} a_{i j} \otimes x_{j}\right)\right\|^{2}=\sum_{i}\left\|\sum_{j} u\left(a_{i j}\right) x_{j}\right\|^{2} \\
=\sum_{i}\left\|\sum_{j} u_{n}\left(a_{i j}\right) x_{j}\right\|^{2}=\left\|u_{n}\left(\begin{array}{ccc}
a_{11} & \cdots & \vdots \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
z_{n}
\end{array}\right)\right\|^{2} \\
\leq\left\|u_{n}\right\|^{2}\left\|\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)\right\|^{2} \leq \sup _{n \geq 1}\left\|u_{n}\right\|^{2}\left\|\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)\right\|^{2} \\
=\|u\|_{c b}^{2}\left\|\left(\begin{array}{c}
x_{1} \\
\vdots \\
z_{n}
\end{array}\right)\right\|^{2}=C^{2} \sum_{j}\left\|x_{j}\right\|^{2}
\end{gathered}
$$

This implies that $q(\phi)<\infty$ and also $q(\phi) \leq p(\phi)$ for all $\phi \in \Lambda_{+}$. p is subadditief on Λ :
if $\phi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}$ and $\psi(\xi) \leq \sum\left\|\xi\left(y_{i}\right)\right\|^{2} \quad \forall \xi \in I$ then $(\phi+\psi) \xi=$
$\phi(\xi)+\psi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}+\sum\left\|\xi\left(y_{i}\right)\right\|^{2} \quad \forall \xi \in I$ and $p(\phi+\psi) \leq C^{2} \sum$ $\left\|x_{i}\right\|^{2}+C^{2} \sum\left\|y_{i}\right\|^{2}$ so we can take the infimum on the right side and we get:

$$
\begin{aligned}
& p(\phi+\psi) \leq \inf \left\{C^{2} \sum\left\|x_{i}\right\|^{2} \mid x_{i} \in \mathcal{X}, \phi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}, \forall \xi\right\} \\
& \quad+\inf \left\{C^{2} \sum\left\|y_{i}\right\|^{2} \mid y_{i} \in \mathcal{X}, \psi(\xi) \leq \sum\left\|\xi\left(y_{i}\right)\right\|^{2}, \forall \xi\right\} \\
& \quad=p(\phi)+p(\psi)
\end{aligned}
$$

Assume $\phi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2} \quad \forall \xi$. Then $\forall t>0$:
$t \phi(\xi) \leq \sum\left\|\xi\left(\sqrt{t} x_{i}\right)\right\|^{2}$
and $p(t \phi) \leq C^{2} \sum\left\|\sqrt{t x_{i}}\right\|^{2}=t C^{2} \sum\left\|x_{i}\right\|^{2} \quad \forall x_{i}$ so it also holds for the infimum:
$p(t \phi) \leq t \inf \left\{C^{2} \sum\left\|x_{i}\right\|^{2} \mid x_{i} \in \mathcal{X}, \phi(\xi) \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}, \forall \xi\right\}=t p(\phi)$
On the other hand $\forall t>0$:

$$
t p(\phi)=t p\left(\frac{1}{t} t \phi\right) \leq t \frac{1}{t} p(t \phi)=p(t \phi)
$$

Both results give $t p(\phi)=p(t \phi) \quad \forall t>0$.
For $t=0, x_{i}=0 \quad \forall i$ satisfies $0 \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2} \quad \forall \xi \in I$ so $p(0)=0$ which implies that $p(t \phi)=t p(\phi)$ holds also for $t=0$. q is superadditief on Λ_{+}:
if $\sum\left\|\xi \cdot z_{i}\right\|^{2} \leq \phi(\xi)$ and $\sum\left\|\xi \cdot w_{i}\right\|^{2} \leq \psi(\xi) \forall \xi \in I$ then $(\phi+\psi) \xi=$ $\phi(\xi)+\psi(\xi) \geq \sum\left\|\xi \cdot z_{i}\right\|^{2}+\left\|\xi \cdot w_{i}\right\|^{2} \quad \forall \xi \epsilon I$ and $q(\phi+\psi) \geq \sum\left\|\hat{u} . z_{i}\right\|^{2}$ $+\sum\left\|\hat{u} . w_{i}\right\|^{2}$ so we can take the supremum on the right side and we get:

$$
\begin{aligned}
& q(\phi+\psi) \geq \sup \left\{\sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \mid z_{i} \in S \otimes \mathcal{X}, \sum\left\|\xi \cdot z_{i}\right\|^{2} \leq \phi(\xi), \forall \xi\right\} \\
& \quad+\sup \left\{\sum\left\|\hat{u}\left(w_{i}\right)\right\|^{2} \mid w_{i} \in S \otimes \mathcal{X}, \sum\left\|\xi \cdot w_{i}\right\|^{2} \leq \phi(\xi), \forall \xi\right\} \\
& \quad=q(\phi)+q(\psi)
\end{aligned}
$$

Assume $\sum\left\|\xi \cdot z_{i}\right\|^{2} \leq \phi(\xi) \quad \forall \xi$. Then $\forall t \geq 0$:
$\sum\left\|\xi \cdot \sqrt{t z_{i}}\right\|^{2} \leq t \phi(\xi)$
and $q(t \phi) \geq \sum\left\|\hat{u}\left(\sqrt{t} z_{i}\right)\right\|^{2}=t \sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \quad \forall x_{i}$
so it also holds for the supremum:
$q(t \phi) \geq t \sup \left\{\sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \mid z_{\mathrm{i}} \in S \otimes \mathcal{X}, \sum\left\|\xi \cdot z_{\mathrm{i}}\right\|^{2} \leq \phi(\xi), \forall \xi\right\}=t q(\phi)$
On the other side $\forall t>0$:

$$
t q(\phi)=t q\left(\frac{1}{t} t \phi\right) \geq t \frac{1}{t} q(t \phi)=q(t \phi)
$$

Both results give $t q(\phi)=q(t \phi) \quad \forall t>0$.
For $t=0, \sum\left\|\xi \cdot z_{i}\right\|^{2} \leq 0$ implies $z_{i}=0 \quad \forall i$ so $q(0)=0$ which implies that $q(t \phi)=t q(\phi)$ also holds for $t=0$.

Hence by Corollary 2.3 there is a linear form $f: \Lambda \mapsto \mathbb{R}$ such that

$$
\begin{equation*}
q(\phi) \leq f(\phi) \leq p(\phi) \quad \forall \phi \in \Lambda_{+} \tag{2.5}
\end{equation*}
$$

and actually $f(\phi) \leq p(\phi)$ holds $\forall \phi \in \Lambda$.
Let us denote by $\Lambda+i \Lambda=\{\lambda+i \mu \mid \lambda, \mu \in \Lambda\}$ the complexification of Λ. We can extend f by linearity to a \mathbb{C}-linear form on $\Lambda+i \Lambda$ in the following way: $f: \Lambda+i \Lambda \mapsto \mathbb{C}, f(\lambda+i \mu)=f(\lambda)+i f(\mu) \quad \forall \lambda, \mu \in \Lambda$.
f is \mathbb{C}-linear because $f((\lambda+i \mu)+(x+i y))=f((\lambda+x)+i(\mu+y))=f(\lambda+x)+$ $i f(\mu+y)=f(\lambda)+f(x)+i f(\mu)+i f(y)=f(\lambda+i \mu)+f(x+i y) \forall \lambda, \mu, x, y \in \Lambda$ and $f(c(\lambda+i \mu))=f(c \lambda+i c \mu)=f(c \lambda)+i f(c \mu)=c(f(\lambda)+i f(\mu))=$ $c f(\lambda+i \mu) \quad \forall \lambda, \mu \in \Lambda, \forall c \in \mathbb{C}$ and if $(\lambda+i \mu),(x+i y) \in \Lambda+i \Lambda$ then $(\lambda+i \mu)(x+i y)=\lambda x-\mu y+i(\mu x+\lambda y) \epsilon \Lambda+i \Lambda$.
Now we define $\mathcal{K}=\left\{g: I \mapsto \mathcal{H} \mid \xi \mapsto\|g(\xi)\|^{2} \in \Lambda\right\}$. This set is not empty. Take for example $x_{0} \in \mathcal{X}$ and define $g(\xi)=\xi\left(x_{0}\right) \quad \forall \xi \in I$. Then $\phi(\xi)=\|g(\xi)\|^{2}=\left\|\xi\left(x_{0}\right)\right\|^{2}$ satisfies $|\phi(\xi)|=\left\|\xi\left(x_{0}\right)\right\|^{2}$ so $\phi \epsilon \Lambda$.
Choose a g and $g^{\prime} \in \mathcal{K}$ then $\phi: I \mapsto \mathbb{C}$ with $\phi(\xi)=\left\langle g(\xi), g^{\prime}(\xi)\right\rangle$ is in $\Lambda+i \Lambda$. Indeed, by Cauchy-Schwartz

$$
\begin{aligned}
& |\operatorname{Re} \phi| \leq|\phi(\xi)|=\left|\left\langle g(\xi), g^{\prime}(\xi)\right\rangle\right| \leq\|g(\xi)\|\left\|g^{\prime}(\xi)\right\| \\
& \quad \leq \frac{1}{2}\left(\|g(\xi)\|^{2}+\left\|g^{\prime}(\xi)\right\|^{2}\right) \leq\|g(\xi)\|^{2}+\left\|g^{\prime}(\xi)\right\|^{2} \\
& \quad \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}+\sum\left\|\xi\left(y_{j}\right)\right\|^{2}
\end{aligned}
$$

for $x_{i}, y_{j} \in X$ and also $|\operatorname{Im} \phi| \leq \sum\left\|\xi\left(x_{i}\right)\right\|^{2}+\sum\left\|\xi\left(y_{j}\right)\right\|^{2}$. So $\operatorname{Re} \phi$ and $\operatorname{Im} \phi \epsilon \Lambda$ and this implies $\phi \in \Lambda+i \Lambda$. Now we can define

$$
\left\langle g, g^{\prime}\right\rangle=f(\phi)
$$

with $\phi(\xi)=\left\langle g(\xi), g^{\prime}(\xi)\right\rangle$. This is a semi-inner product on \mathcal{K} :
$\left\langle g_{1}+g_{2}, g^{\prime}\right\rangle=f\left(\left\langle\left(g_{1}+g_{2}\right)(\cdot), g^{\prime}(\cdot)\right\rangle\right)=f\left(\left\langle g_{1}(\cdot)+g_{2}(\cdot), g^{\prime}(\cdot)\right\rangle\right)=f\left(\left\langle g_{1}(\cdot)\right.\right.$,
$\left.\left.g^{\prime}(\cdot)\right\rangle+\left\langle g_{2}(\cdot), g^{\prime}(\cdot)\right\rangle\right)=f\left(\left\langle g_{1}(\cdot), g^{\prime}(\cdot)\right\rangle\right)+f\left(\left\langle g_{2}(\cdot), g^{\prime}(\cdot)\right\rangle\right)=\left\langle g_{1}, g^{\prime}\right\rangle+\left\langle g_{2}, g^{\prime}\right\rangle$
$\left\langle\alpha g, g^{\prime}\right\rangle=f\left(\left\langle\alpha g(\cdot), g^{\prime}(\cdot)\right\rangle\right)=f\left(\alpha\left\langle g(\cdot), g^{\prime}(\cdot)\right\rangle\right)=\alpha f\left(\left\langle g(\cdot), g^{\prime}(\cdot)\right\rangle\right)=\alpha\left\langle g, g^{\prime}\right\rangle$
$\overline{\left\langle g, g^{\prime}\right\rangle}=\overline{f\left(\left\langle g(\cdot), g^{\prime}(\cdot)\right\rangle\right)}=f\left(\overline{\left\langle g(\cdot), g^{\prime}(\cdot)\right\rangle}\right)=f\left(\left\langle g^{\prime}(\cdot), g(\cdot)\right\rangle\right)=\left\langle g^{\prime}, g\right\rangle$
(because $\overline{f(\lambda+i \mu)}=\overline{f(\lambda)+i f(\mu)}=f(\lambda)-i f(\mu)=f(\lambda-i \mu)=f(\overline{\lambda+i \mu})$)
$\langle g, g\rangle=f(\langle g(\cdot), g(\cdot)\rangle)=f\left(\|g(\cdot)\|^{2}\right)=f(\phi) \geq q(\phi) \geq \sum\left\|\hat{u}\left(z_{i}\right)\right\|^{2} \geq 0$
but $\langle g, g\rangle=0 \Rightarrow g=0$ does not hold in general.
The inequality of Cauchy-Schwartz also holds for semi-inner products :

$$
|\langle g, h\rangle| \leq \sqrt{\langle g, g\rangle} \sqrt{\langle h, h\rangle}
$$

so if $\langle g, g\rangle=0$ then also $\langle g, h\rangle=0 \quad \forall h \in \mathcal{K}$ and conversely $\langle g, h\rangle=$ $0 \forall h \in \mathcal{K}$ implies $\langle g, g\rangle=0$ (take $h=g$)
Define $N=\{g \mid\langle g, g\rangle=0\}$ and $\tilde{\mathcal{K}}=\mathcal{K} / N=\{\tilde{g} \mid \tilde{g}=g+N\}$.
N is a linear space: if $g \in N$ then $\alpha g \in N$ because $\langle\alpha g, \alpha g\rangle=\alpha \bar{\alpha}\langle g, g\rangle=0$ and if $g_{1}, g_{2} \in N$ then $\left\langle g_{1}+g_{2}, g_{1}+g_{2}\right\rangle=\left\langle g_{1}, g_{1}\right\rangle+\left\langle g_{1}, g_{2}\right\rangle+\left\langle g_{2}, g_{1}\right\rangle+$ $\left\langle g_{2}, g_{2}\right\rangle=0$ because of (*) so $g_{1}+g_{2} \epsilon N$.
$\langle\tilde{g}, \tilde{h}\rangle \stackrel{\text { def }}{=}\langle g, h\rangle$ for a $g \in \tilde{g}$ and a $h \in \tilde{h}$. This definition does not depend on the choice of g and h. This is checked as follows:
Choose also g_{1}, h_{1} such that $\langle\tilde{g}, \tilde{h}\rangle=\left\langle g_{1}, h_{1}\right\rangle$. Then $g-g_{1}=n \in N$ and $h-h_{1}=m \in N$ so $\left\langle g_{1}, h_{1}\right\rangle=\langle g-n, h-m\rangle=\langle g, h\rangle-\langle g, m\rangle-\langle n, h\rangle+$ $\langle n, m\rangle=\langle g, h\rangle$ because of (*).

If $0=\langle\tilde{g}, \tilde{g}\rangle=\langle g, g\rangle$ then $g \in N$ and $\bar{g}=g+N=N$ so N is the zeroelement of $\tilde{\mathcal{K}}$.
After completing the space $\overline{\mathcal{K}}$ we obtain a Hilbert space $\hat{\mathcal{H}}$.
For $x \in \mathcal{X}$, let $\tilde{x} \in \tilde{\mathcal{K}}$ be defined by $\tilde{x}(\xi)=\xi(x)$. By the second inequality in (2.5) applied to ϕ with $\phi(\xi)=\|\tilde{x}(\xi)\|^{2}$ where $\xi \mapsto \phi(\xi)=\|\tilde{x}(\xi)\|^{2}=$ $\|\xi(x)\|^{2} \quad \epsilon \Lambda$ we have

$$
\langle\bar{x}, \tilde{x}\rangle=f(\phi) \leq p(\phi) \leq C^{2}\|x\|^{2}
$$

Let \hat{x} be the equivalent class containing \tilde{x}. Then $\{\{x, \hat{x}\} \mid x \in \mathcal{X}\} \subset \mathcal{X}$ $\times \hat{\mathcal{H}}$ is the graph of a linear map $V_{1}: \mathcal{X} \mapsto \hat{\mathcal{H}}$ defined by

$$
V_{1} x=\hat{x}
$$

and $\left\|V_{1} x\right\|=\|\hat{x}\|=\|\tilde{x}\| \leq C\|x\|$ so $\left\|V_{1}\right\| \leq C$.
On the other hand, if we take $\phi(\xi)=\left\|\sum a_{i} \tilde{x}_{i}(\xi)\right\|^{2}$ then $\forall a_{i} \epsilon S, \forall x_{i} \in \mathcal{X}$

$$
\begin{aligned}
\phi(\xi) & =\left\|\sum a_{i} \tilde{x}_{i}(\xi)\right\|^{2}=\left\|\sum a_{i} \xi\left(x_{i}\right)\right\|^{2} \leq\left(\sum\left\|a_{i}\right\|\left\|\xi\left(x_{i}\right)\right\|\right)^{2} \\
& \leq \sum\left\|a_{i}\right\|^{2} \sum\left\|\xi\left(x_{i}\right)\right\|^{2}=\sum\left\|\xi\left(\sqrt{\alpha} x_{i}\right)\right\|^{2} \epsilon \Lambda
\end{aligned}
$$

(where $\alpha=\sum\left\|a_{i}\right\|^{2}$) and by the first inequality in (2.5) we have

$$
\begin{equation*}
\left\|\sum u\left(a_{i}\right) x_{i}\right\|^{2}=\left\|\hat{u}\left(\sum a_{i} \otimes x_{i}\right)\right\|^{2} \leq q(\phi) \leq f(\phi) \tag{2.6}
\end{equation*}
$$

and we will use this later.
We define

$$
\pi: B(\mathcal{H}) \mapsto B(\hat{\mathcal{H}})
$$

by setting

$$
\pi(a) \hat{g}=\widehat{a g}
$$

for $a \in B(\mathcal{H}), \pi(a) \in B(\mathcal{H}), g \in \mathcal{K}$ and this is a unit preserving *-representation. Let us check this and see that π is well defined.
If $g \in \mathcal{K}$ then $\hat{g} \in \hat{\mathcal{H}}$ and $a g \in \mathcal{K} \quad \forall a \in \mathcal{H}$:
$\xi \mapsto\|a g(\xi)\|^{2} \leq\|a\|^{2}\|g(\xi)\|^{2} \quad \epsilon \Lambda$ (because $\|a\|^{2} \in \mathbb{C}$).
Let $g, h \in \mathcal{K}$ and $\hat{g}=g+N=\hat{h}=h+N$. This implies $n=g-h \in N$ and $a n=a g-a h$ so $\langle a n, k\rangle=\left\langle n, a^{*} k\right\rangle=0 \quad \forall k \in \mathcal{K}$ and $a n \in N$. This means $\widehat{a g}=\widehat{a h}$. So if $\hat{g}=\hat{h}$ then $\widehat{a g}=\widehat{a h}$.
π is unit preserving because $\pi(1) \hat{g}=\hat{g} \forall \hat{g} \in \hat{\mathcal{H}}$.
π also is a $*$-representation because
$\pi(s t) \hat{g}=\widehat{s t g}=\widehat{s(t g)}=\pi(s) \hat{t g}=\pi(s) \pi(t) \hat{g}$ and
$\left\langle\pi\left(a^{*}\right) \hat{g}_{n}, \hat{h}_{n}\right\rangle=\left\langle\widehat{a^{*} g_{n}}, \hat{h}_{n}\right\rangle=\left\langle a^{*} g_{n}, h_{n}\right\rangle=f\left(\left\langle a^{*} g_{n}(\cdot), h_{n}(\cdot)\right\rangle\right)=f\left(\left\langle g_{n}(\cdot), a\right.\right.$
$\left.\left.h_{n}(\cdot)\right\rangle\right)=\left\langle g_{n}, a h_{n}\right\rangle=\left\langle\hat{g}_{n}, \widehat{a h_{n}}\right\rangle=\left\langle\hat{g}_{n}, \pi(a) \hat{h}_{n}\right\rangle=\left\langle\pi(a)^{*} \hat{g}_{n}, \hat{h}_{n}\right\rangle$
which implies $\pi\left(a^{*}\right) \hat{g}_{n}=\pi(a)^{*} \hat{g}_{n} \forall g_{n} \in \mathcal{K}$ and if $\hat{h}_{n} \rightarrow h$ for $n \rightarrow \infty$ and $\hat{g}_{n} \rightarrow g$ then follows $\pi\left(a^{*}\right) \hat{g}=\pi(a)^{*} \hat{g} \quad \forall g \in \hat{\mathcal{H}}$.
The last thing we have to check is that π is bounded i.e. $\left\langle\pi(a) \hat{g}_{n}, \pi(a) \hat{g}_{n}\right\rangle \leq$ const. $\left\langle\hat{g}_{n}, \hat{g}_{n}\right\rangle \forall \hat{g}_{n}$. Then $\pi(a)$ can be extended by continuity to all of
$\hat{\mathcal{H}}$ and this extension is linear and bounded with the same bound. In this sense $\pi(a) \in B(\hat{\mathcal{H}})$.

$$
\begin{aligned}
& \left\langle\pi(a) \hat{g}_{n}, \pi(a) \hat{g}_{n}\right\rangle=\left\langle\widehat{a g_{n}}, \widehat{a g_{n}}\right\rangle=\left\langle a g_{n}, a g_{n}\right\rangle=f\left(\left\langle a g_{n}(\cdot), a g_{n}(\cdot)\right\rangle\right) \\
& \quad=f\left(\left\langle a^{*} a g_{n}(\cdot), g_{n}(\cdot)\right\rangle\right)=f\left(\left\langle\sqrt{\left.\left.a^{*} a g_{n}(\cdot), \sqrt{a^{*} a} g_{n}(\cdot)\right\rangle\right)}\right.\right. \\
& \quad=\left\|\sqrt{a^{*} a}\right\|^{2} f\left(\left\langle\frac{\sqrt{a^{*} a}}{\left\|\sqrt{a^{*} a}\right\|} g_{n}(\cdot), \frac{\sqrt{a^{*} a}}{\left\|\sqrt{a^{*} a}\right\|} g_{n}(\cdot)\right\rangle\right) \\
& \quad=\|a\|^{2} f\left(\left\langle b g_{n}(\cdot), b g_{n}(\cdot)\right\rangle\right)=\|a\|^{2} f\left(\left\langle g_{n}(\cdot), g_{n}(\cdot)\right\rangle\right) \\
& \quad-\|a\|^{2} f\left(\left\langle i \sqrt{1-b^{2}} g_{n}(\cdot), i \sqrt{1-b^{2}} g_{n}(\cdot)\right\rangle\right)=\|a\|^{2}\left\langle g_{n}, g_{n}\right\rangle \\
& \quad-\|a\|^{2}\left\langle i \sqrt{1-b^{2}} g_{n}, i \sqrt{1-b^{2}} g_{n}\right\rangle \leq\|a\|^{2}\left\langle g_{n}, g_{n}\right\rangle \\
& \quad=\|a\|^{2}\left\langle\hat{g}_{n}, \hat{g}_{n}\right\rangle
\end{aligned}
$$

where $b=\frac{\sqrt{a^{*} a}}{\left\|\sqrt{a^{*} \cdot}\right\|}$ so $b=b^{*}$ and $\|b\|=1$.
Because $a^{*} a \geq 0$ we can take the squareroot and $\left\|\sqrt{a^{*} a}\right\|^{2}=\|a\|^{2}$ and $\left\langle b g_{n}(\xi), b g_{n}(\xi)\right\rangle=\left\langle\left(b+i \sqrt{1-b^{2}}\right) g_{n}(\xi),\left(b+i \sqrt{1-b^{2}}\right) g_{n}(\xi)\right\rangle-\left\langle i \sqrt{1-b^{2}} g_{n}(\xi)\right.$, $\left.b g_{n}(\xi)\right\rangle-\left\langle b g_{n}(\xi), i \sqrt{1-b^{2}} g_{n}(\xi)\right\rangle-\left\langle i \sqrt{1-b^{2}} g_{n}(\xi), i \sqrt{1-b^{2}} g_{n}(\xi)\right\rangle=\left\langle g_{n}(\xi)\right.$, $\left.g_{n}(\xi)\right\rangle-\left\langle i \sqrt{1-b^{2}} g_{n}(\xi), i \sqrt{1-b^{2}} g_{n}(\xi)\right\rangle$ and this last inner product ≥ 0. If $\hat{g}_{n} \rightarrow \hat{g}$ for $n \rightarrow \infty$ then $\langle\pi(a) \hat{g}, \pi(a) \hat{g}\rangle \leq\|a\|^{2}\|\hat{g}\|^{2}$ so $\pi(a) \in B(\mathcal{H})$.
By (2.6) follows $\left\|\sum u\left(a_{i}\right) x_{i}\right\|^{2} \leq f(\phi)=f\left(\left\|\sum a_{i} \tilde{x}_{i}\right\|^{2}\right)=\left\|\sum a_{i} \tilde{x}_{i}\right\|^{2}$ $=\left\|\sum a_{i} \hat{x}_{i}\right\|^{2}=\left\|\sum \pi\left(a_{i}\right) \tilde{x}_{i}\right\|^{2}=\left\|\sum \pi\left(a_{i}\right) V_{1} x_{i}\right\|^{2} \quad \forall a_{i} \epsilon S, x_{i} \in \mathcal{X}$ and $\sum \pi\left(a_{i}\right) V_{1} x_{i} \in \operatorname{span}\left(\pi(S) V_{1} \mathcal{X}\right)$ and $\sum u\left(a_{i}\right) x_{i} \in \mathcal{Y}$.
This allows us to define a linear map

$$
V_{2}: \overline{\operatorname{span}}\left(\pi(S) V_{1} \mathcal{X}\right) \mapsto \mathcal{Y}
$$

such that

$$
\begin{equation*}
\sum u\left(a_{i}\right) x_{i}=V_{2}\left(\sum \pi\left(a_{i}\right) V_{1} x_{i}\right) \tag{2.7}
\end{equation*}
$$

Finally, we can extend V_{2} to an operator $V_{2}: \hat{\mathcal{H}} \mapsto \mathcal{Y}$ with norm ≤ 1 by defining $V_{2}=0$ on $\left(\overline{\operatorname{span}}\left(\pi(S) V_{1} \mathcal{X}\right)^{\perp}=\hat{\mathcal{H}} \Theta \pi(S) V_{1} \mathcal{X}\right.$.
By omitting the sum and x_{i} in (2.7) we get the required result (2.1).
The converse is easy:
because π is a *-representation follows from the proof of Theorem 1.9, Lemma 3 that $\|\pi\| \leq 1$ and

$$
\begin{equation*}
\|\pi\|_{c b}=\sup _{n \geq 1}\left\|\pi_{n}\right\|=\sup _{n \geq 1} \sup _{\left(a_{i j}\right) \in \mathcal{M}_{n}(A)} \frac{\left\|\pi_{n}\left(\left(a_{i j}\right)\right)\right\|_{B\left(\mathcal{X}^{n}\right)}}{\left\|\left(a_{i j}\right)\right\|_{B\left(A^{n}\right)}} \leq 1 \tag{2.8}
\end{equation*}
$$

and so

$$
\|u\|_{c b} \leq\left\|V_{2}\right\|\|\pi\|_{c b}\left\|V_{1}\right\| \leq\left\|V_{2}\right\|\left\|V_{1}\right\|
$$

2.2 Completely bounded homomorphisms

Let us now go to the study of compressions of homomorphisms.
Let \mathcal{X} be a Banach space, and let $\mathcal{E}_{2} \subset \mathcal{E}_{1} \subset \mathcal{X}$ be closed subspaces. Let $T: \mathcal{X}$ $\mapsto \mathcal{X}$ be a bounded operator and assume that \mathcal{E}_{1} and \mathcal{E}_{2} are T-invariant i.e. $T\left(\mathcal{E}_{1}\right) \subset \mathcal{E}_{1}$ and $T\left(\mathcal{E}_{2}\right) \subset \mathcal{E}_{2}$.
Then $\mathcal{E}_{1} / \mathcal{E}_{2}=\left\{\tilde{x} \mid \bar{x}=\left\{x+\mathcal{E}_{2}\right\}, x \in \mathcal{E}_{1}\right\}$ with

$$
\|\tilde{x}\|=\inf _{e \in \mathcal{E}_{2}}\|x+e\|
$$

This norm is well defined:
$\|\tilde{x}\| \geq 0$
$\|\tilde{x}\|=0=\inf _{e \epsilon \mathcal{E}_{2}}\|x+e\| \Rightarrow \exists e_{n} \in \mathcal{E}_{2}$ such that $x+e_{n} \rightarrow 0$ which means $e_{n} \rightarrow-x$ and this implies $x \in \mathcal{E}_{2}$ so $\tilde{x}=\tilde{0}$
if $c \in \mathbb{C}, \tilde{x}, \tilde{y} \in \mathcal{E}_{1} / \mathcal{E}_{2}$
$\|c \tilde{x}\|=\inf _{e \epsilon \mathcal{E}_{2}}\|c x+e\|=|c| \inf _{\frac{e}{c} \in \frac{1}{c} \varepsilon_{2}=\varepsilon_{2}}\left\|x+\frac{e}{c}\right\|=|c|\|\tilde{x}\|$
$\|\tilde{x}+\tilde{y}\|=\|(x+y)\|=\inf _{e \epsilon \mathcal{E}_{2}}\|x+y+e\| \leq\left\|x+e^{\prime}+y+e^{\prime \prime}\right\| \leq\left\|x+e^{\prime}\right\|+\left\|y+e^{\prime \prime}\right\|$
this holds $\forall e^{\prime}, e^{\prime \prime} \in \mathcal{E}_{2}$ so we can take the infimum, which implies $\|\tilde{x}+\tilde{y}\| \leq\|\tilde{x}\|+\|\tilde{y}\|$

Let $Q: \mathcal{E}_{1} \mapsto \mathcal{E}_{1} / \mathcal{E}_{2}$ be the canonical surjection defined by $Q(x)=\tilde{x}$ and let $\tilde{T} \in B\left(\mathcal{E}_{1} / \mathcal{E}_{2}\right)$ be such that $\tilde{T} Q=Q T_{\varepsilon_{1}}$. Then $\|Q(x)\|=\|\tilde{x}\|=\inf _{e \epsilon \varepsilon_{2}}$ $\|x+e\| \leq\|x\|$ so $\|Q\| \leq 1$ and we can make the following diagram:

and $\tilde{T} \tilde{x}=\tilde{T} Q x=Q T x=(T x) \quad \forall x \in \mathcal{E}_{1}$.
Then

$$
\begin{aligned}
& \|\tilde{T} \tilde{x}\|=\|(T x)\|=\inf _{e \in \mathcal{E}_{2}}\|T x+e\| \leq \inf _{e \in \mathcal{E}_{2}}\|T x+T e\| \\
& \quad \leq \inf _{e \in \mathcal{E}_{2}}\|T\|\|x+e\|=\|T\| \inf _{e \in \varepsilon_{2}}\|x+e\|=\|T\|\|\tilde{x}\|
\end{aligned}
$$

$\forall x \in \mathcal{E}_{1}$ so $\|\tilde{T}\|_{\mathcal{E}_{1} / \mathcal{E}_{2}} \leq\|T\|_{\varepsilon_{1}} \leq\|T\|_{\mathcal{X}}$.
This characterization brings us to the following proposition
Proposition 2.7: Let \mathcal{A} be a Banach algebra and let $u: \mathcal{A} \mapsto B(\mathcal{X})$ be a bounded homomorphism, i.e. u is bounded linear and

$$
\forall a, b \in A \quad u(a b)=u(a) u(b)
$$

Let $\mathcal{E}_{2} \subset \mathcal{E}_{1} \subset \mathcal{X}$ be closed subspaces and let \mathcal{E}_{1} and \mathcal{E}_{2} be u-invariant i.e. \mathcal{E}_{1} and \mathcal{E}_{2} are $u(a)$-invariant $\forall a \in \mathcal{A}$. Then the map $\tilde{u}: \mathcal{A} \mapsto B\left(\mathcal{E}_{1} / \mathcal{E}_{2}\right)$ defined by $\tilde{u}(a)=(u(a))$ is a homomorphism with $\|\tilde{u}\| \leq\|u\|$. Moreover, if \mathcal{A} is a subalgebra of $B(\mathcal{H})$ (with \mathcal{H} Hilbert) and if u is c.b. then \tilde{u} also is c.b. and $\|\tilde{u}\|_{c b} \leq\|u\|_{c b}$.

Proof: $\forall a, b \in \mathcal{A}$ we have

$$
\tilde{u}(a b) Q=Q u(a b)=Q u(a) u(b)=\tilde{u}(a) Q u(b)=\tilde{u}(a) \tilde{u}(b) Q
$$

which shows that \tilde{u} also is a homomorphism.
We have seen before

$$
\|\tilde{u}(a)\|_{B\left(\varepsilon_{1} / \varepsilon_{2}\right)} \leq\|u(a)\|_{B\left(\varepsilon_{1}\right)} \leq\|u(a)\|_{B(\mathcal{X})}
$$

hence $\|\tilde{u}\| \leq\|u\|$.
Define $u_{n}: \overline{\mathcal{A}^{n}} \mapsto B\left(\mathcal{X}^{n}\right)$ as $u_{n}((A))=\left(u\left(a_{i j}\right)\right)$ where $A=\left(a_{i j}\right)_{i, j=1}^{n} \in \mathcal{A}^{n}$. Then

$$
\begin{aligned}
\|\tilde{u}\|_{c b} & =\sup _{n \geq 1}\left\|\tilde{u}_{n}\right\|=\sup _{n \geq 1} \sup _{\left(a_{i j}\right)} \frac{\left\|\tilde{u}_{n}\left(\left(a_{i j}\right)\right)\right\|_{B\left(\mathcal{E}_{1}^{n} / \varepsilon_{2}^{n}\right)}}{\left\|\left(a_{i j}\right)\right\|_{B\left(\mathcal{A}^{n}\right)}} \\
& =\sup _{n \geq 1} \sup _{\left.a_{i j}\right)} \frac{\left\|\left(\tilde{u}\left(a_{i j}\right)\right)\right\|_{B\left(\varepsilon_{1}^{n} / \varepsilon_{2}^{n}\right)}}{\left\|\left(a_{i j}\right)\right\|_{B\left(\mathcal{A}^{n}\right)}}
\end{aligned}
$$

Now apply the previous result by replacing u by $\left(u\left(a_{i j}\right)\right), \mathcal{A}$ by $\mathcal{A}^{n}, \mathcal{X}$ by $\mathcal{X}^{n}, \mathcal{E}_{1}$ by \mathcal{E}_{1}^{n} and \mathcal{E}_{2} by \mathcal{E}_{2}^{n}. This implies $\left\|\tilde{u}_{n}\left(\left(a_{i j}\right)\right)\right\| \leq\left\|u_{n}\left(\left(a_{i j}\right)\right)\right\|$ $\forall\left(a_{i j}\right) \forall n$ and if we take the supremum over ($a_{i j}$) and $n \geq 1$ we get:

$$
\begin{aligned}
&\|\tilde{u}\|_{c b} \leq \sup _{n \geq 1} \sup _{\left(a_{i j}\right)} \frac{\left\|u_{n}\left(\left(a_{i j}\right)\right)\right\|_{B\left(\varepsilon_{i}^{n}\right)}}{\left\|\left(a_{i j}\right)\right\|_{B\left(A^{n}\right)}} \\
& \quad \leq \sup _{n \geq 1\left(a_{i j}\right)} \frac{\left\|u_{n}\left(\left(a_{i j}\right)\right)\right\|_{B\left(\mathcal{X}^{n}\right)}}{\left\|\left(a_{i j}\right)\right\|_{B\left(\mathcal{A}^{n}\right)}}=\|u\|_{c b}
\end{aligned}
$$

\tilde{u} will be called the compression of u to $\mathcal{E}_{1} / \mathcal{E}_{2}$.
Remark: If $\mathcal{A} \subset B(\mathcal{H})$ and if $u: \mathcal{A} \mapsto B(\mathcal{G})(\mathcal{G}$ Hilbert) is the restriction to \mathcal{A} of a $*$-representation $\pi: B(\mathcal{H}) \mapsto B(\mathcal{G})$, then we have

$$
\|\tilde{u}\|_{c b} \leq\|u\|_{c b} \leq\|\pi\|_{c b} \leq 1
$$

Indeed, the first inequality follows by Proposition 2.7. If we define u_{n} as above and π_{n} in the same way we get

$$
\begin{aligned}
& \|u\|_{c b}=\sup _{n \geq 1}\left\|u_{n}\right\|=\sup _{n \geq 1} \sup _{\left(a_{i j}\right) \in \mathcal{A}^{n}} \frac{\left\|u_{n}\left(\left(a_{i j}\right)\right)\right\|}{\left\|\left(a_{i j}\right)\right\|} \\
& \quad \leq \sup _{n \geq 1} \sup _{\left(a_{i j}\right) \in B\left(\mathcal{H}^{n}\right)} \frac{\left\|\pi_{n}\left(\left(a_{i j}\right)\right)\right\|}{\left\|\left(a_{i j}\right)\right\|}=\|\pi\|_{c b}
\end{aligned}
$$

which explains the second inequality.
We have seen in (2.8) that $\|\pi\|_{c b} \leq 1$.
Proposition 2.8: Let \mathcal{A} be a Banach algebra. Let \mathcal{X}, \mathcal{Z} be two Banach spaces, let $\pi: \mathcal{A} \mapsto B(\mathcal{Z})$ be a bounded homomorphism, and let $w_{1}: \mathcal{X} \mapsto \mathcal{Z}$ and $w_{2}: \mathcal{Z} \mapsto \mathcal{X}$ be operators such that $w_{2} w_{1}=I_{\mathcal{X}}$. Assume that the map $u: \mathcal{A} \mapsto B(\mathcal{X})$ defined by

$$
u(a)=w_{2} \pi(a) w_{1} \quad \forall a \in \mathcal{A}
$$

is a homomorphism. Then u is similar to a compression of π. More precisely, there are π-invariant subspaces $\mathcal{E}_{2} \subset \mathcal{E}_{1} \subset \mathcal{Z}$ and an isomorphism $S: \mathcal{X} \mapsto \mathcal{E}_{1} / \mathcal{E}_{2}$ such that

$$
\|S\|\left\|S^{-1}\right\| \leq\left\|w_{1}\right\|\left\|w_{2}\right\|
$$

and such that the compression $\tilde{\pi}$ of π to $\mathcal{E}_{1} / \mathcal{E}_{2}$ satisfies

$$
u(a)=S^{-1} \tilde{\pi}(a) S \quad \forall a \in \mathcal{A}
$$

Proof: Let

$$
\mathcal{E}_{1}=\overline{\operatorname{span}}\left[w_{1}(\mathcal{X}), \bigcup_{a \in \mathcal{A}} \pi(a) w_{1}(\mathcal{X})\right]
$$

By definition \mathcal{E}_{1} is a closed subspace of \mathcal{Z}. \mathcal{E}_{1} also is π-invariant. This is checked as follows :
An element y of \mathcal{E}_{1} can be written as

$$
y=\lim _{n \rightarrow \infty}\left(w_{1}\left(x_{n}\right)+\sum_{i} \pi\left(a_{i n}\right) w_{1}\left(x_{i n}\right)\right)
$$

for some $x_{n}, x_{i n} \in \mathcal{X}, a_{i n} \in \mathcal{A}$ because $b_{1} w_{1}\left(x_{1}\right)+\cdots+b_{n} w_{n}\left(x_{n}\right)=$ $w_{1}\left(b_{1} x_{1}+\cdots+b_{n} x_{n}\right)=w_{1}\left(x_{n}\right)$ and $\forall b \in \mathcal{A}$

$$
\begin{aligned}
\pi(b) y & =\lim _{n \rightarrow \infty}\left(\pi(b) w_{1}\left(x_{n}\right)+\pi(b) \sum_{i} \pi\left(a_{i n}\right) w_{1}\left(x_{i n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\pi(b) w_{1}\left(x_{n}\right)+\sum_{i} \pi\left(b a_{i n}\right) w_{1}\left(x_{i n}\right)\right) \epsilon \mathcal{E}_{1}
\end{aligned}
$$

Let $\mathcal{E}_{2}=\mathcal{E}_{1} \cap \operatorname{ker}\left(w_{2}\right)$ then $\mathcal{E}_{2} \subset \mathcal{E}_{1} \subset \mathcal{Z}$. We claim that \mathcal{E}_{2} also is π-invariant. Indeed, consider $z \in \mathcal{E}_{1}$ such that $w_{2}(z)=0$. In the same way as above we can write z as

$$
z=\lim _{n \rightarrow \infty}\left(w_{1}\left(x_{n}\right)+\sum_{i} \pi\left(a_{i n}\right) w_{1}\left(x_{i n}\right)\right)
$$

Then because $w_{2}(z)=0, w_{2} w_{1}=I_{\mathcal{X}}$ and $u(a)=w_{2} \pi(a) w_{1}$

$$
\begin{align*}
0= & w_{2}(z)=\lim _{n \rightarrow \infty}\left(w_{2} w_{1}\left(x_{n}\right)+\sum_{i} w_{2} \pi\left(a_{i n}\right) w_{1}\left(x_{i n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(x_{n}+\sum_{i} u\left(a_{i n}\right) x_{i n}\right) \quad(*) \tag{*}
\end{align*}
$$

Hence for all $a \in \mathcal{A}$

$$
\begin{aligned}
\pi(a) z & =\lim _{n \rightarrow \infty}\left(\pi(a) w_{1} x_{n}+\sum_{i} \pi(a) \pi\left(a_{i n}\right) w_{1}\left(x_{i n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\pi(a) w_{1} x_{n}+\sum_{i} \pi\left(a a_{i n}\right) w_{1}\left(x_{i n}\right)\right)
\end{aligned}
$$

and so

$$
\begin{gathered}
w_{2} \pi(a) z=\lim _{n \rightarrow \infty}\left(w_{2} \pi(a) w_{1} x_{n}+\sum_{i} w_{2} \pi\left(a a_{i n}\right) w_{1}\left(x_{i n}\right)\right) \\
=\lim _{n \rightarrow \infty}\left(u(a) x_{n}+\sum_{i} u\left(a a_{i n}\right) x_{i n}\right) \\
=\lim _{n \rightarrow \infty}\left(u(a) x_{n}+\sum_{i} u(a) u\left(a_{i n}\right) x_{i n}\right) \\
=\lim _{n \rightarrow \infty} u(a)\left(x_{n}+\sum_{i} u\left(a_{i n}\right) x_{i n}\right)=0
\end{gathered}
$$

because of (*). Since $z \in \mathcal{E}_{1}, \pi(a) z$ also is in \mathcal{E}_{1} and $w_{2} \pi(a) z=0$ which means that $\pi(a) z \in \operatorname{ker}\left(w_{2}\right)$. This implies that $\pi(a) z \in \mathcal{E}_{2} \forall a$ and proves the claim.
Let $Q: \mathcal{E}_{1} \mapsto \mathcal{E}_{1} / \mathcal{E}_{2}$ be the canonical surjection. Define $S=Q w_{1}: \mathcal{X}$ $\mapsto \mathcal{E}_{1} / \mathcal{E}_{2}$ by

$$
S(x)=Q w_{1}(x) \quad \forall x \in \mathcal{X}
$$

$w_{2 \varepsilon_{1}}: \mathcal{E}_{1} \mapsto \mathcal{X}$ is surjective. Take a $x \in \mathcal{X}$, then $y:=w_{1}(x) \in \mathcal{E}_{1}$ and since $w_{2} w_{1}=I_{\mathcal{X}} \quad w_{2}(y)=x$. So for every $x \in \mathcal{X} \exists y \in \mathcal{E}_{1}$ such that $w_{2}(y)=x$. Now there is a unique isomorphism $R: \mathcal{E}_{1} / \mathcal{E}_{2} \mapsto \mathcal{X}$ with $\|R\| \leq\left\|w_{2}\right\|$ namely $R(\tilde{x})=w_{2}\left(x+\mathcal{E}_{2}\right)=w_{2}\left(x+\operatorname{ker} w_{2}\right)\left(\tilde{x}=x+\mathcal{E}_{2} \subset x+\operatorname{ker} w_{2}\right)$ since for $e \in \mathcal{E}_{2}\|R(\tilde{x})\|=\left\|w_{2}(x+e)\right\| \leq\left\|w_{2}\right\|\|x+e\|$ so $\|R \tilde{x}\| \leq\left\|w_{2}\right\|\|\tilde{x}\|$ such that $R Q=w_{\left.2\right|_{\varepsilon_{1}}}$. Then we have $R Q w_{1}=w_{2} w_{1}=I_{\mathcal{X}}$ hence $R S=I \mathcal{X}$. This implies that R is surjective. R also is injective: $0=R(\tilde{x})=w_{2}\left(x_{0}+\operatorname{ker}_{2 \mid \varepsilon_{1}}\right) \Longrightarrow x_{0}+\operatorname{kerw}_{2 \mid \varepsilon_{1}} \epsilon \operatorname{kerw}_{2}$ also $x_{0}+\operatorname{kerw}_{2 \mid \varepsilon_{1}} \in \mathcal{E}_{1}$ so $x_{0}+\operatorname{kerw}_{2 \mid \varepsilon_{1}} \in \mathcal{E}_{2}$ and this implies $\tilde{x}=\tilde{0}$.
Surjective and injective is the same as invertible and since $R S=I_{\mathcal{X}}, R^{-1}=$ S. This implies that S also is invertible and $S^{-1}=R$. Moreover we have

$$
\|S\|\left\|S^{-1}\right\|=\left\|Q w_{1}\right\|\|R\| \leq\left\|w_{1}\right\|\left\|w_{2}\right\|
$$

and

$$
\begin{aligned}
S^{-1} & \tilde{\pi}(a) S=S^{-1} \tilde{\pi}(a) Q w_{1} \\
& =R Q \pi(a) w_{1} \\
& =w_{2} \pi(a) w_{1} \\
& =u(a) \quad \forall a \in \mathcal{A}
\end{aligned}
$$

We now come to a theorem which we will need to prove Theorem 2.1
Theorem 2.9: Let \mathcal{H}, \mathcal{K} be Hilbert spaces. Let $\mathcal{A} \subset B(\mathcal{H})$ be a subalgebra containing a unit 1 and let $u: \mathcal{A} \mapsto B(\mathcal{K})$ be a bounded homomorphism with $u(1)=I_{\mathcal{K}}$. Let K be any constant. The following are equivalent:
(i) The map u is c.b. with $\|u\|_{c b} \leq K$
(ii) There is an isomorphism $R: \overline{\mathcal{K}} \mapsto \mathcal{K}$ with $\|R\|\left\|R^{-1}\right\| \leq K$ such that the map $a \mapsto R^{-1} u(a) R$ is c.b. with c.b. norm ≤ 1.

Proof: (ii) \Rightarrow (i): Let $v(a)=R^{-1} u(a) R$ with $\|R\|\left\|R^{-1}\right\| \leq K$ and $\|v\|_{c b} \leq 1$. Then $u(a)=R v(a) R^{-1}$ and let $v_{n}: \mathcal{A}^{n} \mapsto B\left(\mathcal{K}^{n}\right)$ defined by $v_{n}(A)=$ $\left(v\left(a_{i j}\right)\right)$ for $A=\left(a_{i j}\right)_{i, j=1}^{n} \in \mathcal{A}^{n}$.
Then $u_{n}\left(a_{i j}\right)=\left(\begin{array}{ccc}{ }^{R} & & 0 \\ & \ddots & \\ 0 & & R\end{array}\right) v_{n}\left(a_{i j}\right)\left(\begin{array}{ccc}R^{-1} & & 0 \\ & \ddots & \\ 0 & & R^{-1}\end{array}\right)$
so $\|u\|_{c b} \leq \sup _{n \geq 1} \sup _{\left(a_{i j}\right) \in \mathcal{A}^{n}} \frac{\|R\|\left\|v_{n}\left(a_{i j}\right)\right\|\left\|R^{-1}\right\|}{\left\|\left(a_{i j}\right)\right\|}$
$\leq\|R\|\|v\|_{c b}\left\|R^{-1}\right\| \leq K$.
(i) \Rightarrow (ii): Assume (i). By Theorem 2.4 with $S=\mathcal{A}$ and $\mathcal{X}=\mathcal{Y}=\mathcal{K}$ there is a Hilbert space $\hat{\mathcal{H}}$, a $*$-representation $\pi: B(\mathcal{H}) \mapsto B(\hat{\mathcal{H}})$ with $\pi(1)=1$ and operators $w_{1}: \mathcal{K} \mapsto \hat{\mathcal{H}}$ and $w_{2}: \hat{\mathcal{H}} \mapsto \mathcal{K}$ with $\left\|w_{1}\right\|\left\|w_{2}\right\| \leq\|u\|_{c b}$ such that

$$
u(a)=w_{1} \pi(a) w_{2} \quad \forall a \in \mathcal{A}
$$

By definition of *-representations $\pi_{\left.\right|_{A}}$ is a homomorphism and this implies $u(a)$ also is a homomorphism. $I_{\mathcal{K}}=u(1)=w_{1} \pi(1) w_{2}=w_{1} w_{2}$ so we can apply the preceding result for $\mathcal{X}=\mathcal{K}$ and $\mathcal{Z}=\mathcal{H}: u$ is similar to a compression $\tilde{\pi}$ of $\pi_{\left.\right|_{A}}$ or in other words

$$
u(a)=R \tilde{\pi}(a) R^{-1} \quad \forall a \in \mathcal{A}
$$

and $\|R\|\left\|R^{-1}\right\| \leq\left\|w_{1}\right\|\left\|w_{2}\right\|$.
But $\left\|w_{1}\right\|\left\|w_{2}\right\| \leq\|u\|_{c b} \leq K$ and this implies $\|R\|\left\|R^{-1}\right\| \leq K$. By Proposition $2.7\|\tilde{\pi}\|_{c b} \leq\|\pi\|_{c b} \leq 1$ and

$$
\tilde{\pi}(a)=R^{-1} u(a) R
$$

so the map $a \mapsto R^{-1} u(a) R$ is c.b with c.b. norm ≤ 1.

2.3 Proof of Theorem 2.1

We can apply the preceding result to Theorem 2.1 which we wanted to prove. Assume T is c.pol.b. then the homomorphism $P \mapsto P(T)$ where P is a polynomial defines a completely bounded homomorphism $u_{T}\left(u_{T}(P)=P(T)\right.$) from the disc algebra \mathcal{A} into $B(\mathcal{H})$. Indeed, T is c.pol.b. means $\exists K$ such that $\forall n$ and $\forall n \times n$ matrices $\left(P_{i j}\right)$ with polynomial entries we have

$$
\left\|\left(P_{i j}(T)\right)\right\|_{B\left(\mathcal{H}^{n}\right)} \leq K \sup _{|z| \leq 1}\left\|\left(P_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}
$$

Define $u_{T n}: \mathcal{A}^{n} \mapsto B\left(\mathcal{H}^{n}\right)$ as $u_{T n}\left(\left(P_{i j}\right)\right)=\left(u_{T}\left(P_{i j}\right)\right)$ then

$$
\begin{aligned}
& \left\|u_{T}\right\|_{c b}=\sup _{n \geq 1}\left\|u_{T n}\right\|=\sup _{n \geq 1} \sup _{\left(P_{i j}\right)} \frac{\left\|u_{T n}\left(\left(P_{i j}\right)\right)\right\|_{B\left(\mathcal{H}^{n}\right)}}{\left\|\left(P_{i j}\right)\right\|_{\mathcal{A}^{n}}} \\
& \quad=\sup _{n \geq 1} \sup _{\left(P_{i j}\right)} \frac{\left\|\left(u_{T}\left(P_{i j}\right)\right)\right\|_{B\left(\mathcal{H}^{n}\right)}}{\left\|\left(P_{i j}\right)\right\|_{\mathcal{A}^{n}}}=\sup _{n \geq 1} \sup _{P_{i j}} \frac{\left\|\left(P_{i j}(T)\right)\right\|_{B\left(\mathcal{H}^{n}\right)}}{\left\|\left(P_{i j}\right)\right\|_{\mathcal{A}^{n}}} \\
& \quad \leq \sup _{n \geq 1\left(P_{i j}\right)} \frac{K \sup _{|z| \leq 1}\left\|\left(P_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}}{\left\|\left(P_{i j}\right)\right\|_{\mathcal{A}^{n}}} \\
& \quad=\sup _{n \geq 1\left(P_{i j}\right)} \frac{K \sup _{|z| \leq 1}\left\|\left(P_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}}{\sup _{|z| \leq 1} \frac{\left\|\left(P_{i j}(z)\right)\right\|_{B\left(C^{n}\right)}}{\|z\|_{B(C)}}} \\
& \quad \leq K
\end{aligned}
$$

which means that u_{T} is c.b. with $\left\|u_{T}\right\|_{c b} \leq K$.
By Theorem 2.9 there is an isomorphism $R: \mathcal{K} \mapsto \mathcal{K}$ with $\|R\|\left\|R^{-1}\right\| \leq K$ such that the map $P \mapsto R^{-1} u_{T}(P) R$ is c.b. with $\left\|R^{-1} u_{T} R\right\|_{c b} \leq 1$. Take $P=I$ the identity then $u_{T}(I)=I(T)=T$ and

$$
\left\|R^{-1} T R\right\|=\left\|R^{-1} u_{T}(I) R\right\| \leq\left\|R^{-1} u_{T} R\right\|_{c b} \leq 1
$$

so T is similar to a contraction.

Appendix A

Dilation theorem: Let $T: \mathcal{H} \mapsto \mathcal{H}$ be a contraction. Then there is a Hilbert space $\tilde{\mathcal{H}}$ containing \mathcal{H} isometrically as a subspace and a unitary operator $U: \tilde{\mathcal{H}} \mapsto \tilde{\mathcal{H}}$ such that $\forall n \geq 0 \quad T^{n}=P_{\mathcal{H}} U_{\mid \mathcal{H}}^{n}$
(where $P_{\mathcal{H}}$ is the projection on \mathcal{H}).
When this holds, U is called a unitary dilation of T (one also says that U dilates T).

Proof: For any n in Z let $\mathcal{H}_{n}=\mathcal{H}$, and consider the Hilbertian direct sum $\tilde{\mathcal{H}}=\oplus_{n \varepsilon} Z \mathcal{H}_{n}=\left(\begin{array}{c}\vdots \\ \underset{\mathcal{K}}{ } \\ \vdots\end{array}\right)$ On $\tilde{\mathcal{H}}$ we introduce the operator $U: \tilde{\mathcal{H}} \mapsto \tilde{\mathcal{H}}$ defined by the following matrix with operator coefficients

$$
U=\left(\begin{array}{ccccccccc}
\ddots & & & & & & & & \\
\ddots & I & & & & & & \\
& 0 & I & & & & O & \\
& & 0 & D_{T} & -T^{*} & & & \\
& & & T & D_{T^{*}} & & & \\
\bigcirc & & & & 0 & I & & \\
& & & & & 0 & I & \\
& & & & & & \ddots & \ddots
\end{array}\right)
$$

where T stands as the $(0,0)$-entry and $D_{T}=\left(1-T^{*} T\right)^{1 / 2}$ and $D_{T^{*}}=\left(1-T T^{*}\right)^{1 / 2}$. Equivalent any $\left(h_{n}\right)_{n \in Z}$ is mapped into $U\left[\left(h_{n}\right)_{n \in Z}\right]$ $=\left(h_{n}^{\prime}\right)_{n \in Z}$ with h_{n}^{\prime} defined by

$$
(*) h_{n}^{\prime}= \begin{cases}h_{n+1} & \text { if } n \notin\{-1,0\} \\ D_{T} h_{0}-T^{*} h_{1} & \text { if } n=-1 \\ T h_{0}+D_{T} \cdot h_{1} & \text { if } n=0\end{cases}
$$

We identify \mathcal{H} with $\mathcal{H}_{0} \subset \tilde{\mathcal{H}}$ so that we have $P_{\mathcal{H}} U_{\text {|耳 }}=T$ and more generally $P_{\mathcal{H}} U_{\left.\right|_{\mathcal{H}}}^{n}=T^{n}$ for all $n \geq 0$ (note that U has a triangular form, so the diagonal coefficients of U^{n} are the obvious ones).
We claim that for all $\left(h_{n}\right)_{n \in Z}$ in $\tilde{\mathcal{H}}$ and $\left(h_{n}^{\prime}\right)_{n \in Z}=U\left[\left(h_{n}\right)_{n \in Z}\right]$ as above we have

$$
\left\|h_{-1}^{\prime}\right\|^{2}+\left\|h_{0}^{\prime}\right\|^{2}=\left\|h_{0}\right\|^{2}+\left\|h_{1}\right\|^{2}
$$

Indeed, first note the following identities

$$
T^{*} D_{T^{*}}=D_{T} T^{*} \quad\left(\text { and } T D_{T}=D_{T^{*}} T\right)
$$

Note that $D_{T^{*}}=f\left(T T^{*}\right)$ and $D_{T}=f\left(T^{*} T\right)$ with f continuous. By Stone-Weierstra β we can write f as the uniform limit of polynomials $P_{n}: D_{T^{*}}=f\left(T T^{*}\right)=\lim P_{n}\left(T T^{*}\right)$. Then we have
$T^{*} D_{T^{*}}=T^{*} \lim P_{n}\left(T T^{*}\right)=T^{*} \lim \sum a_{n}\left(T T^{*}\right)^{n}=\lim T^{*} \sum a_{n}\left(T T^{*}\right)^{n}$ $=\lim \sum a_{n}\left(T^{*} T\right)^{n} T^{*}=\lim P_{n}\left(T^{*} T\right) T^{*}=D_{T} T^{*}$
(and analogous $T D_{T}=D_{T} \cdot T$).
Then we can develope $\left\|h_{-1}^{\prime}\right\|^{2}+\left\|h_{0}^{\prime}\right\|^{2}$ using (*):
$\left\|h_{-1}^{\prime}\right\|^{2}+\left\|h_{0}^{\prime}\right\|^{2}=\left\|D_{T} h_{0}-T^{*} h_{1}\right\|^{2}+\left\|T h_{0}+D_{T^{*}} h_{1}\right\|^{2}=$ $\left\langle D_{T} h_{0}-T^{*} h_{1}, D_{T} h_{0}-T^{*} h_{1}\right\rangle+\left\langle T h_{0}+D_{T} \cdot h_{1}, T h_{0}+D_{T^{*}} h_{1}\right\rangle=\langle(1-$ $\left.\left.T^{*} T\right) h_{0}, h_{0}\right\rangle-\left\langle D_{T} T^{*} h_{1}, h_{0}\right\rangle-\left\langle T D_{T} h_{0}, h_{1}\right\rangle+\left\langle T T^{*} h_{1}, h_{1}\right\rangle+\left\langle T^{*} T h_{0}, h_{0}\right\rangle$ $+\left\langle T^{*} D_{T^{*}} h_{1}, h_{0}\right\rangle+\left\langle D_{T^{*}} T h_{0}, h_{1}\right\rangle+\left\langle\left(1-T T^{*}\right) h_{1}, h_{1}\right\rangle=\left\|h_{0}\right\|^{2}+$ $\left\|h_{1}\right\|^{2}$.

As a consequence, we find that U is an isometry. Moreover U is surjective since it is easy to invert U. Given $h^{\prime}=\left(h_{n}^{\prime}\right)_{n \epsilon Z}$ in $\tilde{\mathcal{H}}$, we have $h^{\prime}=U h$ with $h=\left(h_{n}\right)_{n \in Z}$ defined by $h_{n}=h_{n-1}^{\prime}$ if $n \notin\{0,1\}, h_{0}=D_{T} h_{-1}^{\prime}+$ $T^{*} h_{0}^{\prime}$ and $h_{1}=-T h_{-1}^{\prime}+D_{T} h_{0}^{\prime}$. Equivalently it is clear that U is invertible from the following identity for 2×2 matrices with operator entries

$$
\begin{gathered}
\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
D_{T} & -T^{*} \\
T & D_{T^{*}}
\end{array}\right)\left(\begin{array}{cc}
D_{T} & T^{*} \\
-T & D_{T^{*}}
\end{array}\right) \\
=\left(\begin{array}{cc}
D_{T} & T^{*} \\
-T & D_{T^{*}}
\end{array}\right)\left(\begin{array}{cc}
D_{T} & -T^{*} \\
T & D_{T^{*}}
\end{array}\right)
\end{gathered}
$$

Therefor we conclude that U is a surjective isometry, hence a unitary operator.

Von Neumann's inequality: Let C be a contraction in \mathcal{H}. Then

$$
\|p(C)\| \leq \sup _{|z|=1}|p(z)|
$$

\forall polynomials p.
Proof: First we will prove this for a unitary operator U on K.
$U f=\int_{0}^{2 \pi} e^{i t} \mathrm{~d} E(t) f=\lim \sum e^{i t_{j}}\left(E\left(t_{j}\right)-E\left(t_{j-1}\right)\right) f, \quad E(t): R \mapsto L(K)$ $E(t)$ is a projection so $E^{*}(t)=E(t)$ and $E(t)^{2}=E(t) . E(t) E(s)=E(s)$ $E(t)=E_{\min }(t, s)$. You can also write $E(t)=\lim _{s \not t t} E(s)$. It's easy to see that $E(t)=I$ if $t>2 \pi$ and $E(t)=0$ if $t<0$.
Now you can write $p(U) f$ as $\int_{0}^{2 \pi} p\left(e^{i t}\right) \mathrm{d} E(t) f$ and

$$
\begin{aligned}
& \|p(U) f\| \leq \int_{0}^{2 \pi}\left|p\left(e^{i t}\right)\right| \mathrm{d} E(t) f \leq \sup _{t \in[0,2 \pi]}\left|p\left(e^{i t}\right)\right|\left\|\int_{0}^{2 \pi} 1 \mathrm{~d} E(t) f\right\|= \\
& \quad=\sup _{t \in[0,2 \pi]}\left|p\left(e^{i t}\right)\|E(2 \pi) f-E(0) f\|=\sup _{t \in[0,2 \pi]}\right| p\left(e^{i t}\right) \mid\|f\|
\end{aligned}
$$

So $\|p(U)\| \leq \sup _{|z|=1}|p(z)| \quad \forall$ polynomials p.
Now take C a contraction. By the Dilationtheorem there is a Hilbert space $\tilde{\mathcal{H}}$ containing \mathcal{H} isometrically as a subspace and a unitary operator $U: \overline{\mathcal{H}} \mapsto \tilde{\mathcal{H}}$ such that $\forall n \geq 0 \quad C^{n}=P_{\mathcal{H}} U_{\left.\right|_{\mathcal{H}}}^{n}$.
From this follows:

$$
\|p(C)\|=\left\|P_{\mathcal{H}} p(U)_{\mid \mathcal{H}}\right\| \leq\|p(U)\| \leq \sup _{|z|=1}|p(z)|
$$

\forall polynomials p.

Appendix B

Definition: A space A
(a) is called an algebra over \mathbb{C} if A is a linear space over \mathbb{C}
there is a multiplication with properties:

$$
(x y) z=x(y z)
$$

$$
\lambda(x y)=(\lambda x) y=x(\lambda y)
$$

$$
x(y+z)=x y+x z ;(y+z) x=y x+z x \quad \forall x, y, z \in A, \lambda \in \mathbb{C}
$$

(b) is called commutative if $\forall x, y \in A \quad x y=y x$.
(c) has a unit if $\exists e \in A$ such that $e a=a e=a \quad \forall a \in A$.
(d) is normed if there is a norm \|\| on A with $\forall x, y \in A$ $\|x y\| \leq\|x\|\|y\|$.
(e) is called a Banach algebra if A is an algebra and $(A,\| \|)$ is complete.
(f) is called a $*$-algebra if A is an algebra and $\exists *: A \mapsto A$ with properties:

$$
\left(x^{*}\right)^{*}=x
$$

$$
(x+y)^{*}=x^{*}+y^{*}
$$

$$
(\lambda x)^{*}=\bar{\lambda} x^{*}
$$

$$
(x y)^{*}=y^{*} x^{*} \quad \forall x, y \in A, \lambda \in \mathbb{C} .
$$

(g) is unitary if A is a *-algebra with unit and $\forall u \in A \quad u^{*} u=u u^{*}=e$.
(h) is selfadjoint if A is a *-algebra and $x^{*}=x \quad \forall x \in A$.
(j) is called a Banach*-algebra if
(i) A is a Banach space
(ii) A is a *-algebra
(iii) $\forall x \in A \quad\left\|x^{*}\right\|=\|x\|$.
(k) is called a C^{*}-algebra if A is a Banach*-algebra and $\forall x \epsilon A$ $\left\|x x^{*}\right\|=\|x\|^{2}$.

Examples: There are some examples of C^{*}-algebras which we used in this essay. These are:
$B(\mathcal{H}), \mathcal{C}(\partial \mathbb{D})$ and the disc algebra \mathcal{A}
Definition: A map $\phi: A \mapsto B$ is called
(a) a homomorphism if
$\phi(x+y)=\phi(x)+\phi(y)$
$\phi(\lambda x)=\lambda \phi(x)$
$\phi(x y)=\phi(x) \phi(y) \quad \forall x, y \in A, \lambda \in \mathbb{C}$.
(b) a *-homomorphism if
(i) ϕ is a homomorphism
(ii) $\phi\left(x^{*}\right)=\phi(x)^{*} \quad \forall x \in A$.

Definition: (a) A map $\pi: G \mapsto B(\mathcal{H})$ where G is a group and \mathcal{H} a Hilbert space is called a representation if
$\pi(1)=I$
$\pi(s t)=\pi(s) \pi(t)$
and π is unitary if also $\pi(t)^{-1}=\pi(t)^{*}$.
(b) A map $\rho: A \mapsto B(\mathcal{H})$ where A is a $*$-algebra and \mathcal{H} a Hilbert space is called a *-representation if
(i) ρ is linear
(ii) ρ is a representation
(iii) $\rho\left(a^{*}\right)=\rho(a)^{*}$.
(c) A map $\rho: A \mapsto B(\mathcal{H})$ is called a C^{*}-algebraic representation if A is a C^{*}-algebra, \mathcal{H} a Hilbert space and ρ is a *-representation.

About *-representations we have the following Lemma:
Lemma: Let $\rho: A \mapsto B(\mathcal{H})$ be a *-representation on a C^{*}-algebra A and assume A has a unit. Then necessarily $\|\rho\|=\sup _{a \neq 0 \in A} \frac{\|\rho(a)\|_{\mathcal{H}}}{\|a\|} \leq 1$.

Proof: Clearly ρ maps unitaries to unitaries:
$\rho(u) \rho(u)^{*}=\rho\left(u u^{*}\right)=\rho(e)=I=\rho(e)=\rho\left(u^{*} u\right)=\rho(u)^{*} \rho(u)$ for $u^{*} u=u u^{*}=e$.
Hence $\|\rho(u)\| \leq 1$ for any unitary u. Let x be a hermitian element: $x=x^{*}$ and $\|x\| \leq 1$. Then any $u=x+i \sqrt{1-x^{2}}$ is unitary and $x=\operatorname{Re} u$. Also follows $\|\rho(x)\|=\|\rho(\operatorname{Re} u)\|=\left\|\rho\left(\frac{u+u^{*}}{2}\right)\right\| \leq \frac{1}{2}\|\rho(u)\|+\frac{1}{2}$ $\left\|\rho(u)^{*}\right\| \leq \frac{1}{2} \cdot 1+\frac{1}{2} \cdot 1=1$.
Hence $\|\rho(x)\| \leq 1$ for any hermitian in the unit ball. Finally, $\left\|u^{*} u\right\|=\|u\|^{2}$, so that
$\|\rho(x)\|^{2}=\left\|\rho(x)^{*} \rho(x)\right\|=\left\|\rho\left(x^{*} x\right)\right\|=\left\|x^{*} x\right\|\left\|\rho\left(\frac{x^{*} x}{\left\|x^{*} x\right\|}\right)\right\| \leq\|x\|^{2}$, and $\frac{\|\rho(x)\|}{\|x\|} \leq 1 \forall x$ which means $\|\rho\| \leq 1$.

References

1. Paul R. Halmos, A Hilbert space problem book, problem 153 and 154, vol. 19, second ed., Springer Verlag, Berlin, 1982
2. Paul R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
3. S.R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790
4. V.I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17
5. B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89-93
6. G. Pisier, A polynomially bounded operator on Hilbert space, which is not similar to a contraction, J. Amer. Math Soc. 10 (1997), 351-369
7. I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of linear operators, Vol. 2, Birkhäuser Verlag, Basel-Boston-Berlin, 1993
8. B. Sz.-Nagy, On uniformly bounded linear translation in Hilbert space, Acta Sci. Math. Szeged 11 (1946/48), 152-157
9. G. Pisier, Similarity problems and completely bounded maps, Springer lecture Notes 1618,1995
10. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akademiai Kiadó, Budapest, 1970
11. N. Young, An introduction to Hilbert space, Cambridge University Press, 1988
