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Preface

This paper has been written as a master thesis to complete my study at the
mathematics department of the University of Groningen.

I studied the problem of similarity to contractions, which has been studied be-
fore by a lot of mathematicians. So it wasn’t difficult to collect enough data
about this subject.

In the first chapter I have enumerated some important results of this century
followed by a few examples of applying these results. The most important result
is Paulsen’s theorem about completely polynomially boundedness. That’s why
I proved this theorem in Chapter 2.

Of course, I supposed that the reader of this essay knows something about
Hilbert and Banach spaces but I tried to be as complete as possible.

I wish to thank Prof.dr.ir. A. Dijksma for his enthousiastic supervision and the
time he spent on this subject.

I hope you’ll enjoy reading this essay.
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Chapter 1

This essay is about similarity to contractions. The problem is as follows:

When is an operator in a Hilbert space similar to a contraction in a Hilbert
space?

The question is easy but the answer is quite difficult. There have already been
many mathematicians who studied this problem and there have been found some
elegant results.

1.1 Results

First we have to explain what we mean by similarity to an operator and what
is called a contraction. All operators are considered in the same Hilbert space
(#,(:,-)) and are bounded.

Definition 1.1: An operator T in H is called similar to an operator T in H
if there exists an invertible operator S : H = H such that T = ST, S~!.
By the notation T ~ T; we will mean that T is similar to the operator T}.

Definition 1.2: An operator C in H is called a contraction if || C || < 1.
There is an equivalent statement:

Theorem 1.3: Let T : H — H be an operator. The operator T is similar to
a contraction iff there is an equivalent Hilbertian norm for which T is a
contraction.

Proof: (=) Let T ~ C with C a contraction. Then there exists an invertible
operator S : H# + H such that T = S~!CS. Define [u,v] = (Su,Sv). This
is an inner product and [[u]]? =I| Su |2 < | S [l u I s0 [[ul] < Il S I

Il -

Also follows || u ||* = || ST'Su > < | S~ Pl Su > = 1| S~ I? [[u]}? so
ol <IF S [[u])-

Together these resuits show that[[ ]] and || || are equivalent norms and

(H,(-,-)) is a Hilbert space implies that (#,[-,"]) is also a Hilbert space.
It remains to show that T is a contraction on (#,[,]). This is easy to
see:

([Tu))? = [[ST'CSu))* = [S7'CSu,S™'CSu)
= (CSu,CSu) < (Su,Su) = [u,u]
= [[u])?

(«) [u,v] is an inner produkt on H, continu in both variables:
| [, 9] I2< [[w])[[v])] € M? || w]l|| v {|- Riesz Lemma tells us that there is a
G € B(H) such that
[u,v] = (Gu,v)
G is invertible and > 0:
Gu=0 = (Gu,u)=0=[u,u] 22u=0
(Gu,u) = [u,u] >0



so G is injective and G > 0.

(Gu,v) = [u,v] = [v,u] = (Gv,u) = (u,Gv) = (G*u,v) so G =G*.

Take vlranG then : 0 = (Gu,v) = [u,v] Vu which implies that v = 0
and ranG = ‘H.

We claim that if Gz, — y then y e ranG i.e. 3z ¢ H such that y = Gz
which means that G is surjective. This is proved as follows:

If Gz, — y then Gz, is Cauchy: Vv (Gz, — Gzp,v) = 0if n,m — o0.
But (Gz, — GTm,v) = [Tn — Tm,v] and then the theorem about weak
convergence says r, — z in ‘X and Gz, — Gz. Since also Gz, — y
follows Gz = y.

Now we take S = G'/2. Given is that T is a contraction with respect
to [,)]. Define C = G'2TG~1/2 then T ~ C and C is a contraction on

(7{7(3')):
(Cz,Cz) = (GV’TG~'2x,G'’TG"/?z)
= (GTG™?z,TG'/?z) = [TG~'/*x,TG~'/%1]
< [G™V?z,GYV?z] = (GG~Y/%z,G~'/1)
= (G~Y2GG/?z,z) = (z,z)

In the history three notions play an important role:

Definition 1.4: An operator T is called power bounded (p.b.) if 3 M such that
foralln >0
T < M

Definition 1.5: An operator T is called polynomially bounded (pol.b.) if I M >
0 such that V polynomials p(z)

He(T)lI < M IS:l_pl |p(z) | = M |S?<pl | p(2) |

where the equality follows by the maximum modulus principle.

Definition 1.6: Anoperator T is called completely polynomially bounded (c.pol.
b.) if 3 M such that Vn and Vn x n matrices P(z) = (P;;)7;-, with poly-
nomial entries

| P(T) llpeu=y < M P I P(z) llBc)

=1
: ) ,Zi € H} with inner product

n

where H" is the Hilbert space {r = (

(21.v1)
e [ ) i

(2n,¥n)

I P(T)h ||
P T ny = su ——
Il P(T) ll B(wn) h;mg{n Tl

andVzeD={z]| |z|< 1}, || P(2) () = SUPzs0ec "frffﬁf”‘ where
i |l is the Euclidian norm in C".




Remark: Completely polynomially boundedness = polynomially bounded-
ness = power boundedness. Indeed the first implication follows by taking
n = 1 and the second by considering the polynomials p(z) = 2™.

These definitions lead us to three theorems:

Theorem 1.7: If T is similar to a contraction C, then T is p.b..
Theorem 1.8: If T is similar to a contraction C, then T is pol.b..

Theorem 1.9: If T is similar to a contraction C, then T is c.pol.b ..

By the above remark Theorems 1.7 and 1.8 follow from Theorem 1.9, but we
shall prove each theorem separately.

Proof of Theorem 1.7: This is easy to see:
T ~ C means there is S such that T = SCS~! hence T" = SC"S~! and

I~ = se*s= i< usuensI
<SS ue ™ <nsms=y vrn =0,1,2,...

which means that || T" ||<|| S ||| S~ |l=M Vn.

Proof of Theorem 1.8: This is an application of von Neumann’s inequality
which is the following:
if C a contraction in H then V polynomials p(z)

Il p(C) 1l £ Is?:pl | p(2) |

The proof is included in Appendix A. T is similar to a contraction C so
there is an S such that T = SCS~! hence p(T) = Sp(C)S~! and

T 1< NS HeE) Sl
<SS I suppy=1 | p(2) | = M supp,= | p(2) |

with M =[| S [I]| S~ ||

Proof of Theorem 1.9: By the dilation theorem (see Appendix A) there is a
unitary operator U on a Hilbert space H O M such that U is a unitary
dilation of T'.

Let us denote by C (resp. A(D)) the space of all continuous functions on
oD, C = {f: 0D — C| f(z) cont } (resp. the closed linear span in
C of the functions {e™ | n > 0}, A(D) = closure{3 \_, anei™ | k =
0,1,2,...a, € C} ). We equip C (or A(D)) with the sup norm which we
denote by || [leo: || f lloo= supj;j=1 | f(2) |- Note that A(D) is a subalgebra
of C, it is called the disc algebra.

C is a C*-algebra (see Appendix B).
f € C can be identified with the multiplication operator My : L?(dD) —
L?(0D), Myu = fu and N. Young [11] proved that there holds

Lemma 1: || f llo = Il My llB(L2(oD))-



F e M, (C) = {F = (fi;)%j=1 | fij € C} can be interpreted as the linear

map F : (L*(3D))" ~— (L*(dD))" given by (Fu); = ¥ 7., My,uj, i =
) € (L%(8D))". With this interpretation M, (C)

1,...,n, where u = (

Yn

becomes a C*-algebra with norm

2m 9 1
2 Jo I (Fe9)u(e) |12 dp
Il F lls(Lz(omn~) = . 2 '
u#0 ¢(L?(8D))" \/2L" Lo Nlu(e®) |12 do

where || || again is the Euclidian norm in C* like in Definition 1.6.

Lemma 2: || F ||p(L2(sp) ) < SUPyefo,2x) I| (F(€'%)) |l B(cn)
= sup, = || (F(2)) |laic)

Proof: || (F(e))u(e®) [l < Il F(e) [[for)ll u(e™) |12
< suppoy || (F(2) lfpeny 1 ule™) |I2-

| F llp(z2om~)
2n .
supii= | (P s V& J2 N ulee) [12 de
u

w0 \/;l;f(f" Il ulei) |2 dy
= IS}I‘I')' | (F(2)) llB(c)y

Let U ¢ B(H) be unitary. The polynomials p(z,Z) in z and Z are dense in
C (Stone-Weierstrag).
uy : p(z,2) = p(U,U*) is linear and bounded and we have uy(pq) =

uy (p)uv(q), vu(p) = (vuv(p))”
Boundedness follows from:

(*)  Muulp(z,2) || = | p(U,U) llpry < i | p(2,2) |

(because U = f:" e*dE,, U= f02" SR, "= f02" e~ "dE,, so
|2, U) | =1l 5" ple™®, e *)dEy || < supp,y | p(2,2) | ).

Soif p.(2,2) = f(z)inC then p,(U,U") is convergent in B(H). Indeed be-
cause () || pa (U, U*) = pm (U, U*) llB(30) < sUpz =) | Pn(z, 2) — pm(z,2) |<
e Vn,m>N(E) (pn = f)so p.(U,U") is Cauchy in B(H) and B(¥)
is complete so p,(U,U*) is convergent. We define

(#+) f(U) = lim p,(U,U") in B(H)

We obtain a *-representation

uy : C '—)B(H)




with uy(f) = f(U) such that uy (f) = uu(f)* and uy(fg) = uv(f)uy(g).
This is checked as follows:

wy(f) = wy(limpse p) = limnoeo plz, 2) Z) _, vaeye = = Y ag UKy =
(X ar;URU)* = (limnosoo P(2,2)), _y,op.)” = (uu(limnseop))® =
uy(f)* and

uU(fg) = uU(limn—»oo Pnlimy, o0 ‘In) = limy, 00 uU(ann) =limnoe0
uy(pn)uv(gn) = vu(f)uu(g) and this defines a *-representation on C(8D)
(see Appendix B).

About *-representations we have the following Lemma:

Lemma 3: Let p: A = B(H) be a x-representation on a C*-algebra A

and assume A has a unit. Then necessarily || p || = sup,,o (4 “ﬁh—")r,-ll*-
< 1.

For the proof see Appendix B.

Now to matrices.

Let 4y : Mn(C) » B(H") be defined by

uy(F(z)) = FU) = (f;;(0))5;2  (F(z) = (£i(2))7;21)

We have seen on page 6 that M ,(C) is a C*-algebra. iy is a *-representation
soflay || < 1 or

| F(U) llpeamy < || F llB(z2omp)~) < |S}1—p1 Il (fi;(2)) llB(cr)

(Il a |1=sup Ll = sup Ll < 1),

What we wanted to prove is if T € B(H) and T ~ C where C is a con-
traction then T is completely polynomially bounded (c.pol.b.) i.e.

3 M such that for all n and all n x n matrices P = (P;;) with polynomial
entries we have

| P(T) llpur) < M IS}LPl Il P(2) llacn)

This can be proved as follows:

P(T) = (Pi(T)ie = (Pi(S7'COm = [ . )

s

s

(P4(C)) (

becomes

T ol ]

Then || P(T) || < I S7M -1 | PU)peey WIS T NSTHIN P (U) |
II'S ||. We have proved above || F(U) || < supy.i=1 |l (fi;(2)) ll(cr) and
we apply this result to F = P.

So we get || P(T) || < Il S~ | S Il supyaycy Il (Ps(2)) lnemy.

If we define M := || S~! |||| S || we see that T is c.pol.b..

) and by the dilation theorem (C™ = P-HUI';) this

Now we go back to the history of similarity to contractions.

Already in 1946 B. Sz.-Nagy proved the following theorem:




Theorem 1.10: Let T be a linear transformation in Hilbert space H such that
its powers T" (n = 0,+1,42,...) are defined everywhere in H and are
uniformly bounded, i.e. || T" || < k for some constant k. Then there
exists a selfadjoint transformation @ such that

1

-I < <
kI_Q_kI

and QTQ~! is a unitary transformation.
This means that T is similar to a unitary operator U. The question arises:
What remains if only half of the condition holds, T is p.b.?

T is not similar to a unitary operator, because then T! is similar to a unitary
operator which means T and T~! are p.b.. B.Sz.-Nagy proved that if T is p.b.
and compact then T is similar to a contraction. So with some extra conditions
T is similar to a contraction. However if T only is p.b., it does not hold in
general. In 1964 S.R. Foguel gave an example of an operator, in a Hilbert
space, with uniformly bounded powers which is not similar to a contraction [3)
so the converse of Theorem 1.7 does not hold in general.

Lebow showed that Foguel’s example is not polynomially bounded. This lead
P.R. Halmos to ask in [2] (problem 6) the following question:

Is every polynomially bounded operator similar to a contraction?

The answer is no. In 1997 G. Pisier gave a very complicated example of a
polynomially bounded operator which is not similar to a contraction [6]. So the
converse of Theorem 1.8 is not true either.

However the converse of Theorem 1.9 is true. In 1984 V.I. Paulsen was the first
who proved this converse [4]. In 1996 G. Pisier gave a different proof [9]. This
is included in Chapter 2.

1.2 Examples

Now we go back to Theorem 1.7. There are some interesting cases for which the
converse is true. For the first example we recall Theorem 1.10.

Example 1: Let H,G be Hilbert spaces and T ¢ B(H). Then W ¢ B(G) is
called a dilation of T if
(a) H C G is a closed subspace
(b)T" = Py Wl’:( V¥ n > 0. This is equivalent with: there exist 2 Hilbert
spaces H; and H, such that

W” * * Hl Hl
W = 0 T =« ; H — H
0 0 W22 HQ H2

andG = Hi®oHOH, .
Now the following statements are equivalent:
(i) T ~ C with C a contraction




(i) 3 dilation W of T with W invertible and W and W~! are power
bounded.

(i) = (ii) T ~ C means 3S such that T = S~!CS. The dilation theorem
in Appendix A tells us that C has a unitary dilation U or in other words

Ull * * Ull * *
C = Py 0 C = with U = 0 C +«
0 0 Un /|, 0 0 U

Then define
I 0 0 Uu % * I 0 0
W =10 St o0 0 C = 0 S 0
o o I 0 0 U 0 0 I

Ull * * Ull * *
= 0 S°!ICS « = 0 T =
0 0 Usy 0 0 Ux

so W is a dilation of T.
As you can see W is invertible and

I 0 0 I 00
wt = 0 s!' o |U*( 0 S 0 ].
0 0 I 0 0 I

|| U™ || < M so || W™ || < N which means that W and W~! are power
bounded.

(ii) = (i). Let W be a dilation of T with W invertible and W and W !
are power bounded. By Theorem 1.10 there is a selfadjoint operator )
such that U = QWQ™! is a unitary transformation and 11 < Q < k[
or in other words W is similar to a unitary operator U on G:

W = Q'UQ

W is a dilation of T so there exist 2 Hilbert spaces H; and H, such that

*  * % 'Hl 'Hl
W = 0 T =« ; H — H
0 0 = Ho Ho
andG = Hi®HdH; . Then

( :) } ) = Q7UQp,on

We define Q, := anleu :Hy®H — ran@,;. Then U maps ran @, into
itself and Ql—l =Q ':ranQ, = H, ® H so we have

(6 7)=arme (5 )= (%)
where Uy := U,,,, ., is an isometry. We see that T = Q1 'U1Qyy,, hence
T* = (Q7'UhQu,)" = Q7' i)}, = QiU (@)}, Let Q2 = (Q)};)

10



‘H ~ ran@, then QT* = U;Q, implies that T, := U;i o is a con-
vonQ5

traction from ran Q; into itself and we have T* = Q;'T>Q,. Finally, let
Q2 = Up | @2 | be the polar decomposition of @2 where Uy is unitary
and | @, | acts on H. Then T* =| @, |~! U§T2Uo | Q2 | and if we set
S =| Q2 |7! and Ty = UgT; Uy we see that Ty is a contration on H and so
T = S~ 'TpS is similar to a contraction.

Example 2: Let T in (H, (-,-)) be expansive, i.e. || Tz ||>|| z || and let C be a
contraction. Then T ~ C <= T is p.b. and C is isometric.
(=) is always true (see Theorem 1.7).
() | 2 IP<I| T |?<)| T |?< - - <|| T" |P< M || 2 |]? and || T"z | is
an increasing sequence bounded from above so lim,_,o, || 7"z || exists.
Define [z,y] = lim,00(T"z,T"y) . The polarisation formula shows that
this limit exists:

1 4

(T2, T") = 73 " 1Tz +i*9) |’ < oo
k=1
[z,y] is in fact an inner product and [[ ]] and || || are equivalent norms:

2 __ : n 2 2
[[=]]" = lim [|T"z || < M|z ||

and
[[=])? = lim || Tz | > || = |I”

(| T™z || is increasing, take n = 0).

Also follows [T'z,Tz] = limuLeo || T"Tz 2= limpoeo || Tz ||?= [z, 2]
which means that for the norm [[ ]] T is a contraction and isometric. By
Theorem 1.3 it follows that for the norm || || T is similar to a contraction
which we wanted to prove.

Example 3: Let T ¢ B(H) be a Jordan matrix in C.
Then T ~C <= T is p.b.
(=) is always true (see Theorem1.7).
(<) Let J be a Jordan matrix in C? with eigenvalue A:

A1 0O
J =
1
O A
a2 2a 1 [e)
a3 sa? .
A2 2a
Then J? = : J3 =
3a2
22 [e] a3
O a2
A" aan-l .
and so J" =
aan—1
(o] An

11




Let (e;) be the usual orthonormal basis.

aan—1
AN

I Jhe 1P =11 ° JIP=[rA"1 ]2 + | A%

[+]
We distinguish 4 different cases:
[A|>1:] J"e2 || oo for n — 0o by | A" |
|A|=1and p>1:| J": || oo for n = 0o by | nA"71 |
|A|]=1and p=1: J" = A" and this is bounded
[ Al<1: | JM Ik M Vn
So a Jordan block is p.b. <=| A |<1,p>1lor|A|<1,p=1.
Ifp=1J:Cw— C, J= ]\issimilar to a contraction because | A |< 1.
Nowforp>1, J=AI+S |)|<1
Then J" = J(A)" = (M + S)" = 3 F_o(Af)"*Sk (3 )wherep=n-1
and lim || J(A\)* ||¥/*= r(J())) < 1 where r(J())) is the spectral radius:
r(J(A)) = max | o(J(A)) |=| A< 1.
So ko such that Vk > ko || J(A)¥ ||V/*¥<r < 1 and || J(N)* ||< r*.
Define [z,y] = 3 reo(J(A)*z, J(A\)*y) an inner product op C".
Then

| T 2, I ) 1L D 1IN 2 Il Ty ||
k=0 k=0

<IN I My I

k=0
ko [o o]
SOOIyl + > =iyl
k=0 k=ko+1
<K llzlllyll
so [[z]] < K || z || and [[z]]* = 52, | J) =z P21 JW)°z I1P=]| = |12
This means that [[ ]] and || || are equivalent norms.
Also

[TN? = D (TN TNz, JW) I (A)2)

k=0

< Y (I 2, I ) = (=]

k=0

which means that for the norm [[ ]] J()) is a contraction. By Theorem
1.3 it follows that for the norm || || J(A) is similar to a contraction and so
isT.

We mentioned before B. Sz.-Nagy’s example if T is p.b. and compact then T is
similar to a contraction, but we are not going to prove this.

There is also an application of Theorem 1.9 by B. Sz.-Nagy and C. Foias [10].

12



Example 4: Let T ¢ B(#). Assume 3 H and U € B(H) unitary and 3 p > 1

such that T" = p P’HU{;( Vn where Py is the orthogonal projection of H
onto H. (This is called a p-dilation)
Then T is similar to a contraction C.

We will show T is c.pol.b. then by Paulsen’s criterion about the converse
of Theorem 1.9 which is also true follows that T ~ C.
Let P(z) be a nxn matrix with polynomial entries. Then P(T) — P(0) = p

( | (P@) = PO and

Py Py

PT) = 5 ( ]P(U).,(" +a-n

Py

) P(0),.n -
Py
From this follows

I P(T) | erem)

< o NPl PU) llgeumy + [ 1=p || Pr (Il P(O) | B(ren
p I PU) llpny + |1 =p| [l P(O) (lp(am)
p sup W P(z)lle + 11=p] Il P(O) |

(p+ [1-p]) Jue Il P(2) lle

IN A

IA

where || ||. again is the Euclidian norm in C*. This means that T is
c.pol.b..

13




Chapter 2

In this chapter we are going to prove that the converse of Theorem 1.9 is also
true.

Theorem 2.1: T ~ C < T is c.pol.b.

Proof: (=) See chapter 1, the proof of Theorem 1.9.
(<) We will need some theory about completely bounded maps and com-
pletely bounded homomorphisms.

2.1 Completely bounded maps

We will start by mentioning the Hahn-Banach theorem:

Theorem 2.2: (Hahn-Banach) Let A be a real vector space. Let p: A — R be
a sublinear map, i.e. a map such that

Vr,yeA p(z+y) < p(z) + p(y)

VzeA Vt>0 p(tr) = tp(z)

Then there is a R-linear functional f: A — R such that

VzeA f(z) < p(z)

Corollary 2.3: Let A, be a convex cone in a real vector space A. Let ¢ : Ay —
R be a superlinear map i.e. a map such that

Vz,yely g(z) + q(y) < g(z+y)
VzeAy V>0 q(tr) = tg(x)

Let p: A = R be a sublinear map. If ¢(x) < p(z) for all £ in A4 then
there is a R-linear functional f : A — R such that

VzeAy q(z) < f(z)
VzeA f(z) < p(z)

Proof: Let 7(z) = inf{p(r +y) —q(y) | y € A4} for z € A. Then r is sublinear:
r(tz) = inf{p(tz+y)—q(y) | y e Ay} = inf{tp(z+{y) —ta(3y) |y e Ay} =
inf{tp(z +2) —tg(z) | z € fAL = Ay} =t inf{p(z+2) —q(z) |z € Ay} =
tr(z) Vt>0and
piz+y) —a@) +p(z+v) —q(v) 2 plz+z+y+v) —qly+v) =p(z+ 2z +
w) —q(w) 2 r(z+2) VyveAy and w =y +v. Now we can take the
infimum on the left side over y ¢ Ay and v € Ay
r(z)+7(z) = inf{p(z+y) —q(y) | y e Ay} +inf{p(z+v)—q(v) |ve Ay} >
r(z + 2).

Also follows r(z) = inf{p(z +y) —q(y) | y € A4} < p(z +0) —¢(0) = p(z)
and —p(—z) = =p(—z) - p(y) +p(y) < p(y) —p(-z+y) < p(y)—g(-z+y)
if we take y arbitrary but so that —z + y € A;. The inequality holds for

14



all —z + y € A4 so we can take the infumum:
—p(-z) < inf{p(y) —g(-z +y) | —z +y e Ay} = inf{p(z + 2) - ¢(2) |

zeAi}=r(z)
Together these results give:
(2.1) -p(-z) < (=) < plz)

which means that r(z) is finite Vz ¢ A .

r(-y) = inf{p(—y+2z)—q(z) | ze A4} < p(-y+y)—a(y) = —a(y) VyeA,.
By the Hahn-Banach theorem there is a linear functional f : A = R such
that f(z) < r(z) for all z ¢ A. By (2.1) follows f(z) < p(z) for all z € A
and —f(y) = f(-y) < r(-y) < —q(y) for all y € Ay. This yields the
announced result.

Let H, K be Hilbert spaces. Let S C B(H) be a subspace. For any n > 1 we
denote by M, (S) the space of all n x n matrices (a;;) with coefficients in S
with the norm

1/2
Il (ai;) lla1,(sy = sup (E [ E T "2)
i

where the supremum runs over all zy,...,z, in H such that }_ || z; {|?< 1.
Let u : S = B(K) then we define u, : M,(S) = M, (B(K)) by u,((a;;)) =
(u(aij)) for (aij) € M, (S). Then u is called completely bounded (in short c.b.)
if there is a constant K such that the maps u,, are uniformly bounded by K i.e.
if we have

il | wn |l ra(s)ysma(Bixy < K

and the c¢.b. norm || u ||cs is defined as the smallest constant K for which this
holds.

When || u ||ss< 1, we say that u is completely contractive (or a complete con-
traction).

It is quite straightforward to extend the usual definitions to the Banach space
case as follows. Let X, J be Banach spaces. We denote by B(X,)) the space of
all bounded operators from X into ), equipped with the usual operator norm.
Let X;, V) be an other couple of Banach spaces. Let S C B(X),))) be a
subspace and let u : § — B(X,)) be a linear map. Let us define || (ai;) [[1,(s)
in the same way and u,, : M,(S) » M,(B(X,Y)) by u.((ai;)) = (u(aij)). We
will say again that u is c.b. if the maps u,, are uniformly bounded and we define

Il lles = sup || un |l
n>1

The following theorem is a fundamental factorization of c.b. maps.

Theorem 2.4: Let H be a Hilbert space and let S C B(#) be a subspace. Let
X, Y be Banach spaces. Let u : S — B(X,)) be a c.b. map. Then there
is a Hilbert space H, a s-representation 7 : B(H) — B(#) with (1) =1
and operators Vi : X » Hand Vo : H o Y with | Vi || {| Va Il < |l ¢ les
such that

(2.2) VaeS ufa) = Vorm(a)Vh
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Conversely, any map of the form (2.2) satisfies
lufles < Il V2 Alll VA I

Formula (2.2) is easier to understand if you look at the following diagram:

A g
w1t 1V

x oy

We know 7 has special properties:

(i) = is defined on all of B(H)

(ii) w is a *-representation

(iii) w(1) =1

We can also say: “u(a) looks like a piece of m(a)”.

For the proof of Theorem 2.4 we will introduce some notations. Let a € S and let
I be the space B(X,H). Let X'* be the dual space of X', X* ={n: X » C| 9
linear } and let S® X be their algebraic tensor product . If E:;l a;Rz; e SQX
and Y7L, hp ® 7y € H® X* then we define

(2.3) (Z a; ®z;,2hk ®m) & an(zi)ai(hk) eH
k=1 i,k

i=1

where a;(h;) € H and ni(z;:) e C.

Remark: If (31, a:® 7,2 1o b ® k) =0V (3 hr ® 1) then follows
Y, a;®z; =0. Indeed, if z = 3_i_, a; ® z; we may suppose that (z;)
are linearly independent:

Assume ) = bz + -+ + b,z, then

n n
= a®n + Zai ®x; = Z(ai + bia)) ® ;

=2 i=2
S0 z =Y ., Ci ® z; with zo,..., T, linearly independent.
There exists an 7} € X'* such that 7j(x;) =1 and 7j(z;) =0fori =2,...,n
and 0 = (3L, @i ® z;, h®7) = 3, 7(x:i)ai(h) = ay(h) YV h e H. This
implies that a;(h) =0 V h € H so a) : H — H is the 0- operator. We can
do the same for ao,...,a,.

So if (Yr, i ®zi, Yt he ®mk) =0 V(T hi ® 1) then

z = i}(l,’@.’t,’ = 0®Xn:l‘,’ = 0

i=1

Nowforeland 2= ,0:®z; e S®X wedefine . :S®X — H as

n

£z = Za,—{(z;) eH

i=1

where £(z;) € H.
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Lemma 2.5: Assume 1,,...,ZI, are linearly independent in X and z ¢ S® X
has the property:
Eeland&(x;)=0fori=1,...,n implies {£.2 =0
then 3 a; € S such that
n
z = Z a; ®x;
=1

Proof: This is checked as follows:
Take z = Y -, bk ® ux € S ® X. We are going to prove

n
2=z = Zaj®:1:j =0

=1

Choose z} € X* such that z}(z;) = &;; (i.e. zj(z:) =1 fori = j and
z;(z;) = 0 for i # j). Define

a; = Zbkx;(uk) €S
k=1

Thenz' = 37i2, bk@l‘k—z;';l a;®z; = Yjn, k®uk—3L, Z};l 5 (ux)
by ® zj. Choose 7' € X* and y € H. Form 7 = 7' = 3°7_, 0/'(z;)z; eX™.
Define £ ¢ I with y in H arbitrary by

£(z) = n(z)y

Then follows &(z;) = n(z:)y = (n'(:l:.-) - ZT['(:EJ')IE;(IE,')) y = (n'(z:) —
n'(z;))y=0-y =0 V z;. This implies {.2 = 0 as we assumed i.e.

m

= L7 = Zbkn(uk)y ES ZTI(Uk)bk(y)

k=1 k=1
and

(Zyen) = O hew — > ) o (u)hk @z;,y®7)
- :

k

S o0 (uebe(y) — DD (we)n'(z5)be(v)
; PR

Do nebe(y) + DD n'(2)7; (we)bi(y)
k L
= 30> @5 (wedn' (z5)bi(v)
koJ
> nu)be(y) = 0

k

And then by the Remark follows 2z’ = 0.

Lemma 2.6: Let (z;)i<, be a finite sequence in S ® A’ and let (z;)i<m be a
finite sequence in X'. Then

(2.4) leé-z.- 3 < Zné(z,-)n% VEel
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holds iff there is a matrix (a;;) in M, (S) with || (ai;) llam.(s)< 1 such
that

m
z; = E aij®zj Vi=1,2£...,n
j=1

Proof: Assume (2.4). If £ € I then §(z;) =0 Vi =1,...,n implies {.z; =
0 Vi=1,...,n,so wecan apply Lemma 2.5: 3 K = (k;;) € S such that
G=) ki®z; Vis=l.,n
J

In general this K does not satisfy || K [|a,(s)< 1. So we replace K by
one that has this property.

) z%(=zy)
Define E %' {z‘( ):( )lz‘eX‘}CC"andletP:
=*(xn)

(Pjk)} k=1 be the orthogonal projection on E. Then it follows
z) zy 2
ol erel2) - (0) e

= = =
because z* ( : )e E so P ( : ) = :
If 3, a;z; = 0 then (@1---a,)P = (0---0)". Indeed, 3, a;z*(z;) =

zn

Tn

1

(ay - a,)z”

) = 0 but z* is arbitrary, hence

Fn

v1
(al"'an)P( : ) = ( Vy,
which implies (a; ---a,)P = (0---0).
There also holds
=) = o
I T Y L

rn =z zn

SO
Za,-:z:,- = 0 ' (al---an)P = (00)

i

Now define E % {¢ ( '_l )= ( “'.l) )lffI}CH"-

€(=n)

We claim B = R:={(:l ) e’H"I(M ):P(h; )}.

h'\

zn

n hn

Pf{ B ):E(F’(‘;l )):{( =:,) so EC R.

Now we claim that also R C E. Assume ] € H"™ and P =

hp hn

hy
( ) . We want to construct a £ € I such that

hn

18




[.)=()

Therefore we define v : span(zy,...,z,) — span(hy,...,h,) such that

Y3, aizi) = 3°; aihi (especially y(x,) = hy,...,7(zn) = hn).
Y ;aizi = 0 implies (a; ---a,)P = (0- - -0) like we have seen before so

(al...an) ( h:l ) = (al-uan)P( ":‘l ) = 0

and this means that - is well defined (7(0) = 0).

From the definition it follows that 7 is linear and surjective. Let W be a
subspace of span(z,,...,z,) such that span(z,,...,z,) is the direct sum
span(zy,...,2,) = W + kery. Then v, : W = span(hy,...,h,) is a
bijective map.

Choose (v1,...,vm) a basis of span(hy,...,h,) with m = dimW < n and
wy,..., W, in W such that y(w;) = v;. Then is (wy,...,wy,) a basis
of W. Choose (wm41,-..,w,) a basis of kery with r < n — m then
(wi, ..., Wnm, Wnst1,-..,w,) is a basis of span(z,,...,z,) C X.

Take w} € X* such that w}(w;) = é;; and define £ € I by

&(r) = Zw;(z)vj el

=1

This means £(w;) =v; Vi=1,...,mand §(w;) =0 Vi=m+1,...,r
but also y(wj) =v; Vji=1,...,mand y(w;) =0 Vi=m+1,...,r
and £ and v are both linear. (w,,...,w,) is a basis of span(z,,...,z,) so

with £(z;) = v(z;) = h; Vi=1,...,n and this proves the above claim.

Take (

hy _ hy =1
: )eR:EthenB{eIsuchthatP( : ) = {( : )

hon hn zn

hy hy
Now we want toshow that [| A | - ||| <|| ( : ) || for an A = (ai;)7 ;=
hn

hn
because this implies || A ||g(xn) < 1.

x1
We have seen before that z; = 2;.;1 ki; ® z; and because ( : ) =u P
=

( : )we have

n n n

Z k,-j ®zr; = Z kij ® Z Pz

ji=1 j=1 =1
= Z (Z kijpjl) ®x = Z(KP),—, ® 7

=1

=1 \j=1

Zn
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Define A = (au)};—, = K P then

n
zi = E ay I
=1

We assumed (2.4): 3o, | €.z I°< 32, I €(z1) II°. This implies

hy &(=1)
par () iE=na( TIPS T st I
hn €l=n)
1)

&(= hy
< T Ne@) 1P =n[ JIP = uP[ : )uz
f=zn hn

and AP = KPP = KP? = KP = A because P is a projection which
means

14 ‘]u?snp[: e

(e e[ - o
RIRE
I:P(:)Ilsll(:)ll

Applying this result we get

hy h
nA[ )n?gu[;)n?
hn hn

which means || A ||p(3~) < 1.
This shows the “only if” part. The “if” part is easy. If there is a matrix
(ai;) in My (S) with || (ai;) lam,(s)< 1suchthat Vi=1,2,...,n

Zi = Zaij®a:j
J
then
Z | €&z P = Z fl Za.-jé(zj) I
i i 9
< @) sy DN EGED) 1P < Y N &z)) 1P
) J

Proof of Theorem 2.4: Let C =||ul|sand A={¢p: I R|3z1,...,z, €X

st. | #(€) < Y| €(z:) |12 V€ e I}. Clearly A is a real vector space and
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A is not empty. For example take zg € X and define ¢ by ¢(&) =|} £(zo) |}?.
Then ¢ € A.

Let Ay = {¢ ¢ A| ¢ > 0}. The preceding example is also suitable for A}
so A4 is not empty either.

We define ¢ : S® X — Y as follows:

Let z=3Y " a;i®z; € S® X then

n

i(z) = Zu(ai)zi ey
i=1
foru: S~ B(X,)).
Now we define

VoeA p(¢) = inf{C?D [z |*|zie X, 6(6) <D W) II*, VEe I}
and
Voehs q(¢) = sup{d_ Il i(z:) I’ z:eSRX, Y [ €2 1< 6(€), V eI}

The set in the definition of p is not empty because we can take the example
#(€) =l &(zo) || for zo € X again and C* 3 || z: II*> 0 so p(¢) > 0.
The set in the definition of g is not empty because z; = 0 ® z; satisfies
ezl = TN0)IIP=0 < ¢(€) VEeland Y || i(z) =
5= |l w(0)z; }|>= 0 is an element of this set . g(¢) < oo because by Lemma
2.6 we have for (z;)72, € S® X' and (z;)}_, e X

S lealt < T Ue@) P> L llaE I < Xz P

(if m < n make a n-vector of z by supplying zero’s at the end: (z1,...,2m,
0,...,0) and do the same for z if n < m ).

Indeed if 3, || &2 IIP< X; Il &(z;) |I* then by Lemma 2.6 there is a
matrix (a,;) in Mn(S) with || (a;;) {1, (s)< 1 such that

zZ; = Zaij®.’l,'j Vi=1,2,...,m
J

and if u = u, for (ai;) is a n X n matrix
Tilla) P = il a(C, a0 2) P = X | 2 ulai)z; II?
agt o Sin *i
= ¥ Il ; unlai)z; I? = Il u ( : - ) ( z ) [

ant " 9an zn

=)
)IP <asupasall nm( | )IP

2
<l I ( |

&n 2n

=1
=uun£bn( | ]n2= ey, Nz I?

Tn

This implies that g(¢) < oo and also g(¢) < p(¢) for all ¢ € A4.
p is subadditief on A:
if (€) <l &(z:) |1 and $(€) < 3 &(vi) P V € €1 then (¢ + )¢ =
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P +y @) <Y &) P +X 1€ I VEelandp(op+y)<C? Y
Il zi |I> +C2 3 || vi ||2 so we can take the infimum on the right side and

we get:

ple+¢) < inf{C*Y |l |*| zi € X,8(6) < D_ |l &(=i) |I?, V¥ €}
+inf{C? 3 Il i %] i € X, 9(6) < 3 I &(w) 12, ¥ €}
= p(9) + p(¥)

Assume ¢(§) < 3 [ €(z:i) > V& ThenVit>0:

tp(€) < 3 Il €(vez) II?
and p(tg) < C*S || Viz; ||P=t C*Y || z: |> V = so it also holds for
the infimum:

p(td) < tinf{C*)_ |lzi Il zie X, 9(6) <D N &) I, V €} = tp(4)

On the other hand V t > 0:
1 1
tp(¢) = tp(5t9) < t;p(tcﬁ) = p(td)

Both results give tp(¢) = p(t¢) Vit>0.
Fort=0, z; =0 Visatisfies0 < || &(z:) |I? VEel so p(0)=0
which implies that p(t¢) = tp(¢) holds also for ¢ = 0.
q is superadditief on A, :
if S || £.2 IP< 9(6) and X || Ewr IP< $(€) V € € I then (§+ p)E =
p)+v(€) 2 X Nz |I? + || €wi [P VEelandg(é+y) 2 3 || 4.z |
+ 3 || @.w; ||* so we can take the supremum on the right side and we get:
g(p+ ) > sup{)_ la(z) Il zi e S@ X, Y 1 62 ||°< $(8), V €}
roup{ 3" [| d(wi) Pl wi e S® X, 3 || €aus [12< 4(6), ¥ €)
.= a(6) +a(w)

Assume Y || €.z [IP< @¢(&) VE ThenVit>0:
>l vtz |1P< tg(€)
and g(t¢) > 3 || @(vtz) =t X || a(z:) |I? V=

s0 it also holds for the supremum:

g(tg) > tsup{d_ |l i(z) II’] z e S®X, Y _ || €.z [1°< 8(€), ¥ €} = ta()
On the other side V t > 0:

(@) = ta(3t) 2 t3a(td) = ate)
Both results give tg(¢) = q(t¢) Vit >0.

Fort =0, Y || £.2; ||?< 0 implies z; =0 Vi so ¢(0) = 0 which implies
that g(t¢) = tg(¢) also holds for ¢t = 0.

Hence by Corollary 2.3 there is a linear form f : A = R such that

(2.5) q(¢) < f(@) < p(8) Vel
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and actually f(¢) < p(¢) holds V ¢ ¢ A.

Let us denote by A +iA = {A +iu | A, p e A} the complexification of A.
We can extend f by linearity to a C-linear form on A +{A in the following
way: f:A+iIA- C fA+ip)=f(A)+if() VA peA.

f is C-linear because f((A+ip)+(z+iy)) = f((A+z)+i(p+y)) = f(A+z)+
if(uty) = f(A)+f(2)+Hif () +if(y) = FA+ip)+f(z+iy) YA p,z,y €A
and f(c(A +ip)) = f(cA +icp) = f(cA) +if(cp) = c(f(X) +if(n)) =
cf(A+ip) YA peA VeeCandif (A+1iu), (z+1iy) € A+ iA then
(A +ip)(z +1iy) = Az — py +i(uz + Ay) € A +1A.

Now we define X = {g: I = H | £ =] g(€) ||* € A}. This set is not
empty. Take for example z¢ € X and define g(§) = é(z9) V £ € I. Then

¢(€) =l 9(&) II>=Il &(zo) II* satisfies | #(€) |=I| &(zo) I* s0 ¢ € A.
Choose a g and ¢' € K then ¢ : I = C with ¢(£) = (g(£),¢'(£)) is in A+iA.

Indeed, by Cauchy-Schwartz

[Reg | < [6(&) | =1(9(£),9' ()} | < Il g(&) L ¢'(€) Il
< %(Il g@O I +Ng' @) <lla@l* + llg'©)II°

Y UEEIIP + D1 Ew) IP

for z;,y; € X and also | Im¢ | < 37 | £(z:) II* + 3 | €(y;) II°. So Re¢
and Im ¢ € A and this implies ¢ ¢ A + {A. Now we can define

(9,9") = f(9)

with ¢(€) = (g(£), ¢'(€)). This is a semi-inner product on K:

(9 +92,9") = f({{qr +92)(1), 9’ (D) = fUUnn () + 92(-), 9" () = F({gr (),
9'(N+(g2(:),9'()) = fn1 (), g N+ f({92(), 9'())) = (91, 9) + (92, 9")
(ag,g') = f({ag(-),g'())) = fla(g(), 4" ())) = af({9(),9'())) = a(g,9")

(9,9 = f((g(:), g'(N) = F(g(), g'(N) = f({'(), 9())) = (g, 9)
(because F( + i) = FQN) + if (1) = f(N)=if (1) = f(r—im) = F(XF )
(9,9) = f((g(-),9())) = £ 9() II?) = f(¢) 2 a(¢) > X Il a(=:) [*> 0
but {g,9) = 0 = g = 0 does not hold in general.

The inequality of Cauchy-Schwartz also holds for semi-inner products :

[{g,h) | < V{g,9)V{h,h)

so if (g,g9) = O then also (g,h) =0 V h ¢ K and conversely {g,h) =
0 V heK implies (g,g9) = 0 (take h = g) (%)

Define N = {g|(g,9) =0} and K =K/N = {§|§g =g+ N}.

N is a linear space: if g € NV then ag € N because (ag,ag) = aa{g,g) =0
and if g1,92 € N then (g1 + g2,91 + g2) = (g1, 91) + (91,92) + (92, 91) +
(g92,92) = 0 because of () so g; + ¢, € N.

(g, ’.l) =/ {(g,h)foragegandahe h. This definition does not depend on
the choice of g and h. This is checked as follows:

Choose also g1, h; such that (§,h) = (g1,h;). Then g— g, = n ¢ N and
h—hy =meN so (gl’hl) = (g - n’h - m) = (gvh) - (g’7n) — (nvh) +
(n,m) = (g, h) because of (x).

A

IN
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If0=(9,9) = (9,9) then ge N and § = g+ N = N so N is the zero-
element of K.

After completing the space K we obtain a Hilbert space H.

For z € X, let & € K be defined by Z(£) = £(z). By the second inequality

in (2.5) applied to ¢ with ¢(€) =|| Z(€) ||* where £ = ¢(€) =|| Z(¢) ||I>=
Il €(z) [|> € A we have

(#,) = f(¢) < p¢) < C* || z|?

Let Z be the equivalent class containing #. Then {{z,i} [z e X } C X
xH is the graph of a linear map V; : X — # defined by

V12:=.’i:

and |Viz||=lI2[[=(Z]|<Cllz(lselIVi|l <C.
On the other hand, if we take ¢(¢) =|| 3 a:z:(€) ||*thenVa; € S,Vz, e X

86 =1 az@) I = I Y e 1P < (3 las &) 1)
< S lalPY NeE) P = Y IleWaz) P eA

(where a = 3~ || a; ||?) and by the first inequality in (2.5) we have

26) I wadm P =la (D aez)l’ < o) < )

and we will use this later.
We define

7 : B(H)—~ B(H)

by setting
m(a)j =

fora e B(H), m(a) € B(H), g € K and this is a unit preserving *-representation.
Let us check this and see that 7 is well defined.
Ifgchthengc’I:landagelC VaeH:
E-lag@) I> < lall’ll g(€) II> e A (because |l a||* € O).
Let g,heK and g =g+ N =h =h+ N. This impliesn = g—h € N and
an = ag—ah so (an k) = (n, a‘k) 0 VkekK and an € N. This means
ag—ah Soif § = hthenag_ah

7 is unit preserving because 7(1)§ =§ V § € H.
= also is a x-representation because
n(st)g = it = s(tg) = n(s)fg = m(s)r()g and
(m(@*)gn, hn) = (@ gn, ha) = (a gnyhn) = f((a gn (), ha(: ))) = f({gn(-),a
ha())) = (Gn, ahn) = (Gn, ahn) = (Gn, T(@)hn) = (7(a)*Gn, hn)
which implies w(a*)gn = 7(a)*§n ¥ gn € K and if h, = h for n = 0o and
§n — g then follows m(a*)§ = n(a)*§ V geH.
The last thing we have to check is that 7 is bounded i.e. (7(a)gn,7(a)dn) <

const.(Gn,Gn) V gn- Then m(a) can be extended by continuity to all of
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# and this extension is linear and bounded with the same bound. In this
sense w(a) ¢ B(H).

(W(a)gnaﬂ'(a)gn) = (@n,@n) = (agn,agn) = f((agn(')aagn(')))
= f({a*agn(),9n("))) = f((Va*ag.(-),Va*agn(")))

— 1 Yoo i Vata vata
= || Vara|® f(( “\/—“yn(), Vaall® 9n(-)))

llall? £({bgn(-),59n(-))) = llall® f({gn(),gn()})
llall? (V1 = 82gn(), i1 = 82ga (D) = [l @[l {gn,gn)
@l (V1 - b2gn,iV/1 - 8%gn) < [l al* (gn,n)

= “ a “ (gnagn)
where b = [y SO b="b*and || b]=1. ‘
Because a*a > 0 we can take the squareroot and || va*a || = || a ||* and

(b9 (€),b9n(€)) = ((b+iV1 = b2)gn (£), (b+iV1 = b*)gna(€))—(iV1 — b2g,(§),
bg(€))—(bgn(£),iv1 — 294 (§)) —(iV1 — b%gn(£),iV1 — b2ga(€)) = (gn(£),
gn(€)) — (iV1 — 129, (6),ivV1 — b2g,(£)) and this last inner product > 0.
If g, — § for n = oo then (w(a)gd, 7(a)gd) < |l a|?|| g > so w(a) € B(H).

By (2.6) follows || 3" u(ai)z: [I> < f(¢) = f(l L aiz: 1) =1 ¥ aiz: |I?
= | Taizi |* = | Eaa)z: [I” = | Ea(@)Vizi |° VaieS zieX
and Y w(a;)Viz; e span(n(S)V1X) and 3" u(ai)z;i € ).

This allows us to define a linear map

V, :span(n(S)V1X) = Y
such that

(2.7) > ul@)z = Vo (Z m(a:)Vi zi)

Finally, we can extend V, to an operator V; : H — Y with norm <1 by
defining V; = 0 on (span(n(S)1 X)L = Hoe n(S) X
By omitting the sum and z; in (2.7) we get the required result (2.1).

The converse is easy:
because m is a *-representation follows from the proof of Theorem 1.9,
Lemma 3 that |[7 || < 1 and

m aij n
(28) N7l = sup || 7o || = sup  sup | ma((ai;)) llp(x=)
n21 (ai)eMa(a) |l (ai5) [[Ban)

and so
lalles < V2 llll m llesll VA Il < 1T V2 VAN
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2.2 Completely bounded homomorphisms

Let us now go to the study of compressions of homomorphisms.

Let X be a Banach space, and let £, C £, C A be closed subspaces. Let T : X
+— X be a bounded operator and assume that £, and £; are T-invariant i.e.
T(&,) C &, and T(E,) C €Ea.

Then £,/6; = {2 | 2= {z+ &2}, z € £1} with

IZIl= inf [z+ell
eef2

This norm is well defined:

lZ(>0

| Z /=0 =infeee, || T +e€|l = 3 en e &2 suchthat z+e, - 0 which means
e, — —z and this implies £ ¢ £; so T =0

ifceC, z,5¢&1/E2

| ez ||= infeee, ez +ell=[clinfergg, 2+ £ (1=l Z |l

| 2+3 [I=I| (z+yT [|= infeee, [ z+y+e |[<|| z+e'+y+e” |<|| z+e' || + || y+e” ||
this holds Ve', " € £ so we can take the infimum, which implies

Nz+gl <zl + (7

Let Q: & - £1/&2 be the canonical surjection defined by Q(z) = £ and let
T € B(£1/€2) be such that TQ = QT . Then || Q(z) || = || £ || = infece,
[z+el| <|[z]lsoll Q| <1 and we can make the following diagram:

& oy g

Q ! ] 1 Q
16 5D &/&

and T = TQz = QTz = (Tx) Vre ;.
Then

IF2 1 = Il (@Yl = inf Tz +ell < inf [Tz + Te||
eel: €€c2
S ofITMz+ell=IT{ifllz+ell =0Tl

Veebrso||Tllese, SN T lley SNT [l
This characterization brings us to the following proposition

Proposition 2.7: Let A be a Banach algebra and let © : A —» B(X) be a
bounded homomorphism, i.e. u is bounded linear and

Vabe A u(ab) = u(a)u(b)

Let £, C £; C X be closed subspaces and let £, and £, be u-invariant i.e.
&, and &, are u(a)-invariant V a € A. Then the map @ : A — B(£,/E>)
defined by ii(a) = (u(a)Yis a homomorphism with || % || < || u ||. Moreover,
if A is a subalgebra of B(H) (with H Hilbert) and if u is c¢.b. then  also
isc.b. and || & ||les < || 2 [leo-
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Proof: V a,b e A we have
i(ab)Q = Qu(ab) = Qu(a)u(®) = i(a)Qu(d) = @(a)a(b)Q

which shows that @ also is a homomorphism.
We have seen before

| @a) e /ey < Nl wla) lBeery < Il ula) llxy

hence || @ [| < || u |-
Define u,, : A" = B(X™") as un((A)) = (u(ai;)) where 4 = (a;;)7 = € A™.
Then

i a;; n/gny
12l = sup 1 I = sup sup 1) ez
n>1 n>1(ai;) Il (ai;) “B(A")

Il (@(as;)) lBeersep)
n>1(a;;) | (@ij) lBeam)

Now apply the previous result by replacing u by (u(a;;)), A by A", X' by
X", £ by £} and €2 by £3. This implies || @n((ai;)) || <Il wn((ai;)) |l
Y (aij) VY n and if we take the supremum over (a;;) and n > 1 we get:

Il un((a:5)) llBeey)

I @lles < supsup

n>1(a;;) Ei l,alJ) "B(A")
I| un((ai;)) lIBan
< supmip n((ai;)) ll(xn) = u|les
n21 (a;;) ” ((1,‘]) ”B(-A")

@ will be called the compression of u to £; /€.

Remark: If A C B(H) and if v : A = B(G) (G Hilbert) is the restriction to A
of a *-representation m : B(H) — B(G), then we have

Halles < Mullee <l mlles <1

Indeed, the first inequality follows by Proposition 2.7. If we define u, as
above and w,, in the same way we get

u a;j
Hells = sup lluall = sup sup Ml
n>1 n>1 (ag)ear Il (aiz) I
g (¢ 77
S sup sup “ "(( J)) ” - "ﬂ_"cb
n>1 (ar;)eB(imy Il (aii) |l

which explains the second inequality.
We have seen in (2.8) that || 7 ||s < 1.

Proposition 2.8: Let A be a Banach algebra. Let X, Z be two Banach spaces,
let 7 : A = B(Z) be a bounded homomorphism, and let w, : X = Z and
wy : Z — X be operators such that wow; = Iy . Assume that the map
u: A — B(X) defined by

u(a) = wem(@)wy Vaed
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is a homomorphism. Then u is similar to a compression of =. More pre-
cisely, there are m-invariant subspaces £, C £; C Z and an isomorphism
S: X 51/52 such that

SIS 1<l wn (Il wo |
and such that the compression # of 7 to £, /€ satisfies

u(a) = S '#(a)S VaeA

Proof: Let

& =span(wy(X), Uy a7 (a)uwr (X))

By definition £, is a closed subspace of Z. &£, also is w-invariant. This is
checked as follows :
An element y of £, can be written as

¥ = nlg!;g (wl(.’l:n) + Zr(ain,wuz;n)>

for some z,, z;, € X, ai, € A because byw,(z,) + --- + bywy,(z,) =
wi(bizy + -+ bpzy) =wi(rn) and Vb e A

m(b)y = nan;O (W(b)wl(zn) + W(b)Zw(ain)wl(z;n)>

= nli_?;o (w(b)wl(zn) + Zﬂ(bain)wl(zin:> €&y

Let £ = &; Nker(wy) then £2 C £, C Z. We claim that £, also is
w-invariant. Indeed, consider z ¢ £; such that w,(z) = 0. In the same way
as above we can write z as

Z = nl'l.ngo (wl(:z:,,) + Z?r(ain)wl(-’l?in)>

Then because wy(z) =0, wyw, = Iy and u(a) = wan(a)w,

0 = wa(z) = lm (wzwl(zn) + ngr(ain)wl(z;n,>

= lim (1:,, + Zu(%)zm) (*)

Hence for all ae A

n(a)z = nllbn;o (r(a)wlzn + Zr(a)r(am)wl(zin)>

= lim (W(a)wlzn + Z?r(aain)wn(zinL>
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and so

wom(a)z = nan;o (wgﬂ'(a)wlx,, + Zzuzﬂ(aain)wl(xin))

t

= nango (u(a)xn + Zu(aam)zin>
== nan;o (u(a)xn + Zu(a)u(ain)xin>

= nan;ou(a) (2:,, + Zu(ain)xin) =0

because of (x). Since z € £, n(a)z also is in £, and wyn(a)z = 0 which
means that m(a)z € ker(w;). This implies that 7(a)z € £, Va and proves
the claim.
Let Q : £&; — £,/&, be the canonical surjection. Define S = Quw, : X
— 51 /52 by

S(z) =Qu(z) VzelX
wyy,, + &1 — A is surjective. Take a z € X, then y := w, (x) € £, and since
wouwy = Iy wa(y) = z. Soforevery z ¢ X Iy € £, such that w(y) = z.
Now there is a unique isomorphism R : £,/€2 = X with || R|| < || w2 ||
namely R(Z) = wa(z+&32) = wa(z+kerws) (£ = z4+&2 C r+kerw,) since
foree&s || R(Z) || =1l wa(z+e) [| < [l w2 llll z+e|[so || RZ || < || w2 |J]| Z ||
such that RQ = waye, - Then we have RQw, = wow; = Ix hence
RS = Ix. This implies that R is surjective. R also is injective:
0 = R(Z) = wa(zo + kerwy, ) => zo + kerwy,, € kerw
also zg + kerwg.el €& so xo + kerwy,, € &, and this implies # = 0.
Surjective and injective is the same as invertible and since RS = Iy, R™! =
S. This implies that S also is invertible and S~! = R. Moreover we have

HSIS™ =1 Quy Il BRI < 1wy Il w2 |l

and

S '#(a)S = S '#(a)Qw
= RQm(a)w,
= wyn(a)un

u(a) Vae A

We now come to a theorem which we will need to prove Theorem 2.1

Theorem 2.9: Let H, K be Hilbert spaces. Let 4 C B(H) be a subalgebra
containing a unit 1 and let u : 4 — B(K) be a bounded homomorphism
with u(1) = Ix. Let K be any constant. The following are equivalent.:

(1) The map u is c.b. with || u|les < K
(ii) There is an isomorphism R : K = K with || R |||| R™! || £ K such
that the map a » R™'u(a)R is c.b. with c¢.b. norm < 1.
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Proof: (ii) = (i): Let v(a) = R~'u(a)Rwith || R|||| R™! || K and || v ||< 1.

Then u(a) = Rv(a)R™! and let v, : A" — B(K") defined by v,(4) =
(v(aij)) for A= (a.~j)§"j=l e A"

Then un(aij) = ( : )vn(a,-j) ( . ]

[ R ° RrR-1

[Rllllvn (ai )R~
$0 || u [leb < SUPL>1SUP(G,;)enn 1 ||(a,.;)l|| I

SHRllvllell BT I £ K.

(i) = (ii): Assume (i). By Theorem 2.4 with S = A and X =) = K there
is a Hilbert space H, a -representation 7 : B(H) — B(H) with 7(1) = 1
and operators wy : K — H and wy : H = K with || wy ||| w2 |<]] v |les
such that

u(a) = wymw(a)w, Vae A

By definition of *-representations m, is a homomorphism and this implies
u(a) also is a homomorphism. Ix = u(l) = wnr(l)wg = wywy SO we
can apply the preceding result for Y= K and Z= H: u is similar to a
compression 7 of |, or in other words

u(a) = R(a)R™! Vae A

and || Rl R7* || < [l wa [l w2 |I.
But || wy ||l w2 || < || % lew < K and this implies || R ||| R~ || < K. By
Proposition 2.7 || 7 |les < || 7 ]lee <1 and

#(a) = R 'u(a)R

so the map a = R™'u(a)R is c.b with ¢.b. norm <1 .

2.3 Proof of Theorem 2.1

We can apply the preceding result to Theorem 2.1 which we wanted to prove.
Assume T is c.pol.b. then the homomorphism P — P(T) where P is a poly-
nomial defines a completely bounded homomorphism ur (ur(P) = P(T)) from
the disc algebra A into B(H). Indeed, T is c.pol.b. means 3 K such that V n
and V n x n matrices (P;;) with polynomial entries we have

I} (Pii(T)) llpeaemy £ K IS}l<pl | (P:;(2)) llB(c)

Define ur, : A" = B(H") as uTn((P;j)) = (UT(P.'J')) then

I UTn((P-'j)) ”B(‘H")

Iur lles = sup || urn || = sup sup

n l(P.,) | (P:;) Il.an
B || (ur(Py)) llBeaemy Il (Pi;(T)) | B3en)
= Ssup sup = supsup
n2t(py) I (Py) llas a1 Py | (Py) las
K sup,1<; || (Pi(2)) |lB(cr)
< sup sup :
n>1(P;;) Il (Pj) Il .an

K sup,i<; || (Pi;(2)) lB(cr)
(P (Nl sicny
lzllac)

= sup sup
n21(P;)  supj; <)

K

IA
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which means that ur is ¢.b. with || ur || < K.

By Theorem 2.9 there is an isomorphism R : K — K with || R||| R7! || < K
such that the map P — R~ 'up(P)R is c.b. with || R"'urR |los < 1. Take
P =T the identity then ur(I) = I(T) =T and

| RT'TR|| = | R ur(DR | < | R 'urR los < 1

so T is similar to a contraction.
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Appendix A

Dilation theorem: Let T : H — H be a contraction. Then there is a Hilbert
space H containing H isometrically as a subspace and a unitary operator
U : H — H such that
Vn >0 T" = Pyl
(where Py is the projection on #).
When this holds, U is called a unitary dilation of T (one also says that U
dilates T').

Proof: For any n in Z let H, = H, and consider the Hilbertian direct sum

H = Bz Hn = * | On H we introduce the operator U : H — H

H

defined by the following matrix with operator coefficients

[ . \
g
0 I O
U= 0 Dp -T
T Dy
O 0 I
0 I
\ o
where T stands as the (0,0)-entry and Dr = (1 — T*T)'/? and

Dr. = (1 — TT*)'/2. Equivalent any (hy)nz is mapped into U[(hn)nez]
= (h!,)nez with h!, defined by

hnt1 ifn ¢ {-1,0}
(*) by, = Drhy — T*hy ifn = -1
Tho + Dyr.hy ifn =0
We identify H with Hg C H so that we have PyU;,, = T and more

generally PHUI'; = T"foralln > 0 (note that U has a triangular form,
so the diagonal coefficients of U™ are the obvious ones).
We claim that for all (h,)nez in H and (h))nez = U[(hn)nez] as above

we have
DAL IR + o IP =1l ho I + Al

Indeed, first note the following identities

T*Dr. = DrT* (and TDr = Dr.T).

Note that Dy = f(TT*) and Dr = f(T*T) with f continuous.
By Stone-Weierstra3 we can write f as the uniform limit of polynomials
P,: Dyr. = f(TT*) =Ilim P,(TT*). Then we have

T*Dy. = T*lim P,(TT*) = T*lim}_ a,(TT*)" = imT* Y a .(TT*)"
=lim}Y ap(T*T)"T* = limP.(T*T)T* = DrT*
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(and analogous TDr = Dt.T).

Then we can develope || A, ||> + || k) ||? using (*):

Iy I + I B I = I Drho — Thy 2 + || Thy + Drohy [P'=
(DT}I.() - T‘hl,DTho -~ T'hl) + (Th() + DT— hl,T}l() + DT-hl) = ((1 -
T*T)ho, ho) — (DrT*hy, ho) — (TDrho, hy) + (TT*hy, hy) + (T* Tho, ho)
+ (T*Dr-hi,ho) + (Dr-Tho,ha) + ((1 = TT*)h1,ha) = | ho | +
A 1.

As a consequence, we find that U is an isometry. Moreover U is surjective
since it is easy to invert U. Given h' = (h! ),z in H, we have h' = Uh
with h = (hp)nez defined by h,, = hj,_,ifn ¢ {0,1}, ho = Drh’, +
T*h{ and hy = —Th’, + Dr-hg. Equivalently it is clear that U is in-
vertible from the following identity for 2 x 2 matrices with operator entries

r o_{( Dr -T Dr T*
0 1)" T Dy -T Drp.
) Dr T* Dr -T*
~“\ -T Dy T Drp.

Therefor we conclude that U is a surjective isometry, hence a unitary
operator.

Von Neumann’s inequality: Let C be a contraction in H. Then

Ip(C) I < e | () |

V polynomials p.

Proof: First we will prove this for a unitary operator U on K.
Uf = [J7e"dE@®)f = lim Y e (E(t;) - E(t;-1))f, E(t): R~ L(K)
E(t) is a projection so E*(t) = E(t)and E(t)> = E(t). E(t)E(s) = E(s)
E(t) = Emin(t,s). You can also write E(t) = lim,y; E(s). It’s easy to see
that E(t) = Iift > 2rand E(t) = 0ift < 0.
Now you can write p(U)f as foz" p(e**)dE(t)f and

2n . . 2n
Ip(U)f Il < /0 | p(e*) |dE(t)f < sup |p(e*) ] II/0 LdE@®)f |l =

te[0,2n

= sup |ple”) [l EQ2m)f — EQ)fll= sup [p(e®) | fIl.
te[0,2n) te[0,2n)

So || p(U) Il £ supj;j=; | p(z) | V polynomials p.

Now take C a contraction. By the Dilationtheorem there is a Hilbert

space H containing ‘H isometrically as a subspace and a unitary operator

U:Hw— HsuchthatVn >0 C* = PyU,.

From this follows:

I p(C) Il = Il P p(U)p | < 1 P(U) Il < Sup | p(2) |

V polynomials p.




Appendix B

Definition: A space A

(a) is called an algebra over C if
A is a linear space over C
there is a multiplication with properties:
(zy)z = z(y=2)
Mzy) = (Az)y = z(\y)
z(y+2) = zy + zz; (y+2)r = yz + 2z Vz,y,z¢ A, A e C

(b) is called commutative if Vz,y e A zy = yz.
(c) hasaunit if 3e e Asuchthatea = ae = a Vae A

(d) is normed if there is a norm || || on A withV z,y e A4
lzy Il <l Iyl
(e) is called a Banach algebra if A is an algebra and (4, ]| ||) is complete.

(f) is called a *-algebra if A is an algebra and 3 = : A — A with properties:

(z*)* =«

(I+y)‘ — zt + yt

(A\z)* = Az’ |
(zy)* = y'z* Vz,ye A AeC

(g) is unitary if 4 is a x-algebra with unit andVue A u*u=uu* =e.
(h) is selfadjoint if A is a x-algebraand z* =z V z ¢ A.

(J) is called a Banach*-algebra if
(i) A is a Banach space
(ii) A is a x-algebra

(ii)vzed Jz*| =]z
(k) is called a C*-algebra if A is a Banach*-algebra and V z ¢ A
zz* || = Il = [I*.

Examples: There are some examples of C*-algebras which we used in this

essay. These are:
B(#), C(8D) and the disc algebra A

Definition: A map ¢: A — B is called

(a) a homomorphism if

¢(z +y) = #(z) + ¢(y)

#(Az) = Ao(z)

d(zy) = ¢(z)d(y) Vz,yed, AeC
(b) a x-homomorphism if

(i) ¢ is a homomorphism

(ii) ¢(z*) = ¢(x)* VzeA

Definition: (a) A map 7 : G — B(#) where G is a group and ‘H a Hilbert
space is called a representation if

(1) = I
w(st) = w(s)n(t)
and 7 is unitary if also 7(t)~! = =(t)*.
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(b) A map p: A B(H) where A is a *-algebra and H a Hilbert space
is called a *-representation if
(i) p is linear
(ii) p is a representation
(i) p(a) = pla)".

(¢) A map p: A~ B(H) is called a C*-algebraic representation if A is a
C*-algebra, H a Hilbert space and p is a *-representation.

About *-representations we have the following Lemma:

Lemma: Let p : A = B(H) be a *-representation on a C*-algebra A and

assume A has a unit. Then necessarily || p || = sup,4¢ ¢a r < 1.

plla [
a

Proof: Clearly p maps unitaries to unitaries:

p(u)p(u)” = p(uu’) = ple) = I = p(e) = p(u*u) = p(u)*p(u) for
u'u =uu* =e.

Hence || p(u) || < 1 for any unitary u. Let z be a hermitian element:
z==z"and |z ||[<1. Then any u = z+tV1 — z?% is umtary and r = Reu.
Also follows || p(z) I| = Il p(Re u) Il = || p(=525) [ < L [l plar) | +
lpw? Il < 2-1+ 31 =1

Hence || p(z) || < 1 for any hermitian in the unit ball. Finally,

[l uu |l = [l u |, so that

I p(@) 1P = 1l @) p@) | = | "2 1| = Il 2z Il p(rZzp) Il <l = 11,
and ”%(ﬁfﬂ < 1 Vz whichmeans ||p|| < 1.
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