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Preface

In April 1997 I started to think about my Masters thesis to complete my study at the math-
ematics department of the University of Groningen (RuG), the Netherlands.
At the end of May 1997 I stopped by at Prof.dr.ir. A. Dijksma's office and asked him to be
my advisor. He was willing to do so and he promised to think about a topic in Operator
Theory for my thesis.
In the middle of June I received a telephone call at home from Mr. Dijksma. He asked me to
visit him in his office, the next day. The next morning I went to his office and he told me the
following:
Mr. Dijksma was invited to visit Western Washington University (WWU) in Bellingham,
state of Washington, United States of America, from September through December 1997 to
co-operate with Prof. T. Read and Prof. B. Curgus. Two of the topics they planned to study
were time interpolation problem and the moment problem. Mr. Dijksma and I already decided
that my thesis would handle about the combination of these two particular problems, a sug-
gestion from Prof. Heinz Langer from the Technical University of Vienna.
So the reason he asked me to come and see him, actually was to invite me to accompany him
to Bellingham. I was flattered and proud and of course I decided to accept this unique and
great offer. Although I had to work pretty hard, I also visited a lot of things. It really were
incredibly great and unforgettable months and it became a wonderful experience. That's why,
once again, I want to thank Mr. Dijksma and WWU for this opportunity they gave me. Also
thanks to Mrs. Dijksma for being a kind of 'mother figure' during my visit to the USA and
to my parents, who gave me great support to finish this study.
Because I never worked with LA'IX before, it took a while before I finished this thesis; even-
though I hope you'll enjoy reading this report.

Groningen, June 1998
Richard W. Buursema
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Chapter 1

The moment and interpolation
problem (MIP)

The l)roblem which will be discussed in this thesis is the combination of two other problems:
the interpolation problem and the moment problem.
If there is, the solution to both problems is given by a particular class of functions, the
so-called Nevanlinna functions, denoted by N0. These are analytic functions N(z), N(2)
N(z), z E C , that map C into C U IR. N(z) belongs to Tk if and only if there exist two

real iiumbers , fi with /3 � 0 and a nondecreasing function a with f't 3 <00 such that
N admits a Herglotz integral representationrfi

__

N(z) =/3z+a+J
— t2+1) da(t).

1.1 Formulation of the MIP

This is the Nevanlinna-Pick interpolation problem (IF):
discuss solutions N E N0 that satisfy

N(z2) =w, i= 1...n,

for given z1,... ,z E C,z2 distinct, and given w1,... ,w e C. Note that

N(z) =
— z2)

satisfies N(z2) = w but in general is not a Nevanlinna function.
Define the Pick matrix (or information matrix) by:

W1W1 W1W2 ... W1Wn
ZIZ1 ZjZ Z1Z

= (w — =

WW1
ZnZ1
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And here is the moment problem (MP):
discuss solutions N E N0 that satisfy

— 1imz2m+1(N(z)++...+s21)<s2m

for given o,••• , S2 E R.
The function

SO Si 52mN(z)=—————".-
z z2 z2m+1

has the right asymptotic behavior but in general is not a Nevanlinna function.
The Pick matrix of this problem is:

/ o S1 2 53 Sm

Si S2 S3

m S2 S3
1P1 = (s+j)23=0 =

53

Sm 8m+i 3m+2 52m /

Now that these two problems are introduced separately, the combined moment and interpo-
lation problem (MIP) is given by:
discuss solutions N E No that satisfy both the interpolation problem and the moment prob-
lem for given z E C+ distinct, and w2 E C (i = 1,... , n) and o,•• , 52m E lit

A Part of the Pick matrix IP = (Pj)' of the combined problem MIP looks familiar,
because it consists of the Pick matrices that belong to the separate problems. The top-left
part is the Pick matrix of the IP

wi-w._', 1z,jn,
zi — z,

and the bottom-right part is the Pick matrix of the MP

lPi3 Si+j_2n_2, n+1 2,j <n+m+1.

The other part 'connects' the two separate problems: The top-right part of P is given by

W1 SO + WZ1 Si + S0Z1 + W1Z? ... Sm—i + + sozr—' + wiz
W2 S0+W2Z2 Si+S0Z2+W24

Wn So + W1Zn Si + SOZn + WZ Sm_i + + Soz + wz
that is,

IPi Sj_n_2+Sj_n_3Zi+ +SOZ +WiZ, 1 <i<n, n+1 <j <n+m+1.
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The bottom-left part of F is the adjoint of the top-right part

P,,=Fj,,

Hence the Pick matrix of the combined moment and interpolation problem is:

_ WI Sm_i + + wizr

W2 Sm_1+"+W2Z

I1x,__..
W •" Sm_l+"+WnZ

Wi Wn So Sm

S0 + W1Z1 S + S1 5m+1

Sm_i+"+WiZr Sm_1+"+WnZ Sm S2m

Note that the order of ll is n + m + 1 and if n = 0 (this means no interpolation), that this
matrix is reduced to the Pick matrix of the MP, but if m = 0 it is NOT the Pick matrix of
the IP; in this case it has one extra row and column (the bottom-right entry is SO!).

1.2 Sufficient condition for existence of a solution
To determine whether or not a solution of the MIP exists, the next theorem is used (see
[Ach, page 95]). If there exists exactly one solution the MIP is said to be determined, if there
is more than one solution indetermined.

Theorem 1.1 For given s0,... ,S E R, equivalent are:
(i) N belongs to N0 and satisfies

lim z2m+l(N(z) + ••. + = S2m.

y—*OO

(ii) There exists a nondecreasing function a(t) such that

N(z) f da(t)
= f tkda(t), k =0,... ,2m.

—z

The proof of this theorem is also in this book.

Because a solution of the MIP must satisfy both the IP and the MP, this theorem can also
be applied to the MIP: if N is a solution to the MIP then N(z,) = w3 and there exists a
nondecreasing function a(t):

N(z)
= f°°

da(t)
, Sk

= f tcda(t), k = 0,... , 2m — 1,
—z

and
I I 2m ,

52m / L u0i) 52m
J ___
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Hence f0000 --- da(t) = w3 and for 1 � i,j � n, we have

P00 1 1
I du(t) =

f_00 t — zi t —
00

1 1=1 ( — )da(t)
j_Qozj— t—z2 t—;

= — iiij
zi —;

=P1, (1.1)

for 1<i< n, n+1j +m+ 1, we have

100 1
da(t)

j'=j—n—1

J_oo t — Zi

=11+ da(t)
—00

00 z
= [ (ti'' +ti'_2z+ .+4'' + )da(t)

J—00 —;
= sj,_1 + sI_2zi +... + + ,wi
=1P,, (1.2)

forn+1 i,jn+m+1exceptfori=jn+m+1,wehave
ti_n :ti__l dcr(t) =

= ji00 t22 da(t)

= 8j+i—2n—2

=1P, (1.3)

and finally we have

L:tmtmdat = Sm S2m,

which shows that

ln-f-m+1,n+m+1 = 82m = 4m + (S2m — S2m). (1.4)

>0

It follows that

i1

= L 1i ( 1 tm ) dci(t) + diag(O,... , 0, 82m —

tTn
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and hence

(IP'x,x) = x*IPX =

= .i: (,
, + xj+n+itj + xj+n+1t3 +

+ Xjn1t3 da(t) + x diag(O,... , 0, S2 — 4m) X

i=1 2j=O J

2i t
+ xj+n+it

)
da(t)+(s2m—s'2m)Ixn+m+112 � 0, so P � 0.

This result leads to the following theorem:

Theorem 1.2 If there is a solution of the MIP, then the Pick matrix is nonnegative: P> 0.

Later it turns out that there actually is an 'if-and-only-if'-relation between the two statements
in this theorem!
Before we see that, first of all we have to find solutions. For this we need a model.

7



Chapter 2

The model

To find solutions of the MIP, we will introduce a model. In Section 2.3 we will see some
properties of this model and in Chapter 4 we will use these to find the solutions. As a
consequence of Theorem 1.2, from now on, we assume that IP � 0.

2.1 Construction of the model (7-1, S)

In order to make the model, define the following:

• = Cn+m+l with the usual basis (ej)tr+l, where e3 is the column vector with all
zero entries, except for the ith position, which is 1.

ul\
• e = the column vector of length n + m + 1 with 1 on each position.

\1)
• The semi-inner product on the space £, defined by means of the Pick matrix,

(x,y) = = (PX,y)n+m+i E Cn+m+l.

Let

L0=LnL-=
= {x E £I(x,y) = 0 Vy E £}

{XELI(1PX,y)n+m+1 =0 VyEL}
= {x E CIIPX = 0}
= ker P.

In the models for the IP and the MP, the diagonal matrix Z and the 'shift-right' matrix S
are used (see [Dijk] for details):

0 0

fzi 1 0 0

Z=diag(z1,... ,z)=
..

; Sr= 0 1 0

Zn) .•. ...
0--- 0 10
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Just as the Pick matrix P is a composition of P1 and PM, the matrix C (for 'composite'
matrix), used to construct the model for the MIP, is a combination of these two matrices Z
and Sr: /1 0 0 0'

fZ_0\ 0 0

c:=I e* 1= 1 1 0

0 Sri
0

1 0,
With this matrix C, now define the relation

S = {{x,Cx}Ix E ,e+m+lx = 0).

The last condition e+m+1x = 0 actually means that the last component of x must be
zero. The defined relation S is symmetric. This property can be proven by calculating
the Lyaponov form PC — C*P:

+w2, 1<i,j<n,

(PC) f 1<i<n,
23 0, 1�in,j=n+m+1,

1jn,

(PC). —f S(i_n)+(j_n_1) Sj+j_2n_1, n+1 <i n+m+1, n+1 �j
0, n+1in+m+1,j=n+m+1.

Notice that (C*IP)2 = (PC),2 and then obtain that:

(C*P), = z'" +J , 1 �i,j

(C*P). = f W,Z3+SQZ +s12+."+s1_,_i, n+1 <i<n+m, 1 �i
'3 10,
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(C*IP) ....JSi+j_2n_1, n+1in+m,n+1j�n+m+1,
'1 0, i=n+m+1,n+1jn+m+1.

From these expressions above it follows that:

/ 0 0 —(wiz"' +p(zi)) "

0
0 0 (wnz'+p(Zn))

IPC—CtIP = 0 0 0 0

0 0 0 0 S2m

+p() •.. +p(n) Sm+1 0

with p(z)=SOzm±...+sm_1Z+Sm

So it is a matrix with a lot of zeros, except for the last row and column.
For x, y E dom Si:, use this result to get

(Si:x,y)r — (x,Siy)j =
— (5y)*

= —

= — C*1P)x

=0,

because e+m+1x = e+m+1y = 0. Hence Si: is symmetric.

The last step is to define the desired model (?L, S):

I:=L\LoC{IxEC}
with I = {y E £Iy — x E £o} = x + C0 and inner product (I,j = (x,y)i:, and

S := Si: = {{I,Cx}I{x,Cx} E Si:}.

Note that if det P 0, 1 = £ and S = Si:.

In the next two sections we will learn more about S and its properties.

2.2 Linear relations and operators
In this section we will recall some general definitions and results related to linear relations
and operators, but apply them directly to our model. At the end of this section we will also
show that S in the model in some cases is a linear relation, but in other cases it is an operator.
To see that we will use an example.

First of all we recall the definitions of linear relation and operator
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A (closed) linear relation S in a Hubert space 1-L is a (closed) linear subset of the direct
sum space 1-L2 = fl a linear relation S is (the graph of) an operator if and only if its
multivalued part S(O) = {g E 7-1 : {O, g} E S} is the trivial subspace of 7-1: S(O) = {O}.
The adjoint of S is the closed linear relation

S = {{u,v} E 7-1: (v,f)j — (u,g)j = Ofor all {f,g} E S}.

S is called symmetric if S 5* and selfadjoint if equality prevails: S = S.
Now assume S is closed and symmetric; S is called simple if

fl ran(S_z)={O}ii{ker(S*_z)IzEC\1R}=fl,
zEC\R

that is, the eigenelements of S* corresponding to nonreal eigenvectors of span 7-1.
A selfadjoint linear relation A in a Hubert space 71 is called a selfadjoint extension of S in
7-1 if the space 7-1 is a closed subspace of 7-1 and S C A. The Hilbert space 7-1 en is called the
exit space. A is called a canonical extension if 7-1 = 7-1, that is, the exit space consists of
the zero element only, otherwise it is called a noncanonical extension. Thus in the canonical
case, both S and A act in 7-1.
We will be interested in minimal selfadjoint extensions of S. By definition, a selfadjoint
extension A in 7-1 of S is called minimal if for some (and hence every) jt p(A),

pii{(I + (z — 1z)(A — z)')fl : z E p(A)} = 7-1.

Since S in our model is symmetric, it admits INFINITELY MANY noncanonical minimal
selfadjoint extensions. (Here we assume that S is NOT selfadjoint, because in that case
the only minimal selfadjoint extension is S itself). But there also are INFINITELY MANY
canonical rniiiiinal selfadjoint extensions of S. To make this clear, we will first introduce
the defect numbers d and d of 5: if S is symmetric, then dim (ker (S* — z)), z E C, is
constant on C±. We denote these constants by d+ and d respectively. The defect index
of a symmetric S is the pair (d, d).
Since (ranT)1 = kerT*, we have for z E +:

ran(S—z)=7-L'='d=O; ran(S—2)=7-1-'@=d=O.

To find the canonical extensions of S we use the Cayley transformation C,1 and its inverse F,1,

C,1(S)={{g—pf,g—pf}I{f,g}ES}, pEC\R.

We assume S has defect index (1, 1). Then there exists a f E (ran (S — ii)) =
= ker (5*

— iA), 11111 = 1 and a g E (ran (S — j))1 = ker (5*
— ), IIII = 1.

IfV=C,(S), V:ran(S—p)i—-ran(S—fi)andwedefineforOE[O,27r)

Uh—' hEran(S—p)
— ae'0g h=of, a€C (h=span{f}),

then for (ran (S — i) span {f}) k = k1 + k2 with k1 E ran (S — p), k2 = cxf holds

U9k = Vk1 + cx&0g.
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This U9 is unitary and a canonical extension of V (V C Uo). We conclude that

A9 C'(Uü)=F,(U9)DF,z(V)=C'(Cp(S))=S,
so A9 is a canonical selfadjoint extension of S. Since the mapping 0 [0, 2ir) '—* U0 is in-
jective, we obtain that indeed there are infinitely many canonical (hence minimal) selfadjoint
extensions A0 of S.

ExampleTaken=Oandm=2,andletso=s1=s2s3=1.

/11 i\ f000\
Then P = 1 1 1

)
and C = (

1 0 0 • It follows that P � 0 S4 � 1.\i 1 84) \o 1 0/
It is clear that eo = (1 0 o)t and e = (0 1

O)t span the domain of S.
Assume 54 > 1. Then {eO,el} and {ei,e2} €5. Since IP(eo —el) = P(i,_i,O)t = Owe obtain
that keriF = span {eo — el}; so for {eo — ei,ei — C2} E Sr we see

{ el—e2 } = {O, el—e2 } SC = S.

Because e1 — e2 is not an element of the kernel of P, ei2 0, so S S is a relation.

Iii the case where 54 = 1, ker P = span{eo — ei,ei — e2}. But the only elements x in
this span, that are also in dom S, are multiples of e — e1. In that case Srx = Cx is a
multiple of e1 — e2, which is also in ker P, so

{I,} = {O,0}.

For every other x E dom S1 (it is x = aeo + f3e1, NOT a = 1,13 = —1 or multiples),
Scx = Cx = aej + /3e2 ker IF, so

and

Hence S = Sr is an operator.

2.3 Properties of the model
It already has been shown in Section 2.1 that S. is symmetric, but also S has some nice
properties - depending on the determinant of the Pick matrix P — according to the next
lemma:

Lemma 2.1 Assume P � 0.

(1) If det P = 0 then S is selfadjoint and its defect index is (0,0).

(2) If det IF 0, that is if IF> 0 then S is simple, closed, nondensely defined and symmetric
with defect (1,1) and ker (S* — z) is spanned by

( IP1(C — z)'en+m+i, Z O,z1,...
J lTb—1/ c'fl 1 _n

= s ir e÷i — —e3j, z —

t P'e3, z=z3,j=1,... ,n.
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Proof (1) Since det P = 0, the kernel of P is not trivial. Hence fl = £ and S = S. Let be
an element in the kernel of IP, 0 E ker P.
We have

xeran(S—z)3yEdomSc.: (C—z)y=x
Z,O

y = (C — z)'x E dom S1 e+m+i(C — z)1x = 0.

Hence for g E £

— z)'g
g— * i,.. Eran(Si:—z). (2.1)

en+m+1 ZI W

Since

u E ran (S — z)

..u= (Sj—z)fScf=u+zf
*{f,u+zf} e S {J,u+zf} E Si:

ii E ran (c — z),

andsince=O (á= x—yELo=ker 1P),itfollowsthatEran(Sc.—z);ofcourse
g E £ e £, so this means that

ran (Si: — z) = = fl, (z (2.2)

Now let , E ker P, then

= (x+,y+t')c =
= (x,y)c + (1,x)i: + (ço,y)c =
= (x,y)c +x*P+y*P+P
= (x,y)c.

Hence, since S is symmetric, it follows that S is symmetric also. The above equality (2.2),
telling that ran (Si: — z) is equal to the whole space 1L, now directly shows that the defect
numbers are zero (see Section 2.2), and hence S is selfadjoint.

(2) Now assume P > 0 which means that det IP 0 so clearly P' exists; now the ker-
nel of P is trivial, ker P = {0}, so = £ and S = S. Since £ = Cn+m+l is a Hilbert space,
we have in this case that fl is a Hilbert space. Hence S is closed and nondensely defined, and
S is also symmetric (this was already found in Section 2.1).

To prove the remaining part, first calculate (C — z)' (for z h,...

(Note: (Sr — z)' = —(1 — SrY1 = I0(SrY' = —( + + + +
because 51 = 0, the zero matrix)

13



(Z*_z)_l 0

(C-z)' = (_(s_Z)1
(

)z*_z1 (Sr_Z)')

/ !;-T; 0 0 0'
0 0 0Z —Z

-o...0
1 1 1 1 1 1;:

0
1 1 1 1 1 1 14T 7E T — — /

Because

ço(z) E ker (S* — z) = ran (S —

(ço(z), (C — = 0, Vi : e,+m+lx 0

x(C — )*lPp(z) = 0, Vi : e,+m+1x = 0 x*efl+m+1 = 0

(C — )*lPco(z) = k en+m+1, with k an arbitrary constant,

make a distinction between the following cases:

• Ifz ,',,,O then (C—i)' exists, so cp(z) klp_1(C* —z)'en+m+i.

• If z = 0 then C*P(O) = ken+m+i. Since the last row of C* is (O..O), k must be zero.
We obtain that

/ I
Z1

-P(0) = 1 = Cn+1 — —e3

o j=13

0
satisfies the equation with righthand side is zero.

• If z = j = 1,... ,n, then (C _)* = C* — z has a zero (z3 —z3) on position (j,j).
Hence the jL row of(C* —z) is e+i. From (C —z)P(z) = k•en+m+i we deduce that
the (n + l)3t entry of IP\o(z3) must be zero. From this it follows that all other entries of
lPp(z3) must be zero also, except for the ith position, which is arbitrary; take it equal
to 1 and obtain ço(z) =

Hence, in all three cases, the kernel of (S* — z) is the span of (z).
From this, now also follows directly that Vz E : dim (ker (S* — z)) = 1 (of course it is

14



constant, since S is symmetric), so indeed, the defect index of S is (1, 1).
We also see that

e1,... ,e Efl{P(z) jzEC\R}, (2.3)

(from the third case), but then also the linear combination —ej; since that span also

contains e+i — -e3, it follows from the second case that also

5ãii {P(z) I z C \IR }. (2.4)

From the first case, that span also contains
1

z1 —z

1
(C* —z)'en+m+i ((C—Y')en+m+i zm+l

—

0

0
and because of e1,... ,e+i, also all vectors of the form , z C\R,

zm

0

it is all vectors of the form , z C\JR (first n + 1 entries are zero).

With z\0, we find that

e+2 i1 {P(z) I z C \R }, (2.5)

and so on:

e3,... , I1 {P(z) I z C \R }, (2.6)

From (2.3), (2.4), (2.5) and (2.6) we conclude that

el,...
Hence this span coincides with 7-L = and since l1rl exists (so we know that the
ii + in + 1 columns of P are linearly independent and form a basis for Cm) the
1P'P(p(z) = (z) span 7-1 also, so

span '(z) = ker (S — z) = 7-1,

15



which implies that S is simple. 0

Before we use the properties of S — as described in Lemma 2.1 — to find solutions of the
MIP, we have to find a kind of relation between S and these solutions. This 'relation' will be
introduced in the next chapter.
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Chapter 3

Solutions and extensions of the
model

3.1 Characterization of solutions via selfadjoint extensions of
S in the model

In this section a theorem will be introduced and proved, which will help to find solutions of
the MIP, using minimal selfadjoint extensions of the linear relation S in the model. Because,
from now on, we only work with this model (fl, S), we will use the notation (.,.), without the
subscrift £, to denote the semi-inner product (x, y)j y*Px as defined in Chapter 2.1.

Theorem 3.1 The formula

( \_ hA \—1Nz) — — Z) e+i,e+i
establishes a 1-1 correspondence between all solutions N(z) of the MIP and all minimal self-
adjoint extensions A of the symmetric relation S in the model.

In the proof of Theorem 3.1 the following theorem is used. Compare it to the theorem in
[KL1].

Theorem 3.2 Equivalent are:

(a) For NE N0 and for some s,... 'm E IR

- lim z2m+1(N(z)++...+s21)=Sm.
y—oo

(b) There exists a selfadjoint operator A in the Hilbert space 1L and a u E dom Atm such
that A is u-minimal, that is

?-L =?ii{(A —z)'uIzE C\R},

and
N(z) = ((A — z)'u,u).

17



If (a) and (b) hold then

— f (Acu,u), O<k<m,
8k1 (Amu,Amu), m+1<k<2m.

The u-ininimality in (b) implies uniqueness of the representation up to isomorphism.
For the proof of Theorem 3.2 see [KL1].

Proof ofTheorem3.1 -

Let S C A = A* in fl (so A is a selfadjoint extension of S).
Since dom S = {x Xn+m+1 = O} and Se+, = Ce+3 = e+3+i, j = 1,... ,m,
it follows that

{e+i,e+2},{e+2,e+3},... ,{ên+m_i,ên+m},{ên+m,ên+m+i} E ScA.

This implies that ên+m E dom A = dom A, where

A=A5A and n=n5ei
with

A = {O} x A(o) and fl = A(O).

A5 is a selfadjoint operator in 1-la =A(O)1 = A* = =
P8 is the orthogonal projection in fl onto 1L5.
Note that n+m+1 does not necessarily belong to (it does belong to 1-L, the model space,
of course).
We find that

N(z):= ((A — z)'ê+i,e+i) = ((A3 — zy'P3ê+,P3ê+1) = ((AS — z)1ên+i,ên+i)

satisfies (b) of Theorem 3:2: — -
because of the definition, A5 is a selfadjoint operator in 1-La = domA5; recall that Sni =
and soon, so

m' —S e,+i — en+m+1.

Because dom S C dom A5, we also obtain that
Am

— en÷m+1.

Since A'e+1 = n+m E dom A, now obtain that Asên+m = A'e+1 'exists'. Hence,

ê,,i E domA.
Now we showed this, we conclude from the equivalence in Theorem 3.2 that N(z) satisfies a
moment problem with a =-sign instead of a s-sign; use

(ê,êk) = (e,ek) = 41Pe = Pkj

to determine what the 4 in this MP are:

(Ae+1,e+1) =(êfl+k+1,êfl+1)=sk, O�k <m,
iAm' k—m
\1-IS e+i

4
= =

(Psên±m+1,ên+k_m) = (ên+m+1,ên+1+k_m) = 8k, m � k 2m — 1,

( e,,, e)
= (Psên+m+i,Psên+m+i) < (ên+m+i,ên+m+i) = S2m, k = 2m.
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Note that this last case is the moment where the s-sign comes into the original moment
problem; the numbers Sk E R in the MIP are equal to the 4 in the MP in part (a) of
Theorem 3.2, except for the last one: S2m � Sm. (We already saw this in Chapter 1). But
this means that -

N(z) := ((A — z)1êi, e1)
satisfies

— lim
y—,00

=— urn

so it satisfies our MP
To see that N(z) also satisfies the IP, recall that for j = 1,. . .

E dom S and
(S — z)ê3 = (C — z)ê3 = (, — z)ê3 + e÷1,

and so
= (j — z)(A — z)'ê + (A — z)'êi.

It follows that
ê3 + (z — ;)(A — z)'ê = (A — z)'ei,

so the lefthand side of this equation is independent of j. Hence,

N(z) = ((A — z)1êi,ê÷i) = (e1, ((A — Zr') =

= (e1, (A —

= + (2— ;)(A — 2)'e)
z=z3
= (e+i,e3)
= pj,n+1 = Wi,

so indeed N(z3) = w3, j = 1,... ,n, so N(z) also satisfies the IP

Now the converse. Let N be a solution of the MIP with moment problem

— lirn z2m--l(N(z) + + ... +
S2rn_I)

= '2m <S2m.
y-4

Then, by Theorem 3.2, there is a selfadjoint operator A1 in fl1 and a u E dom A such that

N(z) = ((A, —

and
fl, =iI{(Ai —z)'uIzEC\R}.
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Let e(z) = (A1 — z)'u. By the resolvent identity,

(e(ü3), e(2)) = ((A1 — üi)1u, (A1 — 2)u) =
= ((A1 —z)'(Ai —iD)'u,u)
— ((A1 — z)'u,u) — ((A1 — tZ')'u,u)

- N(z) - N(w)*
z—ñi

Hence if we set
u,=e(,), j=1,... ,n,

then

— N(z3) — N(zz)* — — iJ —
(n1,u3) — — — — — ,,. ( .1)

zi—zi zi—zi

If 8m — S'2m > 0 we extend IL1 to

'H = 'Hi C,
CJ_fl1, (1,1) =S2mSm, (3.2)

and we define the selfadjoint relation

A A1 {{O,a}Ia E C}.

(A = A* because A1 = A is given and also the second part {{0,c}Ia E C} is selfadjoint).
Then A1 is the operator part of A: -

A3=A1.

If S2m = we set

'H='Hi and A=A1.
In any case, (A1 — zY1u = (A — z)'u and

N(z) = ((A1 —z)'u,u)
= ((A — z)'u,u).

We set
tLn+1 = U,

= A1u,

Am—I
Un+m — ri1 U,

— I AtL + 1, if S2m > Sm,
Un+m+1 m —

I. 'i U, 11 S2 — S2m.

Since A = A1 we also know that (Ar) = A so, by Theorem 3.2 (the last part where 4 is
defined) we obtain:
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(Use equation (3.2) to obtain (ArU, 1) = 0)

(un+i+j,un+i+j) =

= (A1u,Au)

J (Au,u), O<i+j<m,j (Aru,A'mu), m<i+j�2m
=82+3,

lPn+i+3,n+i+2, (3.3)

and

(Un +rn+ 1, Un+m+1) =

— J (A + 1, Aru + 1) = (Aru, Aru) + 2(Aru, 1) + (1, 1), S2m > S,
— 1 (Ay',Au), S2m = Sm

= f +0 + 82m Sm, S2m > S,
t S2m = Sm

= 82m

= lPn+m+1,n+m+1 (3.4)

Hence we deduce from (3.1), (3.3) and (3.4) that

(u1,u3) =1Pj, i,j = 1,... ,n+m+1.
Now it follows that the mapping

ui—*êEfl(themode1), j=1,...,n+m+1
extends to a unitary mapping

W: span{ui,... ,un+m+i}+fl.
From

A1u3 = A1(A1 —13)'u=
=;(A1 —j)'u+u

ZjUj+Un+1, forj=1,...
A1u3 = A1A'u =

=u3, forj=n+1,...,n+m,
and

{un+m,un+m+i} = {tLn+m,41tLn+m + 1} A,

we see that
T span {{uj,u2+i} Ii = 1,... ,n +m} cA,
domT = span {ui,... ,un+m},

and
WTW' = S.

The u-minimnality of A1 in part (b) of Theorem 3.2 implies that A is a minimal extension of
T. Indeed,

i{(I+(z—/)(AzY')vIvESpafl{Ui,.... ,un+m+i},zEC\ll}
contains
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• tL,... and Un+m+1 = AiUn+m + 1 (take z =

• (A — z)'u+i = (A1 — z)'un+i = (A1 — z)'u and hence
fli = 5äii {(Ai — z)'ulz E C\IR};
by the u-minimality of A1, in particular tin+m+1 = AiUn+m, and hence also 1,

and therefore,
K: =7 =7 eC.

Now recall that W is unitary, that is W = W', and finally we have

N(z) = ((A — z)_mu,u) =

= ((A — z)u+i,u+i)
= ((A — z)Wê+i, W'ê+1)

W1=fl (W(A —z)_'W1e+i,ei)
= ((WAW — z) e+i,ei). (3.5)

Since T C A we find S = WTW' c WAW—1 so wAw' is a minimal selfadjoint extension
of S. Hence, if we assume that N is a solution of the MIP, we find that it has the form (3.5),
which is the form in Theorem 3.1. 0

This completes the long proof of Theorem 3.1, but it does give us the main result which
leads to all solutions of the MIP, see Corollary 3.3.

Corollary 3.3 We recall Lemma 2.1 and obtain that, if P � 0,

(i) there is a UNIQUE solution of the MIP if det P = 0 (because the only minimal selfad-
joint extension A of S = S is S itself);

(ii) there are INFINITELY MANY solutions of the MIP if P > 0 (because there are
infinitely many noncanonical and canonical minimal selfadjoint extensions A of 5, as
we saw in Section 2.2).

From Corollary 3.3 we deduce that there really is an 'if-and-only-if'- relation between the two
statements in Theorem 1.2, which was already mentioned there.

Corollary 3.4 The MIP has either no or a unique or infinitely many solutions.

In the next section we will assume P> 0 and then take a better look at the infinitely many
solutions; in the next chapter a representation of the unique solution is given and the Potapov
formula is introduced for the case P> 0.

3.2 Operator extensions and equality in the MIP
In this section we assume that the MIP has infinitely many solutions. We will prove the next
theorem, which implies that there only appears an equality sign in the MIP if the solution N
corresponds with an operator extension of S.
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Theorem 3.5 Suppose the MIP has infinitely many solutions, all corresponding to a minimal
selfadjoint extension A of S. Let

d = inf — lim z2m+(N(z) + + ... +
all N(z) z=i11 Z z m

y—,00

where the infimium is taken over all MIP-solutions N(z).

(1) There exists a unique solution No(z) such that

doo _lim
y—oo

and this solution corresponds to the selfadjoint canonical nonoperator extension of S.

(2) For all solutions N corresponding to minimal selfadjoint operator extensions of S (not
only the canonical ones):

— Urn z2m+l(N(z) + ••• +
S_)

= S2m (the maximal value).
y—,00

(3) For all solutions N corresponding to minimal selfadjoint nonoperator extensions of 5,
N N0 (so the extensions are all 'noncanonical'):

d <— urn z2m(N(z) + + + S_
<82m.

y—300

Proof Recall (e3, ek) = IP'k3 and the notation in the proof of Theorem 3.1. We have

S2m (en+m+i,en+m+i) = IIen+m+1 112

� IlPsn+m+l 112 = Sm = — lim z2m+l(N(z) + k... +

� llPdomsen÷m+1ll2 =: d

where

• Ps is the projection in ñ onto IA = dom A3, where N(z) = ((A —
and,

• Pdom s is the projection in IL (the model space) onto dom S.

We know e++i dom S, so it follows that:

Pdom S en+m+1 and IlPdom s en+m+1 112 < llen+m+1 112

There are 4 possibilities:
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(a) A is canonical and a nonoperator extension of S (A(O) {O}).

Then A is unique:

A = S+ (Ox St(O)). (3.6)

Uniqueness follows from minimality of A; we prove A = At: we show

({x, y} + {O, Xu}, {, } +{O, )tu}) = 0. (3.7)

ES uES(O) ES

We know S is symmetric, S C 5* and {O,u} E St. The lefthand side of (3.7) is

({x, y}, {, }) + ({x, y}, {O, Au}) + ({O, Au}, {, }) + ({O, Au}, {O, Au}),

but all these four terms are zero:

— the first one because (x, ) — (y, ) 0 since S C S, so (Su, v) = (u, Sv).

— the second one is A(x,u) = A(x, 5* (0)) = A(Sx,O) = 0.

— the third one goes analogous to the second one.

— the last one is (0, )u) — (Au, 0) = 0.

From (3.7) it follows that A c At so, with S C 5t, we obtain S c A C At C S.
Since the 'difference' between S and A and between At and S* both are, just like be-
tween S and 5*, one dimensional, we deduce that indeed A = At. 0

(3.6) implies dom S = dom A, so P = Pdom . We obtain

d = IPdomS en+m+1112 = IIPsen+m+i 12 < IIen+m-s-1 12 = S2m

with
lI1sen+m+iII2 = Sm = — lim z2m+l(No(z) + + ... + 2rn1

y—oo

if No(z) = ((A — z)'e+i, en+1).

(b) A is canonical and an operator extension of S (A(O) = {O}).
Then dom A = IL = IL which implies P = I, the identity mapping. We obtain

Psen+m+i = Cn+m+1 PdomS en+m+1,

so
S2m = If en÷m+1 2 = IIPsen÷m+i fl2 > en+m+1

2 = do

with
IlPsen+m+1II2 = — z2''(N(z) + a... + S2_1)

y—400
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(c) A is noncanonical and an operator extension of S (A(0) = {0}).
Then dom A = A*(0)± = A(0)1 = {O} = 1-1 and P = I. From en+m+1 dom S we
obtain

Psen+m+i = en+m+1 Pom. en+m÷1,

so

82m = IIen+m+1I2 = IIPsen+m+iD2 > IIPdomS en+m+1 112 = d

with
lIPsen+m+i 112 = — lim z2m+l(N(z) + + +

(d) A is noncanonical and anonoperator extension of S (A(0) {O}).

If we assume en+m+1 e dom A it would imply that the space extension

=span{en+m÷i,domS} C

SinceA = = = ñeA(o), we deduceA ±A(0).
But then also

which is in contradiction with the condition that A is a minimal extension of S.
Hence en+m+1 dom A, which implies

en+m+1 Psen+m+i. (3.8)

Since dom A j dom S it also follows that PsU � Pdom u for all n, so we have that if

IIPsen+m+i II = IlPdom s en+m+1 Il (3.9)

then
I IPsen+m+i — Pdom s en+m+1 112 = 0

or

Psen+m+i = Pdomsen+m+1, (3.10)

but this implies

— Psen+m÷
= Cfl — domS en+m+i E A(o) fl s*(o). (3.11)

(A)'-A(O) E (domS)1CS(O)

If we assume A(o)nS*(0) {0} this would imply S+(0 x S*(0)) c Abut then because
of the minimality of A we obtain that A = S + (0 x 5* (0)) is canonical, which is in
contradiction with the assumption.
Hence

A(o) n S*(0) = {0}. (3.12)

Using (3.8) and (3.12) we now find a contradiction in (3.11):

en+m+1 — Psen+m+i 0 E {0}.
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Hence we obtain instead of (3.9) that

IIPsen+m+iII > ll1dom en+m+1II,

so

S2m = Ilen+m+1 112> IIPsen+m+i 112> lIP s en+m+1 112 = d
with

111)sen+m+i 112 = — z2m+l(N(z) + +... +

y—,00

From this we conclude that possibility (a) proves part (1) in Theorem 3.5, part (2) is proved
by possibilities (b) and (c) and possibility (d) proves part (3) of the theorem. 0

In the next chapter we will see the analogon of Theorem 3.5 for the MIP with a unique
solution.
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Chapter 4

Parametrization of solutions

In this chapter we give the unique solution of the degenerate case and a parametrization is
given of the nondegenerate case; in the latter case there are infinitely many solutions and we
will introduce the Potapov formula for these solutions. In Section 4.2 we will see in which
case an equality sign appears in the MIP.

4.1 Necessary and sufficient conditions for a unique solution

Recall the model (7L, S) as defined in Chapter 2.1. We already mentioned in Corollary 3.3
that the solution of the MIP is uniquely determined if P � 0 and det P = 0. In this case is Co
not trivial, that is, the inner product degenerates on £. We form the factor space 71 = £ and
define the relation S = S. From Lemma 2.1 part (1) we know that this S is selfadjoint. Hence
the oniy minimal selfadjoint extension A of S — which because of Theorem 3.1 corresponds
with a solution of the MIP — is S itself. This leads to the next corollary:

Corollary 4.1 If the Pick matrix P � 0 and det P = 0, then the MIP has a unique solution,
given by:

—
ZZ + (>=+ pn+l+kzk)

N(z) — c—rn IcLk=1 ZkZ — Lk=O (Pn+1+kZ

where 0 is an element in the kernel of P.

Proof In the introduction leading to this corollary, we already mentioned that by Lemma 2.1
and Theorem 3.1 there exists a unique solution of the MIP, corresponding with the selfadjoint
'extension' S.
Now let 0 E ker P. Then = 0 so for an arbitrary constant A:

(e+i — = ê÷1 — A =

We also know by (2.1) in the proof of Lemma 2.1 (with g =

(en+i
—

ran (S — z) = dom (S — z)1
en+rn+i( z) c°

27



and we recall from Section 2.3 that (1,) = (x,y).
Hence by Theorem 3.1, the unique solution is given by the formula

N(z) = =

((c z)' [
e÷m+i(C—z)1en+i

1A

= — e÷i— * —1 I ,e+1)
en+m+i(C—z) j

((Se z)' [
e+m+i(C—z)'en+i 1

= — — * —1 I ,en+i)
en+m+i(C—z) j

= e÷i1P(C — z)' [en+i — —

e÷m+i(C—z)'co

= (1 n so" Sm) {(c — z)' — z)'e+j
(C — z)_1] (4.1)en+1—

en+m+i(C — z)
In (4.1) we have:

0 \

01
• (C —

= [

i
z

1 and• e+m+i(C — z)'e+i =

1 —z

TI —z

I v'n —z Lk=1 —z z

• (C—z)'=
1 k..k=1—z Z Z

k 0 z—kk=1 k—z

1

_____________

3T >Iic—1 —

_____

z k=O zm+l—

Also notice that e+m+i(C — z)' is the last row of (C — z)', so we deduce that

e+m÷i(C — zY'en+i —

e+m+i(C—z)'ço —

1Tr
— 1

____

— VTTh °n+1+k
z k=O zm+l

—1
— _o(Pn+l+kZk2-.ik=1 k—z
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Hence expression (4.1) becomes:

(75i11n8o"Sm)XU
with

Z1 —z

---
o

!V"fl L.._Lil
z L_.4k=1 Zk—Z Z

o 1

1 +
z >k=1 ! — >k=OS0n+1+k2 * — — ±1

-LV' k_v' Pn+1+k
L_k=1 Zk—Z L-ik=O zJk

I ç-n jg — .çsm Pn+1+k
1T Lak=1 Zk—Z L.sk=O zm+

Finally we obtain that

N(z) = (m1 . . . iJJ, so . s) X U =

— — m + z +>1j=O T(Ik1 r—k=O1P"+1+)
— >II=O z E1

— k=1 Zk_Ejo3+1'1)
— Ek1 r—E=o'n+l+k

This is exactly the equation in Corollary 4.1.

Notice that if the IP or the MP has a unique solution, then of course it is also the unique
solution of the MIP. This also follows from the following proposition:

Proposition 4.2 Let P be a nonnegative square matrix of the form

_(A B\B* D)'
where A and D are also square matrices.

If for some vector x 0, Ax = 0, then Bx = 0 (which implies P ( ) = o; hence

det P = 0) and similarly if Dy = 0 for some vector y 0, then By = 0 (which implies

p ( ° )
= 0; hence det P = 0).

Proof If Ax = 0 then for all y and for all A E

0 (P
( ) , ( )) = A((By,x) + (B*x,y)) + (Dy,y).
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If we assume (By, z) + (B*x, y) 0, say it is > 0, then for A -+ —oo (similarly for A — 00 if

it is <0) the above inequality cannot hold.
Hence

(By,z) + (B*x,y) = 0. (4.2)

Now take y = B*x, then equality (4.2) implies that Btx = 0. 0

We will end this section with an example of the unique solution in a particular case, us-
ing the formula in Corollary 4.1.

Example In this example we give a MIP in which Pj > 0 and 1PM > 0, which implies
that the two seperate problems have infinitely many solutions, while the intersection of these
solutions sets contains only one function which is the unique solution of the MIP.
Consider the case where n = 1 and m = 1.

Let
z1 = i
w1=j
so = 2

Si = 1

S2 = 3.

Hence the Pick matrix is: flu
P=( —j 2 1

\ 113
We see directly that

(wi—Yi' =(1)>0,
\ z1 — z1 /

and
Is0 /2 1\

1=1 1>0.\Si S2J \1 3j
We want to obtain that the MIP has a unique solution so we want P � 0 and det P = 0.

Since IP = P there is a unitary matrix U such that

U*PU=D=diag(Ai A2 A3),

where the A, are the eigenvalues of P. It follows that

P and at least one eigenvalue should
be equal to zero.
The eigenvalues are solutions of the equation

det (P — Al) = 0.

We find that
A1 = 0, A2 = 2, A3 = 4.
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Hence IP � 0 and det P = 0, so indeed the combined problem has a unique solution.
Accordiiig to Corollary 4.1 this unique solution of the MIP is given by

-+?Son+2z

__________

N(z)
= — (fl+i + (P2z) = — ( + (P3Z)

(4.3)

Take fço\ f1—3i\
(P21=1 2

\ç03J \—l+iJ
then P(P = 0, so is an element of the kernel of P. We substitute this in (4.3) and we get

—i(1—3i) + 2(—1 + i)
N(z) =

— (2+ (—1 +i)z)
— i(1—3i) +2(—1+i)
—

+ (2+(—1 +i)z)
— i(1—3i)+2(—1+i)(i+z)

1 — 3i + (2 + (—1 + i)z)(i + z)
— —i+1+2(i—1)z

(i — 1)z2 + (1 — i)z + (1 — i)
2z — 1=

— — z —1

Hence, using Corollary 4.1 we find that

N(z)=—_2z—1
1 — 1

, witha=±V',
z —z— 1 z—a+ z—a_ 2 2

should be the unique solution of the MIP for the given data. So let us verify if this solution
satisfies both the moment problem and the interpolation problem (Note that the second
representation of N(z) directly shows that N is a Nevanlinna function):
Assume N(z) = z2_z_1 then

.TI — 2zi—1 — 2i—1 — 21—1 — i—2 2i—1 — —jvZ1j
— z—z—1 — — — —2— Wi,

and
— lim z3(N(z) + ? + ) = — lim (;zIz+zi3 + 2z2 + z) =

y—oo y—,00

— . (_2z44z3+2z4_2z3_2z2+z3_z2_z
— —lim 2_ —

y-4cx, \

= — lim (::) —(—3) = 3 < 2 = 3,
y—oo

so indeed N(z) = — z2_z—1 satisfies the interpolation problem and the moment problem.
Hence it is the unique solution of the MIP
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4.2 Equality in a MIP with unique solution
In the example in the previous section, we found an equality sign in the MP
(— urn z3(N(z) + + 4) = 82). Analogous to what we found in Theorem 3.5, where we

y—+oo -
obtained — for infinitely many solutions — that an equality sign only comes into the MIP if A
is an operator extension of S, we will show in Theorem 4.3 that a MIP with a unique solution
oniy has an equality sign if S in the model is an operator.

Theorem 4.3 Assume the MIP has a unique solution N(z) = ((S — z)'ê+1, e+i), where
S is a self adjoint relation.
Equivalent are:

(1) 82m = — lim =, z2m+l(N(z) +? + + S2rn_1)
y—*

(2) S is an operator.

(3) There exists a E ker P with con+m+1 0 (it is, by scaling, a with con+m÷1 = 1).

Proof Recall the proof of Theorem 3.5. We have

.S2m = IIfl+?fl+iII2 � IIPsn+m+ilI2 = — lim z2m+l(N(z) + + ... +
S2Tfl_1)

(4.4)
y—,00

where P is the projection in It onto dom S. Note dom S is closed as 1-1 is finite dimensional.
The following equivalences are valid:

S is an operator (5(0) = {O})

dom S = fl (since (dom 5)' = 5*(Ø) = 5(0))
ên+m+i dom S (e1,... , ên+m Ii already)

€kerP: en+m+i—EdomS
e keriP: 0 = e+m+i(en+m+i — çü) = 1— S0n+m+1

This implies that (2) and (3) are equivalent. Now we show (1) (2):

S is an operator ê++i E dorn S (seen above)

Psnmi
2 2sn+m+1 = en+m+1

equality in (4.4) : S2m = — lim z2m+(N(z) + .. +
S2rn_l

y-400

0

From Theorem 3.5 and Theorem 4.3 we now deduce the following:

Corollary 4.4 The limit in the MIP attains the maximum value 82m if and only if the solu-
tion N(z) - as defined in Theorem 3.1 — corresponds with either a (selfadjoint) operator or
operator extension (which is minimal), depending on the determinant of P.
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4.3 The Potapov formula: infinitely many solutions
Previously we saw a 1-1 correspondence between solutions N of the MIP and selfadjoint ex-
tensions A of S. In this section we consider the case where P > 0, that is, as we obtained
before, the case where the MIP has infinitely many solutions.
In this case, we can give a more precise description of all solutions N of the MIP, using a
correspondence between these solutions and certain parameters. In order to get this descrip-
tion, we shall apply the description of all u-resolvents of S (see, for example, [KL2]) and
Theorem 3.1.

V.P. Potapov gave an explicit formula for all solutions of the Nevanlinna Pick IP in terms
of a fractional linear transformation. His method was based on the Schwarz Lemma and the
so-called Fundamental Matrix Inequality. We use this formula to obtain a similar formula for
all solutions of the MIP.
To describe this formula, called — how surprising — Potapov formula, first recall the model:

Ii = £, S = Sc and S has defect index (1, 1).

Before we can go on, we need some new theory, concerning u-resolvents and module elements
(see [ADL, pp. 17, 18]):

If W (wjk)k_1 is a 2 x 2 matrix function and T is a Nevanlinna function, T N0 :=
N0 U { x we denote by W(z)T() the fractional linear transform

wji(z)T(z) + wi2(z)
W(z)T,' =

w2i(z)T(z) + W22(Z)

For T(z) oo this expression reduces to w11(z)/w21(z).
Given a closed symmetric operator S with defect index (1,1) in a Hubert space 71, an element

U 9-1 is called a module for 5 if the set r,1(S) of all z C for which

7-1 = ran (S — z) -- span {u} = ran (S — z*) span {u}, direct sum in 1-1,

is not empty. Then each element f E 7-1 can be decomposed as

f = f + .Xti,

where f belongs to ran (S — z) and is a complex number. We denote by P(z) and Q(z) the

linear mappings from the Hilbert space 1-1 to the (one-dimensional Hilbert) space C defined
by

P(z)f = A, Q(z)f = ((t —z)'f,tj, f E 9-1.

Here is an arbitrary canonical selfadjoint extension of S. Since f,. ran (S — z), Q(z)f is

independent of the special choice of4. The functionals P(z) and Q(z) are holomorphic at all

points z rn(S) of regular type of S. Explicit formulas for P and Q can be found in [KL2,
pp. 404, 405, formulas (3.3)—(3.5)].

If A is a selfadjoint extension of S in some Hubert space 9-1 3 7-1, then

((A — z)'u,tL)ñ
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is called a u-resolvent of S. The set of all u-resolvents of S can be parametrized over the
Nevanlinna functions with parametrization matrix W(z), a so-called u-resolvent matrix.
That is, the relation

((A — z)'u,u) = W(z)T()

establishes a bijective correspondence between all u-resol vents of S and all T E N0. If r (S)
contains a real point a, then the parametrization matrix W(z) can be chosen as the 2 x 2
matrix function

Wa(z) =I—(z—a) ( ) (Q(a) —P(a)t )J, withJ= ( ).
The mappings P(a)* and Q(a)* are the adjoints of P(a) and Q(a) and map C to 'H, where C
is equipped with the usual inner product.

We now apply these formulas above to the operator S = S in our model.
Since

7L=L=ran(S—z)-span{e+i}
we obtain that the set

r÷i(S) =C\{zi,i,...

is not empty. Hence e+i is a module element.
For each element f e 'H we have:

I = (C — z)x + c1e E ran (S — z) 4-span {e+i}, (4.5)

where C cj = P(z)f and x E dom 5, so e,+m+lx = 0.

From (4.5) it follows that

x=(C—z)'f—cj(C—z'e1, ,,0. (4.6)

Now we calculate the formulas for P and Q in our model. Since 0 = e+m+1x, we deduce
from (4.6) that

e+m+i(C — z)1f = c1 e+m+i(C — z)1en+i = C1

so

P(z)f = cj = zm+le+m+i(C — z)'f. (4.7)

In the formula for Q(z) we have to use the first term in the direct sum decomposition of I
as defined in (4.5), it is the part which is an element of ran (S — z). We rewrite the above
decomposition (4.5) of f:

(C — z)x = f — cje, = f — (P(z)f)e+i,

and substitute this in the formula for Q(z); Let be an arbitrary canonical selfadjoint
extension of S. Recall that f — (P(z)f)e÷i ran (S — z) = dom (S — z)' so

( —z)'(f — (P(z)f)en÷i) = (S — z)'(f — (P(z)f)e+i).
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We obtain for Q(z):

Q(z)f = (( z)(f — (P(z)f)e+i),ei),j =
= c11P' ((C — z)'f — cj(C —

— z)'f
is a matrix

= [e+iP + zme+iP (C —z)'en+ie+m+i] (C — z)'f

'0

e+iP — zm+l (i SO Sm) e+m+1 (C —

= [e÷1JP — p(z)e+m+i] (C — z)'f, (4.8)

where p(z) is the same polynomial as defined in Section 2.1: p(z) = 50zm + s1zm +. + Sm.

Recall that the mappings P(z)* and Q(z)* — the adjoints of P(z) and Q(z) — map C to
IL, where C is equipped with the usual inner product, (x, y) = yx.
Since

= = *pp_i =

it follows that, if P(z) = , then P(z)t = and analogous for Q(z).
From (4.7) and (4.8) we have

P(z) = _zm+le+m+i(C — z)',
(= (0 ...0 _zm-l-l)(C_zy)

Q(z) = [e+i1F—p(z)e+m+i] (C — z),
(=[n+lstrowofp_(0 ...0p(z))](C—z')

so (Note: P = F)
P(z)* = _m+1 liD—i (C —

(= lP(C — z)_* (0 .. .0 — m+i)t)
Q(z)* = P' (C — z)_* [P e+i —

(=P'(C—zY [n+Ptcolumnofp_(0 •..op(2))t]).

From this it follows that

( Q(z) \ — ( 11)1 W SO Sm_i Sm — p(z) \ C
—1

-P(z) ) - 0 ... 0 0 0 m+1 ( - z)

35



and / Wi 0 '

Wn 0
(Q(z)* — P(z)* ) = — s 0

5m—1 0

\ Sm —P() 2m+1 /
If we set

L' '— " in So Sm_i 8m —p(z)
—

0 •.. 0 0 0 zm )
— Zj

then
Wi 0

Wn 0
IP_l(C_z)_* s0 0 =dP_lL(z)*.

Sm—i 0

SmP(Z) /

Hence

Wa(z) := I_(z_a)( _P(a)*)J

= I — (z — a)L(z)P_lL(a)*J. (49)

Now we try to find an alternative form for L(z).
Denote L(z) = (L)1, , 1 <i <2, 1 <j <n+m+1, so L1, is the element ofL on row i
and in column j.
We recall the matrix (C — z) in (2) of the proof of Lemma 2.1 and we use the equation

(4.10)

to obtain the first row of L(z):

L11 = (iiii W, SO Sm_i 5m — p(z)) x 1 column of (C —
— —i'-- + —'--- v" —- - (410) _
— Zj—Z Z1—Z L.jO zi+' zm+l I—z

= (iJi n S Sm_i Sm — p(z)) x 2nd column of (C —

— + —'-- ç'm — (.°) W2
— Z2Z Z2Z L..lj=0 z+1 zm Z2Z

L1 = (Wi 11n o 5m—i Sm — p(z)) flth column of (C —

— + V'tm 8i — p(z) i (4.10)
— —z —z L..j=O z+' Zm+l —
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= (iiii iYn o 8m—1 sm — p(z)) x n+1 column of (C — z)'
vm +

(4.10)
= — L_Ij=O Zm =

= (2i iiJn So Sm—i 8m — p(z)) x n+2' column of (C — z)_i

_v,m z" S0,

Li,n+m_k+2 = (i ii- S0 Sm_i Sm — p(z)) x n+rth column of (C — z)1
Sm_i — 5m—k+i (4.iO)xz'

(= L) = — — —.. — +••• + Sm_k,

= (J1 fl S0 Sm_i 5m — p(z)) x n+m+10t column of (C — z)—'

= p(z)—sm (4.1O)xzm s0zm_i + 31zm_2 +... + Sm_i.

For the second row of L(z) we directly obtain:

Li,n+m+i

zm+l)

zm)

So the desired alternative form for L(z) is:

_ii:a_
I ii—Z n—Z

L(z)= I
_L_ —1 —zz1_z zn—z

0 So SOZ+St

x n+2tu1 column of (C — z)'

x n+m415t column of (C — z)'

L1 ,÷ i

Li,+2

L2i 0=°
— 1—Z '

zm+i)

L2

x 15t column of (C — z)'

=(0.•0
— ,,_z

L2,+i

X flth column of (C — z)'

zm+l)
—1,

x n+1 column of (C — z)'

0=(0...
= —z,

L2,n+m+ 1
= _m

0

—z2

80zm_l + 81zm_2 + + Sm—i

I

_zm

0

— I 0 S 8m—1

•.. 1—10•-• 0

0 n —z

0

0 0

0•• 0

z1
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(Zt — 0

— ( W W 0 S Sm_i

___________ ____________

1—10... 0)
0 (I—zSfl'

where Z and Sr are the matrices as defined in Section 2.1.
(To verify the latter expression for the bottom-right block of the second matrix, just multiply
it by the previous form and deduce that this product equals the identity matrix).

Using this form of L(z), we can also obtain an expression for the adjoint of L(a), which
also appears in equation (4.9) for Wa(z). Note that — according to the theory — wa is defined
for a real number a, so we can use for L(a)* in equation (4.9), that a =

*

(Z*_a)_i 0

L' —

_________ __________

( i u5 0 SO Sm—i —110••. 0 )
0 (I_aSfl_i

/ Wi 1

(Z—a)' 0 w 1
a

_________ ___________

0 —1

0 (I—aSr)' 80 0

Sm_i 0 /

Since there are infinitely many real numbers a e re1 (S) = C \ {z1, ii,... , z,, ,, 0}, the
parametrization matrix W(z), which is used (see the theory above) in the fractional linear
transform

I wii(Z)T(z) + Wi2(Z)Wz)T() =
W21(Z)T(Z) + w22(z)

can now — according to the theory — be chosen as Wa(z) for an arbitrary a E (S) r IR.
Hence W(z) is given by the equation in (4.9).

If we now substitute the equations for L(z) and L(a)* — as computed above — in equation
(4.9), we deduce the following formula for the parametrization matrix W(z):
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(Z* — 0

W(z)=I_(z_a)( ::: _?
so Sm_i)

0 (I—zS)'

/ wi 1

(Z—a)' 0

>< i
( ). (4.11)

0 (I—aS)1 0

Sm_i 0 /

Note that W(z) is a 2 x 2 matrix, where all four terms are dependent on z, so that is why we
denote it by:

W(z) = ( wii(z) W12(Z)
w2i(z) w22(z)

Finally we recall the last part of the theory at the beginning of this section and use again
that c,,1 is a module element.
From this we obtain that if A is a selfadjoint extension of S, then the relation

((A — z)1e+i,e+i) = W(z)T(z)

establishes a 1-1 correspondence between all e+i-resolvents of S and all T E No.
From Theorem 3.1 we also know that there is 1-1 correspondence between all solutions N(z)
of the MIP and all minimal selfadjoint extensions A of S, via the formula

N(z) = ((A —

but we assumed in this section that P> 0, so ker P = {0}, so we have ê7 = e+i. Hence

((A — Z)_iên+l,ên+l) ((A —z)'e+i,e+i).

The combination of these two correspondences above leads to the following theorem:

Theorem 4.5 Assume P> 0 and let the matrix W(z) = wii(z) wi2(z)
be defined by

\ W(Z) w22(z) /
equation (4.11) with arbitrary a C\{zi,i,... flR
Then,

- _ wii(z)T(z)+w12(z)
N(z) = ((A — z) e+i,e+i) = W(z)T()

= w2i(z)T(z) +w22(z)

establishes a 1-1 correspondence between all solutions N(z) of the MIP and parameters
T(z) E N0 = N0 U {oc}.
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Theorem 4.5 actually tells us that if P > 0, we can calculate the matrix W(z) using (4.11)
and then take an arbitrary Nevanlinna function T(z) E No to get a solution of the MIP, which
then is given by

N' )
— wii(z)T(z) +W12(Z)
— w21(z)T(z) +w22(z)

This formula is called the Potapov formula for solutions of the MIP.
(Recall from the theory that if T(z) oo the solution reduces to N(z) = wii(z)/w21(z) ).

We also see from this theorem that if P > 0, indeed there are infinitely many solutions
of the MIP, since there are infinitely many Nevanlinna functions (because a and 8 in the
Herglotz integral representation of such a function are arbitrary real, respectively positive
numbers).
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Chapter 5

Conclusion

At the end of this thesis we will give a brief summary of the results we have found in the
previous chapters.

If we arc interested in solutions of the combined moment and interpolation problem (MIP),
first of all we check if there exist solutions anyway.
For this we get our information from the information matrix IP, so we produce that matrix,
called Pick matrix, using the given data z1, . . . Zn and w1,. . . w and Se,... , sm

/

____

W1Wn Sy_ + + WiZr '

W2 Sm_1+"+W24.

lflIWl ... Sm_l+"+WnZ
Wn S0 Sm

S0+W1Z1 ... 5O+WnZn Si Sm+i

\ Sm_I + WiZ Sm_i +• + WZ Sm S2m I

There exists at least one solution of the MIP if and only if P � 0 (that is (IPx, x) � 0 Vx).
If P � 0 we continue by defining a model (fl, S):

:= = cn+m+l \ ker P with inner product (, = (x, y)i:
= and

S := S where Sx = Cx Vx E dom S = {x E £Ie+m+ix = 0}, with C the matrix:

0 0

fZ 0\ 0 0 0

1

1 1 0

\o Sri 1
0

1 0,
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If P � 0 and det P = 0, then the MIP has a unique solution, given by:

N' )—
— lk=ir_z)lk=Ofl+1+kZ

with 0 an element in the kernel of IF.

If IF � 0 and det IF 0, then the MIP has infinitely many solutions. The general form
of a solution is given by N(z) = ((A — z)'ên+i,ên+i), where A is a minimal selfadjoint
extension of S in defined model above.
A form of such a solution by means of the given data is given by the Potapov formula:

N(z) = wii(z)T(z) +W12(Z) with
w21(z)T(z) + w22(z)

• W(z) = ( w11(z) w12(z) =
\. w21(z) w22(z)

(Z—z)' 0

=I_(z_a)(1 ::: _..? ::: )
0 (I—zS)

/ Vwi 1

(Z—a) 0

______ ______

- (? —b).
0 (I—aSr)' 80

\Sm_i 0 /

Here a is a real number in the set

re+i(S)={zECIen+i ran (S—z)Uran (S—)},

and Z and Sr are the matrices:

0 0

fzi o\ 1 0 0

Z=diag(zi,... ,z)= •.. ; Sr= 0 1 0

Zn) ... ...0 0 10

• T is a Nevanlinna function: T(z) E N0 = No U {oo}.
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This actually leads to one of the most beautiful resluts in this thesis:

The MIP has either no or a unique or infinitely many solutions.

So it is NOT possible that the MIP has, for example, 3 or 5 or 10 solutions!!

We also saw an example in Section 4.1, in which the IP and MP both have infinitely many
solutions, but the combined problem MIP has a unique solution.

Another interesting result is in which case the limit in the MP part of the MIP equals 82m
and in which case a strict inequality appears:

2m = _lim z2m+l(N(z)+ +•• + S2rn_1)

IfdetP=0 :

S in the model is an operator. A is an operator extension of S.
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