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1 Introduction

1.1 The model: the driven Lorenz-84 system

The long-term behaviour of the weather is unpredictable. To get a better understanding it
is important to know which scenarios cause the unpredictability. Modern computer models,
which for example KNMI uses for the daily weather prediction, are so complicated (high
dimension, many parameters) that it is impossible to find the cause of unpredictability. That
is why it is suggested to deduce a simplified model with qualitatively similar properties.
Then geometric methods from the theory of dynamical systems can be used to investigate the
appearing routes to chaos, chaos being the qualitative equivalent of the above unpredictability.
In 1984 Lorenz [21] introduced an autonomous low-order model of the large scale atmospheric
circulation in the Northern Hemisphere, obtained by a suitable truncation of the infinite
dimensional Navier-Stokes equations, the so called geostrophic equations. It is a climate
system with mainly large-scale effects both in space and in time. This 3-dimensional system
of nonlinear ordinary differential equations is given by

X = -Y?-2?2_aX +aF
Y = XY-bXZ-Y+G
Z = bXY+XZ-2

where the independent variable t represents time. The variable X represents the strength of a
large-scale westerly-wind current zonal flow. This strength is proportional to the meridional
temperature gradient. The variables Y and Z represent respectively the amplitudes of the
cosine and sine phases of the first order mode in a Fourier-expansion of large scale superposed
waves. The parameter F represents a forcing of the westerly current due to the north-
south temperature gradient, while G represents a forcing by the continent-ocean temperature
contrast. The dynamics of this system is thoroughly investigated by Anastassiades [1], Broer,
Homan, Hoveijn and Krauskopf [4], Homan [16] and Shil'nikov et al. [32] with F and G as
control parameters. However, the north-south temperature gradient, F, is smaller in summer
than in winter and also the continent-ocean temperature contrast, G, varies. To study these
seasonal effects we replace F and G by periodic parameters

F = Fy(1 + ecoswt) and G = Gp(1 + € cos wt)

so turning Lorenz-84 into a parametrically forced system referred to as the driven Lorenz-84
system.

X -Y? - Z? —aX + aFy(1 + e cos wt)
Y = XY —bXZ-Y +Go(l + ecoswt)
Z = bXY+XZ-2

} 1

a = } and b = 4 are set as constants, see Lorenz [21]. By putting 7' = 2% this 4-dimensional
system is T-periodic in ¢ where the time unit is estimated to be five days. This system is
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Figure 1: Driven Lorenz-84 system: Sketch of the Hopf curve H, with emerging Arnol’d
resonance tongues of the 3D-Poincaré map fr, o for € # 0 in the (Fy, Go)-plane.

mainly investigated with control parameters « := (Fy, Go) for various fixed values of T and €.
But sometimes also ¢ is varied. This driven system can be seen as a simplification of a coupled
atmospheric-oceanic model as was investigated by Zondervan [33] and will be investigated in
current and future research of the KNMI in cooperation with the RUU.

1.2 Setting of the problem

The main interest is how complicated, chaotic phenomena in the dynamics of driven Lorenz-84
are generated out of simple phenomena. Therefore bifurcations of the limit sets are consid-
ered, upon variation of the parameters a = (Fp, Go). Especially the influence of forcing on
the generation of chaotic phenomena is investigated. The system with € = 0, the Lorenz-84
system, is the starting-point for the investigations of the driven system (¢ # 0). These sys-
tems are compared with each other in a numerical perturbation analysis.

From a meteorological point of view, the periods T' = 73 and T = 0.2 are most relevant. Since
the time unit is estimated to be five days, these periods correspond respectively to one year
and one day.

In our method of study we consider a 3-dimensional Poincaré map frq of the 4-dimensional
system. The definition of this Poincaré map is given in section 2.1. Our investigations are
guided by results of Lorenz-84 which are presented in section 3. Theoretical expectations for
the dynamics of the driven Lorenz-84 system are made on the basis of these results, see sec-
tion 4. Of main interest are bifurcations or cascades of bifurcations, especially those leading
to chaotic behaviour. There are several of such routes to chaos. For example accumulation
of tongue boundaries or other mechanisms which destroy an invariant circle. The latter are
found inside Arnol’d tongues. Thus we concentrate on their boundaries and special points
thereof. Examples are cusps and dovetail bifurcations, see Broer, Simé and Tatjer [7]. Arnol'd
resonance tongues emerge from a curve of Hopf bifurcations of fixed points of fr,q, see figure
1 for a sketch. For e small this curve is expected to be near a corresponding Hopf curve of
equilibria of Lorenz-84.




(b) (Fo,Go) = (13.3,7.9)
Quasi-periodic behaviour on
circle repellor

(a) (Fo,Go) k| (6, 79)
Fixed point repellor

(c) (Fo,Go) = (13.5,7.9)
Period 7 orbit on circle
repellor

(d) (Fo,Go) = (14.5,7.3)
Chaotic repellor

Figure 2: Driven Lorenz-84 system with T = 0.5 and € = 0.1: Projection of repellors of
3-dimensional Poincaré map f, , with different values of @ = (Fp,Gyp) onto (Y, Z)-plane of
seize (—2.5,2.5) x (-1, 3).

These theoretical expectations determine the direction of our numerical explorations. Attrac-
tors and repellors of the Poincaré map fr. . are found by numerical investigation using the
software package DsTool [14]. A numerical bifurcation analysis of the 4-dimensional vector
field is done with AUTO [11]. However the detected bifurcations are presented as bifurcations
of the 3-dimensional map fr.,. The results of these explorations are compared with the
theoretical expectations. Finally conclusions and new expectations are given.

1.3 Summary of the results

The driven Lorenz-84 system is numerically investigated for the periods T = 73 (year rhythm),
T = 0.2 (day rhythm) and T = 0.5. For Fy and Gy small the dynamics is simple and the only
limit sets of the Poincaré map fr., are fixed points. If Gy = 0 a simple analytic solution
exists on the Fp-axis: (X(t),Y(t),Z(t)) = (Fo(l + € coswt),0,0) corresponding to the fixed
point (X,Y,Z) = (Fo(1 + ¢),0,0) of the Poincaré map fr, (0 The influence of forcing
varies for different periods. Figure 2 illustrates of the appearance of all sorts of dynamics




in the driven Lorenz-84 system. Arnol’d resonance tongues are found in the (Fp, Gp)-plane
at the right hand side of the Hopf curve, H.. Their boundaries are continued with help of
AUTO [11] in the (Fp, Go)-plane for fixed values of € and in the (Go,€)-plane for fixed values
of Fy. These tongues agree with the theoretical expectations in the neighbourhood of H, as ¢
is small. Also codimension 2 and 3 bifurcations, for example cusps and dovetail bifurcations
are found on the tongue boundaries. Furthermore a route to chaos by overlapping of Arnol’d
resonance tongues is found. Chaotic repellors appear around a broken-up circle repellor. The
results of the numerical investigation of the driven system with T = (0.5 are presented in
section 7.

The driven Lorenz-84 system with year rhythm T = 73 appears hard to investigate with AUTO
[11] and DsTool [14]. This is due to numerical problems as the integration time to get the
next iterate of the Poincaré map is quite large. However we will present some results C. Simo
obtained by using an in this case more accurate integration routine. These results indicate
the existence of very narrow Arnol’d resonance tongues emerging at the right hand side of the
Hopf curve H,. These tongues structure a large area of the parameter plane, as Gy is relative
small compared to Fy. If we increase the value of G chaotic behaviour is seen. However at a
certain value of Gy (depending on Fp) the dynamics becomes simpler again. First the circle
attractor reappears and for Gy larger there is a fixed point attractor, which persists for Gg
even larger. These results are discussed in section 5.

In a numerical investigation with AUTO [11] and DsTool [14] of the driven Lorenz-84 system
with day rhythm, T = 0.2, no qualitative differences are detected with Lorenz-84. for example
Arnol’d resonance tongues appear to be so narrow that numerically no frequency locking is
found, see section 6.

The first exploration of the driven Lorenz-84 system shows that the system has rich and
complicated dynamics. The results suggest further studies in different areas, most fruitful
will be a mixture of theoretical and numerical studies, see Broer, Simo and Tatjer [7]. The
suggestions are listed below.

1. Unfolding of the codimension 2 and 3 bifurcations on the Arnol’d tongue boundaries,
see for example the results obtained for the fattened Arnol’d family by Broer, Simé and
Tatjer [7].

2. Unfolding of the codimension 3 cusp saddle-node bifurcation, as detected at the bound-
aries of the Arnol'd tongue with p = % in the driven Lorenz-84 system with T = 0.5,
see figure 30.

3. Unfolding of the codimension 2 period-doubling saddle-node bifurcation, as detected at
on the boundaries of the Arnol’d tongue with p = % in the driven Lorenz-84 system
with T = 0.5, see figure 36.

4. Looking for 3D chaotic attractors, their theory is in progress by Tatjer.

Finally it is needed to get a derivation of the Lorenz-84 model from the Navier-Stokes equa-
tions for a better meteorological interpretation of the results. Saltzman did some work on
this subject, see [31].




Figure 3: Poincaré or stroboscopic map P in the case of a 3D T-periodic vector field X in
3D.

2 Theory

In this section some theory of dynamical systems is reviewed as far as it is used to investigate
the driven Lorenz-84 system. First, the Poincaré map is explained and defined for the driven
Lorenz-84 system. Second the relation between this map and the original system is given.
Third a brief overview is presented of bifurcations of maps. The rotation number p of an
invariant circle is defined and the phenomenon Arnol’d tongue is introduced. Finally some
routes to chaos are discussed.

2.1 The Poincaré map

The driven Lorenz-84 system is a 4 dimensional vector field, X, which is T-periodic in time. To
analyze the system we want to decrease the dimension of the system but not lose information.
Therefore we make use of the time-periodicity of X and define the following cross section of
dimension 3

L= {(z,t) e R® x R/TZ | t =0 mod(TZ)} ~ R®.

The flow X;(z) of X is everywhere transverse to £, because t = 1 > 0, Vt. So we define the
following (global) Poincaré (return) map on ¥ by

fT.e,a DRI ) fT,e,a(z) = XT(‘T),

with X7 (z) the “T-flow” of the vector field starting at the point z € £.

This Poincaré (return) map is also called a stroboscopic map. See figure 3 for a 2 dimensional
Poincaré map in the case of a 3 dimensional vector field that is a T-periodic function of ¢.
Every attractor, respectively repellor of the driven Lorenz-84 system has a corresponding
attractor, repellor of fr., in . Fixed points of fr., correspond to T-periodic solutions
of the system, while period k-points define sub harmonics of period kT. Invariant circles
of frea correspond to invariant 2-tori (possibly carrying quasi-periodic solutions), while
irregular invariant sets correspond to chaotic oscillations.



2.2 Bifurcations

In this subsection we give a brief overview of some bifurcations of a fixed point z, of the map
fo : R* — R™. As parameters are varied changes may occur in the qualitative structure of
the limit sets of the map f,. These changes are called bifurcations. The codimension is the
number of parameters necessary to encounter (and describe) such a bifurcation in a family
of maps. Bifurcations that can be detected by looking at any small neighbourhood of a fixed
point are called local bifurcations , the others are called global.

The stable and unstable invariant manifolds of the fixed point z, are defined as

We(ze) = {z € R* : fE(2) > Ta,k — 00},
respectively
Wi¥(z,) = {z € R* : f¥(z) - 2o,k > —o0}.

These manifolds play an important role in global bifurcations.

2.2.1 Local bifurcations
We define
B, = Dzafa(za)

as the linearisation of f, around a fixed point z,. A local bifurcation of zo occurs if one or
more eigenvalues of B, cross the unit circle. A bifurcation is called super-critical if the fixed
point z, is weakly stable. A bifurcation is called sub-critical if the fixed point z, is weakly
unstable.

We only describe the super-critical bifurcations. For the (corresponding) sub critical cases we
refer to Guckenheimer and Holmes [13] and Kuznetsov [19].

The eigenvectors corresponding to the eigenvalues that cross the unit circle span the center
manifold W¢(z,). The bifurcations are discussed in this center manifold.

For definitions of technical terms (weakly stable, hyperbolicity, center manifold), see Guck-
enheimer and Holmes [13] and Kuznetsov [19].

1. Codimension 1 bifurcations for maps

(a) Saddle-node bifurcation
A saddle-node bifurcation, SN, occurs if B, has a simple real eigenvalue p; = 1.
A fixed point of saddle-type and a stable fixed point collide and disappear. The
center manifold has dimension 1. See figure 4 for this bifurcation.

(b) Period-doubling bifurcation
A period-doubling bifurcation, PD, occurs if B, has a simple real eigenvalue uy =
—1. A stable period p orbit becomes unstable and a stable period 2p orbit appears.
The center manifold has dimension 1. See figure 5 for this bifurcation.

(c) Hopf bifurcation for maps
A Hopf bifurcation, H, occurs if B, has a simple pair of complex conjugate eigenval-
ues on the unit circle, py2 = eX2mY 0 < ¢ < %, with ,u’f,2 # 1, for k € {1,2,3,4}.
A stable fixed point becomes unstable and an attracting invariant circle appears.
The center manifold has dimension 2. See figure 6 for this bifurcation. For
k € {1,2,3,4} codimension 2 bifurcations occur, see below.
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Figure 4: Saddle-node bifurcation at @ = 0, the variable z parameterizes the 1D center
manifold, Kuznetsov [19].
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Figure 5: Period doubling bifurcation at @ = 0, the variable z parameterizes the 1D center
manifold, Kuznetsov [19].

a<0 a=0 a>0

Figure 6: Hopf bifurcation for maps at a = 0, the variables z; and z, parameterize the 2D
center manifold, Kuznetsov {19].
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Figure 7: Cusp bifurcation, Broer, Simé and Tatjer (7).

2. Codimension 2 bifurcations for maps

(a) Cusp bifurcation
A cusp bifurcation, C, is a degenerate saddle-node bifurcation. In the parameter
plane the cusp generically is a point where two saddle-node curves meet tangen-
tially, see figure 7. The center manifold has dimension 1.

(b) Hopf-saddle-node bifurcation for maps

A Hopf-saddle-node bifurcation, HSN, occurs if B, has a simple pair of complex
conjugate eigenvalues on the unit circle, u12 = e*?™%, 0 <1 < 3, with pf, # 1,
for k € {1,2,3,4} and another eigenvalue y3 = 1. In a parameter plane this is
a point where a curve of saddle-node bifurcations is tangent to a curve of Hopf
bifurcations. For the unfolding of this bifurcation in the case of vector fields see
Guckenheimer and Holmes [13] and Kuznetsov {19]. The center manifold has di-
mension 3.

(c) Strong resonances
An 1 : k strong resonance, with k € {1,2,3,4}, occurs if B, has a simple pair of
complex conjugate eigenvalues on the unit circle, ;5 = e*?™% 0 < ¢ < 1 and
u’fg = 1. The Hopf curve is destroyed at these points. The center manifold has
dimension 2. The first strong resonance, k = 1, is also called a Bogdanov-Takens
bifurcation, BT. For more information about these bifurcations in general, see
Arnol'd [2], Kuznetsov [19] and Guckenheimer and Holmes {13]. For information
about the BT bifurcation in particular, see Broer et al. [6]. For information about

1:4 resonance in particular, see Krauskopf [17].

3. Codimension 3 bifurcations for maps

(a) Dovetail bifurcation
A dovetail bifurcation is a degenerate cusp bifurcation. Such as the cusp bifurcation
is a degenerated saddle-node bifurcation. See figure 8 for a dovetail area. See Broer,
Sim6 and Tatjer 7] for more details.

Remark
Not only fixed points can undergo bifurcation, also invariant circles can. For example an
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Figure 8: Dovetail area, Broer, Simé and Tatjer [7].

invariant circle S can undergo a period doubling bifurcation thereby creating an invariant
circle 25 of double length. These (special) bifurcations are called quasi-periodic bifurcations,
see for more information Broer, Huitema and Sevryuk [5].

2.2.2 Global bifurcations

Let z9, x; and 9 be a fixed points of saddle-type of the map f,. The point z is called
homoclinic to xg if

f*(z) = g, t > *o0.
The point z is called heteroclinic to x; and x5 if
) >z, t— 00 and  f*(z) 9 z9, t— —o00.

We only discuss homoclinic (tangency) bifurcations. For heteroclinic (tangency) bifurcations
we refer to Guckenheimer and Holmes [13] and Kuznetsov [19)].

1. Homoclinic (tangency) bifurcation

Let = be a point that is homoclinic to the fixed point zg of saddle type. In z the invariant
manifolds W*(zo) and W*(xz¢) generically intersect transversally. The intersection at
implies an infinite number of intersections of the manifolds at the points f*)(z), n € Z,
see figure 9 (left) and also figure 14 (right). Such a structure implies the presence of
an infinite number of (high) periodic orbits and also chaotic orbits near this homoclinic
orbit, see sub-subsection 2.5.2. However at a certain parameter value, say o = 0,
the invariant manifolds can become tangent and after this no longer intersect. This
bifurcation involves an infinite number of SN and PD bifurcations at which the periodic
and chaotic orbits will disappear. The homoclinic tangency bifurcation is illustrated in
figure 9.

2.3 Rotation number

The rotation number is defined for an orbit of a map f on an invariant circle S. Mostly the
rotation number of f : § — S is defined by

(k) (4) —
e L IO =6

a 27 k—oo k i
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a<0 a=0 a>0

Figure 9: Homoclinic tangency bifurcation at a = 0, Kuznetsov {19].
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Figure 10: Unfolding around a (p,3) resonance point on the Hopf curve: an Arnol’d tongue.

with ¢ € S. The role of the rotation number is clarified by the following lemma:

Lemma 1 The rotation number of the map f : S +— S 1is rational, p = g, if and only if f
has a (p, q)-periodic orbit.

Remark
For practical purpose the rotation number of an invariant circle of the map fr , is approxi-
mated by putting
T

" Pro
With T the period of the forcing and Fr,) the period of the limit cycle at the right hand side
of the Hopf curve, H, in the (F,G)-plane of the autonomous case, see subsection 3.2. This
is in practice a good approximation for ¢ < 1. The Hopf curve in the (Fp, Go)-plane of the
map fTe,a, with € small, is expected to be close to H of the autonomous case. Furthermore,
close to the curves in the parameter plane where the autonomous system has period RT we
expect points where the map fr.  has rotation number R.

2.4 Arnol’d tongues

We consider the (Poincaré) map, f, : R* — R" with a € R? and n > 2. Assume that there
is a curve of super-critical ! Hopf bifurcations in the parameter plane. When crossing such

!The sub-critical case is similar, just change attracting by repelling.
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Figure 11: 3 dimensional Arnol’d tongue in the (Fy, Gy, €)-parameter space.

a curve transversally, an invariant circle will appear. The dynamics on such a circle depends
strongly on the place of crossing the Hopf curve.

At points on the Hopf curve where the rotation number p = g with p,g € Z but ¢ #1,2,3,4
narrow parameter regions emerge where the dynamics on the attracting invariant circle is
periodic, see figure 10 2. Such a region is called an Arnol’d resonance tongue. For parameter
values inside a tongue a period-q attractor and a period-g orbit of saddle-type exist on the
circle. These orbits persist under small parameter variations, so the tongue is open. The
rotation number is rational and constant inside a tongue. The tongues are bordered by two
curves of saddle-node bifurcations, SN(?) | where the period-g attractor and the period-q orbit
of saddle-type collide and disappear through a saddle-node bifurcation. Outside the tongues
the dynamics is quasi-periodic. p is irrational and so an orbit fills up the invariant circle
densely, e.g. see Devaney [10}], §1.3, Theorem 3.13.

The phenomenon of a periodic orbit on an invariant circle is also called frequency locking.

In the case of 3 parameters, a 3 dimensional Arnol’d tongue may exist in the parameter space.
Intersections between this 3 dimensional tongue and appropriate planes give the “usual” (2
dimensional) Arnol’d tongue. It is expected that in the (Fp, Go,€) parameter space of the
map fr.q the width w, of the 3 dimensional Arnol'd tongues with rotation number p = g at
distance d of a relevant Hopf bifurcation plane behaves like

we(d) ~ dic(e)

with 0 < € € 1 and ¢(¢) = O(e*) for all k, i.e. ¢(¢) is smaller than any polynomial in €.

On basis of this estimate a schematic view of a 3 dimensional Arnol’d tongue in parameter
space is made, see figure 11. Furthermore the estimate expresses the following:

1. The smaller the denominator of the rotation number the larger the Arnol’d tongue. So
numerical investigations will be concentrated first on tongues with g = 5.

2. For € < 1 also the larger tongues remain small in the neighbourhood of the Hopf curve.

*Actually g = 3 gives a strong resonance but this value is chosen to make figure 10 more clear.
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How the width of the Arnol’d tongues depends on the period of forcing T is not known.
However when T is about as big as the characteristic periods of the autonomous Lorenz-84
system the most influence of T is expected.

2.5 Routes to chaos

In this section several routes to chaos which may occur in the map f, : R* — R" with
a € R? and n > 2 are briefly discussed. In the first sub-subsection we concentrate on routes
to chaos via the destruction of an invariant circle inside Arnol'd tongues. In the following
sub-subsection the period doubling route is presented.

2.5.1 Destruction of the invariant circle

For parameter values inside the Arnol’d tongue the invariant circle may lose its smoothness,
due to the lack of normal hyperbolicity. An invariant circle is called normal hyperbolic 3 if
the attraction of nearby orbits to the invariant circle is stronger than the attraction of points
on the invariant circle.

In general an invariant circle, S, becomes less smooth at further distance of the Hopf curve
and finally breaks up. When S is destroyed it can turn into an irregular invariant set near a
homoclinic structure formed by the intersection of the stable and unstable manifolds of the
periodic orbit of saddle-points on S. The invariant set of this map plays the same role as the
closed invariant Cantor’ set of the Horseshoe map 4. So in this invariant set are located:

1. A countable infinite number of (high) periodic orbits of saddle type,

2. an uncountable set of bounded non periodic (chaotic) orbits, which lay dense in the
invariant set.

This irregular set can be in a small neighbourhood of the saddle point giving occurrence to
small Hénon like strange attractors, see Palis and Takens [25]. But it is also possible that
the irregular set is draped around the former invariant circle. Then “large” chaotic attractors
appear which are also called Viana attractors, see Broer, Simé and Tatjer [7] and references
therein. The chaotic attractor is the closure of the unstable manifold of a saddle point, just
as the Hénon attractor is, see figure 12.

Some ways in which an invariant circle may lose its smoothness are given below.

1. Changing of the stability of a fixed or periodic point on the invariant circle, S.

(a) The periodic point z, on S can turn from a node into a focus. That is two real
eigenvalues, p; 2, become complex conjugate. In this way the circle would only be
a continuous curve. This change is illustrated in figure 13.

(b) The periodic point z, on S undergoes a period-doubling or a Hopf bifurcation, if
n > 3, thereby changes its stability. See sub-subsection 2.2.1 for these bifurcations.

2. The periodic point z, on S undergoes a homoclinic tangency bifurcation. This hap-
pens mostly in the neighbourhood of tongue boundaries. See sub-subsection 2.2.2 for
this bifurcation. In figure 14 (left) is an horseshoe in a map with homoclinic points.

3See Broer, Simé and Tatjer (7] §2.2 for a mathematical definition.
4For more information about the Horse shoe map, see chapter 2 of B. Braaksma in [9).
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Figure 12: The Hénon attractor is the closure of the unstable manifold of one of his saddle
points. H = W¥(z,), Ruelle [30].

Figure 13: The invariant circle loses normal hyperbolicity, the node z, becomes a focus.

Figure 14: Horseshoe in a map with homoclinic points (left); Stable and unstable manifold
of z, (right).
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Figure 15: Quadratic map: Limit set diagram, Peitgen et al. [26].

Therefore the stable and unstable manifold of z, are closely intertwined, see figure 14
(right).

Remarks

1. Tongue boundaries accumulate often at curves of homoclinic tangency bifurcations.
Therefore chaotic attractors are expected for parameter values where tongue boundaries
accumulate.

2. When Arnol’d tongues, belonging to the “same” invariant circle, overlap, one may
assume that invariant circles are destroyed. At those places chaotic attractors maybe
expected.

3. The Newhouse-Ruelle-Takens scenario (NRT scenario).

Let the 3-dimensional (Poincaré) map f have an invariant 2-torus. Furthermore the
three frequencies of the corresponding 3-torus in the 4 dimensional vector space have
no rational relation. Then small Hénon-like chaotic attractors generically occur on the
2-torus of the Poincaré map. This is a special case of the destruction of an invariant
circle by an homoclinic tangency bifurcation. The theorem is stated in Newhouse et
al. [24], which is written on basis of the articles of Ruelle and Takens [27, 28]. See also
Palis and Takens [25].

2.5.2 Period doubling route to chaos

The period-doubling route of fixed or periodic points to chaos also may occur in the map f,.
This well-known route can appear both outside and inside an Arnol’d tongue. Compare the
routes in the quadratic map and the Hénon-map, see Devaney [10] and Peitgen et al. [26].

Figure 15 shows the limit set diagram of the quadratic map. This figure is taken from Peitgen
et al. [26].
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Figure 16: The autonomous Lorenz-84 system: Bifurcation diagram in the (F, G) parameter
plane, two Hopf curves (H), (H2) and saddle-node curve (SN) of fixed points are depicted.
H and SN are tangent in Hopf-saddle-node point (HSN) and SN meets a cusp (C). Also the
period doubling curve (PD) of the limit cycle is depicted.

3 The autonomous Lorenz-84 system

The driven Lorenz-84 system with € small is a perturbation of the autonomous Lorenz-84
system, € = 0. So we first mention the bifurcations of the equilibria in the autonomous system.
These results can also be found in the papers of Broer, Homan, Hoveijn and Krauskopf [4],
Homan [16], Sicardi Schifino et al. [23] and Shil’nikov et al. [32]. The relation between this
3-dimensional vector field and the corresponding 3-dimensional Poincaré map f.=q,, is given
in subsection 3.3.

3.1 The equilibria & the limit cycle

A unique equilibrium, (X,Y, Z) = (F,0,0), exists for parameter values (F,G) = (F,0). This
solution is denoted by O;. O, is stable for {(F,G): 0 < F <1, G = 0}. For G (relatively)
large O, is the only stationary solution.

O, undergoes a super-critical Hopf bifurcation at (F,G) = (1,0) it becomes unstable and a
stable limit cycle appears. The numerical continuation of this Hopf bifurcation, H, in the
(F, G)-plane is shown in figure 16. This curve can also be derived analytically, see Shil’nikov
et al. [32].

Also a curve of saddle node bifurcations (SN) is continued in the parameter plane, see figure 16.
At one side of the curve there is one equilibrium and at the other side are three. Furhermore
another curve of Hopf bifurcations (H;) exists in the (F, G)-plane. When crossing this curve
as Fp increases a stable equilibrium becomes unstable and a stable limit cycle appears. This
bifurcation curve is discussed in Sicardi Schifino et al. [23].

There are two codimension 2 points on the codimension 1 curves, the SN curve meets a cusp
bifurcation (C) and the SN curve is tangent to the H curve at a Hopf saddle-node bifurcation
(HSN). The Hopf bifurcation becomes subcritical above this bifurcation point and the system
for nearby parameter values may give rise to very rich dynamical behaviour which may extend
far away. For instance a Neimark-Sacker bifurcation ® curve emerges from the HSN point.

®At a Neimark-Sacker biurcation a limit cycle undergoes a “Hopf” bifurcation resulting in a 2-torus with
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Figure 17: Lorenz-84: Hopf curve (H) in (F,G) parameter plane, period P(r,c) along H is
given by plotting F versus P(rc) and G versus P(r,c).

And an invariant 2D torus exists in a part the (F, G)-plane. Also limit cycles of long period
existing near a curve of homoclinic bifurcations are found. See for more information and
figures Broer, Homan, Hoveijn and Krauskopf [4], Homan [16] and Shil’nikov et al. [32]. The
limit cycle that exists at the right of the curve of Hopf bifurcations (H) undergoes a period
doubling bifurcation (PD). This bifurcation is also continued in the parameter plane, curve
PD, see figure 16.

3.2 Period of the limit cycle

The period of the limit cycle occuring at the right hand side of the H curve varies along this
curve. The period P(fc) of the limit cycle at parameter values (F, G) is determined with AUTO
[11]. The period is maximal at (F,G) = (1,0), P(;,0) =~ 1.5708 and decreases monotonically,
P11.3,12.7) = 0.7300. At the HSN point where the Hopf bifurcation switches from supercritical
to subcritical, Py 684,1.683) =~ 1.389. In figure 17 the Hopf curve (H) is depicted in the (F,G)
parameter plane and the period P(r) along H is plotted versus F and G.

The period is used to determine the rotation number p = % of the invariant circle of the
map f. o corresponding to the driven Lorenz-84 system, see the remark in subsection 2.3 and
section 4. At points on the Hopf curve, where this quotient is rational, Arnol’d tongues will
emerge, see subsection 2.4.

either periodic or quasi-periodic behaviour, see Guckenheimer and Holmes [13] and Kuznetsov [19].
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3.3 Poincaré map for ¢ =0

The Poincaré-map fr -9, is the time T map of the autonomous Lorenz-84 system. (For
simplicity fre=o0,o will be denoted as f, in this subsection.) The fixed points z, of f, are
trivial period T-solutions corresponding to the equilibria of this autonomous system. Let A,
be the matrix corresponding to the linearisation in the equilibrium z at parameter value a.

{ = Az, ¢ +0|¢?

The stability of z, is determined by the eigenvalues A; of the matrix A. The stability of
the corresponding fixed point of map f, is investigated by looking at eigenvalues y; of the
linearisation of the map f, around this fixed point: D, f,. Since f, is just the T-flow of the
autonomous system the following equation holds:

D.’to fo = eTAzo
So there is a connection between the eigenvalues of the linearized map and the linearized
vector field:

pi =M
for example if the equilibrium z, undergoes a Hopf bifurcation then z, has eigenvalues u; o =
+ww. This means that the corresponding fixed point z, also undergoes a Hopf bifurcation
(for maps) at the same parameter value. The fixed point z, has eigenvalues )\, o = e, This
bifurcation generates a closed invariant circle S. However the Hopf bifurcation of the fixed
point is degenerate and there will be no frequency locking on the invariant circle §. This is
obvious because the system is independent of the period of the forcing T'. At the right hand
side of the Hopf curve there are only tongue hairs, lines in the parameter plane, with parallel
dynamics on S.

21




22




e fixed point attractor
A fixed point repellor
+ saddle point

O circle attractor

<2 circle repellor

<2y 2-torus repellor

-

Figure 18: Driven Lorenz-84 system for € = 0: Framework of codimension 2 bifurcation points
and codimension 1 bifurcation curves of the fixed points of the map fo o in the (Fy, Go)-plane.
In each region fixed points, invariant circles and invariant tori are indicated.

4 Generic expectations for driven Lorenz-84

Section 3 provides us with some a framework of bifurcation curves and bifurcation points in
the (F,G)-plane of the autonomous Lorenz-84 system, see figure 18 for a sketch. On basis of
these results we give theoretical expectations for the Poincaré-map f. o of driven Lorenz-84
with 0 < € < 1, assuming that the map f, , is a generic perturbation of the degenerate map
[ 0,a-

From the theory of dynamical systems it follows that the following features of the map foq
corresponding to Lorenz-84 are persistent. Main argument for the persistence are hyperbolicity
and normal hyperbolicity, compare also Broer et al. (6], section 2.

1. The hyperbolic fixed points.

2. The saddle-node curve (SN) .

3. The Hopf curve (H).

4. The Hopf-saddle-node point (HSN) and the cusp.
5. The invariant circle near the Hopf curve.

6. The invariant 2-torus at the right of the HSN point.

Main difference and of most interest is that by assumption the bifurcations of fixed points in
the map f¢ o, € # 0 in general will not be degenerate.

Thus for € small we expect a curve of Hopf bifurcations in the (Fp, Gg)-plane not far from the
curve Hy. Again there is a HSN point on this curve but now for maps. Below this point the
bifurcation is supercritical thus an attracting invariant circle appears upon crossing the Hopf
curve for fixed Gy and increasing Fg. Above this point the bifurcation is sub-critical thus a
repelling invariant circle appears upon crossing the Hopf curve for fixed Gy and increasing
Fy. At the right-hand side of the H, curve we expect that the parameter plane is structured
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Figure 19: Driven Lorenz-84 system with € = 0 and respectively T = 73, T = 0.2 and T = 0.5:
Hg curve with the rotation number of the invariant circle existing at the right of Hyg.

by Arnol’d tongues emerging from H, at points where the rotation number p is rational, see
subsection 2.4. Inside the tongues there will be frequency locking on the invariant circle, S.
And outside the tongues there will be quasi-periodic dynamics on S.

At further distance of H, the invariant circle may lose its smoothness due to the change of
stability of periodic points on the invariant circle or due to an homoclinic tangency bifurcation,
see subsection 2.5. Also Arnol’d tongues with different rotation number may overlap at further
distance of H.. Then the invariant circle probably will be destroyed, see remark 2 in sub-
subsection 2.5.1.

Furthermore at the right hand side of the HSN, point we expect an area in the (Fp, Gg)-plane
where a repelling invariant 2-torus of the map f; , exists. On such 2-tori chaotic dynamics
may occur (NRT scenario), see remark 3 in sub-subsection 2.5.1.

On basis of these expectations numerical investigations are made for the driven Lorenz-84
system with periods T = 73, T = 0.2 and T = 0.5. We mainly search for Arnol'd tongues
with a large rotation number p = £. To locate these the rotation number p along the Hopf
curve is determined for the different values of T, see figure 19. The estimation p =

P(:.c)
with Pg ) the period of the limit cycle appearing at the Hopf curve (H) in the autonomous
Lorenz-84 system is used. P ) is determined with AUTO [11], see subsection 3.2.

In the case T = 73 the period of forcing is large compared to the period of the limit cycle,
that appears at the right hand side of the Hopf curve in the autonomous Lorenz-84 system.
So the rotation number is large and varies quickly along the Hopf curve, see figure 19. Indeed,
the rotation number varies between 46.52 and 52.55 along the part of the Hopf curve between
the Fp-axis and the HSN point. So the Hopf curve will meet a lot of strong resonance points.
At such codimension 2 bifurcations the Hopf curve is destroyed and curves of homoclinic
bifurcations are expected to emerge. This complicates the bifurcation diagram considerably.
for example six occurrences of the BT bifurcation are expected on the super-critical part of the
Hopf curve, namely for p = 47,48, ---,51 or 52, see sub-subsection 2.2.1 for this bifurcation.
Furthermore in a part of the Hopf curve where the rotation number varies from p to g+ 1
all sort of tongues can be expected to emerge, see subsections 2.3 and 2.4. These tongues are
probably very thin since p varies rapidly.

The results of the numerical investigations of the actual driven Lorenz-84 system are presented
in the next three sections.
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Figure 20: Driven Lorenz-84 system with T' = 73 and € = 0.5: Bifurcation diagram in
the (Fp, Go)-plane, the saddle-node curves SN; and SN; colliding in cusp C (left) and a
magnification of the SN, region (right).

5 The driven Lorenz-84 system with year rhythm

The period T = 73 corresponds to the year rhythm. This is the most realistic period because
the system simulates the seasonal period. The period is large compared to the characteristic
periods of the autonomous system. When investigating this system some “numerical” prob-
lems occur in AUTO [11] and DsTool [14]. To get a next iterate of the Poincaré map for T = 73
many integration steps have to be taken and numerical errors can play a significant role in the
solution. Runge-Kutta 4, the standard integration routine of DsTool, [14] turns out to be not
accurate enough for this. C. Simé also investigated the driven Lorenz-84 system with year
rhythm with self-made software which uses a, in this case, more accurate integration routine.
An advantage of self-made software is that all sort of defaults, like for example precision
and output-structure, easily can be changed if necessary. The results, C. Simo obtained, are
discussed in subsection 5.2.

5.1 The bifurcations of the fixed points

In this subsection the results are given of the investigation of the driven Lorenz-84 system
with £ = 0.5. Only this value is considered because with AUTO [11] no qualitative different
results at other values of € are found.

In figure 20 (left) parts are presented of the saddle node curves SN; and SN, of fixed points
of the driven system with T = 73 and € = 0.5. SN; and SN collide in cusp C. These curves
correspond to the SN curve with its cusp (C) of the autonomous system. SN2 meets many
other cusp bifurcations and goes the other way around very near it came from, see 20 (right)
for a magnification at this region.

For (Fp,Gyp)-values at the left side of the SN; curve or below the SN2 curve one fixed point
exists. And for (Fp, Gg)-values at the right side of the SN; curve and above the SN, curve
three fixed points exist as to be expected near the cusp C, compare sub-subsection 2.2.1.
However a lot of fixed points where detected in a thin area around the SN curve. How many
fixed points exist is not known since in the continuation of the fixed points around the SNj
curve convergence problems occur.

Remark

1. The infinite number of saddle node bifurcations can point to a Shil’nikov bifurcation in
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Figure 21: Driven Lorenz-84 system with T' = 73, ¢ = 0.5, G = 1, and varying Fy: overview
of the SN bifurcations of the limit cycle around Fg = 2.4708, the L2-norm of the coordinates
plotted against Fp.

J

Figure 22: Driven Lorenz-84 system with 7' = 73, ¢ = 0.5 and (Fp, Go) = (2.4708,1): pro-
jection onto the (X,Y)-plane of a stable limit cycle in the neighbourhood of a Shil’nikov
bifurcation.

the corresponding 4 dimensional vector field. The Shil’nikov bifurcation is a homoclinic
bifurcation of an equilibrium in an (at least 3 dimensional) vector field that generates an
infinite number of limit cycles several of which have large periods. For theory about the
Shil’nikov bifurcation, see Glendinning and Sparrow [12] and Kuznetsov [19]. Figure 21
shows the results of the continuation of the limit cycle detected at the left side of SN; by
varying Fy and taking Go = 1 fixed. Around Fy = 2.4708 the limit cycle undergoes many
saddle node bifurcations, creating many different limit cycles. Also period doubling
bifurcations are detected round these parameter values. Figure 22 shows the projection
onto the (X, Y)-plane of a stable limit cycle at (F, G) = (2.4708, 1). This cycle looks like
a limit cycle in the neighbourhood of a Shil’'nikov bifurcation. Both figures strengthen
the thought of the existence of a curve of Shil’nikov bifurcations in the SN, region.

2. A homoclinic bifurcation in the 4 dimensional system gives rise to a homoclinic tangency
bifurcation in the corresponding map f 4.

For € = 0.5 the stable fixed point undergoes a super-critical Hopf bifurcation in the neigh-
bourhood of (Fp,Gg) = (1,0). Due to a bug in AUTO [11] the Hopf bifurcation curve in the
(Fy, Go)-plane could not be determined. We neither succeed in detecting frequency locking
with DsTool [14].
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5.2 Numerical results by C. Simé

In this subsection some results are presented obtained by C. Simé. He used as integration
routine a Taylor expansion up to order 24. In this case this routine gives more accurate results
than the Runge-Kutta 4 routine of DsTool [14]. Furthermore the software is in a way that
limit sets at many different parameter values are determined at once.

The driven Lorenz-84 system is investigated for the realistic values T'= 73 and € = 0.5. For
many (Fp, Go)-values the stable limit set or attractor of the orbit starting at (Xo, Yy, Zo) =
(3,2,1) is determined so there can be no detection of coexistence of attractors. The limit set is
on an invariant circle for parameter values (Fp, Go) at the right-hand side of the expected Hopf
curve (H) with G small. On these invariant circles both periodic orbits with all sort of periods
corresponding to different Arnol’d tongues and quasi-periodic behaviour corresponding to
areas between these tongues are observed. For larger values of Gy also chaotic limit sets are
detected. And the behaviour becomes simple again for G sufficiently large.

As an example we look at Y-values of the limit set of Fy = 9 for increasing value of Gy, see
figure 23 for a kind of limit set diagram, its construction is explained in the below standing
remark. Furthermore in figure 24 projections are shown onto the (Y, Z)-plane for several
values of Go. We now recapitulate in words what happens.

For Gy small an invariant circle exists, denoted by S, see figure 24-(1). S doubles in a (quasi-
periodic) period doubling bifurcation around Gy = 0.37, see the remark in sub-subsection
2.2.1. Then it loses its stability thereby creating a circle attractor, denoted by 25, of double
length and roughly half the rotation number, see figure 24-(2). This bifurcation corresponds
with the first period doubling bifurcation of the limit cycle in the autonomous system, see
the PD curve in figure 16.

What then happens is the following. The unstable manifold W*(S) of S is attracted by 2S.
(Also compare the 'whirlpool’ phenomenon as described by Shil’nikov et al. [32].) In turn,
around Go = 0.6, the doubled curve 2S5 loses stability again and the unstable manifold create
strange attractors by folding, see figures 24-(3)-(5). Compare with the Hénon attractor being
created by folding of the unstable manifold of a saddle-point, see figure 12. In the chaotic
region also parameters exist where periodic dynamics is found, for example a period 3 attractor
at Go = 0.68, see figure 24-(4). For Gy = 1.96 the limit set is a chaotic attractor, see figure
24-(6). But for Gy = 1.97 the limit set has become a fixed point, see figure 24-(7). What
sort of (inverted) route to chaos appears here will be investigated by Broer and Sim¢, see
[8]. Around Go = 2.21 the fixed point undergoes a Hopf bifurcation and an invariant circle
reappears, also on this circle tracks of periodic behaviour are found, see figure 24-(8). Finally
around Go = 5.76 this invariant circle disappears in an inverted Hopf bifurcation and a fixed
point reappears. These two Hopf bifurcations correspond with the Hopf bifurcation, Hs, of
equilibria in the autonomous system, see the H; curve in figure 16.

For small values of |¢| the familiar alteration of periodicity and quasi-periodicity is suggested
by figure 23. Indeed, the windows seem to be associated to Arnol’d tongues. However
the windows are partly an artifact of the construction. In the next remark we explain the
construction of the limit set diagram of figure 23.

Remark

1. The limit set diagram in figure 23 is not a regular one like for example the limit set
diagram in figure 12. It provides only a rough overview. The diagram is constructed as
follows.

The parameter Fj = 9 is fixed and Gy varies along the horizontal axis. In the diagram
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Figure 23: Driven Lorenz-84 system with T = 73 and ¢ = 0.5: Limit set diagram, taking
Fy =9 fixed and Gy varying from 0.01 to 2.75. Gy does not increase evenly, see remark 1.
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Figure 24: Driven Lorenz-84 system with ' = 73, ¢ = 0.5 and Fy = 9: attractors for different
values of Gp.
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Gy starts at 0.01 and increases with steps of size 0.01 to 2.75. For each pair (Fp, Gyp)
the orbit starting in (Xy, Yo, Zo) = (3,2,1) is determined. To create “limit” sets the
first (transient) part of the orbit, about 2000 points, is not printed. In the diagram each
value of Gy is represented by a small bar. In a bar the (different) Y values of points of
a limit set are put one after the other. The bars have not the same width everywhere.
The limit set consists of 2000 points when the set is quasi-periodic or chaotic. See for
example the bar in the case Gy = 0.37. But the limit set consists of much less than 2000
points when the set is periodic. for example in the interval 1.96 < Gy < 2.21 the limit
set is a fixed point. The limit sets of these cases are represented by just as many points
as those at one value of Gy in a quasi-periodic or chaotic case. Consequently stationary
and periodic behaviour are hardly seen in the diagram, although this occurs often.

5.3 Conclusion

We conclude that the bifurcation diagram of the Lorenz-84 system with year rhythm is com-
plicated and interesting , although hard to investigate with AUTO [11] and DsTool [14]. As we
saw, one reason is that the period T = 73 is very large compared to the characteristic periods
of the autonomous system. C. Simé obtains better results by using self-made software. An
advantage of self-made software is that all sort of defaults, like for example integration rou-
tine with its precision and output-structure, easily can be changed if necessary. The Taylor
expansion routine up to order 24) is used. This routine is more accurate in the case T = 73
than Runge-Kutta 4. The results obtained by C. Simé give a clear indication for the existence
of Arnol’d tongues.
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Figure 25: Driven Lorenz-84 system with T = 0.2 and € = 0.1 (left), ¢ = 1.0 (right):
Bifurcation diagram in the (Fp, Go)-plane consisting of the saddle-node curve (SN) meeting
a cusp (C) and the Hopf curve (H) of fixed points which is tangent to SN in the HSN
point, the (quasi-periodic) period-doubling curve (PD) of the invariant circle, the curve of
the autonomous Lorenz-84 system where Pr ) = 1.0 and the upper and lower boundary of
the 1:5 resonance tongue (+), the boundaries are so close that you only see one + for one
value of Fy.

6 The driven Lorenz-84 system with day rhythm

The Lorenz-84 system is actually a climate system with mainly large-scale effects, both in
space and in time. It is also interesting to know whether short time disturbances influence
the system or not. So we choose to simulate the day-night cycle and take the forcing period
T = 0.2. At this T, the system does not have to be integrated that long to get the next
iteration of the Poincaré map, so more accurate results are obtained by AUTO [11] and DsTool
(14].

6.1 The bifurcations of the fixed points

The saddle-node curve (SN) and the Hopf curve (H) of fixed points for 0 < ¢ < 1 only grad-
ually are perturbed away from the corresponding curves in the autonomous case. Compare
the bifurcation diagrams in the cases € = 0.1 and € = 1, in figure 25, with the diagram of the
autonomous system, in figure 16.

For all € the SN curve and the H curve remain tangent at the HSN point and the SN curve
meets a cusp point (C). The rotation number p varies slowly along the H curve, see figure 19 in
section 4. The rotation number of the circle attractor varies between 0.127 < p < 0.144. The
rational numbers with the smallest denominators in this interval are % = 0.143 and % = 0.133.
At the right side of these points you would expect areas (tongues) where respectively a period
7 attractor and a period 15 attractor exist on the circle attractor. But only quasi-periodic
behaviour is seen, even at a quite large distance of the H curve. Probably the Arnol’d tongues
remain thin.

The tongue belonging to the rational rotation number with denominator 5 is expected to be
the widest, see subsection 2.4. Hence we look at the place where p = % is expected for ¢
small. That is where a limit cycle exists with P = 1.0 in the autonomous system. The curve
in the (Fy, Go)-plane where a limit cycle exists with period P = 1.0 is given in figure 25. We
searched for a period 5 repellor on the circle repellor of the driven Lorenz-84 system in the
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neighbourhood of this curve with successively € = 0.1, 0.5, 1.0, 2.0, 4.0 and 7.0. Particularly
we looked at parameter values just before the limit cycle undergoes a PD bifurcation, since
here the tongues are expected to be the widest. Another example of this phenomenon is
the fattened Arnol'd map, see Broer, Simé and Tatjer [7]. However DsTool [14] experiments
indicate the tongue with p = é is still very thin, if it exists at all. For 0 < € < 7 no open
area in the parameter plane with frequency locking is found. It is expected that tongues
will be wider for increasing € and increasing distance to the H curve. To check this for the
Arnol’d tongue with p = % practical boundaries are determined. This is done by the following
criterion:

Criterion 1 The upper respectively the lower boundary of a tongue is the largest value re-
spectively the smallest value of Go at fized Fy where the invariant circle of the Poincaré-map
is not filled after 10000 iterates.

The results of the investigation are surprising. The distance between the boundaries appear
to be 0.006 + 0.001, independent of the distance to the Hopf curve or the size of ¢, varying
from 0 to 7. For € = 0.1 and € = 1 this practical boundaries are in the bifurcation diagram
of figure 25 respectively (left) and (right). If there is an Arnol’d tongue with p = % then it is
not wider than 0.001 up to € < 7.

Further exploration with DsTool [14] of the map f. o with 0 < € < 1, for example around the
HSN point, and the point (Fp,Go) = (7,1), which is in the meteorological interesting area,
gives the same attractors and repellors as the map fo -

6.2 Conclusion

We conclude that with DsTool [14] and AUTO [11] no qualitative differences are detected
between the maps f. o for 0 < € < 1 of the driven Lorenz-84 system with T = 0.2 and
the degenerated map fo,. Therefore, with these tools no influence of day rhythm on the
Lorenz-84 system is detected.
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Figure 26: Driven Lorenz-84 with T' = 0.5 and € = 0.1 (left) respectively € = 0.5 (right):
Bifurcation diagram of the fixed points in the (Fp, Go)-plane consisting of the Hopf curve (H),
the saddle node curves (SN), the Hopf-saddle-node point (HSN) and the cusp (C).

7 The driven Lorenz-84 system with T'= 0.5

For the most realistic periods T = 0.2 and T' = 73 we did not succeed in finding frequency
locking with DsTool [14] and AUTO [11]. However Arnol’d tongues are detected in this way
when the period T = 0.5. This period can still be seen as a daily forcing, since the unit of time
(5 days) is just an estimation. We concentrate on the Arnol’d tongues with rotation numbers
p= % and p = %, which are chosen because of their large denominators. These tongues are
expected to be the widest. Furthermore the tongues are laying close together on the H curve.
For example for € = 0.5 the tongues overlap and chaotic repellors are found, see subsection
7.3. In subsection 7.2 we treat the development of the Arnol’d tongue with p = %, as € varies
from € = 0.1 to € = 0.5, and it turns out that we can divide the tongue structures in several
groups. The transitions between the groups are caused by a singularities of the saddle-node
surface or codimension 3 bifurcations. These singularities and bifurcations are also discussed
in subsection 7.2. Finally in subsection 7.3 some routes to chaos are presented, detected in

and around Arnol’d tongues.

7.1 The bifurcations of the fixed points

In this subsection the bifurcation diagrams of the fixed points of the map f, , with e = 0.1
and € = 0.5 in the (Fp,Go)-plane are presented. The diagram in the case of € = 0.5 shows
already the influence of forcing, see figure 26 (right). For example the upper SN curve is bent
down to the H curve. This is in contrast with the bifurcation curves of the fixed point in map
fe,o with day rhythm, see figure 25 in subsection 6.1.

Furthermore the H, curve with ¢ = 0.5 is destroyed around (Fp, Go) = (5.4, 5.9) due to an 1:2
strong resonance point. Around such a point a complicated bifurcation diagram is expected
with also heteroclinic (tangency) bifurcations. An indication for this complicated diagram
is given by the strange round at the end of the lower part of H,. See figure 27 (left) for a
magnification of the strange round. In figure 27 (right) shows an example of a chaotic repellor
caused by the 1:2 strong resonance. Interesting (numerical) research remains to be done at
this point.

Remark

1. It is surprising that the H curve for € = 0.1 is not destroyed when p = % Probably the
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Figure 27: Driven Lorenz-84 system with T = 0.5 and € = 0.5: Magnification of the region
where the Hopf curve (H) is destroyed due to a 1:2 strong resonance (left); A chaotic repellor
at (Fy, Go) = (10,5.7), caused (indirectly) by the 1:2 strong resonance (right).

I 1 I |

Figure 28: Driven Lorenz-84 system with T = 0.5 and € = 0.1: a quasi-periodic orbit on
circle repellor for (Fy, Go) = (13,9.03) (left); a period 5 orbit on circle repellor for (Fy, Go) =
(13,9.04) (right).

step size of the continuation has to be decreased to locate this 1:2 resonance point.

7.2 Arnol’d tongues

In this subsection we discuss the results of the numerical investigation on the Arnol’d tongues
with rotation numbers p = % and p = % Starting point of the investigation is the rotation
number of the map f, o along the Hopf curve, see figure 19 in section 4. We first concentrate
at the case p = % This rotation number occurs on the H curve above the HSN point. So
the emanating invariant circle S is unstable and we have to iterate the map f. o backwards
to detect a period 5 orbit on S.

Iterating the map f., backwards with ¢ = 0.1 and (Fp,Go) = (13,9.03) yields a closed
invariant circle apparently filled by a quasi-periodic orbit, see figure 28 (left). However taking
- = 0.1 and (Fy, Gy) = (13,9.04) results in a period 5 repellor, see figure 28 (right).

The parameter values, € = 0.1, (Fy, Gg) = (13,9.04) belong to the Arnol’d tongue with p = %
At those parameter values also an unstable period 5 orbit of saddle points is to be expected.
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Figure 29: Driven Lorenz-84 system with T = 0.5 and ¢ = 0.1 (left) respectively ¢ = 0.5
(right): Arnol’d tongues with rotation numbers p = 2 (5) and p = $ (7) in the (Fy, Go)-
plane.

However, this orbit is not found since saddle orbits are hard to detect by numerical simulations.
The period 5 orbits are located on the unstable invariant circle S which is composed of the
stable manifolds of the saddle orbit. The fifth iterate fe(,scz therefore has 5 unstable fixed
points and 5 saddle points on S. While one increases or decreases the parameter Gy, keeping
Fy = 13 and € = 0.1 fixed, the stable and the unstable fixed points move over S, colliding and
disappearing at SN bifurcations at respectively Gy = 9.053 and Gy = 9.031. The continuation
of these bifurcation points in the (Fp, Gp)-plane gives two saddle-node bifurcation curves of

period 5 orbits, SN(ls) and SNgs), see figure 29 (left). Together they form a typical Arnol’d

tongue, approaching a point on the Hopf curve where the eigenvalues of the original fixed

points are
o = eti2nd

In the same way the Arnol’d tongue with rotation number p = 47 is determined, see figure 29

(left). For the (Fp,Go)-values inside this tongue (at least two) period 7 orbits exist on the

circle repellor.

In figure 29 (right) the same tongues in the case of ¢ = 0.5 are given. The global structure

of the tongues differs at the both values of forcing. The transition of the Arnol’d tongue

with p = % from € = 0.1 to € = 0.5 is investigated with great precision. The results of this

investigation are presented at the end of this subsection.

Remarks

1. The Arnol'd tongues with rotation number p = % and p = % are not investigated

because we expect disturbing influence of the HSN point with its complicated bifurcation
structure.

. The Arnol’d tongue with p = g is wider than the tongue with p = % in the neighbour-

hood of the H, curve. This agrees with the theoretical expectation about the width of
the Arnol’d tongues in section 2.4: a tongue is wider when the rotation number has a

smaller denominator.

. The boundaries SN{" and SN{"? of the Arnol'd tongue with p = % in the (Fp, Go)-plane
meet each other in a cusp, when ¢ = 0.5. We will see further on that this also occurs
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connections e-interval
13,204 a < €< aap with a € (0,0.10]
506,76 8 and aap € (0.18,0.19]
123,246 aap < € < agc
46578 with apc € (0.26,0.28]
12,366 agc < e <acp
45, 7«8 with acp € (0.3,0.305]
17,268 acp L€ < apg
45,306 with apg € (0.37,0.374]
107,266,465 apg < € < agf
38,910 with agp € (0.37408,0.37409]
19,266,465 agfF < € < afg
38,710 with apg € (0.48,0.5]
19,26012,405 |apg<e<b

G [368,7-10,6 11 | withb>0.5

Table 1: The global structure of the Arnol’d tongue with p = %

at the boundaries of the Arnol’d tongue with p = % when € = 0.28. There it becomes

more clear how such a collision of boundaries is possible.

4. Continuation of the tongues from period T = 0.5 to T = 0.2 is not realistic, since for
T = 0.2 the tongues with the rotation numbers p = % and p = 47 would emerge from
the H curve around (Fy, Gp) = (100, 100).

In figure 29 we saw the difference between the global structures of the Arnol'd tongues with
p= % in the cases € = 0.1 and € = 0.5. That is why we investigated the tongue boundaries
for several values of ¢ in the (Fy, Gg) region of seize (8,20.5) x (6,12) to find the cause of the
difference. It turns out that the global structure of the tongue varies strongly for changing
€. On basis of the investigations we divide the global structures of the Arnol’d tongue with
p =32 and € € [0.1,0.5] into 7 groups. In figure 30 diagrams are given of Arnol'd tongues
which are typical for its structure group. Furthermore there are diagrams where the transition
from one group to another becomes clear. The transitions are caused by singularities of the
SN surface in the (Fp, Gy, €)-space and several codimension 3 bifurcations. To make a clear
representation of the different structures we numbered the “ends” of the SN®) curves in the
diagrams, see figure 30. A structure is represented by pairs of numbers, which indicate which
ends of the curves are connected. The different structures are listed in table 1. A SN©®) curve
which connects the ends a and b is denoted by SN,_;. Table 1 and figure 30 together give
an overview of the development of the Arnol’d tongue with p = % for increasing €. Compare
Broer, Sim6 and Tatjer [7] for a similar approach.

The transitions

1. The transition from structure A to B, from structure C to D and from structure E to F
is caused by singularities on the saddle-node surface in the (Fy, Gy, ¢)-space. In figure
31 a surface in the 3 dimensional space is given , a so called saddle-surface, which has
the same singularity. This surface is given by the equation z2 — y% + z = 0.
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Figure 30: Driven Lorenz-84 system with T' = 0.5: Diagrams of the global structure of the
Arnol’d tongue with p = % in the (Fy, Gp)-region of seize (8,20.5) x (6, 11) for different values
of e. In each diagram the structure is indicated in the upper left corner and the value of ¢ is
put in the lower left corner.
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Figure 31: Saddle surface in the 3 dimensional space, given by the equation -y’ +2=0

2. The transition from structure B to structure C and from structure D to E is probably

caused by a codimension 3 bifurcation. We did not succeed to unfold this bifurcation
theoretically. However out of the numerical facts a suggestion what might happen is
made.

Suppose the bifurcation occurs at point (FO,GO,E) in the (Fy, G, €)-space. Numerical
fact is that “before” the bifurcation, that is for € < €, the cusp curve C.<; = SN;NSN».
While “after” the bifurcation, that is for € > £, C.>¢ = SN; NSN3. See figure 33 for the
configuration of the saddle-node curves before and after the bifurcation. This numerical
fact is analogous to a cusp bifurcation of two saddle-node curves in the parameter-plane.
From figure 7 we recall that if two saddle-node curves collide in a cusp, then at one
curve, “before” the cusp, the fixed points z; and z, collide, while at the other curve,
“after” the cusp the fixed points z; and z3 collide.

So the suggestion is that two cusp bifurcation curves becomes tangent to each-other,
meaning that the three saddle-node surfaces involved become tangent to each-other
and we call this bifurcation a cusp saddle-node bifurcation (CSN). The bifurcation can
not occur in one dimension, but the normal form has to be a two dimensional map.
More theoretical and numerical investigations have to be done to unfold this bifurcation
completely.

3. The transition from structure F to structure G is not investigated.

Within each global structure also local bifurcations of codimension 2 and 3 occur. These local
bifurcations are discussed below for each structure group. Most of them are cusp or dovetail
bifurcations, compare Broer, Simé and Tatjer and the figures 7 and 8. A local bifurcation is
only described when it differs from the bifurcations in the structures before.

Structure A: Diagrams of the cases € = 0.1 and € = 0.18

1. SN7_g meets 1 cusp, denoted by C,

2. SNs_g¢ meets 3 cusp bifurcations, denoted by C,, C3 and C4. C3 and Cy4 belong to
a dovetail area, denoted by D¢, c,. See for a magnification of this area in the case
e = 0.1, figure 32 (left).
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Structure B: Diagrams of the cases € = 0.19, € = 0.2 and € = 0.26

1. SN4_5 meets the same bifurcations as SN5_g of structure A.

2. In the cases € = 0.2 and € = 0.26, SN2_g meets 2 cusp bifurcations, denoted by Cs
and Cg. They belong to a dovetail area, denoted by D¢, ¢,. See for a magnification
of this area in the case € = 0.2, figure 32 (middle).

Structure C: Diagrams of the cases ¢ = 0.28 and € = 0.3

1. SN,_2 meets cusp Cs, that belonged to dovetail area D¢, ¢, on SNo_g of structure
B

2. In the case € = 0.3, SN,_, meets two more cusp bifurcations, denoted by C; and
Cg. They belong to a dovetail area, denoted by D¢, c,. See for a magnification of
this area and Cs , figure 32 (right).

3. SN3_g meets cusp Cg, that belonged to dovetail area D¢, cs on SNo_g of structure
B
Structure D: Diagrams of the cases ¢ = 0.305, € = 0.32 and € = 0.35

1. SN,_g meets cusp C;, that belonged to SN7_g of structure A, B and C.

2. In the case € = 0.305, SN,_7 meets the same bifurcations as SN;_» of structure A.
But for € = 0.32 and € = 0.35 these bifurcations have disappeared.

3. In the case € = 0.35, cusp C4 of D¢, c, has moved to a place where Fy > 20.5.
This is only a quantitative change.

4. In the case ¢ = 0.35, SN;_7 meets 2 cusp bifurcations, denoted by Cg and C,g.
They belong to a dovetail area, denoted by D¢, c,,-

Structure E: Diagram of the case € = 0.374

1. SN3_g meets cusps Cg and C; that respectively belonged to SN3_g and SNo_g of
structure D.

2. SNg_)p has entered the investigated (Fp, Gp)-region.
Structure F: Diagrams of the cases € = 0.3745, e = 0.4 and € = 0.45

1. In the case € = 0.3745, SN7_;0 meets dovetail area D¢, c,, that belonged to SN;_7
of structure D (¢ = 0.35), E.

2. In the cases ¢ = 0.4 and € = 0.45, SN7_10 does not cross itself anymore. Con-
sequence is that the dovetail D¢, c,, has disappeared. Only the two (separated)
cusps, Cg and C;p remain.

3. In the cases € = 0.45, SNo_g meets 3 cusp bifurcations, denoted by C;;, Cy2 and
Ci3. These cusps bound a relatively large area in the (Fp, Gp) plane. Whether some
of these cusps belong to some area, for example a dovetail area, is not investigated
yet. If € is decreased a little, for example € = 0.448, SN,_g meets no bifurcations,
like in the case € = 0.4.

Structure G: Diagram of the case € = 0.5
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Figure 32: Driven Lorenz-84 system with T = 0.5 and respectively € = 0.1, ¢ = 0.2 and

£ =

0.3 : magnification of dovetail areas in the (Fp,Gg)-plane at the boundaries of the

Arnol’d tongues with p = %
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Figure 33: Driven Lorenz-84 system with T = 0.5 and € = 0.37 respectively ¢ = 0.374: The
SN®) curves and the cusp C(® before and after the codimension 3 bifurcation.

1. The cusp Cj2 on SNo_g of structure F has moved to a position with Fy > 20.5,
thereby forming two “new” ends, 11 and 12. In the case € = 0.48 this cusp
still exists. But in the case € = 0.5 the cusp does not exist anymore. Furthermore
SNe_11 and SNo_ ;5 are disconnected now. In which sort of bifurcation this happens
has not been investigated yet.

Remarks

1.

The structure of the Arnol’d tongue with p = % changes also outside the (Fp, Gg) region
of seize (8,20.5) x (6,12). Again this has not been investigated yet.

The structure of the Arnol'd tongue with p = % in the neighbourhood of the related

Hopf curve H is in accordance with the theory, see subsection 2.4. The tongue is wider
at further distance of H that is as Fp is larger. Furthermore the tongue is flat for ¢ — 0.

. The codimension 2 and 3 bifurcations on the SN curves occur generically “inside” a

tongue. This is logical because at least three different period 5 orbits are involved in
such a bifurcation. The bifurcation diagram in the case of € = 0.32 shows this feature
the best, see figure 30.

. What the stability is of each period 5 orbit inside the tongue and which period 5 orbits

collide at each SN curve has not been investigated yet.
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Figure 34: Driven Lorenz-84 with T = 0.5 and respectively Fy = 12, 13, 14 and 15 : the
boundaries of the Arnol'd tongues with p = 2 in the (G, ¢)-plane.

5. One can easily derive the number of period 5 orbits inside each region of the Arnol'd
tongue with p = % by just looking at which side of a saddle-node curve two more period
5 orbits show up. Outside the tongue zero period 5 orbits exist and in the tongue regions
are where two, four, six and even eight different period 5 orbits exist, see figure 30.

Also the tongue boundaries have been determined in the (G, €)-plane for fixed values of Fp,
see figure 34. We see that if ¢ — 0 the width of the tongue becomes independent of the value
of Fy, i.e. independent of the distance to the H curve. The theoretical expectation that the
Arnol’d tongue is flat in € is confirmed. In the neighbourhood of the H curve, when Fy = 12
or Fy = 13 the tongue boundaries are as expected. The boundaries meet each other at € =0
on the tongue “hair”, probably both boundaries have infinite order of contact. For € > 0 the
boundaries meet on the H curve. The tongue boundaries become more complicated at larger
distance of the H curve. At Fy = 14 and Fy = 15 the boundaries also meet for ¢ = 0 probably
again with infinite order of contact and for ¢ > 0 on the H curve. But when Fy = 14 one
tongue boundary has a complicated structure between these two points. It meets two cusp
bifurcations and exists also for Gy smaller than 7. For Fy = 15 one boundary meets four
cusps and the other boundary even transverses the line € = 0. Conclusion is that the tongue
boundaries are like expected at small distance from the H, curve with € small. However,
when the distance (or ¢) is increased they become more complicated, probably because there
are more than two periodic orbits on the invariant circle, compare also figure 30.

7.3 Destruction of the invariant circle

In this subsection we present two routes to chaos, found in the driven Lorenz-84 system with
T = 0.5. Both routes begin with periodic behaviour on an invariant circle and end with
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chaotic behaviour around a destroyed invariant circle.
First we discuss some bifurcations of period 5 orbits inside the Arnol’d tongue with p = %
At (Fp, Gg) = (12, 10) two period 5 orbits exist on the invariant circle, see figure 35(a). When
Fy is increased, fixing Gy = 10, the period 5 orbits themselves undergo bifurcations.
For Fy = 12.85 a period doubling bifurcation of the period 5 saddle orbit is detected. This
bifurcation is continued in the (Fy, Go)-plane, see curve PD®) in figure 36. It is striking that
the curve is closed and is almost tangent at both tongue boundaries. At the points of tangency
a possible codimension 2 bifurcation occurs where a period 5 orbit simultaneously undergoes
a saddle-node and a period doubling bifurcation. The corresponding fixed point of the map
5(53 has then eigenvalues i; = 1 and p2 = —1. Further research at these (codimension 2)
points is needed.
The period 10 orbit that exists inside the region enclosed by the PD®) curve is of saddle-
type. Therefore it is not possible to detect this orbit just studying the Poincaré map with
DsTool [14]. Behind the region, the period 10 orbit undergoes a inverted period-doubling
bifurcation and the period 5 orbit of saddle-type reappears. This orbit undergoes another
period doubling bifurcation, around Fy = 18.5, thereby creating a period 10 orbit of saddle-
type. This bifurcation is continued also in the (Fy, Gp)-plane, see curve PDgs) in figure 36.
Also the unstable period 5 orbit, existing at (Fp, Gp) = (12, 10), undergoes a bifurcation when
Fy is increased. The unstable period 5 orbit undergoes a Hopf bifurcation for Fy = 13.59 where
it becomes of saddle-type and a unstable quasi-periodic repellor consisting of 5 invariant circles
appears, see figure 35(b) for such a repellor. Also this bifurcation is continued in the (Fp, Go)-
plane, see curve H®) in figure 36.
H®) ends at both sides at a SN curve. Probably the period 5 orbit undergoes a Bogdanov-
Takens bifurcation at both places, see sub-subsection 2.2.1. Further research at these points
is still needed.
Again Arnol'd tongues are expected to emerge from this H® curve. When H® indeed ends
in BT®) bifurcations at both sides, the whole range of Arnol’d tongues with rotation number
varying form 0 to 1 will be present. Maybe their boundaries can be determined in future
research. Inside the tongues will be frequency locking on the period 5 circles and periodic
repellors will show up with period a multiple of 5. Such repellors are detected with DsTool
[14], see figure 35(c) for a period 35 repellor. At a distance of the H®) curve, the 5 invariant
circles are destroyed and a chaotic repellor appears, see figure 35(d-e-f) for some chaotic
repellors. A magnification of one of the five regions of the chaotic repellor, such as in figure
35(4), makes clear that it has a Hénon-like structure, see figure 37. So the chaotic repellor is
created by folding of the unstable manifolds of a period 5 orbit of saddle type.
Remarks

1. The points in the (Fy, Gp)-plane where the bifurcation curves PD® and H® cross each
other are no codimension 2 points in the product of the parameter- and phase-space.
Because the curves belong to two different periodic orbits, namely the period 5 saddle
orbit and the unstable period 5 orbit.

2. The curves SN and PD(®) laying close together this is also seen in the tongues of the
fattened Arnol’d map, see Broer, Simé and Tatjer [7].

Finally we show some practical results obtained in the neighbourhood of the region where
the Arnol’'d tongues with rotation numbers p = % and p = 47 overlap. These tongues overlap
when ¢ = 0.5, see figure 29(right). Fy = 13 is taken fixed and for several values of Gy we
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Figure 35: Driven Lorenz-84 system with T' = 0.5 and € = 0.5: a projection of repellors at
(Fo, Gp)-values inside the Arnol’d tongue with p = % onto the (Y, Z)-plane of seize (—1.6,1) x
(0.6,3.1)
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Figure 36: Driven Lorenz-84 system with 7' = 0.5 and € = 0.5: bifurcation curves of period 5
orbits inside the Arnol’d tongue with p = %; And magnifications of the both regions where a
Bogdanov-Takens bifurcation (BT?) is expected. The SN® curves (SN) are solid, the PD®)
curves (PD1 and PD2) are dashed and the curve H(®) (H) is dash-dotted, the two probably
codimension 2 points where a PD(®) curve is tangent to a SN®) curve are indicated (PDSN?).
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Figure 37: Driven Lorenz-84 system with T = 0.5, ¢ = 0.5 and (Fp,Gy) = (16.815,10.5)
: a magnification of one of the five regions of the chaotic repellor, such as in figure 35(4).
Projection on the (Y, Z)-plane of seize (—1.78, —1.42) x (2.7,2.94). The repellor clearly has a
Hénon-like structure.

look at the repellors of the map f, .. For Gy = 9.147 a period 5 orbit exists on S. But at
Go = 9.146 a large Viana-like repellor appears and S is destroyed, see Broer, Sim6 and Tatjer
[7] and its references. For Go = 8.944 this chaotic repellor still exist. But for Go = 8.943 S
reappears and a period 7 repellor on S is found. See figure 38 for projection of these repellors
on the (Y, Z)-plane.

Remark

To get more insight in the structure of the chaotic repellors it sometimes can be useful to
make a “Poincaré map” of the Poincaré map by taking as cross section a small slight times
a half plane. for example take as section in the (X,Y, Z)-space: ¥ := {[z,z + €] x Rt x R},
with e* <« 1.

7.4 Conclusion

Periodic forcing with period T = 0.5 has great influence on the Lorenz-84 system. For this
period Arnol’d tongues are found with their typical behaviour. With DsTool {14] all sort of
repellors are found: fixed points, quasi-periodic and periodic orbits on invariant circles, and
chaotic orbits round destroyed invariant circles. The routes to chaos occur inside the Arnol’d
tongues, as well as at their boundaries. The results of our investigation with AUTO [11] of the
Arnol’d tongue with p = % explains the tongue structure in a large part of the parameter
space (Fp, Gy, €).
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Figure 38: Driven Lorenz-84 with T = 0.5, ¢ = 0.5 and Fy = 13, varying Go from the
Arnol'd tongue with p = % to the one with p = 47 : Viana-like chaotic repellors appear in the
neighbourhood of the tongue boundaries.

8 Conclusions

The driven Lorenz-84 system exhibits complicated behaviour. A first exploration of the system
with the packages AUTO [11] and DsTool [14] clearly shows this. However cases with different
periods of forcing are investigated with different success.

1. The period T = 0.5 greatly influences and changes the Lorenz-84 system. For this period
Arnol’d tongues are found with their typical behaviour, see Broer, Simé and Tatjer [7].

They structure a large part of the parameter space (Fp, Go,€). The boundaries of the
largest tongue (p = %) are continuated with AUTO [11]. The results show the complicated
global structure of the tongue. With DsTool [14] all kinds of repellors in and around
tongues are found: fixed points, periodic orbits on invariant circles, quasi-periodic orbits
and chaotic orbits around destroyed invariant circles.

. To investigate the driven Lorenz-84 system with year rhythm (that is forcing period
T = 73) specialized tools with higher accuracy are needed. However, frequency locking
and tongue-structure can be found using a high order method based on direct Taylor
expansion.

. All previously mentioned complicated behaviour has to be present in the driven Lorenz-
84 system with day rhythm (that is forcing period T = 0.2). However, perhaps due
to the small scale on which such dynamics occurs, we have not yet been able to find
it numerically. No influence of day rhythm on the Lorenz-84 system is detected with
DsTool [14] and AUTO [11], probably because the period the period of forcing is small
compared to the characteristic periods of the Lorenz-84 system.

The results of C.Simé on the system with year rhythm (T = 73) and our present results for
period T = 0.5 strongly suggest further studies. They studies can be divided in different
areas. We think that a mixture of theoretical and numerical studies will be most fruitful.
The following suggestions are related to the studies of maps in general:

1. Unfolding of the codimension 2 and 3 bifurcations on the Arnol’d tongue boundaries,
see for example the results obtained at the fattened Hénon map by Broer, Simé and
Tatjer, [7].




6.

. Unfolding of the codimension 3 cusp saddle-node bifurcation, which is found on the

boundaries of the Arnol’d tongue with p = % in the driven Lorenz-84 system with

T = 0.5, see figure 30.

Unfolding of the codimension 2 period-doubling saddle-node bifurcation, which is found

on the boundaries of the Arnol’d tongue with p = 2 in the driven Lorenz-84 system

5
with T = 0.5, see figure 36.

. Computing two-dimensional unstable manifolds of saddle-points, for example using one

of the methods of Krauskopf and Osinga, see [18].

. Looking at the chaotic attractors of fr, 4 in the 3-dimensional space with a visualization

package.

Looking for 3D chaotic attractors, their theory is in progress by Tatjer.

The following suggestions are specific for studies of the driven Lorenz-84 system:

1.

Determining bifurcation curves, especially the Hopf curve and tongue boundaries in the
(Fy, Go)-plane of the driven Lorenz-84 system with year rhythm.

. Determining bifurcation curves of the period 5 orbits inside the Arnol'd tongue with

p= % for different values of €.

Determining Arnol’d tongues emerging from the H®) curve inside the Arnol’d tongue
with p = g— , i.e. continuation of boundaries of the tongues corresponding to orbits with
period a multiple of 5.

. Investigating the influence of other periods T on the driven Lorenz-84 system and mak-

ing limit set diagrams for T = 0.2 and T = 0.2 like is done for T = 73 (figure 23) and
comparing these diagrams.

Making another “Poincaré map” on the chaotic attractors to obtain, a set in the 2-
dimensional plane. This may give more insight in the structure of the attractor.

. Performing a data-analysis and investigating power spectra, dimensions, Lyapunov ex-

ponents etcetera.

Furthermore some investigations in the meteorological area are still needed:

1.

2.

Getting a derivation of the Lorenz-84 model out of the partial Navier-Stokes equations
for a better meteorological interpretation of the results, see Saltzman [31].

Comparing the numerical found features with meteorological data. The question is
whether you see something of the interesting dynamics of the driven Lorenz-84 system
in meteorological data.
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