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Abstract 
 
To allow tracking of vehicles across large stretches of highway, it is necessary to use multiple 
cameras. The usage of such camera networks poses the problem of accurately reacquiring each 
individual vehicle, as it leaves the receptive field of the one camera, and enters the other. The 
usage of low cost, low resolution cameras do not allow for license plate recognition. Therefore, a 
purely vision based solution to this problem is to extract visual features from each vehicle to 
create an object fingerprint. This fingerprint can then be used to reidentify vehicles as they enter 
the next camera's image. In this thesis several computer vision methods are explored for their 
ability to tackle the object fingerprinting problem. Moreover, an ensemble of those methods is 
created that surpasses the performance of the best individual technique. 
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Chapter 1 
 

Introduction 
 
 

1.1 Object Fingerprinting 
 
Increases in computing power have enabled computers to aid in automating video based 
monitoring. Whereas traditionally human operators would have to observe a large array of 
displays, computers step in more and more to assist and automate. An example of computer 
assistance can be drawing attention of a human operator to certain events, such as aggression 
[1], to aid in security tasks. Other applications may be more large scale and integrated, such as 
tracking vehicles in camera networks

1
. Such tracking may be done for several reasons. With a 

complete track of all vehicles that passed through a camera network an analysis can be made on 
how traffic flows through a road net. With accurate information about traffic flows, adjustments 
can be made to the road net to combat congestion. The effect such adjustments have can then 
again be monitored by the same camera network, making it an integral part of the process.  
 In order to come to an accurate model of traffic flows, vehicles have to be reliably tracked 
between cameras. This can be done by location and time information alone. However, this means 
that as the distance between cameras increases, the accuracy of the tracks will deteriorate. 
Unrecorded changes in the vehicles’ trajectories lead to inaccuracies with passing on the correct 
identity of vehicles from one camera to the next. One solution is to place as many cameras as 
needed to reduce the problem to an acceptable level, another is to use visual features to re-
identify vehicles. An obvious approach would be to use the obligated license plates as distinctive 
features, but this puts quite severe demands upon the specifications of the cameras used. When 
the cameras used do not yield images from which the license plates can be read automatically, 
another set of visual features has to be used. To overcome the loss of distinctiveness of the 
license plate, as much of the vehicle’s visual features have to be incorporated into a distinctive 
descriptor for each vehicle; an object fingerprint. For reasons of practicality the object fingerprints 
should be easily comparable, for example through a simple Euclidean distance measure, without 
any further processing.  

This thesis will explore several possible techniques for object fingerprinting in the domain 
of vehicles on a highway. The starting point for this thesis lays with ongoing research into the 
mobility domain at the Computer Vision and Statistics department of TNO Science and Industry. 
Since this project has been in progress for some time, there is an architecture in place which 
does a lot of the pre-processing of the raw video data, most important of which for the 
fingerprinting task is the detection of vehicles in videos. These result in a detection window, 
containing the detected vehicle. From this window the features are extracted that make up the 
fingerprint. Although object fingerprinting is the task at hand in this paper, the techniques used 
are also common in other computer vision applications; object detection and object recognition. 
With object detection the job is to either report whether a given object is present or not, or to 
report the likelihood of presence. With object recognition the goal is to report the nature of an 
object given that it is present in some input, usually for objects of different classes. Object 
fingerprinting is defined here as object recognition when considering only objects of the same 
class. This may seem as an insignificant distinction, but it may very well be that to distinguish 
objects of different classes, such as bicycles from cows, other parameters and techniques work 
better than when comparing vehicles with other vehicles. 

                                                 
1
 www.tno.nl/vbm 
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1.2 Earlier Work 
 

Earlier work on object fingerprinting in the vehicle domain has focussed on aerial footage and 
employed mostly holistic recognition approaches [2]. The novelty of the contribution made in [2] 
lays in the introduction of using local features; SIFT [3] and PCA-SIFT [4] to achieve reacquisition 
in roadside smart camera networks. There each of the smart cameras performs its own 
processing and then communicates the results. Because of communication bandwidth limitations 
it was preferable to have as small fingerprints as possible to reduce broadcast needs, maximizing 
the ratio of reacquisition scores to transmitted bits. In our system central processing is assumed 
therefore the latter restriction is not taken into consideration. 

This thesis continues research on object fingerprinting with what is suggested as future 
work in [2]; the search for further features and the inclusion of colour information. Moreover, an 
ensemble method will be used to derive a combination of features that should surpass the best 
individual method’s performance. As of yet there is no consensus on how to represent colour in 
computer vision, as testified by the large number of colour spaces available, a wide selection of 
which are described in [5].  

1.3 Research Questions 
 
Recommendations to further the state of the art in object fingerprinting as offered in [2] include 
the search for further features and a manner in which to include colour information into object 
fingerprinting. Therefore two research questions can be formulated: 
 
Can employment of previously unexplored and perhaps colour based features generate a 
significant increase in reacquisition scores for object fingerprinting? 

 
When provided with an array of techniques, each aimed at the same task, it is interesting to 
explore the possibility of combining the outputs of each individual method to further boost 
performance. Therefore the second research question is: 
 
Is it possible to create an ensemble of object fingerprinting features, that together surpass 
performance of the best individual feature? 

1.4 Structure of this thesis 
 

The remainder of this thesis is structured as follows; Chapter 2 describes the features used and 
the manner in which the fingerprints they produce are compared. Also the ensemble technique 
used to combine the feature outputs is presented there. Chapter. 3 describes the data and 
corrections applied to it to improve fingerprinting performance. The results of the experiments 
with the different techniques are reported in Chapter 4. In Chapter 5 conclusions are drawn based 
on the findings in this thesis, and recommendations are made for future work. 
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Chapter 2 
 

Methods 
 
 

2.1 Scale Invariant Feature Transform (SIFT) 
 
A very popular computer vision technique that has greatly influenced its field since it was first 
devised is the Scale Invariant Feature Transform, SIFT [3]. In short it does two things, localising 
positions, keypoints, in object images that can consistently be re-localised when the same object 
is presented again with some transformation, and describing these keypoints in such a way that it 
can be reliably separated from other keypoint descriptors. 
 

2.1.1 Scale Space 

 
SIFT variations all have one thing in common, the keypoint detection mechanism. Using Scale 
Space Theory, the image at hand is halved in size several times, each resulting in a so called 
octave, making up a pyramid with the original sized image as its base. By blurring each octave 
several times through convolutions with increasingly large Gaussian kernels levels within each 
octave are created. A fixed number of levels go into an octave. This way a space is created 
ranging from small to large scale kernels, hence the name Scale Space Theory. By subtracting 
adjacent levels in scale space Difference of Gaussian (DoG) levels are created, as illustrated in 
Figure 1. By comparing every pixel value in a DoG level with its eight neighbours in the same 
level and the eighteen neighbours in adjacent levels extrema in DoGs are detected, where the 
descriptors will be calculated. For a more accurate localisation of the extreme valued pixels a 
second order Taylor expansion is applied to neighbouring pixels. This step is important since as 
octaves become smaller, the area each pixel covers in the original image increases, and without 
this sub-pixel localisation, inaccuracies in extrema locations would be introduced.  

Keypoints located on edges are filtered, as are low contrast keypoints which are dubbed 
not stable enough for reliable redetection. Finally the major orientations of the keypoint are 
determined. There is the dominant direction in which the strongest gradient in pixel values is 
present in the local image patch and besides that there are the orientations that are close in 
strength to the dominant orientation, which are also taken into account. The SIFT procedure now 
continues to compute its descriptors for all of the keypoints that passed the filtering stage. 
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Figure 1: Gaussian Scale space, consisting of the original grey value image at the base, 
increasingly blurred with Gaussian kernel convolution between levels, and halved in size 
between octaves. Difference of Gaussian (DoG) maps, are constructed by taking the 
difference of two adjacent levels. [3] 

 

2.1.2 Descriptor 

 
Given a previously detected keypoint, a descriptor is computed according to the keypoint’s 
location, orientation and scale. The size of the local image patch to be used for feature 
computation is determined by the scale at which the keypoint was detected and a magnification 
factor, 3.0 by default. The square patch is divided into 4 x 4 square regions, within which for each 
of the regions the gradient magnitude and orientation is determined. The gradient magnitudes are 
weighted by a Gaussian window with standard deviation of half the size of the local image patch, 
favouring the gradients that lie nearest to the centre of the patch. The final descriptor is computed 
by accumulating the weighted gradient magnitudes per groups of four squares and categorizing 
the gradient directions into 8 bins. This results in a vector of length 128 when using the 
parameters as proposed in [6].  
 

2.1.3 Matching  

 
With SIFT, in order to determine whether or not two images contain the same object, matching on 
the descriptors is performed. In [6] it is proposed to use Euclidean distance without the usage of a 
threshold, instead a relative distance between the nearest match and the second nearest match 
has to meet a certain ratio, 0.8 by default.  
 The philosophy behind this ratio based matching is that a true matching descriptor will be 
significantly closer in Euclidean distance than a non-match. In the case where no matches exist, 
all non-matches will be at non-discriminating distances; the distance to the best match lies within 
0.8 times the distance to the second best match. Lowering the ratio typically results in a decrease 
of matches, while raising the ratio to 1.0 results in all points being matches.  
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Images which yield the most matched descriptors are typically linked as depicting the 
same scene or for the Object Fingerprinting task, containing the same object. 
 

2.2 HueSatSIFT 
  
An elegant approach to extend SIFT with colour information is provided by [7]. Here an additional 
128 sized descriptor is concatenated to the regular SIFT descriptor by considering HSV colour 
space [8] along with the regular intensity channel. This results in a 256 sized descriptor. The 
detection of the keypoints is the same as with regular SIFT. For lack of a better name, the 
proposed SIFT extension will be named HueSatSIFT here. 
 According to the authors, HueSatSIFT contributes mostly by reducing false matches 
when compared to regular SIFT. Due to the lack of colour information two objects may appear to 
be very similar in grey value images, but when displayed in colour appear nothing alike. This 
could be the case for vehicles of the same make and model, but with a different paint job. 
 

2.2.1 Hue and Saturation 

 
In the HSV colour space, the H or hue channel describes the wavelength of a pixel, S describes 
how saturated a colour is; how much grey present. Lastly the V channel gives the intensity of the 
colour. Contrary to S and V, H is a cyclic value. Starting at 0 degrees with a full red, the hue 
passes through all colours to end up with a very similar red at 359 degrees. 

The angular representation of colour allows to use it to replace the standard SIFT 
gradient direction in the HueSatSIFT descriptor. The saturation by the same analogy is used to 
replace the gradient magnitude, since it indicated how strongly a colour is present. Here the 
intensity channel is not present in the colour descriptor, otherwise intensity would be included 
twice due to the concatenation with the regular SIFT descriptor, which is of course intensity 
based. 

 

 
 Figure 2: Schematic construction of the HueSatSIFT descriptor [7] 
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2.2.2 Descriptor 

 
In order to achieve a 128 element colour descriptor the Hue orientations are divided into 8 bins 
and the patch is divided into 4x4 square regions, the same as with regular SIFT. Figure 2 
illustrates the global approach to computing the colour based descriptor. A local image patch as 
used by SIFT is generated at the location, orientation and scale at which the keypoint was 
detected, but of course for this purpose the local patch does contain colour information. Once the 
patch is converted into HSV colour space it is processed pixel wise, according to the hue and 
saturation of the pixel the appropriate bins of the descriptor are updated.  

Because hue and saturation can be influenced slightly by changes in intensity, the 
neighbouring directional bin is also updated through linear interpolation. A similar linear 
interpolation is applied to the location of the given pixel, such that the saturation is shared with 
three neighbouring squares. The resulting concatenated descriptor of length 256 can be matched 
by the same technique using relative Euclidean distances as with standard SIFT. 
 

2.3 Colour Invariant SIFT 
 
Instead of creating an alternative descriptor it is also possible to perform SIFT keypoint detection 
on alternative colour spaces, besides just the intensity channel, such as in [9] where on each 
channel of the HSV colour space SIFT is applied. Another more advanced technique is through 
the usage of invariant colour models [10, 11] each with specific invariance to shadows, 
illumination, highlights and noise. In [12] a number of local descriptors based on invariant colour 
models are compared, with the SIFT descriptor based on chromatic invariants as overall winner. 
Therefore this method is investigated here for its applicability to object fingerprinting. 
 

2.3.1 Colour Invariance 

 
Invariance to illumination is achieved through converting the acquired RGB colours into the 
Gaussian opponent colour model. Equation 1 gives the linear transformation matrix, by Gaussian 
differentiation with respect to the image axis x and y. Gradients independent of the intensity 
distribution are obtained. This Gaussian differentiation is achieved through convolution with a 
Gaussian Kernel differentiated with respect to x or y respectively. This independence of intensity 
means shadows and shading do not affect the colour descriptor. Figure 3 displays a toy image in 
RGB colours and its representation in the chromatic invariant model. 

Equation 1: Transformation of RGB into opponent colour space [10]. 
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Figure 3: Left to right, original image, λĈ first spectral derivative, λλĈ second spectral 

derivative and their magnitudes
w

Cλ
ˆ and

w
Cλλ
ˆ . 

 

2.3.2 Invariant Descriptor 

 
 To achieve the extraction of SIFT descriptors the same scale space extrema search as 
described in Subsection 2.1.1 is performed, firstly on the greyscale channel. If an extreme 
position is found, but fails to pass a minimal contrast threshold, the position is inspected another 
two times for the yellow-blue and red-green opposite colour channels. This gives the position two 
more chances as being included, and therefore, on average, will result in more keypoints 
compared to regular SIFT. For all of the keypoints that pass through the filtering process a 
descriptor as described in Subsection 2.1.2 is computed. This results in three 128 sized 
descriptors, one for the local greyscale gradient, and an additional two for the colour gradients as 
computed in Equation 2.  

Equation 2: Differentiation producing the invariant colour gradients [12] 

 
The magnitudes of the colour gradients are given by Equation 3. Together the three descriptors 
result in a descriptor of length 384 per keypoint. Despite the difference in size the same 
technique, based on relative Euclidean distances for matching descriptors can be used. 
 

Equation 3: Gradient magnitudes for both colour channels [12] 
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2.4 PCA-SIFT 
 
Yet another variation on SIFT comes in the shape of PCA-SIFT [4], again the same method for 
detecting keypoints is employed as with regular SIFT. However the descriptor which is computed 
at the given location, orientation and scale is quite different. 
 

2.4.1 Principal Components Analysis 

 
Principal Components Analysis (PCA) is a commonly used technique to reduce the 
dimensionality of data, with minimal loss of information [13]. By computing the covariance matrix 
of some acquired data, normalized by the data mean, and then performing Eigen value 
decomposition on the resulting matrix, an Eigen space is obtained. Then onto this Eigen space a 
projection can be made with a new data instance which reduces the dimensionality of the given 
data to the number of components specified in the construction of the Eigen space.  
 Inherent to this approach lays the assumption that the data is a Gaussian distribution in 
which mean and standard deviation are meaningful, and moreover, large covariances actually 
yield important information. Also PCA is restricted to orthogonal linear combinations. Despite this, 
PCA is found to be useful combined with SIFT in [2] for object fingerprinting. 
 

2.4.2 Descriptor 

 
After keypoint detection, which supplies PCA-SIFT with local image patches at the detected scale 
and rotated to the dominant gradient orientation, a descriptor is computed by means of PCA. 
 In [4] a patch of 41 by 41 pixels is proposed, from which two gradient patches, horizontal 
and vertical, can be extracted sized 39 by 39 pixels. Despite the fixed size, the information within 
the patch may have been obtained from a far larger or smaller region in the original image, since 
the local image patch obtained at a certain scale is resized to the desired patch size. Combining 
both 39x39 patches from the vertical and horizontal gradients produces a feature of length 
39x39x2= 3042. To minimize the effect of intensity changes the vector is normalized to unit 
length. The goal is to reduce the 3042 values to the ones containing the most information, 
choosing 36 of these principal components is the default number, as it was found by the authors 
of [4] to be of equal distinctiveness as the original sift descriptor. Custom patch sizes can be used 
of course and also the number of principal components can be altered. Any change in either the 
number of principal components or the patch size requires recomputation of the Eigen space. 
Figure 4 shows the first 36 principal components for the local patches. The Eigen space is 
obtained through the application of PCA on the above mentioned 3042 sized feature vectors as 
collected from the training set. Matching descriptors from different images is proposed in [4] to be 
achieved through a simple thresholding function. The level of the threshold is to be chosen 
through analysis of the recognition scores.  Here the same relative distance matching as with 
SIFT will be used, since this allows for a more direct comparison to the other SIFT-based 
approaches. 
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Figure 4: Left to right, top to bottom, the first 36 principal components obtained from PCA 
applied to the first 10,000 keypoint patches of the 09.45 dataset. 

 

2.5 Bag of Visual Words  
 
The bag of words approach is quite common in document classification techniques, such as [14] 
where it is used for detection of spam in weblogs. Instead of parsing the grammar of the 
sentences in a document, a holistic approach is used that simply considers all words present 
regardless of their location. To adopt the bag of words approach in machine vision it is required to 
formulate a vocabulary of visual words and a means of detecting these words in an image, [15] 
describes an example of this approach.  
 The first problem that arises is the question of what constitutes a visual word in the first 
place. In [2] visual words take the shape of clustered PCA-SIFT descriptors, used as a means for 
reduction in communication overhead between smart-cameras. Here, instead of clustered PCA-
SIFT descriptors, regular SIFT descriptors will be used, since the latter yielded far better results in 
initial testing. The approach used here remains largely the same as in [2], only the nature and the 
length of the descriptor used, 128 instead of 36 is different. The principle is to cluster a large 
collection of SIFT descriptors and assign unique index numbers to the leaves. This results in a 
reduction in information transport from 128 values to just a single number per descriptor. A vector 
of unique descriptor indexes then make up the fingerprint for a specific object, the number of 
matching indexes between two images determines the strength of the match. Clusters are 
acquired through hierarchical k-means clustering, with k=3 and choosing random descriptors as 
the initial cluster centroids. Clustering is continued until the number of clusters equals the size of 
the descriptor set; every cluster at the final depth is then occupied by a single descriptor. By 
selecting different levels in the cluster hierarchy the optimal size of the vocabulary can now be 
chosen. Figure 5 illustrates the principle of hierarchical k-means clustering. 
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Figure 5: 2D representation of hierarchical k-means clustering, with k=3 at levels 1 to 4 [2] 
 
 

 
Figure 6: Fingerprint creation from hierarchically clustered SIFT descriptors [2] 
 
 The detection of visual words is achieved firstly through scale space analysis as 
described in Subsection 2.1.1, computing the SIFT descriptor as in Subsection 2.1.2. The unique 
index number is assigned by matching the descriptor to the ones in the cluster, and adopting the 
index number of the best match. Although the vocabulary can be very large when the choice is 
made to use one of the final levels in the cluster hierarchy, the tree representation still allows for 
efficient retrieval of descriptor indexes. The match between two fingerprints is determined by the 
intersection between the two vectors of descriptor indexes, the larger the intersection, the more 
likely the two fingerprints belong to the same instance. Figure 6 gives an example of how a 
fingerprint is constructed with the Bag of Visual Words approach. 
 A potentially powerful extension to the Bag of Words approach using SIFT is to use 
Invariant Colour SIFT descriptors, despite the larger size of the descriptors the same method of 
clustering can be applied. The reduction in communication overhead is even larger when colour 
SIFT is used, since the reduction there is from 384 values to one value, helpful for smart camera 
approaches to employ the expressiveness of colour SIFT without increasing the demand on 
communication bandwidth. As much descriptors as possible will be put into the vocabularies, 
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while ensuring equal amounts for both the regular and colour invariant SIFT conditions. Also the 
additional colour keypoint positions may prove beneficial for performance. 
 

2.6 Spatial Pyramid Matching 
 
Whereas holistic approaches by definition discard spatial information, in [16] a method is 
introduced that includes spatial information into otherwise holistic methods. By dividing an image 
into several layers of a spatial pyramid, features from portions of images can be compared.  
Instead of doubling the number of regions per level as in [16], the approach as demonstrated in 
Figure 7 is used. This causes regions in higher levels to sometimes overlap borders between 
regions of preceding levels. This is done to reduce any effect of the arbitrary location of region 
boundaries. The number of levels in the pyramid can be varied to explore the optimal number. 

 

 
Figure 7: Pyramid levels 0 to 5 and the increasing number of regions per level 

 
 Inspiration for the two features to use in the Spatial Pyramid Matching scheme here is 
derived from the work in [9] where the Spatial Pyramid Matching approach is used for image 
classification. First a Bag of Visual Words approach is used similar to that of Section 2.5, except 
SIFT descriptors are acquired in the images not through scale space analysis, but by computing 
descriptors at fixed interval positions. And instead of only counting unique visual words just once, 
a histogram of occurrences is constructed. The same will be done here for fingerprinting, albeit on 
square image patches instead of circular ones. The size of the vocabulary was chosen at 300 
words by the authors of [9], but through similar clustering as in Section 2.5 any vocabulary size 
can be used. The second feature is based on discrete intensity gradient directions. Through 
convolution with Sobel kernels, the orientation of the gradient at every pixel location within a 
region is calculated. The orientations as previously computed are matched to the bins of a 
histogram corresponding to a range of directions from 0 to 2 Pi. The number of bins, and thus the 
size of the angle they cover, of course can be varied to find the optimal value. Both features result 
into a histogram each, which after normalizing to unit length are matched through Equation 4. 
Complete Spatial Pyramid representations are matched by the matching kernel in Equation 5, 
here with equal weights for all levels. 
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Equation 4: Matching of histograms through chi-square 

 

Equation 5: Matching kernel for Spatial Pyramids 

 

2.7 Colour Co-occurrence Histograms 
 
Colour Co-occurrence Histograms or CCHs are a clever way of combining the colour and spatial 
layout of an image into a single holistic descriptor. Applications for CCHs are usually found in 
object recognition domains, such as in [17] and [18]. CCHs combine colour and spatial 
information by inspecting an input image pixel wise and within a certain radius count what colours 
co-occur along with the central pixel. This raises the matter of how to represent colour. The 
simple answer is to use RGB information, cameras perceive colour this way, and monitors use it 
for projection. However, in the RGB colour space intensity and colour are intertwined. The 
commonly used HSV colour space however has no such interdependencies among its channels 
[19, 20], and incidentally it more closely represents how humans perceive colour. For those 
reasons we will use the HSV colour space here.  
 Having established a colour space to work with there is still the need for a manner in 
which to quantize the colours present in an image. Without quantizing the colour space the 
resulting CCH would most likely exceed the input image in size for the data in the current domain. 
Also, quantizing inherently increases the tolerance level to re-identify a particular colour. This 
tolerance is important since between cameras there will be at least slight differences in perceived 
colour. One possibility is to divide the three dimensional colour space into smaller cubes. These 
cubes each span a certain range of colours, colours in the input images are then labelled by the 
index number of the cube that contains them. Although this is an effective way to quantize a 
colour space there is a drawback; colours that do not occur within a domain are equally well 
represented as colours that do occur. In practice this means that increasing the size of the CCH, 
which grows quadratically as more categories of colours are included, yields a smaller effective 
growth in the number of colours in the domain that are represented. 
 A way to overcome the waste in colour representation is to use clustering on colours 
actually present in a training set, instead of quantizing the entire colour space by dividing it into 
cubes. From a video track the colours present in vehicle detection windows can be gathered, and 
then be clustered into a desired number of colour templates, each with a unique label. By 
assigning the unique template labels to colours as found in input images a CCH can be 
constructed in the usual manner. Clustering here is performed using k-means clustering, which 
continues until there is no change in cluster center membership for data points. Figure 8 shows 
all unique colours from the detection windows present in a single 15 minute video, and the 
trajectory cluster centers follow between iterations. Notice how sparsely the colour space is 
occupied by the colours actually present in a 15 minute interval. Since the detection windows are 
not all of the same size, normalization to unit length is applied before comparison using Equation 
4. Figure 9 shows an example of a CCH and the corresponding vehicle. 
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Figure 8: Unique colour instances in detection windows during 15 minutes of video  
 

 
Figure 9: Colour Co-occurrence histogram, for a vehicle image, with radius 20 pixels and 
59 colour clusters 
 

2.8 Cortex-Like Mechanisms 
 
A biologically inspired approach to computer vision presents itself in the form of [21] in which the 
ventral stream of the primate visual cortex is modelled to be used for object categorization. 
Besides object categorization [21], other examples of successful applications based on this 
research are presented in [22] and [23] in the context of handwriting recognition, so perhaps for 
object fingerprinting the method will also prove viable.  
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The model consists of four layers, S1, C1, S2 and finally C2, which together after processing 
results in a scale, orientation and position invariant description of an input image, Figure 10 gives 
an overview.  

 
Figure 10: Overview of how an input image is converted into a d-sized descriptor with d 
previously stored patches through the visual cortex model. Modified from [23] 
 
The first level S1 contains units that simulate the receptive fields of cells in the primate primary 
visual cortex area V1 with Gabor functions, Equation 6.  
 

Equation 6: Gabor Function [21] 
 
The parameters of the Gabor functions are tuned to fit the results obtained from neurological 
research. To achieve scale invariance a range of sizes are used, but to keep the total number of 
Gabor functions tractable for each scale just four orientations are considered, with 16 scales and 
4 orientations this results in 64 Gabor functions. At the next level C1, so called complex cells are 
simulated. These cells display some tolerance to shift and size. This invariance is achieved in the 
model by gathering the local maxima over position and scale in the S1 level. S2 is the next level, 
here C1 inputs are compared at corresponding orientations to previously seen C1 patches, as 
stored in a dictionary. The matching of patches is done by an Euclidean distance based 
approach, named a Gaussian-like radial basis function, Equation 7. 

Equation 7: Gaussian-like radius basis function [21] 
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The output of the model is obtained at the final level C2; the best match associated with each 
patch over all scales and positions as computed in S2 is stored in the output vector, which is of 
the same dimension as the number of patches. The number of samples extracted from the 
images for both dictionary creation and for recognition at runtime can be varied to find an optimal 
value. The scale at which C1 features are selected is chosen randomly until the specified number 
of samples is reached. For construction of the dictionary the input images can be acquired from 
the relevant domain, or the choice can be made to try and create a universal dictionary. The 
intuitive option of creating a relevant dictionary also proves to be the most successful in the 
experiment performed in [21], therefore this approach will be explored here. 
 The usage of a single image for each vehicle per camera means that the model cannot 
benefit from multiple training samples, as is the case in [22, 23]. Contrary to the publicly available 
model

2
 that uses a Support Vector Machine for classification, here the C2 fingerprints are 

matched with a simple 1-NN algorithm. This is done for simplicity, since 1-NN does not require 
retraining when new instances are introduced, and for a fair comparison to the other methods. All 
input images are first converted to greyscale and resized to the same size before the model is 
applied. 

 
 

2.9 Boosting 
 
Boosting [24, 25] is a process which is know as a meta-algorithm. Instead of actually performing 
machine learning tasks such as classification, recognition or as is the case here, object 
fingerprinting it manages the training process to optimize performance of such tasks. Provided 
with a large number of preferably computationally inexpensive features, boosting combines a 
collection of so called weak classifiers into a single strong classifier.  
 The combination of weak classifiers is chosen through several rounds, where in each the 
best performing weak classifier is added to the set of best performing classifiers from earlier 
rounds. After every round the weights of the training samples are adjusted, according to the 
performance of the set of best features; samples which were incorrectly processed are given a 
higher weight with respect to the other samples. This way, the most difficult samples are used to 
compile the final strong feature set, intended to provide the strongest possible combination of 
weak features. 
 

2.9.1 Multiclass Boosting 

 
Typically boosting is applied to two class problems, such as in [26] for the task of face detection 
or as in [27] to detect pedestrians; either the target class is present or it is not. The object 
fingerprinting task however, is a multiclass problem, since given the fact that an object is present, 
it can be any of all identities. For multiclass problems it is possible to conduct a number of 1 vs. 
all classifications, and then choose the strongest response [28]. But for an unknown number of 
classes, each time a new class presents itself, the whole boosting process would have to be 
started from scratch for the new class. Therefore, for object fingerprinting the choice was made to 
boost weak classifiers for a nearest neighbour classification, similar to what is explored in [29] for 
handwritten digits. Algorithm 1 describes how nearest neighbour boosting is achieved here. To 
reduce the time needed for the boosting process, instead of comparing all vehicles against each 
other, a random selection of thirty vehicles is used, and the correct match of course is also 
included.  

                                                 
2
  http://www.mit.edu/~jmutch/fhlib 
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Algorithm 1: Boosting with nearest neighbour classification 
  
 So each round among 31 vehicles, the correct one has to be sought out by the nearest 
neighbour algorithm. Once boosting is completed the optimal number of features can be 
determined starting with the most successful ones as determined by the quality measure. The 
used features are so called Haar-like features [2], which are very simple in nature, pixel values in 
the positive areas are summed together, whereas pixel values within the negative areas count 
are subtracted, Figure 11 gives some examples. Each feature is resized to span the full sub 
image of individual vehicles. The sum of the negative and positive areas is the output value of a 
Haar-like feature, and the values of all features in the final boosted classifier make up the feature 
vector to be used for fingerprinting by 1-NN matching. Through the usage of integral images [2] 
Haar-like features can be computed very quickly, in constant time. This speedy computation of 
Haar-like features is a great benefit, since due to the weak nature of individual features large 
numbers of them are required. The approach of boosting Haar-like features is commonly applied 
to detection tasks. This means capturing properties that all objects in the class have in common. 
The goal here is to try and see if it is possible to use the same kind of features, to capture those 
properties which vary as much as possible between vehicles, and use it to discriminate one from 
the others. 
 

 
Figure 11: A few Haar-like features projected onto a vehicle, yellow denotes positive areas 
and red negative ones. 
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2.10 Feature Ensemble 
 
The methods described in the previous sections can be used on their own to match vehicle 
identities in different cameras to each other. But combining the outputs of each individual method 
into a single verdict may potentially be more accurate than the highest individual score. A 
condition for this however is that there is a spread in the errors made between each classifier 
involved [30]. If every classifier would produce the same results, it is impossible to come to a 
higher score than that of a single one. The class of techniques that combine multiple outputs into 
a single one are know as ensemble techniques. A range of such techniques exists; Bagging [31], 
Bayes Optimal Classifiers [32] and Stacking [33] are some common examples. With Bagging a 
bootstrapping procedure is used to improve classifier performance on random combinations of 
training data. Bayes Optimal Classifiers uses the Bayesian rule to compute the most likely label 
for an instance based on multiple hypothesis. With Stacking a machine learning technique, such 
as a neural network [33], is trained with the outcomes of individual classifiers as its input. A very 
popular ensemble technique is Adaboost, a variant of Boosting which also served as a basis to 
the technique discussed in Section 2.9. An advantage of Adaboost over the other ensemble 
techniques is that it shifts the influence training instances have on the outcome; more difficult 
samples have greater influence. Adaboost returns a quality value alpha for each input methods’ 
classification. This quality can then be used for weighing the votes of the boosted qualifiers. The 
most successful method will have the largest vote in the final output. Naturally for the final 
classifier to be any better than the strongest classifier by itself, the sum of the weights of the other 
classifiers has to exceed the weight of the strongest one. If this were not the case, the ensemble 
classifier would always produce the same result as the strongest one on its own. Since many of 
the methods used for fingerprinting here are SIFT-based, it is naive to assume a large spread in 
errors between classifiers. Adaboost with its scheme to shift weights to more difficult training 
samples is therefore the one used here, since it aids to ensure diversity in the final classifier. 
 The algorithm used here to ensemble the different fingerprinting methods is very similar 
to Algorithm 1. However, instead of Haar-like features, classifications from each of the described 
methods are used as input. And also instead of nearest neighbour classification, for each of the 
vehicles in the training set for boosting, the identity each method returns is compared to the 
ground truth of the data set, which was created manually. Once training is done fingerprinting can 
be performed with the feature ensemble. Every method has a vote on which vehicle in the second 
camera it considers to be the best match to the vehicle under consideration. This vote is weighted 
using the qualityα , the identity that gathers the largest amount of α is the one cast by the 

feature ensemble. Should any of theα values be negative, then all α values are linearly scaled 

such that the lowest value becomes 1. 
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Chapter 3 
 

Data 
 
 
The dataset used was obtained from roadside cameras situated at the national highway A67 near 
Venlo, The Netherlands in May of 2007. Figure 12 gives an overview of the situation in which the 
four cameras were positioned. Despite traffic travelling in the other direction is visible, only 
vehicles on the right side of the road are considered here. Although there is some variation in 
traffic density, none of the videos used in this thesis display any form of traffic jams. Weather 
conditions were dry for all videos. 
 

 
Figure 12: Schematic representation of recording situation 
 
Of the four cameras just the first two are used for experiments with a distance of 105 meters 
between them, although of course the distance between cameras does not matter for object 
fingerprinting, as long as both camera positions have only slight differences in lighting conditions. 
The cameras operated at a resolution 768 by 576 pixels, with automatic white balancing 
engaged. Figure 13 shows an example of good lighting conditions whereas Figure 14 shows the 
same camera position during backlight. Clearly computer vision systems benefit from lightly 
clouded conditions, since these clouds diffuse light more evenly across the sky. 
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Figure 13: A video frame during good lighting conditions, from the 09.45 data set. 

 

 
Figure 14: A video frame from the backlight 09.30 dataset, notice the difference in contract 
when compared to Figure 13 
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Vehicle fingerprints are extracted from detection windows. Despite the right side of the vehicles 
are visible due to the camera angle at which was recorded, not as much of the vehicle as 
possible is included in the detection windows. This is due to the tendency of the detector to focus 
on the rear of vehicles. To capture as much of the sides as possible the original detection 
windows are widened, if the size of the window falls below some threshold. This helps to include 
as much of the vehicle as possible, while attempting not to introduce a lot of background noise. 
Figure 15 shows a widened and an original detection window alongside each other. 
 

 
Figure 15: Widened and original detection window of the same vehicle 
 
 Because of an unavoidable analogue conversion from one video format to another, 
wrongly interlaced video frames were introduced. This is most likely due to an asynchrony 
between the internal clocks in the recording devices. To attempt to correct the introduced 
interlacing errors a method was devised; based on the observation that correctly interlaced 
images display lower changes in intensity in the vertical direction than incorrectly interlaced ones. 
By comparing the given detection window to a window constructed with the even image rows of 
the original detection and the uneven rows from the preceding and following video frames, the 
best combination can automatically be selected by choosing the one with the lowest contrast 
between adjacent rows. This method of deinterlacing maintains the original resolution of the input 
image. This is a great advantage, since the size of the detection windows are very small to begin 
with. Figure 16 displays an example of corrected interlacing on a detection window containing a 
vehicle. 
 

 
Figure 16: Detection window, before and after correcting the faulted interlacing 
 
 Another correction applied to the data before processing is a correction in colours, to try 
and normalize images between cameras. Each camera appears to have a somewhat different 
colour calibration, which may influence the accuracy of vehicle reacquisition by introducing 
variation in the fingerprints. To calibrate the cameras the detection windows of vehicles are used, 
since the appearance of the vehicles is the only constant shared by all cameras, save for small 
changes in viewpoint. For each of the cameras in a dataset with good lighting conditions, the 
median of the RGB channels in the detection windows was computed. To normalize the colours 
for the detection windows from all cameras the colour channels are adjusted to match the median 
value. Figure 17 shows the difference between both conditions. 
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Figure 17: The same vehicle as seen in cameras 1 and 2, before and after colour 
correction. Notice how the uncorrected image in camera 1 has a blue mist about it that is 
reduced after the correction.  
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Chapter 4 
 

Results 
 
 
In this Chapter the results obtained from each of the methods individually, and lastly the result 
from the ensemble of all features is reported in terms of precision scores. A precision score 
represents the fraction of vehicles that are correctly linked between cameras. This measure 
therefore expresses how reliable a fingerprinting method is. For the vehicle data the 15 minute 
clips are processed through a tracking scheme that keeps track of individual vehicles. From these 
tracks various features such as speed, acceleration, lateral position and distance travelled are 
determined. For the fingerprinting task under consideration here, the speed and acceleration are 
only of importance. By predicting the velocity of the vehicle over the distance to the next camera, 
an estimated time of arrival is computed. This allows for considering only a fraction of the vehicles 
in each data set by selecting only vehicles within a time interval centred on the predicted arrival 
time for the next camera. A 30 second time interval was selected which is wide enough to ensure 
that the correct vehicle is present and narrow enough to keep processing times reasonable. The 
usage of a subset of the total data also makes the job somewhat easier, since there are less non-
target vehicles to be mistaken for the correct one. But as will become clear, the methods used are 
still faced with a challenge since the results do not display any ceiling effect. 
  For each 15 minute data set the average number of comparisons that are made differ 
somewhat due to varying traffic density. Therefore the number of vehicles overall and the number 
of non-target vehicles in the mentioned time interval will be different per set. Based on these 
numbers alone, the data set with the most vehicles within a 30 second time window will be the 
most difficult since there is a greater chance of picking the wrong vehicle. Table 1 gives an 
overview of the specifics for each data set. Once all vehicles in a 15 minute clip are processed, a 
global optimization is applied, matching best matches first. This helps to fully explore the potential 
of each method. 
 
 

Start time No. Vehicles Avg. No. Non-targets Lighting Remarks 

08.00 297 20.9 Normal Ensemble set* 

08.15 333 22.9 Normal  

09.30 275 19.8 Backlight  

09.45 268 18.7 Normal Training set* 

Table 1: Specifications of the 15 minute data sets used. *Where applicable 
 
 

4.1 SIFT 
 
SIFT has set the bar in [3] as the best performing method, therefore it will be used here as the 
benchmark by which the other methods will be judged. The extracted SIFT descriptor based 
fingerprints are matched through the relative distance approach as described in Subsection 2.1.2. 
In [7] a relative distance of 0.8 was found to achieve good results. To discover whether or not the 
provided relative distance is also best for the fingerprinting task a range of relative distances will 
be explored here. Starting at the hyper-specific 0.1 all the way up to the all matching 1.0 with 
increments of 0.05. Figure 18 shows the accuracy scores for each of the relative distances. 
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Figure 18: Precision with SIFT, see text for the explanation for the 08.15 and 09.30 high 
initial scores 
 
Peak performance is found at the relative distance 0.65 with an accuracy of 72.7% for the 09.45 
set, for the other sets the greatest precision is also found at the same distance. This is a lower 
value than found in [7], but quite close to the value of 0.6 found in the public SIFT 
implementation

3
 provided by the inventor of SIFT, Lowe himself. Apparently the poor lighting 

conditions weigh heavier on the SIFT fingerprint than the number of non-matches that have to be 
considered, since the 09.30 set yields the lowest precision. The colour correction seems to have 
little effect on the precision scores, and is only slightly beneficial for the 08.15 and 09.30 sets. 
Overall relative distance 0.65 and uncorrected colours achieve best performance. It appears the 
intensity gradients used in SIFT do not benefit from the colour correction. Two, at first glance, 
abnormalities appear at the beginning of the graphs for the 08.15 and the 09.30 sets. There, the 
graph starts off with a rather high precision compared to the other two sets. The source of the 
abnormalities lays in the optimization step which occurs as a final step. The input to the 
optimisation algorithm is the number of matches found between two fingerprints from the different 
cameras. At the very specific range of the relative distances the number of matches found is all 
zeros, when the optimizer is provided with all zero values, it returns an identity matrix; the Nth 
vehicle in the first camera is linked to the Nth vehicle in the second camera. With the 08.15 and 
09.30 sets for a large portion of the vehicles it is the case that the index numbers correspond 
between cameras. As soon as matches start to be accepted by the relative distance threshold, 
this effect rapidly disappears as non-zero values are then available for a meaningful optimization. 
This effect will be present in all SIFT based approaches that use the relative distance matching 
technique; SIFT, Colour Invariant SIFT, HueSatSIFT and PCA-SIFT. 

                                                 
3
 http://www.cs.ubc.ca/~lowe/keypoints/ 
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 Altogether the performance of SIFT does not reach the accuracy scores achieved in [3], 
72.7% compared to 90.6%. This is an indication that the data used here is harder to distinguish 
by a combination of lower resolution images, and more vehicles to make mistakes with. 
 

4.2 HueSatSIFT 
 
Exploring the various relative distances for the HueSatSIFT method yields the results as 
displayed in Figure 19. Peak precision is reached at a plateau of the two data points at 0.6 and 
0.65 relative distance ratios with an accuracy of 74.0%. Although peak performance is found on 
the not colour corrected 09.45 data set, the difference between corrected and uncorrected 
colours scores is very small. Especially when compared to regular SIFT. It appears the apparent 
disruption in the intensity gradient due to the colour correction that distracts the regular SIFT 
descriptor is largely compensated for by the colour extension, in which no gradient information is 
present. Compared to the scores of regular SIFT the HueSatSIFT extension only delivers a 
fractional increase in precision for the normal lighting conditions. On the 09.45 which scored the 
highest accuracy there is an increase from 72.7% to 74.0%. The backlight 09.30 set is an 
exception to this. Here an increase from 49.5%, as achieved with regular SIFT on corrected 
colours, to 55.9% on the uncorrected set with HueSatSIFT. This means that because of the 
backlight, despite a decrease in intensity gradient information, enough colour information remains 
to help discriminate between vehicles. Overall best performance is achieved at relative distance 
0.65 using corrected colours. A single sided paired T-test with significance level 0.05 results in a 
p-value of 0.130, therefore the significance offered by HueSatSIFT is not statistically significant 
compared to regular SIFT. 
 

 
Figure 19: Precision scores for the HueSatSIFT method 
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4.3 Colour Invariant SIFT  
 
Since other SIFT-based approaches cannot benefit from additional keypoints extracted from the 
colour channels, Colour Invariant SIFT is examined with and without additional keypoints. This 
ensures that a direct comparison can be made between other SIFT-based methods, where only 
the descriptors vary in type and not in number. As before matching the fingerprints for the Colour 
Invariant SIFT descriptor is done through the usage of relative distances between the best and 
second best matches, Figures 20 & 21 show the results for the condition without and with addition 
keypoints respectively. Without extra keypoints peak performance is found at relative distance 
0.85 for the not colour corrected 09.45 set, with an accuracy of 83.6% which is an increase of 
10.9% over the peak of regular SIFT, although for the other sets 0.8 is a better choice. The 
backlight 09.30 data set, also scores higher with an accuracy of 56.5% at relative distance 0.8.  
 

 
Figure 20: Precision scores obtained with Colour Invariant SIFT, without additional keys 
 
Unexpectedly, the colour correction is of as little influence as with regular SIFT, and again the 
uncorrected condition scores higher most of the time. Intuition would dictate that a colour based 
approach should benefit from a more constant colour representation, but as it turns out colour 
gradient based SIFT descriptors do not benefit from this correction. Contrary to regular SIFT and 
HueSatSIFT the envelope of the Colour Invariant SIFT graph is more compact with the graph 
starting to climb much later, the only explanation for this is the difference in descriptors length. 
Apparently somewhere between the length 256 HueSatSIFT descriptor and the 384 sized 
Invariant Colour SIFT descriptor, the significance of Euclidian distances has changed. This effect 
is probably akin to the Curse of Dimensionality problem as described in [34, 35]. Despite this shift 
in the significance of the Euclidian distances, the longer descriptor does result in higher precision 
scores.  
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Figure 21: Precision scores obtained with Colour Invariant SIFT with additional keys 
 
Peak performance with additional keys is still found at the 09.45 data set with a slightly higher 
accuracy of 84.4%. More remarkable is the increase in precision for the 08.15 data set, for the 
uncorrected colour condition the additional keys increase performance from 73.7% to 78.3%. For 
the backlight data set no change in performance is present. This is no surprise since there are 
very few additional colour keypoints. Table 2 lists the number of keypoints per data set for the 
case of only grey value keypoints and additional colour keypoints. Surprisingly the 09.30 
condition has the highest number of keypoints in total, and on average per vehicle. This is most 
likely due to the high contrast present in that video, which allows a larger number of candidate 
keypoints to pass through the minimal contrast filter. Overall relative distance 0.75 with 
uncorrected colours works best. A single sided paired T-test at the 0.05 significance level 
indicated that the increase in accuracy offered by Colour Invariant SIFT with additional colour 
keypoints is indeed significant, with a p-value of 0.0054 when compared to regular SIFT. 
 
 

Standard SIFT Keypoints Additional Colour Keypoints 

Track Total keypoints Average per vehicle Total keypoints Average per vehicle 

0800 11529 38.82 11687 39.35 
0815 13610 40.87 13647 40.98 
0930 16350 59.45 16354 59.47 
0945 14336 53.49 14410 53.77 

Table 2: Number of keypoints as detected in the first camera, without and with additional 
colour keypoints derived from colour channels 
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4.4 PCA-SIFT 
 
PCA-SIFT is the last of the methods which uses the relative distance matching technique. Since 
the authors of [5] found 36 principal components to be of equal expressiveness as regular SIFT, 
this number shall be used here. It is also the default setting for the public source code

4
 of PCA-

SIFT. To make a direct comparison with regular SIFT 128 principal components are also 
considered here. Figures 22&23 show the precision vs. relative distance graphs for the 36 and 
128 components conditions respectively. 

 
Figure 22: Precision scores for PCA-SIFT with 36 principal components 
 
 When compared to regular SIFT, contrary to experiments performed by the authors of [5], 
performance is much lower. When using 36 principal components, peak performance is achieved 
on the set from which the Eigen space was obtained, an accuracy of 43.7% for the 09.45 set. The 
best score on a true test set is the 08.00 corrected colours one, with an accuracy of 32.7%. 
Overall the best precision scores are found at relative distance 0.5 for the 36 principal 
components case. This is the lowest relative distance value of all SIFT-based methods. For the 
case with 128 principal components the highest score is once again achieved on the training set, 
47.0% with the 09.45 set at relative distance 0.6. Performances on the rest of the sets are very 
closely matched with accuracy scores between 30.8% and 32.3%, but remain far from 
competitive compared to regular SIFT. Overall, the best performance is achieved when using 
corrected colours at relative distance 0.6. It appears PCA-SIFT requires images of higher 
resolution and more sharpness to work with in order to be successful.  

                                                 
4
 http://www.cs.cmu.edu/~yke/pcasift 
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Figure 23: Precision scores for PCA-SIFT with 128 principal components 
 

4.5 Bag of Visual Words 
 
Accuracy scores for the Bag of Visual Words approach are presented in Figure 24 with regular 
SIFT words, and the results for Invariant Colour SIFT words are shown in Figure 25. For the 
regular SIFT the colour correction hardly makes any difference for the precision scores. Without 
doubt the training set achieves the highest performance by far, with a maximum accuracy of 
60.2% at clusters level 10, which contains 13,657 visual words. This score is the same for both 
corrected and uncorrected colours. Right after the optimal cluster level is reached, for the training 
set a rapid descent towards very low precision scores sets in. This effect is easily explained when 
considering the nature of the training set. From the first two cameras all SIFT descriptors, 
computed on not colour corrected detection windows, all the detected keypoint are encompassed 
in the training set. 50,000 SIFT descriptors served as the input for the hierarchical clustering 
algorithm, and were extracted from all four cameras. This vocabulary size was chosen for 
memory considerations when using the 384 sized invariant colour SIFT descriptors. All of the 
descriptors from the first and second camera are present at the final level of clustering. This 
means that for each extracted SIFT descriptor a unique identifier exists, unless it was exactly 
equal to another one. The chance of computing two exactly similar SIFT descriptors in two 
different images is of course very small, given that there are 128 (or 384) 8 bit values per 
descriptor. Therefore, as the level of clustering progresses, the more perfect matches there are 
between the detected keypoints and the vocabulary, the less matches between visual words. And 
with the decrease in correspondence between visual words the precision scores decrease as 
well. Since almost the exact same drop in performance is present for the corrected colours 
condition, this means that with regular SIFT the colour correction only slightly changes the 
descriptors. For the test sets, where no perfect matches in the vocabulary are to be expected, the 
drop in performance towards the end does not exist.  
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Figure 24: Precision scores for the Bag of Visual Words approach using SIFT descriptors 
 

 
Figure 25: Precision scores for the Bag of Visual Words approach using Invariant Colour 
SIFT words 
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The best performing genuine test set is the 08.00 one, with an accuracy of 40.3% at cluster level 
11 which has 25,257 visual words on the corrected colours set. For the 08.15 and 09.30 sets 
there is a boost in performance at the later stages of clustering, whereas the 08.00 set displays a 
slight dip towards the end. On the whole for the Bag of SIFT based Visual Words, a cluster level 
of 10 is optimal, producing a 13,657 sized vocabulary.  
 For the visual words derived from invariant colour SIFT, once again the training set 
scores the highest performance; an accuracy of 56.3% at cluster level 11, with 28,562 words for 
the uncorrected colours condition. The best scoring test set is the 08.15 one, with an accuracy of 
39.6%, at cluster level 10 which has 15,021 words. Contrary to regular SIFT words, with colour 
invariant SIFT words colour correction does have a large influence on performance. The drop in 
performance on the training set is much lower for the colour correction condition, this means that 
the colour correction disrupts the colour based parts of the descriptor to such extend that perfect 
matches with the vocabulary are far less common and thus performance is maintained for longer. 
Uncorrected colours achieve higher scores with invariant colour SIFT, a similar observation as 
with the direct matching approach as discussed in Section 4.3. Despite the advantage of having 
more keypoint locations to extract visual words from, the invariant colour SIFT words do not reach 
the performance of the regular SIFT words. The increased size of the descriptor is most likely 
responsible for this. As was observed in Section 4.3 the significance of the relative distances 
between descriptors had changed between 128 and 384 values. A similar effect is most likely 
present here. Because the Euclidean distance measure becomes less reliable for the longer 
descriptors it is more likely that descriptors originating from corresponding keypoint locations in 
two images, are each matched to different vocabulary words. This explains the lower 
performance compared to the regular SIFT words. Overall for the for invariant colour SIFT words, 
uncorrected colours and a cluster level of 10, which contains 15,021 words is optimal for this 
method. 
 

4.6 Spatial Pyramid Matching 
 
Results for the Spatial Pyramid Matching method are two-fold. Firstly there is the Pyramid 
Histograms of Oriented Gradients, Figure 26. Secondly the results for the Pyramid Histograms of 
Visual Words approach are shown in Figures 27 and 28 for the uncorrected and colour corrected 
conditions respectively. Since for the Histograms of Oriented Gradients approach the precision 
scores are exactly the same for the corrected and uncorrected colour conditions only one graph 
per data set is provided. The fact that the results are identical regardless of colour correction 
indicates that only the gradient magnitudes are influenced and the orientations remain 
unchanged. Since SIFT descriptors contrary to the orientation histograms incorporate both, the 
first does change and the second does not, at least not at the used pyramid levels. Looking at the 
results it becomes obvious that between the levels 3 to 5 there is hardly any change in precision, 
with absolutely no change between the two final levels 4 and 5. Peak performance is obtained 
with the 09.45 data set with an accuracy of 49.2% at levels 3 to 5 and with 10 degrees per bin; 36 
bins to cover the full 360 degrees. The 10 degrees per bin value is the optimum, except for the 
08.00 set which peaks at 5 degrees per bin. This indicates that the true optimal value may lie at a 
range per bin of somewhere between 5 and 10 degrees. Although the results are underwhelming 
when compared to previously discussed SIFT based approaches, an interesting result is obtained 
with the backlight set, here performance exceeds the precision achieved with the 08.15 set. This 
means that despite the adverse lighting conditions the gradient directions at least are maintained, 
explaining the competitive scores on the backlight set. Overall for the Histograms of Oriented 
Gradients approach a bin size spanning 10 degrees and a maximum pyramid level of 4 is optimal. 
Results achieved with the Pyramid Histograms of Visual Words approach achieve about the 
same level of performance as did the previous Pyramid based method. A noticeable difference to 
the Bag of Visual Words approaches is the optimal number of visual words. 
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Figure 26: Results for the Pyramid Histograms of Oriented Gradients approach 

 
For Pyramid Histograms of Visual Words, a vocabulary size of 27 words works best, a number far 
lower than the 13,657 words for Bag of Visual Words approach. This difference must be caused 
by the difference in the method of matching; word frequencies instead of corresponding word 
labels. Best performance is achieved on the 09.45 training set, with a precision of 43.1% at 
pyramid level 5 and cluster level 4, with 27 words. Again, as with the Pyramid Histograms of 
Oriented Gradients approach the backlight 09.30 set is once again the best scoring test set, with 
an accuracy of 41.5% at pyramid level 4 and 81 words at cluster level 5. Overall the best 
performance is achieved at pyramid level 4 and a vocabulary of 27 words at cluster level 4 for the 
colour corrected condition. 
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Figure 27: Results for the Pyramid Histograms of Visual Words approach without colour 
correction 
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Figure 28: Results for the Pyramid Histograms of Visual Words approach with colour 
correction 
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4.7 Colour Co-occurrence Histograms 
 
With the Colour Co-occurrence Histograms approach the radius for co-occurrence is varied, 
Figure 29 presents the accuracy scores that are obtained in this manner. As can be seen the 
09.45 set achieves the highest accuracy with a radius of 40 pixels, however it must be noted that 
the 09.45 set was used for training; gathering the colours for clustering. The next highest score is 
then achieved by an actual test set, the 08.00 set, 57.2% for the colour corrected set when using 
a radius of 29 pixels. The backlight 09.30 set reaches peak performance much earlier with 35.1% 
at a 9 pixel radius, but is it clear that the backlight disrupts the colour representation and therefore 
creates poorly distinguishable CCHs, even when colour correction is applied. The CCH method 
benefits most from the colour correction, almost doubling scores on the training set, and also 
vastly increasing precision for the test sets with around 50%. The vast increase in performance 
as a result of the colour correction at first glance may seem surprising. This increase can be 
explained by the fact that the Colour Co-occurrence Histograms method uses direct matching of 
colours, instead of gradients. Therefore it is logical that a more consistent representation of 
colours between cameras, as produced by the colour correction, yields better results. Overall 
colour correction in combination with a radius of 23 pixels is found to be optimal. 
 

 
Figure 29: Precision scores for Colour Co-occurrence Histograms 
 

 4.8 Cortex-Like Mechanism 
 
The independent variable for which the effects are explored for the visual cortex model is the 
number of C2 features. As discussed in Section 3.8, the visual cortex model introduces 
stochasticity into the results during feature selection. The effect this has on performance can be 
observed in the jaggedness of the resulting precision graphs, Figures 30 and 31 for the 
uncorrected and corrected colours data sets respectively. Since the 09.45 data set was used to 
extract the dictionary of images patches from, it is no surprise this set scores the highest. 
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However, accuracy scores of 46.9% on the uncorrected set with 760 C2 features and 36.2% with 
720 C2 features are still inferior to most other methods. Surprisingly the highest scoring true test 
set is the backlight 09.30 set, achieving an accuracy of 36.8% with uncorrected colours and 780 
features and with corrected colours 25.0% with 330 features. When only considering the total 
number of vehicles and the average number within a 30 second interval, the 09.30 is the easiest 
set of the four. This means that the visual cortex model is capable of overcoming, at least to 
some extent, the difficulties posed by the adverse lighting conditions. On the whole the visual 
cortex model does not yield competitive results. In typical applications where the model does 
thrive many examples per item are available, but here for object fingerprinting there is just one 
from the initial detection. Overall the best scores are achieved with 830 C2 features on 
uncorrected colours. 
 

 
Figure 30: Precision scores for the visual cortex model, on the not colour corrected 
condition 
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Figure 31: Precision scores for the visual cortex model, on the colour corrected condition 
 

4.9 Boosting 
 
For the method of boosting the number of Haar-like features can be varied to find an optimal 
number. A very similar approach for the detection of the vehicles in the video frames was used to 
acquire the detection windows to extract the fingerprint from. As mentioned in Chapter 3, to 
include as much of the vehicles as possible the detection windows are widened a little bit, 
exposing more of the vehicle. This was beneficial for the other features used in this thesis. But for 
boosting the narrow original detection windows might work better since the features would be 
computed on the exact same location as was used for detection. Therefore after experiments with 
the same input as the other methods, the boosting method was tested again on the more narrow 
images. Since the not colour corrected condition scored the highest, the narrow images colours 
are left unchanged. To create the cascade of Haar-like features, training was performed on the 
09.45 dataset. Figure 32 shows the results for the widened images, as used with the other 
methods and Figure 33 shows results obtained with the original narrower and not colour 
corrected detection windows. When comparing Figures 32 and 33, it can be seen that for each of 
the data sets except the 09.30 set, the original, narrow detection window works best. Peak 
performance is achieved as expected on the 09.45 training set with an accuracy of 41.1% with 90 
Haar-like features. The best test set is the 08.00 one with an accuracy of 28.4% at 80 Haar-like 
features. A closer investigation into what causes the poor results with the narrow images on the 
09.30 set shows that the initial detections are to blame. What happens very often is that in the 
video frames the detector mistakes the shadow of a vehicle as part of the vehicle. Figure 34 gives 
an example. When extending the detection window, more of the vehicle is included, allowing for 
better performance. Altogether it can be said that the hoped for discriminating ability of Haar-like 
features did not materialize. 
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Figure 32: Precision scores for the method of Boosting on widened detection windows 
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Figure 33: Precision scores for boosting the boosting approach on not colour corrected 
detection windows. 

 

 
Figure 34: An instance where the vehicle detector mistakes the shadow for part of the 
vehicle, but the widened window contains almost the entire vehicle. 
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4.10 Feature Ensemble 
 
Having established the optimal parameters and colour conditions for each of the individual 
methods, feature ensembling can be performed. Since many of the used features have used the 
09.45 data set for training, the feature ensemble will be created using the 08.00 data set for 
training. Since this is the easiest data set that remains, when considering the number of vehicles 
on average in a 30 second time window and lighting conditions, the most difficult sets remain 
available for testing. The result of the feature ensemble algorithm is given in Table 3, which lists 
the used parameters for each method, ordered by the quality measure alpha, from which the 
weights are derived. The higher alpha the more accurate the method becomes. Since the alpha 
scores range from positive to negative values, in addition to the full set of combined features, the 
positive and negative alpha methods will be considered. The weights as reported in Table 3 are 
used because weighing votes with negative alphas is meaningless. Therefore alpha values are 
scaled linearly such that the lowest performing method is assigned a weight of 1. Figure 35 
shows the results achieved on each data set with the three combinations of features. Although 
there are more methods in the group with negative alphas, the top four methods with positive 
alphas achieve higher performance. Overall, the ensemble of all features combined results in the 
highest performance, except for the 09.45 set. On the 09.45 data set the positive alphas group of 
methods achieves the highest accuracy, this is due to the fact that the fourth best method, Colour 
Co-occurrence Histograms, was trained on this set, and as a result achieved a performance far 
greater than on the other sets. This means the highest accuracy is achieved on the 09.45 set, 
with 87.3% on the positive alphas group. Of more interest are the true test sets, 08.15 and 09.30. 
On the 08.15 set the combination of all methods together scores highest with an accuracy of 
79.6%. This is an increase of 5.9% over just the best performing individual method on its own. 
The largest benefit of the feature ensemble is witnessed with the 09.30 set. Where Invariant 
Colour SIFT with additional colour keypoints achieved an accuracy of 56.5%, all features 
combined yield an accuracy of 69.6%, which is an increase of 13.1%. A single sided paired T-test 
at the 0.05 significance level indicated that the increase in accuracy offered by the complete 
feature ensemble is indeed significant, with a p-value of 0.00017 when compared to regular SIFT. 
The same applies to the positive alphas feature ensemble, with a p-value of 0.00015. The T-test 
to discover whether the feature ensemble of all features performs significantly better than just 
invariant colour SIFT with additional colour keypoints fails. A p-value of 0.0603 however indicates 
that perhaps the addition of a single extra data set would be enough to reach significance.  
 
Method Alpha Weight Colours Parameters 

Invariant Colour SIFT 0.7408 2.3166 Uncorr. Relative. Dist. 0.75 

HueSatSIFT 0.5308 2.1066 Corr. Relative. Dist. 0.65 

SIFT 0.4607 2.0365 Uncorr. Relative. Dist. 0.65 

Colour Co-occurrence Histograms 0.2834 1.8593 Corr. 23 pixel radius 

Pyramid Hist. of Oriented Gradients -0.0369 1.5389 Uncorr. Pyramid Level 4, 10 deg. 

SIFT Bag of Visual Words -0.0597 1.5161 Corr. Cluster level 10 

PCA-SIFT -0.1069 1.4689 Corr. Rel. Dist. 0.6, 128 Comp. 

Invariant Colour SIFT Bag of Words -0.2299 1.3459 Uncorr. Cluster level 10 

Pyramid Histogram of Visual Words -0.3285 1.2473 Corr. P. Level 4, Cluster level 4 

Haar-like feature Boosting -0.5023 1.0735 Uncorr. 90 Haar-like features 

Cortex-like mechanism -0.5758 1.0000 Uncorr. 720 C2 Feat. 
Table 3: Overview of the used colour conditions, method parameters and quality measure 
alpha. 
 



 40 

 
Figure 35: Precision scores achieved with feature ensembles, for all features combined, 
and the positive and negative alpha grouped together. Horizontal red lines indicate the 
highest score achieved on the respective data set with the best performing individual 
method; Invariant Colour SIFT with colour keypoints. 
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Chapter 5 
 

Conclusion and future work 
 
 
The research questions posed at the beginning of this thesis can now be answered. The answer 
to the first question “Can employment of previously unexplored and perhaps colour based 
features generate a significant increase in reacquisition scores for object fingerprinting?” is 
positive and more specifically, it takes the shape of invariant colour SIFT. When combined with 
additional colour keypoint detection capability, this yields the highest accuracy score achieved by 
an individual method. This increase furthermore is statistically significant. Also the ensemble of all 
features, and the subset of only the methods that achieved alpha scores higher than 0, also 
provide a statistically significant increase each. 
The second research question “Is it possible to create an ensemble of object fingerprinting 
features, that together surpass performance of the best individual feature?” however has to be 
answered negatively. Although there was still enough room for improvement left by the best 
performing individual feature, and indeed an increase in accuracy was present, this increase did 
not pass the significance test. But it must be said that just one additional data set most likely is 
enough to achieve significance.  

For future work, the following considerations are of importance. Although in theory object 
fingerprinting is a task that can be considered an extreme overfit of detection, practical testing 
offers no evidence for such applicability. As demonstrated by the low precision scores with the 
boosting of Haar-like features approach, additional viable features for object fingerprinting are not 
likely to be found in the domain of detection methods.  
 The pyramid histogram based approaches, originally used for object classification, do not 
guarantee to transfer competitive performance to the fingerprinting task, although the results of 
the experiments performed here may not have fully exploited the full potential of pyramid based 
approaches. The detection windows as produced by the vehicle detector are not very consistent 
when it comes to placement of the vehicle within the windows, also the size of the detected 
vehicles may vary due to perspective effects. This means that corresponding features may only 
on occasion lie within the same pyramid regions between detection windows originating from 
different cameras. A more consistent detector may help overcome this problem for object 
fingerprinting, provided the objects in the domain that need to be reacquired are rigid in 
physiology and viewpoint differences between cameras are limited.  
 The visual cortex model is another example of a successful classification technique that 
did not thrive on the task of object fingerprinting as performed here; one example object and 1-
NN matching. As was said before, multiple images per object should help increase performance, 
since in literature this leads to higher scores on classification tasks. However, the situation in 
which object fingerprinting is performed has to lend itself to extraction of multiple examples. 
Accurate within video frame tracking could be the answer to this; as an object moves through the 
camera’s field of view, multiple examples could be extracted. In such case reliable tracking is an 
absolute necessity; any error in tracking would result in introducing incorrect examples, and 
therefore erroneous reacquisition. In addition multiple examples can be created synthetically by 
inducing changes in perspective through employment of projective geometry. On the data 
available here this proved not to be possible, since even the slight changes in perspective result 
in image black edges to be included within the vehicle images. 
 PCA-SIFT, did not live up to the expectations as created by results obtained in [3]. This is 
most likely due to the nature of the data as used in the experiments here. Blurry, low resolution 
images dramatically reduce PCA-SIFT’s performance in object fingerprinting. It should not be 
forgotten that in situations where higher resolution data is available, PCA-SIFT has proved itself 
to be competitive with regular SIFT [3, 5]. Since PCA-SIFT on its own did not yield results 
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remotely similar to that of regular SIFT, an extension into the colour domain was not undertaken. 
However, for data on which PCA-SIFT does result in competitive performances to regular SIFT, it 
is well worth to explore a colour extension similar to that of invariant colour SIFT. By grouping the 
intensity based descriptor with additional colour based descriptors, results may even exceed that 
of invariant colour SIFT, while reducing descriptor length. For example, three 36 sized descriptors 
would result in a single 108 valued invariant colour PCA-SIFT descriptor, which is 16% shorter 
than the regular SIFT descriptor. 
 Bag of Visual Words based approaches particularly are of interest for smart camera 
networks, in which communication overhead is to be kept to a minimum. But as can be seen in 
the experiments performed here, results are far from competitive compared to direct feature 
matching approaches. Moreover, there appears to be a limit on descriptor sizes that can reliably 
be matched in visual word vocabularies, as testified by the reduced performance with Invariant 
Colour SIFT words.  
 The colour correction scheme used here is quite simple by nature, and only substantially 
helped the Colour Co-occurrence Histogram method. It is clear that in order to also benefit 
methods that incorporate colour gradients, a more advanced technique of colour tuning is 
required. A method for colour correction in non-overlapping cameras such as presented in [36] 
might work well for methods that use colour gradients. But an even simpler approach is to use a 
colour calibration card, containing for example a colour spectrum, to tune each camera’s colour 
sensitivity before placement, so that at least under the same lighting conditions, consistent 
colours are recorded. More advanced camera and lighting models will then have to be used to try 
and cope with variable lighting conditions. 
 Direct matching of SIFT-based features has proved to be superior when compared to 
other methods in this thesis. Especially the Invariant Colour SIFT approach has distinguished 
itself. It is therefore recommended as future work to further explore SIFT-based approaches, 
other colour spaces may be used to derive colour descriptors in addition to the intensity based 
one. And in addition to colour spaces, different settings for the SIFT algorithm may be explored 
as well, since it is possible that the optimal descriptor length, as well as the relative distance 
measure, varies with the task at hand. Colour Co-occurrence Histograms may also prove to be 
successful in other colour spaces than HSV as was used here. Although there is no consensus 
on whether or not to use colour information in computer vision, it should be kept in mind that 
evolution has seen fit to place colour sensitive cells in the eyes of a wide variety of creatures [37]. 
 Despite the successes achieved with methods from the SIFT family of methods, the 
search for additional features is also strongly recommended to introduce diversity in fingerprinting 
methods that ensemble techniques require. As demonstrated, feature ensembling can provide an 
increase in performance over strong features, with the addition of fairly weak performing features. 
However, it should be noted that the computation of a large number of different features will 
require more time, putting restraints on the possibilities for real-time processing. For such real-
time applications it is worthwhile to focus on additional features that lend themselves to be 
implemented on GPU’s. Such an implementation is available for SIFT [38], and greatly reduces 
processing time.   

Altogether, the key points for recommended future work on object fingerprinting are: to 
focus on testing alternative colour spaces, exploring additional colour based local image 
descriptors and to search for methods that are not based upon SIFT. Even holistic approaches 
can be considered when using feature ensemble techniques. 
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