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Preface

Since childhood, I have been interested in mathematics and computers in general. The
latter interest was my hobby and I would not want to turn it into my profession. But I
have seen a future in maths, so to study it, seemed the logical next step. I have chosen the
university of Groningen (“Rijksuniversiteit Groningen” or RuG for short) as it is one with
a local and friendly character. A fortunate side effect of my choice was that computational
science houses in the same building, so from time to time I was able to attend programming
courses to keep my interest in computational science “hot” so to speak.

In the end, my study and my hobby joined in the form of my specialisation: numeri-
cal mathematics. The beauty of maths combined with the elegance of high performance
computing. This I told my supervisor (F.W. Wubs) who would try to find a project in
which I could lay my programming skills combined with my gained knowledge in high
performance computing. My supervisor attended a presentation of Jason Frank and Kees
Vuik [1] about deflation. Afterwards, he spoke with Vuik about it with respect to using
deflation on current research on parallelisation of MRILU at the RuG. It was possible to
use deflation according to Vuik. Wubs then knew he had a nice project for me.

The goal for us was to implement the method described in that article, to verify the re-
sults, to understand the results to some degree and to implement another (similar) method
to suit current research done at the RuG. In short, chapter 2 is Frank and Vuik redone for
symmetric problems and chapter 3 is about deflation for non-symmetric problems.

This report is the result of two years work. I never worked for this long on a project
and I couldn’t have done this without the support of friends and relatives.

In no particular order I hereby want to thank them

e Wibrich Kooistra. My girlfriend has always stood by my side and has always encour-
aged me to ’just do it’ and ’finish it’.

e Ineke Kruizinga. For chats and cryptographic puzzles during ‘lunch hours’.
e Fred Wubs. My supervisor who never gave up on me.
e Arie de Niet. My vice-supervisor who had a refreshing look on the matter.

e My father and mother. They phoned me every Wednesday to get an update on my
progress.

e My grandpa. On every family occasion he asked me when he would see the historical
RuG-building once more.

e Every forgotten person that should have been mentioned...

The work could have been done in less time, though, but other activities intervened.
My job as student assistant took at least a couple of months. Doing administrative tasks
for the local badminton club cost several weeks. I have to build a curriculum vitae, don’t
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17 I followed a couple of courses which consumes lots of time. And of course the holidays;
they took a couple of months. All in all, two years is not so bad a score...!

With this report, my college years will probably end. Time for a few weeks of activities
not involving mathematics, i.e. activities that have not gotten enough attention last two
years ;-).

Groningen, October 2004 Bart Dopheide
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1 Introduction
Assume we want to solve z from the problem
Az = b, (1)

where A is symmetric positive definite (SPD). These kinds of systems are encountered
when a finite volume/difference/element method is used to discretise an elliptic partial
differential equation (PDE). It is well known that the convergence rate of the conjugate
gradient method is bounded as a function of the condition number of the system matrix
to which it is applied.

When A is the discrete approximation of an elliptic PDE, the condition number can
become very large as the grid is refined, thus slowing down convergence. In this case it is
advisable to solve, instead, a preconditioned system K ! Az = K ~!b, where the symmetric
positive definite preconditioner K is chosen such that K~! A4 has a more clustered spectrum
or a smaller condition number than that of A. Furthermore, a system. with the matrix K
must be cheap to solve relative to the improvement it provides in convergence rate. A
final desirable property is that it should parallelise well, especially on distributed memory
computers.

Probably the most effective preconditioning strategy in common use is to take K = LT
to be an incomplete Cholesky (IC) factorisation of A. When there are a few isolated
extremal eigenvalues, another preconditioning strategy has proven successful; deflation.

This report is about deflation and based on work of Kees Vuik. We implement the
deflated CG method described in his article (see [1]). Furthermore, we put the method
to the test and try to understand the results to a degree (chapter 2). We also study
the parallélisation of the method. Vuik covers mostly SPD problems, but we dive into
non-symmetric problems, too (chapter 3).




2 Deflation for symmetric problems

In this chapter, we will introduce the notion of “projection”. Projections play a key role
in the deflation technique. We discuss a few interesting properties of projections and the
potential of deflation before we start experimenting with the deflation technique. At the
end of this chapter, we discuss the parallelisation of the deflated preconditioned CG method
(DPCG).

2.1 Theory

The deflation technique tries to remove the smallest (or largest) eigenvalues from an iter-
ative linear system solver. By doing so, the condition number of the problem is reduced
which usually makes the solver use fewer iterations than before. Of course, the price we pay
for removing eigenvalues has to be paid in the end by making a correction to the solution

found.
Assume we want to solve Az = b where A is SPD. Let us define the projection P by

P:=1-AZ(ZTAZ)'Z7, ZeR™>* (2)

where the columns of Z span the deflation subspace, i.e., the space to be projected out of
the residual, and I is the identity matrix of appropriate size. d can be seen as the number
of eigenvalues that are to be projected out of the residual. z has to match the number of
columns of A.

Later on, we will see that we should not try to eliminate too many eigenvalues as it is
counterproductive, so we should assume that d < z in practical cases.

We assume that Z has rank d. Then the inverse of Z7 AZ exists and P has the following
properties (which are easily proven):

e PP=P [Projecting a projection does nothing.] (3)
e P(I-P)=0 [P is perpendicular to (I — PT).] (4)
e ZTP=0 [P is perpendicular to Z.] (5)
e PA= APT [PA is symmetric.] (6)
e PAZ=0 [Z is in the nullspace of PA.] (7)

Lemma 2.1. Let A be positive semidefinite and P a projection (P* = P). If PA is
symmetric, it is positive semidefinite.

Proof. By definition: 0 < uT Au for all u. But then it also holds for u = PTv where v is
an arbitrary vector:

0<uTAu = (PTv)" A(PTv) = vT(PA)PTy = vT(AT(P%))

vT(ATPT)y = vT(PA)v
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Ezxample. To see that the condition number of PA may be better than that of A,
consider the case in which Z is the invariant subspace of A corresponding to the smallest
d eigenvalues. PA has d zero-eigenvalues since, by (7) PAZ = 0. Furthermore, since PA
is symmetric, by the orthogonal diagonalisation theorem the remaining eigenspace, say Y,
can be chosen in the orthogonal complement of column space of {Z}, i.e. ZTY = 0 and
thereby the convergence is determined by the condition number of YTPAY:

An(A)
ke (PA) = k(YT PAY) = -
on(PA) = x( ) Aas1(A)
Since this holds for any A, especially it holds for a preconditioned system, say A;,lecA.

In summary, deflation of an invariant subspace cancels the corresponding eigenvalues,
leaving the rest of the spectrum untouched.

2.2 Algorithm DPCG

As d is relatively small, Agegatea = ZTAZ may be easily computed and factored and is
symmetric positive definite. Since z = (I — PT)z + PTz and because

(I - PT)z = (A2(2TAZ) ™) 27) z = 2(2TAZ) ' 2T Az = Z AL, ZTh (8)

can immediately be computed, we only have to compute PTz. Since APTz = PAz = Pb,
we can solve the deflated system

PA% = Pb (9)

for £ using the conjugate gradient method and premultiply this by PT. Obviously, (9)
is singular and this raises a few questions. First, the solution Z may contain arbitrary
components in the null space of PA, i.e. in the column space of {Z}. This is not a problem
however, because the projected solution PTZ is unique. Second, what consequences does
the singularity of (9) imply for the conjugate gradient method? In theory, a positive
semidefinite system can be solved as long as the right-hand side is consistent (i.e., as long
as b = Az for some z). This is certainly true for (9), where the same projection is applied
to both sides of the nonsingular system. Furthermore, because the null space never enters
the iteration, the corresponding zero-eigenvalues do not influence the convergence.

2.3 Another view on deflation

In order to develop theory on a given subject, it always comes in handy to have multiple
looks on the subject. That is why give another view on deflation.

In general, if a square matrix [V W] has full rank, any z can be decomposed into
z = Vi + WZ. This also means that any given linear problem Az = b can be written as

A(Vi + WE), or equivalently, A [V W] [;] = b. If we can choose V and W such that
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VT AW = 0, then we can solve the following system easier:

e - ) - (e

That is, we can first compute Z from VT AVZ = VTb and then Z. In the symmetric case
(A = AT), the problem even gets decoupled because (WTAV)T = VTAW = 0. This is
precisely what happens in the deflation approach if we take V = Z then (I — PT) projects
any vector onto the space spanned by Z: (I — PT)z = Z(ZTAZ)"'ZT Az. Then W and
are implicitly, not uniquely defined by Wz = PTz because = = (I — PT)z + WZ. It holds
that Z and W are perpendicular in an inner product based on A:

PAZ=0=1TPAZ =0Vz = ZTAPTz =0Vz = ZTAWE =0 Vi = ZTAW =0,

which is favourable.

2.4 Choices for deflation

Deflation of an eigenspace cancels the corresponding eigenvalues without affecting the rest
of the spectrum. This has led some authors to try to deflate with “nearly invariant”
subspaces (possibly obtained during iteration), and led others to try to choose in advance
subspaces which represent the extremal modes. We will investigate both approaches.

We will call the first one subdomain deflation as suggested in [1]. The domain is split
up into non-overlapping subdomains. Vertically in p and horizontally in ¢ subdomains.
For each subdomain, we create a deflation vector which is one on its subdomain and zero
on the others. We take the set of all these vectors for Z.

This choice of deflation subspace is related to domain decomposition. The projection
(I — PT)z (see (8)) can be seen as a subspace correction in which each domain is agglom-
erated into a single cell.

Note that the matrix Adefiated = Z7 AZ, the projection of A onto the deflation subspace
Z, has sparsity pattern similar to that of A. We will see that the effective condition number
of PA (keg) improves as the number of subdomains is increased (for a fixed problem size).
However, this implies that the dimension of Agefiated also increases, making direct solution
expensive.

In the second approach we will use exactly computed eigenvectors to investigate the
maximal effects possible after which it is possible to try to choose simple(r) vectors that
resemble the eigenvectors for extremal modes.

2.4.1 Consequences of other choices than subdomain deflation

Since subdomain deflation is cheap, it is interesting to have some insight in what other
choices might cost. Although other choices might lead to better convergence (as they might
cancel the smallest or largest eigenvalues better), we only consider the computational cost
of PAz, where z is an arbitrary vector.
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We note that if Z becomes a full matrix, AZ and ZTAZ also become full matrices

(independent of the problem A). In the main loop of DPCG, Z is used only in computing
PAzx:

v = Az
PAr == v—-(AZ)(ZTAZ)“lZTv

e AZ is constant and can be computed before the main loop; that makes it an order 1
computation.

e (ZTAZ)™! is also constant and can be computed (in factored form) before the main
loop which makes it an order 1 computation.

e ZTy can cost up to pg as much calculations (since all columns of Z are completely
filled instead of only ).

¢ The computation of the whole (AZ)(ZT AZ)~!ZTv as parts of the previous temporary
results requires not considerably more work.

If d < 2, then ZTv is only a small matrix-vector computation it will hardly have any effect
on the speed in terms of wall-clock time even if it takes pg as much computations.

2.5 Test set

In order to test the deflation technique, we have to create a test set. We choose to solve the
2D Laplace equation: ,; + ¢y, = 0. The Dirichlet boundaries are chosen such that the
solution corresponds to the temperature in a heated room. One side is kept at 25°C while
the other sides are kept to 15°C, see figure 1. The discretisation is a standard five-point
one.

2.5.1 Grid

We choose a square, equidistant grid of mgxnp points, where p is the number of subdomains
in the vertical direction and ¢ in the horizontal. See figure 2. Unknowns are numbered in a
lexical order (left to right, top to bottom). The resulting matrix A is of size mgnp x mgnp.

2.5.2 Preconditioner

In A, a subdomain is connected to its neighbour(s). When we disconnect all these pgq
subdomains, we obtain the preconditioner we use in the test set. Observe that the precon-
ditioner consists in fact of pg problems that can be solved independently which allows for
parallelisation. We will call this preconditioner Aprec.

There is another choice that we will make which is based on the technique called
Gustafsson modification. All ties between subdomains are not simply dropped, but are
added to the main diagonal instead. We will call this preconditioner Gyr.c. Note that this
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Figure 1: The solution to the stationary
heated room problem (32 by 32).

n{| subdomain 1,1 subdomain 1,2 | .| subdomain 1,q

n{| subdomain 2,1 subdomain 2,2 |...| subdomain 2,q

n{| subdomain p,1 subdomain p,2 |...| subdomain p,q
m m m

Figure 2: The division of the grid in subdomains.

preconditioner is basically singular if both p and ¢ are greater than 2: the interior sub-
domains have no ties to the boundary anymore making it Neumann subdomains. Adding
one to the last element of each singular subdomain cancels the singularities.

2.5.3 Numerical results

The DPCG-algorithm takes, among others things, a preconditioner which can be given in
factored form. We will use no preconditioner, a complete and an incomplete Cholesky
factorisation of our preconditioner Aprec OF Gprec- For the incomplete ones, we will use
luinc from MATLAB ® with droptol=0.1.

For the deflation space, we choose between subdomain and no deflation and deflation
based upon eigenvectors. Domains can be split up in two directions in various configura-
tions. Currently, DPCG solves Aprec = 75, directly, but we note that this might as well be
solved in an iterative manner, too. That technique is destined to be faster than the direct
approach.
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With the computers available to us, 128 by 128 was the largest problem we can in-
vestigate within reasonable time. Consequently, most tests are based on the heated room
problem of size 128 by 128. In all cases, we will use an all zero starting vector and require
a precision of 107 in the 2-norm of the residual.

2.5.3.1 CG without preconditioning nor deflation

First, for comparison, we run the test set on standard CG: no deflation and no precondi-
tioner. Since there is no preconditioner, the choices for p and g are irrelevant. See table
1. As expected, the number of iterations rises by a factor of 2 when the total number of
unknown is increased by 4.

mq = np 12 4 8 16 32 64]128|256 512
Iteration needed to reach precision “1 6 21 45 90 176 | 349|694 1378

Table 1: Total number of iterations with neither a preconditioner nor deflation (standard
CG).

2.5.3.2 CG with preconditioning but without deflation

To investigate the effect of preconditioning, we run the test set without deflation, but with
preconditioning. See table 2, 3, 4 and 5. Each table covers a different preconditioning
technique.

Pl 1 2 4 8| 16 32 64 128

q

1 1 40 54 72| 96 133. 188 266
2 31 42 60 175|100 130 186 267
4 53 61 61 83107 142 190 269
8 72 79 85 86[116 148 198 275
16 95 103 108 117|122 161 208 282
32 || 133 137 142 148 | 161 172 227 297
64 || 187 188 192 198 | 209 227 243 323
128 || 266 268 269 274 | 282 297 324 349

Table 2: Total number of iterations using a complete Cholesky factorisation of Aprec. No
deflation applied.

If we choose p = 1 and q = 1, then both Ayrec and Gprec are equal to A. The precondi-
tioned system A~!'Az = A~!b is ‘solved’, which requires just one iteration.

The tables clearly show that using square subdomains is better than stretched ones.

Giving each subdomain a size of 1 x 1 reduces the preconditioner Apr. to a diagonal
matrix. This does not help much since A;rtcA is in essence the same as A; they only differ
by a factor of 4. This explains why the number of iterations for p = 128 and ¢ = 128 in

tables 1, 2 and 4 are the same. The same holds for Gpec in tables 3 and 5.
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Pit 7 2 4 8| 16 32 64 128

q

1 1 1 12 32| 75 169 330 599
2 6 6 17 38| 90 186 350 629
4 15 17 83 150 | 232 380 637 1000
8 34 38 153 162|232 318 491 783
16 79 91 244 235|224 282 352 570
32 || 170 186 386 324|283 244 314 442
64 || 333 350 667 503|388 335 295 379
128 | 614 636 1252 897|613 479 380 349

Table 3: Total number of iterations using a complete Cholesky factorisation of Gyrec. No
deflation applied.

Pl 1 2 4 8| 16 32 64 128

9

1 /122 147 143 149 | 162 181 205 266
2 || 146 139 152 158 [ 169 181 216 267
4 | 141 152 146 155|168 191 217 269
8 || 149 158 155 156 | 169 192 223 275
16 [ 161 169 167 170|177 198 231 282
32 || 180 182 189 192|198 214 249 297
64 | 205 216 219 224|232 249 263 323
128 || 266 268 269 274|282 297 324 349

Table 4: Total number of iterations using a incomplete Cholesky factorisation of Aprec. No
deflation applied.

Pl 1 3 4 8| 16 32 64 128

g

1 [122 200 203 197202 195 226 599
2 |[210 231 247 254|260 264 264 630
4 {209 241 258 258|275 284 272 1000
8 || 205 244 256 260|269 278 281 783
16 [[ 210 251 253 250 (255 266 297 570
32 || 197 247 242 233|233 248 296 442
64 || 538 584 668 506 | 391 338 296 379
128 || 613 634 1252 897 [ 613 479 380 349

Table 5: Total number of iterations using a incomplete Cholesky factorisation of Gprec. No
deflation applied.

The smaller the subdomains, the more information is lost, the slower the convergence
(in number of iterations).

The idea of preconditioning is to reduce the number of iterations with a bit of extra
calculations. This is observed for Aprec as the number of iterations is always fewer than
349 (the no-preconditioning case). But Gprec sSeems to have an unfavourable effect: while
spending extra calculations it also increases the number of iterations sometimes. Since
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most subdomains are still almost singular (small eigenvalue), the condition number of
G, A is quite high resulting in extra iterations. Note that (subdomain) deflation will
cancel those small eigenvalues. Consequently, the effect noticed here should not be that

worrying.

2.5.3.3 CG without preconditioning but with deflation

To investigate the effect of deflation, we run the test set with subdomain deflation, but
without preconditioning. See table 6.

PIl 1 2 4 8| 16 32 64 128

286 286 318 314|314 313 313 313
266 266 262 261|260 260 260 260
280 280 196 217|211 207 204 204
8 || 268 268 212 110|117 115 115 115
16 |[ 270 270 206 117| 56 60 60 59
32 || 273 273 203 115 60 29 31 30
64 ({273 273 203 115| 60 31 15 15
128 || 273 273 202 115| 59 30 15 0

N |

Table 6: Total number of iterations using no preconditioner at all. Subdomain deflation
applied.

p = q = 1 uses only 1 deflation vector, namely an all one vector. This one vector
reduces the number of iterations by 20% (compare with table 1).

Better yet, it seems we can solve a problem with O iterations! It is true, but the
computations have shifted to computing a direct inverse: Z becomes the identity matrix
which means that P reduces to an all zero matrix. CG has to solve 0Az = 0b. Any vector
i;lﬂlize& The bulk of the work is now done computing Z A3 j,..qZ b which simplifies to

The more subdomains we have, the more deflation seems to help, but more subdomains
actually mean that deflation shifts it work to computing Z A3 g,..aZ 7 b. It is quite possible
that wall clock time is not at its best at minimum nor maximum number of subdomains;
there is a trade-off probably. Unfortunately, this trade-off is not visible in the number of
iterations. To investigate the trade-off-point would require a timed series, but it depends
on the number of processors used and optimisations made et cetera. Nevertheless, in
table 7, such a timed series is performed on 1 processor. For simplicity, we assume that
PAz = Pb can be solved completely in parallel and computing Z A3}, .4 Z7b is restricted
to one processor. In our situation (with pg hypothetical processors), the trade-off-point is
p=q=32.

2.5.3.4 CG with preconditioning and deflation

To see the full potential of subdomain deflation, we have to use preconditioning and sub-
domain deflation at the same time. See table 8, 9, 10 and 11.
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p=gq | 1 2 4 8| 16 32 64 128 |
number of iterations 286 266 196 110 56 29 15 0
time used for solving PAz = Pb || 166 155 118 69| 3.9 3.1 5.1 0
time used for solvingPAz=Pb 166 39 074 0110015 00030 0.0013 0
ine Sed s Compufing 0.020 0019 0.019 0.020|0.023 0.040 0.16 1.2
ZAdpﬂatde b

total time 1 processor 16.6 155 11.8 6.9 3.9 3.1 5.2 1.2|
total time pg processors 166 39 076 0.130.048 016 12

Table 7: Timed series. No preconditioning used. Subdomain deflation is applied. Cheapest
solution are marked.

P12 4 8|16 32 64 128

q

1 1 37 53 60|79 110 154 219
2 36 41 52 56|71 96 131 185
4 50 55 42 55|62 79 105 146
8 55 63 55 34|42 51 65 86
16 72 78 63 41|25 30 37 48
32 9 103 79 51|30 17 21 27
64 || 134 141 106 65|37 21 12 15
128 191 196 146 86|47 26 15 0

Table 8: Total number of iterations using a complete Cholesky factorisation of Aprec.
Subdomain deflation applied.

Pl 1 2 4 slie 32 64 128
|

q

1 1 1 33 5181 140 225 329
2 25 28 41 57|88 148 235 324
4 37 39 37 45|58 88 134 173
8 53 56 45 35|40 53 72 91
16 84 88 58 40|26 32 40 48
32 || 145 147 87 53|32 19 23 27
64 || 232 235 133 72|40 23 13 15
128 || 323 325 172 90|48 27 15 0

Table 9: Total number of iterations using a complete Cholesky factorisation of Gprec.
Subdomain deflation applied.

The effects of both preconditioning and deflation are clearly visible. The optimal size
of a subdomain is the square one. For complete factorisation, the number of iterations
‘starts’ with 1 and ‘ends’ 0. Here, too, will the minimum wall clock time not be in one
of the endpoints. Towards the highly stretched subdomains the number of iterations rises
dramatically.

If we compare table 10 to tables 4 and 6 we see that deflation and preconditioning have
synergy; the combination is at least as good as the best of the parts and often even much
better. Unfortunately, this cannot be said of Gustafsson preconditioning and deflation.
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PIl 9y o2 4 8] 16 32 64 128

q

1 9 114 119 120125 138 161 219
2 {114 103 99 97103 116 139 185
4 1112 103 73 85| 8 93 110 146
8 ||117 100 83 45| 51 57 67 86
16 {124 109 84 51| 27 32 37 48
32 ||136 123 93 57| 32 18 22 27
64 || 153 147 111 67| 37 22 12 15
128 /191 196 146 86| 47 26 15 0

Table 10: Total number of iterations using a incomplete Cholesky factorisation of Aprec.
Subdomain deflation applied.

P12 4 8| 16 32 64 128

96 158 168 164|158 151 178 329
168 165 163 160 {157 170 167 324
170 164 131 137 | 132 137 137 173

8 [[166 159 130 79| 73 75 81 91
16 || 161 157 126 76| 44 44 45 48
32 || 149 154 122 72| 44 27 25 27
64 || 274 277 146 76| 41 23 13 15
128 | 323 324 172 90| 48 27 15 0

PR | =Y

Table 11: Total number of iterations using a incomplete Cholesky factorisation of Gprec.
Subdomain deflation applied.

They are rivals in a sense as they both try to cancel low frequent components of the error
and the high-frequent ones are demped less.

2.6 Deflation based on eigenvectors

A deflation vector corresponding to an eigenvalue of the problem should cancel that eigen-
value. So, in theory, a set of deflation vectors corresponding to the smallest n eigenvalues
should cancel those n eigenvalues leaving a better conditioned system to be solved.

Since we don’t actually solve the actual problem but the preconditioned one, we base
the eigenvectors on the preconditioned system.

For our Poisson test problem, the condition number (of the preconditioned system)
decreases slower when the largest eigenvalues are cancelled, so we use eigenvectors based
upon the smallest ones. In order to be able to compare results, we take just as many
deflation vectors as before, but note that we can just as easily use fewer of more.

The results in table 12 should be seen as the best results deflation can have.

It is clear that this deflation technique outperforms subdomain deflation in terms of
number of iterations (see table 8), but bear in mind that computing many eigenvectors
is a costly business. The gain isn’t that much, except when the subdomains are (highly)
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Pl 1 2 4 8163264128|

q

1 1 30 44 46|51 53 56 60|
2 (/27 33 39 4241 42 43 44
4 (/43 38 34 35(33 32 32 32
8 |l46 41 35 28|29 26 25 24|
16 || 51 42 33 2921 22 19

32 (|53 42 32 26|22 16

64 || 56 43 32 25|20

128 || 60 45 33 24

Table 12: Total number of iterations using a complete Cholesky factorisation of Aprec.
Eigenvector deflation applied.

stretched, which is not very interesting.

From these results we can conclude that subdomain deflation might be a cheap yet
powerful choice of deflation.

In practise, we approzimate the eigenvalues (and thus eigenvectors) rather than use
exact ones as they are cheaper to compute. Note that trying to find structure in the
eigenvectors is also an option that will save time.

2.7 A parallel view on DPCG

The main loop of DPCG consists of updating vectors, computing scalars, computing inner
products and some matrix-vector multiplications.

To parallelise the main loop involves standard techniques, but the computation of
P Ap deserves extra attention. This computation can be split up in several components:

Action (Intermediate) result
e Compute M := AZ before the main loop
e Compute Agk..q = (ZTM)™! before the main | Ajj. cq = (ZTAZ)™!
loop (or compute a factored form (LU) for back-
forward-solving)
e Compute w:= Ap
e Compute W := ZTw w=ZTAp
o Compute € := A3 q.0eq® €= (ZTAZ) 12T 4p
e Compute PAp = w - Mé PAp=(I1-AZ(ZTAZ)"'ZT)Ap

Assume, as before, that the grid consists of gp subdomains of size m x n and that we
have d deflation vectors. Furthermore, assume d < mgnp and we have gp processors'. We
then have the following dimensions of the variables:

1For simplicity, we speak of processors while we could also speak of processes depending on the paral-
lelisation method to be used.
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Matrices involved Vectors involved

A € RmanPXmanp  (gquare matrix) | w € R™I™

Z € Rmowxd (tall matrix) p € R

M € Rmanpxd (tall matrix) w € R (small vector).
Ajtarea € R (small matrix) é € R (small vector)

Since d < mgnp, w and € can be computed and stored on every processor. Similarly,
since d> < (mgnp)?, we decide to let Ajq,,.q €xist on every processor. The distribution
we propose is:

e ALk, stored (in factored form) on every processor.
e 1 stored on every processor.

e ¢ stored on every processor.

m | processor (1,1) | processor (1,1) m {| processor (1,1)
m {| processor (1,2) I processor (1,2) m I processor (1,2) I

ntimes processor (l q) ntimes processor (1,q) ntimes { m {| processor (1,q)

processor (l l processor (1,1) m ¢| processor (1,1)

|m { processor (1,q) m { processor (1,q) m{ processor (1,q)

A p, w: Z, M: ;

processor (p,1) m { processor (p,1) m ¢ | processor (p,1) I
processor (p,2) ' m { processor {p,2) m ¢ | processor {p,2) I

ntimes processor (p q) ntimes processor (p,q) ntimes { m ¢{| processor {p,q)
processor (p l processor (p,1) m | processor (p,1) I

{ processor (p,q) m{ processor (p,q) ‘m{ processor (p,q)

mqnp

Slnce A is the result of a discretisation of a PDE, it will be sparse with the most fill-in
appearing on the block-diagonal. Other fill-in will appear in the off block-diagonals. This
means that the bulk of the computation of w = Ap can be done locally and almost no
nearest neighbour communication (n.n.c.) is needed. In general, each boundary point of a
subdomain requires n.n.c., but large subdomains have relatively few boundary points; in
general only in the order of 2(m + n) neighbouring points have to be known. In contrast,
the order of work involved for one subdomain is proportional to the number of non-zeroes
(n.n.z.) of the subdomain which has order mn. It is obvious that for large subdomains
2(m + n) < mn holds.

The vector p should be divided over the processors similarly to A: each point in sub-
domain S should be stored on processor S. The same goes for Z and M, too. The
computation of @ = ZTw involves a gather-broadcast (g.b.) to compute. The vector &
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can be computed locally. Finally, w — Mé can be computed without communication. We
now give an estimate of the computational cost based on the discussed distribution over
gp processors:

Computation Order of work per subdomain
computations communication

w= Ap mn n.n.c. of O(2(m + n)) points

w=2ZTw dmn g.b.

gathering: O(gpd) points
broadcast: O(d) points
6= Agelﬂa.tedw d2 0
PAp=w— Meé dmn 0

In the subdomain deflation (d = gp) case, there is less work to be done, because only a
fraction (;-) of every deflation vector is filled:

Computation Order of work per subdomain
computations | communication

w= Ap mn n.n.c.

w=ZTw mn g.b.

€= A;l-elﬂateduj (qp)2 0

PAp=w— Mé mn . 0

Allin all, we need in the order of mn+ (gp)? computations per iteration (for subdomain
deflation). If we denote the total size of A by N (N = mqnp) the order can be rewritten
to % + (gp)? and mn + (L)% This analysis shows that neither very small nor very large
subdomains won’t do any good to the work per iteration.

Unfortunately, we don’t know an estimate of the number of iterations in terms of
q,p, m,n. If we had such insights, we could multiply this estimate with the above found
one. This new order would show the total computational costs which is obviously an
important estimate.

The choice of preconditioner is also important. The preconditioner Aprec (0r Gprec) is
converted to an (in)complete Cholesky factorisation L and is then used in the main loop to
update z: z = (LLT)~!r. This is only a process of back solving which can be done locally on
each processor if the subdomains of Apre. are decoupled. This reduces the communications
to zero for updating 2. It also holds that if the preconditioner has decoupled subdomains,
the factorisation can be computed locally with no communication (each processor stores
its own part of the factorisation).
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3 Deflation for non-symmetric or indefinite problems

Up to now, only SPD problems could be solved using deflation, but with only moderate
modifications also non-symmetric problems can be tackled.

3.1 Projections
In the non-symmetric case, two projections are needed. Define the following projections:

P = I-AZ(YTAZ)'YT
Q = I-2Z(YTAZ) Y74,
where Z = [z1...24], Y = [y1...ya] and 21,...,24 and y1,. .., yq are independent sets of

deflation vectors Observe that this is a generallzatlon of the symmetric case: PT = Q if
Z =Y and A symmetric. P and Q have the following properties:

e P2=P Q*=Q [compare to (3)] (10)
e PI-P)=0,Q(I~-Q)=0 [compare to (4)] (11)
e QZ=0,YTP=0 [compare to (5)] (12)
e PA= AQ [compare to (6)] (13)
e PAZ=0,YTAQ =0 [compare to (7)] (14)

Since u = (I — Q)u + Qu and because
I-Qu=Z(YTAZ) 'YTAu=Z(YTAZ)'YTf

can immediately be computed, we need only to compute Qu. Since AQu = PAu = Pf,
we can solve the deflated system

PAi = Pf

for @ using GMRES (or any other appropriate Krylov-subspace solver) and premultiply this
by Q.

3.1.1 Preconditioning

In this section, we show that providing GMRES with PA, L, U and Pb and using @ to find
the contribution Qu, where 4 is the solution obtained by GMRES, is the same as providing it
with P, A and Pb and using Q to find the contribution Ui, where A is the preconditioned
matrix A. P and Q are defined below.
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Suppose A = LU then

LPL

I — LYAUWWZ(YTL(LP AU YU Z)'YTL
I - AUZ(YTLAUZ)'YTL,
I—-AZ(YTAZ) Y,

p

= L-1AU!
=UZY =LTY

A:
Z:

and

O
l.

UQU-!

U(A-'PA)U-!

— (UA'L)(L'PL)(L*AUY)
= A1PA.

This I5 and @ have the same properties as P and Q: pP2=P,0%= Q, }f’/i = AQ, PAZ =
0,YTAQ = 0, so anything said about P and @ can also be said about P and Q.

3.2 Driven cavity test set

In order to test the performance of DGMRES we have to create a (non-symmetric) test
problem. Since the mathematics department of the University of Groningen is also involved
in computational fluid dynamics, it seems logical to solve a relatively easy flow problem:
a Stokes problem.

3.2.1 Continuous Stokes equations

We will compute the steady state of a flow of an incompressible viscous fluid in a square
cavity. The flow is driven by a constantly moving upper lid that drags the fluid along. We
will assume that the motion in terms of the Reynolds number is calm enough that the non-
linear (convection) terms of the Navier-Stokes equations may be dropped. All boundaries
are considered to have the “no-slip” condition. The equations we want to solve are:

Au - glx’- =0 [Horizontal momemtum equation] (15)
Dv - -35 =0 [Vertical momemtum equation] (16)
Q4 g—; = B. [Continuity equation] (17)

3.2.2 Discrete Stokes equations

The pressure p is defined in the centre of a control volume and the velocities at the edges.
The horizontal velocity u is defined in the centre of the right edge and the vertical velocity
v in the centre of the lower edge. This is called a staggered grid. See also 2]

Our discrete versions of the flow equations are:
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iy = (Ui-15 + wijor + vigr + i) + (Pist; = Piyy) = 0 (157)
4vij — (vi—l,j + vij-1 t Vigrj + Vijs) + (Pi,j_;- - pi,j+%) =0 (16%)
(Uirrs = icrz) + (Vij41 = vijo1) = 0. (17)

The resulting coefficient matrix will be singular as only the pressure gradient is computed.
Later on, we will see that this has some consequences we will have to deal with. We will
include bogus points (see 4) as it turned out it was handier from a programmers point of
view.

Solutions typically look like figure 3.

= T - - |
y g T e N - Y op | w P34 | u3  p35 | wa  p36
A 1 7 s o~ alade NN cell 1 cell 2 cell 3 cell 4
B A AL BTl M vi7 vig vig v20
d4 YV Vv BRI T A
L I P »> e u6 p38 u? p39 u8 pa0
celi§ cell & celt7 celi 8
e} VX NN NS o e v o7 oy g )
v21 va2 v23 v2
| S W N L N NS v v s ; l
B N Y N XN o= s sm 2 e A |
an i M b4t | w0 pa2 | ount pad | w1z pas
N W e o= e o
“ L B cell 9 I cell 10 cell 11 ceit 12
. . ~ ~ S R . g
b = g ves | vas var vas
SN F R el e 2l Z | |
12 PSSR ERRNE e PG pas | w4 pae | w5 pa7 | w6 pes
T T B EAls cell 13 | cell 14 cell 15 ceil 16
& " 9 | V] | ] el | e
2 4 6 8 10 12 14

Figure 4: Driven cavity problem made
up of 16 cells. Dummy variables are
marked.

Figure 3: Typical solution of a driven
cavity problem.

3.2.3 Grid

Like in the Poisson test set, we choose a square, equidistant grid of mq x np points, where
p is the number of subdomains in the vertical direction and ¢ in the horizontal. See figure
2. (Now, p is used twice, but the context will always be clear about which meaning should
be applied.)

3.2.4 Preconditioner

Similar to Poisson, we disconnect all subdomains. This gives us our preconditioner e
A small problem arises with the subdomain that includes the lower-right side as this sub-
domain is essentially a smaller Stokes problem, thus having a singularity.
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An incomplete factorisation does not suffer from this as the factorisation will likely be
non-singular. Only when dealing with very small subdomains (in the order of 2 by 2), the
incomplete one is singular. We then replace any 0 with 1 on the diagonal of the upper
triangular matrix.

A complete factorisation will be singular and this negatively influences the convergence,
so we “fix” it by adding 0.1 to the diagonal of the coefficient matrix corresponding to the
discrete continuity equation of the lower right pressure point.

No Gustafsson modification based preconditioner will be used as the Poisson test set
indicated it is.counter productive.

3.2.5 Deflation vectors

For the choice of the deflation vectors, the conditioning of the deflated matrix is important.

For symmetric positive definite matrices it is obvious to take Y = Z. This choice,
which is in fact a Galerkin approach, can still be used if the matrix becomes slightly
non-symmetric, for instance in a convection-diffusion problem. If the matrix is (almost)
indefinite however, then the deflated matrix may become very ill-conditioned or even sin-
gular.

For the Stokes matrix, we could make use of the finite element theory for the selection
of a proper Y and Z. The matrix itself can be thought of as a restriction of the continuous
operator to a finite space built by finite elements. It is known that for the Stokes equation
one has to satisfy the so-called inf-sup condition in order to avoid the above mentioned
ill-conditioning of the matrix. Now, the deflated matrix can be viewed as a restriction
of the continuous operator to a subspace of the original finite element space. Also for
this subspace one has to satisfy the inf-sup condition. This will restrict the choice of the
deflation vectors, since these vectors define how linear combinations of the original finite
element basis functions are made in order to arrive at the basis functions for the subspace.

3.2.5.1 Subdomain deflation

Although we have theory as mentioned above, we decide to use subdomain deflation once
more as it has proven in the heated room problem to have good qualities.

Subdomain deflation is not as straightforward as with Poisson though; the row sum
in the coefficient matrix for every discrete continuity equation is zero. Computing a row
sum is the same as multiplying the row with an all one vector, which occurs in subdomain
deflation. Hence that applying this deflation gives a singularity in YZAZ when Y = Z.
This can be overcome in many different ways. We did this in a rather crude way: set the
last element of the last subdomain to 3 and set the first element of the first subdomain to
2. This yields better results than modifying only the first or last. As this choice seemed
fair enough, no further research was done in optimising the choice for making Y7 AZ non-
singular.

Subdomain deflation for u and v is the same as with Poisson.
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3.2.6 Numerical results

A grid of 32x 32 was doable within a fair amount of time, but 64 x64 not. As a consequence,
all testing is performed on a grid of 32 x 32 cells.

We use a restart after 40 iterations, require a relative precision of 10~ in the 2-norm
of the residual and an all zero starting vector. For incomplete LU factorisation, we use
droptol=0.1. Using a restart after 20 iterations caused stagnation or too slow convergence.

4 8 16 32 64 128
92 300 1387 8665 58500 393769
54 158 726 4411 28766 195701
21 114 395 2321 14755 97725
21 80 248 7456 49227
21 54 163 685 3765 23981
21 54 126 530 1956 11956
21 54 126 207 1205 5695

mg =np

Iteration needed (restart=5)
Iteration needed (restart=10)
Iteration needed (restart=20)
Iteration needed (restart=40)
Iteration needed (restart=80)
Iteration needed (restart=160)
Iteration needed (restart=320)

OO OO OO O|m=
v O OV Ov OO O N

Table 13: Total number of inner GMRES iterations with neither a preconditioner nor defla-
tion.

As we can see in table 13, the restart value has quite a large influence on the convergence
behaviour. For large problems, the number of iterations is reduced by a factor of two when
the restart value is increased by a factor of two.

Pl 1 2 4| 8 16 32

998 631 637 | 630 624 628
668 371 277|267 262 263
639 330 171|142 137 136
592 318 147 | 66 62 62
574 313 148 | 63 35 32
558 312 148 | 62 31 0

Yo ol o =

Table 14: Total number of iterations us-
ing no preconditioner at all. Subdomain
deflation applied.

Table 14 shows the bare effects of subdomain deflation. As with Poisson, only 1 deflation
vector reduces the number of iterations by 10+%. If we take 16, we only need about 15%
of the original number of iterations while computing a direct inverse of 48 x 48 is peanuts.
The effects seen in table 6 are essentially the same as table 14.

Tables 15 and 16 are comparable to tables 2 and 8 respectively; square subdomains are
favoured over stretched ones, preconditioning is quite effective and preconditioning with
subdomain deflation is a killer combination. For example, using 16 subdomains (p = 4,
g = 4) in table 16 leaves a mere 27 iterations instead of the reference value of 1170. The
extra work is only an inverse of 16 x 16.
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q” 1 2 4| 8 16 32 q” 1 2 4|8 16 32
1 1 15 23] 51 159 556 1 1 17 2448 117 268
2 1l 19 25 33| 76 191 631 21 19 23 29|46 73 144
4| 25 31 43|101 215 624 4 || 25 29 2727 43 72
8 || 57 72 05143 298 745 8 || 51 41 29|20 23 35
16 | 159 180 198|279 432 825 16 (114 77 43]23 14 18
32 || 446 439 572 | 638 863 1117 32 (264 146 76|36 18 0

Table 16: Total number of iterations us-
ing a complete LU factorisation of Aprec.
Subdomain deflation applied.

Table 15: Total number of iterations using
a complete LU factorisation of Aprec. NO
deflation used.

> Pl 1 2 4f 8 16 32 ol 12 4 8 16 3
1 (102 120 145| 196 307 739 1 [[137 100 98 109 153 363
2 (1114 129 158 | 217 332 751 2 92 66 61| 70 94 162
4 1134 152 179 | 234 340 779 4 97 66 44| 42 48 88
8 (|174 190 227 | 274 420 924 8 (111 76 49| 27 26 38
16 || 267 274 317 | 428 615 1265 16 || 145 96 59| 28 16 18
32 || 717 742 824 | 1000 1360 1117 32 (320 187 99| 43 19 0
Table 17: Total number of iterations using  Table 18: Total number of iterations using

an incomplete LU factorisation of Aprec.
Subdomain deflation applied.

an incomplete LU factorisation of Aprec.
No deflation used.

The behaviour observed in tables 17 and 18 is practically identical to that of tables 4
and 10.

3.3 Conclusion

We have seen that the numerical results are remarkably similar to that of the DPCG-method.
We think it is fair to say that deflation can be used on non-symmetric, indefinite problems
although there are certain pitfalls that need to be considered or studied.
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4 Conclusion

We created two test sets to test the performance of deflation in two common used solvers:
CG and GMRES. We have created preconditioners that divided the problem in uncoupled
subdomains. This is useful for both subdomain deflation and high performance computing.

The numerical results show that preconditioning works well with large subdomains
while subdomain deflation is more suited for small subdomains. Combined, they make a
strong team. This team is “powerful” in the sense that it reduces the number of iterations
needed by a fair amount. A drawback is that the optimal configuration of the size of the
subdomains cannot be given a priori. This is related to the problem that fewer iterations
does not always mean less computing time.

We tried to further reduce the number of iterations by means of Gustafsson’s modifi-
cation. It seems that Gustafsson’s modification and deflation are rivals in a sense as they
both try to cancel the low-frequent components in the error; the number of iterations did
not go down, but went up instead. This can be understood from the fact that high-frequent
components are demped less if Gustafsson’s modification is applied.

A few difficulties arose when working with singular problems and a singular precon-
ditioner; the deflation vectors had to be adapted and the preconditioner had to be made
non-singular. Also, we saw that the restart value DGMRES seems to be of great influence on
the convergence rate; too small a value resulted in stagnation.

The performed experiments show that deflation is promising.
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5 Recommendations for further study

It would be highly interesting to see what performance can be reached when (subdomain)
deflation is used in multiple processor / vector computers. We have done only theoretic
experiments, yet they indicate that subdomain deflation will only then show its full poten-
tial.

To be true, we have no theory why deflation works for the Stokes equation; we only
know that it works. It would be nice to have a theoretic foundation for deflation, which is
likely to be based on finite element theory.

We have no theory about what the optimal size of subdomains is a priori. To see
whether theory can be developed to estimate this size will be a challenge.

Only two test problems were tackled, but in quite some detail. It would be pleasing to
see whether deflation in general produces good results.
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A CODE FRAGMENTS

o™
|
<

We adapted the MaTLAB ® €6 method (pcg.m) to use deflation. As that file is copyrighted and we don’t want to infringe copyright law, we give the. patch file to generate our dpcg.m from pcg

revision 1.18:

function [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1 ,M2,x0,var
7PCG Precondltioned Conjugate Gradients Method

% X = POCG(A,B) attempts to solve the system of linear equations AeX
% for X. The N-by—N coefflclent matrix A must be symmetric and pos
Y% definite and the right hand side column vector B must have length
Z A may be a function returning AsX.

% POG(A,B,TOL) specifies the tolerance of the method. If TOL is []
% then PCG uses the default, le—6.

% POG(A,B,TOL,MAXIT) specifies the maximum number of iteratlons. I
% MAXIT is (] then POG uses the default, min(N,20)

Y POG{A,B,TOL,MAXIT ,M) and PCG(A,B,TOL,MAXIT,M1,M2) use symmetric
% positive definite preconditioner M or M=MleM2 and effectively

% solve the system Inv(M)eAeX = inv(M)eB for X. If M is [] then

% a preconditioner is not applied. M may be a function returning M
% POG{A,B,TOL,MAXIT ,M1,M2,X0) specifies the initial guess. If Xo 1§
% then PCG uses the default, an all zero vector.

%  POG(AFUN,B,TOL,MAXIT,M1FUN M2FUN,X0,P1,P2,...) passes parameters
% to functlons: AFUN(X,P1,P2,...), MIFUN(X,P1,P2,...), M2FUN(X,P1,P
Yo [X,FLAG] = POG(A,B,TOL,MAXIT,M1,M2,X0) also returns a convergence
% 0 POG converged to the desired tolerance TOL within MAXIT iterat
% 1 POG iterated MAXIT times but did not converge.

% 3 PCG stagnated (two consecutlve iterates were the same).

% 4 one of the scalar quantlties calculated during PCG became too
% small or too large to continue computing.

% {X,FLAG,RELRES] = PCG(A,B,TOL,MAXIT,M1,M2,X0) also returns the

% relative residual NORM(B—A«X)/NORM(B). If FLAG is 0, RELRES <= T
% [(X,FLAG,RELRES,ITER] = POG(A,B,TOL,MAXIT ,M!l,M2,X0) also returns t
% iteration number at which X was computed: 0 <= ITER <= MAXIT.

%  [X,FLAG,RELRES,ITER,RESVEC] = POG(A,B,TOL,MAXIT,M1,M2,X0) also re
% vector of the residual norms at each iteration including NORM(B-A
% [x,flag,rr,iter,rv] = pcg(A,b, tol,maxit ,M);

% as inputs to POG

% [x1,flagl,rrl,iterl,rvl] = pcg(@afun,b, tol,maxit,@mfun,(],{],2
% See also BICG, BICGSTAB, CGS, GMRES, LSQR, MINRES, QMR, SYMMIQ, C

% Check for all
n2b = norm(b);
if (n2b == 0) % if

vector => all zero solution
% Norm of rhs vector, b
rhs vector Is all

zero right hand side

ZEeros

|
[
|
|
|
|
>
|
|
|
|
|
>

AAAVVVVVVVVVVVVVV=V—eeVY——Vom——————VVVVVV

function [x,flag,res,iter,resvec] = ...

dpcg (A,b, tol ,maxit ,M1,M2,x0,Z,varargin)
FDOPOG Deflated Preconditioned Conjugate Gradients Method
% X = DPOG(A,B) attempts to solve the system of linear equations
% AsX=B for X. The N-by-N coefficient matrix A must be symmetric
% and positive definite and the right hand side column vector B
% must have length N. A may be a function returning AsX.

% DPOG(A,B,TOL) specifies the tolerance of the method. If TOL is
% {] then DPOG uses the default, le-8.
% DPOG(A,B,TOL,MAXIT) specifies the maximum number of

% fterations. If MAXIT is [] then DPOG uses
min(N,20).

DPOG(A,B,TOL,MAXIT ,M) and DPOG(A,B,TOL,MAXIT,M1,M2) use
symmetric positive definite preconditioner M or M=MleM2 and.
effectively solve the system inv(M)e«AeX = inv(M)eB for X. If M
is [] then a preconditioner is not applied. M may be a
function returming M\X.
DPOG(A,B,TOL,MAXIT ,M1 ,M2,X0) specifies the
X0 is [] then DPOG uses the default, an all zero vector.
DPOG(A,B,TOL,MAXIT,M1,M2,X0,Z) specifies the deflation vectors.
If Z is [] then DPOG uses the default, no deflation at all.
DPOG(AFUN, B, TOL, MAXIT ,MIFUN, ,M2FUN, X0,Z,P1,P2,...) passes
parameters P1,P2,... to functions: AFUN(X,P1,P2,...),
MIFUN(X,P1,P2,...), M2FUN(X,P1,P2,...).

the default,

initial guess. If

[X,FLAG] = DPOG(A,B,TOL,MAXIT,M1,M2,X0,2) also
convergence FLAG:
% 0 DPOG converged
% iterations
% 1 DPOG iterated MAXIT times but did not converge.
3 DPOG stagnated (two consecutive iterates were the same).
4 one of the scalar quantities calculated during DPOG became
too small or too large to continue computing.
{X,FLAG,RES] = DPOG(A,B,TOL,MAXIT,M1,M2,X0,Z) also returns
absolute residual NORM(B—A«X). If FLAG 1Is 0, RES <= TOL.
{X,FLAG,RES,ITER] = DPOG(A,B,TOL,MAXIT ,M1,M2,X0,Z) also
returns the iteration number at which X was computed:
0 <= ITER <= MAXIT.
[X,FLAG, RES,ITER,RESVEC] = DPOG(A, B, TOL,MAXIT ,M1,M2,X0,Z) also
returns a vector of the residual norms at each iteration
including the zeorth residual.
{x,flag,r,iter,rv] = dpcg(A,b,tol ,maxit ,M);
as inputs to DPOG
[x1,flagl,rl,iterl rvl] =
dpcg (@afun,b,tol ,maxit,@mfun,[],[},21);
See also BICG, BICGSTAB, CGS, GMRES, DGMRES, LSQR, MINRES, QMR,
SYMMLQ, CHOLINC, @.
Z%7OPOG: Added
Yo Adapted by Bart Dopheide (dopheide@fmf.nl, 2004) to use
% deflation technique.
K%VABSOLUTE: Added.
Y% Adapted by Bart Dopheide (dopheide@fmf.nl, 2004) to use
% switch between absolute and relative tolerance. This switch can
% only be operated from .within_. this function and not in the
%
Y%
%

returns a

BREEINPEREREE RS

to the desired tolerance TOL within MAXIT

the

AR

function call. (Therefore, the help part for the function
applies to absolute tolerance omly.) This is because the author
only npeeded absolute tolerance.

Z%IABSOLUTE: Added. A switch for
use_.absolute = 1; % = 0 implies

backward compatibility.
use relative tolerance.



™

. (2 » ,Z) \ Paiejjep v) = ZV — 1 ]
| ((uoriwpyepou-g1 » 1.Z) \ P2I1%[jaP"V) » ZV uoije[japou-Ql = %%
< uotre(japou-gr o (L.Z *» 1—.(Z » Vv +» 1.2Z) »2Z+*V—1I)= %%

(ox » v -q) » d=1%%
I MIYUYY,
0x » ¥V = d—q*d=2Z 1U8m 3\ "PIPPV DOJ®%
22U¥12]03 23IN[OSQY Y tqzu = 03 = q[O% 25uUwl3[0) 2A139[3Y % ‘qzu = (03 = q[O03
pus
‘1T = qgu
(2injosqe=~asn) 3t
te3njosqe 3t sayww | jo wmiou v 3uts) “PIPPV ALNIOSHV%Y
pus
aanjaa
pua
C(NeN‘ 1213 Begy‘o*ixew [0y ', Sodp, ) Bswagg
., 8adp, < - 8ad, -afueyd d2n3aws0d :OOJ®4%
(z > 3noBaeu) 3
(0)wiou = (1)29Aas521 % t0 = 23asaz
pawiojiad aq pedu s5UO1}BIIIL OU Y to = 1913t
0/0 Allenide st [enpisa: ajnjosqe Iy} Y ‘0 = sazr
pauie}qo udaq s8Y UO[IN|OS PpPI[eA B O ‘o = Bey
5013z [[® S} uOIIN|Os uIYy t(1'u)soaez = x

5013z [|e Sl 10322A syl 3 % (0 == qzu)
qed 101924 syz jo wioN %:(((q = .Z) \ Peiv|jap-v) e+ ZV — q)wioun = qzu
‘paBuvyd DOJI@%

uolIN[Oos 013z []|¥ <= 10323A apis puey 3ySt1x ozxaz ([ J0} NIYD Y%

'ZV * ,Z = P@319[}aP VY
‘Z » V=2V
csajqeirea mau Suronpoiju] PaIpPy ODOd®%

pua
tuanjiaa
t({:}uiBarvwrea ‘x ‘ZW ‘TN
ccc ‘qixew ‘o3 ‘q ‘y)B8ad-aynjosqe [00as01's031 522 Buyy‘x]

pua [} = ZN ZWIsIXd_ 3%

pua [] = TN TWIsIxXa_ 3§

autj isnfl op [(tm B8dd piepuuis os ‘pajuem UOI}IB[J3IP ON %
Ul—‘

pua

t(sa)a0aae
‘(1 4+ u ‘[, s210323Aa—~uotje[jap~judpuadaput~py aaey-iouued=z-,
crr L {Y™URY3TSUWN|0D~3I0W-sEY~ X(IjRwW-uote(jed,})Iyutads = s?
u < (z'z)ozis jresje
t(sa)aoaaa
(u*f{ ., 2zis~wWa|qoId=ayI~Y2eW= 03" SMOI~P %",
L YIMoXIIjB WS B-aqTisSNWS XIjRWw T uojR[}ag, }) JIvtads = 52
(v ‘(1'z)osts)jenbasy_ g1
((z) A3dwasy 73 (8 =< ujBawu)) j1
'z 1ajewered jndul A2YyD PIPPV DOJI®4%
7 (,xt13ew, *adAje)[enbast 7z (g < utBawm)) 3}

‘1 Aq s3jiys uiBieu ‘pappe st 1aj2wwrvd duo oasnedag - Ppaiydepy :O0OdEL% 2 (,xyriew, ‘adAre)jenbast 5 (2 < wiBawu)) 3

pus
uanjada
pus
(NeN‘ 123t Bujy ‘0 txvw* o3 ¢, 8ad, ) Bswiag!
(z > 3noBawu) j1

VVVVVVVVVVV—AAAAAAAAAAAAAAA/‘«AAAAAAAAAAAAAAAAAAAAAAAAAAAAA—AAAAAAA

Juiou = (xsy—q)wiou = (1) 224531 % 0 = Dd9asaz
pawiojiad 2q Ppadu SUO0[IVIIIL OU ‘0 = 331
|en3de S! [UNPISaa dA1V|aI Y} % ‘0 = sa1[az
193Q0 UdIQ s¥Y UOIIN[OS Pl[eA B Y ‘0 = Bey

s012z ([[¥ 81 uoOlIN|Os UaIYl % (1tu)sodez = x

A.1 Heated room problem




A CODE FRAGMENTS

relres = normr / n2b;
itermsg ('peg’,tol, maxit,0,flag,iter,relres )

normr = norm(b A« x);

normr = norm(b iterapp (afun,atype,afcnstr,x,varargin{:}));

relres = normr / n2b;
crelres = normrmin / n2b;

itermsg (’'pecg’,tol, maxit,i,flag,iter,relres);

For the same reasons, only the patch file for our version of pcg.m that uses absolute instead of
function [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit ,M1,M2,x0, var

tolb = tol e« n2b; % Relative tolerance

res = normr / n2b;
%IDPOG: Cosmetic change. 'peg’ —> 'dpeg
itermsg('dpecg’,tol, maxit,0,flag,iter,res);

%¥DPOG: Added. Convert the deflated solution to the real solution
%% The solution x we find is not the solution we want as

%% this is the solution to PAx = Pb.

%% Compute P'T x

%% =x — Z (A.deflated) -1 Z°T A x.

%% Compute {(I-P*T)u

%% = Z (A_.defiated) =1 Z2°T b.

x =x + Z o« { A_deflated \ (2’ « (b A e x)));

%VDPOG: Added. We want q = P « A s p.
q=q - AZ « (A.deflated \ (Z° « q));
%YDPOG: Changed. Compute correct norm.
pcg-r = b A e x;
normr = norm(pcg-r — AZ « (A_deflated \ (Z' « pcg-r)));
%7DPOG: Changed. Compute correct norm.
pcg-t = b — iterapp{afun,atype,afenstr,x,varargin{:});
normr = norm(pcg.r — AZ « (A_deflated \ (Z' « pecg-r)));
res = normr / n2b;
res = normrmin / n2b;
%¥DPOG: Added. Convert the deflated solution to the real solution

%% The solution x we find is not the solution we want as
%% this is the solution to PAx = Pb

%% Compute P°T x

%% =x — Z (A.deflated) -1 Z°T A x.

%% Compute {(I-P°T)u

%% = Z (A.deflated) -1 Z°T b.

x = x + Z o (A_deflated \ (Z' « (b - A « x)));

%YDPOG: Cosmetic change. 'peg’' —> 'dpeg’
itermsg {*dpeg’,tol ,maxit,i,flag,iter ,res);

V=VVVVVVVVV——=VV—=VV—VVVVVVVVVVVVVV-

relative tolerance:

| functlon {x,flag,relres,iter,resvec] =

> absolute_pcg(A,b,tol,maxit, Ml ,M2,x0, varargin)

> % Adapted by Bart Dopheide (dopheide@fmf.nl, 2004) to use

> % absolute tolerance instead of relative

> % "Bug": Names are not updated. l.e. relres Is still named
> % relres while res, residual or absres would be better. In
> % essence , | made it work, nothing more nothing less. (It also
> % saves in the diff/patch file ;-).)

| %#ABSOLUTEPCG: Changed.

> tolb = tol; % Absolute tolerance
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A CODE FRAGMENTS

compute_elgenvalues (A, A_prec, q « p, 'LM’,
elgenvalues_method);
end
Z = eigenVec (:, 1
end
end

q =« p)i

% Everything is setup now. Let’s compute!
[x, flag, res, iter

if (flag "= 0)
fprintf('No_converge_.reached_within.%d_iterations.\n", maxit);
x = x0;

end

To generate the tables in this report, we used a wrapper function that calls the test suite

many times:
function [iterationsMatrix] = poisson2D_test.combination (

problem_size ,preconditioner_type ,deflation_type)
%P OISSON2D TEST.COMBINATION Try all combinations of subdomains

%  ITERATIONSMATRIX = POISSON2D_TEST.COMBINATION(PROBLEMSIZE,
%  PRECONDITIONERTYPE,DEFLATION.TYPE) tests combinations of a
% square PROBLEM_SIZExXPROBLEM_SIZE POISSON2D problem . This is
%% wrapper code for POISSON2D.TEST.SUITE. See that function for
% details.

Y See also POISSON2D_.TEST.SUITE, POISSON2D.

% Make a fancy header.

if (nargout == 0)
fprintf ("\\-pl\na-\\I");
for p = 2 .” [0 : log2(problem_size)] fprintf(’_%4d’, p); end
fprintf(’\n———+');
for p = 2 ." [0 : log2(problem_size)] fprintf('"——-=-— ', p); end
fprintf(’\n’);

end

for q = 2 .° [0 : log2(problem_.size)]
m = problem.size / q;
if (nargout == 0) fprintf('%3d|’, q); end
for p = 2 .” [0 : log2(problem_size)]
n = problem_size / p;

[x,flag ,res,iter ,resvec] = polsson2D_test_suite(m,n,q,p, ...
preconditioner_type, deflation_type);
fter.mat{l + log2(q), 1 + log2(p)) = iter;

if (nargout == 0) fprintf(’'.%4d’', iter); end
end
if (nargout == 0) fprintf('\n'); end
end

if (nargout > 0) iterationsMatrix = iter; end
This is the input needed to generate most tables in chapter 2:
problem_.size = 186;

no-p = 0; simp 1; gust = 2;
no_f = 0; comp = 1; Incp = 2;
no.d = 0; subd = 1; eigd = 2;
smal = 0; larg = 1;

% OG without preconditioning nor deflation.
for i =2 . [ O log2(128) ]

[x,f,r,iter,rv] = poisson2D_test.suite(i,i,l,1);
fprintf("%d.’, iter)

end

fprintf(’'\n’);

resvec] = dpcg(A, b, tol, maxit, L, U, x0, Z);

% OG with preconditioning but without deflation.
poisson2D_test_combination(problem.size, {simp, comp],
poisson2D_test_combination(problem_size, [gust, comp],
poisson2D_test.combination(problem_size, [simp, incp],
poisson2D_test_combination(problem_size, [gust, incp],

% OG without preconditioning but with deflation.
poisson2D_test_combination(problem_size, no_p, subd);

% OG with preconditioning and deflation.
poisson2D_test.combination(problem_size, [simp, comp],
polsson2D_test.combination(problem_size, [gust, comp],
poisson2D_test_combination(problem_size, [simp, incp],
poisson2D_test_combination(problem_size, [gust, incp],

for i =2 .° [ O log2(16384) ]
[x,f,r,iter,rv] = poisson2D_test_suite(i,i,l1,1);
fprintf(*%d.', iter)

end

fprintf(°\n’);

% Deflation based upon eigenvectors.
poisson2D_test_.combination(problem_size, [simp, comp],

{eigd]);
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A CODE FRAGMENTS

%

R

subdomains and P vertical ones of size MxN. The vectors for P
are slighty different as to prevent singularities in the

deflated matrix Z’«STOKES2D(M«Q,NeP)eZ.

See also STOKES2D, STOKES2D_PRECONDITIONER, RHS_DRIVEN.CAVITY,
POISSON2D_SUBDOMAIN_DEFLATION_VECTORS

poisson2D_subdomain_deflation.vectors{m, n, q, p)
=i P;
= P;
(end,end) = 3; % Prevent singularity.
(1,1) = 2; % Prevent singularity.

append.matrix(U, V, P);

We adapted the MATLAB ® (MRES method (gmres.m) to use deflation. As that file is copyrighted and we don’t want to infringe copyright law, we give the patch file to generate our dgmres.m
from gmres revision 1.21:

function {x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,maxit,Ml
ZGMRES Generalized Minimum Residual Method.

% X = GMRES(A,B) attempts to solve the system of linear equations A
% X. The N-by-N coefficient matrix A must be square and the right
% column vector B must have length N. A may be a function returnin
% uses the unrestarted method with MIN(N,10) total iterations.

% GMRES(A,B,RESTART) restarts the method every RESTART iterations.
% is N or [] then GMRES uses the unrestarted method as above.

% GMRES(A,B,RESTART,TOL), specifies the tolerance of the method. If
% then GMRES uses the default, l1e—-6.

% GMRES(A,B,RESTART,TOL,MAXIT) specifies the maximum number of oute
% iterations. Note: the total number of iterations is RESTART«MAXIT
% fs [] then GMRES uses the default, MIN(N/RESTART,10). If RESTART
% then the total number of iterations is MAXIT.

% GMRES(A,B,RESTART , TOL,MAXIT ,M) and GMRES(A,B,RESTART,TOL,MAXIT, 6 M1
%% use preconditioner M or M=M1e«M2 and effectively solve the

% system inv(M)eAeX = inv(M)«B for X. If M is (] then a preconditi
% not applied. M may be a fumnction returning M\X.

% GMRES(A,B,RESTART , TOL ,MAXIT ,M1,M2,X0) specifies the first initial
%  guess If X0 is {] then GMRES uses the default, an all zero vect
% GMRES(AFUN, B,RESTART , TOL, MAXIT ,MIFUN ,M2FUN, X0,P1,P2,...) passes p
% to functions: AFUN(X,P1,P2,...), MIFUN(X,P1,P2,...), M2FUN(X,P1,P
% {X,FLAG] = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) also returns a ¢
Yo FLAG:

% 0 GMRES converged to the desired tolerance TOL within MAXIT ’iter
% 1 GMRES iterated MAXIT times but did not converge.

% 3 GMRES stagnated (two consecutive iterates were the same).

% [X,FLAG,RELRES] = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) aiso retu
% the relative residual NORM(B—A«X)/NORM(B). If FLAG is 0, RELRES
% {X,FLAG,RELRES,ITER] = GMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0) also
T returns both the outer and inner iteration numbers at which X was
% computed: 0 <= ITER(1) <= MAXIT and 0 <= ITER(2) <= RESTART.

% [X,FLAG, RELRES,ITER,RESVEC] = GMRES(A,B,RESTART,TOL,MAXIT ,M1,M2,X
% returns a vector of the residual norms at each inner iteration, i
% NORM(B-A«X0).

% x = gmres(A,b,10,tol ,maxit,M1,(],(]);

Yo as inputs to GMRES

% x1 = gmres(@afun,b,10, tol ,maxit,@mfun,(],[],21);

% See also BICG, BICGSTAB, CGS, LSQR, MINRES, PCG, QVR, SYMMIQ, LUI
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function {x,flag,relres,iter,resvec] =

dgmres(A,b, restart,tol,maxit,M1,M2,x0, N < varargin)

JDGMRES Deflated Oa:nqw__nmn Z_EB:B _ﬂou_n:w_ Method

% X = DGMRES(A,B) attempts to solve the system of linear

% equations AeX = B for X. The N-by—N coefficient matrix A must
Y% be square and the right hand side column vector B must have

% length N. A may be a function returning AeX. This uses the

% unrestarted method with MIN(N,10) total iterations

% DGMRES(A,B,RESTART) restarts the method every RESTART

% iterations. If RESTART is N or [] then DGMRES uses the

% unrestarted method as above.

% DGMRES(A,B ,RESTART ,TOL) specifies the tolerance of the method.
% 1f TOL is [] then DGMRES uses the default, le-—6.

% DGMRES(A,B,RESTART , TOL,MAXIT) specifies the maximum number of
% outer iterations. Note: the total number of iterations is

%  RESTART«MAXIT. If MAXIT is {] then DGMRES uses the default,

%  MIN(N/RESTART,10). If RESTART 1s N or [] then the total number
% of iterations is MAXIT,

%  DGMRES(A,B,RESTART,TOL,MAXIT,M) and

% DGMRES(A, B,RESTART ,TOL,MAXIT ,M1,M2) use preconditioner M or

% M=MleM2 and effectively solve the system inv(M)eAsX = inv(M)«B
% for X. If M is [] then a preconditioner is not applied. M

%% may be a function returning M\X.

Y DGMRES(A,B,RESTART , TOL,MAXIT ,M1,M2,X0) specifies the initial
% guess. If X0 is [] then DGMRES uses the default, an all zero
% vector.

% DGMRES(A ,B,RESTART, TOL,MAXIT ,M1,M2,X0,2,Y) specifies the

% deflation vectors. If Y is [] then DGMRES uses Y =2. If Z is
% {] then DGMRES uses the default, no deflation at all.

%

% DGMRES(AFUN, B ,RESTART, TOL, MAXIT,MIFUN,M2FUN,X0,2,Y,P1,P2,...)
% passes parameters to functions: >.—...CZAX P1, —vu a W)

%  MIFUN(X,P1,P2,...), M2FUN(X,P1,P2,...).

% [X,FLAG] = B?BMMT? B,RESTART, 3? _S;CCA, M1,M2,X0,2,Y) also return
% a convergence FLAG:

% 0 DGMRES converged to the desired tolerance TOL within MAXIT
% iterations.

% 1 DGMRES iterated MAXIT times but did not converge.

b 3 DGMRES stagnated (two consecutive iterates were the same).
% [X,FLAG,RELRES] = DGMRES(A,B,RESTART,TOL,MAXIT,M1,M2,X0,2,Y) also
% returns the relative residual ZOZZAWI>on\ZOESAmv :. v‘;O s
% 0, RELRES <= TOL.

% [X,FLAG, RELRES,ITER] = DGMRES(A,B,RESTART, TOL,MAXIT,M1,M2,X0,2,Y)
% also returns both the outer and inner iteration numbers at

% which.X was computed: 0 <= ITER(1) <= MAXIT and 0 <= ITER(2)<= RE
% [X,FLAG,RELRES, ITER ,RESVEC] =

% Béh\r B, Eﬂ;‘ﬂ. TOL,MAXIT,M1,M2,X0,2,Y) also returns a vector
% of the -mu_m:v_ norms at each ::.n_. iterationm including the
% zeroth norm.

% x = dgmres(A,b,10, tol,maxit,M1,{],[]);

b as inputs to DGMRES

% x1 = dgmres(@afun,b,10,tol ,maxit,@mfun,{],(],21};

% See also BICG, BICGSTAB, OGS, LSQR, MINRES, PCG, QMR, SYMMILQ,
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x = Z » (A_deflated \ (Y' » (b A e x))) + x

return
end

%VDGMRES: Added. We want: r = P ¢« b = P « A « x0

%% Rewrite: r = P o« (b = A s x0)

%% =Ll — A e« Z « (YT » A s Z)"—1 » Y'T) « rO_node
Y% = rO.nodeflation —

%% AZ +» (A_deflated \ (Y'T » rO_nodeflation))

r=1r — AZ « (A_deflated \ (Y’ « r));

ftermsg ('gmres’,tol ,maxit,[0 O], flag,iter,relres);

%IDGMRES: Cosmetic change. ‘gmres’ —> ’dgmres’.
itermsg ('dgmres*,tol ,maxit,[0 0], flag,iter,relres);
%YDGMRES: Added. We want u2 =P ¢« A s V(:, J).

u2 = u?2 AZ » (A_deflated \ (Y’ « u2));

A CODE FRAGMENTS

normr = norm(b — A e x); %Z7DGMRES: Changed. Compute correct norm

gmres.t = b — A » x;

normr = norm(gmres._r AZ « (A_deflated \ (Y' e« gmres.r)));
normr = norm(b — iterapp (afun,atype,afcnstr,x,varargin{:})); %ZDGMRES: Changed. Compute correct norm.

gmres.r = b — iterapp(afun,atype,afcnstr,x,varargin{:});

normr = morm(gmres_.r — AZ » (A_deflatéd \ (Y' s gmres.r))):
SZDGMRES: Added. We want: r = Peb — PsAex
§ = AZ « (A_deflated \ (Y’ » r));

YODGMRES: Added. Compute correct residual.

r=1r — AZ « (A_deflated \ (Y' » r));
RYDCGMRES: Added. Convert the deflation solution to the real
T solution .
x = 2 » (A_deflated \ (Y’ « (b A+ x))) + x;

%JDGMRES: Cosmetic changes. 'gmres’ —> *dgmres’ 2x.
itermsg (sprintf([*dgmres(%d)’],restart), tol,maxit,[i j],flag,
itermsg (sprintf (['dgmres’]), tol,maxit,j,flag,iter (2),relres);

itermsg (aprintf ([ 'gmres(%d)’'], restart),tol, maxit, (i j], flag,!
ftermsg (sprintf ([ gmres’']), tol ,maxit,j,flag ,iter(2),relres);

——=VVVVVVVVVVVV=VV=VVVV—=VVVVVVVVVVVVYV
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[eigenVee, elgenVal] = ... 0
compute.eigenvalues (A, A_prec, 3 « q « p, 'SM’
eigenvalues.method );
end
case 1 % Eigenvectors based on largest eigenvalues.
if (preconditioner_type == 0)
[eigenVec, eigenVal] = ...
compute_eigenvalues (A, [], 3 »« q « p, 'LM’ -
eigenvalues.method);
else
{eigenVec, eigenVal] = ...
compute_eigenvalues (A, A_prec, 3 « q » p, 'LM’,
eigenvalues_.method );
end
end
Z = eigenVec(:, q « p);
end

% Everything is setup now. Let's compute!l
[x, flag, res, iter, resvec] = ...
dgmres(A, b, restart, tol, maxit/restart, L, U, x0, 2);

if (flag "= 0)
fprintf(’No.converge_reached_within_%d..iterations.\mn', maxit);
x = x0;

end

To generate the tables in this report, we used a wrapper function that calls the test suite many

times

function [iterationsMatrix] = ...
stokes2D_test.combination(problem_size, preconditioner_type,

deflation_type, restart)

%STOKES2D_TEST_COMBINATION Try all combinations of subdomains.

%

Y% ITERATIONSMATRIX = STOKES_TEST.COMBINATION (PROBLEMSIZE,

% PRECONDITIONERTYPE,DEFLATION_TYPE ,RESTART) tests combinations

% of a square PROBLEM.SIZExPROBLEM_SIZE STOKES2D problem . This

% is wrapper code for STOKES2D_.TESTSUITE. See that function for

% details

Yo

% See also STOKES2D_.TEST.SUITE, STOKES2D.

% Make a fancy header.
if (nargout == 0)

fprintf(*\\-pl\na-\\|");

for p = 2 (o log2(problem_size )] fprintf(’'-%4d’', p); end
fprintf('\n——=4');
for p = 2 .° [0 log2(problem.size )] fprintf('————— ', p)i end
fprintf('\n');

end

for q = 2 .” [0 : log2(problem.size)]

m = problem_size [/ q;

if (nargout == 0) fprintf('%3d|’, q); end

for p = 2 .° [0 : log2(problem_size)]
n = problem.size / p;
[x,flag,res,iter,resvec] = stokes2D_.test.suite(m,n,q,p, .-

preconditloner_type, deflation_-type, restart);

iter = inner.gmres_iterations(iter, restart);
iter.mat (1 + log2(q), 1 + log2(p)) = iter;
if (nargout == 0) fprintf('-%4d’, iter); end

end

if {margout == 0) fprintf('\n’); end

end

if (margout > 0) iterationsMatrix = iter; end

]
This is the input needed to generate most tables in chapter 3:

% GMRES without preconditioning nor deflation
for i = 2 ." [ O log2(128) ]
for restart = (5 10 20 40 80 160 320]
[x,f,r,iter ,rv] = stokes2D._test.suite(i,i,1,1,[],[], restart);
fprintf('%6d.’', inner.gmres_iterations(iter, restart))
end
fprimtf(’\n');

end

problem_size = 32;

no.p = 0; simp = 1; gust = 2;
no_f = 0; comp = 1; incp = 2;
no.d = 0; subd = 1; eigd = 2;
smal = 0; larg = 1;

restart = 40;

% GMRES without preconditioning but with deflation.
stokes2D.test.combination(problem_size, no_p, subd, restart);

% GMRES with complete factorisation.
stokes2D _test.combination(problem_size, [simp, comp], no.d, restart);
stokes2D_test.combination(problem_size, [simp, comp], subd, restart);

% GMRES with incomplete factorisation.
stokes2D_test.combination(problem_size, [simp, incp], no.d, restart);
stokes2D_test.combination(problem_size, [simp, in¢cp], subd, restart);

for i =2 .° [ O log2(16384) ]
[x,f,r,iter ,rv] = stokes2D_test_suite(i,i,1,1.(],[], restart)
fprintf("%d.’, iter.)

end

fprintf('\n');

% Deflation based upon eigenvectors.

warning off MATLAB:nearlySingularMatrix

warning off MATLAB:eigs:SigmaNearExactEig
stokes2D._test_combination(problem_size ,[simp,comp],[eigd ,0], restart);
stokes2D_test_combination{problem_size ,[simp,comp],[eigd ,1], restart};




A-13

g
o8]
wy
-~
g
S

=
(S}
=]

=
by
Sh]

-

d

o

e

<

v:w
t(z)s31a31 4 33e3sazx « (1 - (1)s3231) = 133¢
0.—0
t0 = 123!
([o 0] == (:)sa331) 41
©pasn SUOI3VIIYL I2TUL %,

}0 1equinu {v303 03 SHYND(Q) woij suoljwiaizt 3[L3s lauui/iaino %
243 s313au0d (LHVISHH'SHALI)SNOILVHALISTYWO HANNI = HaALl %

SU0138IdY!L o,

l2uup 03 suorlwiaIl SHUNO(Q) 333Au0D SNOILVHILI SSHWO HANNES
Ao._aomv._.m._v:vm:o_oa._oa_umv.::wu._w::_ = [1231) uorjouny

pua
pu=
t(s?)aoaas
({1}urBawaea ¢ Jy-,)jurads sa} = sa
t((1)sanepino
‘1 ‘[,:e1e~san|va-pamoj|y ~ pamo[leTiou
T 81T} RN[RA~YIIM=EIN[EAUI~JO~Py T OU~juIWa[3,]) jyuiads = 53
(0 =. ({1}uiB1va8a — (t)san(ep3no)poad 7% ({1}urBaeaea) Kadwest ) 3}
Z — uyBawvu [ = 1 210)
pua
t(u : [ 4 w)sanjvpalnejap = (u 1 + w)sanjepino
(u > w) iy

tganfupul = (w:y)sanjeAlno

t(sanjeput)qiBua| = w
t(:)sanjeAULl = SaINJeAU]

pua2

t(s2)10aa0

f(u ¢ .- 9UO[~ Py ISOW~3¥- O~ 103I3A=¥~2Q 3SAW~SIN|EAU!, )jIutads = 83
(u < ((sanjeput)ezis)xew | [ =_ ((sen[eput)ozis)umu) i
pua

!sanjeAl[nejep = SAN[EeAUL
((sanjeAul) A3dwasy) 31

‘(1 ‘u)soasz = san[eAino
{(senjep3ne}ap)yiBusy = u

%
(utSivaea’ mw-__e>a_=u.—w_v.m...:_a>=_vmv:_d>|ooduoxo"_mv=—c>o=oH uoljduny

t(xapur ‘:)dapuslita = 23a-uadia-pajios
t(xapur)jeAuafia = [va-uaia-poaiios
t((1vAuafia)squ-)3z0s = [xopuy ‘[va-uafia-pajzios])
t(1epuadia)Buip = [vAuadia

pu?
t([, wmAglvayiogsIigpatsanbayLusyool : s 819 ' gVLILVIN, I}
* ‘93935 utem ) Buidiem
pue
t{sa)aoaas
t(yixews3do ‘[, SUO13VIIIITPYTUIYIIM,
,~a%19au0d-3j0u—~pip-uoijeindwod-san[vauaiiyg, 1) 33urads = s»

(o =. %ely) 3}
t(s3do ‘adAy ‘u ‘sexd-y ‘y)sdie = [Bory ‘twAuadie dapuaBia]
t(, wmhAgleayiogsBgparsanbaylueyoolr: sBia :gVILVIN, ‘. }}O ) Sutuiem
t(, mAgieaygiogsBrgpaisanbayhuvyooy: s 819 'V LLVIN,
cre ¢ Kizanb, ) Buiurem = uiem
i'9 APt %
0‘—0
pua
$((203d-y)iny ‘(v)11n3)B1e = [1eAuadis *ospuadia)
wﬂ—g
f((w)1iny)B1e = [1eAuads ‘t2aAuaBla)
((031d-y ) A3dwasy) i
(0 == poy3aw) Jt

,dstp,)3dna3s = sido
sydo awapd

‘(o001

JHxew, 00

pPlinQqa: ® spaauy
31 ‘3dw®j up ‘233 Fupydayd J0IXP 03 30U FIOP uojdun} syl ANWXIH%

'spra ‘DId oslv %3S %

%

3sw| sanjeauafid 23njosqe 3IgI[|vws 03 %

1s11) sanjeauafjs a3njosqe 3saFie| woij Pp23I10s s} andino ayy %

%

sanjeauafia 3safie) 10} (W, %,

==mdAL Pu® sanfjeauadta 3sa[(ews 10j WS, == AL 'T == COHLIN %

uaym asn 03 3|43 2Yyj s23¥I(PUl FAJAL °‘POYIAW 3Id¥xduf uv 03 %

spuodsaii0d [ == CQOHIAW 21!4ym Ppoyjaw 3d2vXxa u¥ Yjim santjeauora %

ay3 Buiyndwos o3 spuodsaiiod @ == COHIIN "0 == QOHLIN u2uym %

paiouBr st N pIuEm sanjeauaBdia/si1032aauafra jo raqunu 343 %

sa1j1oads N ‘payndwod 21w y jo sIN[vAu3aPia 2y3 2591 3vYy3 ui %

‘£3dws aq Avw ULV C(OFULVV) jJo waisksuaBie (pazijezauald) %

2y3 seyndwod (QOHLIN'AdAL'N'OFUL V' VISANTYANIOITALNANOD %

= :<>|ZMO_N.QMB¢Om.Om>|Zm0~m-.QmB¢Omu %

%

senjeausfia oyndwop  SANTVANIDITALNNOD%
:vo:auE.w.nha.:.oo._.nl<.<vmo:_s>=ow_wouo=n=_oo

= H_=>n=ow_o|_vv.:0m.o~>|=vw_on_vv:°mu uoijduny

pua
T + pue *(1)x + pus : 1 + Pu2)n
(({1yurBavana)osts = [(1)4 *(1)x)
uiBaeu : [ = | 10}

t([)) esauds W

{1}urSaeaea = ((1)4 + puo

‘(suo puw o1z Sujpnidut) %

sjuownfie 3ndur jo saqunu Aue Yirm PIsn aq ued XTHLVIW ANAddVY %

‘fa o] %

fovl] %

ut Burignsaa g 03 v xwuiew puadde [im (g 'V)XIMLVWANIdAY =W %
"s2dj13vw puaddy  XTHLVIWANIAdV%

(utBivrea)xtijew-puadds = [W) uoypouny

‘Saly g GVILVW pivpuujs jou

a1w 3nq ‘warqoad 1593 13y3la 03 Ajleayidads Suofaq 3,UOP 3¥Y3} SUOIIOUNJ f[EWS [VIIAIS aatd apA

pasn suoljpuny wBY0Q ¢V




B The GNU General Public License

Version 2, June 1991
Copyright (© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
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TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer-of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in eéxchange for a fee.

. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement. )
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These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
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same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance. )

. You are not required to accept.this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have miade generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
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This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
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(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY,; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in
an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.

This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show ¢’ for details.
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The hypothetical commands show w and show c¢ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than show w and show c; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter
the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This  General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.
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