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1 Introduction

The author’s first encounter with the notion of first integrals was through
the lecture notes [9] for the course “Symplectic Geometry” given by John
Rawnsley at the university of Warwick. Its main objective was to give an
overview of symplectic manifolds and the geometry of momentum maps to
explain symplectic reduction. This reduction of dimensions helps with an-
alyzing a specific problem and is a first step in checking if a Hamiltonian
system is completely integrable, see [1].

In the recent work of Morales and Ramis [7], the existence of sufficient
many first integrals was linked to a condition of the differential Galois group
of the variational equation. The first real application was the three-body
problem. The initial setup was done by Morales and Ramis but, the comple-
tion was given by Delphine Boucher in [3] for the planar three-body problem.
The spherical pendulum, also a classic mechanics system, was already stud-
ied by Huygens [6] and that it is a completely integrable system has also been
known for a long time. Different sources like [2] and [4] give it as an example
but the whole analysis and the computation of the differential Galois group
of the normal variational differential equation has not been published.

In this article, we present a brief introduction to the Morales-Ramis theo-
rem as well as 2 computations of the differential Galois group. The differential
galois group depends on the solution curve chosen for the linearization. In
our first attempt the linearization is done along the Huygens solution curves
and in the second we use the restriction of the spherical pendulum to the
planar pendulum.

This article is a collaboration with my supervisor Marius van der Put, I
am forever thankful for his guidance and continuous support.

2 From a Hamiltonian system to a differen-
tial Galois group

Let M be a complex manifold. Let X be a holomorphic vector field on M.
Locally, a solution of the differential equation is a holomorphic map t — f(t),
from an open set in C to M, satisfying f(t) = X(f(t)) (where the dot means
the derivative w.r.t. t}. An integral curve S is obtained as a maximal analytic
continuation of a local solution. We assume that S is a Riemann surface and
that the corresponding map S — M is an embedding with normal crossings
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in M.

The variational equation corresponding to X and S is the linearization of
X along S. This can locally be described as follows:

Let S be locally described by t — f(t) € M and let M be locally described
by as a subspace of some C™. Then one considers holomorphic maps ¢ —
9(t) € C™ such that f(t) +eg(t) € M, €2 =0 and f(t) + €g(t)) = X (f(t) +
€g(t)). The first condition means that g(t) € T, (), the tangent space of M
at f(t). The second condition is equivalent to a linear differential equation
for g(t). Hence the variational equation is a linear differential equation on
the restriction (or better pull back) Ty|s of the tangent bundle of M to S.
If one wants to forget the choices of local variables, then this amounts to a
connection V on the vector bundle Tyy|s on S.

Now we assume that S is already a compact Riemann surface, or that S
and its connection have a natural extension to a compact Riemann surface
S with a meromorphic connection V. Let k : = C(S) denote the field of
meromorphic functions on S and let M denote the vector space over k of
finite dimension, consisting of the meromorphic sections of the vector bundle
on S. The connection induces an connection (again called V) of the following
form

V:M—-)Qk/c®M,

where (2, /¢ is the universal differential module of k/C. Now Q; /C is a vector
space of dimension 1 over k. Choose a non-trivial C-linear differentiation
a — a' on k. Then k is a differential field with field of constants C and
the connection V translates into an additive map 8 : M — M that has the
property d(am) = a'm + adm for a € k, m € M. In other words, (M, ) is
a differential module over k.

The standard differential Galois theory can now be applied to (M, 8). In
particular, there is a Picard-Vessiot field K O k. The solution space V of M
is equal to ker(d, K ®; M). The differential Galois group G is the group of
the differential automorphisms of K /k. This group acts faithfully on V and
its image in GL(V') is an algebraic subgroup.

The Picard-Vessiot field K can be made somewhat more explicit. Suppose
that zo € Sis a point where the differential equation is regular. Let ¢ be
an analytic local parameter at 9. Then the field of functions, meromorphic
at o, is the field of convergent Laurent series in ¢, denoted by C({t}). The
kernel of 0 on C({t}) ® M can be identified with the solution space V. The




field K is generated over k by all coordinates of all solutions in V' with respect
to some basis of M over k. In this way, K is embedded into C({t}).

A first integral F is a meromorphic function on M such that F' is constant
on every integral curve for the vector field X. Here, we only need that F is
defined in some neighbourhood of S. We want to show that the existence of
F has consequences for the differential Galois group G. Locally, one has

- oF
F(f(t) +eg(t)) = F(f(2)) + ezgi(t)gg(f(t))-
i=1 g
Here z,, ..., 2, are local holomorphic coordinates on M and the g;(t) are the

entries of the vector g(t). Globally, we have an element L := dF'|s which is a
meromorphic section of Tyy|s. In other words, L : M — k is a k-linear map
and thus L € M*. Since F is a first integral, one has that L(v) € C for every
v in the solution space V of 4.

Lemma 1 L = dF|; € M* satisfies (L) = 0. In particular, L is an
element in the dual V* of the solution space and is moreover tnvariant under
the action of G.

Proof. We note that (L) € M* is defined by d(L)(m) = L(0m) — L(m)’
for all m € M. As before, we take a point o € S that is a regular point
for (M,0) and t is a local analytic parameter at zo. Then L extends to
a C({t})-linear map C({t}) ® M — C({t}). This map will also be called
L. Furthermore, C({t}) ®c M = C({t}) ® V. For v € V we have
d(L)(v) = L(dv) — L(v)'. This is 0 since dv = 0 and L(v) € C. Then also
d(L) =0. 0

It is possible that dF|; is identical zero. In local coordinates (as above)
this means that all g—f:( f(t)) are zero. We repeat the e-trick now with €2 =0
and one can write

FU® +es(0) = FUO)+€ Y a0 1510

i,7=1

Put *F(f(t)) == X, ; a—‘::%j(f(t))dz,-dzj. This is a local expression for an
element L, := d?F|s, which is a global meromorphic section of sym?(Tyy|z).

In other words, L, lies in sym?(M*). Moreover Lo(v®v) € Cforallv e V.
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As before, it follows that 0(L2) = 0 and therefore L, € sym?(V*) is an
element invariant under the action of the differential Galois group G. More
generally one has:

Corollary 2 Let k > 1 denote the integer such that d'F|g = 0 for i =
1,...,k—1and Ly :=d*F|z # 0. Then Ly lies in sym*M* and 0(L;) = 0.
In particular, Ly € sym*V* is invariant under the action of the differential
Galois group G.

Now we consider the Hamiltonian case. Let A denote a complex man-
ifold of dimension n. Then M := T} is the cotangent bundle of A and is
a complex symplectic manifold of dimension 2n. Let H : M — C be a
holomorphic function, called a Hamilton function. There is a standard way
to attach to H a holomorphic vector field Xg. In local symplectic coordi-
nates qi, . ..,qn,p1,- - -, Pn one writes H = H(q,p) with ¢ = (q,...,¢,) and
p=(p1,---,pn). Now Xp islocally given by Xg = 31 . g—p’—{a—%— 2all g;{ a‘:‘
The variational equation (attached to Xy and S) is a differential module M
over C(S') of dimension 2n. As before, M consists of the global meromor-
phic sections of the vector bundle Thi|s. The extra features are: M inherits
a symplectic form ( , ): M x M — k and O respects this form. The latter
means that

(Omy, ma) + (my, Oms) = (my, m,)’ for all my, my € M.

The solution space V' has dimension 2n over C. It is equipped with a sym-
plectic form ( , ). Moreover the differential Galois group G respects this
symplectic form. In other words, G C Sp(2n, C).

The Hamiltonian system is called completely integrable if there exists first
integrals Fy, ..., F;, such that the dFy,...,dF, are linearly independent and
the corresponding vectors fields Xg,,..., Xp, commute. One form of the
Morales-Ramis theorem is the following.

Theorem 3 Suppose that the Hamiltonian system is completely integrable
and that the integral curve S is not constant. Then the differential Galois
group G has the property that its component of the identity G is abelian.

Proof. We only sketch the proof. For convenience we identify V with V*, via
the symplectic form on V. Suppose that the e; := dFj|s, i =1,...,n € V
are linearly independent over C. Then they generate a maximal isotropic
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subspace A of V. Define elements fy,..., f, € V with (f;, f;) = 0 for all
i,7 and (e;, fj) = d;j fori,5 =1,...,n. Put B=Cfi+---+ Cf,. Then
V =A@®B. Let P: V — V denote the projection onto B with kernel A.
Any o € G satisfies oe; = e; 1 = 1,...,n. Since o preserves ( , ), one has
that o f;— f; € Ce;+-- - Ce,. Thus G lies in the subgroup id+Hom(B, A)o P
of GL(V). This subgroup is isomorphic to the direct sum of n? copies of the
additive group C. In particular, G is abelian.

In the general situation, C-linear combinations of the dF; can become
zero when restricted to 5. One has to use corollary 2 to complete the. proof.
O

The variational equation on Tu|g has a 1-dimensional subbundle, namely
Tg, which is invariant under the connection. Thus M has a 1-dimensional
subspace kvo, invariant under 8. Then M := {m € M | (m,v) = 0}
is also invariant under 8. The normal variation equation is by definition
N := M /kv,. This differential module of dimension 2n — 2 inherits from M
a symplectic form which is again respected by the 0 of V. For a completely
integrable Hamiltonian system, the normal variational equation NV has again
the property that the component of the identity of its differential Galois
group is abelian. This is of interest for the case n = 2, since for a differential
module of dimension 2 there are effective methods (Kovacic’ algorithm and
its refinements) for the computation of the differential Galois group.

3 Calculations on the spherical pendulum

1
Hamiltonian H := §||p||2 -I-q

I'=(0,0,-1), |lg]|*=1and p-q =0.

Equations:

Mdg=p @) p=T—(¢-T+|lpl*)q

First we consider the integral curve S of Huygens. This curve is given by
the formulas (with chosen a with 0 < a < 1; and yet unknown b).

q(t) = (V1 —a?cosbt, V1 — a’sinbt, —a)
p(t) = (=bV'1 — a®sin bt, bV/'1 — a? cos bt, 0)
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Then
p(t) = (—*V1 — a2 cosbt, —b*v/1 — a?sin bt, 0)

p=T~(g-T+|pl*)g =
(0,0, —1) — (a + *(1 — a®))(V1 — a2 cos bt, V1 — a?sin bt, —a)
yields b = a~'/?. The integral curve S is then

q(t) = (V1 = b-4cosbt, V1 — b=*sin bt, —b~2)
p(t) = (—bv1 — b~*sinbt,bv'1 — b=* cos bt, 0)

Variational equation:
g+ €Q, p+ eP with €% = 0 should satisfy

(1), (2) and (3) g +€QI> = 1 and (4) (p+€P)- (g +€Q) =0

One translates the equations: _
(1) Q =P, (3)q-Q =0, (4) ¢Q + gQ = 0, but this follows by differentiating
(3), (2) reads

P = (Qs — 2p\ P, — 2p.Py)q — b°Q

yyl @1
Here p = (pg ),Qz (Qg ) and so on.
p3 Q3

Let k denote a suitable differential field. To start with we can take for
k = C({t}) with differentiation a@ := 9. Later on we will replace k by
the function field of the compact Riemann surface, determined by S. This
Riemann surface turns out to be the complex sphere.

The variational equation is now written in module form as follows: The

g ) Both Q and P are in k3. Further we

write A- B for Zf':l A;B;, for A, B € k3. The symplectic form on k® is given
by

elements of k® are denoted by (

(3)(3)-or-r




Define 0 : k® — k8 by the formula

a<g)=<P—(Qs—%z;£)-q+b2Q)'

And define
M:={<g)Ekslq-Q=0andq-P+p-Q=0}

Lemma 4 (1) 0 maps M into itself.
(2) O respects the symplectic form, i.e.,

o(2)-(B)+(2)2(2)=(2) (

h
D2
(3) The vector 23 lies in the kernel of 0.
1
D2
D3

M e

)

Proof. Straightforward calculations. O

We introduce three vectors vy, vy, vg by the formulas

1

0 7))
0 0 —q

b2q1 0 0

h= 0 V2 = 1 " bqy
~b a1 bga

—20%g, (* =07 %)qy"! 0

The vector vy is in fact equal to the vector of part (3) of the lemma (up to
a constant).

Lemma 5 vy, v, g is a basis of M := {m € M | (m,v) = 0}. Moreover,
('Ul,’l)2> = b4'




Proof. Straightforward calculations. O

The normal variational equation
is (according to the literature) equal to the differential module NV := M [kvy.
We note that NN inherits from M a symplectic structure, that & on N com-
mutes with this structure.

Lemma 6 The operator 8 on N has w.r.t. the basis of N, consisting of the
images of vy, v9, the form

d [ =bpg' (A-b)g’
dt ~ \ 3%} — 20 bgaqy!

Proof. Straightforward computation. 0O

The differential field that we want to work with is the function field of
S, in this case the field C(s), derived from the parametrization of the circle.
The formulas are:

2
@ = V1 —b7cosht = VI~ b—rs

24+ 1’
2 _
g =V1—>b"%sinbt = \/1—b'4z2+i,
d _ b(s*>+1) d
dt 2 ds

The matrix differential equation associated to N over C(s) reads:

d 1—32 (82+1)
A s(s2+1 2bs2
s 24(b—b"%s® 4 21

(s2+1)° s241  s(s2+1)

b—1/2

Conjugation with a constant matrix < 0

p1/2 ) improves the above

somewhat:




1—s2 (s241)

s
_d_ | s(s%+1 252
ds 241-b"4Hs2 4 s2—1
(s2+1)3 s24+1  s(s241)
Again conjugation, now with the matrix s +1 g leads to
g jug ’ 0 (s2+1)—l
a simpler matrix
d 1-3s2 1
a o s(s2+1) 252(s2+1)
ds 241-b"4)s% _ 4(s®+1) 3521
(s%+1) 1 s(s2+1)
For a matrix differential equation d% — ( Zl a; ) one computes the
3 —a
following differential operator
i !
9% — 239 + (a) — a® — asa3 — ala—3).
as as

A calculation of this shows that the only singular points are £z, co. These
points are regular singular and for general values of b, the local exponents
are not rational. Hence each local Galois group is G,, and the global Galois
group is connected. If the global Galois group is commutative, then the
above differential operator should factor in two ways. MAPLE does not give
this answer, the programm only gives one factoriation. Looking at the formal
solutions at the sigularities we find the above Galois group.

4 More calculations on the spherical pendu-
lum

Again we have the given Hamiltonian H := }||p||>—T - ¢ with I' = (0,0, —1)
and the restrictions ||g||> =1 and p- ¢ = 0. The Hamiltonian system is:

{ g=p
p=T—=(q-T+|lpl|*)qg




For the linearization we choose the solutions laying in a vertical plain through
the unstable equilibrium point i.e. the point (0,0,1). This integral curve is
given by

{ q(t) = (cos f(t),0,sin f(t))
p(t) = (—f'(t)sin f(t),0, f'(t) cos f(t))

The choice of g, = 0 is arbitrary, we could also have taken ¢; = 0 such that
p> = 0 would follow. f(t) is still an unknown function. Differentiating p(t)
again we find an expression for p(t)

p(t) = (—f"(t) sin f(t) — ()" cos f(t), 0, f"(t) cos f(t) — f'(t)* sin £(2)).

Substituting these equation in the Hamiltonian system we obtain a second
expression for p(t), symplifying the 2 expressions we obtain

{ p=(f"(t),0,£"(t)) and
p = (—cos f(t),0, —cos f(t))

We can now solve for f(t) with MAPLE and we find the solutions

f(t) F(t) 1

da—t—C2 =0, da—t—C2 = 0.

-1
V/2sin(a) + C1 v2sin(a) + C1

These solutions do not help us finding formal solution of our problem but, we
do not need them to find the normal variational equation. The variational
equation along these curves has to satisfy all the condition form the previous
paragraph ||g + €Q||> =1 and (p + €P) - (g + €Q) = 0. We will linearize the
equation along the solution curves g + €Q,p + P with ¢ = 0.

Lemma 7 The linearized system is

=
P = —(llpll* — ¢3)@Q + 3¢Q3
and define 0 by

o{ 2 Y= pqun o )

Q, Pek’
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Proof. Straightforward calculation and using the rule p- P = —Q3 which
finds its origin in that the Hamiltonian must be constant on all solution
curves. So substituting g+€Q,p+eP in H(g,p) =3 i|[pi|?+¢s = 3 2(p1 +
€P)?+g3+€Q; we find Y- 1p?+g3+€Y_ piP,+ Q3. The whole last summation
must be 0 producing p- P = —Q3. ]

We introduce three new vectors vy, v, v by the formulas

0 - —f'(t)gs
0 0 0
_ 0 e —4q3 _ f'(t)%
Tl | T - e O —f(t)gs — F1(2) 2
0 0 0
g f'(t)a f(Oa — f'(t)gs

Lemma 8 The vector vy is equal to the vector of part (3) of lemma 4 in the
previous section, (vo,v1) = (vo,v2) = 0 and (vy,v2) = 1 this turns vy, va, Vo
into a basic of M.

Proof. Straightforward computations with the symplectic form on k® and
the O operator. ]

Lemma 9 The operator @ on N has the form

d (0 2+ f(t)
dt L =] 0

Proof. Straightforward calculations. The normal variational equation is ob-
tainted by expressing d(v;) and d(v;) as linear combinations of v; and v,
modulo kvy. 0O

This expression agrees (almost) with the normal variational equation given
by Churchill in [4]. The computation of the differential Galois group is still
impossible because of the form of f(t). If we fix the total energy of the
pendulum to 1 the described solution becomes homoclinic to the unstable
equilibrium point. Substituting p(t) and I' into the Hamiltonian we obtain
f'(t)? + 2q3 = 2. Now 0 can be written as

d (0 2
gt \-10)
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Now that we have a constant matrix we can compute the differential Galois
group. Computing the eigenvalues +/—2 of the matrix and diagonalizing
it, the differential solution of the operator becomes

d v—32 0
dt ( 0 -v=2 ) '

So to include all the solutions of the operator in the differential field we
extend C(t) to C(t,/—2t). The differential Galois group of this Picard-
Vessiot extension is C* = G,,,. This is in accordance with the Morales-Ramis
theorem that states that the identity component of the differential Galois

group is abelian. We note what the time parameter is not a parametrization
of the circle. In the next section we will use the parametrization of the circle.

5 Different approach

If we first parametrize the solution curves by

2s 21

g(t) = (sin £(t),0,cos f(t)) = (32 n 1,0, 11

)

we need to find the jacobian O(s) of the coordinate transformation

d 2s
dss?+1

d%sin f(t) = O(s)

Applying the right substitutions and calculations we find O(s) = —(s% +1)?

and £ = —(s2+1)2 4 The matrix differential equation associated to N over
the field C(s) is

d
— —(s*+1)7: ( 4 2 ) or equivalently

ds -1 0

This is in fact a differential equation over C(s). In order to study its differ-
ential Galois group we will work over the field C(s,vs? + 1) = C(u) with
Vs?+1 = y such what we have y? — s* = 1. We will write y = S 5=
i(uZ-1)

wrr1i S0 we have to find the coordinate transform k(s) in £ = k(s)L.
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Rigorous calculation reveals that k(s) = ——Mz 2)? ] transforming the operator
g du g
n

d iv2 0
2 9
(v +1)— - ( 0 i3 ) or equivalently

i ( n ) - (u2l+1)‘/§ 0 ( () )
du \ ¥2 0 ﬁ\/ﬁ Y2

The differential Galois group is G,, which is easy to check from that the
residues of C 2+l)\/-du at u =1 equals - \/- ¢ Q

We have now obtained the cascade of field extensions C(s) C C(u) C
C(u,v1). The Picard-Vissiot extension is C(u,y;)/C(s) and its differential
Galois group is DSI2 c SL,. The identity components of DSL2 is again
abelian.

6 Last remarks

We have verified the theorem of Morales-Ramis for the spherical pendulum by
showing that the differential Galois group of the normal variational equation
1s always abelian. This is of course what we expected because we already
know that the spherical pendulum is completely integral. Note that the
differential Galois group depends on the solution curves we perform the initial
linearization along and also its parametrization as can be see in the last
section.
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