
Qmingen Faculteit der Wiskunde en Natuurwetenschappen IfifOrlflatica

Interpolating points with given
normals by means of a non-uniform

__

B-Spline surface scheme

Kero van Gelder

begeleider: Dr. G. Vegter

december 1997

Pksur,e,fte Groningen 2. MMRI 1S3
E :otheek Informatjca/ Rekencent,umL::3veri 5
Ptbus 800

0 AV Gronirgen

Interpolating points with given normals by means of a
non-uniform B-Spline surface scheme

Kero van Gelder

December 19, 1997

Abstract

This Master's thesis is about constructing curves or surfaces by interpolating points with
a given normal. For this, a scheme using piecewise polynomials built up from B-Splines is
used. This scheme was "invented" by Hans-Peter Seidel. Via B-Patches, Seidel's scheme is
derived from the Bézier scheme. As for Bézier patches, normally some points are given by
the user, which the splines approximate as well as possible. In this thesis the scheme will
form a surface that interpolates these user-defined points, where the normal of the surface
in these user-defined points is given as well. For Bézier patches the solution is known, for
Seidel's scheme a new algorithm, using piecewise polynomials of degree two, is given.

1

Contents
1 Principles of CAGD 6

9

17
17
18
19
19

21
22

4 B-Splines
4.1 What do B-Splines look like?
4.2 Half open convex hulls
4.3 . .. any subset
4.4 How many pieces are there?
4.5 Computing B-Splines

6 Combining S-Splines
6.1 Looks of combined S-Splines

6.1.1 Combined S-Splines of First Degree
6.1.2 Combined S-Splines of Second Degree
6.1.3 Combined S-Splines of arbitrary degree
6.1.4 Using S-Splines as boundary surfaces
6.1.5 Computing S-Splines

6.2 Conclusion

2

2 Bézier Patches
2.1 The De Casteljeau Algorithm
2.2 Useful Designs

2.2.1 (Hyper)surfaces built from Bézier patches
2.2.2 Computing Bézier patches

2.3 The Quest solved for Bézier patches .
2.3.1 One dimensional parameter space
2.3.2 Two dimensional parameter space

2.4 Conclusion

3 B-Patches
3.1 Assigning clouds to points
3.2 The De Boor algorithm
3.3 Useful Designs

3.3.1 Geometric Continuity
3.4 The Quest for B-Patches
3.5 Conclusion

5 B-Spline Basis
5.1 Looks of an S-Spline

5.1.1 Second degree S-Splines
5.1.2 Arbitrary degree

5.2 Equivalence between B-Weights and B-Splines
5.3 Computing B-Spline space elements

23
23
24
24
25
25

26
27
29
30
30
31

32
33
33
34
34
37
37
38

7 The Quest solved for S-Splines 39
7.1 A special point on an S-Spline 39

7.1.1 Two dimensional endpoints 39
7.1.2 Arbitrary dimensional endpoints 40
7.1.3 Arbitrary Degree S-Splines 40

7.2 Reversion of the Process 41
7.2.1 A few examples 42
7.2.2 A closed boundary 44
7.2.3 Disadvantages 45

7.3 Odds and Ends 45

8 Conclusion 48

A Notation used in this thesis 50

B Legend of the pictures 50
B.1 Legend of the pictures in parameter space 50
B.2 Legend of the S-Splines (2D) 50
B.3 Legend of the S-Splines (3D) 51

3

Introduction
Since ages, people design. In times we don't remember anymore, people designed spears
to hunt. They designed and made those items all by themselves. In ages we do remember,
this process was split up. Designers designed, but other people made the items afterwards.
The problem of course is How To Let Them Make What You Designed.

This is where Computer Aided Geometric Design (CAGD) comes in. The designer
designs, but now in a mathematically unique way, aided by the computer to visualize the
just-made definitions. The greatest advantage is the unique way in which the design is to
be interpreted. Thus the factory that will finally produce the designed items, can use this
definition to produce without error.

There are also disadvantages. The most irritating one is lack of flexibility. The limita-
tions dictated by the design scheme (or the computer program) can make the designer go
real mad.

Description of the problem
In CAGD, often the designer gives a set of control points, which is then approached by
a curve or surface. See figure la.

Figure 1: Three ways of designing: (a) approximation, (b) interpolation and (c) interpola-
tion with given tangent of the control points.

Sometimes, the designer wants more: the curve or surface should run through the control
points with a certain smoothness'. See figure lb. Sometimes the designer wants to specify
in what direction the curve or surface should run through the control points. See figure ic.

In 1959 De Casteljeau found a simple polynomial-based scheme, which is very good for
approximating a set of control points. This scheme is not so good for interpolating control
points, because smoothness of the design is not guaranteed. However, Bézier was the first
to publish the scheme, therefore its name.

Purpose of this thesis
In 1990 Hans-Peter Seidel published another scheme, also based on polynomials, but with
much better smoothness properties.

'Interpolating with straight lines is simple to implement, but too limiting for the designer.

4

The purpose of this thesis is to find a way to use Seidel's scheme, in such a way that
the curve or surface runs through the control points with given normal. From now on, that
is called the Quest.

Structure of this thesis
The first chapter is about CAGD, to give a general feeling why we are doing this in the first
place. Then some theoretical chapters follow, to give sufficient background to understand
the last chapter, in which the Quest is solved.

The scheme found by Bézier is explained in chapter 2. Additionally, an algorithm to
evaluate polynomials of Bézier's scheme, found by De Casteljeau is given. A generalization
of Bézier patches, the so-called B-Patches are treated in chapter 3. The generalization of
the De Casteljeau algorithm is also given.

To be able to explain Seidel's scheme, an introduction to B-Splines is given in chapter 4.
In chapter 5 the B-Splines are normalized and joined to complete the scheme, accompanied
by Seidel's discovery that normalized B-Splines are equal to B-Patches on certain regions
of parameter space. These patches are then used to form surfaces in chapter 6.

Then a description of the new "algorithm" is given in chapter 7, followed by the con-
clusion chapter 8.

An overview of the notation used can be found in appendix A.

Examples and Software
The theory presented here holds for curves and surfaces, but it is valid for hyper-surfaces
in higher dimensions, also. Therefore, most theorems in this thesis are given in arbitrary
dimensions, but to make things clearer to the reader, many examples in 2D and 3D are
given.

The pictures accompanying these examples are mostly generated by a package of soft-
ware, written during this project (C++, free-ware). This package is a straightforward
implementation of Seidel's theories2. All efforts went into correctness, few into speed: all
degeneracies are accepted and processed as should be, but the package is slow. . . It provides
pictures both on-screen (using LinuxTM with svga].ib) and in PostScript. The results of
the latter can be found throughout this thesis. Also MathematicaTM input is generated,
so 3D output can be viewed without bothering to write a visualization module. For the
explanation of the pictures, see appendix B.

Thanks
Thanks to Gert Vegter as my advisor and Meinte Boersma, for scrutinizing this thesis.

2 2 3 tin 4 and only, not R , because collinearity can not be computed exactly with reals

5

1 Principles of CAGD
Computer Aided Geometric Design includes any computer aided design where geometric
forms appear. This starts simply with "Draw a Point". Then there are "Draw a Straight
Line/Circle/Rectangle through Some Points", follow by "Draw a Curve through/near Some
Points". The whole is —in principle— unbounded by the amount of dimensions and
amounts of points. In this chapter especially curves and surfaces will have attention,
since this thesis is about some specific representation for them.

Design can be done in any number of dimensions, but for humans useful spaces count
only up to three dimensions. In those useful spaces design is done with curves, surfaces
and volumes. For an object in, say, three dimensions it is required that the object be three
dimensional itself to have any meaning. A line or plane is too thin to be an object in three
dimensions. (A line with a thickness of .5 is not a line, but a three dimensional rope!)

For the purpose of designing and manufacturing, such an object has to be finite. Thus
such an object must have a boundary, which it reaches everywhere and exceeds nowhere3.
So you could also design a three dimensional object by defining its boundary. This bound-
ary is in fact two dimensional.

Take for example a sphere. One definition is all space within a certain radius of the
midpoint (mathematically: lix — xoll2 � r2). Another would be to just define its boundary
(mathematically: lix — xoll2 = r2) and then interpret the object as being the entire "in-
side" of it, where inside means the bounded volume of the two volumes separated by the
boundary.

But why? Why should you define the boundary of an object instead of the object itself?
There are several reasons for it, most of which can be summarized by "We only see the
boundary of an object":

• When constructing the object from a big block of material, excess material has to
be removed until you reach the boundary. This is exactly the same as reaching the
object itself, so there are no problems introduced when manufacturing the object
from the definition by boundary instead of the complete body.

• When previewing the object on the computer (we are doing CAGD, after all), you
are only seeing the boundary (except in cases with materials like glass).

• Defining 2D surfaces as boundary is more flexible than defining 3D bodies. Even
though Constructive Solid Geometry (CSG) can do many things for you, often solid
objects are used which stem from a definition by boundary.

• The boundary is often simpler to describe than the object (for the schemes in this
thesis a reduction of dimension), so computations are likely to be faster.

Again, to have any meaning, the boundary defining the object must be closed. Concrete:
In two dimensions, a curve used as boundary has to close up on itself. If it does not, the

3There are lots of boundaries: A sphere has a simple, smooth boundary, most fractals have complicated
boundaries. These fractals are not geometric forms in the sense of CAGD, so we can ignore them.

6

boundary is not closed, so there is no two dimensional object. The same holds for 3D: a
surface used as boundary must close up on itself.

Of course, there are occasions where the designer really wants to design a piece of
paper in three dimensions. In such cases the surface need not meet itself, but it does need
a thickness (a piece of paper is not infinitely thin). This is in fact another method of
designing, but as it happens, the same polynomial schemes described in this thesis can be
used for it.

Surface schemes
The Quest is (mainly) about surfaces used as boundary in three dimensions, so let's have
a closer look at surfaces in 3D.

Instead of defining the whole surface as one regular area, it is possible to define the
surface in pieces. As long as those pieces fit well enough (the boundary may not have any
holes), there is no restriction on the pieces.

A logical step after this is increasing the number of different pieces the designer can
put into the surface. In fact, increase the number to infinity to gain flexibility. One math-
ematical tool to do this are polynomial functions4. There are infinitely many polynomial
surfaces, which vary from perfectly flat to reasonably sharp. To control the shape of the
polynomial, control points are used. These control points, as well as some other as-
pects of piecewise surface schemes, are of course subject to some (more or less intuitive)
requirements:

1. Deviation The result should not deviate too far from the control points the user
gives. Some schemes achieve this by running a line/surface actually through the
control points. More often the design is guaranteed to be within the convex hull of
the control points.

2. Uniqueness The uniqueness mentioned in the introduction; this is extended to affine
invariance: the design can be translated, scaled and rotated in any direction and as
far as desired, without loss of relative shape (when scaling in a certain direction, all
relative distances in that direction remain the same).

3. Smoothness The ability to design very smooth objects, but with the ability to make
sharp corners as well.

4. Locality The ability to perform local changes. Perfecting details should not disturb
the rest of the design.

5. Normal Sometimes, when a design runs through the control points, designers want
to be able to specify the normal of the surface at the control points as well.

4referred to as "polynomials" from now on.

7

Conditions 1 and 2 are absolutely required, without them the surface scheme will never
be of practical use. Requirement 3 is mathematically called Geometric Continuity,
denoted by which means the qth derivative is continuous. If a curve/surface is CC°,
then at least there is no discontinuity in it, so it can be used as closed boundary. If a curve
or surface is CC' or CC2, then the boundary will become smooth. For practical use, GC2
is already very smooth, most often GC' is smooth enough. It is not always easy to let two
pieces meet with a certain smoothness, as will be shown in both chapter 2 and chapter 3.
Requirement 4 can be satisfied by allowing movement or addition of control points (which
is not always easy either).

Condition 5 is in fact an extension of condition 1. As said under that condition, most
schemes approximate the control points. That makes it difficult to interpolate, even worse
when the normal is given as well. For Seidel's scheme, this thesis helps.

8

2 Bézier Patches
In this chapter Bézier patches are defined and examined.

The scheme by The Casteljeau and Bézier uses polynomials over R3 with values in itt.
W is the parameter space, itt is the design space. Without loss of generality, this can be
restricted to polynomials over it3 with values in it (because the t dimensions in itt are
independent).

Over it3 the Bernstein basis is set up, which can construct any desired polynomial.
The advantage of the Bernstein basis is that the coefficients can be used as control points
in itt.

The polynomials are restricted to a simplex in R3, so that in itt a Bézier patch is
created. These patches can then be connected to form a (hyper)surface. Problems arise
when solving the Quest (section 2.3).

First, three basic definitions follow, then the Bézier patches are defined, followed by the
De Casteljeau algorithm in section 2.1. All of these are then enlightened with examples
and also some general properties are given in section 2.2.

Definition 2.1 (Multi-index) A multi-index /3 E N is a vector of length s with each
index in {O, 1,.

. .} The weight I/NI of a multi-index is the sum over all indices. The set
of multi-indices with length s and weight n is denoted by

So all indices of a multi-index /3 E f8, are in {O, 1,.. . , n}. ['u, contains (n+,_1) multi-
indices. Two examples: (1, 2, 3) E r3,6 and (0, 1, 0, 1, 0) E F5,2.

Definition 2.2 (Barycentric coordinates) Let = [t0, t1, . . . , t] be a simplex5 in s
dimensions. Then the barycentric coordinates)(u) of u E it5 w.r.t. A are uniquely given
as:

= u (1)

= 1 (2)

These barycentric coordinates can be computed as follows:

— d (t0, . . . ,t1_1, u, t11, . . , t8)

d(to,. .

where d(uo,. . . , u3) = det (
1 1

', which is a square matrix, because all vectors u
\UO ... U3j

have length s.

5A simplex is the area/volume within a set of s + 1 affinely independent points in It8. For example in
2D, three points which are not on one line and thus form a triangle. Another example is a tetrahedron in
3D.

9

Definition 2.3 (Bernstein Polynomials) Let = [t0, t1,.. . , t3] be a simplex in R8 and
let A2(u), i E {0, 1,. . . , s} be the barycentric coordinates of u with respect to . Then the
Bernstein polynomials Bfl of degree n w.r.t. L are defined as:

with /3 E]-'s+1,n and ()

Bt(u)= ()nu

See figure 2 for some examples of Bernstein polynomials with s = 1 and n = 2.
It can be verified that the Bernstein polynomials adhere to the following recursive

property:

Theorem 2.4 (Recursive Bernstein polynomials) The above-defined Bernstein poly-
nomials Bt, /3 e can be constrtcted as follows:

B=1
S

Bt = >)tj(u)Be., /3EF3+l,m, 0<m�n
i=0

where ê2 E "s+l,n with index /32 = 1 and the values of all other indices equal to zero.

Figure 2: Three Bernstein polynomials: B20, B11andB02, all three patched to s = [t0, t1].

These Bernstein polynomials are clearly homogeneous polynomials of degree n. There
are exactly (n+(s+1)_1) of them and they are linearly independent. So a basis for polyno-
mials of degree n over K5 is formed by the Bernstein polynomials6. This leads to:

61f you have difficulties seeing this: There are (m+(*+1)_1) of these polynomials, because all fl's in r,÷1,
have a corresponding Bernstein polynomial (no more, no less). Furthermore, that is precisely the amount
of polynomials needed for a basis. Write down a polynomial in its monomial form: as a sum of terms with
different amounts of xi's in it (e.g. ax + bx1x2 + cx + dx1 + ex2 + I in two dimensions). This can also
be written with extra x0's inserted when there are not enough x's in the term (thus ax + bx1x2 + cx +
dxoxj + ex0x2 + fx). It is easily seen that the amount of terms is exactly the same as the amount of
polynomials in the basis.

10

(3)

(4)

B20 B02

B11

to tI

Definition 2.5 (Bézier Representation) Let L be a simplex in RS and let F: It5
Itt be a polynomial. Then the Bézier representation of F w. r. t. L is:

F(u) = Bt(u)cfl

where the c19 are Bézier control points, which form the Bézier control net. A
Bézier patch is the polynomial F in its Bézier representation restricted to L. See figure
3 for two examples of Bézier patches (see appendix B for an explanation of the signs used).

•++++++ 0 U + 0

++++++++
+++++++++

,
++++

+ , + U

Figure 3: Two examples of two dimensional Bézier patches (s = 1 and t = 2): (a) second
and (b) third degree. The D's are control points and the +'s are evaluated points on the
curve.

The control points are points given by the designer, which the (hyper)surface should
approach as good as possible. Due to the choice of the Bernstein polynomials as basis
functions, a Bézier patch remains entirely inside the convex hull of its control net. Even
better, if you evaluate the polynomial in one of the vertices t1 of the simplex, you end up
exactly in a control point. These two properties make Bézier patches so useful.

The maximum of such a Bernstein polynomial Bfi lies at u = =o Thus you could
associate the control point cfl with that point u in the parameter space7. See figure 4.
From now on, two control points /3 and 'y are called adjacent or each others neighbors
if /3 + e — = , i j (so c110 is a neighbor of c2, but CO2O and COU are not). In figure
4b a set of control points is associated with the simplex of figure 4a and neighbors are
connected with a line.

2.1 The De Casteljeau Algorithm
Due to recursive property (2.4) of the Bernstein polynomials, it is possible to set up a
recursive scheme for evaluating a point on the surface of a Bézier patch. The control
points are used in the basic step and the barycentric coordinates are used in the recursion.
The Bernstein polynomials itself do not appear in the algorithm.

7This is a very useful association. The control points are regularly associated over the simplex, with s
of them exactly on the vertices of the simplex and a series of others exactly on the edges.

11

0 C 002

Figure 4: Association of control points with a simplex: (a) the simplex (b) the associated
control points. Two control points connected with a line are neighbors.

Theorem 2.6 (De Casteljeau) Let F(u) = Bt(u)c be a Bézier patch w.r.t.
L. Then F(u) = c, where the sets {4

I
/3 E are recursively determined for

0 < I � n by:

= c, /3 E f3+i,, (5)

= >)tj(u)cT1.'e., 1131+1=n. (6)

This has been proven several times in several ways. See [Sei9O] for an elegant proof
using blossoming8.

Note that the control points are used, the Bernstein polynomials do not appear at all
in the Dc Casteljeau algorithm. For a demonstration, see figure 5.

Figure 5: A demonstration of the De Casteljeau algorithm; (a) the control points (b) c
derived from c (c) c derived from c

The Dc Casteljeau algorithm can also be used for subdivision, differentiation and com-
puting the tangent plane (see [Far93]). Only the last one is given here:

8The mathematical name is polarization. If you are not familiar with this, look in [Far93J for a proof.

12

ti Co20

C"0

C0"

C200

t2 C'0'

Co2
0

Co2

b

Do

C20

0
'P00 2

C00

Corollary 2.7 (Tangent Plane) The tangent plane at F(u) is spanned by the points
c1, 0 � i � s, as computed by De Casteljeau's algorithm (theorem 2.6).

2.2 Useful Designs
Now how do these Bézier patches look? Itt is the design space. It3 is the parameter space,
which is not visualized, but helps to compute the design. Also, s is the dimension of the
designed item! For example, when s = 1 and t = 2 curves in two dimensions are modeled,
whereas with s = 1 and t = 3 curves in three dimensions are produced and whereas with
s = 2 and t = 3 surfaces in three dimensions are made. See for examples respectively
figures 3, 6 and 8.

Note that with these settings of s and t all useful designs for humans can be made. If
s � t the results are so trivial (the convex hull of the resulting object is the object) other
methods of design are easier. For s = 0 only points are modeled and for t � 4 design in
four or more dimensions is done, which humans can not use.

Figure 6: A Bézier patch over H' with values in It3.

In about 99% of all cases (educated guess), the designer is not interested in a polynomial
as mentioned in definition 2.5. If he9 wanted the polynomial, he would have used the
polynomial, not some set of points which describe it, even though it is a perfect description.
Instead, the designer wants some curve, of which he knows more or less how it should look.
Then the designer sets some control points to approach this curve and adjusts what he
does not like. The fact that this can be represented as polynomials afterwards does not
interest the designer (but it does interest the implementor of any computer program for
CAGD).

9Replace with "she" or "he/she" if you like throughout this thesis

13

2.2.1 (Hyper)surfaces built from Bézier patches

As mentioned in chapter 1, it is possible to use surfaces as the boundary of a three dimen-
sional object.

A Bézier patch is just a polynomial in KS restricted to a simplex with values in Rt. As
(hyper)surface, this is in no way a complete boundary of an object. Several patches are
to be stitched together (have to be GC°) in order to close the boundary. Fortunately, this
can be done easily: the edges of two Bézier patches are exactly the same when all control
points for those edges are used by both patches (and in the same order). This comes from
the following theorem:

Theorem 2.8 (Boundary Patches) Given a Bézier patch over = [to, t1,. . . , t3]. The
restriction of that Bézier-Patch to the face [t0, . . . ,t,_1, t4i,.. . , t3} is a Bézier patch with
control points c with /3 = 0. This Bézier patch is one dimension lower than the original
patch.

The proof of this is the fact that A(u) = 0 when u is restricted to the mentioned face,
so B(u) = 0 if /3 0. In figure 8 the thick drawn "diagonal" curve is such a boundary
patch.

Look at two adjacent Bézier patches over K3 with values in Kt. When they use the
same control points associated with their common face, the same Bézier patch (which can
be constructed over K' with values in Kt) forms their boundary. Thus two Bézier patches
connect in a GC° fashion.

2.2.2 Computing Bézier patches

Neither the recursive definition of Bernstein polynomials, nor the evaluation by De Castel-
jeau is of particular interest for an implementation, because (re)evaluating a polynomial
can be done much faster than going through the whole recursion (See for example [HB94]).
However, both recursions provide many clues as to how Bézier patches behave. They are
very useful recursions for the researchers.

2.3 The Quest solved for Bézier patches
The method to connect two Bézier patches from theorem 2.8 does not provide any smooth-
ness better than GC°. The following two subsections describe GC1-continuity requirements
for adjacent Bézier patches. Also, these requirements are fit into a method to use the Bézier
patches for interpolation with given normal.

Note that the Geometric Continuity is required in design space. Since patches are
directly related to the function values of the Bernstein-Bézier representation, you might
expect there has to be some sort of continuity in the parameter space as well. Within
one simplex (and thus within one patch), this is satisfied by definition. Where two Bézier
patches are connected, there happens to be no requirement on the continuity in the pa-
rameter space (this is obvious, because a totally different set of basis-polynomials is used

14

when going from one simplex to another, which would be discontinuous from the set in the
neighbor-patch if laid out in a triangulation like in definition 3.6).

The requirements are given for one and two dimensional parameter space separately.
The distinction between dimensions of the parameter space has to be made, because no
general condition for smoothness is known. Note that the requirements are on the control
points, which are in design space!

2.3.1 One dimensional parameter space

In the one dimensional parameter space (s = 1), the user gives a series ofn+1 control points
to create a Bézier patch of degree n. This patch runs through the begin- and endpoints
given by the user. Moreover, at the begin- and endpoint the tangent line is equal to the line
through the first and second respectively last and pre-last points (as follows from corollary
2.7).

The property about the tangent line can be used to solve the Quest for Bézier patches
in a one dimensional parameter space: If the designer/user gives two points with tangent
line through them, set the first and last control points to be those two user-defined points
and lay the second and pre-last control points on these tangent lines. The obtained four
control points define a third degree polynomial curve in design space, which runs through
the user-defined points with specified tangent line.

For the special case where the design space is two dimensional, there is a high probability
it is possible to let the second and pre-last control point be the same, because two the two
tangent lines cross almost always'°, thus reducing the curve to a second degree polynomial.
See figure 7.

0

Figure 7: (a) Given two points with tangent line, (b) extend the lines until they meet, (c)
the (three) resulting control points.

2.3.2 Two dimensional parameter space

Like for one dimensional parameter space, the tangent plane through control points asso-
ciated with the the corner vertices is the plane spanned by that control point itself and its
direct neighbors (it can be computed that the c1 from corollary 2.7 evaluated in u = t1
are the control points c(n_1)*e+e).

'°There is a possibility the curve runs through the control point in the opposite direction: if one of the
two arrows in figure 7 points in the other direction. If the two arrows are parallel, there is no second degree
solution.

15

Figure 8: Two adjacent Bézier patches, which are connected in a CC' fashion. Thicker
lines are used to connect the control points that have to be in one plane (four by four, not
all seven) and an even thicker line is used for the common border of the two patches.

This property and some research, done by Farm (see [Far93J) resulted in the complete
requirement for GC' in two dimensional parameter space:

Consider two adjacent control points, both associated with the common
edge of two triangles. This pair of control points has two common neighbors,
one in each triangle sharing the edge. The two Bézier patches are GC' if the
four control points lie in one plane.

For three dimensional design space, see an example in figure 8, where the thicker part of

the control net exists of two airs of coplanar triangles.
However, when this method is used to make a complete surface, this forces the Bézier

patches to be of third degree if there is no normal specified and even fourth degree when
the normal is specified; see again [Far93]. The computations to construct these patches
are tedious.

2.4 Conclusion
Bézier patches form a partially useful scheme:

• When curves in arbitrary dimensional design spaces are used, all requirements men-
tioned in chapter 1 can be satisfied.

• When surfaces are used, the given control points can be approximated very well.

However, when surfaces are used and smoothness is required (CC' or better) Bézier sur-
faces of degree three are needed and the construction of these takes a lot of complicated
computations. Worse, when a normal of the surface is specified by the designer, the degree
of the Bézier patches rises to four and construction becomes even more complex.

The next chapters will show that there are solutions to the Quest, based upon other
schemes, which produce piecewise polynomial surfaces of a degree lower than four.

16

3 B-Patches
A generalization of Bézier patches is formed by B-Patches. Instead of using plain simplices
in parameter space, clouds of points are assigned to the vertices of the simplices, thus
creating a knot arrangement. From these knot arrangements polynomials are constructed
in a way similar to the Bernstein polynomials. These polynomials again form a basis, so
that B-Patches can be built. The hope is to gain flexibility w.r.t. layout of the control
points by using these clouds, may be improving the smoothness properties of generated
surfaces. But as will be found, the smoothness properties of B-Patch surfaces is not better
than for Bézier surfaces.

The De Casteljeau algorithm generalizes to the De Boor algorithm, explained in section
3.2. In section 3.3 the B-Patches are analyzed and examples are given.

3.1 Assigning clouds to points
When trying to assign a cloud to a vertex of a simplex, surprisingly few restrictions are
necessary, namely one.

Definition 3.1 (Knot Arrangement) Let = [t0, t1,. . . , t3] be a simplex in It3. La-
bel each t1 now t,,o and add n other knots (points) {t2,1,. . . , t2,,} to t2,0 to form s + 1
clouds. This set of clouds is a knot arrangement A assigned to i when all sets of points
{t0,0, t1,1,. . . , t3}, fi E rs+i,m, 0 � m � n are affinely independent.

It is possible to assign closely spread clouds to vertices, but also very widely spread. An
example of a knot arrangement with both closely and widely spread clouds is given in
figure 9.

Figure 9: A knot arrangement.
assigned to t2.

The cloud assigned to t1 is less spread than the cloud

17

ti,1, ti.2

0.0

2.1

2,0

Definition 3.2 (Normalized B-Weights) Let)(u) be the barycentric coordinates of u
w.r.t. the simplex L = [t0130, ti,fli,. . . , t3,,], /3 E rs+,,m, 0 � m n. The normalized
B- Weights over the knot arrangement A are the polynomiaLs B(u), which are defined
recursively by

B'(u) = 1,
B(u) = (u)B4(u) /3 E I's+i,m,m n (7)

where terms with a negative index in their multi-indices are set to zero.

The normalized B-Weights B are clearly homogeneous polynomials of degree n in the

barycentric coordinates of u. There are exactly (+(31)_1) of these, which are linearly
independent". Thus the normalized B-Weights form a base for the space of polynomials
of degree n (like in the Bézier case, theorem 2.3). This leads to the following definition:

Definition 3.3 (B-Patch Representation) Let F : it3 R be a polynomial of degree
n. Let A be a knot arrangement assigned to L. Then the B-Patch representation of F
w.r.t. A is the unique decomposition of F w.r.t. the basis {B I /3 E ['+,n}

F(u) = > B(u)c,s
flEfa+i,,.

The coefficients cfl E itt are called B-Patch control points, which form the B-Patch
control net. The restriction of the representation to L is called a B-Patch.

Even though the maxima of the B-Weights in the basis are not perfectly regularly
spread, like the maxima of the Bernstein polynomials, we still hold to the association and
adjacency of control points with a simplex. See page 12.

3.2 The De Boor algorithm
For B-Patches, the De Casteljeau algorithm for evaluation generalizes to the De Boor
algorithm:

Theorem 3.4 (Dc Boor Evaluation) Let F(u) = >Era+jn B(u)c be a B-Patch over
A and let u E it3. Let A(u) be the representation of u in barycentric coordinates w.r.t.
i. Then F(u) = c, where the sets {4 I

/3 E I'+,n_} are determined for I = 0,.. . , n as

follows:

= cfl, /3 E F3+1, (8)

=
1131 + I = n. (9)

"Due to the requirement on the layout of the knots in the knot arrangement, the barycentric coordinates
are uniquely defined. Because of that, the B-Weights are uniquely defined. Also, no two barycentric

coordinates and A.,,, i j are the same, which guarantees linear independence.

18

Just as Dc Casteljeau's method, this algorithm comes in several flavors: next to the given
version for evaluation, there are versions of this algorithm that can be used for subdivision
and computing the tangent plane of the B-patches.

Corollary 3.5 (Tangent Plane) The tangent plane through F(u) is spanned by the con-
trol points cT' evaluated at u, as computed by De Boor 3.4.

This is exactly the same as the tangent plane for Bézier patches (corollary 2.7), which
could be expected, since c' is a point on the patch as well (theorem 2.6 versus 3.4).

3.3 Useful Designs
This B-Patch representation looks a lot like the Bézier representation (2.5), but with knot
arrangement A instead of just a simplex (in parameter space) and normalized B-Weights
instead of Bernstein polynomials. In fact, when the clouds are contracted to one point, the
Bézier representation is regained.

The more a cloud is spread, the more the B-Patch deviates from the Bézier patch. See
figure 10, which has the same setup as the Bézier patch in figure 3a. In the first picture
the clouds are only a little spread, which is visible because the line that connects some of
the evaluated points has its endpoints close to the control points. In the second picture
more widely spread clouds are used: The endpoints are clearly further from the control
points. Further research can be done about the behavior of B-Patches with the use of
varying clouds.

0

Figure 10: Two B-Patches with the same control points as figure 3a: (a) with closely spread
clouds, {1, 2, 3} and {23, 24, 25}; (b) with widely spread clouds, {1, 4, 7} and {19, 22, 25).

3.3.1 Geometric Continuity

There has not been done much research on the problem of connecting B-Patches together
to a curve or surface. What has been found until now, will be repeated here, to show what
the problems are.

19

0

0

One of the problems is the loss of clear and sharp edges of the patch. The edges are
not clear, because a B-Patch does not run through its control points associated with the
vertices of the simplex like a Bézier patch.

The edges are not sharp, because the clouds assigned to the vertices of the simplex
diffuse the edges of the simplex and thus of the patch (in figure 10 the evaluated points
which have no line drawn through them, are still evaluated in parameter values inside the
knot arrangement A assigned to simplex L, be it outside itself). Even though the edges
have been defined strictly w.r.t. L in definition 3.3, I am not sure if that definition will be
practical.

A third problem is the assignment of clouds: for two adjacent patches, should the clouds
that are used by their associated simplices be of the same layout or is that irrelevant? If
they have to be the same, it is convenient to define a triangulation'2:

Definition 3.6 (Triangulation) A set of simplices T = {L1 = [t10, t21,. . . , tJ I
I =

(i0, . , i5) I C N'} is a triangulation of a bounded domain D C 1R3 when

U = D and 0 or a common face.
.ET

This is convenient, because it forces the simplices associated with the patches to be
adjacent as well, thus they will use the same vertices and clouds.

So now for all adjacent pairs of patches in a surface that represents a closed boundary,
there has to be an associated pair of adjacent simplices in the triangulation. This effectively
means the triangulation has to be the same in some topological fashion. The exact shape of
the simplices does in no way need to be the same as the shape of the patches, because they

'2simplexification does not sound very well, does it?

20

Figure 11: A triangulation.

are placed in different spaces. Thus there is a lot of freedom to set up the triangulation,
but not always enough'3. See also section 6.1.4 and remark (7.5).

Now let's go back to what has been found out about placement and smoothness of
patches.

As we can read in [Sei9O]:

Suppose that the simplex &,V/3 [...J, then if u e L, then F(u) lies
inside the convex hull of the associated control net.

In words: if the clouds assigned to the vertices of the simplex lie outside that simplex, then
F(u) lies inside the convex hull of the control net.

This seems useful for the designer, because this is the B-Patch version of the property
on page 11 that holds for all points u L for Bézier patches. That property guarantees
that the curve or surface approaches the control points well enough. It appears to hold as
well for B-Patches, but: for adjacent simplices, if the clouds used for the corner vertices
are the same, these clouds can not possibly be outside these adjacent simplices as well.

Then perhaps different clouds should be used? An immediate problem then is about
the edges of the patches in design space. Where are those edges exactly? The corners of the
patches are not the control points associated with the corner vertices and it is unknown
yet, where the edges are. This makes it impossible for now to let two patches even be
GC°...

For know it seems to me that using the same cloud for vertices shared by simplices poses
more problems than are solved. By using different clouds, the need for a triangulation
vanishes. For one dimensional parameter space I could provide a solution, more or less
analogous to what I found in chapter 7. This returns Bézier patches, however, be it
described in another fashion than just converging clouds, so just use Bézier patches. I have
no idea about solutions for higher dimensional parameter spaces.

3.4 The Quest for B-Patches
An analogue for gluing patches together like in section 2.2 for Bézier patches is omitted in
[Sei9O]. Considering the statements above, this is understandable; there is almost nothing
known. It is a little strange in the light of the coming theories about B-Splines, though,
which are built upon B-Patch theories.

However, in [Sei89] Seidel does mention a condition (for R2 R only!) for CC'. It is
states that if:

F and G are B-Patches with common boundary [t0, t,] and with knots
t0,0, . . . , t0,, t,,o, . . . , t1,, which all lie on line L [.

.

'3For example, I tried to model a sphere by setting up four patches forming a tetrahedron. This
tetrahedron can not be projected on a Cartesian plane which is periodic enough to work (try for yourself, I
would be interested if you succeed: keroCdds . ni). Perhaps it is possible to use the surface of a sphere for
it (not very satisfying, using a sphere to model a sphere...)? The fact that my package does not process
this, does not mean it does not work in general...

21

is used as precondition, then the same holds as in section 2.3.2.
This seems useful for the designer again, but the preliminary condition that 2n knots

should all lie on the same line makes this condition useless. GC" continuity is not even
possible for the other edges of such a patch anymore, because if t,o, . . . , t1, and t2,o,.. . , t2,,

are on one line to guarantee continuity for the second edge, the three clouds do not form a
knot arrangement! The only way around this problem seems to be to put the knots of one
cloud not only on the same line but also on the same points, but this refers the designer
back to chapter 2. This also applies to the one dimensional parameter space.

Remark 3.7 (Boundary Curve) The condition that both clouds are on one line, effec-
tively brings the edge of the B-Patch to a known area: the restriction of the patch to the
edge, is (like in the analogue for Bézier, remark 2.8) a B-Patch of one dimension (param-
eter space) lower.

These can be used by two adjacent B-Patches, using additional constraints on the placement
of the control points to connect CC'.

As said, only for one edge per B-Patch, thus the Quest remains unsolved for B-Patches.

3.5 Conclusion
In comparison with Bézier patches, B-Patches do not provide many new and useful features.
Due to the lack of continuity requirements, not much of a smooth surface is left for any
designer, unless the special case of the Bézier patches itself is used.

As in the conclusion of [Se189], I would say "further research is necessary".

22

4 B-Splines
Both Bézier patches and B-Patches yield problems when it comes to smoothness. For
Bézier patches there is a simple solution in one dimensional parameter space, but for higher
dimensions solutions become cumbersome. B-Patches are worse, because their continuity
does not extend itself further than one edge of a patch.

A solution can be searched for in several directions. Hans-Peter Seidel came up with
a new basis [DMS9O}, made up from blended functions which satisfy the continuity and
smoothness requirements by definition. Reasonably smooth piecewise polynomials are
used, which can be glued together to construct patches. These patches can be connected
without any losses of smoothness.

This chapter will treat single B-Splines, chapter 5 will treat a set of them as a basis for
a single patch. The connection of several patches to a surface will be done in chapter 6.

Definition 4.1 (Multivariate B-Spline) Let V ={t0, t,, . . . , t} be a finite multi-set'4
of points in R3(m � s). The multivariate B-Spline M(u I V) is defined recursively as
follows:

M(u I t0,tj, . . . ,t3) = X[t0,t1,...t,)

where X[t0,t1,...t) is the characteristic function over the half open convex hull [to, t1,.. . t3)
and dO (as defined on page 9) unequal to zero, which means {t0, t1,. . . ,t3} is an affinely
independent set of points (if the set is not affinely independent, then M(u I V) = 0). For
V = {t0, t1,.. . , tm}, m > s:

M(u I V) =id(u)M(u I tO,...,tidI,tia+l,...,tm),

where W = {t20, t,,. . . ,t, } is any subset of affinely independent points in V and u =
>= Id(u)td is the representation of u in barycentric coordinates w.r.t. W (if such a W
does not exist, M(u I V) = 0).

Quite a definition. Let's have a thorough look at it. We start with the shape of the B-
Splines in section 4.1, followed by explanations of some technical details in the definition.
The last section (4.5) is about the computation of B-Splines on computers.

4.1 What do B-Splines look like?
The recurrence starts with the characteristic function over a (half open) simplex. This
function has a value of one inside the half open simplex and zero everywhere else, so it is
a discontinuous zeroth degree piecewise polynomial. For every step in the recursion, the
degree is raised by one. So m + 1 points in s dimensions give an (m + 1) — (s + 1) (because
the simplex uses s + 1 points) = m — s degree piecewise polynomial. Some examples in
figure 12 show this.

'4The t need not necessarily be different.

23

Note that there is always precisely one maximum in the B-Spline, which is roughly at
the median of the points.

Furthermore, the characteristic function as well as the barycentric coordinates are func-
tions of R3 —÷ R (there will be no Rt involved until chapter 5).

Sq •/\ .o
Figure 12: A zeroth, first and second degree B-Spline K' —*

As can be seen in the pictures also, the first degree B-Spline is C°, the second degree
B-Spline is C' (C is a little stronger then will be used in parameter space, GC
in design space). This is not merely a coincidence, as follows from the next theorem:

Theorem 4.2 (Continuity of B-Splines) If at most k knots of a B-Spline are collinear,
then that B-Spline is Cm_k_i.

where "collinear" is dimension-dependent: "coincide" for s = 1, "collinear" for s = 2,
"coplanar" for s = 3 and so forth. Thus when at most s points in a set are collinear (which
is the minimum required), then the B-Spline is Cm_s_i, where m — s is the degree of the
B-Spline. Thus an flth degree B-Spline is in that case.

4.2 Half open convex hulls
Due to the half open simplices started with, all convex hulls stitched together are half
open. Thus at the edges where they are glued together in the recursive construction, only
one half-open convex hull is counted, just as anywhere else. Note that it does not matter
which half of the simplices is open and which closed, as long as its the same throughout
the recursion. The place where the convex hulls are to be glued have the same function
value, just as long as only one is counted, everything is OK. Also note that at the face of
the spline, its value is zero, whether the face is closed or open (only in severely degenerate
cases (k = m in theorem 4.2) a discrepancy can appear).

4.3 . . . any subset...
The proof of the fact that any simplex W which is not collinear can be used is too big
to show here. To feel intuitively why we may choose any such W: the affinely indepen-
dent set W determines the barycentric coordinates (if W were not affinely independent,
the barycentric coordinates are not uniquely determined); if W is changed, so are the
barycentric coordinates, which thus leaves the B-Spline resulting from recurrence 4.1 the
same.

24

4.4 How many pieces are there?
A B-Spline is built up from barycentric coordinates, which are polynomials, and charac-
teristic functions, which are compactly supported polynomials. The result is a piecewise
polynomial, that is, a function consisting of different polynomials for different parts of
the domain.

A first glance in one dimension gives reasonable amounts of pieces: A first degree
B-Spline consists of two pieces, a second degree B-Spline contains 3 pieces, but in the
recurrence four may be evaluated (the middle piece twice).

However, in two dimensions the numbers grow rapidly. A first degree B-Spline has four
pieces, a second degree B-Spline eleven and a third degree B-Spline up to twenty-five!'5

4.5 Computing B-Splines
I do not know about a simple data structure to store piecewise polynomials in a computer.

That is, of course separate polynomials with boundaries can be used, but that does not
feel coherent to me: the continuity (be it only C°) is not clear in any way. On the other
hand, it is possible to pre-compute the polynomials for all pieces of a B-Spline (or even
better, just compute a polynomial when you need it and reuse that polynomial if you need
it again).

Of course it is possible to evaluate the B-Splines according to recurrence 4.1 (like I did
in my package), but that is slow, in the order of O(e11'l).

'5Fourth degree has up to fifty. The "up to" is there, because less is possible. Degenerate cases (s + 1

or more collinear points) have less pieces, but also non-degenerate cases can have less. The maximum
is reached for instance when all points are roughly spread on a circle for s = 2 (sphere for s = 3): no
degeneracy and as many lines/planes in between points cross each other as possible, but no more than two
lines cross at the same point.

25

5 B-Spline Basis
The B-Splines from chapter 4 can be used to construct a basis for piecewise polynomials
in a way similar to Bernstein polynomials and B-Weights. The result is not a polynomial,
but a piecewise polynomial with compact support. This way, there is no need to patch the
piecewise polynomial, thus no continuity or smoothness is lost like in the case of Bézier
and B-Patches.

This chapter treats the construction of one basis for one piecewise polynomial. Com-
bining multiples of them will be done in chapter 6.

First, a few definitions are given, then the basis is constructed and investigated.

Definition 5.1 (Interior) Let A be a knot arrangement. Then the interior of A is:

= fl & (10)
IflI�n

where = [t0,0, ti,1, . . . , t3,3].

Definition 5.2 (Knot Net) A knot arrangement K is called a knot net if the interior
over this knot arrangement is non-empty.

The requirement that the interior is nonempty, means that the clouds assigned to
the vertices of the simplex t are non-overlapping in a special sense16. See figure 13 for an
example of a knot net.

Definition 5.3 (Normalized B-Spline) Let K be a knot net assigned to the simplex
= [t0,0, t1,o,. . . , t3,o]. For 9 E F+1, define the sets Vt and the normalized B-Splines

N,(u):

T1 (1
V13 = tto,o, . . . ,to,130,t1,0, . . . ,t,fli,

N(u) = Id(to,130,tl,fli,...,ts,fi.)I . M(u
I
i'f). (12)

These latter functions are called the normalized B-Splines over

There are exactly (n+(s+i)_1) of those normalized B-Splines Nt. Again, this is precisely
the amount that is needed to be able to define a base for polynomials of degree n, just
as in (2.5) and (3.3). Also, these normalized B-Splines are linearly independenti7, so they
are a candidate for a basis of polynomials of degree n. But: these B-Splines are piecewise
polynomials and only have finite support: they do not extend themselves very far, instead
they become zero outside the convex hull of the combined clouds. That is not enough to
define a representation of arbitrary polynomials yet, so that will follow in chapter 6.

16There is no proper English word for this. Looking from a certain knot t,,,, some parts of the clouds
assigned to other vertices may not "hide" behind another cloud (the higher the second index, the more
freedom for the knot).

'7The maxima as briefly mentioned in section 4.1 are always in different parts of the simplex.

26

t22

Figure 13: An example of a knot net. The interior is shaded

However, though the compact supports limit the possibilities, the fact that B-Splines
are piecewise polynomials enhances the possibilities: these normalized B-Splines can be
used as basis for piecewise polynomials adhering to some requirements:

F(u) =

where F is any piecewise polynomial with the same piece structure as dictated by the knot
net-control points combination and the same support'8.

Again, the c E Itt are called control points, which form the control net. Seidel
doesn't provide any new name for the combination EIJ Nt(u)c, so I'll have to baptize
it myself. Let's call such a combination an S-Spline, where the 'S' stands for Seidel (or
super, special or superimposed, whatever you like).

The maxima of the normalized B-Splines in the basis are near the median'9 of the
B-Spline, which is not exactly the same as for Bernstein polynomials, but close enough.
So I'll keep using the association and adjacency relation of figure 4.

5.1 Looks of an S-Spline
Now how does an S-Spline look? Before we turn to complicated S-Splines, let's start with
the simplest possible S-Splines and explain the pictures in detail.

18This is not a good description, but I know nothing better and I found nothing in the articles by Seidel.
'9about as many t, on every side of the maximum, so there are equally many pieces to connect the

B-Spline smoothly with the axis where the compact support ends.

27

ti
1O 12

The simplest S-Splines are first degree S-Splines from K1 to K2. Two examples are
drawn in figures 14 and 15.

o 4444$ 4 + + + $44_
+ +

+ +

_

+ +

12 45 + +
I I

+ +

+

Figure 14: "leftmost" cloud is {1, 2}, the curve misses the corresponding control point

• + 4 t I I I 4 $ 4 I 4 —

+ +

+ +

_

+ +

12 45 + +

+ +

+

Figure 15: "leftmost" cloud is {2, 1}, the curve runs through the corresponding control
point

Explanation of the picture
The little figure appearing next to the picture is an overview of the clouds

and the triangulation in parameter space. These clouds are formed by a group of
x's (the knots), where the biggest cross indicates t20, the smaller cross indicates
t11 (if there are more than two crosses: the smaller the cross, the higher the
second index). Since clouds do not overlap, it should be clear which knots form
one cloud.

For s = 1, that is a one dimensional parameter space, the triangulation is a
set of intervals. These intervals are indicated below the axis and numbers: the
little vertical lines show where one interval ends and another begins. For s = 1
the B-Splines which form the basis are also drawn. The vertical scaling is not

28

equal to the horizontal scaling. That is done, because the value of a B-Spline
never exceeds the value one. Moreover, for this base the values of all B-Splines
at one point in parameter space within the triangulation add up to one (except
near the border of the triangulation, where the values drop to zero).

For s = 2 only the triangulation exists of triangles. It is drawn completely
with the knots inside it. The B-Spline basis-functions do not fit in here and
are omitted.

The big picture exists of a set of control points (D's) and evaluated points
(+'s). Some of these evaluated points are connected by a line: that line repre-
sents evaluation over the interior of the knot net. The lower left point is the
origin: every single S-Spline will start and end there, because of the compact
support of the B-Splines.

There is a difference between the two pictures: the second S-Spline runs through both
control points, whereas the first does not. The cause of the difference of the two splines
is in the configuration of the clouds. For the first spline, the "leftmost" cloud {t00, to1 } is

{1, 2}, for the second spline that is {2, 1} (in both cases the "rightmost" cloud is {4, 5}).
To state the difference in words: in figure 15, the cloud assigned to t0 is outside2° the

simplex [t0, t1J, whereas in figure 14, the cloud is inside.

5.1.1 Second degree S-Splines

An example of a second degree S-Spline from R' to R2 can be found in figure 16. Both
clouds assigned to the simplex are outside it. The S-Spline is only drawn for evaluation
over the interior of the knot net. The S-Spline does not run through any of its three control
points. Another configuration of the knot net would not have changed that (except for the
degenerate case). For a second degree S-Spline from R2 to It3 the same effect can be seen
in figure 17, where the knot net is drawn as well.

0

123 678

0

Figure 16: A second degree S-Spline from It' to R2

can not be outside the simplex, because it is on the simplex. Nevertheless, I call this outside
because the rest of the knots are outside. The same holds for inside.

29

0

x

x x

Figure 17: A second degree S-Spline from R2 to R3 with (a) its triangulation and clouds
and (b) the resulting S-Spline.

5.1.2 Arbitrary degree

Higher degree S-Splines show no new insights. The S-Splines are even smoother and the
distance to its control points is a little bigger. I will give some general rules on how these
S-Splines behave (which does also hold for second degree):

• The less the clouds assigned to the vertices are spread, the sharper the B-Splines
have to bend, the closer the result is to the corner control points and the more it
looks like a Bézier patch.

• The more the clouds are spread, the more regular the curvature of the resulting
S-Spline.

If clouds are widely spread, the B-Splines which form the basis are made from more
widely spread points. This will give more space to a piece of the B-Spline to adjust itself
to meet the next piece with proper smoothness. Thus the higher derivatives need not be
varying as much.

5.2 Equivalence between B-Weights and B-Splines
Theorem 5.4 (Normalized B-Weights and B-Splines) Let K be a knot net and let
A be the knot arrangement obtained by dropping all from K. Then

Nt(u)=B(u), VuEf,/3Ef3÷1,. (13)

Note that both the normalized B-Weights and the normalized B-Splines are functions from
RS to It.

30

x x

This definitely is one of the most important conclusions made by Dahmen, Micchelli
and Seidel. The theorem is short, but the proof is long. It does not help us any further,
so it is omitted here; it can be found in [DMS9O].

Because of the equivalence, it is possible to use the De Boor algorithm for S-Splines,
which I will do to solve the Quest.

5.3 Computing B-Spline space elements
In the B-Spline space a second degree piecewise polynomial has up to 11 pieces in 2D. As
can be counted in the knot net of figure 13, an S-Spline constructed on that knot net would
have 40 pieces. The amount can rise to (# B-Splines)*(# pieces in 1 B-Spline)= 6*11 = 66

for any second degree B-Spline space element in three dimensions.
In comparison with a Bézier patch, which is built from only one polynomial, this is

quite a lot.
Also, considering this, I am not sure what will be more efficient: evaluating a point

on the surface recursively, or precomputing the polynomials for all pieces and evaluating
them when needed. A memoizing technique might advance the latter method to something
useful, because some pieces are very small and other pieces (the interior, for example) are
big.

31

6 Combining S-Splines
Like with Bézier and B-Patches, it is possible to combine S-Splines to create a (hy-
per)surface. This combining is nothing but addition. Thus geometric continuity remains
the same as for the separate S-Splines. This provides a scheme which satisfies requirements

about smoothness.
There are, however, some restrictions on the addition. For this, a slightly different

version of a triangulation as definition 3.6 will be given, because where S-Splines are com-
bined, they overlap for a part and will be added there, while for Bézier patches the sharp
border did not have any need for addition like that.

For this, a triangulation is set up, like for the B-Patches, but with half-open simplices.
Then each simplex in the triangulation will get its own S-Spline, which can cover any area

together.
Again, let's start with some definitions. Then the method of combining S-Splines

is given and examined. Examples from first and second degree are used to show what
happens.

Definition 6.1 (Triangulation) A set of vertices V = {t0, t1,. . . , t} E It has a tri-
angulation T if there is a set of simplices {t I = [t10,t81,. . . ,t11), all tjd(O � 2d m)

are affinely independent}, for which U/SET = [V) and ii fl 2 = 0 and two simplices from
that set touch nowhere or have a touching face (not a part of a face).

The difference with the definition 3.6 lies in the half-openness of the simplices. This should
be the same half-openness as used in the definition of B-Splines 4.1. Only then the additions

can be performed correctly.
To each of the vertices in V a cloud can be assigned, so that for every simplex L a

knot net K is constructed. Then a set of Nt can be constructed. These sets are linearly
independent. Now it is possible to use W as domain (but if [V) is not bounded, the
triangulation is infinite), so there is a complete spline space:

Definition 6.2 (B-Spline Representation) Let T be a triangulation of a region in it3.
Then every polynomial F : RS _,. jt can be represented as:

F(u) = N,(u)4.
tETflEra+i,n

Moreover, every degree n piecewise polynomial with the same piece-structure in the
domain2' can be represented as Nt4.
Theorem 6.3 (Control Points for the B-Spline representation) Let T be a trian-
gulation as given in (6.1) of a region of W. If for any two adjacent simplices I, J E T,
whose touching face is [t0,. . . ,t1_1, t,,. . . , t] the following holds:

c=c, VIflI=n,/310, (14)

21 is not a good description of the functions that can be represented, but like the functions repre-
sented on page 27, I do not know of any better definition.

32

Then
N4 = N4, (15)

ETi8I=n—1 tETjfiI=n

where the control points relate as:

4 = fl,j(u)4÷e., j3=n—l. (16)

The requirement (14) is simple: on the touching face of the two S-Splines, use the same
control points.

However, recursive evaluation (16) looks the same as theorem 3.4! For the interior of the
knot nets assigned to the simplices this is logical, according to theorem 5.4 the B-Splines
and B-Weights are the same and so must be the resulting S-Splines and B-Patches. When
evaluating outside any interior the important difference with B-Patches is that multiple
S-Splines are evaluated together and added, due to the first summation ET•

The preliminary requirements (like one single cloud assigned to a vertex in parameter
space) then guarantee that the combination remains inside the convex hull of the combined
control points of the multiple S-Splines! This is not trivial and the proof is very complex,
see [DMS9O].

6.1 Looks of combined S-Splines
To see how combined S-Splines behave, first let's look at a very simple example: combining
two first degree S-Splines from R' to R2. This is done in section 6.1.1. Then some second
degree S-Spline combinations are examined in section 6.1.2and 21

6.1.1 Combined S-Splines of First Degree

Exactly how is this combining done? Look at figure 18.

Figure 18: On the left: The parameter space with B-Splines for the picture in the middle.
On the right: the combined S-Splines, drawn entirely with a line.

33

The connecting lines in the middle picture show the evaluation of values in the interior
of both intervals ({2, 5} and {6, 8}). This means that in parameter space from 2 to 8 there
is one hole in the connecting line: from 5 to 6. As can be seen in the little left pictures,
from 5 to 6 after addition is exactly one piece! That means that in the middle picture, the
gap has to be filled with one first degree polynomial, matching in a CC° fashion. There
is only one possibility: that has been added as connecting line to the two S-Splines in the
right picture. The result is a GC° curve lying inside the convex hull of the control points.

The fact that there was only one piece in between the interiors is due to the use of the
same clouds for one vertex as shared by two simplices. For S-Splines from R' of degree n
S-Splines, there will always be only one possibility for exactly n — 1 pieces in between the
interiors of two adjacent S-Splines to match in a GC' fashion.

The evaluation points of the combined S-Splines figure 18a are perfectly regularly spread
over the S-Splines. However, the clouds are not equidistant. This is not a contradiction,
because the vertices of the simplices are equidistant: looking at them shows the values 2,
5 and 8, which is indeed perfectly regular. This property holds for higher dimensional first
degree S-Splines as well.

Remark 6.4 (Bézier equivalence for first degree S-Splines) Combinations of first
degree S-Splines for any value of s and t will be exactly the same as if Bézier patches
were used for the same control points.

This is the case because the combined S-Splines are nothing but straight (hyper)planes
connecting adjacent control points.

6.1.2 Combined S-Splines of Second Degree

For first degree S-Splines, the two S-Splines in figure 18 had connected splines in them.
They matched exactly CC° in the control point. Now take a look at two connected S-Splines
of second degree. Both splines are first drawn separately in figure 19, where also some thin
lines have been drawn in between some evaluated points (with the same parameter value,
but in different S-Splines!) that are to be added. Then they are drawn added together in
figure 20. Especially look at the smoothness and the locality of the result. The smoothness
is GC', and the combined S-Splines remain inside the convex hull of the control points.

6.1.3 Combined S-Splines of arbitrary degree

For higher degree, for higher dimensions, all the above holds as well. Due to the restricted
amounts of pieces in the resulting piecewise polynomial (which is a direct consequence of
the use of the same clouds), the result is a smooth (hyper)surface which remains inside the
convex hull of its control net. For any degree n used, the result can be GC' as long as
the clouds in parameter space are laid out well.

34

+
+o ++ • +,

a
+

0

+

123 8910 1415
I I I

+

+
0 a

+

+

+

+

++*+
+

+

+

+

+

0

Figure 19: Two second degree S-Splines together in one picture...

0
+

0

+

+

+

0

+
++ +

+

+

+

+ 0

Figure 20: . . . and the addition of the two

35

Figure 21: Two single second degree S-Splines (a) and (b) combined to form a (part of) a
surface (c), which is still GC1 and within the control net.

36

6.1.4 Using S-Splines as boundary surfaces

When a surface is used as a boundary, the triangulation in parameter space must support
this, i.e. be of the same topology, like may be the case for B-Patches. See for example figure
22, where an approximation of a torus has been drawn, with the triangulation next to it.
The triangulation is a part of R2, whereas the torus has its own characteristic shape: not
at all the same topology! I have cheated a little: the fact that this triangulation is shaped
like a rectangle, makes it easy to "bend" it and glue the upper side to the lower side, as
well as the left side to the right side. Note that the edges as well as the clouds as well as
the control points used have to be the same! The triangulation then has a torus-like shape
itself. The fact that this can be done, though all calculations are still done in the plane is
what I call pseudo-periodic.

There is another way to help to solve this problem. While a larger design may have a
topology unequal to a plane, parts of it (if taken sufficiently small) are always topologically
equal to planes. Thus by computing parts of the surface (single S-Splines, for example)
and gluing them later, the entire surface can be computed as well. Evaluated points can
only be added if the parameter value is "the same"! Also, the clouds used have to be "the
same"! This is not always easy...

/\//_/
Figure 22: An approximation of a torus, built up from 16 second degree S-Splines: (a) the
triangulation in R3 (b) the torus.

6.1.5 Computing S-Splines

When combining S-Splines, some parts of them overlap. An advanced data structure might
optimize for this. In the overlap pieces have the same form, so memory (and computations)
can be saved by constructing only one piece instead of multiple pieces. For an extra saving
of the amount of pieces see remark 7.3.

The implementation I made simply evaluates all basis-functions at a certain parameter

value. No distinction whatsoever for separate or overlapping S-Splines. I said before it was
slow!

6.2 Conclusion
The main advantage of combined S-Splines is the explicit Geometric Continuity: a (hy-
per)surface can be made GC'' if its degree is n if the clouds in the parameter space are
not degenerate.

Disadvantages are merely computational: there are more polynomials needed to con-
struct the surface and the restrictions on the parameter space complicate the computations.

38

7 The Quest solved for S-Splines
In this chapter the Quest for interpolating given points with normals is solved. For this,
theories and tools from most previous chapters are used. The solution will be step by step:

1. Some special point on a single S-Spline is found with very regular behavior.

2. That special point has a regularly behaving tangent plane as well!

3. Instead of using an S-Spline and finding that special point, the process is reversed:
the special point is given and some S-Spline has to be determined which indeed has
that special point in it.

For first degree S-Splines there are plenty of such points, but they are not interesting: if
interpolating with straight lines or planes is required, Bézier will do fine (or even simpler
schemes).

For second degree, a solution will be found. A theorem will be stated and proven about
the special point. Because second degree S-Splines are used, the resulting surface will be
GC' automatically, thus fulfilling smoothness requirements.

Since the special point is in fact the point the designer gave, along with its tangent
line/(hyper)plane, it will be called user-defined point from now on.

7.1 A special point on an S-Spline
The good observer will see that the endpoints drawn in figure 16 lie on the line through
two of the three control points. Also, the tangent plane at that point is the same as that
line (OK, I admit it was easier to see that when my package produced a series of numbers
instead of pictures like this). For this simple case in two dimensions I will show that it
actually does, then I will prove it for arbitrary dimensions.

7.1.1 Two dimensional endpoints

Take t0 to be the endpoint of consideration and let t1 have a higher value. Then for the
cloud assigned to t0 the additional points are outside the segment between to and t1, so
both t01 and t02 have a lower value. Now it is allowed to evaluate in t0 as if it were a
B-Patch because of theorem 5.4.

So compute c0 mt0 using De Boor (3.4): c = o(to)co+)ooi(to)c.i. Now)o0,0(to) =
1 and)too,1(t0) = 0, so = c110 which is in turn)io,o(to)c0 + Aio,i(to)c?1. Clearly, that
point lies on the line between c20 and c11.

For the tangent line through c in t0 again De Boor is used. It states in corollary 3.5 that
it is spanned by the points c'T1 (evaluated in the proper parameter value), which are c0 and
c1 in this two dimensional case. These can be evaluated for to. The first point is actually
the point computed for c in t0. The second point evaluates to)oi,o(to)c?1 + Aoi,i (to)c2,
with the first barycentric coordinate equal to one and the second equal to zero. So the
second point is c11. This confirms the claim.

39

7.1.2 Arbitrary dimensional endpoints

The computations from the previous section can be generalized to second degree S-Splines
of arbitrary dimensions. The complete theorem is given and then proven.

Theorem 7.1 (Endpoint and its Tangent Plane) Let t2 = to be on a face of the in-
terior (O1l,) of the knot net K. Then c evaluated for t lies in the plane spanned by all

0 <j < s, which is its tangent plane as well.

These s + 1 control points may not be collinear.
Proof: Since t2 is on the edge of the interior, theorem 5.4 tells us it can be evaluated as
an S-Spline, but also as if it were part of a B-Patch. The latter is done now, in particular
the De Boor algorithm is used twice.

Evaluate c at t1: c = >)o,j(t)c., where it is very clear that)0,1(t) = 1 and A0,,(t1) =
0,Vj i. So the evaluation reduces to c. at t1: c = E,)ejj(ti)ce+j. This is a point on
the (hyper)plane through the control points c2, and ce0,, . . . , ce_1 +e,, ce,÷1 +e,,. . , Ce. +ê,

(the control points adjacent to c2ej.
As for the tangent plane, this is equal to the (hyper)plane spanned by all c, evaluated at

t. First, evaluate for j i: c. = k)te,k(ti)c,+ek gives all c,+e, , j i, because only for
k = i the barycentric coordinate is one instead of zero. As for the last point: c, is equal to
the point which we are determining the tangent plane for, which lies in the searched plane
for sure. Also, it is affinely independent from all j i, which completes the proof.

Note that for arbitrary dimensions, great care has to be taken, so that the cloud assigned
to t2 does not prevent t1 from being on the edge of the interior! For two dimensions, this
will be explained in section 7.2.

7.1.3 Arbitrary Degree S-Splines

Like second degree S-Splines, third, fourth and so forth degree S-Splines do not run through
any control point in general. But I expect some kind of trick like 7.1 for the second degree
case can be performed for third and higher degree S-Splines. The positioning of the point
will not be perfectly in the plane spanned by (some) control points as for the second degree
case, but will tend to be further away when the degree rises. The computations will become
tedious, but I do not think they become impossible.

More research can be done in that direction, for which I suggest higher derivatives
are taken into account for smoothness requirements, because if only the first derivative is
considered, the solution is already given for second degree. I can imagine the second (and
later higher) derivative should be as regular as possible, but this will not be trivial.

Any S-Spline of degree n matches its neighbors in a GC' fashion. Research may
try to get as many derivatives involved as possible (up to n — 2?), though with current
requirements by designers, I do not think it will be necessary to look any further than
second derivatives.

40

7.2 Reversion of the Process
Theorem 7.1 can be invoked for the Quest. The trick is that none of the control points of
the S-Splines is a user-defined point. The user-defined points will have one control point
nearby, which is associated with a corner vertex of a simplex. All other control points will
be used to connect the S-Splines properly.

More formally: Find a second degree S-Spline such that its c. is the user-defined point,
with given normal.

Note that the user gives some points, through which the curve should run with a certain
normal. The control points and the triangulation plus clouds for the S-Splines should then
be computed from that. As made clear in the previous section, the tangent plane is equal
to the plane through some control points: for one user-defined point with normal, a part of
only one S-Spline is needed, that is to say, s + 1 control points of the (32) that construct
one S-Spline.

Let t be associated with C2*eI, then the exact requirements are:

1. t, lies on the interior of the knot net assigned to its simplex,

2. A, (t)ce+ is equal to the user-defined point,

3. All cf in the previous requirement lie in the user-defined tangent plane.

There is a lot of freedom left for the choices of the parameter values and the control
points, however.

To start with requirement 1, in two dimensional parameter space there is plenty of
choice. See figure 23.

The thick lines are edges of a simplex, the dotted lines are extended from these edges.
First, it is required that t1 and t are inside the angle bounded by the dotted lines. Then
the lines from t•,1 and t,1 to t3,0 do not restrict t1,o from being inside the interior. The
clouds in the other vertices of the simplex must be small enough, so that lines from t11 to
t31 for any j do not exclude t,0 from the interior, either. For two "regular" solutions for

41

Figure 23: Some positionings for knots in a cloud

s = 2, see figure 23. There do not rise new problems when s = 3 or higher. Keeping the
clouds relatively small will help very much to satisfy this last requirement.

The last important thing for the configuration of the clouds is to let t1 and t2 be close
enough so that they do not extend themselves to far into the next simplex, where they
might diminish (the area of) the interior of that simplex to zero. (When problems might
occur due to this, probably it is a better idea to change the triangulation.)

Then there are requirements 2 and 3. These can be satisfied at the same time, namely
at the moment the s control points are set. These need to be set in the tangent plane
(requirement 3 fulfilled), such that requirement 2 is fulfilled. Since the displacement of the
control point ce1 w.r.t. the user-defined point is caused by), only, it suffices to take that
barycentric coordinate into account. Because we started with the layout of the triangula-
tion and the clouds,) is set and the relative layout of the s + 1 control points w.r.t. the
user-defined point is given.

There still remain lots of freedom for the absolute distances between those control
points, as well as for the orientation of the set of control points in the tangent plane.

Then there are plenty of control points associated with a simplex left without a place-
ment (those cfl with f3 = 0). In fact, there is no restriction at all on their placement. But
of course some of them might as well be used by adjacent simplices to run through another
user-defined point.

To be able to fulfill all requirements, at least as many simplices in the triangulation are
needed as there are user-defined points22. There still is a lot of freedom left and I suggest
to choose the sub-simplices of a simplex in such a way that they have about equal size and
that adjacent control points have regular distances.

7.2.1 A few examples

Let's examine some of the freedom. First, take a look at the freedom in parameter space.
Change the placement of the clouds and see what happens, see figure 24. It might not be
very clear, but the shape of the second picture differs from the first. For that reason, both
pictures are joined in figure 25

The consequence of freedom: another choice of parameter spacing (in this case with the
same control points) gives another surface. The rightmost half of figure 24b has a bigger
interval in parameter space, of which the immediate result is relatively smaller cloud for
the "leftmost" control point: (5-6-11) instead of (5-6-8). This influences the barycentric
coordinates A20 of the "rightmost" S-Spline and thus the "rightmost" part of the curve.
(The "rightmost" cloud has the same relative size, because otherwise the user-defined
endpoint would not be met.)

For freedom of choice w.r.t. control points, see figure 27 on page 45. First, the curve
does remain inside the convex hull, so movement of control points will likely change the
shape of the curve. Second, because the pairs of control points dictating the tangent line
are closer to each other in figure 27b than in 27a, there is less space left to bend away, thus

22Not necessarily, if you want problems...

42

• •—P • 0 0 • • • •D.

O4113I5
Figure 24: Two S-Splines, (a) with regular spacing in parameter space (2-5-8), (b) with
irregular spacing (2-5-11), note that the shape differs!

0 • • * ••0 0

.

0 0

Figure 25: The two splines from figure 24 in one, showing clearly they are not the same.

43

leaving a sharper curvature.

7.2.2 A closed boundary

Let us not forget the requirement of the closed boundary. What should be clear from the
above, is that it is possible to end up in a user-defined point with a given tangent plane.
Then it is of course possible to end up there from two sides. See figure 26, where this
approach has been taken to close a curve in the leftmost user-defined point.

o • 4+ 0

* 05

Oc

I

8=1 *

•
o4.—.. 0

2

Figure 26: An example of closing a curve in two dimensions

The resulting curve is irregular while the user-defined points with normal were laid
out regularly. The problem is that the lay-out of the control points is not regular: when
starting with putting control points from 0 to 6, this can be done regularly as is done
in figure 26. However, when approaching the leftmost user-defined point from above, the
upper left control point 7 can not be put regularly, because it has to be on both the
tangent line trough the leftmost user-defined point and the upper user-defined point. (One
S-Spline (control points 6-7-8) reaches for two user-defined points here. That should have
been avoided.) (The fact that control points 1 and 8 are the same is coincidence.)

Even worse, for higher dimensions, this does not work at all! The claim by Seidel
(theorem 6.3) is that apart from the same clouds, the same control points should be used.
That is not the case here, because the same user-defined points are used, for which different
control points are needed. Furthermore, it is not known yet how the edge of an S-Spline
restricted to , looks. The same solution used to connect two B-Patches (see section 3.4)
can be used: put the clouds on one line and lay the control points like for the Bézier
solution. If there is one specific boundary in the design which could be used for this (for
example, where sharp edges are used instead of smooth connections), then this method
can be used.

However, this can be done better. For this the same control points have to be used, along
with the same clouds when a curve/surface reaches for a user-defined point from two sides
(as required for theorem 6.3). If the clouds are the same, so is the vertex it was assigned

44

to. In that case for any pair of adjacent S-Splines, there has to be an associated pair of
adjacent simplices in parameter space. Like for B-Patches, this means the triangulation
has to have the same topology as the resulting surface. The advantage of this method is
that the result is more regular, globally. See figure 27. For one dimensional parameter
space, it is easy to be obtain the "correct" topology by cheating: instead of an infinite
axis, use a part like [0, n), which starts again at 0 when reaching n. For higher dimensions
there can rise problems, see section 3.3.1 under triangulation and section 7.5.

0 . • .•—• a * 0 * . * *. .
. *

.
** * . 0

8=0 :

+

Figure 27: Two "circles", with (a) bigger and (b) smaller spacing between control points.
The clouds in parameter space are unchanged.

7.2.3 Disadvantages

As can be seen in figure 27b, two resulting S-Splines do not run away from one user-
defined point symmetrically in general (they do in figure 27a, see remark 7.4). See figure
28, where figure 27b and its mirror image are drawn together. For an irregular design, like
a dashboard, this should not be a big problem. For regular objects, this is less desirable.
To some extent, this can be improved by using small clouds.

7.3 Odds and Ends
This section is just a collection of weird habits of S-Splines, unexpected similarities and
other funny things. The first theorem results in a reduction of pieces in S-Splines used for
constructing surfaces, so is useful for implementors.

Theorem 7.2 (Indifference of Position of When a complete triangulation for a
surface is set up, the positioning of the sth knot in any cloud does not matter to some
extent.

45

a

e I
S

o 0

S S

0•• .
• 4

40

* S

0 * .• 0
S

* I

5 5
o 0

Figure 28: Figure 27b with its mirror image in one picture. They are not the same.

Proof: Let's start in one dimension. Consider vertices t0, t1, t2, which support two sim-
plices. Knot t12 only appears in N and N.

N002' = Id(too,t,2)Ifl/.t(u {t,t10,t,,,t,2})

= Id(too, t,2)
I

(d(u t12)
M(u I {t, i,,, t,2} + d(t00, u)

M(u I {too, tio,
d(t00, t12) d(too, t,2)

Similarly,

N21 = Id(ti2,t2o)IJW(u
I

{t,0,t,,,t,2,t20})

= Id(ti2,t2o)I
(d(ut2o)

M(u I {t,0,t11,t20} +
d(t,2,u)

M(u {t1otl1tl2}))
d(t,2, t20) d(t,2, t20)

Now assume d(t, t,2) and d(t12, t20) have the same sign. For any u, the sum of these two
basis-B-Splines then is:

± (d(t00, u)A1(u I {t00, t,0, t,,}) + d(u, t20)A1(u I {t,0, t,1, t20}))

where t12 has disappeared completely.
This can be repeated for arbitrary dimensions, where the drop-out of point ti,, will

always happen where two faces of simplices touch.

The phrase "to some extent" in the theorem is thus that the normalizing determinants
have the same sign, so they cancel the denominator in the barycentric coordinates of the
B-Splines. Effectively, this means the position of point does not matter, as long as it
is inside the convex hull of all vertices adjacent to vertex t1, which it is by definition of the
knot nets of the S-Splines sharing t1!

46

Remark 7.3 (Reduction of the Number of Pieces) Using theorem 7.2, you can put
any t2,, in the same place as t,o, t,1, ..., t2,,..1, which reduces the amount of pieces with
different polynomials greatly.

For the Quest, this means that a single S-Spline has a maximum of 13 pieces, of which
12 are shared with neighbor S-Splines (only the interior is not shared). This brings the
scheme much closer towards real time usage.

Remark 7.4 (Bézier Resemblance) In one dimensional parameter space, when all the
clouds are regularly spread and the control points are on the crossing of the two tangent
lines through the user-defined points (like with the 2 degree Bézier solution), the same
curve is produced as with the Bézier solution.

For some unknown reason the parts of the curve where the S-Splines are glued sums up
perfectly and become part of a Bézier patch. The B-Patch parts of the S-Splines are Bézier
patches, too. See for a perfect example figure 24a.

Remark 7.5 (Triangulation of parameter space) If a triangulation produces a sur-
face, then problems occur when the surface represents a closed boundary of a 3D object.
Because of the sharing of the clouds, the triangulation must have the same topology, that
is, for each simplex in the triangulation, there must be adjacent simplices, which associate
with adjacent S-Splines in the object space.

For a torus, that is not a problem: take a rectangle in parameter space, make a cylinder
of it and then curve it, so the shape of a torus is obtained.

For a sphere, nothing rectangular gives an easy solution. Perhaps that rectangle could
give a solution for a part of an icosahedron, which could then be rotated twenty times,
thus giving a sphere. It will probably be easier to use the surface of a sphere as parameter
space in some way. The topology requirement can then be satisfied, but in what way is a
simplex correct? Its edges are not really straight anymore...

47

8 Conclusion
For surfaces (globally 2D in a 3D space), Seidel's scheme is very good, since it provides
many good features as mentioned in the introduction. Let us go step by step through the
requirements in chapter 1:

1. Deviation S-Splines deviate more from their control points then Bézier patches.
The bigger the clouds in parameter space used, the bigger the deviation in the design
space. However, these clouds can be kept small enough in applications. Also, S-Spline
surfaces remain inside the control net.

2. Uniqueness As soon as the clouds and control points have been determined, the
definition of a surface built up from S-Splines is unique.

3. Smoothness By default, S-Spline surfaces are GC' when n degree polynomials
are used. The user should be able to define a sharp edge of a design instead of the
smooth polynomials normally used. The CAGD-program can implement this easily
by converging the clouds in parameter space to one point.

4. Locality Local changes are easy. Movement of a control point does not matter at
all, addition of a control point just gives a couple of new simplices/S-Splines.

5. Normal With the method given in section 7.2, the user can now define points with
gradients, where the S-Spline surface will run through in the correct direction.

Advantages
The biggest advantage of the S-Splines is the continuity. By just using this scheme, GC'
can be obtained by just using nt degree S-Splines.

For the Bézier solution, the surface runs through the control points; to be precise:
when a point with given normal is used, multiple Bézier patches reach for that point with
proper smoothness. For the S-Spline scheme, only one S-Spline reaches out and the rest is
automatically correct. This is an advantage of about a factor of six in the s = 2 case23.

Another advantage is the implicit high amount of pieces. This offers flexibility to make
an interpolating surface smooth through any combination of user-defined points, which is
much more difficult for the Bézier scheme.

Disadvantages
When user-defined points are given, the user will not have the guarantee the surface runs
through that point symmetrically. This can be a disadvantage.

23As a triangulation grows to infinity, the average amount of triangles that meet in a vertex approaches
six. [Theorem by ???]

48

As well as an advantage, the amount of pieces in the S-Splines is a disadvantage.
More pieces means more different polynomials means more memory and more complex
computations.

Future Research
You can think of the following:

• Is there a way to assign clouds to vertices fully automatically? Given the triangu-
lation, I think so, but it will not be easy, because the triangulation can be severely
irregular. Also, taking a look at non-R2 parameter spaces (like sphere-coordinates)
might be interesting.

• Is there a layout of the clouds which will create symmetric surfaces always?

• Is there a way to produce GC2 surfaces through user-defined points? I think so, but
I expect higher degree S-Splines to be necessary, accompanied by more complicated
computations.

I wish you fun and luck solving these!

49

A Notation used in this thesis
fi and other small Greek characters are multi-indices. Also, the 0 appears as multi-index

with all indices equal to zero.
c is a control point in IRt (unfortunately, this t has nothing to do with the next item).

t, is a knot in Rs.
L A simplex in parameter space; built from three knots (t1 in the Bézier case, t20

otherwise).
are barycentric coordinates of u E R3 w.r.t. some simplex.

Mostly, only '+'s are found where the splines have been evaluated. Lines/curves running
through these pluses have been added by hand later.

B Legend of the pictures

0

Figure 29: Three pictures: (a) the parameter space (b) the 2D results (c) the 3D results

B.1 Legend of the pictures in parameter space
— Either the square cup at the bottom (1D parameter space) or all the lines drawn (2D

parameter space) represent the triangulation.
x A knot. The biggest knots have second index zero (t10); the smaller the cross, the

higher the second index in (t13, j higher).

A B-Spline basis-function (1D parameter space only).

B.2 Legend of the S-Splines (2D)
o The squares indicate the control points cfi. Note that the there is always one control

point in every cloud that is shared by all simplices sharing that cloud (i.e. in these
2D pictures every c0 is the same as the c,0 of the next S-Spline).

+ The little plus signs are points on the spline. Usually there are enough of them in
the picture to see what the curve looks like.
A line indicates the part of a patch which is restricted to

50

0 0

"F'-.123 678
I I

— , in the case of B-Patches,
— the interior in the case of S-Splines.

These lines are added by hand, they are not not automatically generated.

B.3 Legend of the S-Splines (3D)
i Filled triangles represent a part of the surface; the vertices of these triangles are

points on the surface itself.
— The knot net.
• A control point.

51

References
[Far86] Gerald Fan Triangular Bernstein-Bézier Patches. Dep. of mathematics, Uni-

versity of Utah. Computer Aided Geometry Design 3, Elsevier Science Publish-
ers By, North-Holland, 1986.

[Sei88J Hans-Peter Seidel A new Multiaffine Approach to B-Splines. Wilhelm-Shickard-
Institut für Informatik, Universität Tübingen. Computer Aided Geometry De-
sign 6, Elsevier Science Publishers By, North-Holland, 1988.

[Sei89] Hans-Peter Seidel. Symmetric Recursive Algorithms for Surfaces: B-patches
and the De Boor Algorithm for Polynomials over Triangles. Universität
Tübingen. Constructive Approximation, Springer-Verlag NY mc, New York,
1989.

[DMS9O] Wolfgang Dahmen, Charles A. Micchelli & Hans-Peter Seidel. Blossoming
Begets B-spline Bases Built By Better B-patches. Mathematics of Computa-
tion V59 no199, 1990. The main theories. Thorough.

[Sei9O] Hans-Peter Seidel. Polar Forms and Triangular B-Spline Surfaces. Universität
Erlangen. 3D version of [DMS9O], reads easier.

[Sei92] Philip Fong & Hans-Peter Seidel. An Implementation of Triangular B-Spline
Surfaces over Arbitrary Triangulations. University of Waterloo/Universität Er-
langen. Computer Aided Geometry Design 10, Elsevier Science Publishers By,
North-Holland, 1992. Despite its name, nothing about the implementation itself
is revealed.

[Far93] Gerald Farm. Curves and Surfaces for CA GD. A practical guide. Computer
science and scientific computing, Academic Press, mc, Boston, 1993. Good
book to start with.

[Veg97J Gent Vegter. A polar Bilinear Forms and Multivariate B-Splines. Dep. of Math-
ematics and Computing Science, Rijksuniversiteit Groningen. 1997. Thorough.

[HB94] Donald Hearn & M. Pauline Baker. Computer Graphics Prentice Hall, 1994,
second edition Wonderful overview of Computer Graphics

[Str9l] Bjarne Stroustrup. The C++ Programming Language Addison-Wesley 1991,
second edition Complete, since written by the inventor of C++

52

