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Introduction

The wide context of this article is given by the research on the Feynmann integral. The
mathematical definition of the Feynmann-integral has been a problem for over 50 years.
Because of the analogy of the Feynmann integral with the Wiener measure we first look
at that.

We will have a look at the relation between the heat diffusion equation and the Wiener
measure. After that we will see the connection between the heat diffusion equation and
the Schrodinger equation and discuss the Fresnel distributions.

The heat diffusion equation is:

ou_1
ot 2
with u(t, ) = u¢(z), z € R*. For simplicity we take n = 1. We define

Au (0.1)

y(t)e—z2 /2t
V2nt

We use the physical notation §(z) in stead of § to avoid confusion with the 4(t). Now G,
is a fundamental solution: P

(5; = EA)Gt = 40(t)é(z).

One can see this by recognizing that [ Gi(z)dz =1 for all t > 0 and Gy(z) = %Gl(%)
Therefore G¢(z) is an approximation for §(z) for t \, 0. We define Go(z) = d(z).

The solutions u; of the Cauchy problem of the heat diffusion equation with initial value
ug are given by

Gg(IE) =

ug =Gy * up

for t > 0. Then limg\ o ue = Go * ug = up.

Now we can define the W,. Let o be a subdivision of [0, T:
0=0<t <...<t, <T. Then we can write R* = R’ and we define W, on R’ by

Wy =Gt (@n — Zn=1) ... - Gy, (x2 — 1) Gy, (71)dzy . . . d2yr. (0.2)

We abbreviate: W, = G,(z)dz, ...dz,. Then W, is a probability measure on R?, because
JgGi(z)dz =1 for all t > 0.



Let 7, : C([0,T]) = R’ be the projection-map m,(X) = (X (t1),..., X (tn)) € R*.

If o < o', we define 7y, : R — R’ to be the projection. Then W, = myor(Wys). This
means that the set {7, } is a projective system. Now we can ask the question: given the
projective system of measures W, on R’, does there exist a measure W on C([0, T}) such
that W, = m,(W), for all ? If it does, W is called the projective limit. The answer is
given by the next theorem.

Theorem [Wiener] There ezists a unique probability measure W on C([0,TY]) such that
., W =W,, Vo.
We call W the Wiener measure.

Now we switch to the Schrédinger equation:

10p 1

The difference with the heat diffusion equation is the fraction 1 in front of it. This

t
corresponds with the substitution ¢ — it. The analogue of W, is Fy:

Fo‘ = Gi(tn—t"_l)(zn = .’En_l) S Gi(tg-tl)($2 = IIII)G,‘gl (:Irl)d.’l:l ce d:l:n =

m im  (ze—ziog)?
H : I S P ﬁdz = c,e'?@)dz,
1 \/27r1(tk — tlc—l)

with Q, a quadratic form. If there is a potential in the Schrédinger equation, the Q, is
replaced by Q, + V, with V, a potential. In this article we restrict ourselves to polynomial
potentials.

We will see in chapter 1 that the F, are summable distributions. They are called Fresnel
distributions. Moreover the set {F,} is a projective system. Now the great question is:
does there exist some kind of projective limit

F=1limF,
—

such that n,F = F,, for all 0. If it does, F is called the Feynmann integral. What is
F like? To answer this difficult question, one needs to know more about the F,.

In chapter 2 we will get more information about the sum order of the Fresnel distributions.
In the case of potentials we get distributions e’ with P more general polynomials, which
we call the Generalized Fresnel Distributions. Therefore we try to find out for which
polynomials P the distribution eP is summable. And if so, what is the sum order? This
is the central question in this article.



Chapter 1

Summable Distributions and
Gauss-Fresnel distributions on R"

In this chapter we will treat the class of summable distributions on R*: Dj (R"). This
space is in fact the case p = 1 of the spaces D}, (R") defined by L. Schwartz for 1 < p < oo
in [TD]. Because we only consider this case, we abbreviate D}, (R") = Dy (R"). One can
find this theory in [TD, Ch.VI, §8] and more detailed in [TH1, Chl).

Furthermore, we take a look at the Gauss-Fresnel distributions, which turn out to be
summable distributions.

1.1 Summable Distributions
Definition We define the spaces B and B as follows:
B=B(R") = {p € E(R") : D¥p € L®(R*) Vk € Z"},
B=B(R") = {p € E(R™) : D*p € Cy(R*) Vk € Z1}}.
The topologies of these spaces are the natural topologies induced by the (semi-)norms:

Pm(p) = sup || D*¢ |lo (1.1)
Ik|<m

Proposition 1.1 1. The space B(R™) is a Fréchet space (i.e. metrizable and com-
plete).

2. B(R") is the closure of D(R") in B(R").

Proof The first statement follows from the completeness of £(R") and the fact that the
semi-norms on B(R") are norms. ,

To prove 2. it is sufficient to verify that D is dense in B. Let a € D be a function between
0 and 1, equal to 1 on the unit ball and define a,(z) = a(£). Then, if p € B, the functions
ay,p converge to ¢ uniformly on compact sets. Namely, |a,(z)@(z)—p(z)| = 0 for |z| < n.
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But given € > 0, 3N such that |a,(z)e(z) — ¢(z)] < 2|@(z)] < € for |z] > N, because
@ € Cy. So |an(z)p(z) — p(z)| < €, Vz € R, for n > N, and the convergence is uniform
on R".

Similarly, for the uniform convergence of the derivatives of ¢ one uses Leibniz’ rule and
the fact that D*(a,) goes to 0 uniformly for n — co. |

Definition The space of summable distributions, D} (R"), is defined to be the dual
of B(R"), equipped with the strong dual topology.

Because D(R") C,B(R") densely, D} (R*) C,D'(R"). It follows from this definition that
a distribution T € D'(R") is summable if and only if there exist m € N and M > 0 such
that:

(T, )| < Mpm(p) Ve € D(R"). (1.2)

Namely, for ¢ € B, there exists a sequence ¢, in D such that ¢, — ¢ in B. So (1.2)
implies that |(T,¢,)| < Mpm(en) Vn, and passing to the limit this gives equation (1.2)
for ¢ € B. So T € D' is a continuous linear form on B, i.e. T € Dj.

Proposition 1.2 If T € D}, then

1. D*T, defined by
(D*T, p) = (-1)*(T, D¥¢) for p € D (1.3)

is summable.
2. for i € B, the distribution YT defined by
(YT, ) = (T, ) for p €D (1.4)
is summable.
3. The maps T — D*T and T — T are continuous from Dy (R") to DL (R™).

4. The formulas in 1 and 2 are valid for all p € B and ¢ € B.
Proof Take m and M such that |(T',¢)| < Mpn(p) Ve € D. Then for ¢ € D,
(D*T, )| = (T, D¥@)| < Mpm(D* ) < Mpymyix)()-

This implies 1.
Similar for ¢ € B,y € D,

I('ll)T, ‘p)l = |(T7'¢(p)| < Mpm('ll)(p) < Mpm((p),

where the last inequality follows from Leibniz’ rule. This proves the second statement.
For the continuity of the two maps in 3. take a sequence T, in D}, such that T}, —» 0 in
D), for n — co. Then for all ¢ € B, (D*T,,¢) = (-1)FT;,, D) — 0 for n — co. And
for ¥ € B, (YTn, ) = (Tn,¥p) — 0, for n — oo.

6



To prove 4. take, for ¢ € B, a sequence @, in D such that ¢, — ¢ in B for n to co.
Then D*yp,, — D*¢ in B. Now it follows from the continuity of T on B that (D*T,¢,) =
(-1)*Y(T, D*p,) — (-=1)*I(T, D¥y) and on the other hand (D*T,p,) — (D*T,y). So
the formula in 1 holds for ¢ € B. One proves the validity of the formula in 2 for ¢ € B
similarly. |}

Example An important example of summable distributions is the space of distributions
with compact support. Because B C,€ with dense image, one has

& D,

Definition The summability order of a summable distribution T is the smallest num-
ber m such that the inequality (1.2) holds. (Frequently, we will abbreviate this to sum
order(T') or even s.o.(T).)

Proposition 1.3 If T is a summable distribution with sum order m, then s.o.(¢T) < m
for ally € B.

Proof For ¢ € D we have |(yT,¢)| = (T, ¥p)| = Mpm($) < Mpm(p). N

One can define spaces BU™ resp. B™ to be the spaces of functions whose derivatives up
to order m are in L™ resp. Cy. These spaces are again Banach spaces when equipped with
the topology induced by the norms (1.1). If we define similarly the space D(™) of functions
with compact support whose derivatives up to order m are continuous, then D(™) is dense
in B(™) (one can prove this similar to the proof of proposition 1.1). And because D™ D

we also have D is dense in B(™). When we now define D',fm) as the dual of B(™ and use

D'ISO) = M, (the space of bounded measures) we have the continuous injections:
My(R") D™ (R") CDL(R")

It also follows from (1.2) that D} is the union of the subspaces D'Ifm), and sum order(T')
is the smallest number such that T € ’D'Ifm).

Remember that the order of a distribution in D’(R") is the smallest number N such that
VK C R*, K compact, IM >0

KT, )| < Mpn(p) Vo € Dk(R").
So a summable distribution has finite order and the following inequality holds:
order(T') < sum order(T) (1.5)
Note that for T € £’ the equality holds.
If T belongs to D™ (R") then D*T € D™ )(rr). So if T = 1 € My(R*) = DO (R")

then D*T = D*pu € D'Ifm)(IR") for |k| < m. Thus the derivatives of bounded measures are
again summable distributions. The converse of this is stated in the next theorem.



Theorem 1.4 [TD, Ch.6, §8] Let T € D'(R"). Then the following conditions are equiva-
lent:

[

. T belongs to D (R") .

. T is a finite sum of derivatives of bounded measures on R™.

2
3. T is a finite sum of derivatives of LY (R™)-functions.
4. For every a € D(R"), a+ T belongs to Mp(R™).

5

. For every a € D(R™), a* T belongs to L} (&),

Proof 3. = 2. because L} C M,.
2. = 1. because of the reasoning above.
1. = 4. Let B={peD:| ¢}

Lemma 1.5 By is dense in the unit ball of Co.

Proof of the lemma
Let f € Co, ||fllc £1. Thenif 3€ D, 2 0, [ B=1,B* f belongs to the unit ball of Co.
If we take B, € D a standard approximation of 4, then B, * f belongs to the unit ball of
Cy and B, * f — f. Namely,
Bn * £)(z) — f(@)| = | [ Bu@®) f(z — t)dt — f(2)| = | [ Ba(®)[f (= — 8) — f(2)]at|
< Jioj<s Bo®If (2 = 8) = f(2)ldt + fizy55 Bn (S (@ = t) — f(z)ldt
<e fl;l<6 Bn(t)dt + € < 2¢, by the uniform continuity of f.
Let « € D, 0 < a <1, and @ = 1 on the unit ball, and define an(z) = a(f). Then
an(Bn * f) belongs to By and converges to f uniformly on compact sets. But being domi-
nated by a Co-function, namely |f|, the convergence is uniform. This proves the lemma.

Consider the functions & * ¢, with a € D fixed, and ¢ € By. Because D¥(a+yp) = DFaxp
and ||D*(& * ¢)lloo < IID*ally l@lloo < ||D*&||y for ¢ € B, these functions form a bounded
subset of By.

Therefore, by the summability of T,

(a*T,¢) = (T,a*y) (1.6)
are bounded numbers for all ¢ € By, so

sup |[(a * T, )| < +o0 (L.7)
w€EBo

Now with the use of the lemma, a * T extends to a continuous linear form on the unit ball
of Cyp, and therefore to the whole space Cp. So a * T belongs to the dual of Cp, that is
Ms.

4. <= 5. The inclusion L' C M, gives us the <= direction. For the opposite direction,
note that a * T is C* and therefore belongs to L.
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4. = 3. If a x T € M, the numbers:
(@*T,a&) = (axT,qp) (1.8)

are, for fixed @ € D, bounded for ¢ € By C (unit ball of Cp). This implies that the
distributions ¢ * T are bounded in D' for ¢ € By.

Let A C D’ be a bounded set, i.e. sup,ep|(T,a)| < Mp, VT € A, VB C D bounded
(that is B C Dk for some compact K and B bounded in Dg). Then, because Dk
is a Fréchetspace, we can use the Uniform Boundedness Principle for Fréchetspaces:
suprea |(T, )] < +00, Va € Dk. So the linear forms T : Dxg — C, T € A, with
K the unit ball say, are equicontinuous: Im € N, IM > 0, such that

T, a)| < Mpn(a), Va € Dk, VT € A. (1.9)

Therefore T extends to a linear form on D%") for all T € A and the extension still satisfies
the estimate (1.9).

In the present case A = {¢ * T, € Bg}. So the distributions ¢ * T extend to D%") and
still satisfy the inequality (1.7). This means that the numbers in (1.6) make sense and are
bounded for ¢ € By and a € D%"). But this means that a « T is a bounded linear form
on By and therefore on Cp, so it belongs to M, even for a € DX"). And because a * T is

C™ for a € DYV, ax T € L.

For | € N sufficiently large (! > m + %), A! has a fundamental solution E in Em) = clm),
Because the Laplace operator is elliptic, so also hypo-elliptic, this solution E is C* on the
complement of {0}. If ¥ € Dk, is 1 on a neighborhood of the origin, the function @ = vE

belongs to D%") and has the property
Ala=6+¢ (1.10)

where ¢ € D and has support in the complement of a neighborhood of the origin. There-

fore,
T=6+«+T=AaxT-(+T. (1.11)

And since a * T and ¢ * T belong to L' (this is statement 5.) T is a sum of derivatives of
L'-functions. This finishes the proof of the theorem. [}

Remark Using the Hahn-Banach theorem one gets information about the order of the
derivatives in the representation as sums of derivatives of measures of a general summable
distribution T. In the one dimensional case, let T € D',Em)(R), ie. (T,9)] < Mpm(p) =
M supycn 19®) oo, Vo € D(R). Using the map ¢ = (p,¢/,...,¢0™) on D(R) —
(Co(R))™*!, we define the bounded map ! on the subspace A = {(p,¢/, ... o™y | pe
D} of C**! by l(ep, ¢, - .. ,™) = (T, ). By the Hahn-Banach theorem, this map ! can
be extended to a map L defined on C(’)"“, such that L|4 = [. Now we use Riesz’ theorem
to conclude that L ~ (L, Ly, -- -, Lji,) with fix € My(R) i.e. for ¢ € D,

(T, 0) = L(@,@', ..., ™) = T (e, 0®) = T (-1, ) =

9



k
Z?:o(l‘fc )1‘p)nuk € Mb(R)
For general dimension, a similar argument yields

TeD®) — T= 3 Diu, m € My(R"). (1.12)
Ik <m

Theorem 1.6 The topology of Dy (R") is the weakest topology for which the maps T
a*T € LY are continuous: T; » T in Dy (R") if and only if a*T; - a*T in L}(R") for
all « € D(R™).

The proof of this theorem can be found in [TH1, §1.1].

1.2 The duality with B
Consider a bounded subset of B(R"), i.e. a set B C B(R") such that

sup pm(p) < +oo YmeN
pEB

Then by Ascoli’s theorem B is relatively compact in the space £(R"). The compact closure
of B in £(R") is contained in B(R"). Let K be the set of bounded subsets of B(R") which
are closed in £(R"). Then the sets K € K are compact in £(R") and every bounded set
B is B(R") is contained in a set K € K.

Theorem 1.7 Let f : K — Y be a continuous map, where K is a compact space and
Y a Hausdorff space. Assume that f is bijective. Then f is a homeomorphism, i.e.
f~1:Y - K is continuous too.

Proof Let g=f!:Y = K, g7} (F) = f(F) for F C K. Take F a closed set in K, then
F is compact. So f(F) is compact because f is continuous. Therefore g~!(F) is closed
and it follows that ¢ is continuous, i.e. f is a homeomorphism. |

Corollary 1.8 Let K be a compact space and X = K as linear space with a weaker
Hausdorff topology. Then X = K also as topology.

Proof The identity map Id : K — X is continuous and bijective on K. So by the theorem
the inverse identity map Id~! : X — K is continuous too. This means that if O C K is
open, then Id(O) = O C X is open. So the topology of K is not stronger than that of X.

[t follows from this corollary that on K, and therefore on B, the topology induced by &
coincides with any weaker Hausdorff topology: for instance with the topology of uniform
convergence on compact sets or even the topology of pointwise convergence.

Consider a sequence ¢; in B(R") and let ¢ € B(R").

10



Definition We define ¢; — ¢ pseudo-topologically in B(R") if
a. there exists B C B(R") bounded such that ¢; € B for all 7,
b. p; = ¢ in E(R?).

As remarked, the condition b. may for instance be replaced by:

b’. p; = ¢ uniformly on compact sets.

Lemma 1.9 D is dense in B with respect to the pseudo-topology. Given ¢ € B, there
ezists a sequence @, in D such that ¢, — ¢ pseudo-topologically for n — oo, i.e. {pn} is
bounded in B and ¢, — ¢ in € for n = oo.

Proof Let a € D with a(z) =1 on the unit ball, and 0 < a < 1. Let ay(z) = a(Z) and
define ¢, = anp. Then DFa,(z) = ;}T‘(Dka)(%), therefore || D*ap |0 < n—|l—kT||Dka||oo £
| D || oo for all n.
Using this together with Leibniz’ rule one gets that the ¢, are bounded in B. But ¢, (z) =
¢(z), for all z with |z| < n and so ¢, — ¢ in €. This implies that ¢, = ¢ in B pseudo-
topologically. 1

IfT € Dy (R*),and T = Z‘D" {1k is a representation of T as sum of derivatives of bounded
measures, we have, if p € B(R")

(T, ) = > (D ux, ) = > (=1)¥(pu, D*o). (1.13)

From this it follows that T is continuous on B equipped with the pseudo-topology. Namely,
if p,, — ¢ pseudo-topologically

(16> D¥ @) = (uk, D)

by the Dominated Convergence Theorem of Lebesgue.

Definition T € D) (R") has the bounded convergence property if T is continuous
on B(R") equipped with the pseudo-topology, i.e. the restriction of T' to bounded subsets
of B(R") is continuous for the topology induced by £(R").

Theorem 1.10 If T is a summable distribution, then T has a unique linear eztension to
B(R"*) having the bounded convergence property.

Proof For ¢ € B, let (¢n)nen be a sequence in B, such that ¢, — ¢ in the pseudo-
topology. We then define
(T, ) = lim (T, pn)
n—00

where we define T by (1.13).

Then T has the bounded convergence property again by the Dominated Convergence
Theorem. Because T is uniquely defined on B the right-hand side does not depend on the
representation (1.13). Therefore T is uniquely defined. [}

11



In particular, one can take ¢ = 1, and define the total mass of a summable distribution
T
(T, 1).

Proposition 1.11 The estension of T € Dy (R") to B(R") is compatible with multiplica-
tion by functions in B(R™) and with differentiation:

(YT, o) = (T, o) Yo, € B(R") (1.14)
(D*T, ) = (-1)*(T, D*¢) Vo € B(R") (1.15)

Proof If p € B these equalities are correct because D is dense is B and T is continuous.
If ¢, — ¢ € B pseudo-topologically, i.e. remaining bounded in B and converging in £, we
also have in the pseudo-topology Yy, — ¥ and D*p, = D¥y. This yields

(YT, ) = lim (YT, ¢,) = lim (T, en) = (T, %p).
n—o00 n—00
Passing to the limit is justified because T belongs to Dy . Similar for the derivative:

(D*T,¢) = lim (D*T,n) = lim (=1)7¥U(T, D*pn) = (-1)7H(T, D¥¢)

n—00
because D*T € D;. |}

Theorem 1.12 Let L : B —» C be a linear form which has the bounded convergence
property. Then there ezists a unique T € Dy(R") such that L(p) = (T, ) for all p € B.

Proof First note that L maps bounded subsets of B to bounded sets in C. If this were
not so there would exist a balanced bounded set B C B and a sequence (@) in B such
that |L(pn)| > n. But then 1o, belongs to B and goes to zero in the pseudo-topology.
On the other hand L(%(pn) does not go to 0. This contradicts the linearity of L.

Let T be the restriction of L to B. Then if ¢ = lim, o ©» pseudo-topologically, we have
L(yp) = limp 400 L(pn) = limg_400(T, o) = (T, ), for all p € B.

Theorem 1.13

1. If L is a continuous linear form on Dy (R") there ezists a unique function ¢ € B,
such that L(T) = (T, ¢). .
Briefly: the dual of D (R™) is B(R"), the bidual of B(R") is B(R").

2. The given topology of B(R") equals the topology of uniform convergence on bounded
subsets of DL (R™) and the strong dual topology of D} (R") equals the topology of
uniform convergence on bounded subsets of B(R").

12




The proof of this theorem can be found in [TH1, §1.2, §1.3].

We have seen now that one can alternatively define the space D} (R") as the space of linear
forms on B(R") having the bounded convergence property. This is the second definition
of summable distributions.

We can conclude that the linear topological vector space Dy (R") can be completely char-
acterized in terms of the space B(R"). Moreover the operations of differentiation and
multiplication on D} (R") can be defined by (1.14) and (1.15).

1.3 Operations on summable distributions

In this section we will define image distributions, Fourier transforms, direct products and
convolution products of summable distributions.

1.3.1 Image distributions

For linear maps u : R* — R* | we define the image of a summable distribution T’ € DL(R™)
under u by the formula:

(u(T),p) = (T, pou) (1.16)

Let ¢ € B(R*). Then 1 = pou is bounded, and by the chain rule, has bounded derivatives
i.e. ¢ belongs to B(R"). That means that (T, ¢ o u) makes sense. Moreover, if B C B (RF)
is a bounded subset, the set of composites B o u is bounded in B(R"). Thus if ¢; tends to
0 in B (say pointwise) y; o u tends to zero in B ou and (T, p; o u) tends to 0, because T
has the bounded convergence property on B(K"). So u(T) has the bounded convergence
property on B(R*). Therefore u(T) € D}, (R*) by the second definition.

Note that if ¢ € B(R*), then w o u does not in general belong to B(R") so one can
not define the image directly by the first definition and transposition. For example
u: R =5 R: u(x) = 0, then (pou)(z) = ¢(0), Vz € R, and pou ¢ B(R") if
v(0) # 0.

Since the derivatives of order < m of ¢ o u only involve derivatives of order < m of ¢ and

u, we have;
sum order(u(T")) < sum order(T) (1.17)

1.3.2 Fourier transformations

For £ € R let ec(z) = e7'*¢ where z£ = Z;?:l z;€j. Then
Dkeg = (—iﬁ)keg

where as usual £ = £51 ... ghn,

It follows that e¢ belongs to B(R"). Moreover if £ remains on a bounded subset of R", e; de-
scribes a bounded subset of B(R"). It follows that we can define the Fourier-transformation

13



F(T) of a summable distribution by:
F(T) &) = (T ec). (1.18)

If £, tends to £, e, remains bounded and converges in the space £(R") to e;. Thus F(T)
is a continuous function.

Clearly we have S(R") C,B(R"), S being dense in B because D is dense. By transposition
we get the continuous inclusion:

DL(R") C,S'(R") (1.19)

i.e. summable distributions are temperate. An application of Fubini’s theorem shows that
F(T) defined above is also the Fourier-transform in the sense of temperate distributions,
ie.

(F(T), ) = (T, F(p)) V€S (1.20)

In particular T is uniquely determined by its Fourier transform, or characteristic function.
From the representation T = Y D¥puy, with ux € My, it follows that

F(T)E) =D _(—i&)* F(u) (1.21)

which shows that F(T) is a continuous function having at most polynomial growth.
More precisely this shows:

T € D™ (R") = |F(T)(E)| < M1 + )™ V€€ R™. (1.22)

In the next section we will see that the converse is not true: not every distribution whose
Fourier transform is continuous with polynomial growth is summable.
For u : R* - R a linear map, and ‘u its transpose, we have by this definition:

Fu(T))(€) = (u(T),ec) = (T, e o u) = (T, er(g)) = F(T)(‘u(§)) VE € RE.

1.3.3 Direct products

Let X =RP, Y =RI. Let T € D} (X) and S € DL (Y). Then the direct product T® S is
summable and one has:

(T®S,pY)=(T,p)S,¢) VpeB(X) V¢ e B(Y). (1.23)

For ® € B(X x Y) we have:
(T® S, ) =(T,0), (1.24)

with 8(z) = (S, ®.) where ®,(y) = &(z,v).
For the proof of the summability of T ® S note that the map z — &, is C* from X to
E(Y). Since & € B(X xY), ®, belongs to B(Y) for all z € X. Moreover the functions &

form a bounded subset of B(Y) and therefore the function 8 = (S, ®,) is a well defined
function belonging to B(X). So the formula (1.24) makes sense.
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If & remains on a bounded subset of B(X x Y), the corresponding functions # remain
bounded in B(X). So if ®; — ® pseudo-topologically the corresponding 6; — 6 pseudo-
topologically. This means that T ® S has the bounded convergence property, i.e. T ® S is
summable, satisfying (1.23). Moreover, the restriction to D(X x Y') is the tensor product
in the usual sense.

If ® € B*m)(X x Y), it follows that £ — &, belongs to BM™(X,BM)(Y)). So, if
T € D{"(X) and § € D{™(Y), the function 8 = (S,&.) € B™(X) and (T,6) make
sense. It follows that

sum order(T ® S) < sum order(T) + sum order(S). (1.25)

The condition that z — &, belongs to B (X, B(™(Y)) does not involve all derivatives
of order n + m of ®, and so the above inequality may be in some cases a strict inequality.
We will see examples where this is the case in the next chapter.

1.3.4 Convolution products

For T, S € Dy (R") we define the convolution product T * S as the image of the direct
product T ® S under the linear map (z,y) — = +y. Thus, for & € B(R")

(T+8,8) = (T®S,¥) (1.26)

where ¥(z,y) = ®(z + y). It follows that T x S is summable. Note that there is no
condition on the supports of T and S.

Since e¢(z + y) = eg(x)ee(y) we have by (1.18) F(T = S)(€§) = (T * S, e¢) =
(T®S,ec(z+y)) =(T®S,ee ®ec) =(T,ec) (S,ec) =
F(T)(&) F(S)(&). This yields

F(T « S) = F(T) F(S). (1.27)

1.4 The class F(Oyu)

Definition We define the class Op(R") to be the space of functions f € £(R") such that
f and all its derivatives have at most polynomial growth.

Theorem 1.14 Every T € F(Ous) is summable. More precisely we have the continuous
inclusion:

F(Ou)(RY) C, D) (R™). (1.28)

Moreover, if P is a polynomial and T belongs to F(Opn)(R"), we have PT € Dy (R").
Conversely, if PT belongs to Dy (R™) for all polynomials P, we have T € F(Opy).
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Proof It is clear that T € F(On)(R?) & F(T) € Oy <= F(T) =T € Op. Let
a € D(R"), and assume T € Op. Then Fla+T) = aT € S(R™). It follows that
a+T € S(R*) ¢, L}(R"), which implies that T € Dy (R") by theorem 1.4.

If T; goes to 0 in F(Op)(R"), i.e. T goes to 0 in Op, &T; goes to 0 in S for all @ € D,
and so a * T; goes to 0 in S and in L!. Therefore by theorem 1.6 T; goes to 0 in DL (R™).
This proves the continuous inclusion (1.28).

Let P be a polynomial and T € F(Ou), then F(PT) = DT where D is a differential
operator with constant coefficients. If follows that F(PT) is a derivative of a distribution
in Oy, so it belongs to Ops. Therefore PT € F(Op) C DL (R?).

Conversely, if PT belongs to D (R ) for all polynomials P, it follows that DT is continuous
with polynomial growth for all differential operators D. This implies that T belongs to
Oum. So we have T € F(Oun). B

Remark The Fourier transform of a summable distribution is continuous, but not in
general C*. Thus F(Op)(R") is a proper subset of Dy (R").
1.5 Gauss-Fresnel distributions

Let Gy = e~1217/(2\ gz for R(A) > 0 and ) # 0, the root being determined so as to

(2m /\)"
coincide with the positive root if A > 0. Let Go = 6. We know that if A > 0
1 2 2
F(——— e~ 1=1/(20)y = ¢—2EI/2, 1.29
(e 1 =8 (1.29

Now for all A with R(X) > 0, e~**/2 belongs to Op.

Theorem 1.15 G, belongs to Dy (R™) for all X with R(X) > 0. Moreover the map A —
G € DL(R") is continuous on the closed half plane, and holomorphic in the interior of

C,.

Proof F(G,) = e~ Mé*/2 € Oy, for all A with R()\) > 0. Using theorem 1.14 this implies
that G) = ?(.’F(G,\)) € FOum C 'D'L(R").

Moreover it is clear that the map A — e~MéI*/2 = F(G,) is continuous and holomorphic
on C,. Therefore the composition with the linear map F, i.e. A —= G, is holomorphic
too. [ |

Corollary 1.16 If P is any polynomial on R, then PG belongs to Dy (R") and the map
A= PG, is holomorphic for R(X) > 0 and continuous for R(A) > 0.

Proof We have F(PG,) = DeNElP/2 ¢ Oum, where D is a differential operator with
constant coefficients, which maps Oy continuously into itself. [ |

We will calculate the sum order of several Fresnel distributions in Chapter 2. In the third
chapter we try to find out which polynomials P lead to summable distributions e**.
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Chapter 2

Fresnel distributions

[n this chapter we will compute the sum order of several Fresnel distributions, as prepara-
tion to compute the summability order of the distributions e'f (with P a general polyno-
mial) which maybe infinite. Some theorems and special cases of this chapter are already
written down in [TH1, Ch. 2].

2.1 The one dimensional case

(n this section we exclusively deal with R, so instead of writing D(R), we just write D,
etc.

Proposition 2.1 [TH1] The sum order of '’ is ezactly 2.

Proof fe" (z)dz = __1 +f_ +f *o(z)dz). The middle integral can be esti-
mated by 2||¢||cc. The ﬁrst integral is equ1va1ent to the last one, by reflection z — —z.
S0 it is sufficient to consider only || +o0 iz (1) dz.

400 +00 +00
/ e”ch(:x:)dx — / — ir? (P( )d:x: — / d [ iz? ]
1 1 1

+o0 | +00 . d
c”/l e”’z—d—((Tx))dx +c*tp(l) = cs‘/l ze'”’ . ( olz ))dz‘ + c*lp(l) =

dz + c*tp(1) + c*t¢'(1)

3p(x
o



Because ;lg is integrable over [1, +o00) for k > 1,

+oo
| / 2)dz| < Mo(lelloo + 1€ lloo + 16" llo0) = Mpa(sp).

And
| / ¢%* p(z)dz] < Mpa(p), VY € D(R). (21)

So s.0.(e'*") < 2.
For the converse estimate, we must contradict the inequality:
| [ = pla)dal < Mpi(o) 22)

for some ¢ € D.

Let @ € D be such that 0 < a(z) < 1,a()=1 or |z] € 1 and a(z) = 0 for
|z|] > 2. Let B € B with support in [},40), 0 < B(z) £ 1, B(z) = 1 on [1,+00).
Let ay(z) = a(Z£)B(z), then a, € D. Now define p(z) = e izt and ¢, = a, ¢, then

¢n € D and pu(z z) = ¢(z) on [1, nJ.
Then <p,,i|Oo < M; < +oo. Furthermore, because ¢, (z) = a5, (z)p(z) + an(z)¢'(z) =
01',,(33)%6 i’ + an(z )(—"}6#” — 2ie~i%"), it also follows that ||} |lcc < M2 < +00. So

P1(n) = max(||en oo, ||<pn||°°) < M < 400, i.e. the p;(p,) are uniformly bounded in n.

On the other hand, the integral

iz? o iz? heg o 1 _ad
e’ pn(z)dz = . e Plll) = e a,,(:z);e dir =

2 2

+00 1 nq
/ an(z)—dz > / ;d:z > log(n) + c*
3 1

1 I
2

diverges to +00, for n — 0o. So the left-hand side in (2.2) with ¢y, in stead of ¢ diverges
for n — oo, while the right-hand side is uniformly bounded in n. This means that the
inequality (2.2) does not hold for all ¢ € D, i.e. s.0.(€" ) 4.
This finishes the proof of the proposition: s.o.(e* @) =2. |

Proposition 2.2 For Ex(z) = zFe'®", the following holds for all ¢ € D,
1. | [{° Ex(z)p(z)dz| < Mpo(y) for k < —2.

2. | [° E-1(z)p(z)dz| < Mpi(p).
3. [TH1] s.o.(Ex) =k +2, for k > 0.
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Proof The first statement follows directly from the fact that z* € L!([1,+400)), for k <
=1
For 2., take ¢ € D, then

oo [0 o] (o o]
-1, iz? - iz? () st d | ip2,0(z) -
/1 z7 e p(r)dr —/1 ze' ?dz‘—cs /1 d:z:[ o ]—zz—dx =

oo d /
c“/1 ol dx[ ]dx +cp(l) = c“/1 12((/’:::) - 2%':))&1: + c*tp(1)

So
| / 2716 p(z)dz| < Mp ().

For the proof of 3 we agam write [ Ex(z)p(z)dz =

0 o+ f_ + f )¢(z)dz), and note that the second integral can be estimated by
M||<p||°° and the ﬁrst and last are equivalent.

Because 3. holds for k = 0 it is sufficient to prove by induction that

| / 2%¢% p(2)dz] < Mprsalp), Vo € D (23)

and that
5.0.(Ex) > k+1for k> 0. (2.4)

Let’s assume (2.3) for k, then for k + 1:

n k+1 iz? - iz? k
/ "7 e p(z)dz =/ ze'® zp(z)dz =
1 1

[o ¢} d . o0
e [ Zle It o@dn = ¢ [ e 2 latp(alda + o) =
1 dz 1
[0 ¢} 7 @
ct [ e (ktp(a) + 2 (2))da + (1) =
1
[0 o] . 2 [0 o] . 2
Cst/ Pl PRE lp(.’L‘)d.’L‘-{'-CSt/ kel (p,(.’L‘)d.’L‘-{'-CSt(p(l)
1 1
Now, the induction hypothesis yields:

(o o]
et [ 7251 o)z < Mipi-rale)
1

and
(o o]
.2
|** / e @' (z)dz| < Maprya(9') < Mapiyasi(p)
1

So, we have
|/ L+ giz? p(z)dz| < Mpiy142(0)
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which finishes the proof of the inequality (2.3) for all £ > 0.

For the proof of (2.4), define ¢(z) = -;—e"’z and a, as in the proof of proposition 2.1.
Then, if we define ¢, () = an(x)<p(x) wn €D.

By Leibniz’ rule
dim s~ mY, dy & .54
() ¢n—§( P ) (e (G

And 3 | &
Ly & (-2 Py E
() (@) = (')
implies that

d d
"(%)lan"oo < () elloo

thus the derivatives of , are uniformly bounded in n. It follows that

II(—)’"sonIIooSMo sup sup |p)(z)l.
[kl<m  z€(},00)

Now l

d d T it —ig?
e = G e ™= 2 Yl ) e )
]—.
This is a finite linear combination of terms

1
—€
vl

—iz?

where k+1 -1 <r<k+1+41[
If0<!<k+1,then0<r<2+2and e e~#* remains bounded on [}, 00). From this
it follows:
sup  sup |o)(2)] < My < +oo
[tI<k+1 z€[d,00)

and therefore d
Prt1(en) = sUP I(5=)'@nlloo < Mz < +o0
I<k+1 T

uniformly in n.
If s.0.(Ex) < k+1 then

[ e pta)iel < Mpesa(e), Vo€

in particular for the ¢,. The right-hand side of this inequality is, for ¢y, uniformly
bounded in n, while the left-hand side,

20 k 1 2 20 k i 2 X 1
/ z%e' o (z)dz =/ €'’ an(
1 1 =

k+1
e 1 ol |
/ an(z)—dz > / —dz = Olog(n)
1 25 a %

diverges. So (2.4) has been proved now. This finishes the proof of 3. i

o !
e™"" dip=
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2.2 Two dimensions

In this section we wish to calculate the sum order of eiz*-¥*) and P(z, y)ei(’2‘y2) with P
a polynomial.

Definition We define on R? the differential operator D, = a;% + bg—y

Proposition 2.3 For f,g general functions on R? and ¢ € D(R?) the following holds:

1. Dap(fg) = (Dapf)g + f(Dapg) (product rule)
2. f dz fﬂ 2 p(Z,y)dy = —a fﬂ (ayy)dy — bf:) o(x, B)dz (integration rule)
The simple proof is left to the reader.

Proposition 2.4 The sum order of the distribution T defined by (T, p) = [f i@ =" p(z, y)dzdy
is 3.

Proof The proof is in two steps. We first prove that
s.0.(e'@* ¥y < 3. (2.5)

And after that we will prove that

I// oz, y)dzdy| < Mpa(yp) (2.6)

does not hold for all ¢ € D. Then it follows that the summability order of T is exactly 3.
Let’s abbreviate E(z,y) = ei@*=v") Then D, _, E(z, y)

2i(z + y)E(z,y). We first consider the quadrant [1,00) x [0,00), where z + y is not zero.
So we can write:

n = i - p(z,y)
/ dy/ E(:v,y)tp(:v,y)d:v=/ dy/ (¢ +y)E(z,y)———dz =
0 1 0 1 T+y
o0 o0
e [Cay Dy,-1E(z,) 22 Y 47
0 1

rT+y

o0 o0
c“/ d/ D, _1[E(x, Mdm—
L yl 1,1[( y)$+y]

o0 o0
cs‘/ d/ E(z,y)D; _ Md:z:
W ( )1,1[$+y]

(we abbreviate: B is the first integral)

o0 o0
st (p(xay) —
By +c /0 dy/l E(xay)Dl,—l[——$+y ldz =

00 00 Dy _1p(z,y)  o(z,y)D1,-1(z + y)
B st d / E . 1, 19 _I ) =
1+¢ /0 Y j (z,y)( T+y (z +y)? )dz
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:r+y
B1+CSt/ dy/ (z+y)E ,y)Dl(;ipL) Direl®y) 4,
B +cs‘/0 dy/l Dl,—l[E(w,y)]Dl(';—l_‘_(pg(j);—)M:
s = — Dl,—l‘p(:r,y)
By +c /0 dy / Dl,_l[E(m,y)—my—F—]d:r—
“/ dy/ E(z,y)D [Dl(;fé) ldz =

(again, B is the first integral)

Bl+Bz+CSt/ dy/ E( ,yDl_l[Blﬂ]d:r

T +y)?
B1+B2+
oot (D1,1)*¢(z,y) _ 2D1,1(z,y)Dra(E+y),
/ dy/ Bl )= e (z +y)3 )bz =
Dy,—1)%0(z,y)
B+B+c“/d/E:r, ( i =
1 2 s Yy A ( y) (-T+y)2
o Dy _1)%p(z,y)
B+B+cs‘/d/z+E,(l’ iz =
1 2 L Y ) y)E(z,y) (:1:+y)3 T
-’ - Dy,_1)%¢(z,y)
B, +B +c“/ d Dy _1[E(z, (D, dr =
1 2 4 Y ¢ 1 1[ ( y)] (:r+y)3
st 1, —1)2‘/’(‘7:, y)
B+ By +c dy Dl _I[E (.’L‘ - y)3 ]d.’L‘
(D, - )
s‘/ dy/ E( ,yDl—l[ lml+ymy]d:r=

(B3 is an abbreviation for the first integral)

(D1,-
Bl+Bz+Ba+CSt/ dy/ E(z,y) Dl—l[ L l) (:r’y)]d:r=
(z+y)3

(o o) [o o)
D, -
BI+BQ+B3+CSt/ dy/ E(-T,y)(( L l) <P(;B,y)_
0 1 (z +y)

3(D1,-1)%¢(z,y)D1,-1(z +y)
(z +y)*

[o o] o0
Bl+Bz+Ba+CSt/ dy/ E(:r,y)(Dl—l) 23 ’y)d
0 1 (z +y)3

)dz =
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Now, because z + y > v/r2 + y? = r on this quadrant, (z—+y)'3' —3' € L([1,00) x [0, 00))
This implies that we can estimate:

IAw@AwE@wwwdes

[o o] (o o]

1
m+mum+MwMWn/@/———ws
|Byl + Ba| + |Bs| o[ | oo

|B1l + | B2| + | B3| + Mop3(¥)

For the calculation of the By’s, we use the integration rule from the proposition above.

o0 o0
By = st/ d / D _ E , ‘P(x’y)d =
1=c* [ dy | Dy 1{ (my)——“_y]x

St/ E 7yd+st/E xO)d=
(o o]

cst/ 1(l+y2)(p( )d + st/ eizz(p(x’o)dx_:
0 1+y 1

%
c* /00 Lei-’ﬂcp(l y)dy + c‘“/oo lfzi°"'2<p(:r 0)dz
o l+y ’ 1T B

1 eiyz) = s.0. (1 iz’) = 1. This implies that

From proposition 2.2 we know that s.o.(y27 oy

|B1] < Mip1(e).

For B, we have

= Dy,—1p(z,y
B, = 6“/0 /1 Dl,—l[E(fB,y)ﬁl—;)z—)]dfﬂdy =

“/ E(1 ()’y)d +cs‘/ B(z,0) 21000 o

cst/ z(l+y2) Dl(l—ip()’y)dy_'_cst/ eiz"’ Dl,—l‘P(x’O)dx=
0 1

w . w .
cst / ezy2 Dl(;::p( )’ y) d + st / 811:2 Dl,—l‘P(zv 0) dx.
0 1

So
| B2|] < Mipo(p).

And the last one:

. 00 00 Dl —l) -
B3 =c /0 A Dly_l[E(x, y (:L' ¥ y) ]d dy
st - (Dl —1) ‘P( ’y) st (Dl,- )2(P($,0)
¢ /0 E(1,y) T dy + ¢ / E(z,0) lx3 dz =
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2
st 1(1+y ) (Dl —1) ‘p(l ) st /oo 2 (Dl,-l) (p(x, 0) _
(& /0 1 +1)° dy+c : e 3 dx
(o o] (o o]
st iy? (Dl,—l) <p(l,y) st/ ix2 (Dl 1) (l‘ 0)
e /0 e T+9)° dy+c ) e 23 dzx.

It follows that
| B3| < M3pa(p).

This yields
(o o] (o o]
I/0 /1 E(z,y)p(z, y)dzdy| < Mps(p).

For the integral over [0,00) X [1,00) we can use the reflection z — y,y — z and write:

/dy/ y’wxydx—/ dy/ e~V )(y, r)dz.

Similar to the calculations above, the last integral can be estimated by Mp3(yp). Namely,
the minus sign in the exponent only causes minus signs in the constants in front of the
integrals, so the absolute values remain the same.

We have now proved that

l/ /([o )2\([0,1])? @ )y (z,y)dzdy| < Mps(p).
lw ¥

For the other three quadrants we use reflections z — —z and y — —y. This then results

in:
| / /Rz\([ L1))? @1 y(z, y)dzdy| < Mps().

Because ([—1,1])? is compact, the integral over this square can be estimated by Mpg(yp),
so we have now proved:

KT, 0}l < Mp3(p) (2.7)
i.e. 5.0.(T') < 3 and this is (2.5).

To prove that (2.6) does not hold for all ¢ € D, we need a sequence ¢,, in D such that
p2(pn) < M, uniformly in n (2.8)

and

// @) g, (z)dzdy  +o0 for n = oo. (2.9)

When we have found such a sequence, it is clear that (2.6) does not hold for the ¢,, so
s.0.(T) = 3.

Let a € D(R?) be such that 0 < a < 1, a(z,y) = 1 for (z,y) € B(1) = {(z,y) € R? :
r? +y? < 1} and afz,y) = 0 for (z,y) € (B(2))°. Take 8 € B(R?), with supp(8) C Q =
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(3,00))%,0< B <1, B(z,y) =1 for (z,y) € ([1,00))%
Define an(z,y) = a(%, ¥)B(z,y), then oy, € D.
When we now define
ei(y2—12)
p(z,y) = m,
the sequence
on(z,y) = an(z, y)e(z,y)

satisfies (2.8) and (2.9).

To see (2.8) note that a € D, so the derivatives D*(an(z,y)) = D*(a(Z, £)) = ;D*a(z, y)
are uniformly bounded in n.

From this it follows that

p2(¢n) < M sup  sup |D¥op(z,y)| (2.10)
[kl<2 (zy)eQ
by Leibniz’ rule. To majorize this we need to consider the partial derivatives 6—61-, g—y, %, (%zz
2

and (9‘3% of .

o —2izeilt’=z")  2eily*~2?)

_— x — =

Bx(p( '9) (z + y)? (z+ y)3

So sup(; y)eo |%cp(x,y)| < +00. The 6%-derivative is equivalent to this one, and therefore
also bounded on Q.

82 (x ) . x2ei(y2—12) . ei(yz—xz) e xei(yz_xz) ] ei(yz—xz)
S ] — C "
0z P Y T AT Ty T a2 T e+ y)? | A+ o)

And because all these functions are bounded on Q, sup(; ,)cq |6%2;cp(x,y)| < 400. And
similar for the %-derivative.
82 ( xyei(yz—zz) xei(yz—xz) yei(yz—x2) ei(yz—xz)
—ulz =E +c +c +c s
oY =T Y e T e TG

Because - +y 5 < % on @, all these functions are bounded on Q.

So (2.8) holds.
The integral sequence is

// i(z%—y )(P d:::dy _/ / =y )an .’L‘ y) i(y?—z )(x-:'y)2dxdy =
00 oo
/; /; an(xay)(
2 2

So (2.9) holds.
This finishes the proof of the proposition. |

dxdy> / / d:zdy>log( ) ™
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Theorem 2.5 Forp € Z4, q € Z, the summability order of the distribution Ty, 4, defined
by

(T ) = / / 2PyelE* V) p(z, y)dzdy
isp+q+3.

Proof To prove that s.0.(Tp,q) < p+ g + 3, we use induction on p + q.
If p 4+ ¢ = 0, this is exactly the proposition above.

Assume that s.0.(Tpq) <p+g+3for 0 <p+qg <m. Then if p+q =m + 1, (we may
assume that p # 0), it follows

(Tpi0r ) = / / 2Pyt "V p(z, y)dzdy = / / zel® Vg~ yl (2, y)dady =

¢ / / %ei(zz—yz)x” “ly9o(z, y)dzdy =
c*t / / ei(zz‘”z)%[ﬁ yl(z,y)ldzdy =

ct // ei(zz'yz)x”'zy"w(:c,y)d:l:dy +c* // ei(zz'yz)x”'ly"%ﬂx,y)d:cdy (2.11)

for p # 1. For p = 1 (2.11) reduces to the second integral, which is dominating in sum
order. By the induction hypothesis

dyp
(Tp.q» ) 