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Tnt ro ion

The wide context of this article is given by the research on the Feynmann integral. The
mathematical definition of the Feynmann-integral has been a problem for over 50 years.
Because of the analogy of the Feynmann integral with the Wiener measure we first look
at that.
We will have a look at the relation between the heat diffusion equation and the Wiener
measure. After that we will see the connection between the heat diffusion equation and
the Schrödinger equation and discuss the Fresnel distributions.

The heat diffusion equation is:
(0.1)

with u(t,x) = Ut(X), XE R'. For simplicity we taken = 1. We define

y t
tX

We use the physical notation 6(x) in stead of 6 to avoid confusion with the 6(t). Now G
is a fundamental solution: ( — t)G = 6(t)8(x).

One can see this by recognizing that f G(x)dx 1 for all t >0 and G(x) =
Therefore G(x) is an approximation for 6(x) for t \ 0. We define Go(x) = 8(x).
The solutions ii of the Cauchy problem of the heat diffusion equation with initial value
uo are given by

Ut = *

for t> 0. Then lim\o Ut = G0 * UO =

Now we can define the Wa. Let a be a subdivision of [0, T]:
a=0<ti<...<tn<T.ThenwecanwriteR"=WandwedefineWoonR7by

Wa = Gt_t_1(x — x_) ... G2_(x2 — x1)G1(x1)dx1 .. .dx. (0.2)

We abbreviate: Wa = G(x)dxi . . . dx. Then W is a probability measure on W, because
fRGt(x)dx = 1 for all t >0.
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Let ir, : C([0, T]) -4 W be the projection-map ir(X) = (X(ti),. . . , X(t,)) W.

If o• a', we define ir' : lR°' —+ W to be the projection. Then Wa = irs(Wos). This
means that the set {ira} is a projective system. Now we can ask the question: given the
projective system of measures W0 on IR", does there exist a measure W on C([0, T]) such
that W(, = ir0(W), for all a? If it does, W is called the projective limit. The answer is
given by the next theorem.

Theorem [Wiener] There exists a unique probability measure W on C([0, T]) such that

lr(,W = W0, Va.

We call W the Wiener measure.

Now we switch to the Schrödinger equation:

(0.3)

The difference with the heat diffusion equation is the fraction f in front of it. This
corresponds with the substitution t '-÷ it. The analogue of W0 is F,:

F0 = G2(t_t_1)(xfl — x_) . ... • GI(t2_t1)(x2 — x1)G1t1 (xi)dxi . . . dx, =

m m (xk—zk_1)2
1

e2 E=1 tk—tk...1 dx = c0e''dx,
k=1 V'2j(tk — tk_1)

with Q, a quadratic form. If there is a potential in the Schrödinger equation, the Q, is

replaced by Q, + V0 with V, a potential. In this article we restrict ourselves to polynomial
potentials.

We will see in chapter 1 that the F, are summable distributions. They are called Fresnel
distributions. Moreover the set {F0} is a projective system. Now the great question is:
does there exist some kind of projective limit

F = limF0

such that ir0F = F0, for all a. If it does, F is called the Feynmann integral. What is
F like? To answer this difficult question, one needs to know more about the F0.

In chapter 2 we will get more information about the sum order of the Fresnel distributions.
In the case of potentials we get distributions e*P with P more general polynomials, which
we call the Generalized Fresnel Distributions. Therefore we try to find out for which
polynomials P the distribution e' is summable. And if so, what is the sum order? This
is the central question in this article.
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Chapter 1

Summable Distributions and
Gauss-Fresnel distributions on TR

In this chapter we will treat the class of summable distributions on R": D(R"). This
space is in fact the case p = 1 of the spaces V,,(R') defined by L. Schwartz for 1 <p < 00
in [TD]. Because we only consider this case, we abbreviate D (Rn) = V (R"). One can
find this theory in [TD, Ch.VI, §8] and more detailed in [TH1, Chi].
Furthermore, we take a look at the Gauss-Fresnel distributions, which turn out to be
summable distributions.

1.1 Summable Distributions

Definition We define the spaces B and B as follows:

B=B(R)={çoEe(IRn):DkcoEL00(1RhI)VkEZ},

The topologies of these spaces are the natural topologies induced by the (semi-)norms:

Pm(W) = SU Dkco
1100 (1.1)

IkI<m

Proposition 1.1 1. The space B(R) is a Fréchet space (i.e. metrizable and com-
plete).

2. 8(R') is the closure of V(R) in B(P).

Proof The first statement follows from the completeness of E(R") and the fact that the
semi-norms on B(1R) are norms.
To prove 2. it is sufficient to verify that V is dense in B. Let a E V be a function between
o and 1, equal to 1 on the unit ball and define a(x) = a(). Then, if E B, the functions
a,ço converge to uniformly on compact sets. Namely, Ian(x)(x) —(x)I = 0 for Ixl <n.
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But given e > 0, N such that Ian(x)(x) — (x)I � 2I(x)I � e for IxI > N, because

w E C0. So Ian(x)(x) — ( e, Vx E R', for n> N, and the convergence is uniform
on R'2.
Similarly, for the uniform convergence of the derivatives of one uses Leibniz' rule and
the fact that Dk(c) goes to 0 uniformly for n —* cc.

Definition The space of summable distributions, D'(R), is defined to be the dual
of B(R"), equipped with the strong dual topology.

Because D(R') c+E(W1) densely, V(R') c3V'(R'). It follows from this definition that
a distribution T E 1Y(R) is summable if and only if there exist m E N and M � 0 such
that:

I(T,co)I Mpm(ço) V, E D(R). (1.2)

Namely, for E E, there exists a sequence ço, in V such that —+ in A. So (1.2)

implies that I(T, )I Mpm(çon) Vn, and passing to the limit this gives equation (1.2)
for E B. So T E V' is a continuous linear form on B, i.e. T E V.

Proposition 1.2 If T E V' then

1. DkT, defined by
(DkT,co) = (—1)1(T,D') for ED (1.3)

is summable.

2. for E B, the distribution i,bT defined by

(i,bT,ço) = (T,t,bco) for ED (1.4)

is summable.

3. The maps T '—p DkT and T '-+ t,bT are continuous from V'L(1R?) to V(R).

4. The formulas in 1 and 2 are valid for all E 13 and l' E B.

Proof Take m and M such that RT,co)I Mpm(ip) V E V. Then for E D,

= I(T,Dkco)I � Mpm(DkçO) � Mpm+IkI(çO).

This implies 1.
Similar for E B, E D,

(i/'T, 'p)I = I(T,bco)I � Mpm(ibco) � Ic'pm(c°),

where the last inequality follows from Leibniz' rule. This proves the second statement.
For the continuity of the two maps in 3. take a sequence T in V, such that T —* 0 in

V'1., for n —* cc. Then for all E B, (DkTn,ço) = (_1)IdI(T,D) —+ 0 for n —+ cc. And
for b e B, = (T,t/) — 0, for n —p cc.

6



To prove 4. take, for ' E B, a sequence ço, in V such that ço, -4 in E for n to oo.
Then DCçon Dkço in B. Now it follows from the continuity of T on B that (D'T, con) =
(_1)IkI(T,D) .... (_l)IkI(T,Dkco) and on the other hand (DkT,con) —+ (DkT,,). So
the formula in 1 holds for E B. One proves the validity of the formula in 2 for e B
similarly. •
Example An important example of summable distributions is the space of distributions
with compact support. Because B c.,e with dense image, one has

g' C4D',.

Definition The summability order of a summable distribution T is the smallest num-
ber m such that the inequality (1.2) holds. (Frequently, we will abbreviate this to sum
order(T) or even s.o.(T).)

Proposition 1.3 If T is a summable distribution with sum order m, then s.o.(bT) m
for all b E B.

Proof For E V we have I(T, I(T, t#5)I = Mpm(t)bgo) � A-fpm('p). I
One can define spaces B(m) resp. A(m) to be the spaces of functions whose derivatives up
to order m are in L°° resp. C0. These spaces are again Banach spaces when equipped with
the topology induced by the norms (1.1). If we define similarly the space D(m) of functions
with compact support whose derivatives up to order m are continuous, then D(m) is dense
in 13(m) (one can prove this similar to the proof of proposition 1.1). And because V(m) c v
we also have V is dense in (m) When we now define Dm) as the dual of (m) and use

DL = Mb (the space of bounded measures) we have the continuous injections:

Mb(1R71) CVm)(Rn) V(R)

1(m)It also follows from (1.2) that V is the union of the subspaces DL , and sum order(T)
is the smallest number such that T E Vm).

Remember that the order of a distribution in D'(R') is the smallest number N such that
VK C R, K compact, RM � 0

RT,co)I � MpN(co) Vco E DK(RTh).

So a summable distribution has finite order and the following inequality holds:

order(T) sum order(T) (1.5)

Note that for T E e' the equality holds.

If T belongs to Dm)(Rh1) then DkT E DmI)(Rn). So if T = E M6(!R?) = D°)(1Rz)

then DkT = Dk E Vm)(R11) for Iki � m. Thus the derivatives of bounded measures are
again summable distributions. The converse of this is stated in the next theorem.
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Theorem 1.4 [TD, Ch.6, §8] Let T E V'(R'). Then the following conditions are equiva-

lent:

1. T belongs to D'L(1[)

2. T is a finite sum of derivatives of bounded measures on R'.

3. T is a finite sum of derivatives of L'(R')-functions.

4. For every a E V(R'), a * T belongs to Mb(W).

5. For every a E D(RTh), a * T belongs to L'(IR?').

Proof 3. 2. because L' C Mb.
2. 1. because of the reasoning above.
1. :4. Let B = {' E 12: II ' II� 1).

Lemma 1.5 B0 is dense in the unit ball of Co.

Proof of the lemma
Letf EC0, hf Iloo � 1. Then if [3 12,13 � O,f f3 = 1,/3*f belongs to the unit ball of C0.

If we take [3 E 2) a standard approximation of 5, then (3,, * f belongs to the unit ball of

C0 and fin * I —* f. Namely,
* f)(x) — f(x)h = ffi,,(t)f(x — t)dt — f(x) = I f f3,,(t)[f(x — t) — f(x)}dtl

� f11<5f3n(t)If(x — t) — f (x)Idt + f11>5fln(t)If(x — t) — f(x)Idt
E f i<61t + e 2e, by the uniform continuity off.

Let a 2), 0 � a 1, and a = 1 on the unit ball, and define a,,(x) = a(). Then

* f) belongs to B0 and converges to f uniformly on compact sets. But being domi-

nated by a C0-function, namely If I, the convergence is uniform. This proves the lemma.

Consider the functions a * , with a V fixed, and E Bo. Because Dk(a * = Dkä *

and IhDk(a*co)IIoo � hIDkaIhi IIhIoo � IIDkâIhl for B, these functions form a bounded

subset of Bo.
Therefore, by the summability of T,

(a * T, ) (T, a * (1.6)

are bounded numbers for all ço E B0, so

sup I(a*T,)I <+00 (1.7)
'EBo

Now with the use of the lemma, a * T extends to a continuous linear form on the unit ball
of Co, and therefore to the whole space Co. So a * T belongs to the dual of C0, that is

Mb.
4. 5. The inclusion L' C Mb gives us the direction. For the opposite direction,

note that a * T is C°° and therefore belongs to L'.
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4. 3. If a * T E Mb, the numbers:

(p*T,a)=(a*T,ço) (1.8)

are, for ftxed a E 2), bounded for E B0 C (unit ball of Co). This implies that the
distributions * T are bounded in 2)' for E B0.
Let A C 2)' be a bounded set, i.e. sup,EB RT,a)I � MB, VT E A, VB C V bounded
(that is B C VK for some compact K and B bounded in VK). Then, because 2)K
is a Fréchetspace, we can use the Uniform Boundedness Principle for Fréchetspaces:
SUPTEA RT,a)I <+oo, Va E VK• So the linear forms T : VK —p C, T E A, with
K the unit ball say, are equicontinuous: 2m E N, BM � 0, such that

RT,a)I � Mpm(a), Va C VK,VT e A. (1.9)

Therefore 7' extends to a linear form on ') for all T E A and the extension still satisfies
the estimate (1.9).
In the present case A = * T, E Bo}. So the distributions 3 * T extend to v and
still satisfy the inequality (1.7). This means that the numbers in (1.6) make sense and are

(m)bounded for , e B0 and a E 2)K But this means that a * T is a bounded linear form
on B0 and therefore on Co, so it belongs to Mb, even for a C And because a * T is

C(m)foraevr,a*TEV.

For 1 e N sufficiently large (1 > m + ), & has a fundamental solution E in e(m) C(m).

Because the Laplace operator is elliptic, so also hypo-elliptic, this solution E is C°° on the
complement of {0}. If'y E DK, is 1 on a neighborhood of the origin, the function a = 'yE

belongs to and has the property

(1.10)

where ( E V and has support in the complement of a neighborhood of the origin. There-
fore,

T=ö*T=&a*T—C*T. (1.11)

And since a * T and * T belong to V (this is statement 5.) T is a sum of derivatives of
L'-functions. This finishes the proof of the theorem. I

Remark Using the Hahn-Banach theorem one gets information about the order of the
derivatives in the representation as sums of derivatives of measures of a general summable
distribution T. In the one dimensional case, let T e Vm)(R), i.e. 1(7', w)I � Mpm(ço) =
Msupk<m IIco(k)IIc,o, Vw E V(R). Using the map w '- (w,w',... ,w(m)) on D(R) —*
(C0(R))m+i, we define the bounded map Ion the subspace A = {(w,w',. . . ,w)

I we
V} of Cr14 by I(w, çô',... , = (T,). By the Hahn-Banach theorem, this map 1 can
be extended to a map L defined on such that LIA = 1. Now we use Riesz' theorem
to conclude that L - (Lj, , Lj,,,) with /Tik E Mb(R) i.e. for E 2),

(T,ço) = L(w,',. . . ,w) = Eo(iik,w) Eo((_1)k4k),w) =

9



E M,(R).
For general dimension, a similar argument yields

TEVm)(Rn) T= > Dkpk, 1AkEMb(R'). (1.12)
Iki<m

Theorem 1.6 The topology of V(Rz) is the weakest topology for which the maps T
a * T E L' are continuous: T1 —+ T in 7ZL(R") if and only if a * T —+ a * T in L1 (Rn) for
all a E V(R").

The proof of this theorem can be found in [TH1, § 1.1].

1.2 The duality with B
Consider a bounded subset of 5(Rtm), i.e. a set B C B(R') such that

suppm(W) <+00 Wa E N
'EB

Then by Ascoli's theorem B is relatively compact in the space &(Rtm). The compact closure
of B in E(Rtm) is contained in L3(Rtm). Let K; be the set of bounded subsets of B(R') which
are closed in E(Wz). Then the sets K E K; are compact in E(R) and every bounded set
B is B(Rz) is contained in a set K E K;.

Theorem 1.7 Let I : K —p Y be a continuous map, where K is a compact space and
Y a Hausdorff space. Assume that f is bijective. Then f is a homeomorphism, i.e.

Y —* K is continuous too.

Proof Let g =f : Y -4 K, g'(F) = 1(F) for F C K. Take F a closed set in K, then
F is compact. So f(F) is compact because f is continuous. Therefore g'(F) is closed
and it follows that g is continuous, i.e. / is a homeomorphism. •

Corollary 1.8 Let K be a compact space and X = K as linear space with a weaker
Hausdorff topology. Then X = K also as topology.

Proof The identity map Id: K —+ X is continuous and bijective on K. So by the theorem
the inverse identity map 1d' : X —+ K is continuous too. This means that if 0 C K is
open, then Id(O) = 0 C X is open. So the topology of K is not stronger than that of X.

It follows from this corollary that on K, and therefore on B, the topology induced by E
coincides with any weaker Hausdorif topology: for instance with the topology of uniform
convergence on compact sets or even the topology of pointwise convergence.

Consider a sequence in B(1R') and let E B(R).
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Definition We define Oj — pseudo-topologically in B(R) if

a. there exists B C B(Rl) bounded such that çoj E B for all i,

b. , —* in ((Rn).

As remarked, the condition b. may for instance be replaced by:

b'. çoj —+ uniformly on compact sets.

Lemma 1.9 V is dense in B with respect to the pseudo-topology. Given B, there
exists a sequence On in V such that pseudo-topologically for n —3 oo, i.e. {(pn} 28
bounded in B and con —+ in e for n —* 00.

Proof Let a E V with a(x) =1 on the unit ball, and 0 � a 1. Let a(x) = a() and
define con = a,ço. Then Dkcxn(x) = therefore � jrII1aIIoo �
IIDkaIk for all n.
Using this together with Leibniz' rule one gets that the con are bounded in B. But con(x) =
co(x), for all x with IxI � n and so On —+ co in E. This implies that On —* in B pseudo-
topologically. •
If T e V'L (Rn), and T = Dkpk is a representation ofT as sum of derivatives of bounded
measures, we have, if E B(R")

(T,co) = (D'k,co) = (_1)I(,Dkço). (1.13)

From this it follows that T is continuous on B equipped with the pseudo-topology. Namely,
if ço —+ pseudo-topologically

(ILk,Dkcon) —3

by the Dominated Convergence Theorem of Lebesgue.

Definition T e V(R) has the bounded convergence property if T is continuous
on B(1R) equipped with the pseudo-topology, i.e. the restriction of T to bounded subsets
of B(R) is continuous for the topology induced by e(1R).

Theorem 1.10 If T is a summable distribution, then T has a unique linear extension to
B(R') having the bounded convergence property.

Proof For co B, let (con)nEN be a sequence in B, such that On —i in the pseudo-
topology. We then define

(T, ço) = urn (T, con)
n—,00

where we define T by (1.13).
Then T has the bounded convergence property again by the Dominated Convergence
Theorem. Because T is uniquely defined on B the right-hand side does not depend on the
representation (1.13). Therefore T is uniquely defined. •
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In particular, one can take = 1, and define the total mass of a summable distribution
T:

(T,l).

Proposition 1.11 The extension of T E V(R) to B(1R) is compatible with multiplica-

tion by functions in 8(R') and with differentiation:

(T,) = (T,t/) V,tI' 8(R'1) (1.14)

(DkT,) (_1)IkI(T,DI,) V' E 8(R') (1.15)

Proof If E B these equalities are correct because V is dense s B and T is continuous.
If ço, —+ B pseudo-topologically, i.e. remaining bounded in B and converging in e, we

also have in the pseudo-topology i,bço —+ t/ and Dkcon Dkço. This yields

(T,) = urn (tI'T,w) = urn (T,) =
n-400 fl—OO

Passing to the limit is justified because eliT belongs to D. Similar for the derivative:

(DkT,) = lim (D'T,) = lim (_l)_IkI(T,Dk) = (_l)_IkI(T,Dk)
n—+oo n—,

because DkT E 1YJ,. I

Theorem 1.12 Let L : B —* C be a linear form which has the bounded convergence
property. Then there exists a unique T E V(R") such that L(cp) = (T, ) for all E B.

Proof First note that L maps bounded subsets of B to bounded sets in C. If this were
not so there would exist a balanced bounded set B C B and a sequence (Wn) in B such

that IL()I n. But then belongs to B and goes to zero in the pseudo-topology.
On the other hand L() does not go to 0. This contradicts the linearity of L.

Let T be the restriction of L to B. Then if = lim. con pseudo-topologically, we have

L(co) = lim L(co) = lim+(T,) = (1',), for all co E B.

Theorem 1.13

1. If L is a continuous linear form on V(R") there exists a unique function co E B,

such that L(T) = (T,co).
Briefly: the dual of V'L(R) is B(1R), the bidual of B(R) is B(1R).

2. The given topology of B(1R) equals the topology of uniform convergence on bounded
subsets of V(R) and the strong dual topology of V(R") equals the topology of

uniform convergence on bounded subsets of B(R).
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The proof of this theorem can be found in [TH1, §1.2, §1.3].

We have seen now that one can alternatively define the space D(RIZ) as the space of linear
forms on B(]R') having the bounded convergence property. This is the second definition
of summable distributions.
We can conclude that the linear topological vector space D'1, (RTh) can be completely char-
acterized in terms of the space B(RI). Moreover the operations of differentiation and
multiplication on D(R") can be defined by (1.14) and (1.15).

1.3 Operations on summable distributions
In this section we will define image distributions, Fourier transforms, direct products and
convolution products of summable distributions.

1.3.1 Image distributions

For linear maps u : R' -4 , we define the image of a summable distribution T E V (R')
under u by the formula:

(u(T),) = (T,ou) (1.16)

Let E B(lRk). Then t/' = wou is bounded, and by the chain rule, has bounded derivatives
i.e. belongs to 13(W'). That means that (T,ou) makes sense. Moreover, if BC B(IRIC)

is a bounded subset, the set of composites Bou is bounded in t3(R'). Thus if,1 tends to
o in B (say pointwise) çoj o u tends to zero in B o u and (T, q, o u) tends to 0, because T
has the bounded convergence property on B(IR'). So u(T) has the bounded convergence
property on B(Rk). Therefore u(T) E V(Rk) by the second definition.

Note that if E L4(R'), then o u does not in general belong to E(R') so one can
not define the image directly by the first definition and transposition. For example
u : RI'z — R : u(x) = 0, then ( o u)(x) = (O), Vx E RTh, and ' o u E(W) if
(O)0.
Since the derivatives of order m of o u only involve derivatives of order � m of and
u, we have:

sum order(u(T)) < sum order(T) (1.17)

1.3.2 Fourier transformations

For E R° let e(x) = where x = x3. Then

Dke = (_i)ke

where as usual k =
It follows that e belongs to B(R'). Moreover if remains on a bounded subset of IR", e de-
scribes a bounded subset of B(R"). It follows that we can define the Fourier-transformation

13



.T(T) of a summable distribution by:

(T,e). (1.18)

If tends to , e remains bounded and converges in the space £(1R) to e. Thus F(T)
is a continuous function.
Clearly we have S(R) c,B(IR'), S being dense in B because V is dense. By transposition
we get the continuous inclusion:

V'L(R) c,S'(R) (1.19)

i.e. summable distributions are temperate. An application of Fubini's theorem shows that
.T(T) defined above is also the Fourier-transform in the sense of temperate distributions,
i.e.

= (T,()) V E S. (1.20)

In particular T is uniquely determined by its Fourier transform, or characteristic function.
From the representation T = Dkp, with Pk E Mb, it follows that

= (_j)ky(,k) (1.21)

which shows that F(T) is a continuous function having at most polynomial growth.
More precisely this shows:

TEVm)(Rn) I2(T)()I �M(1+II)m VER. (1.22)

In the next section we will see that the converse is not true: not every distribution whose
Fourier transform is continuous with polynomial growth is summable.
For u : R'2 + a linear map, and tu its transpose, we have by this definition:

= (u(T), e) = (T, e o u) = (T, etu(e)) = .T(T)(tt4)) ye E IRk.

1.3.3 Direct products
Let X = R, Y = R. Let T V(X) and S E V'(Y). Then the direct product T ® S is
summable and one has:

(T ® S, ® i/) = (T, )(S, ii') V E 13(X) Vt/' E 13(Y). (1.23)

For 4€B(XxY) we have:
(T ® S, ) = (T, 0), (1.24)

with 0(x) = (S,) where x(Y) = (x,y).

For the proof of the summability of T 0 S note that the map x '-+ 4 is C°° from X to
E(Y). Since 1 B(X x Y), I belongs to 13(Y) for all x E X. Moreover the functions 4
form a bounded subset of 8(Y) and therefore the function 0 = (S,) is a well defined
function belonging to 13(X). So the formula (1.24) makes sense.

14



If remains on a bounded subset of B(X x Y), the corresponding functions 0 remain
bounded in 8(X). So if -+ pseudo-topologically the corresponding O - 0 pseudo-
topologically. This means that T 05 has the bounded convergence property, i.e. T 0 S is
summable, satisfying (1.23). Moreover, the restriction to D(X x Y) is the tensor product
in the usual sense.

If E B(1m)(X x Y), it follows that x '-+ I belongs to B()(X, j3(m)(y)) So, if
T e V(X) and S E Vm)(Y), the function 8 = (S,) E B(')(X) and (T,0) make
sense. It follows that

sum order(T 0 S) < sum order(T) + sum order(S). (1.25)

The condition that x '—÷ belongs to 8(z)(X, L3(m)(Y)) does not involve all derivatives
of order n + m of , and so the above inequality may be in some cases a strict inequality.
We will see examples where this is the case in the next chapter.

1.3.4 Convolution products

For T, S E D(R) we define the convolution product T * S as the image of the direct
product T OS under the linear map (x, y) i—* x + y. Thus, for E B(R)

(T*S,)=(T®S,W) (1.26)

where 'I'(x,y) = (x + y). It follows that T * S is summable. Note that there is no
condition on the supports of T and S.

Since e(x + y) = e(x)ee(y) we have by (1.18) .T(T * S)() = (T * S,e) =
(T0S,e(x+y)) = (T0S,e®e) = (T,e) (S,ee) =

.F(T)() 9S)(). This yields

9T * 5) = F(T) F(S). (1.27)

1.4 The class F(OM)

Definition We define the class OM(R) to be the space of functions f E E(R") such that
f and all its derivatives have at most polynomial growth.

Theorem 1.14 Every T E F(0M) is sumrnable. More precisely we have the continuous
inclusion:

F(OM)(RIz) c9D'(1R'). (1.28)

Moreover, if P is a polynomial and T belongs to F(OM)(PJ'), we have PT E V(Rlz).
Conversely, if PT belongs to D(R') for all polynomials P, we have T E .T(OM).

15
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Proof It is clear that T E .F(OM)(R'1) (T) E OM .T(T) = i' E OM Let
a E D(R"), and assume T E OM Then .T(a * T) = aT E S(R?). It follows that
a * T S(R') c.L'(R), which implies that T E D(R') by theorem 1.4.
If T1 goes toO in J(OM)(R"), i.e. 'I goes toO in OM, aT1 goes toO in S for all a E 2),
and so a * T goes to 0 in S and in L'. Therefore by theorem 1.6 T1 goes to 0 in D(W).
This proves the continuous inclusion (1.28).
Let P be a polynomial and T E .F(0M), then F(PT) = DT where D is a differential
operator with constant coefficients. If follows that .(PT) is a derivative of a distribution
in OM, so it belongs to OM Therefore PT E -l(OM) C V(R).
Conversely, if PT belongs to 'L (Rn) for all polynomials P, it follows that Di' is continuous
with polynomial growth for all differential operators D. This implies that T belongs to
°M So we have T E F(OM). I

Remark The Fourier transform of a summable distribution is continuous, but not in

general C°°. Thus F(OM)(R) is a proper subset of D(R).

1.5 Gauss-Fresnel distributions

Let GA = (2)n/2 e_It12/(2A)dx for 3(A) � 0 and A 0, the root being determined so as to
coincide with the positive root if A > 0. Let G0 = 5. We know that if A > 0

(2irA)/
e2) = e_I2/2. (1.29)

Now for all A with (A) � 0, e_I2/2 belongs to °M

Theorem 1.15 GA belongs to D'(1R') for all A with (A) � 0. Moreover the map A i—*

GA E D(R") is continuous on the closed half plane, and holomorphic in the interior of
c+.

Proof ..1(GA) = e_)4I2/2 E OM for all A with ?(A) � 0. Using theorem 1.14 this implies

that GA = F(GA)) E .TOM C V(Wz).
Moreover it is clear that the map A '—* eII2/2 = .7(GA) is continuous and holomorphic
on C. Therefore the composition with the linear map Y, i.e. A '-+ GA is holomorphic

too. I
Corollary 1.16 If P is any polynomial on R', then PGA belongs to V(Rz) and the map
A '-+ PGA is holomorphic for 3(A) > 0 and continuous for 3(A) � 0.

Proof We have .F(PGA) = De_12/2 E OM, where D is a differential operator with
constant coefficients, which maps OM continuously into itself.

We will calculate the sum order of several Fresnel distributions in Chapter 2. In the third
chapter we try to find out which polynomials P lead to summable distributions e'1'.
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Chapter 2

Fresnel distributions

In this chapter we will compute the sum order of several Fresnel distributions, as prepara-
tion to compute the summability order of the distributions es" (with P a general polyno-
mial) which maybe infinite. Some theorems and special cases of this chapter are already
written down in [TH1, Ch. 2].

2.1 The one dimensional case
In this section we exclusively deal with R, so instead of writing D(R), we just write D,
etc.

Proposition 2.1 [TH1] The sum order of e'2 is exactly 2.

Proof f e22co(x)dx = (f- + A + f00)(eix2(x)dx). The middle integral can be esti-
mated by 2IIII00. The first integral is equivalent to the last one, by reflection x '—+ —x.

P+00
So it is sufficient to consider only j1 ei22p(x)dx.

+00 +00I eE'(x)dx = I =
'°° d 2

J1 x J [eiz]-fidx=
S

p+0oc I eX2
d (--)dx + c3t(l) = ct I xe2 1 --(--)dx + c3t(l) =

J1 dx x xdx x

I'+OOc / + c3t(1) + c3tco(l)
Ji dxxdx x

c I e2_.[_(W'( — -c-)Jd5 + c3t(l) + catçd(l) =
J1 dxx x

P+00c
J

eix2("(5) — 2ço'(x) — cd(s) 3w(x) dx + cstw(l) + cStco(1) =
1

+ 4)

_____

— 3(5)
+ 3"°)dx + c3t(l) + c3t ço'(l)

J+00

17
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Because —. is integrable over [1, +oo) for k> 1,

e22(x)dxi <M0(iilloo + iiiik0 + ilI'lk0) = Mp2(co).

And

I f eX2,(x)dx Mp2(ço), V E V(R). (2.1)

So s.o.(ex2) <2.

For the converse estimate, we must contradict the inequality:

if e2(x)dxi Mpi() (2.2)

for some e V.
Let a E V be such that 0 � a(x) < 1, a(x) = 1 for lxi < 1 and a(x) = 0 for

lxi � 2. Let /3 E B with support in [,+oo), 0 � /3(x) � 1, /3(x) = 1 on [i,+oo).
Let a(x) = a()/3(x), then a E V. Now define (x) = e_i12 and ço = a , then

'.Pn E V and (x) = (x) on [1,nJ.
Then lliioo � Mi < +00. Furthermore, because x) = a(x)(x) + a(x)'(x) =
a(x)e2 + — 2ie'2), it also follows that iIl � M2 < +00. So

pi(n) = max(ilnii, llJi00) � M < +00, i.e. the Pi('n) are uniformly bounded in n.

On the other hand, the integral

f e2ço,(x)dx = j:oo e2çon(x)
= f ejz2an(x)e_i22dx =

fan(x)dx � f dx � log(n) +c

diverges to +00, for n —* 00. So the left-hand side in (2.2) with con in stead of diverges

for n —* oo, while the right-hand side is uniformly bounded in n. This means that the
inequality (2.2) does not hold for all V, i.e. s.o.(e22) > J•
This finishes the proof of the proposition: s.o.(e1x2) = 2. •

Proposition 2.2 For Ek(x) = xke122, the following holds for all E D,

1. f Ek(x)ço(x)dxi Mpo() for k � —2.

. ificoE_l(x)co(x)dxI Mp(ço).

3. [TH1] S.o.(Ek) = k + 2, for k � 0.

18

-U



Proof The first statement follows directly from the fact that x1' E L'([l, +oo)), for k <
—1.

For ., take E 2), then

00 'OO

I x_1ei32(x)dx = I xe1x2dx = c 1 =
J1 Ji x2 J1 dx x2

c I°°e1x2 d [(P(x)ldx+ St (1) =c 1e('' _22)dx+c5tw(1)
J1 Ji x

So
'OO

I I x_leix2So(x)dxI � Mpi(ço).
J1

For the proof of 3. we again write f Ek(x)co(x)dx =
+00 7?(f + f + f1 )(k(x)'(x)dx), and note that the second integral can be estimated by

MIlII00 and the first and last are equivalent.
Because 3. holds for k = 0 it is sufficient to prove by induction that

100

I
I xkez2(x)dxI Mp,4(ço), V E 2) (2.3)

J1

and that
s.o.(Ek) > k + 1 for k � 0. (2.4)

Let's assume (2.3) for k, then for k + 1:

00 i00
I xc41ex2co(x)dx = / xe22xICço(x)dx =

J1 J1

_[eX2]xIp(x)dx = c / ex2_[xlp(x)]dx +c5t(l) =
J00 :

00

x J1
00
I ex2(kxI_1w(x) + xlCço(x))dx + c8t(l) =

J1
i00 100

c / xk_1ex2(x)dx + c / xkex2ip1(x)dx + c3t(l)
J1 ii

Now, the induction hypothesis yields:

'OO

1c / xlc_1ex2co(x)dxI � Mip_i-()
J1

and

J xlceix2cd(x)dxl � M2pk÷2(ço') M2pk+2+1()
1

So, we have
i'OO

x e w(x)dxl � Mpk+1+2()k+1 ix2

11
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which finishes the proof of the inequality (2.3) for all k � 0.

For the proof of (2.4), define (x) = rex2 and as in the proof of proposition 2.1.
Then, if we define Wn(x) c(x)co(x), con E V.

By Leibniz' rule

= (
m

)
(d)l (_)k_iç,

And d1 1 d1 x() c(x) = —iU) a)(—)

implies that

II()'anIIoo � II()IIoo
thus the derivatives of cx,, are uniformly bounded in n. It follows that

II(_)m,nIIoo <M0 SU 5Uj
Lx IkI<m xE[,oo)

Now

(d)Lco = (_)1[__;re_tZ2] =

This is a finite linear combination of terms

Zr

where k+ 1—1 � r � k+ 1+1.
If 0 <1 < k + 1, then 0 <r <2k +2 and ye"2 remains bounded on [, oo). From this

it follows:
sup sup Ico(x)I <M1 <+00

jIl<k+1 xE[,oo)

and therefore
d

pk+1(con) = sup II(—)'wI <M2 < +00
l<k+1 dx

uniformly in n.
If s.O.(Ek) <k + 1 then

I f xkeu22ço(x)dxI Mp(), co E V

in particular for the ço,,. The right-hand side of this inequality is, for uniformly
bounded in n, while the left-hand side,

f x'e2co,,(x)dx = f xke1z2an(x)_cje_z2dx =

f cr,,(x)dx � f !dx =

diverges. So (2.4) has been proved now. This finishes the proof of 3. •
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2.2 Two dimensions

In this section we wish to calculate the sum order of e'2_2 and P(x, y)e2_Y2) with P
a polynomial.

Definition We define on 1R2 the differential operator D,b = af + b.

Proposition 2.3 For f,g general functions on R2 and E V(1I2) the following holds:

1. D0,b(fg) = (D,bf)g + f(Dc,bg) (product rule)

2. f dx f D0,bco(x, y)dy = —a J y)dy — b f (x, f3)dx (integration rule)

The simple proof is left to the reader.

Proposition 2.4 The sum order of the distribution T defined by (T, ) = if ei(x22)ço(x, y)dxdy

is 3.

Proof The proof is in two steps. We first prove that

s.o.(et2_f2)) � 3. (2.5)

And after that we will prove that

f! e(X2_Y2),(x,y)dxdy � Mp2() (2.6)

does not hold for all E V. Then it follows that the summability order of T is exactly 3.
Let's abbreviate E(x,y) = e''22. Then D1,_1E(x,y) =
2i(x + y)E(x, y). We first consider the quadrant [1, oo) x [0, co), where x + y is not zero.
So we can write:

f dy f E(x, y)(x, y)dx
= f dy f(x + y)E(x, y)'dx =

cstfdyfDllE(x,y)c(Tdx =

cf dyf D1,_i[E(x,y)1]dx —

f dy f E(x, y)Di,_i[ ]dx =

(we abbreviate: B1 is the first integral)

B1 +cstf dyf E(x,y)Di,_i[''j]dx =

B1 + cS f dy f E(x, y)( Di,ico(x, y) — (x, y)Di,i(x + y) )dx =
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(00 (00

___________

B1 +cJ dyJ =
o 1

100 (00

___________

B1 + c J
dy

J
(x + y)E(x,

)Dl_l2(x v) =
o 1

(x+y)2
(00 (00

_______

B1 + c J dv] Dl,_l[E(x,y)]D1_1dx =
o 1

(x+y)2
(00 (00 D1,_i(x,y)

B1 +c / d] Di,_i[E(x,y) ]dx—
JO 1

(x+y)2
100 (00

___________

c J
dy

J
E(x, y)Di,_i 1D1,_icp(x, l')]dX =

o 1 (x+y)2

(again, B2 is the first integral)

B1 + B2 + c [ dy [ E(x, y)D1,_i
[Dl_lSO(x ']dx =

o 1
(x+y)2

B1 +B2+

dy J
E(x,

)((Dl_l)(X v) 2Di,_i(x, y)D1,_i(x + y)
C3t J00

(oo

1
(x+y)2 (x+y)3

)dx=

(00 (Di,_i)2(x,y)Bi+B2+cst] dy E(x,y) 2
dx=

o 1
(x+y)

(00 (00

______________

dx=B1 + B2 + cst] d] (x + y)E(x, v)

o 1
(x+y)3

(00 (00

______________

B1 + B2 + c] d] Di,_i[E(x, )]
(D1,_i)2(x,

dx =
o 1

(x+y)3
(00 (00 (Di,_i)2co(x,y)B1 +B2+cJ dyf D1,_i[E(x,y) ldx—
0 1

(x+y)3
(00 (00

_____________

cst] d] E(x, ]dx =
o 1 (x+y)3

(B3 is an abbreviation for the first integral)

(00 [00 (D1)_1)2(xv)]dX =B1+B2+B3+ctJ d] E(x,y)Di,_
o 1

(x+y)
100 (00

_____________

B1 + B2 + B3 + cst] dy
J

E(x, (x+y)3 —0 1

3(D1,_1)2(x,y)D1,_i(x + Y)) =
(x+y)4

B1 + B2 + B3 + c [ dy I E(x, dx.
1 (x+y)3
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Now, because x + y> x2 + y2 = r on this quadrant, (x+y)3 E L'([l, oo) x [0, cc)).
This implies that we can estimate:

100 I'OO

I
I dyJ

E(x,y)ço(x,y)dxl �
Jo 1

'o oo
IB1I + IB2I + I83I + c3t(Dj,_1)3çO00 I dy I 3dx �

Jo ii (x+y)
IB1I + 1B21 + IB3I + Mop3(ço)

For the calculation of the Bk's, we use the integration rule from the proposition above.
'00 '00

B1 = c I dvJ D1,_i[E(x,y)'']dx =
Jo 1 X+y

'00

I E(1, h1)dY + c f E(x, O)'' 0dx =
1 +y 1 x

P00c I +c [°°.2ço(x,O) =

Jo 1 +y ji

c [ 1 ehl2(1,y)dy + c [ !e2(x,o)dx.
Jo l+y J1 X

From proposition 2.2 we know that s.o.(1-e2) = s.o.(e212) = 1. This implies that

IB1I Mipi().

For B2 we have

f00 100 D1,_i(x
B2 = cSt] / Di,_i[E(x,y) ]dxdy =(x+y

D1,_i(1, dy + c [ E(x,
0)DI_l(x 0dx =c I E(1,y)

Jo (1+y)2 J1

c °° ei(1I2) D1,_1(1, dy + CSt
[00

e"2
D1,_i(x, 0dx

J1Jo (1+y)2
P00c / e2

Di,_1(1,y)
dy +

[00
e2 Di,_i(x, 0)

dx.
(l+y) J1

So
1B21 � Mipo().

And the last one:

B3 c Joo
'00

(D1,_1)2w(xY)]dxdy == Di_i[E(x,y)
o Ii (x+y

p00 (D1,_1)2(1, dy + c [ E(x,
0) (Di,i) 0)

cst]
E(1,y) dx=

(1+y)3
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I e1+V2) (D1,_i)2(1,
dy + cst 100 etX2

(Di,_i)2(x, ()
dx =(l+y)3 Ji

c 100 e2Y2
(D1,_1)2(1,

dy + I e2 (Di,_i)2(x, 0)
dx.

Jo (l+y)3 Ji
It follows that

1B31 � M3p2(ço).

This yields

I f f E(x, y)(x, y)dxdy � Mp3(ço).

For the integral over [0, oo) x [1, oo) we can use the reflection x '—* y, y '-+ x and write:

f dyf
ei(z2_&12)(x, y)dx

= f dy
f

C_i(x22)W(y,

Similar to the calculations above, the last integral can be estimated by Mp3(). Namely,
the minus sign in the exponent only causes minus signs in the constants in front of the
integrals, so the absolute values remain the same.
We have now proved that

I ff e2'2ço(x, y)dxdy � Mp3().
([O,00))2\([O,1J)2

For the other three quadrants we use reflections x '—* —x and y -* —y. This then results
in:

I ff e22(x, y)dxdyl Mp3(ço).
R2\([—1,11)2

Because ([—1, l])2 is compact, the integral over this square can be estimated by Mpo(),
so we have now proved:

I(T,)I �Mp3() (2.7)

i.e. s.o.(T) <3 and this is (2.5).

To prove that (2.6) does not hold for all ' E 1), we need a sequence in 1) such that

p2(',) <M, uniformly in n (2.8)

and
ffei(22_hl2)sofl(x)dxdy 7 +oo for n -+ 00. (2.9)

When we have found such a sequence, it is clear that (2.6) does not hold for the S°n, SO

s.o.(T) 3.

Let E D(1R2) be such that 0 a 1, a(x,y) = 1 for (x,y) E B(1) = {(x,y) E R2
x2 + y2 1) and a(x,y) = 0 for (x,y) e (B(2))c. Take /3 E 8(R2), with supp(/3) C Q =
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([,))2, 0 � 3 � 1, /3(x,y) = 1 for (x,y) E ([1,oo))2.
Define a(x,y) = c, )/3(x,y), then cx ED.
When we now define

i(y2—x2)
ço(x,y)= (x+y)2'

the sequence
çon(x,y) = cxn(x,y)co(x,y)

satisfies (2.8) and (2.9).

Tosee(2.8) notethata E D,sothederivativesDk(an(x,y)) = Dc(a(,)) = Dka(x,y)
are uniformly bounded in n.

From this it follows that

p2(çOn) � M sup sup Dkco(x, v)I (2.10)
IkI2 (x,y)EQ

by Leibniz' rule. To majorize this we need to consider the partial derivatives , , ,
82and of çô.

o _2ix&(Y2_x2) 2e2(Y22)
—,(x,y) =

_________

—

______

Ox (x+y)2 (x+y)3

So SUP(X,Y)EQ y) i <+00. The i-derivative is equivalent to this one, and therefore
also bounded on Q.

02 x2el(Y2_x2) xei(Y2_22) ei(Y2_r2)=c (x+y)2 +c2(x+y)2 +C3 (x+y)3 +c4(x+y)4.

And because all these functions are bounded on Q, sup(X,Y)EQ II(x,y)I < +oo. And
similar for the i-derivative.

02 xyet(Y2 —x2) xet(V2 —x2) yez(Y2 —x2) et(V2 —z2)oyox!C (x+y)2 +C2 (x+y)3
+C3

(x+y)3 +C44.
Because (x)2 < on Q, all these functions are bounded on Q.
So (2.8) holds.
The integral sequence is

ff ei(x2_&12)çan(x)dxdy = f f ei(x2_!12)an(x, y)e12_x2) 2dxdy =

ffcxn(xY)(')2dxdY> ff ()2dxdY�log(n)+c.
So (2.9) holds.
This finishes the proof of the proposition. •
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Theorem 2.5 Forp E Z, q E Z÷, the summability order of the distribution Tp,q, defined
by

(Tp,q, cp)
= ff xPye$(x2_v2)W(x, y)dxdy

isp+q+3.

Proof To prove that s.o.(Tp,q) � p + q + 3, we use induction on p + q.
If p + q = 0, this is exactly the proposition above.

Assumethats.o.(Tp,q)_<p+q+3for0�p+qm. Then ifp+q=m+1, (we may
assume that p 0), it follows

(Tp,q, ) ff9ye22)ço(x, y)dxdy
= ff xel(X2_h12)x1_lyQco(x, y)dxdy =

c ff
=

c ff ei(22_h12) I-[x11y(x, y)]dxdy =

c ff e2_Y2)9_2yt7ço(x, y)dxdy + c ff ei(x2_Y2)xP_lyq;_(p(x,
y)dxdy (2.11)

for p 1. For p = 1 (2.11) reduces to the second integral, which is dominating in sum
order. By the induction hypothesis

� M1 Pp—2+q+3((P) + M2 Pp—1+q+3() � Mppq(ço)

So s.o.(Tp,q) p+q+3.

To prove that the sum order is exactly 3, we consider the sequence ço, in V, defined by
SOn(X,y) = n(x,y)co(x,y). With a the same as in the proof of the proposition above and

e22)
(x,y) = (x+y)P++2

Now we have to prove (similar to (2.8) and (2.9)) that

Pp+q+2(lPn) <M, uniformly in n (2.12)

and

f f9y(1e2(2_hl2)çofl(x)dxdy / +oo for n -+ cc. (2.13)

By a similar argument the analogue of (2.10) holds:

Pp+q+2(Pn) M sup sup ID,(x,y)I
kI<p+q+2 (x,y)EQ
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Using Leibniz' rule again we find
k1 1Dcp(x,y) = D (x+y)p+c+2e )

) =

(
k 1 Dk_te$(y2_x2)
1 ) (x+y)P++2

O<1<k

And the terms
D'

1 Dk_1et(2_x2)
(x + y)P+q+2

are of the form
Ct,s xty5e12_x2).

(x + y)P++2+Ilt+s<k 1
Now because

XY < — =
(x+y)' —

where r = /x2 + y2, the terms in the last sum are uniformly bounded if t + s — (p + q +
2 + Ill) <0. We have

t+s—(p+q+2+1I)
if Iki � p + q + 2. So Dkco is uniformly bounded for Iki � p + q + 2, i.e.

Pp+q+2(S0n) <M.

This proves (2.12). The integral sequence in (2.13) is divergent, namely

f f 9y(et(x2_hl2)con(x)dxdy =

joo f
1 e*(1l22)dxdy =

- 2

(x,
(x + y)p+q+2I

1 dxdy�J 11

n nf 2
q 1

dxdy=/ x'y
ii (x+y)P++2

(we substitute x yt, and dx = ydt)

2 f2 1 f PyP+1+l
f dy (yt)"y" ydi = / dy p+q+2( + 1)p+q+2(t =

1
(yt + y)p+q+2 1

'
V

_______

—dy I
y J (t + 1)pq2dt 7 +00

'I

for n -+ 00. This ends the proof of the theorem. •
Corollary 2.6 The summability order of P(x, y)et(z2_Y2) is d°(P) + 3.

In the next section we use these results together with the desintegration formula to calcu-
late the sum order of e" with P a non-degenerate quadratic form on R'.
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2.3 Non-degenerate quadratic forms on

We will determine the sum order of es" with P a non-degenerate quadratic form on
P(x) = (Ax, x), det(A) 0. First we reduce to the case that A is positive definite, later on
we take A general. For the integral calculations we will need the desintegration formula.
This is stated in the first proposition of this section.

Proposition 2.7 (Desintegration Formula) Let f be a radial function on IRtm. Then

fRm
f(Ixl)x

= f dr f f(IxDdsr(x) = Wm f rm_hf(r)dr

where
7r2

Wm=2r(m

One can prove this by using polar coordinates.

Proposition 2.8 Let L : lRtm — R" be an invertible and linear map and T a summable
distribution on Rm with sum order mo. Then the distribution T o L is summable and has

sum order mo.

Proof Let E D(Rm). Then (T o L, ) = J1(T, ' o L'), where J is the determinant
of the Jacobi matrix of L. So (To L,)I � Mo pm0(çO o L'). Now for D of first order
D( o L') = (D o L1)L', and by induction, using the productrule, it follows that
Dk(oL—l) = (D,oL_l)(L_l)Ikt.
This implies that IIDk(coo L1)II � c IIDo L'II = c IIDkwIIoo.

Sopmo(oL) �Mp,() and
I(T o L, ')I M p,() V E D,

i.e. T o L is summable and has sum order smaller or equal to m0, the sum order of T.
Because this holds for all linear and invertible maps L and all summable distributions
T, the converse also holds. Namely write S = T o L, then S is summable and s.o.(T) =
s.o.(S o L') <s.o.(S) = s.o.(T o L). •

Theorem 2.9 [TH1] Let P be a positive definite quadratic form on JRtm. Then the summa-

bility order of T : '—* f e1P(x)co(x)dx is m + 1.

Proof There exists a positive definite matrix A such that P(x) = (Ax, x). Thus there ex-
ists an orthogonal matrix U, such that UtAU = D = diag(Ai, A2,... , A) with Ak > 0, for

k = 1,... ,m. If W = diag(j-p then WtDW = I. So WtUtAUW =

I. Define L = UW, J det(L) then

(T,)
= f = JRm

eiL?co(Ly)dy =
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eiLSo(Ly)dy = e('"co(Ly)dy =

e'I''I2(Ly)dy = J (To, coo L)

where T0 is the distribution ( '-+ f eI2cp(x)dx. Because L is an invertible linear trans-
formation, the previous proposition applies: s.o.(T) = s.o.(To).

Let B be the unit ball in Rm.

(To, )
=

+
JBC

Because B is compact the first integral can be estimated by Mp0 (p). The second integral
is equal to

JBC
e2,(x)dx = wmfrm_h1(r)dr

where (r) = Jx1.r co(x)dsr(x) = Jj ço(ry)dsiQj). Moreover

= f(EYk—rco(rY)dsl(Y)

implies that belongs to D(IR) and p,('I') � c3tpn(co). By proposition 2.2

I
e'2,(x)dxi � Mpm+i(4) Afpmi(ço) Vco E V(Rm).

Therefore the sum order of T0 is at most m + 1. To see that it is not smaller than m + 1,
consider a sequence of radial functions with support in (B())c. Then con(x) =
if lxi = r, supp('n) C [, oo). Let a, E D(R) be as in the proof of proposition 2.1:
o <c < 1 and c(x) = 1 for 1 � x � n. Define

e_1T2
4(r) = Qnfr)

Tm

Then the derivatives Dp are linear combinations of derivatives of cJ up to order iki
with bounded coefficients. For example

i!(x) = = =

The derivatives up to order m of 4 are uniformly bounded in n, 50 Pm(ç0n) is uniformly
bounded in n. On the other hand, the integral sequence diverges:

f e'2,,(x)dz � f e12 dx =
1IrI�n lxi

In
i 2e"2 In 1

Wm I rm_ e" dr Wm I dr 7 +00ii r
for n -+ 00. This implies that the summability order ofT0 is exactly m + 1. •
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Corollary 2.10 Let P be a negative definite quadratic form on IRtm. Then the summability

order of T: '-+ f ehl'(x)co(x)dx is in+ 1.

Remark Because euIXI2 = ... e'n = 0 ... 0 ex2, we know from the previous
chapter that s.o.(e4I2) s.o.(e&) + . . . + s.o.(e&) = m s.o.(e2) = 2m. But we have
proved in the theorem that s.o.(eh1z12) = m + 1 <2m for m> 1. So we see that we have
found examples of the strict inequality in (1.25).

Theorem 2.11 The sumrnability order of the distribution T: u-÷ f e*P(x)co(x)dx with

P a non-degenerate quadratic form on R is m + 1.

Proof For P positive or negative definite this is the previous theorem. Assume P not to
be definite. Then by a similar argument as in the previous theorem, s.o.(T) = s.o.(To),

where T0 : '—* f ei(p(x)dx, with D = diag(1,... , 1, —1,... , —1) (k times 1 and 1
times -1).
Denote 'i = (Xl,... ,xk), = (xk+1,. . . ,x) and x = (i), dx = d-j d. Furthermore,

= 11,1112 = x2 and p2 = IIII2 = Ek+1 xI2. We again use the desintegration
formula, but now successively on two variables.

(To, ) = f ei(Dxp(x)dx
= J

d4
fRk

e(Il2 2):,(?1, )d,1 =

fRI
eU2d.f rk 1W2 'I(r)dr,

where
(r)

= f ço(t,)ds(t)
= f ço(rt,)dsi(t).

IItII=r IItII=1

Continuing,

(To, ) = f f rk_1p1_1eir2e_72(r, p)drdp,

with
(r,p)

= f (r)dsp(u)
= f r)dsi(u) =

IIuII=p IItiII=1

f fIIuII=1 IItII=1

Now we use the results from the previous section, and know that rk_1p1_1e*(2_P2) has

I(To,p)I � Mpm+i(') (2.14)

Now we need a relation between Pm+1 (a') and Pm+1 (P).

P)
= ;11=1

t1-)ço(rt, pu)dsi (t)dsi(u),
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(-(r, p)
= f f ( t-(rt, pu)dsj (t)dsi (u),

And this gives us
(fl1(.\T12( —

/ r,p —

Jt11=1 i= (
tj)'' (>2 Ui _._)fl2(p(rt, pu)dsi (t)dsi (u).

From this the relation follows:

pm+i() � Mpm+i(<p).

So (2.14) can be replaced by

I(To,cpH � Mpm+i(co) V E D(Im),

i.e. s.o.(T) <m + 1.

To see that the sum order of T0 is not smaller than m+ 1, consider the sequence of 'biradial'
functions con = (t) in V(Rm) defined by con('7,) = (II'iII, IIII) where is similar
to the function On used in the proof of theorem 2.5:

(r,p)
= (r +p)m

ei12_T2), 4n(r,p) = an(r,p) 4(r,p),

where a is the same function as before. We also use co('ie) = (II'iII, IIII). We know
from that proof that Pm(n) is uniformly bounded in n and that the integrals diverge:

(To, SOn)
= ff rk_1p1_1ei(72_1)2)n(r, p)drdp =

ff 1P11i(r2 ,2)
e'"2_r2)drdp / +00,

for n —+ oo. So it remains to prove that

Pm(n) <Mpm(con) <.c.
Define again Q = ([,oo))2, then

Pm(con) = sup SU ID/ccon(t,,)I � M SU 5U DlCço(,j,)I
IkI<m (IIqII,IlII)EQ IkI�m (II'?II,DiI)EQ

M sup sup ID'(lItIJ, IIII)I.
IkIm (IIqII,IIII)EQ

The derivatives Dk4(II,ljI, IIII) with Iki <m are linear combinations of

II'iII, VII) D; huh L IJI
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with t + s <m and 0 < IaI � m, 0 < � in. Because Pm() is bounded on Q, the first
term can be estimated by a constant. The normderivatives are treated in the following
lemma.

Lemma 2.12 For Iki > 0,

DkII,711 = cj

where the sum is finite and the multi-index l � 0, n � 0, 14 n, for all i.

Proof of the lemma
We prove the lemma with the use of induction. For Iki = 1, Dk = and

at _i,
ai'' uir

Assume that for Ikl <k0 the lemma holds, then for Iki = k0 + 1, Dc = 4. Di for some
j, 1 � j � m. We apply the induction hypothesis to DIc_ei:

DIdII7I = Dk_ejIIII = =

(IlI <n for all i)

= CHIIh +CiIIIIfl+2

where E = 0 if (lj = 0. In this sum we compare: — e1 = l4 — 1 < ii — 1 < n2 and
I1 + e3 = 114 + 1 � n + 1 <n1 + 2. This proves the lemma.

It follows from the lemma that DQjTj and DIIII are bounded on Q for Ia > 0 and
> 0.

We have now proved that the derivatives D(lJiiII, are bounded on Q for IkI � m
and therefore pm(con) is uniformly bounded in n.
This proves that the summability order of T0 is exactly m + 1. So the sum order of T is
m+1. I
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Chapter 3

Generalized Fresnel Distributions

In this chapter we try to find out which polynomials P lead to summable distributions
e*P on IR?". We first consider the one dimensional case.

3.1 One dimension
For general polynomials P in one dimension we have the following result:

Proposition 3.1 [E.G.F. Thomas] Let P : R —p R be a real polynomial, then

1. e'1' is siimrnable d°(P) � 2.

2. if d°(P) = 2, s.o.(e") = 2.

3. if d°(P) � 3, s.o.(etl') = 1.

Proof If d°(P) = 0, then e'1 = c, so .T(e") = cö is not continuous, therefore ezF' is
not summable. Similarly, if d°(P) =1, F(e') = e()) = Y(eiba) = 4b is also
not continuous, and therefore not summable. For polynomials P of degree 2 e1' can be
written as ce(r)2 by completing the square. By proposition 2.1, using a translation
over —b, for these polynomials etl' has sum order 2.
For P with d°(P) � 3, take a large enough, such that IP'(x)i > 0, for lxi > a. Because
[—a, a] is compact the integral of e1'ço over this interval can again be estimated by Mpo (p),
and we need only consider the integral over [a, cc). For E 1), we have

f e(x)dx f Pl(x)eiP(x) p'() dx =

c f [e2]
P'(x)

dx f _[,)]dx + c3t(a) =

c f°° ei"(1 — )dx + ctço(a).
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Ifd°(P)n�3, So

and are integrable on [a, oo), therefore

f e"co(x)dxf �

and s.o.(eil'(z)) = 1, because it cannot be zero (that would imply that e(z) is integrable
in the usual sense, taking con(x) = a() with a from the proof of proposition 2.1). This
proves the proposition. •

Definition We define the round up map 11: R - Z by [a] = n with n — 1 <a � n.

Theorem 3.2 Let Ek,p(x) = xkeuI(x) and n = d°(P) � 2. Then

1. f10° Ek,p(x)(x)dxI � Mpo() for k � —2.

2. If100E_i,p(x)(x)dx �Mpi().

= 11 for k �

Proof The first statement is clear: Ek,p is integrable over [1, oo) in that case.
For 2. take E V and a large enough such that IP'(x)I > 0 for IxI > a. Then

f E_1,p(x)cp(x)dx f°°
e°(x)ço(x)dx

= f P(x)e°(x)
xP'(x)

dx =

cf -(eF'(X)) )dx = cStf e1)_[,)]dx + cSip(a) =

c 1 e'(( — CJO(a
— dx + c (a)

Ja xP'(x) x2P'(x) x(P'(x))2

Now considering the degrees: d°( xP'(z)) = —n —2, d° ( x2PI(z)) = —n — 1 � —3 and
do(X(':((:?)2) = n —2— 1 — 2(n — 1) = —n — 1 � —3, we see that all these rational functions
are integrable on [a, oc). Because [1, a] is compact the integral over this interval can be
estimated by Mpo(ço). This results in:

if E_i,p(x)w(x)dxi � Mpi(ço).

This proves 2.
We prove the third statement using induction on k. For k = 0, we know that s.o.(ehf') = 2
if n = 2 and s.o.(e") = 1 if n � 3 from proposition 3.1. So we have to check whether
1i1 = 2 for n = 2 and 1r1 = 1 for n � 3. The first equality is obvious. For the
second note that 0 < -r � = 1 if n � 3. So then [-r] = 1. Now, assume that
s.o.(E,,p) = [±] for 0 � 1 <k — 1. Then we also have that s.o.(Q(x)e°(x)) =
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if d°(Q) � k — 1. Again, we only consider the interval [a, oo) which is sufficient by
compactness of [—a, a] and equivalence to (—oo, —a]. We now have for V

[ E,,pso(x)dz
= [00

ei(x)zco(x)dx = I P'(x)e" xkco(x) —

Ja Ja Ja P'(x) —

00 d xkco(x) = c [00eiP(x)_[xkço(x)]dx +cstço(a) =f (ed'(x))
P'(x) j dx P'(x)

cS
[00 eiP(x)(k'60( xP)dx + cstSo(a).

Ja P'(x) + P'(x) — (P'(x))2

The degrees of the rational functions are d°($f') = k — 1 — (n — 1) = k — n < k,
dO() = k—(n—i) = k—n+i <k and d0(') = k+n—2—2(n—i) = k—n < k.
So we can apply the induction hypothesis to all three:

s.o.(e°(x) x = 1k — n + 2
P'(x) n—i 1

___

k—n+1+2s.o.(e" P'(x) n — 1
1

xkP(x) k—n+2s.o.(e" (PI(x))2) = n—i 1

rk—n-f-21 1k—n+1+21 + 1) =Therefore S.O.(Ek,p) = max(i n—i I'

_________

k+2—(n—i)ik—n+1+21 + = F n—i 1 + 1 F( — 1)] + 1 = So the statement is true for
I n—i
k. This proves 3. •

3.2 Symmetric polynomials in the two dimensional case

Proposition 3.3 For Ea(x, y) = e 2+y2+axy) the following holds:

1. s.o.(E) = 3, IaI 2.

2. E_2 and E2 are not summable.

a
Proof Consider the matrix A = (

)
Then

Ea(x, y) =

We can apply theorem 2.11 if det(A) 0, that is if IaI 2. So 1. follows directly from
theorem 2.11.
For the proof of 2. we introduce new coordinates: u = x + y, v = x — y. If a 2, then
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Ea(x,y) = = eth2. If a = —2, then Ea(x,y) = = e"2. So (in the first case
for example)

ff E0(x, y)ço(x, y)dxdy
= ff e2 co(x, y)dxdy =

2ff eiu2co(!(u + v), (u — v))dudv

We see that by a linear transformation of coordinates the distribution only depends on
one variable. So it cannot be summable. •

Theorem 3.4 Let k E R and let Tk be the distribution
' '-4 fwz e2 +v2+kX2v2)ço(x, y)dxdy for E D(R2). Then

1. s.O.(Tk) = 1 for k > 0.

2. s.o.(To) 3.

3. s.o.(T,) = 1 for k <0.

Proof It is sufficient to consider [1, oo) x [0, oc) because the polynomial is symmetric.
Namely, using the reflections x '-+ —x, y '-4 —y and x '—* y and y '—* x one gets the same
result for the other quadrants in R2 \ [_1,1J2. We abbreviate Ek(x,y) = et(12+V2x2Y2)

and B = (x + y)(l + zy). Then D1,1E1 = ctBE1.
To prove the first statement, consider the case k = 1. Let E D(R2).

f
00 100 P00 P00

dJ Ei(x,y)co(x,y)dx= I dyj BEi(x,y)'°dx=
0 1 Jo i

P00 P00c I dj D1,1(Ei(x,y))'dx =
Jo

c / dy / Di,i(Ei(x,y)'° )dx+cst I dy / Ei(x,y)Di,i(c°h1))dx =
P00 P00 (xy) P00 P00

JO J1 JO J1
p00

_____dy+c

[°°Ei(x 0)°'0dx+c / E1(1,y)!"?
JO B(l,y) ' B(x,0)

P00 P00c I dj
Jo

P00 Il -'
8t / ei(1+2y2) 7l_dy+c3t [°°ejx2(hJ)dx+

Jo (l+y) ii x
P00 P00cj dyj E1(x,y)Di,1(°)dx.
0 1

We call these integrals respectively I, II and III.

P00

III � / (1 +
)2dY � Mpo(ço)
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and

1111 � Mpi()
by proposition 2.2. To estimate III we first have to calculate

___________

— D1,1 Di,i((x + y)(l + xy))
D11(X+y)(l+xy) — (x+y)(1+xy) — (x+y)2(1+xy)2 =

____________

2ço(l + zy) — (x + y)2 —

(z+y)(l+xy) — (x+y)2(1+xy)2 (x+y)2(1+xy)2 —

__________

2

______

(x+y)(1+xy) — (x+y)2(1+xy) — (1+xy)2
This yields

III = c f dy f Ei(x, y)Di,1( )dx =

f dy f E1 (x,
(x±y)(1±xy) dx+

c f dy f E1 (x, y)
?1) dx+

1 (x+y) (1+xy)

c f dy f Ei(x, (1+xy)2
We will call these integrals respectively III, "2 and 1113.
For III we calculate the integral:r roo

1 i 1
I dyl &r=I dtl —dz=

Jo Ji (x+y)(1+xy) Jo ii (x+)(1+t)x

(using the substitution y =

r°° r°° 1 °° r°° 1 1

/ dtl dx=I dtl dx=
Jo Ji 1+tx2+t Jo J1 t(1+t)ç+i

(substitute u =

fdtf t(1'+t)u21+ 1du L (l+t)dtL u2± 1du < oo.

This gives the estimate
IIiIiI Mpi(ço).

Now because
1 1

(x+y)2(1+zy) (x+y)(1+xy)
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on [1, oo) x [0, oo) we have the estimate

11121 � Mpo(ço).

For 1113 we need an extra integration by parts, because (1+ry)2 is not integrable on

[1,00) x [0,oo).
100 100

1113 = c / dy I El(xY)(°'') dx =
xy)2Jo J1

c [ dy [(2x + 2xy2)e222+z2Y2) co(x,
dx =

Jo .F 2x(1+xy)2(1+y2)
00 "00c I dy I D1,0E

(x,y)
dx =

Jo fi 'x(1+xy)2(1+y2)

t00 "00

c / dyJ
D1,o(E1

'P(x,y) )dx+
Jo x(1+xy)2(1+y2)

c Idy IE1D1,o( ço(x,y)
dx.

Jo Ji x(1+xy)2(1+y2)
1Now we first calculate

1 (1 + xy)2(1 + y2) + 2xy(1 + xy)(1 + y2)= =
x(1 + xy)2(l + y2) x2(1 + xy)4(1 + y2)2

(1 + xy)2(1 + y2) 2xy(1 + xy)(1 + y2)

x2(1 +xy)4(1+y2)2
+

x2(1 +xy)4(1 +y2)2 =

1

_________________________

x2(1 +xy)2(1 +y2)
+

x(1 +xy)3(1 +y2)

This yields

P00 P00

1113 = c I dy / Di,o(Ei
ço(x, y)

JO Ji x(l+xy)2(l+y2)+
00 1'QO

1 dy I E1
Di,o'P(x, y)

J0 j1 x(l+xy)2(l+y2))dx+
"00 P00c / dy / E so(x,y)

dx+.i 'x2(1f.xy)2(1+y2)

c [00
dy

[00
E1

yw(x, dx
Jo ii x(1+xy)3(1+y2)

Again we call these integrals 11131, 11132, 11133 and 11134 respectively.

P00
st I i(1+2y2) 'PIII31C j e

(1,y)
dy.(l+y)2(l+y2)
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Because is integrable on [0, oo) this part can be estimated by

1111311 � Mpo(ço).

For 11132 we use the substitution y =

p00 f00 1
(00 f 1 1

/ dyl dx=I dt! 2
—dx=

Jo Ji x(1+xy)2(1+y2) Jo Ji x(1+t)2(1+)X

fdtf(l+t)22+t2)dx�fdtf(lt)2dX<00.
Therefore

1111321 � Mpj().

Furthermore
1 1

x2(1+xy)2(1+y2) � x(1+xy)2(1+y2)

Ofl [1,00) x [0,oo). Also

y <
1

x(1+xy)3(1+y2) — x(1+xy)2(1+y2)

on [1, oo) x [0, oo) because 1 on this area. These two inequalities then yield

1111331 � Mpo(cp), 1111341 � Mpo(co).

We have now proved that

Ifdyfej2+Y22Y2)w(z,y)dxI � Mpi(), V E V(R2). (3.1)

And therefore, as remarked in the beginning of the proof:

s.o.(e2222) = s.o.(Ti) = 1.

Let k > 0, then we use the linear transformation (x, y) '—+ (u, v) = (i/x, /y). Now we

can write x2 + y2 + kx2y2 = + + = (u2 + v2 + u2v2).

Therefore

f dy f e2222&I2(x, y)dx =
j

dv
J

by substituting u and v.
The proof of an estimate similar to (3.1) is the same as for k = 1. Namely, the factor
in the exponent causes some factor in B and can be put in the constant in front of the
integral. This completes the proof of 1.
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The statement 2. is a special case of theorem 2.11.

To prove 3. it suffices to prove the case k = —1 by the reasoning above.
This proof is in two steps. We first consider the quadrants and after that we will have a
look at the neighborhoods of the axes.

We first consider the area [2, oo) x [2, oo). For this area we abbreviate B = (x+y)(xy— 1),

so D1,1E_1 = cstBE_i.

00 00

2 2

00(00

___

E_1(x,y)(x,y)dxdy
= f J

BE_1(x,y)°dxdy =
2 2

(00 (00

______

c j J
D1,1(E_1(x,y))'dXdY =

J2 2

(00 (00
cstJ

J
Di,i(E_i(z,y)')dxdY+

2 2

cstJ00

(00

/ E_1(X,Y)D1,i(°')dXdY.
2 J2

We call these integrals respectively I and II. For I we use the integration rule for D1,1:

(00
I = cS / J

D1,1(E_i(x,y))dxdy =
J2 2

00 00cf (E_i)(x,2)dx +cf (E_1)(2,y)dy =

c [00
ei(4_3x2)

(x, 2)
dx + I (2, y)

J2 (x+ 2)(2x —1) 2 (2+y)(2y
— 1)dY.

Because the rational functions in these integrals are integrable on [2, oc), we have the

estimate:
Ill � Mpo().

We can write the integral II as a sum of integrals

(00 (00

II = c / J
=

J2 2

(00 [00 (x,y)D1,iB00 (00 D1,1(xY)dXdy+c$tJ
j E_1

cjtJ J
E_1

2 2

(x,y)
B 2 2

(x,y)
B2

dxdy.

Let Iii be the first integral and 112 the second. Then for II we estimate the following
integral:

J dxd�j — 1
dxdy1

[00 (004

2 (x+y)(xy—l) 2 2 3(x+y)xy
(00 [00

__

�cstJ
J

3dxdy<oo
J2 2 xy
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where we have used the inequalities sy — 1 � xy and x + y � I/J. This yields

11111 � Mpi(ço).

In 112 we need the derivative D1,1B:

= Di,i((x + y)(xy — 1)) = 2(xy — 1) + (x + y)2.

Therefore 00 "00

112 = c / J
dxdy=

J2 2 B2

ço(z,y)(xy — 1) dy+cSt/ I E_
J2 J2

p00 100c / / E_i(x,y) co(x,y)(x+y)2
dxdy =

J2 J2 (x+y)2(xy—1)2
P00 "00 (x, y)c3t/ I E_

J2 J2 1(xY)(x+y)2(xy_l)dxdY+
i'OO "00c I / E...i(x,y) '2dxdy.

J2 J2 (zy

We call these integrals respectively "21 and 1122. For "21 we mention that (x+y)xy
1) <

'x+y)'x 1)
on this area and the last function is integrable on ([2, oo))2 as we have seen in

)Ii. Fftis gives
111211 � Mpo(ço).

The function in "22 is also integrable:
00 00

_____

r°°dy r°° P00 _100dy

J j (zy 1)2dxdY = I — / y(xy — 1)2dx = — I (zy — 1)
J2 YJ2 J2

[(2y — 1)'- = [00
1 dy < ::.

J2 Y J2

From this it follows that
111221 � Mpo(co).

Now we have proved that

"00 P00

112 12
E_1(x,y)cp(x,y)dxdy�Mp1(ço).

By the reflections x —+ —x, y -+ —y, x '—+ y and y '-+ x we have

I
I I E_i(x,y)co(x,y)dxdyl � Mp(ço) V E V(R2) (3.2)

J JR

where R = [±2, oc) x [±2, oo). This finishes the first step.
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For the neighborhoods of the axes we consider [0,2] x [3, oo). We now use the differential
operator D1,_1 and B = (y — x)(xy + 1). Then we have D1,_1E_1 = c8tBE_i.

00 i'2 00 2 (x,y)f dj E_i(x,y)co(x,y)dx=f dyf BE_i(x,y)
B

cstJ
dy [ Di,_i(E_i(x,y))'dx=

00 2

3 JO

oo 2c I dy I D1,_1(E_1 (x,y)
B

ca f dy f2 E_i(x, y)Di,i( )dx.

We call the first integral I and the second II. By the integration rule we have

i = c [00
e'2

(0, dy + c
[oo

ei(43!2) (2,
dy+(y—2)(2y+l)J3 V

2c I e(9_8x2) (x, 3)
Jo (3_x)(3x+l)dx.

By proposition 2.2 we can estimate these integrals:

Ill � Mp1().

The integral II is equal to

2

II=c [ dyJ E_i(x,y)DiJ3 o
,—i( B

,2
D1,_lco(x,y)dX+/ dy / E_i(x,y)

J3 JO B
00 2

cS I dy [ E_i(x,y
B2

dx.

We need to calculate this derivative of B.

D1,_1B — D1,1(y — x)(xy + 1) — —(xy + 1)— (xy+ 1) + (y — x)(y — x) —

B2 — (y—x)2(xy+1)2 — (y—x)2(xy+1)2 —

—2(xy+1)+(y—x)2 —2 1

(y—x)2(xy+1)2 (xy+1)(y—x)2 + (xy+1)2
This yields

oo 2
Dl,_lSo(x,y)+jj = c I dy [ E_i(x,

.3 ,,, B

c [00dy [2E_1(x,y) (x,y) dx+
J3 j (xy+1)2
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I dy
[2

E_1 (x, y)
q.'(x,

dx.
J3 (xy+1)(y—x)2

We will abbreviate: Iii is the first integral, "2 the second and 113 the last one. Then for
11 we have a look at the following integral.

oo 21 oo 2

f
dy f dx = c f dy j (y — x)(xy + 1)

____________

dy 2 ydx[dy 2
1 dx=I

J3 Jo (y—2)(xy+1) J3 y(y—2)J xy+1 =

y(y— 2)
log (xy + 1)0dy =

t°° 1

13
(_2)(10g(2y+1)10g1)

log (2y + 1) f00 /2y + <
y(y-2) dj (,2) -

_____dy

= c°t 1
1

dy < 00.Cs J y(y—2) J3 /(y—2)
This gives

11111 � Mp1().

By the inequality � on [0,2] x [3, oo) we also have:

11131 � Mpo().

For "2 we need to split up the integration area in [0, ] x [3, oo) and [, 2] x [3, oo).

112 = 1121 + "22 =

oc 2 (x,y)00 4I dyJ E_i(x,y) w(xY)d+5tf dyf E_j(x,y) (xy+1)2J3 (xy+

On the first area we have an extra integration by parts. For this we use D0,1E_1 =
csty(1 — x2)E_i.

00 4 (x,y)
1121 =c I dy [ y(1—x2)E_i(x,y

J3 JO

°°

J4
ço(x,y) dx=dy Do,j(E_i(x,y))

(1—x2)(xy+1)2

100 4c / dy I Do,i(E_i(x,y)
J3 Jo Y
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00 4 ,(x,y)
)dx.I dy I E_i(x,y)Do,i(

(1—x2)(xy+1)2J3 Jo Y

We call the first integral "211 and the second "212. Then by the integration rule we have
1

7(Z,3)
1112111 = csJ E_l(x3)3(1

—x2)(3x+ 1)2 =
w(x,3)

f2
ei(9_8z2)

(1 — x2)(3x + 1)2 )dxl � Mpo().

For the integral "212 we first calculate the derivative:

1 (1—x2)(xy+1)2+2xy(1—x2)(xy+1) —
Do,i( y(1—x2)(xy+1)2 y2(1—x2)2(xy+1)4 —

1 2x

y2(1 — x2)(xy + 1)2
+

y(l — x2)(xy + 1)3

This yields

rOO 4 w(x,y)
11212 = C I dy I E_i(x,y)Do,i( )dx=

J3 J0 y(1—x2)(xy+1)2

c [°°dy f4E_i(x,y
Do,i(x,y)

J3 J )y(l_X2)(xy+l)2dx+

100 4 (x,y)
/ dy I E_i(x,y) dx+
J3 J0 y2(l — x2)(xy + 1)2

100 xw(x,
dx.c I dy I E_i(x,y)

(1 —x2)(xy+1)3J3 Jo Y

We abbreviate: 112121 is the first one, 112122 the second and "2123 the last integral. For
"2121 we calculate the following integral:

dx=cst [ —

____________

P00
1 °°dy 4 ydx

/ dy
(1—x2)(xy+1)2 j y2 (1—x2)(xy+1)2J3 0 Y

I °° dy t4 ydx 00 dy 4 ydxcst/ —

______

J (xy+1)2 = J3 y2 (xy+1)2 =
P00k

1 1 °°1 1c idy=cstf
J

POOlcf 1312dy+cst
/

—dy.
J3 y

Because these integrals are finite we have the following estimate

11121211 � Mpi().
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For 112122 we use the inequality

y2(l — x2)(xy + 1)2 y(1 — x2Xxy + 1)2
on [0, ] x [3, oo).

Now the calculation of 112121 gives

11121221 S Mpo(ço).

Similarly for "2123 we use

2; 1

y(l—x2)(xy+l)3 — y(l—x2)(xy+l)2

because � 1 on this area. This yields

11121231 � Mpo().

In all we now have
111211 � Mpi().

For "22 we look at

cOO ç2
1 fOOdy ç2 ydxj diij1 (xy+l)2&1_J3 J1 (xy+1)2 =

(1 1 2 [1 1 1

13 y(xy+l)''J3 _((21)_(I1))dY=

L°° y(2y±
l)dY+cf y(y± 1)dY.

These integrals are finite so
111221 � Mpo().

We have now proved that

I
f dy f E_1(x, y)ço(x, y)dxl � Mpi(ço).

By the reflections this yields

I
f L E_i(x, y)ço(x, y)dxl c Mpi(co) (3.3)

where R is one of the areas [0,2] x [±3, oc), [—2,01 x [±3, oc), [±3, oo) x [0,2] and
[±3,oo) x [—2,0].

Now the inequalities (3.2) and (3.3) and the compactness of the cross we have avoided
finish the proof of 3. •
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3.3 Symmetric polynomials as exponents on
In this section we consider the generalized Fresnel distributions ei(P4') with P a poiy-
nomial of degree at most 2 (e.g. a quadratic form) and V a special kind of polynomial
potential.

Theorem 3.5 The summability order of the distribution T on R'7' defined by

(T, )
= fRm

i(P(x)+ j

where P is a polynomial of degree at most 2 and aj 0 Vk, is smaller or equal to
forlEN andl�2.

Lemma 3.6 Denote on Rm: r =11 x and A = Rm \ B(1). Then the function belongs
to 13(A).

Proof of the lemma
To prove this lemma we will prove the following statement:

Dk11111

where the sum is finite and the l are multi-indices with l � 0 and n2 � 0 and <n for
alli.
We prove this statement by induction on IkI. For k = 0 we have Dk = Therefore

= 0 and n1 = 1 and clearly we have lii <n1.
Now assume the statement is true for integers strictly smaller than k. Then for k we have:
Dk = Dk—ej for some j. It now follows by the induction hypothesis on Dk_ei that

Dk_1 = _Dk_ej 1 = 5

_____

=
II x II x II x 11721

(where Jl <n2 for all i)
xhjeiII x II II x

where j = 0 if (li), = 0. In this sum we again check the inequality: — e,I = — 1 <
n — 1 <n1 and Il + e31 = l + 1 <n + 1. This proves the statement for k.
Now the lemma follows from the statement:

I
I�1 VxEA.

II x II

Therefore E 8(A).
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Proof of the theorem First we abbreviate Em = ei(P(>.i kx), .D1 =
and 10 = 21 — 1. The differential operator D1 has similar properties to those of Do,b in
proposition 2.3. Then DiEm = cst(co + > + 2lcrkx°), where the Ck E R, for
k = 0,1,... ,m. We write Bm = CO +ElCkxk +2lakXj.

Now we need to construct an integration area Qm. Define 'k = [0, oo) for k with cxk > 0
and 'k = (—oo, 0] for k with a, <0, k = 1,... , m. Similarly, we define Jk = [0, R] for k
with ak >0 and 1k = [—R,0] fork with ak <0, k = 1,...,m.
Now we take Qm = (fl.-i Ik) \ (fl1 J). To determine R we look at the conditions:
Bm(x) � 1 on Qm and R � 1. Given cO,... ,Cm and a1,... am, there exists an R which
satisfies these conditions.

Proposition 3.7 s.o.Qm() � max(1 — k,0), fork E Z..

Proof of the proposition
We use induction on m to prove this proposition. For m = 1,

— ej(P(x)+01x21)

B — (CO + Clx + 2laixbo)

If k = 0, we have by theorem 3.2 s.o.(Ei) = 1 = max(1],0). If k > 0 •°•Qi() =
s.o.- ( ) — 0 — max(1—1 — k,0).

1 (co+cix+2Laix o)k

From this the proposition follows for the case m = 1.

Now we assume that the proposition holds for all dimensions strictly smaller than m.

Lemma 3.8 S.O.Qm(Em) max([ — 18•O•Qm() + 1).

Proof of the lemma
For E D(Rm) we have

fm EmçO(X)dX = f BmEmdx = CStfQm Di(Em)dx =

CStf Di(Em)dX +
Lim

EmDi()dx.

We call the first integral I and the second II. For I we first look at the last term in the
sum: j(m)

= f f(Emj!1)dx. We can write

QmflJkX[R,00) U (H1k)\(HJk)<[0,00)=

1k x [R, °) U Qm-i x [0, oo)
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where the union is disjunct.
Writing = (xi,.. . ,Xm_i), this implies by Fubini's theorem

I(m)=f L(Em)dx=
Q ôXm Bm

r roo ' a
I d I (Em)dxm+ I d I (Em)dxm=
fl11Jk JR OXm Bm 'Qrn-i 10 OZm Bm

C f (Em)(, R)d + Cf (Em)(, 0)d. =
fl.;11Jk Bm Qrn-i Bm

cstf (Em)(,R)d+c3tf Em_i()
ço,0 d.

fl'Jk Bm Qrn-i Bm_i(x)

We abbreviatejim) is the first integral and 4m) the second. We can estimate now:

14m)I � Mpo(co)

because the integration area here is compact and f.f � 1 on this area. In 4m) we apply

the induction hypothesis of the proposition. This yields: the sum order of j(m) is smaller
or equal to SO•Qm_i() � max(1] — 1,0). In all we have that the summability order
of 1(m) is smaller or equal to max([] — 1,0).

For the other m — 1 terms of I (—a- ...
) we can do the same. In all we have that8x OXm_1

the sum order of I is smaller or equal to max(11 — 1,0).

The integral II can be written

T I (x) .,
.1.1 = C j C/m.th1 k )UX =

cstf EtnDdx+c3tf Em1Bmdx.

The first integral has sum order smaller or equal to 50m () + 1. We write the second
integral in a slightly different way:

f , (x) DiBm
C

JQm D m
Now we consider the last fraction:

'ii 10—i
1 m = Lk=1 Ck + htOXk 1

E !3(Qm)
Bm Co+1CkXk+2lX IIzII

by lemma 3.6. Now it follows by proposition 1.3 that the sum order of the second integral
of II is smaller than the sum order of the first one.
We can conclude S.O.Qm(Em) � max([fl — 1, .•Qm(") + 1, 0) =
max(1] — 1, s.o.Qm() + 1).
This finishes the proof of the lemma.
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Lemma 3.9 For k E Z such that s.o.() > 0, we have s.o.Qm() �
max([] — (k + 1),s.o.Qm(r) + 1).

Proof of the lemma
For e V(Rm) we have

fQmzjeQmLrn
c f D1 (Em )dx + f EmD1 ( )dx.

We abbreviate: I is the first integral and II the second. Then as in the proof of the
previous lemma the last term of I (the —-term) is

Em_i() d.
fl11Jk Bm Qrn-i Bm_i(X)

We call the first integral m) and the second (m) By arguments similar to those in the

previous 1emriia we can estimate IIm)I Mpo(co). Moreover we again apply the induction

hypothesis of the proposition and get that the sum order of m) is smaller or equal to
max(11 — (k + 1),0). Together with the other m — 1 terms we get that the sum order of
I is smaller or equal to max([] — (k + 1),0).

The integral II can be written

11= c f Em Dj(x) dx + c fm Em ço(x)D1Bm
dx.

The first integral has sum order smaller or equal to S•O•Qm (pr) +1 and the summability
order of the second integral is smaller.
Now we have proved 5•O•Qm() max(1] — (k+ 1), s.o.Qm(r) + 1,0) = max([] —

(k + 1), S.O•Qm(T) + 1).
This finishes the proof of the lemma.

We can now prove the proposition for general dimension m.
We have B,, = (co + cjx + 2lakx0Yc x 111ok Therefore, if k to � m + 1 then

E L'(Qm). Define k0 = [911. Then k0 to � m + 1 and k0 is the smallest integer k

for which * E L'(Qm). Therefore s.o.Qm() = 0 for k > k0.

To prove the proposition for dimension m, we first write it in a different form:

Em 10 k<0
5°•Qm(kk) k 0 < k � k0.

(3.4)
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We prove (3.4) by induction on k. For k = 0 we have already proved this above. Assume
that for integers strictly smaller than k with 0 < k � k0 (3.4) holds. Then we have for k,
using the second lemma,

S•O.Qm(_k) � max(1fl — (ko — k + 1), 5•O•Qm(Bk._1+1) + 1)

�max(11—(ko—k+1), k—1+1)
=max([1_([!±i1_k+1), k)
=m([1_1!!?i1+k_1, k)
=k.

For k < 0 we have that
I I I E L' (Qm), so 5.0q (Br_k) = 0. This proves

(3.4) for all k and therefore the proposition.

Taking k = 0 in the proposition yields S.O.(Em) � r!.11 on Qm. For the other quadrants
we use the reflections Xk '—* —Xk. These reflections cause minus signs in the polynomial
P, but because the proposition holds for any polynomial P of degree at most 2, the sum
order remains the same. This yields the theorem:

s.o.(Em) � g.m- i (3.5)

by compactness of [—R, R]. •

Remark 1 The result of this theorem is not a precise equality yet. To prove the equality
in (3.5) one needs to construct a sequence of test functions as we did before. By comparing
this result with the other results in this article one would expect the equality in (3.5).

Remark 2 The case of Fresnel distributions with a potential of this form is a special case
of this theorem. We see that the presence of the quadratic form makes no difference in the
sum order. The part of the exponent with the highest order is dominating. This means
that also degenerate quadratic forms with such a potential have this sum order.
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Conclusions

In section 3.1 we have stated the most general result for the one dimensional case in theo-
rem 3.2. We know for which polynomials P on R the distribution e1 is summable and if
so, we know the sum order. Moreover we know the sum order of xCeü'. This means that
the one dimensional case is finished now.

For higher dimensions we now know the sum order of the Fresnel distributions. The sum
order of on R is exactly m + 1 for Q a non-degenerate quadratic form on R. For
more general polynomials we have considered e'" with P a polynomial of degree at
most 2 (for example a quadratic form) and V a potential of the form > ajx1. These
distributions are summable. Moreover, we have seen: the higher the degree of V the lower
the sum order. This means that adding such a potential reduces the sum order. Further-
more, after addition the sum order does not depend on the quadratic form anymore. The
potential is dominating.

For the case of two dimensions we have considered P = x2 + y2 + kx2y2 as a special case.
We have seen that the sum order is equal to 1 for k 0. For k = 0 the polynomial is a
non-degenerate quadratic form and has therefore sum order 3. So, also in this special case
we see: a polynomial of higher degree causes a lower sum order.

The sum order of Fresnel distributions on R diverges for m —+ 00. Also when we add a
potential of the given form the sum order goes to 00. A precise conclusion from this about
the Feynmann-integral can be found in [TH2, Thm 3.1].

It is clear that we have not given a full answer to the question: for which polynomials P
is e1' summable? We know that for a 'degenerate' polynomial P (i.e. P can be written as
polynomial in less coordinates by a linear transformation), c'° is not summable, because
its Fourier-transform is not continuous in that case. Conversely, we can ask: if P is at
least quadratic in all coordinates and P is not degenerate, is e'1 automatically summable
then? A precise answer to this question has not been given yet.

Finally, to get more information about the Feynmann integral one should try an other kind
of potentials. For example V = > e' I. Maybe one can get the sum order independent
of the dimension by using other potentials. Then the sum order remains bounded for

-+ oo, which is important for taking the limit.
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