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Introduction

The wide context of this article is given by the research on the Feynmann integral. The
mathematical definition of the Feynmann-integral has been a problem for over 50 years.
Because of the analogy of the Feynmann integral with the Wiener measure we first look
at that.

We will have a look at the relation between the heat diffusion equation and the Wiener
measure. After that we will see the connection between the heat diffusion equation and
the Schrodinger equation and discuss the Fresnel distributions.

The heat diffusion equation is:

ou_1
ot 2
with u(t, ) = u¢(z), z € R*. For simplicity we take n = 1. We define

Au (0.1)

y(t)e—z2 /2t
V2nt

We use the physical notation §(z) in stead of § to avoid confusion with the 4(t). Now G,
is a fundamental solution: P

(5; = EA)Gt = 40(t)é(z).

One can see this by recognizing that [ Gi(z)dz =1 for all t > 0 and Gy(z) = %Gl(%)
Therefore G¢(z) is an approximation for §(z) for t \, 0. We define Go(z) = d(z).

The solutions u; of the Cauchy problem of the heat diffusion equation with initial value
ug are given by

Gg(IE) =

ug =Gy * up

for t > 0. Then limg\ o ue = Go * ug = up.

Now we can define the W,. Let o be a subdivision of [0, T:
0=0<t <...<t, <T. Then we can write R* = R’ and we define W, on R’ by

Wy =Gt (@n — Zn=1) ... - Gy, (x2 — 1) Gy, (71)dzy . . . d2yr. (0.2)

We abbreviate: W, = G,(z)dz, ...dz,. Then W, is a probability measure on R?, because
JgGi(z)dz =1 for all t > 0.



Let 7, : C([0,T]) = R’ be the projection-map m,(X) = (X (t1),..., X (tn)) € R*.

If o < o', we define 7y, : R — R’ to be the projection. Then W, = myor(Wys). This
means that the set {7, } is a projective system. Now we can ask the question: given the
projective system of measures W, on R’, does there exist a measure W on C([0, T}) such
that W, = m,(W), for all ? If it does, W is called the projective limit. The answer is
given by the next theorem.

Theorem [Wiener] There ezists a unique probability measure W on C([0,TY]) such that
., W =W,, Vo.
We call W the Wiener measure.

Now we switch to the Schrédinger equation:

10p 1

The difference with the heat diffusion equation is the fraction 1 in front of it. This

t
corresponds with the substitution ¢ — it. The analogue of W, is Fy:

Fo‘ = Gi(tn—t"_l)(zn = .’En_l) S Gi(tg-tl)($2 = IIII)G,‘gl (:Irl)d.’l:l ce d:l:n =

m im  (ze—ziog)?
H : I S P ﬁdz = c,e'?@)dz,
1 \/27r1(tk — tlc—l)

with Q, a quadratic form. If there is a potential in the Schrédinger equation, the Q, is
replaced by Q, + V, with V, a potential. In this article we restrict ourselves to polynomial
potentials.

We will see in chapter 1 that the F, are summable distributions. They are called Fresnel
distributions. Moreover the set {F,} is a projective system. Now the great question is:
does there exist some kind of projective limit

F=1limF,
—

such that n,F = F,, for all 0. If it does, F is called the Feynmann integral. What is
F like? To answer this difficult question, one needs to know more about the F,.

In chapter 2 we will get more information about the sum order of the Fresnel distributions.
In the case of potentials we get distributions e’ with P more general polynomials, which
we call the Generalized Fresnel Distributions. Therefore we try to find out for which
polynomials P the distribution eP is summable. And if so, what is the sum order? This
is the central question in this article.



Chapter 1

Summable Distributions and
Gauss-Fresnel distributions on R"

In this chapter we will treat the class of summable distributions on R*: Dj (R"). This
space is in fact the case p = 1 of the spaces D}, (R") defined by L. Schwartz for 1 < p < oo
in [TD]. Because we only consider this case, we abbreviate D}, (R") = Dy (R"). One can
find this theory in [TD, Ch.VI, §8] and more detailed in [TH1, Chl).

Furthermore, we take a look at the Gauss-Fresnel distributions, which turn out to be
summable distributions.

1.1 Summable Distributions
Definition We define the spaces B and B as follows:
B=B(R") = {p € E(R") : D¥p € L®(R*) Vk € Z"},
B=B(R") = {p € E(R™) : D*p € Cy(R*) Vk € Z1}}.
The topologies of these spaces are the natural topologies induced by the (semi-)norms:

Pm(p) = sup || D*¢ |lo (1.1)
Ik|<m

Proposition 1.1 1. The space B(R™) is a Fréchet space (i.e. metrizable and com-
plete).

2. B(R") is the closure of D(R") in B(R").

Proof The first statement follows from the completeness of £(R") and the fact that the
semi-norms on B(R") are norms. ,

To prove 2. it is sufficient to verify that D is dense in B. Let a € D be a function between
0 and 1, equal to 1 on the unit ball and define a,(z) = a(£). Then, if p € B, the functions
ay,p converge to ¢ uniformly on compact sets. Namely, |a,(z)@(z)—p(z)| = 0 for |z| < n.

5




But given € > 0, 3N such that |a,(z)e(z) — ¢(z)] < 2|@(z)] < € for |z] > N, because
@ € Cy. So |an(z)p(z) — p(z)| < €, Vz € R, for n > N, and the convergence is uniform
on R".

Similarly, for the uniform convergence of the derivatives of ¢ one uses Leibniz’ rule and
the fact that D*(a,) goes to 0 uniformly for n — co. |

Definition The space of summable distributions, D} (R"), is defined to be the dual
of B(R"), equipped with the strong dual topology.

Because D(R") C,B(R") densely, D} (R*) C,D'(R"). It follows from this definition that
a distribution T € D'(R") is summable if and only if there exist m € N and M > 0 such
that:

(T, )| < Mpm(p) Ve € D(R"). (1.2)

Namely, for ¢ € B, there exists a sequence ¢, in D such that ¢, — ¢ in B. So (1.2)
implies that |(T,¢,)| < Mpm(en) Vn, and passing to the limit this gives equation (1.2)
for ¢ € B. So T € D' is a continuous linear form on B, i.e. T € Dj.

Proposition 1.2 If T € D}, then

1. D*T, defined by
(D*T, p) = (-1)*(T, D¥¢) for p € D (1.3)

is summable.
2. for i € B, the distribution YT defined by
(YT, ) = (T, ) for p €D (1.4)
is summable.
3. The maps T — D*T and T — T are continuous from Dy (R") to DL (R™).

4. The formulas in 1 and 2 are valid for all p € B and ¢ € B.
Proof Take m and M such that |(T',¢)| < Mpn(p) Ve € D. Then for ¢ € D,
(D*T, )| = (T, D¥@)| < Mpm(D* ) < Mpymyix)()-

This implies 1.
Similar for ¢ € B,y € D,

I('ll)T, ‘p)l = |(T7'¢(p)| < Mpm('ll)(p) < Mpm((p),

where the last inequality follows from Leibniz’ rule. This proves the second statement.
For the continuity of the two maps in 3. take a sequence T, in D}, such that T}, —» 0 in
D), for n — co. Then for all ¢ € B, (D*T,,¢) = (-1)FT;,, D) — 0 for n — co. And
for ¥ € B, (YTn, ) = (Tn,¥p) — 0, for n — oo.

6



To prove 4. take, for ¢ € B, a sequence @, in D such that ¢, — ¢ in B for n to co.
Then D*yp,, — D*¢ in B. Now it follows from the continuity of T on B that (D*T,¢,) =
(-1)*Y(T, D*p,) — (-=1)*I(T, D¥y) and on the other hand (D*T,p,) — (D*T,y). So
the formula in 1 holds for ¢ € B. One proves the validity of the formula in 2 for ¢ € B
similarly. |}

Example An important example of summable distributions is the space of distributions
with compact support. Because B C,€ with dense image, one has

& D,

Definition The summability order of a summable distribution T is the smallest num-
ber m such that the inequality (1.2) holds. (Frequently, we will abbreviate this to sum
order(T') or even s.o.(T).)

Proposition 1.3 If T is a summable distribution with sum order m, then s.o.(¢T) < m
for ally € B.

Proof For ¢ € D we have |(yT,¢)| = (T, ¥p)| = Mpm($) < Mpm(p). N

One can define spaces BU™ resp. B™ to be the spaces of functions whose derivatives up
to order m are in L™ resp. Cy. These spaces are again Banach spaces when equipped with
the topology induced by the norms (1.1). If we define similarly the space D(™) of functions
with compact support whose derivatives up to order m are continuous, then D(™) is dense
in B(™) (one can prove this similar to the proof of proposition 1.1). And because D™ D

we also have D is dense in B(™). When we now define D',fm) as the dual of B(™ and use

D'ISO) = M, (the space of bounded measures) we have the continuous injections:
My(R") D™ (R") CDL(R")

It also follows from (1.2) that D} is the union of the subspaces D'Ifm), and sum order(T')
is the smallest number such that T € ’D'Ifm).

Remember that the order of a distribution in D’(R") is the smallest number N such that
VK C R*, K compact, IM >0

KT, )| < Mpn(p) Vo € Dk(R").
So a summable distribution has finite order and the following inequality holds:
order(T') < sum order(T) (1.5)
Note that for T € £’ the equality holds.
If T belongs to D™ (R") then D*T € D™ )(rr). So if T = 1 € My(R*) = DO (R")

then D*T = D*pu € D'Ifm)(IR") for |k| < m. Thus the derivatives of bounded measures are
again summable distributions. The converse of this is stated in the next theorem.



Theorem 1.4 [TD, Ch.6, §8] Let T € D'(R"). Then the following conditions are equiva-
lent:

[

. T belongs to D (R") .

. T is a finite sum of derivatives of bounded measures on R™.

2
3. T is a finite sum of derivatives of LY (R™)-functions.
4. For every a € D(R"), a+ T belongs to Mp(R™).

5

. For every a € D(R™), a* T belongs to L} (&),

Proof 3. = 2. because L} C M,.
2. = 1. because of the reasoning above.
1. = 4. Let B={peD:| ¢}

Lemma 1.5 By is dense in the unit ball of Co.

Proof of the lemma
Let f € Co, ||fllc £1. Thenif 3€ D, 2 0, [ B=1,B* f belongs to the unit ball of Co.
If we take B, € D a standard approximation of 4, then B, * f belongs to the unit ball of
Cy and B, * f — f. Namely,
Bn * £)(z) — f(@)| = | [ Bu@®) f(z — t)dt — f(2)| = | [ Ba(®)[f (= — 8) — f(2)]at|
< Jioj<s Bo®If (2 = 8) = f(2)ldt + fizy55 Bn (S (@ = t) — f(z)ldt
<e fl;l<6 Bn(t)dt + € < 2¢, by the uniform continuity of f.
Let « € D, 0 < a <1, and @ = 1 on the unit ball, and define an(z) = a(f). Then
an(Bn * f) belongs to By and converges to f uniformly on compact sets. But being domi-
nated by a Co-function, namely |f|, the convergence is uniform. This proves the lemma.

Consider the functions & * ¢, with a € D fixed, and ¢ € By. Because D¥(a+yp) = DFaxp
and ||D*(& * ¢)lloo < IID*ally l@lloo < ||D*&||y for ¢ € B, these functions form a bounded
subset of By.

Therefore, by the summability of T,

(a*T,¢) = (T,a*y) (1.6)
are bounded numbers for all ¢ € By, so

sup |[(a * T, )| < +o0 (L.7)
w€EBo

Now with the use of the lemma, a * T extends to a continuous linear form on the unit ball
of Cyp, and therefore to the whole space Cp. So a * T belongs to the dual of Cp, that is
Ms.

4. <= 5. The inclusion L' C M, gives us the <= direction. For the opposite direction,
note that a * T is C* and therefore belongs to L.
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4. = 3. If a x T € M, the numbers:
(@*T,a&) = (axT,qp) (1.8)

are, for fixed @ € D, bounded for ¢ € By C (unit ball of Cp). This implies that the
distributions ¢ * T are bounded in D' for ¢ € By.

Let A C D’ be a bounded set, i.e. sup,ep|(T,a)| < Mp, VT € A, VB C D bounded
(that is B C Dk for some compact K and B bounded in Dg). Then, because Dk
is a Fréchetspace, we can use the Uniform Boundedness Principle for Fréchetspaces:
suprea |(T, )] < +00, Va € Dk. So the linear forms T : Dxg — C, T € A, with
K the unit ball say, are equicontinuous: Im € N, IM > 0, such that

T, a)| < Mpn(a), Va € Dk, VT € A. (1.9)

Therefore T extends to a linear form on D%") for all T € A and the extension still satisfies
the estimate (1.9).

In the present case A = {¢ * T, € Bg}. So the distributions ¢ * T extend to D%") and
still satisfy the inequality (1.7). This means that the numbers in (1.6) make sense and are
bounded for ¢ € By and a € D%"). But this means that a « T is a bounded linear form
on By and therefore on Cp, so it belongs to M, even for a € DX"). And because a * T is

C™ for a € DYV, ax T € L.

For | € N sufficiently large (! > m + %), A! has a fundamental solution E in Em) = clm),
Because the Laplace operator is elliptic, so also hypo-elliptic, this solution E is C* on the
complement of {0}. If ¥ € Dk, is 1 on a neighborhood of the origin, the function @ = vE

belongs to D%") and has the property
Ala=6+¢ (1.10)

where ¢ € D and has support in the complement of a neighborhood of the origin. There-

fore,
T=6+«+T=AaxT-(+T. (1.11)

And since a * T and ¢ * T belong to L' (this is statement 5.) T is a sum of derivatives of
L'-functions. This finishes the proof of the theorem. [}

Remark Using the Hahn-Banach theorem one gets information about the order of the
derivatives in the representation as sums of derivatives of measures of a general summable
distribution T. In the one dimensional case, let T € D',Em)(R), ie. (T,9)] < Mpm(p) =
M supycn 19®) oo, Vo € D(R). Using the map ¢ = (p,¢/,...,¢0™) on D(R) —
(Co(R))™*!, we define the bounded map ! on the subspace A = {(p,¢/, ... o™y | pe
D} of C**! by l(ep, ¢, - .. ,™) = (T, ). By the Hahn-Banach theorem, this map ! can
be extended to a map L defined on C(’)"“, such that L|4 = [. Now we use Riesz’ theorem
to conclude that L ~ (L, Ly, -- -, Lji,) with fix € My(R) i.e. for ¢ € D,

(T, 0) = L(@,@', ..., ™) = T (e, 0®) = T (-1, ) =

9



k
Z?:o(l‘fc )1‘p)nuk € Mb(R)
For general dimension, a similar argument yields

TeD®) — T= 3 Diu, m € My(R"). (1.12)
Ik <m

Theorem 1.6 The topology of Dy (R") is the weakest topology for which the maps T
a*T € LY are continuous: T; » T in Dy (R") if and only if a*T; - a*T in L}(R") for
all « € D(R™).

The proof of this theorem can be found in [TH1, §1.1].

1.2 The duality with B
Consider a bounded subset of B(R"), i.e. a set B C B(R") such that

sup pm(p) < +oo YmeN
pEB

Then by Ascoli’s theorem B is relatively compact in the space £(R"). The compact closure
of B in £(R") is contained in B(R"). Let K be the set of bounded subsets of B(R") which
are closed in £(R"). Then the sets K € K are compact in £(R") and every bounded set
B is B(R") is contained in a set K € K.

Theorem 1.7 Let f : K — Y be a continuous map, where K is a compact space and
Y a Hausdorff space. Assume that f is bijective. Then f is a homeomorphism, i.e.
f~1:Y - K is continuous too.

Proof Let g=f!:Y = K, g7} (F) = f(F) for F C K. Take F a closed set in K, then
F is compact. So f(F) is compact because f is continuous. Therefore g~!(F) is closed
and it follows that ¢ is continuous, i.e. f is a homeomorphism. |

Corollary 1.8 Let K be a compact space and X = K as linear space with a weaker
Hausdorff topology. Then X = K also as topology.

Proof The identity map Id : K — X is continuous and bijective on K. So by the theorem
the inverse identity map Id~! : X — K is continuous too. This means that if O C K is
open, then Id(O) = O C X is open. So the topology of K is not stronger than that of X.

[t follows from this corollary that on K, and therefore on B, the topology induced by &
coincides with any weaker Hausdorff topology: for instance with the topology of uniform
convergence on compact sets or even the topology of pointwise convergence.

Consider a sequence ¢; in B(R") and let ¢ € B(R").

10



Definition We define ¢; — ¢ pseudo-topologically in B(R") if
a. there exists B C B(R") bounded such that ¢; € B for all 7,
b. p; = ¢ in E(R?).

As remarked, the condition b. may for instance be replaced by:

b’. p; = ¢ uniformly on compact sets.

Lemma 1.9 D is dense in B with respect to the pseudo-topology. Given ¢ € B, there
ezists a sequence @, in D such that ¢, — ¢ pseudo-topologically for n — oo, i.e. {pn} is
bounded in B and ¢, — ¢ in € for n = oo.

Proof Let a € D with a(z) =1 on the unit ball, and 0 < a < 1. Let ay(z) = a(Z) and
define ¢, = anp. Then DFa,(z) = ;}T‘(Dka)(%), therefore || D*ap |0 < n—|l—kT||Dka||oo £
| D || oo for all n.
Using this together with Leibniz’ rule one gets that the ¢, are bounded in B. But ¢, (z) =
¢(z), for all z with |z| < n and so ¢, — ¢ in €. This implies that ¢, = ¢ in B pseudo-
topologically. 1

IfT € Dy (R*),and T = Z‘D" {1k is a representation of T as sum of derivatives of bounded
measures, we have, if p € B(R")

(T, ) = > (D ux, ) = > (=1)¥(pu, D*o). (1.13)

From this it follows that T is continuous on B equipped with the pseudo-topology. Namely,
if p,, — ¢ pseudo-topologically

(16> D¥ @) = (uk, D)

by the Dominated Convergence Theorem of Lebesgue.

Definition T € D) (R") has the bounded convergence property if T is continuous
on B(R") equipped with the pseudo-topology, i.e. the restriction of T' to bounded subsets
of B(R") is continuous for the topology induced by £(R").

Theorem 1.10 If T is a summable distribution, then T has a unique linear eztension to
B(R"*) having the bounded convergence property.

Proof For ¢ € B, let (¢n)nen be a sequence in B, such that ¢, — ¢ in the pseudo-
topology. We then define
(T, ) = lim (T, pn)
n—00

where we define T by (1.13).

Then T has the bounded convergence property again by the Dominated Convergence
Theorem. Because T is uniquely defined on B the right-hand side does not depend on the
representation (1.13). Therefore T is uniquely defined. [}

11



In particular, one can take ¢ = 1, and define the total mass of a summable distribution
T
(T, 1).

Proposition 1.11 The estension of T € Dy (R") to B(R") is compatible with multiplica-
tion by functions in B(R™) and with differentiation:

(YT, o) = (T, o) Yo, € B(R") (1.14)
(D*T, ) = (-1)*(T, D*¢) Vo € B(R") (1.15)

Proof If p € B these equalities are correct because D is dense is B and T is continuous.
If ¢, — ¢ € B pseudo-topologically, i.e. remaining bounded in B and converging in £, we
also have in the pseudo-topology Yy, — ¥ and D*p, = D¥y. This yields

(YT, ) = lim (YT, ¢,) = lim (T, en) = (T, %p).
n—o00 n—00
Passing to the limit is justified because T belongs to Dy . Similar for the derivative:

(D*T,¢) = lim (D*T,n) = lim (=1)7¥U(T, D*pn) = (-1)7H(T, D¥¢)

n—00
because D*T € D;. |}

Theorem 1.12 Let L : B —» C be a linear form which has the bounded convergence
property. Then there ezists a unique T € Dy(R") such that L(p) = (T, ) for all p € B.

Proof First note that L maps bounded subsets of B to bounded sets in C. If this were
not so there would exist a balanced bounded set B C B and a sequence (@) in B such
that |L(pn)| > n. But then 1o, belongs to B and goes to zero in the pseudo-topology.
On the other hand L(%(pn) does not go to 0. This contradicts the linearity of L.

Let T be the restriction of L to B. Then if ¢ = lim, o ©» pseudo-topologically, we have
L(yp) = limp 400 L(pn) = limg_400(T, o) = (T, ), for all p € B.

Theorem 1.13

1. If L is a continuous linear form on Dy (R") there ezists a unique function ¢ € B,
such that L(T) = (T, ¢). .
Briefly: the dual of D (R™) is B(R"), the bidual of B(R") is B(R").

2. The given topology of B(R") equals the topology of uniform convergence on bounded
subsets of DL (R™) and the strong dual topology of D} (R") equals the topology of
uniform convergence on bounded subsets of B(R").

12




The proof of this theorem can be found in [TH1, §1.2, §1.3].

We have seen now that one can alternatively define the space D} (R") as the space of linear
forms on B(R") having the bounded convergence property. This is the second definition
of summable distributions.

We can conclude that the linear topological vector space Dy (R") can be completely char-
acterized in terms of the space B(R"). Moreover the operations of differentiation and
multiplication on D} (R") can be defined by (1.14) and (1.15).

1.3 Operations on summable distributions

In this section we will define image distributions, Fourier transforms, direct products and
convolution products of summable distributions.

1.3.1 Image distributions

For linear maps u : R* — R* | we define the image of a summable distribution T’ € DL(R™)
under u by the formula:

(u(T),p) = (T, pou) (1.16)

Let ¢ € B(R*). Then 1 = pou is bounded, and by the chain rule, has bounded derivatives
i.e. ¢ belongs to B(R"). That means that (T, ¢ o u) makes sense. Moreover, if B C B (RF)
is a bounded subset, the set of composites B o u is bounded in B(R"). Thus if ¢; tends to
0 in B (say pointwise) y; o u tends to zero in B ou and (T, p; o u) tends to 0, because T
has the bounded convergence property on B(K"). So u(T) has the bounded convergence
property on B(R*). Therefore u(T) € D}, (R*) by the second definition.

Note that if ¢ € B(R*), then w o u does not in general belong to B(R") so one can
not define the image directly by the first definition and transposition. For example
u: R =5 R: u(x) = 0, then (pou)(z) = ¢(0), Vz € R, and pou ¢ B(R") if
v(0) # 0.

Since the derivatives of order < m of ¢ o u only involve derivatives of order < m of ¢ and

u, we have;
sum order(u(T")) < sum order(T) (1.17)

1.3.2 Fourier transformations

For £ € R let ec(z) = e7'*¢ where z£ = Z;?:l z;€j. Then
Dkeg = (—iﬁ)keg

where as usual £ = £51 ... ghn,

It follows that e¢ belongs to B(R"). Moreover if £ remains on a bounded subset of R", e; de-
scribes a bounded subset of B(R"). It follows that we can define the Fourier-transformation

13



F(T) of a summable distribution by:
F(T) &) = (T ec). (1.18)

If £, tends to £, e, remains bounded and converges in the space £(R") to e;. Thus F(T)
is a continuous function.

Clearly we have S(R") C,B(R"), S being dense in B because D is dense. By transposition
we get the continuous inclusion:

DL(R") C,S'(R") (1.19)

i.e. summable distributions are temperate. An application of Fubini’s theorem shows that
F(T) defined above is also the Fourier-transform in the sense of temperate distributions,
ie.

(F(T), ) = (T, F(p)) V€S (1.20)

In particular T is uniquely determined by its Fourier transform, or characteristic function.
From the representation T = Y D¥puy, with ux € My, it follows that

F(T)E) =D _(—i&)* F(u) (1.21)

which shows that F(T) is a continuous function having at most polynomial growth.
More precisely this shows:

T € D™ (R") = |F(T)(E)| < M1 + )™ V€€ R™. (1.22)

In the next section we will see that the converse is not true: not every distribution whose
Fourier transform is continuous with polynomial growth is summable.
For u : R* - R a linear map, and ‘u its transpose, we have by this definition:

Fu(T))(€) = (u(T),ec) = (T, e o u) = (T, er(g)) = F(T)(‘u(§)) VE € RE.

1.3.3 Direct products

Let X =RP, Y =RI. Let T € D} (X) and S € DL (Y). Then the direct product T® S is
summable and one has:

(T®S,pY)=(T,p)S,¢) VpeB(X) V¢ e B(Y). (1.23)

For ® € B(X x Y) we have:
(T® S, ) =(T,0), (1.24)

with 8(z) = (S, ®.) where ®,(y) = &(z,v).
For the proof of the summability of T ® S note that the map z — &, is C* from X to
E(Y). Since & € B(X xY), ®, belongs to B(Y) for all z € X. Moreover the functions &

form a bounded subset of B(Y) and therefore the function 8 = (S, ®,) is a well defined
function belonging to B(X). So the formula (1.24) makes sense.
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If & remains on a bounded subset of B(X x Y), the corresponding functions # remain
bounded in B(X). So if ®; — ® pseudo-topologically the corresponding 6; — 6 pseudo-
topologically. This means that T ® S has the bounded convergence property, i.e. T ® S is
summable, satisfying (1.23). Moreover, the restriction to D(X x Y') is the tensor product
in the usual sense.

If ® € B*m)(X x Y), it follows that £ — &, belongs to BM™(X,BM)(Y)). So, if
T € D{"(X) and § € D{™(Y), the function 8 = (S,&.) € B™(X) and (T,6) make
sense. It follows that

sum order(T ® S) < sum order(T) + sum order(S). (1.25)

The condition that z — &, belongs to B (X, B(™(Y)) does not involve all derivatives
of order n + m of ®, and so the above inequality may be in some cases a strict inequality.
We will see examples where this is the case in the next chapter.

1.3.4 Convolution products

For T, S € Dy (R") we define the convolution product T * S as the image of the direct
product T ® S under the linear map (z,y) — = +y. Thus, for & € B(R")

(T+8,8) = (T®S,¥) (1.26)

where ¥(z,y) = ®(z + y). It follows that T x S is summable. Note that there is no
condition on the supports of T and S.

Since e¢(z + y) = eg(x)ee(y) we have by (1.18) F(T = S)(€§) = (T * S, e¢) =
(T®S,ec(z+y)) =(T®S,ee ®ec) =(T,ec) (S,ec) =
F(T)(&) F(S)(&). This yields

F(T « S) = F(T) F(S). (1.27)

1.4 The class F(Oyu)

Definition We define the class Op(R") to be the space of functions f € £(R") such that
f and all its derivatives have at most polynomial growth.

Theorem 1.14 Every T € F(Ous) is summable. More precisely we have the continuous
inclusion:

F(Ou)(RY) C, D) (R™). (1.28)

Moreover, if P is a polynomial and T belongs to F(Opn)(R"), we have PT € Dy (R").
Conversely, if PT belongs to Dy (R™) for all polynomials P, we have T € F(Opy).
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Proof It is clear that T € F(On)(R?) & F(T) € Oy <= F(T) =T € Op. Let
a € D(R"), and assume T € Op. Then Fla+T) = aT € S(R™). It follows that
a+T € S(R*) ¢, L}(R"), which implies that T € Dy (R") by theorem 1.4.

If T; goes to 0 in F(Op)(R"), i.e. T goes to 0 in Op, &T; goes to 0 in S for all @ € D,
and so a * T; goes to 0 in S and in L!. Therefore by theorem 1.6 T; goes to 0 in DL (R™).
This proves the continuous inclusion (1.28).

Let P be a polynomial and T € F(Ou), then F(PT) = DT where D is a differential
operator with constant coefficients. If follows that F(PT) is a derivative of a distribution
in Oy, so it belongs to Ops. Therefore PT € F(Op) C DL (R?).

Conversely, if PT belongs to D (R ) for all polynomials P, it follows that DT is continuous
with polynomial growth for all differential operators D. This implies that T belongs to
Oum. So we have T € F(Oun). B

Remark The Fourier transform of a summable distribution is continuous, but not in
general C*. Thus F(Op)(R") is a proper subset of Dy (R").
1.5 Gauss-Fresnel distributions

Let Gy = e~1217/(2\ gz for R(A) > 0 and ) # 0, the root being determined so as to

(2m /\)"
coincide with the positive root if A > 0. Let Go = 6. We know that if A > 0
1 2 2
F(——— e~ 1=1/(20)y = ¢—2EI/2, 1.29
(e 1 =8 (1.29

Now for all A with R(X) > 0, e~**/2 belongs to Op.

Theorem 1.15 G, belongs to Dy (R™) for all X with R(X) > 0. Moreover the map A —
G € DL(R") is continuous on the closed half plane, and holomorphic in the interior of

C,.

Proof F(G,) = e~ Mé*/2 € Oy, for all A with R()\) > 0. Using theorem 1.14 this implies
that G) = ?(.’F(G,\)) € FOum C 'D'L(R").

Moreover it is clear that the map A — e~MéI*/2 = F(G,) is continuous and holomorphic
on C,. Therefore the composition with the linear map F, i.e. A —= G, is holomorphic
too. [ |

Corollary 1.16 If P is any polynomial on R, then PG belongs to Dy (R") and the map
A= PG, is holomorphic for R(X) > 0 and continuous for R(A) > 0.

Proof We have F(PG,) = DeNElP/2 ¢ Oum, where D is a differential operator with
constant coefficients, which maps Oy continuously into itself. [ |

We will calculate the sum order of several Fresnel distributions in Chapter 2. In the third
chapter we try to find out which polynomials P lead to summable distributions e**.
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Chapter 2

Fresnel distributions

[n this chapter we will compute the sum order of several Fresnel distributions, as prepara-
tion to compute the summability order of the distributions e'f (with P a general polyno-
mial) which maybe infinite. Some theorems and special cases of this chapter are already
written down in [TH1, Ch. 2].

2.1 The one dimensional case

(n this section we exclusively deal with R, so instead of writing D(R), we just write D,
etc.

Proposition 2.1 [TH1] The sum order of '’ is ezactly 2.

Proof fe" (z)dz = __1 +f_ +f *o(z)dz). The middle integral can be esti-
mated by 2||¢||cc. The ﬁrst integral is equ1va1ent to the last one, by reflection z — —z.
S0 it is sufficient to consider only || +o0 iz (1) dz.

400 +00 +00
/ e”ch(:x:)dx — / — ir? (P( )d:x: — / d [ iz? ]
1 1 1

+o0 | +00 . d
c”/l e”’z—d—((Tx))dx +c*tp(l) = cs‘/l ze'”’ . ( olz ))dz‘ + c*lp(l) =

dz + c*tp(1) + c*t¢'(1)

3p(x
o



Because ;lg is integrable over [1, +o00) for k > 1,

+oo
| / 2)dz| < Mo(lelloo + 1€ lloo + 16" llo0) = Mpa(sp).

And
| / ¢%* p(z)dz] < Mpa(p), VY € D(R). (21)

So s.0.(e'*") < 2.
For the converse estimate, we must contradict the inequality:
| [ = pla)dal < Mpi(o) 22)

for some ¢ € D.

Let @ € D be such that 0 < a(z) < 1,a()=1 or |z] € 1 and a(z) = 0 for
|z|] > 2. Let B € B with support in [},40), 0 < B(z) £ 1, B(z) = 1 on [1,+00).
Let ay(z) = a(Z£)B(z), then a, € D. Now define p(z) = e izt and ¢, = a, ¢, then

¢n € D and pu(z z) = ¢(z) on [1, nJ.
Then <p,,i|Oo < M; < +oo. Furthermore, because ¢, (z) = a5, (z)p(z) + an(z)¢'(z) =
01',,(33)%6 i’ + an(z )(—"}6#” — 2ie~i%"), it also follows that ||} |lcc < M2 < +00. So

P1(n) = max(||en oo, ||<pn||°°) < M < 400, i.e. the p;(p,) are uniformly bounded in n.

On the other hand, the integral

iz? o iz? heg o 1 _ad
e’ pn(z)dz = . e Plll) = e a,,(:z);e dir =

2 2

+00 1 nq
/ an(z)—dz > / ;d:z > log(n) + c*
3 1

1 I
2

diverges to +00, for n — 0o. So the left-hand side in (2.2) with ¢y, in stead of ¢ diverges
for n — oo, while the right-hand side is uniformly bounded in n. This means that the
inequality (2.2) does not hold for all ¢ € D, i.e. s.0.(€" ) 4.
This finishes the proof of the proposition: s.o.(e* @) =2. |

Proposition 2.2 For Ex(z) = zFe'®", the following holds for all ¢ € D,
1. | [{° Ex(z)p(z)dz| < Mpo(y) for k < —2.

2. | [° E-1(z)p(z)dz| < Mpi(p).
3. [TH1] s.o.(Ex) =k +2, for k > 0.
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Proof The first statement follows directly from the fact that z* € L!([1,+400)), for k <
=1
For 2., take ¢ € D, then

oo [0 o] (o o]
-1, iz? - iz? () st d | ip2,0(z) -
/1 z7 e p(r)dr —/1 ze' ?dz‘—cs /1 d:z:[ o ]—zz—dx =

oo d /
c“/1 ol dx[ ]dx +cp(l) = c“/1 12((/’:::) - 2%':))&1: + c*tp(1)

So
| / 2716 p(z)dz| < Mp ().

For the proof of 3 we agam write [ Ex(z)p(z)dz =

0 o+ f_ + f )¢(z)dz), and note that the second integral can be estimated by
M||<p||°° and the ﬁrst and last are equivalent.

Because 3. holds for k = 0 it is sufficient to prove by induction that

| / 2%¢% p(2)dz] < Mprsalp), Vo € D (23)

and that
5.0.(Ex) > k+1for k> 0. (2.4)

Let’s assume (2.3) for k, then for k + 1:

n k+1 iz? - iz? k
/ "7 e p(z)dz =/ ze'® zp(z)dz =
1 1

[o ¢} d . o0
e [ Zle It o@dn = ¢ [ e 2 latp(alda + o) =
1 dz 1
[0 ¢} 7 @
ct [ e (ktp(a) + 2 (2))da + (1) =
1
[0 o] . 2 [0 o] . 2
Cst/ Pl PRE lp(.’L‘)d.’L‘-{'-CSt/ kel (p,(.’L‘)d.’L‘-{'-CSt(p(l)
1 1
Now, the induction hypothesis yields:

(o o]
et [ 7251 o)z < Mipi-rale)
1

and
(o o]
.2
|** / e @' (z)dz| < Maprya(9') < Mapiyasi(p)
1

So, we have
|/ L+ giz? p(z)dz| < Mpiy142(0)
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which finishes the proof of the inequality (2.3) for all £ > 0.

For the proof of (2.4), define ¢(z) = -;—e"’z and a, as in the proof of proposition 2.1.
Then, if we define ¢, () = an(x)<p(x) wn €D.

By Leibniz’ rule
dim s~ mY, dy & .54
() ¢n—§( P ) (e (G

And 3 | &
Ly & (-2 Py E
() (@) = (')
implies that

d d
"(%)lan"oo < () elloo

thus the derivatives of , are uniformly bounded in n. It follows that

II(—)’"sonIIooSMo sup sup |p)(z)l.
[kl<m  z€(},00)

Now l

d d T it —ig?
e = G e ™= 2 Yl ) e )
]—.
This is a finite linear combination of terms

1
—€
vl

—iz?

where k+1 -1 <r<k+1+41[
If0<!<k+1,then0<r<2+2and e e~#* remains bounded on [}, 00). From this
it follows:
sup  sup |o)(2)] < My < +oo
[tI<k+1 z€[d,00)

and therefore d
Prt1(en) = sUP I(5=)'@nlloo < Mz < +o0
I<k+1 T

uniformly in n.
If s.0.(Ex) < k+1 then

[ e pta)iel < Mpesa(e), Vo€

in particular for the ¢,. The right-hand side of this inequality is, for ¢y, uniformly
bounded in n, while the left-hand side,

20 k 1 2 20 k i 2 X 1
/ z%e' o (z)dz =/ €'’ an(
1 1 =

k+1
e 1 ol |
/ an(z)—dz > / —dz = Olog(n)
1 25 a %

diverges. So (2.4) has been proved now. This finishes the proof of 3. i

o !
e™"" dip=
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2.2 Two dimensions

In this section we wish to calculate the sum order of eiz*-¥*) and P(z, y)ei(’2‘y2) with P
a polynomial.

Definition We define on R? the differential operator D, = a;% + bg—y

Proposition 2.3 For f,g general functions on R? and ¢ € D(R?) the following holds:

1. Dap(fg) = (Dapf)g + f(Dapg) (product rule)
2. f dz fﬂ 2 p(Z,y)dy = —a fﬂ (ayy)dy — bf:) o(x, B)dz (integration rule)
The simple proof is left to the reader.

Proposition 2.4 The sum order of the distribution T defined by (T, p) = [f i@ =" p(z, y)dzdy
is 3.

Proof The proof is in two steps. We first prove that
s.0.(e'@* ¥y < 3. (2.5)

And after that we will prove that

I// oz, y)dzdy| < Mpa(yp) (2.6)

does not hold for all ¢ € D. Then it follows that the summability order of T is exactly 3.
Let’s abbreviate E(z,y) = ei@*=v") Then D, _, E(z, y)

2i(z + y)E(z,y). We first consider the quadrant [1,00) x [0,00), where z + y is not zero.
So we can write:

n = i - p(z,y)
/ dy/ E(:v,y)tp(:v,y)d:v=/ dy/ (¢ +y)E(z,y)———dz =
0 1 0 1 T+y
o0 o0
e [Cay Dy,-1E(z,) 22 Y 47
0 1

rT+y

o0 o0
c“/ d/ D, _1[E(x, Mdm—
L yl 1,1[( y)$+y]

o0 o0
cs‘/ d/ E(z,y)D; _ Md:z:
W ( )1,1[$+y]

(we abbreviate: B is the first integral)

o0 o0
st (p(xay) —
By +c /0 dy/l E(xay)Dl,—l[——$+y ldz =

00 00 Dy _1p(z,y)  o(z,y)D1,-1(z + y)
B st d / E . 1, 19 _I ) =
1+¢ /0 Y j (z,y)( T+y (z +y)? )dz
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:r+y
B1+CSt/ dy/ (z+y)E ,y)Dl(;ipL) Direl®y) 4,
B +cs‘/0 dy/l Dl,—l[E(w,y)]Dl(';—l_‘_(pg(j);—)M:
s = — Dl,—l‘p(:r,y)
By +c /0 dy / Dl,_l[E(m,y)—my—F—]d:r—
“/ dy/ E(z,y)D [Dl(;fé) ldz =

(again, B is the first integral)

Bl+Bz+CSt/ dy/ E( ,yDl_l[Blﬂ]d:r

T +y)?
B1+B2+
oot (D1,1)*¢(z,y) _ 2D1,1(z,y)Dra(E+y),
/ dy/ Bl )= e (z +y)3 )bz =
Dy,—1)%0(z,y)
B+B+c“/d/E:r, ( i =
1 2 s Yy A ( y) (-T+y)2
o Dy _1)%p(z,y)
B+B+cs‘/d/z+E,(l’ iz =
1 2 L Y ) y)E(z,y) (:1:+y)3 T
-’ - Dy,_1)%¢(z,y)
B, +B +c“/ d Dy _1[E(z, (D, dr =
1 2 4 Y ¢ 1 1[ ( y)] (:r+y)3
st 1, —1)2‘/’(‘7:, y)
B+ By +c dy Dl _I[E (.’L‘ - y)3 ]d.’L‘
(D, - )
s‘/ dy/ E( ,yDl—l[ lml+ymy]d:r=

(B3 is an abbreviation for the first integral)

(D1,-
Bl+Bz+Ba+CSt/ dy/ E(z,y) Dl—l[ L l) (:r’y)]d:r=
(z+y)3

(o o) [o o)
D, -
BI+BQ+B3+CSt/ dy/ E(-T,y)(( L l) <P(;B,y)_
0 1 (z +y)

3(D1,-1)%¢(z,y)D1,-1(z +y)
(z +y)*

[o o] o0
Bl+Bz+Ba+CSt/ dy/ E(:r,y)(Dl—l) 23 ’y)d
0 1 (z +y)3

)dz =

22




Now, because z + y > v/r2 + y? = r on this quadrant, (z—+y)'3' —3' € L([1,00) x [0, 00))
This implies that we can estimate:

IAw@AwE@wwwdes

[o o] (o o]

1
m+mum+MwMWn/@/———ws
|Byl + Ba| + |Bs| o[ | oo

|B1l + | B2| + | B3| + Mop3(¥)

For the calculation of the By’s, we use the integration rule from the proposition above.

o0 o0
By = st/ d / D _ E , ‘P(x’y)d =
1=c* [ dy | Dy 1{ (my)——“_y]x

St/ E 7yd+st/E xO)d=
(o o]

cst/ 1(l+y2)(p( )d + st/ eizz(p(x’o)dx_:
0 1+y 1

%
c* /00 Lei-’ﬂcp(l y)dy + c‘“/oo lfzi°"'2<p(:r 0)dz
o l+y ’ 1T B

1 eiyz) = s.0. (1 iz’) = 1. This implies that

From proposition 2.2 we know that s.o.(y27 oy

|B1] < Mip1(e).

For B, we have

= Dy,—1p(z,y
B, = 6“/0 /1 Dl,—l[E(fB,y)ﬁl—;)z—)]dfﬂdy =

“/ E(1 ()’y)d +cs‘/ B(z,0) 21000 o

cst/ z(l+y2) Dl(l—ip()’y)dy_'_cst/ eiz"’ Dl,—l‘P(x’O)dx=
0 1

w . w .
cst / ezy2 Dl(;::p( )’ y) d + st / 811:2 Dl,—l‘P(zv 0) dx.
0 1

So
| B2|] < Mipo(p).

And the last one:

. 00 00 Dl —l) -
B3 =c /0 A Dly_l[E(x, y (:L' ¥ y) ]d dy
st - (Dl —1) ‘P( ’y) st (Dl,- )2(P($,0)
¢ /0 E(1,y) T dy + ¢ / E(z,0) lx3 dz =
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2
st 1(1+y ) (Dl —1) ‘p(l ) st /oo 2 (Dl,-l) (p(x, 0) _
(& /0 1 +1)° dy+c : e 3 dx
(o o] (o o]
st iy? (Dl,—l) <p(l,y) st/ ix2 (Dl 1) (l‘ 0)
e /0 e T+9)° dy+c ) e 23 dzx.

It follows that
| B3| < M3pa(p).

This yields
(o o] (o o]
I/0 /1 E(z,y)p(z, y)dzdy| < Mps(p).

For the integral over [0,00) X [1,00) we can use the reflection z — y,y — z and write:

/dy/ y’wxydx—/ dy/ e~V )(y, r)dz.

Similar to the calculations above, the last integral can be estimated by Mp3(yp). Namely,
the minus sign in the exponent only causes minus signs in the constants in front of the
integrals, so the absolute values remain the same.

We have now proved that

l/ /([o )2\([0,1])? @ )y (z,y)dzdy| < Mps(p).
lw ¥

For the other three quadrants we use reflections z — —z and y — —y. This then results

in:
| / /Rz\([ L1))? @1 y(z, y)dzdy| < Mps().

Because ([—1,1])? is compact, the integral over this square can be estimated by Mpg(yp),
so we have now proved:

KT, 0}l < Mp3(p) (2.7)
i.e. 5.0.(T') < 3 and this is (2.5).

To prove that (2.6) does not hold for all ¢ € D, we need a sequence ¢,, in D such that
p2(pn) < M, uniformly in n (2.8)

and

// @) g, (z)dzdy  +o0 for n = oo. (2.9)

When we have found such a sequence, it is clear that (2.6) does not hold for the ¢,, so
s.0.(T) = 3.

Let a € D(R?) be such that 0 < a < 1, a(z,y) = 1 for (z,y) € B(1) = {(z,y) € R? :
r? +y? < 1} and afz,y) = 0 for (z,y) € (B(2))°. Take 8 € B(R?), with supp(8) C Q =
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(3,00))%,0< B <1, B(z,y) =1 for (z,y) € ([1,00))%
Define an(z,y) = a(%, ¥)B(z,y), then oy, € D.
When we now define
ei(y2—12)
p(z,y) = m,
the sequence
on(z,y) = an(z, y)e(z,y)

satisfies (2.8) and (2.9).

To see (2.8) note that a € D, so the derivatives D*(an(z,y)) = D*(a(Z, £)) = ;D*a(z, y)
are uniformly bounded in n.

From this it follows that

p2(¢n) < M sup  sup |D¥op(z,y)| (2.10)
[kl<2 (zy)eQ
by Leibniz’ rule. To majorize this we need to consider the partial derivatives 6—61-, g—y, %, (%zz
2

and (9‘3% of .

o —2izeilt’=z")  2eily*~2?)

_— x — =

Bx(p( '9) (z + y)? (z+ y)3

So sup(; y)eo |%cp(x,y)| < +00. The 6%-derivative is equivalent to this one, and therefore
also bounded on Q.

82 (x ) . x2ei(y2—12) . ei(yz—xz) e xei(yz_xz) ] ei(yz—xz)
S ] — C "
0z P Y T AT Ty T a2 T e+ y)? | A+ o)

And because all these functions are bounded on Q, sup(; ,)cq |6%2;cp(x,y)| < 400. And
similar for the %-derivative.
82 ( xyei(yz—zz) xei(yz—xz) yei(yz—x2) ei(yz—xz)
—ulz =E +c +c +c s
oY =T Y e T e TG

Because - +y 5 < % on @, all these functions are bounded on Q.

So (2.8) holds.
The integral sequence is

// i(z%—y )(P d:::dy _/ / =y )an .’L‘ y) i(y?—z )(x-:'y)2dxdy =
00 oo
/; /; an(xay)(
2 2

So (2.9) holds.
This finishes the proof of the proposition. |

dxdy> / / d:zdy>log( ) ™
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Theorem 2.5 Forp € Z4, q € Z, the summability order of the distribution Ty, 4, defined
by

(T ) = / / 2PyelE* V) p(z, y)dzdy
isp+q+3.

Proof To prove that s.0.(Tp,q) < p+ g + 3, we use induction on p + q.
If p 4+ ¢ = 0, this is exactly the proposition above.

Assume that s.0.(Tpq) <p+g+3for 0 <p+qg <m. Then if p+q =m + 1, (we may
assume that p # 0), it follows

(Tpi0r ) = / / 2Pyt "V p(z, y)dzdy = / / zel® Vg~ yl (2, y)dady =

¢ / / %ei(zz—yz)x” “ly9o(z, y)dzdy =
c*t / / ei(zz‘”z)%[ﬁ yl(z,y)ldzdy =

ct // ei(zz'yz)x”'zy"w(:c,y)d:l:dy +c* // ei(zz'yz)x”'ly"%ﬂx,y)d:cdy (2.11)

for p # 1. For p = 1 (2.11) reduces to the second integral, which is dominating in sum
order. By the induction hypothesis

dyp
(Tp.q» ) < My pp_24q+3(p) + My Pp—1+q+3(a—$) <M pyig43(e)
S0 5.0.(Tpqg) <p+4q+3.

To prove that the sum order is exactly 3, we consider the sequence ¢, in D, defined by
Yn(z,y) = an(z, y)p(z,y). With a, the same as in the proof of the proposition above and

ei(y2_12)

p(z,y) = W-

Now we have to prove (similar to (2.8) and (2.9)) that
Pp+g+2(n) < M, uniformly in n (2.12)

and
//xpy"ei(zz‘yz)(pn(x)d:cdy /' +oo for n = oco. (2.13)

By a similar argument the analogue of (2.10) holds:

Potre+2(pn) S M sup  sup |D¥ip(z,y)|
Ikl<pte+2 (z,y)€Q
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Using Leibniz’ rule again we find

Dto(z,y) = D* ( Wci(w-;z) ) >

k 1 v
D! Dk—let(y =a)
OS,ES,C ( C ) (z + y)pter?

1
. =
P ey

And the terms
Dk-—lei(y2-:cz)

are of the form

Ct,s t, s i(y?—z?)
2. (z + y)provz+ Y = :
t+s<|k~1|

Now because . .
T ys < e = rt+s-u
Gryr = T |
where r = /22 + y2, the terms in the last sum are uniformly bounded if t + s — (p + ¢ +
2+!]) £0. We have

t+s—(p+g+2+|l)) <|k-l-(p+g+2+|l) <|k|-(p+q+2) <0
if |k| < p+ g+ 2. So D*y is uniformly bounded for |k| <p+ g+ 2, i.e.

Ppq+2(pn) < M.
This proves (2.12). The integral sequence in (2.13) is divergent, namely

% pyagilai-v?) ( )_1 e ) IR
- zPyle an(z,y (z+y)P+‘1+2e sdy &=

Ty an(I,y)WdIdy 2

1
//IP @y =

(we substitute z = yt, and dz = ydt)

% tPyPtat+l
/ dy/ (yt)? yt Y p+q+2 ot T prarzydt = / dy/l yPHIF2(g 4 1)p+a+2 dt=

71 7y
~d Lt i
/1 = y/l (t+1)p+q+2d 2 40
v

for n — oco. This ends the proof of the theorem.

Corollary 2.6 The summability order of P(z,y)el® =¥ is d°(P) + 3.

In the next section we use these results together with the desintegration formula to calcu-
late the sum order of e!¥ with P a non-degenerate quadratic form on R".
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2.3 Non-degenerate quadratic forms on R™

We will determine the sum order of e¥ with P a non-degenerate quadratic form on R™,
P(z) = (Az, z), det(A4) # 0. First we reduce to the case that A is positive definite, later on
we take A general. For the integral calculations we will need the desintegration formula.
This is stated in the first proposition of this section.

Proposition 2.7 (Desintegration Formula) Let f be a radial function on R™. Then

/Rm f(jz|)dz = /Ooo dr /Izl=r f(|z))ds,(z) = wm /00o ™1 (r)dr

where

~f3

T

I(

W =2

|3

)’
One can prove this by using polar coordinates.

Proposition 2.8 Let L : R™ — R™ be an invertible and linear map and T a summable
distribution on R™ with sum order mg. Then the distribution T o L is summable and has
sum order my.

Proof Let ¢ € D(R™). Then (T o L,p) = J YT, 0 L™'), where J is the determinant
of the Jacobi matrix of L. So |(T o L, )] < My pmo(¢ o L™1). Now for D of first order
D(p o L") = (Dp o L~')L71, and by induction, using the productrule, it follows that
D*(po L) = (D*po L71)(L~1)H.

This implies that [|D*(¢ 0 L™Y)||eo < ¢ |D*¢ 0 L™ |eo = ¢ | D pllco-

S0 pme(p o L™') < M py, () and

l(TO L,(p)l < M pmo(‘p) V(p € Da

ie. T oL is summable and has sum order smaller or equal to mg, the sum order of T.
Because this holds for all linear and invertible maps L and all summable distributions
T, the converse also holds. Namely write § = T o L, then S is summable and s.0.(T) =
s0.(SoL71)<s.0.(S)=s0(ToL). §

Theorem 2.9 [TH1] Let P be a positive definite quadratic form on R™. Then the summa-
bility order of T : ¢ = [ &P @p(z)dz is m + 1.

Proof There exists a positive definite matrix A such that P(z) = (Az,z). Thus there ex-
ists an orthogonal matrix U, such that U'AU = D = diag(A1, A2, -- -, Am) with A >0, for

_ — di 1 1 1 t - tyrt =
k=1,....m. fW = dlag(\/(/\l), Toay \/(/\m)), then W!DW = I. So WU*AUW =
I. Define L =UW, J = det(L) then

(T,p) = / 2 Dy(z)dz = J / ALY o(Ly)dy =

m
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J A L ALYY) o(Ly)dy = J 4 eIy p(Ly)dy =

/ R eV o(Ly)dy = J (Ty,p o L)

where Ty is the distribution ¢ — [ ei|‘|2<p(:c)dx. Because L is an invertible linear trans-
formation, the previous proposition applies: s.o.(T') = s.0.(Tp).
Let B be the unit ball in R™.

(To, o) = (/B+/c)eilxlch(x)d:r.

Because B is compact the first integral can be estimated by Mpg(¢). The second integral
is equal to

) 00
/ e'lxlch(:c)d:c =wm/ ™10 (r)dr
c 1
where ®(r) = fI$I=f o(x)ds,(z) = flyl=1 ¢(ry)ds1(y). Moreover
= 9
#00) = [ (3w elrudsa(v)
lyl=1 ;:: Oz
implies that ® belongs to D(R) and p,(®) < c**pn(p). By proposition 2.2

I/B e’ p(z)dz] < Mppm41(®) < Mpmyi(p) Ve € D(R™).

Therefore the sum order of Ty is at most m + 1. To see that it is not smaller than m + 1,
consider a sequence of radial functions ¢, with support in (B (%))c Then ¢, (z) = &,(r)
if |z| = r, supp(®,) C [4,00). Let a, € D(R) be as in the proof of proposition 2.1:
0<a, <1and ay(z) =1 for 1 <z < n. Define

&, (r) = an(r)

-

Then the derivatives Dy, are linear combinations of derivatives of ®, up to order |k|

with bounded coefficients. For example
Jp or o
3—1:'1_‘(-'5) = ‘I’L(T)Ec—i = &, (r)— = O(,(7)).

The derivatives up to order m of ®, are uniformly bounded in n, so pm(ps) is uniformly
bounded in n. On the other hand, the integral sequence diverges:

S 12 3 ze_ilxlz
el o, (z)dz > e'lel dz =
i = m
n 1<(z|<n ||

n . ze—ir2 n 1
wm/ M1t =’ =wm/ ;dr /' oo
1 1

r

for n — oo. This implies that the summability order of Ty is exactly m + 1. [ |
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Corollary 2.10 Let P be a negative definite quadratic form on R™. Then the summability
order of T : ¢ — [ €F@p(z)dz is m+ 1.

Remark Because el*I’ = el ... - ¢ith = T ®...® ei’Z, we know from the previous
chapter that s.0.(efl*’) < s.0.(eF ) 4+ ...+ s.0.(e'¥") = m 5.0.(e'*") = 2m. But we have
proved in the theorem that s.o.(ei|’|2) =m+1 < 2m for m > 1. So we see that we have
found examples of the strict inequality in (1.25).

Theorem 2.11 The summability order of the distribution T : ¢ feip(’)<p($)da: with
P a non-degenerate quadratic form on R™ is m + 1.

Proof For P positive or negative definite this is the previous theorem. Assume P not to

be definite. Then by a similar argument as in the previous theorem, s.0.(T) = s.0.(To),
where Ty : ¢ — fei(D"’)cp(x)dz, with D = diag(1,...,1,-1,...,—1) (k times 1 and !

times -1).

Denote n = (z1,-..,Zk), £ = (Tk+1,---,Zm) and x = (1,§), dz = dn d{. Furthermore,
2 = n|? = ZLI |z:|? and p? = [I€]I> = Y itkin |z;|?. We again use the desintegration

formula, but now successively on two variables.

@)= [ O plarda = [ de [ TP, 000n =

. oo .
/ e—l”fllzd{ / rk—letrzq)f(r)dr’
R} 0

where
b= [ otOds 0= [ oo
lItll=r liell=1
Continuing,
(To, / / rk=1pl-1 eir’ g~ ®(r, p)drdp,
with

®(r,p) = /|u|| pfb u(r)dsp(u) = Au" 1(I>,,u( r)dsy(u) =

/| " /| Pt s (dss o)

Now we use the results from the previous section, and know that r"_lp"lei(rz'Pz) has
sumorder k—141—1+3=k+1+1=m+1 on R?, which yields an estimate:

[{To, ¥)| < Mpm41(®) (2.14)

Now we need a relation between p;,4+1(®) and pmy1(p)-

/|u|| 1/|t|| = Ztl_)‘P(Tt pu)dsy (t)dsy (u),
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6"r= (rt, pu)ds s1(u
(5)"8(r,0) Aww&FEJam (rt, pu)dsy () (),

i=1
And this gives us

/IuII l/tll =1

From this the relation follows:

aﬂli"? =
(5" (5, () =

!

lam"g;%%wmmmmmwam.

pm+l(q)) < Mpm+1(‘P)'
So (2.14) can be replaced by
I{To, )| < Mpm41(p) Ve € D(R™),

ie. s.o.(T)<m+ 1.

To see that the sum order of Tj is not smaller than m+1, consider the sequence of ’biradial’

functions ,, = p,(n,£) in D(R™) defined by ¢n(n,£&) = @.(||7ll, I€]]), where ®,, is similar
to the function ¢,, used in the proof of theorem 2.5:
1 -
(r,p) = ¢, @u(r,p) = anlr,p) 2(r,p),

(r+p)™

where a,, is the same function as before. We also use ¢(n,€) = ®(||nll, I€]]). We know
from that proof that p,,(®,) is uniformly bounded in n and that the integrals diverge:

(To,pn) = // rk=1pt=1eir* =P (7, p)drdp =

// Tk—lpl—lei(fz-Pz)L’r’pf)nei(pz_r2)d'l’dp 400,
(r +p)

for n = o0o. So it remains to prove that

Pm(®n) <M = pm(pn) < M.
Define again Q = ([, 00))?, then

pm(pn) = sup  sup  |D*en(n,€)| <M sup  sup |D¥p(n,€)| <
[kI<m (lI=1l.l1ElheQ k[€m (lInllllglDeQ

M sup  sup |D*&(|lnll, lEN)I.
lkl<m (il ieleQ

The derivatives D*®(]|n]|, |I€]]) with |k| < m are linear combinations of

& o .
5+ 52Ul el D3l D el
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with £+ s <m and 0 < |a| < m, 0 < |B] < m. Because p,,(®) is bounded on Q, the first
term can be estimated by a constant. The normderivatives are treated in the following
lemma.

Lemma 2.12 For |k| > 0,
[.
k n
DAl =) e,
MR
where the sum is finite and the multi-indez [; > 0, n; > 0, |l;| < ny, for all i.

Proof of the lemma
We prove the lemma with the use of induction. For |k| = 1, D¥ = 3% and

2 = 1
o, 1= T

Assume that for |k| < kg the lemma holds, then for |k| = ko + 1, D¥ = 3‘3—], D*~¢j for some
7, 1 <j < m. We apply the induction hypothesis to D*~¢i:

8 0 b
D¥|lnll = —D*~%|In|| = Cip = =
I, on; zl: lIml|™
(|Li] < n; for all 7)
l; e, : 77[ ite;
Ga—Tr— =) & .
Z 0771 Ilnll"' Z ol * <l
where ¢; = 0 if (/;); = 0. In this sum we compare: |l; — ej| = |l;] =1 < n; =1 < n; and

|li + ej] = |lil + 1 < n; + 1 < n; + 2. This proves the lemma.

It follows from the lemma that D*||n|| and D#||¢|| are bounded on Q for |a| > 0 and
18] > 0.

We have now proved that the derivatives D*®(||n||, ||¢]|) are bounded on Q for [k| < m
and therefore p,,(¢,) is uniformly bounded in n.

This proves that the summability order of Tj is exactly m + 1. So the sum order of T is
m+ 1. a
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Chapter 3

Generalized Fresnel Distributions

In this chapter we try to find out which polynomials P lead to summable distributions
e'P on R™. We first consider the one dimensional case.

3.1 One dimension

For general polynomials P in one dimension we have the following result:

Proposition 3.1 [E.G.F. Thomas] Let P : R — R be a real polynomial, then

1. €'F is summable < d°(P) > 2.

2. if d°(P) =2, s.0.(e’F) =2,

3. if d°(P) >3, s.0.(eF) = 1.
Proof If d°(P) = 0, then ¥ = ¢, so f(gip) = cd is not continuous, therefore ef is
not summable. Similarly, if d°(P) =1, F(eif) = F(e¥o+%2)) = cF(e®®) = co_y is also
not continuous, and therefore not summable. For polynomials P of degree 2 e'f can be
written as cea(z+b)’ by completing the square. By proposition 2.1, using a translation
over —b, for these polynomials €' has sum order 2.
For P with d°(P) > 3, take a large enough, such that |P'(z)| > 0, for |z| > a. Because

[—a, a] is compact the integral of e'F p over this interval can again be estimated by Mpo(¢p),
and we need only consider the integral over [a,00). For ¢ € D, we have

(o o} (o,
iP(z) . ! iP(z) w(z) _
/a e p(z)dz /a P'(z)e PQ) dz

= ol (z) ® iPz) @ p(z)
st iP(z)) ¥ — St iP(z) st -
c /a —d:z:[e ]_—P’(:z:)dx c /a e —dx[_—P’(x)]dx+c ¢(a)

oSt /°° eiP(z)(f)’,((Z)) ', <P((;3(};’;§I;) )dz +c3t<p(a).
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If d°(P) =n >3, d°(&)=1-n< -2, and dO(F{’,},) =n—-2+21-n)=-n<-3. So
p7 and (%77 are integrable on [a, 00), therefore

w .
| / P p(z)dz| < Mpy(p)

and s.o.(e'X (’)) = 1, because it cannot be zero (that would imply that ¢'¥(#) is integrable
in the usual sense, taking ¢, (z) = a(£) with o from the proof of proposition 2.1). This
proves the proposition. L

Definition We define the round upmap [ ]: R =5 Z by [a] =n withn-1<a <n.
Theorem 3.2 Let Ei p(x) = z¥'P(®) and n = d°(P) > 2. Then

1. | [{° By p(z)p(z)dz| < Mpo(p) for k < —2.

2. | ¥ E-1,p(z)p(z)dz| < Mp; ().

3. s.0.(Exp) = [££2] for k > 0.

Proof The first statement is clear: Ey p is integrable over [1,00) in that case.
For 2. take @ € D and a large enough such that |P’'(z)| > 0 for |z| > a. Then

o0 o0
= f Lpre) - / p)eiP@) 2@
/ E_y p(z)p(z)dz = /a p p(z)dz = ; P'(z)e 2P/ () dz =

el U (z) ' d  p(z) _
st iP(z)y_¥ = gt iP(e) [ 2222 1dy + c®tip(a) =
) /a dz (e ):zP’ o /a ‘ dz [:zP’(:z) iz ¥ < i@

ot / ¢iP() (L ¢'(z) p(z) _ p(z)P"(x)
a zP'(z)  2?P'(z)  «(P'(x))?

Now considering the degrees: d"(ﬁa) = —-n < =2, d° (z TP )) =-n—-1< -3 and

)dz + c*p(a).

d"(%,,l,l(:—))w) =n—-2-1-2(n—-1) = —n—1 < -3, we see that all these rational functions
are integrable on [a,00). Because [1,q] is compact the integral over this interval can be
estimated by Mpo(p). This results in:

| / E_y,p()p(z)dz] < Mpy(p).

This proves 2.

We prove the third statement using induction on k. For k = 0, we know that s.o.(e!F) = 2

if n = 2 and s.0.(e’¥) = 1 if n > 3 from proposition 3.1. So we have to check whether
n—1| = 2 for n = 2 and [ ] =1 for n > 3. The first equallty is obvious. For the

second note that 0 < 23 < 2 =1ifn > 3. So then [-%4] = 1. Now, assume that
s.o.(E,p) = [H4£2 21for0<1I< k—l Then we also have that s.0.(Q(x)e'P(®)) = I'Jng_li'l
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if d°(Q) < k — 1. Again, we only consider the interval [a,00) which is sufficient by
compactness of [—a,a] and equivalence to (—oo, —a]. We now have for ¢ € D

0 0o | e ] i k
/ Ek,P‘P(I)dZZ:/ e'P(I):z:k(P(:C)d:z::/ P'(z)tf"’"’%%dz:

a

©d, ; zFp(z) d zkp(z)
st iP(z) a st iP(z) & st
[+ ‘/a- —(e )__P’( ) dr =c ‘/a- € [ P’ ) ]d +c ( )—

[ p k@) | PE)  Se@P@),
[ G By et

The degrees of the rational functions are d"(}’,—',c(;lj) =k-1—-(n-1)=k-n <k,
dO(P_’GT) =k—-(n-1)=k-n+1<kand d"(%—k—’z—;%%) =k4+n-2-2(n-1)=k-n<k.
So we can apply the induction hypothesis to all three:

iP(z:) Ik_l k -n+ 2

s.o.(e P’(:z:)) = — 1
iP) T\ k—n+1+2
s.0.(e P()P’( ))_r — ]

,P(I):z:kP’( )) _ l,k—n+2
(P'(z))?
Therefore s.0.(Ex,p) = max([£:232], [E=n4142] 4 1) =

[E=ntli2] 4] = [M] +1= (k2 -1)] +1 = [E2]. So the statement is true for
k. This proves 3. i

1.

s.o.(e —

3.2 Symmetric polynomials in the two dimensional case
Proposition 3.3 For E,(z,y) = €@’ +V*+2) the following holds:
1. s.0.(E;) =3, |a| # 2.

2. E_5 and E, are not summable.

Ll 11~

Proof Consider the matrix A = ( ) Then

B[R

Eu(z, y) = eAGHE),

We can apply theorem 2.11 if det(A) # 0, that is if |a| # 2. So 1. follows directly from
theorem 2.11.
For the proof of 2. we introduce new coordinates: u =z +vy, v=z —y. If a = 2, then
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Eo(z,y) = eil@tv)’ = e’ If a = —2, then E,(z,y) = e'z=¥)* = ¢®” So (in the first case

for example)
|[ Bz wetadady = [[ = o, p)dzay =

2 // eiuztp(%(u 2 i) %(u = ) i

We see that by a linear transformation of coordinates the distribution only depends on
one variable. So it cannot be summable. [ |

Theorem 3.4 Let k € R and let Ty be the distribution
o fre i@+ +k2°") (1 y)dzdy for ¢ € D(R?). Then

1. s.0(Tx) =1 for k> 0.
2. s.0.(Tp) =3.
3. s.0.(Tx) =1 for k<O0.

Proof It is sufficient to consider [1,00) x [0,00) because the polynomial is symmetric.
Namely, using the reflections z — —z, y — —y and £ — y and y — = one gets the same
result for the other quadrants in R? \ [~1,1]2. We abbreviate Ej(z,y) = €@ +v’+kz’y?)
and B = (z + y)(1 + zy). Then D1 E; = cs‘BEl

To prove the first statement, consider the case k = 1. Let ¢ € D(R?).

o0 o0 o0 [o o]
/ dy/ El(z,y)<p(x,y)dx=/ dy/ BEl(z,y)de=
0 1 0 1 B
o0 o0
o [T | Dia(Eyfe, 1)y 28 ) g =
0 1 B
o0 o0 o0 o0
e [Cay [“DuaErte X5 o+ [“ay [r(e D1 (E G as =

S‘/ Ex( B(l’y))d +c3‘/ Ei( 0)—‘1’;((2”2))dz+

C“/ dy/l El(zay)Dl,l((p('%y—))dx =

cst/ 1(l+2y ) ‘P(l y) dy +cst /oo ei12 tp(x,O) dz+
0 (1+y)? 1 T

CSt/O dy /loo El(zvy)Dl,l((p(:gy))dx'

We call these integrals respectively I, II and I11.

o0}
o(l,y
st [T ay < Mm(e)
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and
|1I] < Mp(p)

by proposition 2.2. To estimate I1] we first have to calculate D; ; §.

p __ Dy Dz +y)Q +ay)) _
Me+y)Q+zy) (= +y)(1+1y) (z +y)2(1 + zy)?
Dy  2(l+zy) gz +y)?
(z+y)Q+2zy) (z+9)?2(Q+1y)?  (z+y)*(1 +zy)?
D, ¢ 2p P

+y)Q+zy) (+y)2(Q+zy) (1+ay)?
This yields

00 00
III = CSt/ dy/ El(x,y)Dl,l((p(x,y) )d:z: =

st 11<P( y)
¢ / dy/ Elxy )(1+:1:y)dx+

st (p(:I:,y)
¢ /o dy/l ”1‘(14’*’)(z~+y)2(1+z~y)‘“‘+

o o) o o)
CS'/ d / E\(z, o=y
0 g 1 1 y)(1+xy)2

We will call these integrals respectively I1I;, 111, and I113.
For II1I; we calculate the integral:

| Y Ly S W
T +y) 1+a:y 1+t)3’

(using the substitution y = £)

dt | ———dv=[ dt| o dr=
/0 /1 1+tz2+t /0 /1 (A= 41
I

(substitute u = ——)

/ / / dt/°° L du <
1+t 2+1 f1+t o 1S

This gives the estimate

|[I11| < Mpy(p).

Now because
1 1

TESw T e Ly g T gy
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on [1,00) x [0,00) we have the estimate
[I1L| < Mpo(w).

For III; we need an extra integration by parts, because '(T;ysf is not integrable on

[1, 00) x [0, 00).
— st d )
IlI; =c / y/ E\(z,y) 1+:1:y)2dm
o0 o o]
st d / 2\ izl +yi+z2y?) e(z,y) e —
c /0 Yy (2z + 2zy°)e 22(1 + z0)2(1 + 79) T

st ‘P( )y) |
‘ / d"/ Db e+ @~

o o)
st d / D E ‘P(x)y) d
¢ /0 v, DrBrm i)t

oo oo
N / 75 p(z,y) -
\ /0 P e o L
Now we first calculate D10 cyrsrmmy +xyl a7y

1 1+ Ty)?(1 + v?) + 2zy(1 + zy)(1 + v?) B
Wl + o)1 +42) 22(1 + zy)*(1 + y2)2 -

(1+zy)*(1 +3?) 2zy(1+ zy)(1 + y?)
2(1 +xy)4(1+y) (1 +oy) (L + 22
2y
(1 + my)?(l ) sz 1+ v

This yields

III. = st/ d/ D ‘P( )y) d
=y Wy P )

Drop(z,y)
ot d/ 1,0 d
/ y z(1 + zy)? (1+y2)) et

st d / E (P(-T,y) d
i / ¥ . 21+avy)2(1+y2) i

St/ dy/ 1+my (1)+y)dx

Again we call these integrals II13, 1113, 11133 and 11134 respectively.

= L,y)
Iy =" / ) d
S TR T+ +v) "7
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Because W is integrable on [0, 00) this part can be estimated by
|[I1I31| < Mpo(p).
For 113, we use the substitution y = &:
1
/ dy/ dm—/ dt/ Nl =
z(1 + zy)2(1 + y?) z(1 + t)? )
/wdt/‘” . </°°dt/°° !
z
0 1 (1+t)2($2+t2) - 0 1+t

|[I1I52] < Mp1(ep).

< 00.

Therefore

Furthermore
1 1

20+ )1+ 57  o(1 + 29)2(1 + 77)
on [1,00) x [0,00). Also

Y 1
<
(1 +zy)3(1+3?2) ~ z(1 +zy)* (1 +4°)

on {1,00) x [0,00) because 1_+y_y < 1 on this area. These two inequalities then yield

|III33) < Mpo(p), |I1I34] < Mpo(p)-

We have now proved that
” * i(z2+y?+z2y?) 2
[T [ p(z,y)da] < Mpi(), Ve € D(R). (3.1)
And therefore, as remarked in the beginning of the proof:
5.0.(eEHV V)N =50, (1) = 1.

Let k > 0, then we use the linear transformation (z,y) = (u,v) = (Vkz, Vky). Now we
can write 2 + y% + kx?y? = '—‘;— + sz 4 “zk"z = }(u? + v + u?o?).
Therefore

/ dy/ iz +y? +kz?y?) plz,y)dz = / dv/ ek(“2+" +u?v?) p(u,v)du

by substituting u and v.
The proof of an estimate similar to (3.1) is the same as for k = 1. Namely, the factor }
in the exponent causes some factor in B and can be put in the constant in front of the

integral. This completes the proof of 1.
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The statement 2. is a special case of theorem 2.11.
To prove 3. it suffices to prove the case k = —1 by the reasoning above.
This proof is in two steps. We first consider the quadrants and after that we will have a

look at the neighborhoods of the axes.

We first consider the area [2, 00) X [2,00). For this area we abbreviate B = (z+y)(zy—1),
so Dy 1E_1 = c¢"BE_.

/ / E_1( ,y)(,ydzdy—/ / BE_i( (B dizdy =
! /2 /2 Dl,l(E_l(z,y))(p( B’y)da:dy=

[o o] [o o]
et / / Dy (B-1 (e, 9) 25Dy day +
9 J2 B
o o] [o o]
cs‘/ / E_l(w,y)Dn((p(z’y))dwdy-
9 J2 ’ B

We call these integrals respectively I and II. For I we use the integration rule for Dy :

[o o) o o)
z’
- [ / D1y(B-r(, ) 2%y drdy =
2 2 B

/ (B, £)(z,2)dz + / (E-12)(2,y)dy =
A B i B
© 4 2) © iy P(2,9)
cst/ ez(4 3z?) w(z, dl‘-}-CSt/ ez(4 3y?) ) i
X (z+2)(2z - 1) . C+yy-1"

Because the rational functions in these integrals are integrable on [2,00), we have the
estimate:

11| < Mpo(e).

We can write the integral IT as a sum of integrals

[o o] [o o]
II= cs'/ / E-l(w,y)Dl,l((p(g; v) )dzdy =
2

st/ / E_ Dl l(pB( ’y)dl‘dy-i-CSt/ / E_ ’y) (z’%éDl,lel’dy-

Let II, be the first integral and II; the second. Then for 1I; we estimate the following

integral: e
1 2o foo'4 1
drdy < / / —————dzd
/2 /2 Gryey-1 =), J; 3@+ ’

st 00 00 1
<c ——drdy < o0
b 42 2yl
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where we have used the inequalities zy — 1 > %:z:y and =+ y > /zy. This yields
|15 < Mpy(p)-
In II, we need the derivative D,  B:

Dy\B = Dy((z +y)(zy — 1)) =2(zy — 1) + (z + v)*.

Therefore s
. cst/ / E— 11]322 l,l d:l:dy =
—_ 1)
// =) x+y) (zy — 1)z *WF
7
St El_ ( )(.’B+ y) drdy =
// () x+y)(xy-1)2xy
ot E\(z olz,y) -
[ ] o=y
st ( )
_ — ' dzd
/ / E_, ,y ~1p zdy.
We call these integrals respectively Il and II,. For I I21 we mention that W <
W—; on this area and the last function is integrable on ([2,00))? as we have seen in
is gives

[1I21] < Mpo(ep).

The function in Il is also integrable:

d
/ / = _1 ————dzdy —-/ / y(lzy — 1) “dz = / (zy—1)7")3 =

dy 1
/2(2y—1) y /2 -1 <>

From this it follows that
|1I22] < Mpo(e).

Now we have proved that

1 ) / " E_1(z,y)ple, v)dedy| < Mpy(p).

By the reflections z — —z, y — —y, £ — y and y — = we have

I//RE-l(x,y)<p(x,y)dxdy| < Mpi(p) Vo € D(R?) (3.2)

where R = [£2, 00) x [£2, 00). This finishes the first step.
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For the neighborhoods of the axes we consider [0, 2] x [3,00). We now use the differential
operator Dy _; and B = (y — z)(zy + 1). Then we have Dy _1E_; = c**BE_;.

(o] 2 00 2
x’
/ dy / E_1(z,y)¢(z,y)dz = / dy / BE_,(z,5) 22 % s =
3 0 3 0 B

[o] 2
C“/ dy/o Dl,-l(E—l(fE,y))(p—(:IB;’—md$=
3

00 2
ct / dy/ Dy, _1(E_1(z,y) #(z,y) )dz+
3 0 B

(o] 2
T,
cﬂ/ dy/o E—l(x,y)Dl,—l((p( y))d-’ﬂ-
3

B
We call the first integral I and the second II. By the integration rule we have

® 29(0,9) M ©(2,y)
j= st/ 1y“p( 55 Bt st/ i(4—-3y%) ’ dy+
i A s Ak -2y + 1~

2
st i(9—-8z2) (p(:v, 3)
c /(; e (3_$)(3$+1)d$.

By proposition 2.2 we can estimate these integrals:

[1] < Mpi1(p)-

The integral II is equal to

oo 2
II=C“/ dy/ E—l(-’C,y)Dl,—l((p(g;y))d-’B =
3 0
oo 2
c"t/ dy/ E_l(:z;,y)—Dl"l(p(x’y)d$+
3 0 B
[o] 2 D, _.B
c“/ dy/ E_l(:v,y)—-(p(x’y)B?l’ 1= dz.
3 0

We need to calculate this derivative of B.

Di-1B _ Dia(y—2)(zy+1)  —(zy+1)—(@y+ 1)+ (y—2)(y—2)

B2 (y—z)2(zy+1)2 (v — 2)%(zy + 1)? -
—2zy+1)+(y—z)* -2 N 1
(y—2)(zy+1)2  (@y+y—z)?  (zy+1)*

This yields

00 2
II = c“/ dy/ E_i(z, y)wd$+
3 0 B

[o.] 2
st (p(:E, y)
c /3 dy/0 E_l(:v,y)———(xy = 1)2d$+
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st - - 2 <p(x,y) -
g /3 dy/o Bl e e ™™

We will abbreviate: II; is the first integral, II; the second and II; the last one. Then for
II, we have a look at the following integral.

[T par=e ["a [ ooimiyte <
dy ydzx
w oo wwn [ [
/ g xy+1) s vw—2)Jo zy+1

o 1
/ (y =9 log (zy + 1) —ody =

(log (2y + 1) — log 1)dy =

/ y—2

o0
/ og 2y+1 </ 2y+ldy-<_
s yly—-2) 3 yly—2)

oo oo
cs‘/ \/ﬂ dy = cs‘/ —l—dy < 00.
3 yly 3 VU(ly—2)

This gives
|11 < Mpi1(e).

By the inequality (y—1)71(1y+l) < (y—r)%xy+l) on [0,2] x [3,00) we also have:
[113] < Mpo(¥)-
For II, we need to split up the integration area in [0, 1] x [3,00) and [}, 2] x [3, o).

IIQ = IIQ] +1122 =

st ) st )
_ T d L
c/dy/E :zy +1) x+c/ y/E :cy +1)d

On the first area we have an extra integration by parts. For this we use Dy E_; =
sty(1 - 2?)E_;.

e (,y)
II=S‘/d/ 1-2%)E_y(z, L2l d —
21 c A Yy . y( z ) l(l' y)y(l _xZ)(xy_*_l)z T

W [ X w(z,y) _
c ‘/3 dy/0 DO,I(E_l(IE,y))y(l —22)(zy + l)zd:c -

st o % <p(x, y)
c A dyA DO,I(E—l(x’y) y(l _ IEZ)(IL'y + 1)2 )dIL'+
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st d / " ( ¥ y) d .
[ ] Bt P = Gy
We call the first integral II5; and the second II5;2. Then by the integration rule we have

1
— | .st 2 <p(x,3) g
[Thau] =16 [ Boa(e, ) g Fay el =

1
st [2 i(9-8z?) p(z,3)
le /0 ¢ (1—2:2)(32:+1)2)deSMPO(‘p)'

For the integral I, we first calculate the derivative:

(1 - 2?)(zy +1)* + 2zy(1 — 2®)(zy +1) _
y2(1 — 22)%(zy + 1)* B
1 i 2r

y2(1 - 22)(zy +1)?  y(1 —z?)(zy +1)*

1
o=y 17

This yields

P : (z,9)
I =c5‘/d/E_ z,y)D 14l dz =
212 A Y A 1( y) O,I(y(l —xz)(xy-}-l)z)

st DO l‘P( )
c / dy/ E_\(z,y) (0 = 22)(zy + 1) dz+
st (P( )y)
c / dy/ E_i(z,y)— 720 = 2)(ay + l)zdx-}-

cst/ dy/ () 1-xa(:p2()(wy)+1) -

We abbreviate: II,;21 is the first one, I1519, the second and Il5;03 the last integral

I15;2; we calculate the following integral:

dy ydz
st d / d — st/ /
/ v 1—2:2 )y +1)2 T (1-z2)(zy +1)?

L3l e [ 3
%xy+1 xy+1
/ . I%dy=cs‘/ —( ~1)dy =

3 Yoy +1° 3 Y §y+1

st /oo — dy+c”/oo idy
3 %y3+y2 e

Because these integrals are finite we have the following estimate

|II2121] < Mpi(p).

. For
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For 11192 we use the inequality

1 1
(= D)@y + 1) = y(1 - D) (zy + )P

on [0, %] x [3, 00).

Now the calculation of Il12; gives

[TT2122] < Mpo(yp).

Similarly for I15;123 we use

T 1
(= D)@y + 1) = y(1 - 29 (@y + 1)2

because - l+ < 1 on this area. This yields

|IT2123] < Mpo(p).

In all we now have
[II51] < Mpi(p).

For II5; we look at

/ /; +1 x—/ dy/; :z:y+1
[Tl [l L (%y; e

©] 1 ©] 1
——dy +c“/ ———dy.
/3 y(2y +1) 3 Y(y+1)

These integrals are finite so

|II22| < Mpo(ep).

We have now proved that

00 2
I/3 Gly/0 E_i(z,y)p(z, y)dz| < Mp(y).
By the reflections this yields
JA&@MW@MSWW) (3.3)

where R is one of the areas [0,2] x [£3,00), [-2,0] x [£3,00), [£3,00) x [0,2] and
[£3,00) x [-2,0].

Now the inequalities (3.2) and (3.3) and the compactness of the cross we have avoided
finish the proof of 3. |}
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3.3 Symmetric polynomials as exponents on R"

In this section we consider the generalized Fresnel distributions e'(P+V) with P a poly-
nomial of degree at most 2 (e.g. a quadratic form) and V a special kind of polynomial
potential.

Theorem 3.5 The summability order of the distribution T on R™ defined by

R O

where P 1s a polynomial of degree at most 2 and oy # 0 Vk, is smaller or equal to g}—ﬂ

forleNandl > 2.

Lemma 3.6 Denote on R™: r =|| z || and A = R™ \ B(1). Then the function % belongs
to B(A).

Proof of the lemma
To prove this lemma we will prove the following statement:

1 h
Df—— = e
EX] Zc'nacn"f

where the sum is finite and the /; are multi-indices with /; > 0 and n; > 0 and |l;] < n; for
all 4.

We prove this statement by induction on |k|. For kK = 0 we have Dkn%" = ”—;” Therefore
l; =0 and n; =1 and clearly we have |l;| < n;.

Now assume the statement is true for integers strictly smaller than k. Then for £ we have:
Df = 5‘2—1_D’“"ei for some j. It now follows by the induction hypothesis on D¥~¢ that

1 0 1 0 zh
= — 'Dk_ej-———— = e— Cl_ =
lz| Oz, Izl Oz Z | z ||

(where |l;] < n; for all 7)

Dk

l itej

L —€;
Yar
Tl * Il z ||+

where & = 0 if (/;); = 0. In this sum we again check the inequality: |l; —e;] = |li| — 1 <
ni —1 < n; and |l; + e;| = |li| + 1 < n; + 1. This proves the statement for k.
Now the lemma follows from the statement:

b

<1V A.
el St Yoe

Therefore ﬂ%ﬁ € B(A).
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Proof of the theorem First we abbreviate E,, = elP@+Ximiexs) p, = T~ ai—k
and lp = 2] — 1. The differential operator D; has similar properties to those of D, in
proposition 2.3. Then D1E,, = c*(co + > joy CkTk + 2lak:cff), where the ¢, € R, for
k=0,1,...,m. We write B, = ¢y + EZ;I ckTi + 2lakxi°.

Now we need to construct an integration area Q,,. Define Iy = [0,00) for k with ay > 0
and I = (—00,0] for k¥ with ax <0, k = 1,...,m. Similarly, we define J; = [0, R] for &
with ay > 0 and Jx = [—R,0] for k with oy <0,k =1,...,m

Now we take Qm = ([Tie; Ik) \ (ITi=; Jx)- To determine R we look at the conditions:
Bn(z) > 10n Qnand R > 1. Given cy,...,cn and ay, ... any, there exists an R which
satisfies these conditions.

Proposition 3.7 s.o.Qm(%gl) < max(["‘,—jl] — k,0), fork € Z4.

Proof of the proposition
We use induction on m to prove this proposition. For m = 1,

E, el(P(z)+an z?)

B_f - (C() +cr + 2[(11.’1:’0)’c g

If K = 0, we have by theorem 3.2 s.0.(E;) =1 = max([%],O). If k> 0s0.0,(5) =

Bl
5.0.Q, ((co+c,zf$lalz‘o)k) =0= max([l%] —k,0).
From this the proposition follows for the case m = 1.

Now we assume that the proposition holds for all dimensions strictly smaller than m.
Lemma 3.8 5.0.9,,(Em) < max([] — 1,s. on( =) +1).

Proof of the lemma
For ¢ € D(R™) we have

L ¢(z) s elz) ,
/Qm Em<p(:1:)d:1:—/ BnEn-5 _dz =c* Dy(Ep)g—dz =

m Qm m
ct | Dy(En ‘g ))da:+ g E,,,Dl(%("’—))dz.
Qm m Qm m

We call the first integral I and the second II. For I we first look at the last term in the
sum: J(™) = Jo —Q—(Em%—z)da: We can write

m OTm
m—1 m—1 m—1
=TI % x[R,eo) |J (] 20)\ HJ:c [0, 00) =
k=1 k=1 k=1
m—1
H Jk X [R, 00) U Qm—l X [O’ 00)
k=1
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where the union is disjunct.
Writing £ = (z1,...,Zm-1), this implies by Fubini’s theorem

7m) — / —a—(EmM)dz =
Q

oz, B,,
H;::ll Ji R azm Qm-1 azm m
[ (E,,,#)(i,mdz e / (Emg)(i,mdi =
ITis I m Qm-1

cst/ (E "p( ))( R)dz+cst/ m 1( ) ( )
oo Jk Bm Qm-1 Bpm— 1(2:)
We abbreviate Ifm) is the first integral and Iém) the second. We can estimate now:
™| < Mpo(e)
. . . Em M (m)
because the integration area here is compact and 'ﬁ* <1 on this area. In I,” we apply

the induction hypothesis of the proposition. This yields: the sum order of Iém) is smaller
or equal to 5.0.Q,,_ I(B 1) < max([7 1 -1,0). In all we have that the summability order

of I{™) is smaller or equal to max([$] - 1,0).
For the other m — 1 terms of I ( %, e Wa_x) we can do the same. In all we have that

the sum order of I is smaller or equal to max([7}] — 1,0).

The integral II can be written

II = ¢ Ele(M)dz =
Qm Bm

D D
CSt Em ]gp(z) d.’l; + Csz Em (p(z)B21 B_m dr.
Qm L Qm

The first integral has sum order smaller or equal to s.0.q,, ( ) + 1. We write the second
integral in a slightly different way:

st l.p(.’L') Dle
— ——dx.
c /mEm Bl B, T

Now we consider the last fraction:
DiB,,  SrLjck + 2oz 1
B, co + Zk:l CkTk + 212:20 |z |
by lemma 3.6. Now it follows by proposition 1.3 that the sum order of the second integral

of II is smaller than the sum order of the first one.
We can conclude s.o. Qm(E ) <max([£] -1, s.o.Qm(%ﬂ) +1,0) =

max([2] ~ 1, 5.0.,.(32) +1).
This finishes the proof of the lemma.

B(Qm)
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Lemma 3.9 For k € Z4 such that s.o. (%ﬁl) > 0, we have s.o.Qm(%gl) <

max([7] = (k+1), son(—;m—)-l-l)
Proof of the lemma
For ¢ € D(R™) we have
o(z) plx) , s p(z)
o E,, B" / BnEn, Bk+ldz c Qle(E) k+ld$—
o(z
oSt ! D1(Enm g£+)l)d$+cst X E..Dy( fcn+)l)d$.

We abbreviate: I is the first integral and II the second. Then as in the proof of the
previous lemma the last term of I (the 3f—m-term) is

(30 .

1 =/m_uk(E ‘pfj)l)(x R)dz-l-/ En- l(i)BkH( )

m-1

We call the first integral I fm) and the second Iém). By arguments similar to those in the
previous lemma we can estimate |I fm)| < Mpo(p). Moreover we again apply the induction

hypothesis of the proposition and get that the sum order of Ig_m) is smaller or equal to
max ([ 2] - (k +1),0). Together with the other m —1 terms we get that the sum order of
I is smaller or equal to max([{] — (k +1),0).

The integral I can be written

H=c'| En D;ﬂf) do+ct [ B, 2D Bm
Qm m Qm m

The first integral has sum order smaller or equal to s.0.q,, (—;m—) + 1 and the summability

order of the second integral is smaller.
Now we have proved s.o. Qm(—gl) < max([3 1-(k+1),s.0. Q,,_(—;m—)-l-l 0) = ma.x(l'%] -

(k +1), 500, (Ear) +1).
This finishes the proof of the lemma.

We can now prove the proposition for general dimension m.
We have Bf, = (co + S_jn 1 CkTk + 2lakxk) ~|| z ||'¥. Therefore, if k [y > m + 1 then
§lr € L'(Qm). Define ky = [m+l] Then ko lop > m + 1 and ko is the smallest integer k

for which 2% € L'(Q:,). Therefore s.o. m(—gl) 0 for k > ko.
BT Q

To prove the proposition for dimension m, we first write it in a different form:

E, 0 k<0
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We prove (3.4) by induction on k. For k = 0 we have already proved this above. Assume
that for integers strictly smaller than k with 0 < k < kg (3.4) holds. Then we have for k,
using the second lemma,

5.0.0 (z%%) S max([2] - (ko =k +1), so. Qm(—k?f"m) +1)
T < max([B] - (ko - k+1), k—1+1)
= max([E£] - ([T -k +1), k)
=max([$] - [ﬂlot] +k-1, k)
=k.
For k£ < 0 we have that |—FFT| < | ~| € LY(Qm), so S-O'Qm(;go‘h‘) = 0. This proves

m

(3.4) for all k£ and therefore "the proposmon

Taking k = 0 in the proposition yields s.o.(E,,;) < ["‘l—(’:l] on @,,. For the other quadrants
we use the reflections z, — —z;. These reflections cause minus signs in the polynomial
P, but because the proposition holds for any polynomial P of degree at most 2, the sum
order remains the same. This yields the theorem:

5.0.(Em) < r’”—“1 (3.5)

by compactness of [-R, R|™. H

Remark 1 The result of this theorem is not a precise equality yet. To prove the equality
in (3.5) one needs to construct a sequence of test functions as we did before. By comparing
this result with the other results in this article one would expect the equality in (3.5).

Remark 2 The case of Fresnel distributions with a potential of this form is a special case
of this theorem. We see that the presence of the quadratic form makes no difference in the
sum order. The part of the exponent with the highest order is dominating. This means
that also degenerate quadratic forms with such a potential have this sum order.
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Conclusions

In section 3.1 we have stated the most general result for the one dimensional case in theo-
rem 3.2. We know for which polynomials P on R the distribution e'P is summable and if
so, we know the sum order. Moreover we know the sum order of z*e'P. This means that
the one dimensional case is finished now.

For higher dimensions we now know the sum order of the Fresnel distributions. The sum
order of €!? on R™ is exactly m + 1 for Q a non-degenerate quadratic form on R™. For
more general polynomials we have considered e(P+V) with P a polynomial of degree at
most 2 (for example a quadratic form) and V a potential of the form Y axzZ. These
distributions are summable. Moreover, we have seen: the higher the degree of V' the lower
the sum order. This means that adding such a potential reduces the sum order. Further-
more, after addition the sum order does not depend on the quadratic form anymore. The

potential is dominating.

For the case of two dimensions we have considered P = z2 + y? + kz?y? as a special case.
We have seen that the sum order is equal to 1 for £ # 0. For ¥ = 0 the polynomial is a
non-degenerate quadratic form and has therefore sum order 3. So, also in this special case
we see: a polynomial of higher degree causes a lower sum order.

The sum order of Fresnel distributions on R™ diverges for m — co. Also when we add a
potential of the given form the sum order goes to co. A precise conclusion from this about
the Feynmann-integral can be found in [TH2, Thm 3.1}.

It is clear that we have not given a full answer to the question: for which polynomials P
is e'F summable? We know that for a 'degenerate’ polynomial P (i.e. P can be written as
polynomial in less coordinates by a linear transformation), e'f’ is not summable, because
its Fourier-transform is not continuous in that case. Conversely, we can ask: if P is at
least quadratic in all coordinates and P is not degenerate, is e'P automatically summable
then? A precise answer to this question has not been given yet.

Finally, to get more information about the Feynmann integral one should try an other kind
of potentials. For example V = 3" el®t|. Maybe one can get the sum order independent
of the dimension by using other potentials. Then the sum order remains bounded for
m — 00, which is important for taking the limit.
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