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Chapter 1

Introduction

In Computational Fluid Dynamics, the problem of solving the Navier-Stokes equations
numerically is a widely studied subject of research. These equations describe the motion
of continuous media like fluids, gasses etcetera. As one can imagine, they are of great
importance in many aspects of everyday life, for example in building waterways (describing
the flow in a river or, on a larger scale, in oceans), and in aircraft industries. The focus
of this report will be on the last category, as my research took place at the Indonesian
aircraft industry Industri Pesawat Terbang Nusantara (IPTN) in Bandung, Indonesia.
The Navier-Stokes equations consist of the conservation laws of mass, momentum and
energy, and the thermo-dynamical state equations. Section 1.2 deals with the formulation
of these equations.
The Navier-Stokes equations need to be solved numerically, since they cannot be solved
analytically. Therefore, a solver has to be used which, in my research, was an existing
Navier-Stokes solver, a brief description of which can be found in section 1.3. In chapter
3, a more thorough insight in this solver is given.
In this solver, changes were made to optimize the addition of artificial dissipation. To
perform this optimization, I made use of the relationship between the added dissipation
and the eigenvalues of the local matrix, i.e. the matrix obtained by considering separate
gridpoints. The ultimate goal was to see whether it is possible to 'tune' the eigenvalues of
the local matrix (and thus the added dissipation) to achieve a numerical solution which is
as accurate as possible. Let me first give a little more understanding of this problem.

1.1 Formulation of the Problem
As mentioned above, I used an existing Navier-Stokes solver. This solver was provided by
the Research Department of the Indonesian aircraft company IPTN and it was developed
by Dantje K. Natakusumah. To test this solver, a RAE2822 wing profile was used. The
grid was made by a grid generator, also provided by IPTN.
The object of this project was to implement an Inverse Eigenvalue Method (IEM) into
the Navier-Stokes solver. In general, this IEM uses a given matrix and given eigenvalues,
and subsequently computes coefficients to this matrix such that the resulting matrix has
the given (demanded) eigenvalues (see section 1.4). In this particular case, the IEM
uses a matrix corresponding with a separate gridpoint. In this way, a 4 x 4 matrix is

4



CHAPTER 1. INTRODUCTION 5

obtained, consisting of the continuity equation, the two momentum equations and the
energy equation. The relevant theory can be found in [1]. In the Navier-Stokes solver,
artificial dissipation is added to maintain stability in 'sensitive' regions, such as shocks.
However, adding too much artificial dissipation will cause inaccuracies in the numerical
solution with respect to the exact solution. Therefore, it is necessary to make an estimate of
the amount of added artificial dissipation and to limit this amount of dissipation. To obtain
a means of estimation, we have to take into account the fact that artificial dissipation
affects the eigenvalues of the local matrix. To tune the added dissipation, we can now
restrict the eigenvalues in their (negative) magnitude, and thus impose restrictions on the
amount of artificial dissipation. In chapter 2, a deeper insight into the world of artificial
dissipation and Inverse Eigenvalue Methods is given.

1.2 The Navier-Stokes Equations
For convenience, let me first give the equations my research was based upon, the two-
dimensional Navier-Stokes equations. In these equations, u is the velocity vector (u, v)T, p

is the density, is a mass force (like gravity, elecro-magnetic force etc.), p is the pressure,
e is the internal energy per mass unit (= j-i. + (u2 + v2)) and p is the dynamical
viscosity.
Furthermore, V denotes the gradient vector: V = (, so that V . u means the
divergence of .
First, we have the continuity equation, also known as the law of conservation of mass:

(1.1)

We see that for incompressible media (i.e. p constant), this equation becomes

(1.2)

The second and third equations are the momentum equations, describing the law of con-

servation of momentum:
a 1 1( V)t = E—-Vp + — + pV(V . ) (1.3)

Note that, for non-viscous media (i.e. for p 0), the above equations become the Euler
equations.
Usually, the last three terms are denoted with a, the stress tensor. It describes the force
working on the surface of separation between the elements in a fluid, for example. In a
non-viscous medium, only the stress in the normal direction is involved, and this is denoted

by the pressure.
The last equation is the energy equation:

a p 1 (1.4)

where V is the viscous dissipation function, consisting of linear and nonlinear first order

derivatives of the velocity components.
These equations may appear in many different formulations, sometimes making it difficult

to notice that actually the same kind of equations are being dealt with.
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1.3 Discretizing the Navier-Stokes equations
Having derived the analytical form of the Navier-Stokes equations, we have to discretize
them in order to make numerical computations. For this discretization, we use the finite
volume scheme as explained in the next chapter, with an explicit Runge-Kutta time step-
ping method.
The numerical scheme presented uses a central difference scheme for the spatial deriva-
tives. Therefore it is necessary to add artificial dissipation to maintain stability in sensitive
regions. In section 1.3.1, I will give a more detailed description of how and why this arti-
ficial dissipation has to be added.
In contrast to the finite difference method, the finite volume method is based upon the
intgral form of the Navier-Stokes equations, written in a simple form as

Oq OF OG—+—+—=o
Ot Ox 0!)

To discretize this integral form, a grid is needed. In this particular case, a regular grid
was used, as shown in figure 1.1. On this grid, the finite volume method is applied as

follows to discretize the integral form:
Consider a quadrilateral cell with the cell center located at (i,j), as shown in figure 1.2

(1.5)

—0.2 0 0.2 0.4 0.6 0.8 1

Figure 1.1: Regular grid around RAE2822 airfoil

I



CHAPTER 1. INTRODUCTION

For this control volume, equation (1.5) can be rewritten as

C

1..
I.J

Figure 1.2: Example of a quadrilateral cell

ff qci1+ ,c(Fd-Gd)=O

Rewriting the terms on the lefthand side and the righthand side, we get to the
approximation of (1.6):

DA

+ (Fy + Gk1xk) =0
k=AB

next

with Sj the area of cell Il,j.
Having derived this, we proceed by evaluating the viscous and the convective fluxes sepa-

rately, which gives the following, symbolically written, equation:

Sk(qk) + C(qk) + V(qk) =0

with C(qk) and V(qk) the convective and viscous operators, respectively. Now, the prob-

lem arises that, for various reasons, instabilities may occur. To avoid these instabilities,

we have to add artificial dissipation.

1.3.1 Adding Artificial Dissipation

To maintain stability of the numerical scheme, artificial dissipation must be added. This
artificial dissipation damps out oscillations in the numerical solution due to shocks and
due to the discretization, and in regions with low viscosity, where oscillations can not be

damped out automatically.
In this research, a local matrix is obtained for each grid point separately. This is done by
taking advantage of the explicit formulation of the finite volume scheme. How this is done

will be explained in chapter 2.
Adding artificial dissipation to a numerical scheme causes the cigenvalues of time local

7
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CHAPTER 1. INTRODUCTION 8

matrix to become more negative in their real part. Indeed, we know from theory that this
is a necessary condition for a numerical scheme to be stable. But adding dissipation gives
a numerical solution that differs from the exact solution. Therefore, it is necessary to add
as little dissipation as possible. In other words, the eigenvalues need to be negative, but
not too much. And this is where the Inverse Eigenvalue Method can be used. In chapter
3, a further investigation of this matter is given.

1.4 The Inverse Eigenvalue Problem
For many years, Inverse Problems have been studied. This thesis deals with the Inverse
Eigenvalue Problem (IEP), the problem of how to adjust certain coefficients of a given
matrix such that the resulting matrix has given eigenvalues. Or, to put it more mathe-
matically, a general Inverse Eigenvalue Problem may be defined in the following way:
Let A(ci,c2,. . . 'en) be an n x n matrix having elements which are functions of the n
parameters cj,... ,c,. The problem is now to determine (Ci, i = 1, 2,... , n) such that A(c)
has n given eigenvalues A, ),... ,

A more specific formulation of an IEP is as follows (see [6]):
Let A(Q) be the family

A() = Ao+ckAk, (1.9)

where c E C' and {Ak} are n x n matrices. If we denote the eigenvalues of A(c) by
{A,(c)}?, we want to find c e C" such that

= ), i = 1,... ,n. (1.10)

In [6], a clear summary of different types of IEP's is given. Generally, we can distinguish
two types of IEP's, the additive and the multiplicative IEP. A brief overview of the class
of additive IEP's is given here, as this was the topic of research in this project.
An additive inverse Eigenvalue Problem is obtained when the Ak's in (1.9) are defined by

Ak=.', k=1,...,n (1.11)

with e the unit vector. In other words, we can write

A(c)=Ao+D (1.12)

where D = diag(ck). In [5] it is proven that this problem is always solvable over the
complex field.
Let me first give an example of how an additive IEP can be applied.

Example 1.1 Consider the boundary value problem

—u"(x) +p(x)u(x) = Au(x), u(0) = u(7r) = 0 (1.13)

Suppose p(x) is unknown, but the spectrum {)}?0 is given. The problem is now to
determine p(x). If we consider the discretization of this problem, using finite differences,
we obtain

Uk_1+2tLkUk+1 *

h2
+pkUk=Auk, k=1,...,n, uo=u÷i=0, (1.14)
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where is an eigenvalue in the set {A'}. This gives us an additive IEP with

2 —1

A0 =

—1

-1 2 —1 (1.15)

—1 2

and D = diag(pk).

0

As this simple example shows, (additive) Inverse Eigenvalue Problems can occcur in dif-
ferent types of problems. The way an IEP arises in this case, will be explained below, and

in more detail in section 2.3.1

1.4.1 The Inverse Eigenvalue Method and Artificial Dissipation

Using the explicit formulation of the integral form, we can consider a 4 x 4 matrix at
each individual grid point (see [10]). This matrix is achieved by considering a semi-
discretization of the integral form of the Navier-Stokes equations. A system of ordinary
differential equations is now obtained by applying this integral form to each cell separately.
These differential equations have the following form:

q,3) + Q,, = 0 (1.16)

For each of these matrices, the 'necessary' artificial dissipation must be computed. In
section 2.3, a general and a more specific formulation of the additive IEP used in this
research will be given. Many different ways of solving this problem have been described
in past papers. I will consider in detail a paper by Wilkinson which can be found in [17].

In his article, an algorithm is presented based on Newton's method for solving a nonlinear
system of n algebraic equations. In chapter 2 a mathematical analysis will be given of this

algorithm.



Chapter 2

Mathematical Model

2.1 The Navier-Stokes Equations
The Navier-Stokes equations describe the motion of a flow. They consist of the continuity
equation (2.1), the momentum equations (2.2) and the energy equation (2.3):

(2.1)

+ ( = — Vp + + 1AV(V (2.2)

(2.3)

where V is the viscous dissipation function, consisting of linear and nonlinear first order
derivatives of the velocity components, and A and u are viscosity constants.
Many different ways have been used and are still being used to solve these equations. The
Finite Volume Method is one of them, and because this method is widely accepted as one
of the most powerful, and because the Navier-Stokes solver that was used in this research
is based on the Finite Volume Method, I will give a brief overview of it.

2.1.1 The Finite Volume Method
Applying the Finite Volume Method to discretize Partial Differential Equations has two
important advantages:

• It preserves the property of conservation (e.g. of mass, momentum and energy)

• Complicated geometries (like airfoils) can be dealt with rather easily

Let me illustrate the Finite Volume Method with an example in which I first give the
general outlines of how a conservation law is achieved. A first-order equation is used to
clarify these outlines. This equation is defined in a two-dimensional domain fI, enclosed
by a boundary F (see figure 2.1).

10



Example 2.1 A conservation law is the formulation of a physical phenomenon and it can
be stated as follows:
For every subvolume ci C ci we have

where F1 is the surface of ci1, H = (F, G) is the flux function and n is the outward normal
of F.
If H is differentiable, Gauss' divergence theorem can be applied. Then we have

f d1l +f div 11(u) d111 =fi d111

Because this equality holds for every subvolume cii C ci, a Partial Differential Equation
of the following form results:

+ div 11(u) = f
And of course a given Differential Equation can be reformulated in the integral form (2.4)
as well. Consider the following first-order Partial Differential Equation:

Oq OF OG—+—+—=o
Ot Ox Oy

Integrating (2.7) within ci gives

CHAPTER 2. MATHEMATICAL MODEL 11

Figure 2.1: The domain ci with boundary F

fudczi

increase per subvolume

= f H(u) ndF1 + JfdcZi

Flux through the edge Source term

(2.4)

(2.5)

(2.6)

(2.7)

ffqdci+ffVlldci=O (2.8)
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After applying the Gauss-divergence theorem, we get to the integral form of (2.7):

ffqd1l+yii.ndr=0 (2.9)

The last equation can be written as

ffqd1l+(FdY_Gdx)=0 (2.10)

Instead of a volume integral, we get a line integral along F, which implies that the time
variation of q inside the volume only depends on the variations of the flux along the
surface. This is an essential property of the finite volume method.
If the volume Cl is divided into n subvolumes, the same conservation law can be applied
to each subvolume separately. Adding up these 'sub-equations' should give (2.10) again.
This property must be satisfied by the numerical discretization as well in order for the
scheme to be conservative (i.e. only if the original differential equation is conservative!).

0

The advantages of using the Finite Volume Method are that problems in which u is
discontinuous can be dealt with easier, because the conservation law demands less on
smoothness of the solution than the partial differential equation. Furthermore, discrete
jump relations become a consistent approach of analytical ones.
Jameson, Schmidt and Turkel ([9]) have proposed a scheme in which a semi-discretization
is applied. In this semi-discretization one only approximates the spatial derivatives. This
way, we get a formulation in which we can consider a 4 x 4 matrix for each cell separately.
This will be explained in the next section.
We now focus on the Navier-Stokes equations, formulated in the integral form according
to (2.4). From there, we can formulate them in the following way:

aq äF 3G
(2.11)

where
Pu

q=I Pu F=
I P J PUVO'xy
\ pE J

G

= (

'VUUxy

)
(2.12)

pvH ua1, va + qy
In these equations, E is the internal energy per unit of mass and H is the total enthalpy
per unit of mass. They are defined as

E=e+(u2+v2) (2.13)
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and H=E+ (2.14)
p

Furthermore, we have the elements of the viscous stress tensors, denoted with a1 and
a, and the elements of the heat flux vector, denoted with q and qy• They are defined
as follows:

145u 2i9v
= Ptot —

IOu 51)
ox jLot +

(45v 25u\
Oyy = PtoI

—

(2.15)

ST
q1 = —k101---

ST
qy = _ktotr

where
Plot = JL + jig

k101=k+k1=ji+jtt (2.16)

where Pr is the constant Prandtl number (Pr = 0.72), Prg is the constant turbulent Prandtl
number (Prt = 0.90). Note that the indexes do not mean derivatives in x or y direction!
If the fluid is a perfect gas, then p and p are related by the state equation

p=pRT (2.17)

with R the gas constant. Furthermore, if the specific heat at constant volume and pressure,
c., and c, respectively, are constant, we have the following relationships:

e = cOT,
,, R

, (2.18)
-V—1 Cv

If we combine equations (2.13), (2.17) and (2.18), we can relate p and T to the state
variables:

p= (_1)p[E_(u2+v2)] (2.19)

T= (2.20)
("v — l)pc

After writing the equations in non-dimensional form (which does not change the equations

itself) we can define

y112M r T+S0 1 3/2

Re [(.y_l)TT00+Soj1)T] (2.21)
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where So is a constant characteristic for the gas in study. For air at normal temperature,

So = 110.4 K.
M00 and Re00 are the Mach number and the Reynolds number, respectively. They are

defined as
— Li0 , — p00L.T00L

1vi00 — , £Le00 —
coo

The index oc means the free stream value, and L is the characteristic length of the object
(in the case of the present research, the airfoil chord length). Finally, c00 is defined as

/ \1/2
(2.23)

\ Poo /

2.2 The Navier-Stokes Equations in One Cell

In this section, the theory on how and why a 4 x 4 cell matrix can be used to compute
artificial dissipation will be explained. And although this chapter treats the mathematical
model, already some numerical theory will be used here.
In the system of equations treated above, we distinguish a convective part (together with
the pressure) and a viscous part. The convective part describes the transport of a particle
in a fluid caused by the flowing of this liquid. The viscous part mainly consists of second
order spatial derivatives and describes the transport of a particle in a fluid caused by
differences in concentration. The two parts are:

pu+pv

F' Gc_ pu+puv+p
+

— puv+pv2+p
puH+pvH

and

1 0

Ft' +Gc= I

—(a+a)
I Fij

I
—(a+a)

\ —u(o + a) — V(cJ + a) + q + qy

respectively.
Equation (2.11) is integrated in each cell volume, giving (see also [13])

= j f lIFnx dS + Gn . dS] (2.24)

which can be grouped as

= + v) + (Gi + )] (2.25)

Define T = and S =. This gives

F1 = Tq, Fv = Sq (2.26)
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If we write the inviscid part (.T1 + c1) as, and the viscous part (Jv + v) as .Fv, we
have

Nk Nk

= Fj, 2v = Fv (2.27)

1=1 /=1

with Nk the number of faces surrounding cell k. is of course the discrete version of
the line integral along r appearing in (2.24).
This way, we have constructed a matrix similar to the much simpler finite difference dis-
cretizations. Considering the resulting system matrix, we get to the following, symbolically
written, equation:

____

= (2.28)

where {q} is the grid state vector {p, (pu), (pv)i, (pE)1, . . . , (pv)y, (pE)N}, and [M] is
a 4 x 4 block tridiagonal matrix.
The idea is now to adjust this matrix, such that its eigenvalues become negative. This is
done by considering only the 4 x 4 cell matrix. Let me first clarify this concept before I
proceed with the rest of the theory.

2.2.1 Considering a 4 x 4 Cell Matrix

First, consider the two-dimensional Partial Differential Equation

= P() (2.29)

where P(45) is a differential operator.
As we know from elementary discretization theory, we can write the discretized version of
this PDE in two dimensions as

= A(q52_1,, — ) + — ,j) + C(2,,_1 — i,3) + D(41,,i — j,j) (2.30)

where A,B,C,D E lit
Equation (2.30) can be rewritten as

= A1_1,3 + Bt+1, + Ccj_i + Dj÷i — (A + B + C + D)41,3 (2.31)

If A, B, C, D � 0, the matrix originating from these coefficients is a K-matrix, which
means that the eigenvalues of this matrix are in the negative half plane. In this case,
is a one-dimensional vector. If we extend this theory to the four-dimensional vector q
originating from the discretization of the Navier-Stokes equations, we have the following:
Consider again equation (2.31). To obtain a K-matrix, the four coefficients have to be
positive, which means that the coefficient of çb,, has to be negative. We can also say
that the eigenvalue of this coefficient has to be negative. In the case of the Navier-Stokes
equations, we have a similar case, only the one-dimensional coefficients A, B, C and D are
now 4 x 4 matrices. The idea is to argue that the eigenvalues of the coefficient of 4 again

have to be negative to obtain a K-matrix. In other words, we ignore the contribution of
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the neighbouring cells and only focus on the contribution of the 4 x 4 cell matrix itself.
Santos ([13]) shows in his article that the eigenvalues of the cell matrix will become more
negative if more artificial dissipation is added. This can be seen as a justification for
the above idea: because adding artificial dissipation means an increase of stability of the

system (i.e. we obtain a 'better' K-matrix), Santos' experiment shows that obtaining a
K-matrix implies more negative eigenvalues of the cell matrix. The tricky part here is
that the argumentation is reversed in this case; first we prescribe the eigenvalues, then the
'corresponding' artificial dissipation is computed.
We now have the formulation of the Navier-Stokes equations, confined to one cell. This
way, we can consider the contribution of artificial dissipation, which affects the eigenvalues
of this 4 x 4 cell matrix. For the sake of simplicity, we assume that the artificial dissipation
only affects the diagonal elements of the matrix. Later we will see that this simplification

is justified by the results.
Concluding, we make the following simplifications:

1. The Navier-Stokes equations are considered in one cell and by discretizing the Jaco-
bian matrices we obtain a 4 x 4 cell matrix

2. The artificial dissipation only affects the diagonal elements of this cell

Having constructed the 4 x 4 matrix, we now have to use it in an Inverse Elgenvalue

Method, which will be described in the next section.

2.3 The Inverse Eigenvalue Problem

As mentioned in the introduction, an Inverse Eigenvalue Method is a method for solving
an Inverse Eigenvalue Problem, in other words for finding coefficients to a matrix such
that this matrix has certain eigenvalues. In this thesis, I will consider the IEP for the
restricted class

A(c) = A0 + j CkAk, (2.32)

with Ak symmetric matrices, and later more refinements to the Ak's will be made. This
problem is generally known as the additive IEP.
In [17, pp. 34—36] an algorithm is given to solve the IEP. It has its origin in a Newton
iteration for solving a nonlinear system of n algebraic equations. As I implemented this
algorithm in the existing Navier-Stokes solver, the focus on this theoretical analysis will
mainly be on this algorithm and on the additive IEP mentioned in (2.32).

Let me first give the Inverse Eigenvalue Problem in a general form:

Problem 2.1 Suppose we have given eigenvalues E 02 and an n x n matrix A(Q) with
eigenvalues )(c). We want to find coefficients c resulting in eigenvilues )(ç*) for A, such

that
— = 0 (2.33)

To solve this problem, we need the following theorem:
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Theorem 2.1 If we denote the current by Qfr) and the corresponding matrix, eigenvalues

and normalized eigenvectors by A(T), A(T) and respectively, and if we apply a Newton

iteration to (2.38) we have the following:
The first order perturbations in the eigenvalues corresponding to a perturbation in

are given by j(r)5(r), where
= fr) (2.34)

Now the resulting Newton iteration is as follows:

J(r)ö(r) = — A(T), c(T+l) = + (' (2.35)

(r) (r) (r)
and since A' 'x1 = A, x1 , this can be written in the form:

J(r)c(r+l) = + — A' = A* — (2 36)

(r) (r)T (r)
where b2 = x1 Ao;

0

Proof.

1. (2.34) and (2.35) can be proven in a straightforward way, using elementary pertur-

bation theory.

2. (2.36) can be proven as follows:
The first equality is straightforward, combining the two parts of 2.35. To prove the
second equality, we have to consider the vectors by their entries. For convenience, I

will skip the iteration index (r). Thus, we have to prove:

A — Jc = b, where b = x7'Ao; (2.37)

Rewriting = A11 using (2.32) and multiplying both sides with ' on the left
gives

A — ckxTAkx x'Aox2 (2.38)

On the righthandside, we recognize the i-tb element of and the sum on the left-
handside is exactly the i-tb element of Jc. as follows from (2.34).

S

2.3.1 The IEP In This Case
As mentioned before, the additive IEP will be considered here, i.e. the problem as stated in
(2.32) and (2.33). The formulation given in the previous section needs some specification
before we proceed. Following the argumentation of section 1.4 with n = 4, we have the
following additive IEP:
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Problem 2.2 Given a 4 x 4 matrix A(c) with eigenvalues {A1()}. Suppose (2.32) holds,
and furthermore, Ak = We now want to find coefficients ç E C4 such that (2.33)
holds.

0

Friedland ([5]) gives a quite thorough analysis of Inverse Eigenvalue Problems, although
his main focus is on real and symmetric matrices. In his article, he considers the following
additive problem:

Problem 2.3 Find a diagonal complex valued matrix D such that the spectrum of A + D
is a given set A = {A1,...,A} E C.

0

In his article, Friedland reformulates the Inverse Eigenvalue Problem as a minimization
problem. He considers the w-inverse problem over B:

Problem 2.4 Find A* E B such that

minp(A) = p,(A*) (2.39)

where B is the closed set of n x rz real symmetric matrices and

p,(A) = >(Aj(A) — w)2. (2.40)

Using this, a proof is given for the existence of a finite number of solutions in the complex
case.

2.3.2 Choice of A0 and Ak's

In the algorithm given in the beginning of this section, a general approach was given for
a solution of Inverse Eigenvalue Problems. In this work, however, a few refinements and
choices had to be made.
Because only changing the diagonal elements of the matrix was concerned here, we could
refine definition (2.32). Now, A0 is the original matrix, i.e. the matrix with the eigenvalues
that need to be adjusted. If now Ak = ckk, where is the unit vector, we see that we
have for n = 4: (ci 0 0 0

I 0 C2 0 0
A(c) = A0 + i (2.41)

0 0 C3 0

\ 0 0 0 c4

We see that for these choices, we have the model for the Inverse Eigenvalue Method needed
here.
As said before, many kinds of instabilities can occur in a numerical model, which have to
be dealt with by adding artificial dissipation. Before giving a mathematical approach of
this artificial dissipation, let me point out some of the difficulties that may occur dealing
with non-linear PDEs.
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2.4 Instabilities Due To Non-linearity
In general, viscous regions (generally described by second order derivatives) will have a
numerically more stable behaviour than convective regions (generally described by first
order derivatives). Instabilities in convective regions are often caused by nonlinear parts
in the differential equation. This is shown in the example of the occurance of shock waves
in Burgers' equation:

Example 2.2 1 Burgers' equation is:

on
(2.42)

which we can write in conservation form:

+ -(u) = 0 (2.43)

From the theory of shocks, we know that we can now derive the velocity S of shock waves:

—S[u] + ['u2] = 0 (2.44)

where [.] denotes the junip of the argument of the shock. From here, we see that for the
Burgers' equation the following relationship holds:

1
S = (u1eft + Urjght) (2.45)

It depends on the initial values whether a shock wave will occur or not. If Ueft > Ujght,
we will have a shock wave with velocity S = . For a more detailed description of this
particular case, see [15, pp. 86—87]

0

As shown in this example, even in relatively simple PDEs, irregularities like shocks may
occur. If the PDE can be solved analytically, this is not much of a problem, as these
instabilities are usually easy to be dealt with. If the PDE has to be solved numerically,
however, there is a problem. The numerical solution will show oscillations because it
cannot handle these irregular phenomena. And this is where artificial dissipation comes
in sight.

2.5 Artificial Dissipation
Due to discretization, instabilities can occur in the numerical solution. To avoid these
instabilities, artificial dissipation is used. As an illustration, let me first give a simple
example of how artificial dissipation is used in the discretization of a stationary convection-
diffusion equation.

'Example taken from [15, PP. 86—87]
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Example 2.3 2 Consider the following equation:

dçb d'2qu——k—=0, 0<x<L (2.46)
dx dx2

And suppose u > 0 constant. After central discretization, this becomes

(i=1,...,I—1). (2.47)

with P = and boundary conditions 4o = T0 and çij = TL.
Consider the case P >> 0. The solution of (2.47) can then be written as

=TO+(TL—TO) 9(2), (2.48)

with = <<1. An analysis of this difference equation shows that the solution depends
on whether I is odd or even.
If I is odd, we can prove that the solution in points where i is even corresponds with
the left boundary condition and the solution in odd points corresponds with the right
boundary condition. Furthermore, simplification of (2.47) yields

— = 0, (2.49)

and we see that the solutions in points with odd and even i are completely independent.
For even I, the situation is slightly different. Analysis shows that in points where i is
even, the solution corresponds with the boundary conditions, but in points where i is odd,
the solution goes to infinity for 0.

The phenomena described above are known as odd-even decoupling and they are typical
for central discretization of PDEs with high P.
After upwind discretization however, we get to the following discretization:

P(q—4_i) — (,÷j —24+_) =0, (2.50)

which gives a smoother (although in the boundary layer not completely correct!) solution.
After comparing (2.47) with (2.50), using

— — i+1 — j—i uh i+j — 2, + i—1
2 51

h 2h 2 h2
' (.)

we see that upwind discretization of (2.46) gives the same as central discretization of

dçb ( uh\d
—

+
= 0 (2.52)

0

From this example we can see that even in relatively simple PDEs artificial dissipation
may have to be used to maintain stability. The instabilities that have to be corrected for
are caused by:

2Example taken from [15, pp. 24—25]
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1. odd-even decoupling,

2. regions in the flow field in which the convective terms dominate the viscous terms

3. oscillations caused by non-linearities such as shock waves

Usually, a nonlinear second-order difference term is added to control oscillations near
shocks, and a linear fourth-order difference term is added to damp out oscillations in
regions of (nearly) uniform flow (see [9]). These are regions in which the convective terms
dominate the viscous terms. Because this fourth order dissipation overshoots near shocks,

it has to be set to zero in those regions.
In adding artificial dissipation we have to take a few constraints into account:

1. The added dissipation is not allowed to reduce the accuracy of the solution of the
scheme too much

2. The added dissipation should be conservative, i.e. summed over the complete flow

field there cannot be a 'production' of mass, momentum or energy

3. Computing the artificial dissipation cannot take too much CPU time. This can
especially become a problem when the Inverse Eigenvalue Method is used to compute
the optimal artificial dissipation.

These restrictions make it quite difficult to find a proper way to add dissipation. Still,
numerous methods have been found to do this addition. In the next section it is explained
how this is done in the Navier-Stokes solver used in this research.

2.5.1 Artificial Dissipation in the Navier-Stokes solver

As we saw in section 2.2.1, the Navier-Stokes equations can symbolically be written as
follows:

= + .FvJ (2.53)

However, in this model we do not have any dissipation added yet. After the addition of
artificial dissipation, equation (2.53) becomes

(2.54)

Note that V has no physical meaning, and that it is only used to control oscillations.
The formulation of the artificial dissipative terms can be constructed in a number of
different ways. In the example in the previous section, we saw that a constant 'amount'
of artificial dissipation is added. However, many ways of defining artificial dissipation
are possible. In a method proposed by Jameson, artificial dissipation is constructed by
'blending' a Laplacian and a Biharmonic operator, multiplied by scaling and switching
coefficients (see [4]). This is done in such a way that the original conservative form is
maintained, using a flux balance formulation.
The part involving the Biharmonic operator dominates the regions where the solution is
smooth (generally the viscous regions), but it is switched off near shock waves. How this
is done numerically will be explained in section 3.2. Here, I will give a brief notice of how
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the artificial dissipative operators are constructed.
The Laplacian operator is constructed by summing, over all the edges of the control
volume, the difference between the flow variables across each edge:

Nk

V2qk = (qj — (2.55)

(note that the index i denotes the value of the state vector in the cell centers, not the cell
edges!). The summation is over the neighbours of cell k, the number of which is Nk. The
Biharmonic operator is constructed by repeating this step, which gives (see [4])

Nk

V4q = (V2qj — V2q) (2.56)

Now we can write
V = V2(q) — V4(qj) (2.57)

where
S

D2(qk) = > fjk—(qj — q) (2.58)

and
Nk

V4(qk) = e(2)_!!E_(v2qi — V2qk) (2.59)
j= tik

The coefficient is an adaptive pressure switch which turns on the Laplacian terms in
the vicinity of the shock and turns it off in smooth regions. A further explanation of this
matter can be found in chapter 3.

2.5.2 Artificial Dissipation and Convergence

Let us now investigate the relationship between the amount of added artificial dissipation
and convergence rate of the method. We expect the method to converge slower when less
artificial dissipation is added, as this means that the eigenvalues will be 'less negative' (see
also [13]).
In the test cases described below, five cases were considered. In all cases except the case
in which Jameson's coefficients were used, the coefficient for the second order dissipation
was set to 0.8. In the second case this coefficient was set to 1.0, according to [10, p. 185]
(see also section 3.2.1). The fourth order dissipation coefficient (vis2 in the solver) was
set to 0.0, , 0.1, 0.2 and 0.4 respectively. In figure 2.2, we see the comparison between
these five cases. The solid line shows the convergence rate with vis2 = 0.0, the dashed
line shows the case in which Jameson's coefficients were used, the dotted line shows the
case vis2 = 0.1, the dash-dotted line shows the case where vis2 = 0.2 and the second
solid line shows the case vis2 = 0.4.
We see that the higher the coefficient, the better the method converges, until the coefficient
takes the value 0.2. The convergence rate does not get significantly better as vis2 gets
above this number, which justifies the choice of 0.2 for this coefficient in the course of this
research. As we see, the error level does not get below i0. This is caused by the fact
that the machine accuracy is around 7 figures.
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Figure 2.2: Convergence rate of solver with and without the addition of artificial dissipa-
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Chapter 3

Numerical Model

In chapter 2, an example was given on how a partial differential equation is reformulated
in an integral form, which gives a more convenient way to treat this PDE. In this chapter,
I will point out how such an integral form is discretized and how this discretization is
applied to the Navier-Stokes equations. Because of the general form of this method, the
algorithm can handle any type of grid.
The discretization in space and time is done separately. For the time integration, a Runge-
Kutta scheme has been used in the present solver. Therefore, only this type of discretiza-
tion will be treated here, although there are of course a lot of different discretization
methods.

3.1 Spatial Discretizing Using the Finite Volume Method
In the example given in chapter 2, we had the following equation:

ffqdcl+(Fdy_Gdx)=O (3.1)

Suppose we now have a grid over Il which we denote as 11k• Of course (3.1) still holds,
with and F substituted by k and r'k, respectively.
Consider the k-th cell, denoted with I, with edge ['. As the precise location and value
of the variable q inside cannot be specified explicitly, we have to find an approximation
of q. This is done by considering q in the cell center and defining it as the averaged value
of q in f1:

qk=_ffqdclk, (3.2)
Sk

where Sk is the area of f.
If F, and G denote the values of F and G along the edges respectively, we can approximate
the flux integral of (3.1) as

dy — G dx) (Fy2 — Gx) (3.3)

24
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so that the approximate evaluation of (3.1) becomes

Nk

SkjJC + — GLx) = 0 (3.4)

where the index i denotes the edges, Nk is the number of edges surrounding f and Lx1

and are the increments of x and y along that edge.
In the solver treated here, the convective and viscous terms are evaluated separately.
For the computation of these terms, a 'secondary cell' is constructed, which is done by
connecting the cell centers K and L of the neighbouring cells and the vertices M and N
of the two neighbouring cells. In figure 3.1, an example of such a secondary cell is shown

(solid line) together with the original cells (dashed line). Note that the index i from q is

M

cell k

K (IJ) L (i+1j)

N

Figure 3.1: Example of a 'secondary' cell

used to denote the value of the flux vector on the edges, whereas the index i in (i, j) and

(i + 1, j) denotes the s-coordinate from the grid points.

3.1.1 Calculation of the convective terms
The evaluation of the convective terms of the flux along the edges depends on the selected
scheme as well as on the location of the flow variables with respect to the grid. If an
upwind scheme is used, the cell face fluxes are determined according to the propagation
direction of the wave components. In this Navier-Stokes solver, however, a central scheme
is used, which is merely based on local flux estimation. The flow variables are associated
with the central point of the cells (i.e. K and L of cells k and I respectively, in figure 3.1).
In order to preserve the flux balance in the cell, an integration is performed over the cell
edges. The approximation of the convective part of this integration (see (3.4)), is given
by a summation over the edges:

Nk

C(qk) = (FLy — Gx) (3.5)

where Nk is again the number of edges of cell k, FC and GC the convective parts of the
righthandside of (3.4) and C(qk) is the convective operator for cell k. If we introduce the
flux velocity Q for edge i (delimiting cells k and I) as

Q = Uj?Jj — v,xj, (3.6)
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C(qk) can be written as

/ Qipi
I 37C(qk) =
I

Q2pv —jXj:1 \ Q2pH

We see from (3.7) that the flow variables on the edges need to be computed in order to
evaluate C(qk). In the Navier-Stokes solver used here, these flow variables are computed
by taking the average of the values in the neighbouring cells k and 1, i.e.

1
qj = + q,) (3.8)

If i represents a boundary edge, one of the cells is outside the flow domain. Therefore, an
imaginary row of cells is created along both the flow and the wall boundary.

3.1.2 Calculation of the viscous terms
The calculation of the viscous terms is slightly more difficult than that of the convective
terms. because of the presence of the viscous stress tensors and heat flux components.
The approximation of the viscous flux integrals appearing in equation (3.1) can be formu-
lated in a similar way as equation (3.5):

Nk

V(qj) = (Fy — Gx) (3.9)

where V(q,) is the viscous operator for cell k. We introduce the following variables:

Pi = c7xx)i/Yi + (axy)iLxj

Qz = —(a,)jijj + (a)jix2 (3.10)

= (q)Ly — (q)Lxj
so that V(qk) can be written as

0
Nk

V(q)= (3.11)

u1P1 + v1Q1 + Rj

The shear stresses and the heat flux components are proportional to the first derivatives
of the velocity components (u and v) and the temperature (T), respectively, as we see
in (2.15). Consequently, the velocity and temperature gradients can be computed at the
cell edges (MN in figure 3.1). The complete computations concerning the viscous terms
are performed in two steps. The first step is to compute the gradients of u, v and T, the
second step involves the calculation of the viscous flux balance across the cell edges.
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3.2 Adding Artificial Dissipation in a Numerical Model

After the spatial discretization of the Navier-Stokes equations, we get to the following,
symbolically written, difference equation:

aSk(qk) + C(qj) + V(qj) = 0, k = 1,... , N (3.12)

with C(qj) the convective and V(qj) the viscous operator and N the number of cells.
In principle, the viscous terms in the Navier-Stokes equations can provide a numerical

scheme which has the dissipative properties necessary to damp out oscillations. In cases

with a high Reynolds number, however, regions in which the convective terms dominate
the viscous effect, instabilities may occur, caused by shock wave and other effects due to
the non-linearity of the equations. To damp out these instabilities, artificial dissipation
has to be added, as was shown in chapter 2. After having added this dissipation, equation

(3.12) looks like

S(qk) + C(qj) + V(qk) — D(qk) = 0 (3.13)

Let us now take a closer look at how and where this artificial dissipation is added into
a numerical scheme. In chapter 2, three conditions were given which the addition of ar-

tificial dissipation has to satisfy. Furthermore, in the same chapter we saw that many
different kinds of artificial dissipation exist in mathematical theory. As we saw in section
2.5, dissipative terms can be constructed by blending Laplacian and Biharmonic opera-

tors multiplied by scaling and switching coefficients. The numerical treatment of these
dissipative terms will be considered in the next section.

3.2.1 Artificial Dissipation in the present solver

If we write the artificial dissipation from (2.54) and (3.13) as

D=D+D (3.14)

with D and D the dissipation flux in x and y direction, respectively:

= dH — d1_ (3.15)

Dy = d,3÷ — d2,3_ (3.16)

The first component in the x direction is, using (2.57), (2.58) and (2.59) with jk =

and Sk = Sk:

()• (3.17)

where k denotes the present cell i + ,j and tt is the local time step. More on the
maximum allowable time step is found in the section on Time Integration.
As explained in chapter 2, should be turned on in the vicinity of shocks. It should

be clear that a proper choice of f1) is dependent on the pressure coefficients. This way,

the presence of shocks can be noticed. An effective sensor of the pressure of a shock wave
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can be constructed by taking the second difference of the pressure (see [10, p.184]). If we

define
5...— (3.18)

IPi+1,i + 2p,j +pi—i,jI

we can write as
(1)r i r= lmaxuj+1,j,uj,j

with €() a given coefficient.
Because the Biharmonic terms can be destabilizing near shocks, they have to be turned
off. This is done by c ., which we define as follows:

+2J

= mvtO (2) — • . (3 20
i+1,j I. ' *+,JJ V

This way, we assure that the artificial dissipation does not become negative, and it will be
turned off if the second order dissipation becomes large (i.e., in the vicinity of shocks).

In the literature, different choices for J') and (2) are given. Jameson chooses (1) = 1

and (2) = (see also [10, pp. 184—185]). In this research I took €() = 0.8, based on
[4], and (2) was to be replaced by an appropriate factor, which will be computed by the
Inverse Eigenvalue Method. In the case a regular solver was iterated, €(2) was set to 0.2,
as explained in chapter 2.
With the artificial dissipation added, the spatial discretization of the Navier-Stokes equa-
tions is done, so now we have to find a way for time integration needed to solve the
obtained system of differential equations.

3.3 Time Integration
From the spatial discretizations and the addition of artificial dissipation as described in
the previous section, we obtain a set of coupled ordinary differential equations:

qk = —R(qk), k = 1,... ,N (3.21)

where N is the total number of cells and R(qk) is the residual:

R(qk) = [C(q,) + V(qk) — D(qk)] (3.22)

with Sk the surface of cell k.
To integrate this system of ODEs, various integration methods can be used. In this case,
a Runge-Kutta scheme was used. The general form of this scheme is as follows:
Let q be the value of q after n iterations. The righthandside of (3.21) is now evaluated
at several values in the interval between nt and (n + 1)Lt and these values are combined
in order to obtain a higher-order approximation of q+l. The general form of an rn-stage
Runge-Kutta scheme is as follows:

(o)_
qk —qk

(1) (0) (0)
qk =qk —c1tkR(q )
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(2) (0) (1)
qk =qk —a2LtkR(q )

(rn) — (0) ,. (rn—i)
4k lk 0m 'k qk

— (m)
qk —qk

where LXtk is the discrete time step as explained before and al.. ,a are coefficients

depending on the number of stages.
To avoid the computation of all the residual terms, we can use the 'hybrid formulation'.
In this formulation, only the convective operator is evaluated at every stage in the process,
and the viscous and the artificial dissipative operators are eveluated only at the first stage.
Thus, a three stage scheme, as was used in the present research, is as follows:

(o)_qk —qk

q = q°)
—

[c(q0)) + V(q°) —
D(q))]

q2) q — 2 [c(q1)) + V(q°) — D(q)} (3.23)

q(3) = q(O) — Itk [c(q2)) + V(q°) — D(qj0))]

n+1 — (3)
lk —qk

with coefficients c = 0.6, c2 = 0.6, = 1.0.

The local time step tk must be chosen to be consistent with the stability limitation due
to the inviscid and viscous characteristics of the Navier-Stokes equations. In the present
solver, the following time step is chosen (see [4]):

tk A/Ak ± /A
(3.24)

where ) and ) are defined by the characteristic convective and viscous propagation
speeds respectively, and are given by

=J IudY — vdxl + c(dx2 + dy2)"2 (3.25)

) =y±(dx2±dY2) (3.26)

with c the local speed of sound. These equations are approximated in the usual way,
and thus the maximum allowable time step is computed. In the solver, this is done in
subroutine step, which is not shown here, as it merely speaks for itself.

Note that this time step is also used in the computation of the artificial dissipation, which

gives the same result as Jarneson in [10].
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3.4 Description of the Used Navier-Stokes Solver
The Navier-Stokes solver used in this research was developed by Dantje K. Natakusumah
and it was provided by the Indonesian aircraft company IPTN. The important parts of the
original program are those in which the convective and the viscous terms are computed,
the time integration part, and the part in which the artificial dissipation is computed,
respectively. These subroutines will be treated below.

3.4.1 Calculation of the Convective Terms

According to the formulas given in section 3.1.1, the numerical implementation of the
convective terms is as follows:

do 220
do 220

n3
n4
dx
dy
pa
val
wa2
wa3
wa4
qs
fsl =

fs2 =

fs3 =

fs4 =

dw(1,n3) =

dw(2,n3) =

dw(3,n3) =

dv(4,n3) =

dw(1,n4) =

dw(2,n4) =

dw(3,n4) =

dw(4,n4) =

220 continue

As we see, pa and val, ..., wa4 denote the averaged values of the pressure and the four flow
varibles. As stated in section 3.1.1, the flow variables are associated in the cell centers,

and thus, to get the values at the edges, the mean of their values at the centers is taken.
Furthermore, in qs we recognize Q1 = — In the continuous case qs can be
written as which in turn yields (3.6).
Finally, the computed terms are added to the flow variables. Note that the contribution of
the convective terms is added to one cell, and substracted from the neighbouring cell. This
is done to preserve the flux balance. This concludes the compuLttion of the convective
terms.

i=1 ,icmax

j=1 ,lcol(i)

= iedg3(j,i)
= iedg4(j,i)
= xp(nl) — xp(n2)
= yp(nl) — yp(n2)
= O.5*( p(n3) + p(n4) )

= O.5*( w(1,n3) + w(1,n4) )

= 0.5*( v(2,n3) + w(2,n4) )

= 0.5*( v(3,n3) + w(3,n4) )

= O.5*( v(4,n3) + p(n3) + v(4,n4) + p(n4) )

= ( dy*wa2 - dx*wa3 )/val

qs*ual

qs*wa2 +

qs*wa3 -

qs*va4
dv (1 , n3)
dw(2,n3)

dv (3, n3)

dv(4,n3)

dv (1 , n4)
du (2 , n4)
dw (3, n4)

dw(4,n4)

dy*pa
dx*pa

+ fsl
+ fs2
+ fs3
+ fs4
— fsl
— fs2
- fs3
- fs4
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3.4.2 Calculation of the Viscous Terms
Corresponding with the theory from section 3.1.2, the part of the solver computing the
viscous terms is as follows:

*

* define constants
*

gi =gamma-1.0
consti = 4./3.
const2 = 2./3.
const3 = sqrt(gamma)*gl**1.5*rm/rin
pr = 0.72
prt = 0.9
twbc =1

*

* ***** Begin ioop over edges

= yp(n2) - yp(nl)
= xp(n2) — xp(nl)
= 0.5*( t3 + ti )

= O.5*( u3 + ul )

= O.5*( v3 + vi )

= const3*te**1.5*( tin +

= 0.5*( cvt( ni ) + cvt(
= cvl/pr + cvta/prt
= constl*dudx - const2*dvdy
= dudy + dvdx
= constl*dvdy - const2*dudx
= cvl*( tauxx*dye - tauxy*dxe )

= cvi*( tauxy*dye - tauyy*dxe )

= ue*viscx + ve*viscy +

cvi*gamma*( dtdx*dye - dtdy*dxe )

*

The first five terms in the ioop are, of course, Yt, x1, and the averaged values of the
temperature and the velocity components. In cvi, we recognize the value of p as defined

*
dye
dxe
te

ue
ye

cvi
cvta

cvi

tauxx
tauxy
tauyy

viscx
viscy

visce

110.4 )/( te*gistin + 110.4 )

n2 ) )

*
* viscous flux baiance
*

fw(2,n3) = fw(2,n3) + viscx
fv(3,n3) = fw(3,n3) + viscy
fv(4,n3) = fw(4,n3) + visce
fw(2,n4) = fv(2,n4) - viscx
fw(3,n4) = fw(3,n4) - viscy
fw(4,n4) = fw(4,n4) — visce

*

* ***** End loop
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in (2.21). The term cvta is, as we see, the mean of the values of cvt in the neighbouring
cells. These two values come from the subroutine viscot, where the viscous flux balance
is computed. After redefining cvi, we see that it is exactly the j.z from (2.16). The other
terms are more or less logically defined. tauxx, tauxy and tauyy are a, a and a1
respectively and in viscx, viscy and visce we recognize respectively P1, Q and Rj from
(3.10).
Finally, to maintain the flux balance, the contribution of the viscous terms is substracted
from the cell on one side of the edge, and added to the cell on the other side of the edge.
This concludes the computation of the viscous terms.

3.4.3 Treatment of Artificial Dissipation in This Case

In section 2.5, a theoretical approach was given on how the addition of artificial dissipation
takes place in this Navier-Stokes solver. We saw that the dissipative terms consist of two
parts, a second-order part to damp out oscillations near shocks etc., and a fourth-order
part which was switched on in smooth regions of the flow field. The main part of the
subroutine in the Navier-Stokes solver which computes the artificial dissipation is:

dti3 = voi(n3)/dti(n3)
dti4 = voi(n4)/dti(n4)
sum = f(n3) + f(n4)
fil = aminl( dti3,dti4 )/sum

dial = fii*fisl*aniaxl( ep(n3),ep(n4) )
dis2 = fil*fis2
dis2 = dim(dis2,disl)
dwl = w(1,n3) - v(1,n4)
dw2 = w(2,n3) - w(2,n4)
dw3 = w(3,n3) - w(3,n4)
dw4 = w(4,n3) - w(4,n4) + p(n3) — p(n4)

C

c modified dissipation
C

fsl = disl*dwl — dis2*(ew(1,n3) — ew(1,n4))
fs2 = disl*dw2 — dis2s(ew(2,n3) — ew(2,n4))
fs3 = disl*dv3 — dis2s(ew(3,n3) — ew(3,n4))
fs4 = disl*dw4 - dis2*(ev(4,n3) — ew(4,n4))
fw(1,n3) = fw(1,n3) — fsl
fw(2,n3) = fw(2,n3) — fs2
fv(3,n3) = fw(3,n3) — fs3
fw(4,n3) = fw(4,n3) — fs4
fw(1,n4) = fw(l,n4) + fsl
fw(2,n4) = fw(2,n4) + fs2
fw(3,n4) = fw(3,n4) + fs3
fv(4,n4) = fw(4,n4) + fs4

As we take a closer look at this part of the program, we see that it corresponds with
the theory from the previous section. The variables dti3 and dti4 correspond with the
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factor (t)2 and ()+i, respectively, sum and f ii are to determine the scaled
minimum dtl. Then disi is computed, according to (3.19). Note that fisi and fis2
are the prescribed values (') and (2)• Following (3.20), dis2 is determined, where the
function dim(dis2,disl) actually means max(0,dis2 — disi).
Finally, the actual contribution of the artificial dissipation is computed and stored in fsl
to fs4. And again, to preserve the flux balance, this contribution is added to the cell on
one side of the edge, and substracted from the cell on the other side of the edge.
With the addition of artificial dissipation, we have finished the spatial discretization of
the Navier-Stokes equations. We now have the righthandside which is to be used by the
Runge-Kutta scheme for time integration.

3.4.4 Time Integration
In this solver, a three stage Runge-Kutta method has been used for time integration,
as explained above. This Runge-Kutta scheme has been implemented in the subroutine
euler. The main lines of this subroutine are the following:

*

* compute articifial dissipation terms

*

call diss( fw,icyc )
*

* compute viscous terms

*

if( ivisc.ge.1 ) call visco( fw,icyc,ivisc )

*

Begin Runge-Kutta scheme

*

do 200 k=1,mstage

fn = 0.5*c(k)*cfl
*

do 210 i=1,ncell

do 210 j=1,4

dw(j,i) = fw(j,i)
210 continue

*

* calculation of the convective terms

*

do 250 i=1ncell

dt = fn*dtl(i)/vol(i)
dw(1,i) = dt*dw(1,i)
dw(2,i) = dt*dw(2,i)
dw(3,i) = dt*dw(3,i)
dw(4,i) = dt*dw(4,i)

250 continue

*

do 260 i=1,ncell
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w(1,i) = wO(1,i) + dw(1,i)
w(2,i) = wO(2,i) + dw(2,i)
w(3,i) = wO(3,i) + dw(3,i)
w(4,i) = wO(4,i) + dw(4,i)
qq = O.5*( w(2,i)**2 + w(3,i)**2 )/w(1,i)

pCi) = ( gamma - 1.0 )*( w(4,i) - qq )

260 continue

200 continue

*

*** End Runge-Kuttascheme
*

If we compare these lines with the theory from section 3.3, we can immediately see cor-
respondences. First, the artificial dissipation and the viscous parts (D(q,) and V(qk) in
section 3.3) are computed and stored in fw. These two operators are computed before-
hand, as only the convective operator is evaluated at every stage.
In the ioop, first the cxi's are defined and stored in fn. For consistency reasons, they are
multiplied by 0.5 and the CFL-number (CFL = 3.5). The next steps are straightforward.
First, the variable dw is initialized by adding the dissipative and the viscous terms. Then,
with this variable the convective terms are computed (see section 3.4.1). Finally, the ac-
tual Runge-Kutta iteration is performed, where dt = dtl(i) is the maximum
allowable time step Ltk from equation (3.24), and vol(i) is Sk in equation (3.23). The
four lines in which dw is changed, correspond with the second part of the righthandside of
the routine as given in (3.23).
Finally, in the last loop the values for w, the main vector with the flux variables, are sub-
stituted according to the routine. Furthermore, the pressure is computed here following
equation (2.19). This concludes the complete discretization of the Navier-Stokes equations
for the present solver.

3.5 Description of the Used Inverse Eigenvalue Method
As already mentioned, the Inverse Eigenvalue Method used here is an additive Eigenvalue
Mathod. In writing the program, I used the algorithm for the Inverse Eigenvalue Method
as mentioned in [17, pp. 34—36]. In this section, I will give a detailed description of the
used subroutines.

3.5.1 Notation

In accordance with this program, the following notation will be used:

eigenvalues: Ab. .. ,

eigenvectors: 1,...
elements of eigenvector : (x1i,. . . ,x)

Having derived the 4 x 4 cell matrix (see section 2.2.1), we can now process it in the Inverse
Eigenvalue Method. The next sections describe how this was done.
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3.5.2 Computing Eigenvalues and Eigenvectors
For the computation of the eigenvalues of the 4 x 4 cell matrix, an EISPACK routine was
used. This subroutine, cgeev, uses the following parameters (a '*' means that the value
of this parameter will be changed by cgeev):

complex nonsymmetric input matrix
LDA leading dimension of A
N order of A and V
E* contains the eigenvalues of A
V' if JOB = 0, V is not referenced

otherwise, eigenvectors of A are
stored in columns of V

LDV leading dimension of V, if JOB
is nonzero

WORX* temporary storage vector
JOB set nonzero only if eigenvectors

have to be computed
INFO* = 0 if calculation is succesful

= k if eigenvalues k + 1 through N are
correct, but no eigenvectors were computed

For a detailed description of this routine I refer to the NETLIB homepage at
http://wuv.netlib.org/index. html.
Before the IEM will be explained, let me first give a description of the subroutine gauss,
used to solve systems of equations.

3.5.3 Solving a System of Equations
In the implementation of the Inverse Eigenvalue Method, several (linear) systems of equa-
tions have to be solved. More specifically, these systems arise in the computation of
the eigenvectors and in the actual Inverse Eigenvalue Method. Therefore, the subroutine
gauss was written, which solves arbitrary systems of equations.
Suppose the system which has to be solved is Sx = b, where S is an n x n matrix, and
and b n-tuples. The input for this subroutine consists of S, ii and 1, with one modification,
however. For convenience, S is here transformed into an n x (n + 1) matrix, which for

n = 4 is constructed as follows:

( Sfl Sj 813 S14 b1 \
S4

21 822 823 824 (3.27)
S3 832 833 S34

841 842 S43 844 b4

The subroutine consists of several sub-subroutines, as we see in this overview:

subroutine gauss(S, n, 1, x)

C

complex x(n), S(n,l)
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C

nn = n - 1

do 90 k = 1, nn

call find(S, n, n+1, k, j)

call change(S, n, n+1, k, ))

kk = k + 1

do 80 i = kk, n

call rowmul(S, n, n+1, k, i, —S(i,k) / S(k,k))
80 continue

90 continue

call bksub(S, n, n+1, x)

return

end

The global structure of this subroutine is that first the matrix is brought to an upper
diagonal form, and then backwards substituted. The upper diagonal form is obtained as

follows:
The subroutine find finds the row j with the largest absolute value among S(k, k), S(k +

1, k),... , S(n, k), and then this j-th row is changed with the current row in change. Next,

to each row (i.e., for i = k+ 1,... ,n) we add the k-th row, multiplied by which is

done in subroutine rowmul. This way, all the elements S(k + 1, k),. .. , S(n, k) disappear.
Now we also see the reason why the row with the largest element had to be changed with
the current one. If we should not have done this, elements of the rows k + 1 to n might
have been multiplied with a number greater than one, causing a possible enormous growth.
Although this is not a real danger for a 4 x 4 matrix, for convenience I did implement it

in the subroutine.
Now we have an upper diagonal matrix, with a righthandside (which, of course, is also
changed by the chnges explained above). In bksub, we finally back-substitute (as we see,

names of the subroutines are not randomly chosen...) the unknowns Xl,. . . , x to solve

the original system.

3.5.4 Implementing the Inverse Eigenvalue Method

Having computed the eigenvalues and eigenvectors, we get to the most important part of
the subroutine, the implementation of the Inverse Eigenvalue Method. Actually, this is
done in a few lines, using the analytical algorithm from Wilkinson (see [17]):

do 90 i = 1, 4

b(i) = labdast(i)
do 100 j = 1, 4

do 110 k = 1, 4

b(i) = b(i) — eigve(i,j) * eigve(i,k) * A(j,k)
110 continue

Jac(i,j) = eigve(i,j)**2
100 continue

Jac(i,5) = b(i)
90 continue
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call gauss(Jac, 4, 5, coef)

First, the righthandside from (2.36) is computed using the eigenvectors and ). If we look
at the definition given in (2.36), we see that the first element of b is (for n = 4)

= (3.28)

i,j= 1

Next, the Jacobian is defined according to (2.34), and because Ak = we have J, =
Finally, to be able to use the Jacobian and in gauss, they are 'mingled' into a 4 x 5

matrix.
This concludes the implementation of the IEM. As we have seen, it merely consists of
three parts: the computing of the elgenvalues and eigenvectors, next with these values the
computation of the coefficients adjusting the diagonal elements, and finally the subroutine
gauss to solve a system of equations.

3.6 Changes Made with respect to Original Program
As the most important changes were made in the solver nsIEM, I will describe this solver
here. Other solvers (if new) are more or less derived from this solver.
In implementing the Inverse Eigenvalue Method into the Navier-Stokes solver, a few ad-
justments had to be made. First, the Jacobian matrices (see the previous section) had to
be derived explicitly. In [7], an analytical formulation of the convective Jacobian matrices
is mentioned, which with some adjustments could be implemented. The viscous Jacobian
matrices also had to be implemented to achieve the full Navier-Stokes matrix. The sub-

routine which served as the matrix generator is called eigen
Furthermore, in the subroutine diss a loop had to be written which makes the solver per-
form the IEM every nstep times, where nstep can be defined in the data file rae2822 .dat.
And of course the Inverse Eigenvalue Method as described before had to be implemented.
This was done by calling the subroutine inveig in the subroutine eigen
The solvers used in this project finally were:

1. dantei.f, the original solver, without eigen and inveig,

2. nsIEN.f, the solver which computed the artificial dissipation that could be used by
danteil .f

3. danteil . f, the solver which used the artificial dissipation computed by nsIEM

Other, slightly different, solvers were also used, but only to store the data in different files,
so they have no real differences with nsIEM.
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Results

In the tests described below, a RAE2822 airfoil was used. The grid generated around
this airfoil can be found in the file rae2822 .dat and contains, apart from the grid, some
parameters used in the solver. The relevant parameters, used in this research, are:

1. ncyc, the number of iterations,

2. ivisc, '0' means inviscid flow (Euler), '1' means viscous flow (N-S),

3. visi and vis2, the second and fourth order coefficients for artificial dissipation,

4. nfl, the Reynolds number,

5. mach, the Mach number,

6. alpha, the angle under which the flow appraoches the airfoil and

7. labdast(i), the four given eigenvalues

In all the tests presented here, a subsonic (mach = 0.73), laminar (nin = 5.0 x 10) flow
is used, with alpha = 2.73. From here, I will refer to the case in which regular artificial
dissipation was used as the 'regular case'. The case in which the artificial dissipation was
computed by using the Inverse Eigenvalue Method, will be referred to as the 'new case'.

4.1 Setting Up the Test Cases
To test the new method, we first had to compute the artificial dissipation coefficients which
had to be added. This was done in a partly rewritten version of the original solver, nsIEM.
As the name indicates, this solver was obtained by implementing the Inverse Eigenvalue
Method in the original solver. This way, with the local matrix and the given eigenvalues
labdast (i), the dissipation coefficients could be computed, as explained in the previous
chapters.
This solver uses, apart from the regular coefficients which define the type of flow, four
given eigenvalues to compute the dissipation coefficients with. In this first test, the fol-

lowing values were taken:

38
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labdast(1) = —2.0 * lO_2

labdast(2) = —4.0 * 10—2

labdast(3) = —6.0 * 10—2

labdast(4) = —8.0 * 10—2

I chose these specific values because tests with the Inverse Eigenvalue Method as used
here, showed that the convergence performance of this method reduced significantly when
the chosen values were (relatively) too close to each other. This means for example that
the eigenvalues can not be equal to each other, say labdast(i) = —2.0 * 10—2. However,

another restriction still had to be satisfied as well. The eigenvalues could not be too neg-
ative, as it would mean that too much dissipation would be added.
The solver nsIEM performed 1000 iterations before using the IEM subroutine and com-
puting the dissipation coefficients. These coefficients were stored in diss3, so that they
could be used by the solver which was to compute the solution with this new dissipation
(danteil).
Having computed these coefficients, they are used by the solver danteil. Also, the regular
solver, dantei, was used to obtain the regular solution. Both solvers were iterated 5000

times, which should be enough to get a good impression about the convergence rate.

4.2 Convergence History in the Regular and the New Case

In figure A. 1, we see a comparison between the convergence history of the original method
(dashed line) and the method which uses the coefficients computed by the IEM (solid line).
From this comparison, we see that the method which uses the regular artificial dissipation
converges smoothly. The plotted function here, '°logLp, is almost linear, with the small
'bumps' caused by the imaginary part of the eigenvalues. The method using the artificial
dissipation computed from the IEM shows different behaviour. Until about 700 iterations,
it keeps up with the original method quite well. From there, however, it maintains the
level of about i0, which indicates that it does not converge. And although it does not
really diverge either, it shows us that the regular method performs better than the new
method. The reason this method maintains this level and will not converge further, will

be explained later. Let us first consider the differences between the two methods.

4.3 Comparison Between Old and New Method

Of course, a more detailed look at these two methods is desired. To get an impression of the
differences, three main criteria were considered. First, the added artificial dissipation over
the field is shown. Furthermore, I will show Ltp over the flow field, to see the relationship
between possible differences in added dissipation and convergence and stability. Finally,
the pressure distribution is shown, both over the field and around the airfoil. This way,
we can see whether the solution obtained with the new method is really 'less dissipative'
then the regular method. Hopefully, a better estimate of the real solution will be given
with a less dissipative method, which was the ultimate goal of this research after all.
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4.3.1 Comparing Added Dissipation and Lp in the Two Cases

The first thing we are interested in is to see the difference in the amount of added dissi-
pation between the two methods, and to see where in the field this difference is largest.
If we compare this with p over the flow field, we can find out where the influence of
the added dissipation plays an important role in the convergence and the stabilization of
the method. Figure A.3 shows the amount of dissipation after 1000 iterations, where the
Inverse Eigenvalue Method is used to compute the dissipation coefficients. We can distin-
guish three important regions where artificial dissipation is added, I will refer to them as
regions A, B and C (see figure 4.1).
Most dissipation is added in the regions where large gradients might occur, A and B. Al-
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Figure 4.1: The three important regions near the airfoil

though in this case we do not really have a shock in region B, as will be shown later, this is
obviously some 'reaction' of the solver to the fact that there is a tendency of a shock. Near
the trailing edge of the airfoil, also some dissipation is added. It is important to note that
this latter dissipation is mainly of fourth order, i.e. to damp out oscillations caused by
the numerical scheme. The dissipation in the regions A and B is of second order, to damp
out oscillations due to large gradients. It is exactly this fourth order dissipation that we
tried to optimize here, so the difference in added dissipation can easily be explained. We
have to see whether this optimization really has a positive effect, which will be done later.
If we take a look at the added dissipation computed by the regular method as shown in
figure A.2, we see some differences. The most important difference is that in this case, a
lot more dissipation is added near the trailing edge of the airfoil. The amount of dissi-
pation added in the other two regions is more or less the same. It is important to note
that the artificial dissipation added in region C is mainly of fourth order, i.e. to damp
out oscillations caused by the domination of the convective terms. The dissipation in the
regions A and B is of second order, to damp out oscillations due to large gradients. It
is precisely the fourth order dissipation that we tried to optimize here, which means of
course that less dissipation is added in the new case. This easily explains the difference
in added dissipation. We still have to see, however, whether this optimization really has
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a positive effect, which will be done later.
The influence of the 'extra' dissipation in region C on the convergence of the solver can
be shown if we compare Lp over the flow field after 1000 iterations in both cases (figures
A.4 and A.5).
The first difference is that the graph in the 'regular' case looks much smoother overall
than the graph in the case IEM was applied. But what matters more is the fact that at
the trailing edge of the airfoil, we see that /p in the new case is much larger than zp in
the regular case. From this, we might conclude that the fact that too little dissipation is
added in the new case, causes this method to show irregularities in that region. How we

expect this relationship to be, will be explained later.
If we look at the graphs of the added dissipation after 3000 iterations in both cases, we see
some interesting differences and similarities. First, we note that the amount of dissipation
in the regular case (figure A.6) has not changed significantly. The dissipation above the
airfoil (region B) has shifted a little towards the front end, which can be explained by the
fact that in the course of 'time', the shock is also moving slowly towards the front end of
the wing.
Secondly, if we look at the added dissipation in the new case (figure A.7), we see that the
added dissipation in region B has been decreased significantly. The dissipation in region
A is about the same, while the added dissipation in region C has been somewhat changed.
The effects these changes have on the convergence can be seen when we look at the graphs
of Lp in the field for the two cases.
In figure A.8, we see an overall smooth graph, with a clear peak at region B, although it
is important to note that the order of magnitude here is i0, while after 1000 iterations
it was of order i0'. So the method does converge (which we saw from the convergence
history already, of course), but is still having some trouble with the 'shock wave'.
If we consider the graph of p in the new case, figure A.9, we immediately see where the
trouble occurs. In most regions, we see some relatively small irregularities. In region C
however, a peak is visible and between regions B and C, we also see a lot of extra wiggles.
It is quite clear that these irregularities cause the method not to converge, but at this
stage it is still unclear how and why this peak occurs. In the section on the velocity field,
more is explained about this matter.
Figures A.10 and A.11 finally, show us the amount of dissipation added after 5000 iter-
ations. In the regular case, nothing much has changed. Still most dissipation is added
at the trailing edge of the airfoil. In regions A and B, we also see that about the same
amount of dissipation has been added as before. The amount of dissipation in the new
case has again changed somewhat, particularly at the trailing edge, where a little extra
dissipation has been added. The effects of this extra dissipation is visible if we consider
Lp in the field.
In figure A.12, we see Lp over the flow field. Note that the order of magnitude has already
reduced to 10—6, which corresponds with the convergence history as shown in figure A.!.
This is also the explanation for the wiggles in the flow field. These are caused by the
fact that the machine accuracy is around 7 figures, 'enough' to cause irregularities on this
level. If we do not take these wiggles into account, nothing much has changed compared
to the situation after 3000 iterations. Again, the largest tp occurs in region B.
Figure A.13 shows a much more different result. Region C is still very unstable, the order
of magnitude being even i0. The impression is that these peaks are more or less ran-
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domly 'wiggling' around i0, as the plot of the convergence history in max tp shows an
irregular course as well, but it is more or less constant at this level.
In region B we still see a large bump and some smaller ones, and in region A the peak
appears to be somewhat larger than in the previous case. Finally, we see one larger and
two smaller bumps at the lower side of the airfoil. Our main interest, however, is focused
on the trailing edge of the airfoil, region C, because the most relevant irregularities were
found there.
Let us first check what the pressure profiles in the flow field and around the airfoil look

like.

4.3.2 Comparing the Resulting Pressure Distribution
Above, the relationship between the addition of artificial dissipation and convergence of
the two methods was shown. What we are now interested in is to see whether the solution
obtained after 5000 iterations from the new method is really less dissipative and whether
it gives a solution which is closer to the real solution.
Let us first take a look at the distribution of the pressure around the airfoil. In figure
A.14 and A.15, we see the pressure distribution around the airfoil in the regular and the
new case, respectively. A few conclusions can be made from these figures. First, it is
obvious that the drag has been greatly reduced in the new case. There is not much of a
shock visible, and we see that already at x = 0.3, the amount of pressure above the airfoil
approaches the amount of pressure below the airfoil. It should be clear that this has a bad
influence on the drag capacities of the wing.
In figures A.16 and A.17, an impression is given on how the behaviour of the pressure is in
the flow field around the airfoil. We recognize the pressure distribution around the airfoil
as shown above.
In the regular case, the shock is sharper. Until x = 0.5, the level of the pressure above
the airfoil is significantly lower than that below the airfoil. Thus, we may conclude that
the regular solution seems to be a better estimate of the real case than the 'new' solution.
The question whether the new solution looks 'less dissipative' is harder to answer. The
first difficulty is that we do not have a proper definition of what 'less dissipative' means.
Furthermore, we have to distinguish between a solution which is less dissipative, and a
solution which approaches the desired solution best, the first does not automatically imply
the second.
We could just say that a solution looks less dissipative if it shows more wiggles and other
irregularities than in a case in which more dissipation is added. In that case, the new
solution considered here is indeed less dissipative than the regular solution. But this still
does not account for the fact that the shock is less apparent in the new case. If in a
method less dissipation has been added, we expect this method to have less dissipative
behaviour, of course. And the fact that the shock tends to disappear is precisely the
opposite behaviour. Thus, we might need the information given by the velocity field as
well.

4.3.3 The Velocity Field

Having seen the relationships between the added dissipation, the convergence and the
resulting pressure distribution, we suspect that the problems occur between the trailing
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edge of the airfoil (region C) and the region where the shock may be expected (region B).
Comparing this region in both cases shows a very interesting phenomenon.
In the regular case, nothing much happens. The velocity field above and below the airfoil
is laminar and does not show any irregularities. In the new case, however, we see a region
of separation at the trailing edge of the airfoil, between regions B and C. And although
this seems to be quite a normal flow, it is not a desirable effect. What exactly happens
here? First of all, because of the separation, the flow becomes unstable and tends to
become turbulent, which means that we have an unsteady, or time dependant, solution.
And that is related to the following problems:

1. There is no turbulence model built in the Navier-Stokes solver. This means, of
course, that turbulent phenomena cannot be captured in the right way.

2. More or less related to the first point: this solver cannot solve unsteady flows, as it
uses time to iterate towards a steady state solution.

Let us focus on the second problem. The solver assumes an eventual steady solution:
'in the course of time' the solution will converge. In this case, however, we do not have
a steady state solution. This means that the solution cannot converge further than the
amplitude of the (time dependant) solution, which is about i04, as can be seen from
figure A.1.
Moreover, we would like to know how this unsteady solution can occur. Because of the
'lack' of dissipation, the flow is under more influence of convective terms (i.e., transport
caused by the flow itself) than of viscous terms (transport caused by differences in con-
centration). Generally speaking, the dissipative terms are of the same kind as viscous
terms, i.e. they increase the viscosity of the fluid. So, for example, it means that highly
dissipative flows will not easily show separation phenomena. In this case, however, there
was too little dissipation, which means that the flow was able to show a region of sepa-
ration. Another consequence is that the boundary layer near the trailing edge becomes
much thicker, thus significantly influencing the effective airfoil shape. A result is that the
shock moves forward and becomes much weaker.

4.4 A New Test Case
If our expectation is true, we should encounter less difficulties if the added dissipation is

increased a little. To achieve this, the given eigenvalues for the Inverse Eigenvalue Method
were set to:

labdast(1) = —6.0 * 10—2,

labdast(2) = —1.2 * 10_i,
labdast(3) = —1.8* 10',
labdast(4) = —2.4 * 10_i.

With these 'more negative' eigenvalues, we may expect that the added dissipation will

increase. As explained before, an increase in the addition of artificial dissipation causes
the eigenvalues to become more negative, so it can be expected that if the given cigenval-

ues are more negative, there will he more added dissipation.
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The result of this 'adapted' new method is shown in figure A.20. As we can see, the
method with coefficients obtained from this 'new IEM' converges better than the previous
method. From this we can already draw the conclusion that probably less disturbances
occur than in the previous case. The pressure distribution around the airfoil with this
adapted new method is shown in figure A.21. Not surprisingly, this solution looks much
better than the first one with the IEM. The difference between the pressure distributions
of the regular method and the adapted new method is barely visible.
If we compare the velocity fields from the two methods, there is again only a little differ-
ence. Figure A.22 shows the velocity field in the case the 'new IEM' was applied. At the
very end of the wing we see a little more 'hesitation' in this case than in the regular case.
And in the boundary layer, the difference is also visible somewhat towards the front end,
but generally, the performance here is much better than with the previous IEM.
Finally, we can consider the graphs of the added dissipation and Lp. In figures A.23 and
A.24, a perfect match with our theory appears. More dissipation at the trailing edge, no
real wiggles for p, so we may conclude that the Inverse Eigenvalue Method with these
prescribed eigenvalues gives satisfying results.

4.5 Using a Blending of Both Methods
Although the first Inverse Eigenvalue Method did not give satisfying results near the trail-
ing edge, the amount of added dissipation was enough elsewhere. This brought us to the
idea of 'blending' the Inverse Eigenvalue Method (with the coefficients as used in the first
case) and the original method. Near the trailing edge, the original method was used and
in the other regions, I used the Inverse Eigenvalue Method with the eigenvalues from the
first case.
Let us first take a look at the convergence history of this last method compared to the
convergence history of the original solver. Figure A.25 shows this comparison, with the
solid line giving the convergence rate of the mixed method and the dash dotted line that
of the original method. From this graph, we may conclude that the solver using the 'mix'
of both methods performs only a little less than the original method. As we see, both lines
run almost equal until about 3000 iterations. From there, the mixed method is converging
slightly less rapid, but still almost linearly decreasing, until it reaches a level of about
10—6. This can be explained by the fact that the solution might still be a little unsteady,
so that on this level oscillations occur. Later we will see that this assumption is justified
by the velocity field.
Although this is an encouraging result, we have to check whether the results concerning
the amount of added dissipation and the resulting pressure distribution also satisfy our
expectations. First, let us take a look at the amount of dissipation added in the flow field.
If our expectations are satisfied, we should see an amount of artificial dissipation near
the trailing edge similar to that in the original case. In other regions, we should see a
situation similar to what we saw in the case the first IEM was applied. If we compare the
graph of added dissipation after 5000 iterations (figure A.26) with figures A.10 and A.11,
we see that we have indeed obtained a mixture of these two cases. The wiggle in region
B is caused by the fact that a sharper shock occurs in this method than in the method in
which only the IEM was applied. This sharper shock causes the second order dissipation
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to increase.
The effect this change in addition of artificial dissipation has on the convergence of the
method is visible in the graph of the average Lp over the flow field (figure A.27). After
5000 iterations, this has been reduced to order 10—6, which is much better than the first
method with the IEM, and about the same as the original method. Of course this could
already be concluded from the convergence history plot.
If we now compare the pressure distribution around the airfoil (figure A.28), we see that
there are almost no differences between the solution obtained from the original method
and the solution from this new method. Differences between these two methods are too
small to be significant.
Finally, the velocity field near the trailing edge can tell us something more on how the
solution behaves in difficult regions. In figure A.29, we see how this part of the solution
behaves. Although the situation is again slightly different in this case compared to the
original case, there is no significant change here as well. The differences occurring between
the original and the present case are caused by the fact that less dissipation is added in re-
gion B, which causes the velocity to increase in this region. The pressure becomes slightly
lower in this region, making the flow more prone to separation. This is to be seen in the
same figure, where a beginning of a region of separation is visible.
We may conclude from these results that the last method, of blending the original solver
and the IEM, gives the most satisfying results. The obtained solution shows irregularities
when too little dissipatioii is added. These irregularities are caused by normal physical
phenomena, and they tell us that we have to add more artificial dissipation. In regions
with smooth graphs however, like the region below the airfoil, it should be possible to add
even less artificial dissipation. The pressure graph shows a smooth line here, which means
that enough dissipation is added.
Furthermore, this method combines a more 'subtle' addition of artificial dissipation (i.e.
less artificial dissipation) with an apparent consistency. This means that the method
seems to depend not very much on a variation of the prescribed eigenvalues.
Nevertheless, we may question whether the results are satisfying enough to consider ap-
plying this blending method in future solvers. In computing speed e.g., no significant
difference was to be seen. And, after all, we were looking for a 'less dissipative' result.
Although it is hard to define whether a solution is less dissipative, the solutions from both
methods seem to be similar. This indicates that the results of the adaptions on the solver
are marginal. More on this discussion is given in the next chapter.
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Conclusions

We saw that if too little dissipation is added, i.e. the given eigenvalues are too close to zero,
the solution is unsteady. This implies that the numerical solution does not converge. And
although the velocity field does not look very unusual, this solution is too less dissipative

to be acceptable.
If the artificial dissipation is increased a little, the solution converges much better. And
comparing the amounts of dissipation between the original method and this new method,
we clearly see a decrease in the addition of artificial dissipation when this new method is
applied. This is a hopeful result, but on the other hand one might question if the method
is consistent enough to be a real helpful tool in future cases. In other words, for a slight
change of the prescribed eigenvalues, will the solution change in about the same order?
And if not, from what point is its behaviour not acceptable anymore?
In trying to improve the consistency of the method, another case was tested. The idea was
to use the original amount of dissipation near the trailing edge (region C), thus assuring a
good convergence behaviour. In the other regions, we assumed that the amount ofartificial
dissipation computed by the Inverse Eigenvalue Method should be enough to stabilize the
numerical method. This turned out to work quite well, in the sense that the velocity and
the pressure graphs looked much like the original situation. And according to the graphs
showing the amounts of added dissipation, we add less artificial dissipation in this case
compared to the original case. In short, we may conclude that this last method shows

promising results.
Another question that comes to mind is whether the 'mixed' solver is really faster? Of
course there is something won by the fact that no computations for the fourth order
dissipation need to be done anymore in regions where the IEM is applied. Performing
5000 iterations in both cases, however, did not show many differences in CPU-time. It
might be interesting to see whether it is possible to improve this part of the solver as well.
For future research there are some points of attention I would like to make here:

• Some research could still be done on the last method to find out whether this method
is really consistent enough to deal with (small) changes in the given eigenvalues. If
so, the results on convergence, pressure distribution and the velocity field should
differ only slightly when the eigenvalues are changed a little.

• There are no results available yet for turbulent and/or supersonic flows, as this
solver did not have a turbuleme model. It could be interesting to see how the Inverse

46



APPENDIX A. FIGURES OBTAINED BY THE VARIOUS SOLVERS 49

1.5

0.5

Figure A.2: Added artificial dissipation computed by the regular method, in the flow field
after 1000 iterations
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Figures Obtained by the Various
Solvers
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Figure A.1: Comparison between average ip from old method (dashed line) and new
method (solid line)
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Figure A.6: Added artificial dissipation computed by the regular method, in the flow field

after 3000 iterations

Figure A.7: Added artificial dissipation computed by the IEM, in the flow field after 3000

iterations
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Figure A.4: Graph of Lp over the flow field, computed after 1000 iterations, with regular
dissipation
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Figure A.5: Graph of ip over the flow field, computed after 1000 iterations, in the case
IEM is applied
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Figure A.10: Added artificial dissipation computed by the regular method, in the flow
field after 5000 iterations

Figure A.11: Added artificial dissipation computed by the IEM, in the flow field after 5000
iterations

added artificiol dissipation without usin9 EM. 5000 iterations
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Figure A.8: Graph of zp over the flow field, computed after 3000 iterations, with regular
dissipation
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Figure A.9: Graph of Lp over the flow field, computed after 3000 iterations, in the case
IEM is applied
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Figure A.15: Pressure distribution around an RAE2822 airfoil after 5000 iterations, with
artificial dissipation computed by the IEM
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Figure A.14: Pressure distribution around an RAE2822 airfoil after 5000 iterations, with
regular artificial dissipation
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rbo(t) - rho(t-1) over the flow fie4d with regular dieçatiOn. 5000 fterabons
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Figure A.12: Graph of Lp over the flow field, computed after 5000 iterations, with regular
dissipation
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Figure A.13: Graph of ip over the flow field, computed after 5000 iterations, in the case
IEM is applied
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Figure A.18: Velocity field around the trailing edge, computed with regular dissipation
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Figure A.19: Velocity field around the trailing edge, computed with dissipation from IEM
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pressure in the flow field with regular dissipation

0.5

56

1.5 —0.5

Figure A.16: Pressure distribution in the flow field after 5000 iterations, with regular
artificial dissipation
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Figure A.17: Pressure distribution in the flow field after 5000 iterations, with artificial
dissipation computed by the IEM



Figure A.22: Velocity field around the trailing edge, computed
coefficients

with adapted dissipation

Figure A.23: Graph of the added artificial dissipation computed after 5000 iterations, with
adapted dissipation coefficients
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Figure A.20: Convergence history of the regular solver and the 'adapted' new solver
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Figure A.21: Pressure distribution around the airfoil with the dissipation computed by
the adapted new method
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Figure A.26: Graph of the added artificial dissipation computed by the
after 5000 iterations

mixed method,

Figure A.27: Graph of p over the flow field, computed after 5000 iterations, with dissi-
pation from the mixed method
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Figure A.25: Convergence history of the regular solver and the 'mixed' method
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Figure A.24: Graph of /p over the flow field, computed after 5000 iterations, with adapted
dissipation coefficients
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Pressure distribution around airfoil after using mixed method. 5000 iterations
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Figure A.28: Pressure distribution around the airfoil with the dissipation computed by
the mixed method
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