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Chapter 1

Introduction

Few branches of mathematics enable more real-life applications than the field of fluid dynam-
ics.

Although the theoretical basis is rather ancient (the Navier-Stokes equations, which fully
describe the evolution of fluid in time and place are already known for 150 years), it is the
computer power of our lifetime which enables us to solve the analytical equations numerically,
and, consequently, simulate nearly all possible fluid flows. The applications are numerous; we
only need to refer to aircraft design and weather prediction.

A lot of the early CFD codes (and, in fact, of the present ones, too) have in common

that they use body-fitted coordinates. Although this has advantages in the field of boundary
treatment and refinements, the construction of new grids for each separate problem is often
more costly than the simulation itself.
The other approach -our approach- is to use a simple, rectilinear (Cartesian) grid. This en-
ables the use of arbitrary geometries, created at very limited costs. The backside, of course,
are the measures to be made at the boundaries. A first approach is to describe these bound-
aries with a staircase geometry, that is, each cell of the grid is either inside or outside the
geometry. Although this is a reasonable approach using a high resolution, features such as
fluxes and contact angles with the wall are less well obtained in this way. Moreover, especially
in 3D, the available resolution is limited.

The RuG developed its 3D CFD code, called ComFlo, in 1995. Starting as a fully
3D-program, free surface flow (liquid sloshing) was added as early as medio 1996, see [6].
Meanwhile, the standard version was improved using higher-order discretization schemes and
features for in- and outflow ([2]). Shortly thereafter, the author participated in further im-
provements, including large-scale extensions in pre- and postprocessing ([7]). In the autumn
of 1997, after a short consolidation process, plans for the near future were determined. This
report describes the execution of the first goals: a better boundary treatment (especially in
combination with free surfaces), together with the creation of uniform postprocessing tools
(supported by MATLAB and AVS).

At this point, in the summer of 1998, ComFlo is able to deal with a wide variety of flows,
while it has already been used for several industrial applications.

In the following chapters, the theoretical model is explained (Chapter 2). Then the numer-
ical model, as implemented in ComFlo, is partly explained with aspects including apertures,




labeling and the pressure Poisson equation (which were already discussed in previous reports)
as well as the new and changed features like the boundary treatment and body forces (Chap-
ter 3).

This is followed by some results consisting of test cases (mostly comparisons with earlier sit-
uations) and demonstrations of the present capabilities of ComFlo (Chapter 4).

Also, in Appendix A, the structure of the main program (i.e. ComFlo) is explained at sub-
routine level. The input file, in combination with postprocessing in Matlab, is described in
Appendix B. Finally, Appendix C is dedicated to a short description of AVS and the func-
tions of the ComFlo module, thus explaining an important part of the postprocessing. These
appendices can help new users of ComFlo to get started.




Chapter 2

Mathematical model

2.1 The Navier-Stokes equations

We consider a flow domain of arbitrary form Q. Part of the domain, €2y, consists of fluid:
2y C Q. The fluid is assumed to be viscous and incompressible. For this system, restricted

to (s, the unsteady, incompressible Navier-Stokes equations hold (note that the pressure is
scaled by the density):

ou Ov OJw
8_:13 4 a—y = E‘ 0 (2.1)
Ju Ju Ju ou dp Pu  0%u  0%u
8t+u8z+v8y+waz = 8z+u<5;§+8—yz+-3? +F 4+ fr (22)
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at+uaz+vay+waz — ay+u<ﬁ+a—yz+@ +Fy+fy (2.3)
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The symbols mean the following:
t is the time; u, v, w are the velocity components in z—, y— and z— direction, respectively;
p is the pressure, scaled by density p;
v is the kinematic viscosity, which is equal to %, where 1 is the dynamic viscosity;
W= (B, Fy,Fz)T is an external body force like gravity;
f = (f,,,fy,fz)T is a virtual body force, working on the fluid, because of a motion of the
geometry (like translation or rotation). In section 2.3 more details are explained.

Equation (2.1) expresses conservation of mass in each volume, and equations (2.2), (2.3)
and (2.4) denote the conservation of momentum in z—, y— and z— direction, respectively.
The equations above can also be described in vector form, by setting u = (u, v, w)T and using
the divergence (V-) and grad (V) operators:




Vu = 0, (2.5)
Jdu

5 T Viu = —Vp+u(V-V)u+F+f (2.6)

Here we can replace (u - V)u by V - (uuT) since the velocity is divergence-free.

2.2 Boundary conditions

Next we describe the conditions at the various boundaries. These can be divided into three
classes: Conditions for the solid boundary 92N 9Qy, the free surface 92\ (92N Q) (which
is time-dependent); and, finally, conditions for inflow and outflow areas: 99;, 9),.

Figure 2.1: Flow domain and special areas

2.2.1 Solid boundary

Globally, a division between no-slip walls and free-slip can be made, where both have different
conditions:

no-slip: u =0
free-slip: up, = 0 and %=0
on

Here u, = u - n is the normal velocity; u; = u - ¢t denotes the tangential velocity.

Thus, no-slip means that the normal and tangential velocity components are both zero:
the fluid does not flow through the wall, while the fluid does not move in tangential directions
either: it sticks to the wall. The latter condition does not hold at free-slip walls; here, the
presence of the wall does not influence the velocity flowing along (tangential to) the wall.




2.2.2 Free surface

Since we do not solve the Navier-Stokes equations in the entire domain Q (by using the
different fluid characteristics, like density (see [9], for example)), the boundary of the fluid
needs appropriate conditions for the pressure and the velocities.

These are:
—-p+2 il = - +2vH (2.7)
6’(1" But Ay
u( 5 + 6n) = 0 (2.8)

Here py is the pressure outside the fluid (also called the atmospheric pressure). Note that,
unlike for flows without free surfaces, the level of the pressure is now determined (by pg). 7
is the surface tension. 2H = R% + R% is the total curvature of the surface. This curvature
is defined by the two-dimensional curvatures R; and R»; each is defined in one out of two
orthogonal planes through the normal of the surface.

2.2.3 In- and outflow

In an inflow region, fluid is pushed into 2. The amount is controlled by the area of the inflow
region and the velocity with which the fluid enters Q. Therefore, the inflow condition is:
u = u;,. Note that the direction of u;, can be outward; in that case, amounts of outflow are
controlled.

In outflow regions, the following conditions are mostly used:

%% =0 and p = pg. Other conditions are possible, but the chosen ones turned out to be
practical for our purposes.

2.3 Forces and movement

The coordinate system in which the geometry is contained (called Oy) is relative to an inertial
coordinate system Q;. It is necessary, for several reasons to keep track of this relativity.
Assuming that at ¢ = 0 the two systems are the same, the geometry system Oy is fully
described with respect to O; by, at first, a rotation vector ¢ or a set of unit vectors fi, f2, fs;
and, after that, a translation vector. Then the formula for the virtual body force is

f=—d—q—wx(wx(z—zo))—d—wx(m—mo)—2wxu (2.9)
dt dt

Here g is the translational velocity of Oy (relative to O;, of course), w is the rotation
vector in Oy (which does not necessarily intersect the origin: zg is the centre of rotation;
note that this center is not unique since g + aw (a arbitrary), can also be taken for this
centre.), = the position of a fluid particle in Oy and u its velocity (again in Oy).

The rotation vector w, the rotation center and the translational velocity can be time-
dependent. As an example, in figure 2.2 the two systems O,y and O; are shown; after ¢ = 0,
the geometry system has moved somewhat to the right, while it is currently rotating around
a rotation axis.




Figure 2.2: Two coordinate systems




Chapter 3

Numerical model

In this chapter the numerical model is discussed. This model is implemented in a program
called ComFlo; sometimes a reference to a certain subroutine is made for advanced users.
Most aspects are explained in 2D (mainly because of presentation reasons); extension to 3D
is only discussed if it is not straightforward.

3.1 Apertures

In ComFlo, the flow domain, 2, is covered with a rectiliniar grid, which requires a special
treatment near the (curved) boundaries. Furthermore, a bookkeeping procedure is required to
keep track of the time-dependent fluid configuration §2¢(t). Therefore, we introduce apertures,
i.e. scalars belonging to a cell or a cell face, which contain more detailed information.

The first kind of aperture, the volume aperture, is defined in a cell. Firstly, the geometry
aperture Fy defines which fraction of the cell is contained in Q: this part of the cell is available
for the fluid. Secondly, the fluid aperture F; denotes the cell fraction which is occupied by fluid
at a certain time: the part of the cell contained in ;. Because 2y C @, 0< F, < Fy <1
The simplified case where Fy € {0,1} everywhere, is called a staircase geometry, enabling
simplified boundary conditions.

The second kind of aperture, the edge aperture, is defined on a cell face. The fraction of
such a face contained in € is denoted by Az, Ay or A;, evidently depending on the surface
orientation. There are no edge apertures for the fluid.

A lot of information about the orientation of a fluid boundary can be extracted from the
described apertures. Moreover, (2, as described in this way, is source-independent: the original
description of the geometry (containing information about angles, curvatures and splines, for
example) is not necessary. This approach helps the creation of arbitrary complex forms of
geometries, for example by using CSG-trees (see [7]).

In figure 3.1, an example of an aperture distribution is shown.

3.2 Labeling

Before we discretize the equations from Chapter 2, an important issue is the location of the
various variables in the Cartesian grid.
The pressure is situated in cell centres. All velocities are staggered: each of the three velocity
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Figure 3.1: Geometry apertures F, (lower left) and fluid apertures Fs (upper right) in each
cell

components lies in the centre of cell faces.

Since cells have several functions with respect to solid boundaries and free surfaces, when we
solve the equations numerically, they receive labels. Since each cell has a pressure defined in
it, these cell labels are called pressure labels.

Based on the geometry only, which is time independent, three labels occur. Cells with F, > %
are called F-(flow) cells. Then, remaining cells which have at least one F-cell as neighbour
(cells sharing one cell face are called neighbouring cells) are labeled as B-(boundary) cells.
All other cells, although possibly having an F, > 0, are not interesting in the discretization
process; they are called X- (exterior) cells.

Velocity labels are derived from these cell labels; they are called after the cells where these
velocities lie between. Obviously these combinations are FF, FB, BB, BX and XX. The
combination FX is not possible.

Free surface labels, obviously time-dependent, are a subdivision of the labels described above.
First we look again at the pressure labels.

F-labels with F; = 0 contain evidently no fluid, so they are called E-(empty) cells. After
that, neighbouring F-cells, consequently containing fluid, are S-(surface) cells. The remaining
F-cells, situated inside the fluid (possibly having F; < 1), keep their label, but now F- is an
abbreviation of fluid.

B-cells are, similarly to F-cells, divided into three subgroups. These are:

B.-cells: B-cells with F, > 0 and F; = 0;

B,-cells: B-cells with F, > 0 and F; > 0 having at least one E- or B.-neighbour;

B/-cells: the remaining B-cells.

Note that this subdivision does not change the labeling of staircase geometries compared to
the old labeling, as described in [7]

10




A special class of cells has not been accounted for yet: Inflow I- and Outflow O- cells are
separately labeled; usually, they are acquired from B-cells.

As with the geometry labels, free surface velocities are formed out of a combination of cell
labels. There are a lot of them:

e FF, FS, SS, the momentum velocities;

e SE, EE, the free-surface velocities;

+ FB;, FB,, SBy, SB;, SB,, EB;, EB,, the BF-velocities ;
e B(B, , B(B;, B;B,, B;B,, B.B,, the BB-velocities.

Figure 3.2 shows the labels following from the geometry shown in figure 3.1.

| E | E \ Eil]l  E Be

F l1= ]LF F X
S i 5 i S E E~] Be

F E__| F F F B
F F F S /Bs

& IF F F F B

i F F /w
B E\\i F B B X

Figure 3.2: Geometry labels (lower left) and free-surface labels (upper right) in each cell

Although a lot of alternatives with respect to the labeling of B-cells are possible, con-
sidering all possible fluid configurations where the free surface meets the solid boundary, the
chosen one turned out to be rather convenient.

3.3 Discretizing the Navier-Stokes equations

Having explained the characteristics of the grid and the labels, it is time to use these tools
to discretize the Navier-Stokes equations. If we use explicit time integration, and, more
specifically, forward Euler, we get the following semi-discrete version of (2.5) and (2.6):

A (3.1)
u"t —u + 6tVp"tl = GtRM (3.2)

I
S
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Here the term R" is an abbreviation for the convective and diffusive terms as well as the
forces:

R" = (—V(u"u"T) +vV-Vu" + F" + f")

n and n+ 1 are the time levels, and 4t is the difference in time between these two levels: the
present time step.

3.3.1 The pressure Poisson equation

It is possible to combine equations (3.1) and (3.2) at this stage, but boundary conditions are
not available yet. Therefore we first complete the discretization in space.

First, the discrete counterparts of the operators are defined: V- becomes Dy and the discrete
version of V will be called G, where h denotes the spatial step.

An important step is the following: Because the complete Navier-Stokes equations can only
be discretized in F-cells, this must be expressed in the V- operator: D, = D,’f -+ D,?, where
the right-hand side terms are defined on the inner domain and the boundary, respectively.
However, a conversion of (3.1) to Df u™*! + DBu"*! is not possible, since the velocity at the
boundary is not known; in fact, this velocity should be acquired from internal velocities at
the previous time step, i.e. u'l}“ = f(u}), so u™*! = u" at the solid boundary. The precise
value of these boundary velocities is discussed later. Anyway, the complete discretization is

DEu™! + DBu® 0 in F-cells (3.3)
u"tl = "4 tRy — 6tthn+l in Qj (3.4)

(The right-hand side of the last equation is often written as @ — 6tG,p™*! since the imple-
mentation uses the vector field 4 = u" + 0tR}. )

The combination of the last two equations, i.e. the substitution of the second into the
first, yields the pressure Poisson equation:
u u”

n
DGt = Df (E & R;,') +Df (ﬁ) in F-cells

Now it remains to solve this Poisson equation iteratively. Once solved, the velocity field is
acquired by substituting the pressure in equation (3.4). But we will first discuss the actions
in two important regions not containinig F-cells: the solid boundary and the free surface.

3.3.2 Velocities at the solid boundary

As we have seen, conservation of mass in the interior is accounted for by the Navier-Stokes
equations. At the boundaries, however, these equations are not used: The pressure is not
defined in B-cells, and the velocities are not physical in the sense that they define fluid trans-
port: they are set in the subroutine BC in order to fulfill u = 0 at the walls; this is done by
interpolating and by the use of mirror points.

Although these non-physical velocities are needed for computing the forces and diffusive and
convective terms (in subroutine TILDE), and in the right-hand side of the pressure Poisson
equation, and therefore not unnecessary, they are not suitable for computing fluxes and de-
riving velocity-related information near the walls. And, above all, they do not ensure mass

12




conservation.

Of course, B-cells with F, = 0 do not suffer from this problem: effective boundary velocities
are zero a priori, and conservation of mass is also fulfilled automatically. Problems only arise
if F, > 0.

For these reasons, a new approach was needed to fulfill these aspects:
- Demand conservation of mass in B-cells
- Demand, simultaneously, velocities with more appropriate direction and size (but still use
the numerical 'TILDE’-velocities from (3.4)).

Although the ultimate desire is that these boundary velocities are computed together with

internal velocities (thus obtaining all velocities at the same time level), it turns out that there
is no such thing as a free lunch.
A first attempt consisted of using the fact that conservation of mass alone can easily be de-
manded by incorporating it in the pressure Poisson equation (using the pressure gradients
afterwards to obtain V- u = 0 in B-cells). However, although the velocities often approached
the new boundary conditions (obtained from the new internal velocities, of course) quite well,
this method lacked robustness.

The other approach is to compute all effective boundary velocities (fluxes) at the begin-
ning of the time step, before computing the new velocities. Thus, boundary fluxes are, in this
way, known before the interior fluxes.

The idea is to compute the effective BB-velocities directly from tangentially orientated in-
ternal velocities, somewhat similar to the computation of the numerical BB-velocities. The
remaining BF-velocities are, thereafter, solved from a lineair system containing equations
expressing conservation of mass and the prescribed tangential velocity of these BF-velocities
when extrapolated towards the wall.

In the following section this method is discussed.

3.3.3 Effective boundary velocities

We need to define an initial boundary velocity field ueyy, which redefines velocities with labels
FB and BB.

These velocities must represent fluxes; that is, they should immediately determine the flux
values between cells. The idea is, therefore, that velocities in partly open cell faces are
considered to be placed right between the cell edge and the point where the boundary crosses
the cell face, or, in 3D, in the centroid of the triangle determined by the apertures (see figure
3.3).

They are, at the beginning of the new time step, derived from the (internal) momentum
velocities of the previous time step. An important aspect of effective velocities is that their
sign is always the same as the direction of the internal velocity, thus preventing small recir-
culation areas.

Since the treatment of BB- and BF- velocities is different, the configurations of F-cells

13
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Figure 3.3: Example of standard and effective BB-velocities

around a B-cell are very important.

A priori, some bad configurations exist which should be recognized first. They have in
common that a B-cell is situated between two F-cells, each belonging to different parts of the
geometry; the wall between them is too thin (this is an indication that the user should have
used a finer grid or a thicker wall there). These cases are solved in a crude, but very effective
way: the geometry aperture Fj is set to zero. This is because it is impossible to determine a
unique direction of the wall (i.e. to determine a unique normal per B-cell); see figure 3.4.

F B, X
B B, X
= s
F B F F B F
vy v ‘
B X B, X
F B X

Figure 3.4: Two examples of bad configurations

Secondly, some other configurations must be transfered to simpler cases, since, at a max-
imum, three equations per cell exist: one for conservation of mass and two with respect to
the tangential directions (because in each cell only one normal vector is defined, only two
independent tangential directions can be obtained). Moreover, the BF-velocities should lie
next to each other (in 3D: only one edge of the cell should lie between them). Therefore, all
situations where a B-cell lies between two BF-velocities are converted to others. This is done
by treating those BF-velocities as BB-velocities; in figure 3.5 an example is shown.

At this point, maximal three actual BF-velocities per B-cell exist; in addition, they lie
next to each other. Therefore we can distinguish three different cases, according to the

14




Figure 3.5: In certain configurations, superfluous BF-velocities are considered effective BB
velocities

Figure 3.6: Three different cases with respect to BF-velocities

amount of actual BF-velocities (see also figure 3.6). First, the effective BB-velocities, which
are considered tangential velocities, are computed. They differ much from the numerical
BB-velocities since they are not located in the middle of the cell, but between the cell edge
and the point where the boundary crosses the cell face; therefore, the interpolation formula
uses different distances. For example, in the case of a pure vertical wall through B-cells with
index ¢, the BB-velocity between them is (see also figure 3.7)

LAzhiwiy + L(hicy + AZhi)ww
%h,-_l + AZh;
where wy, the velocity on the wall, is often zero. In the figure, for example, with wy = 0

and A} = %, the BB-velocity becomes 4lw,~_1, as could be expected.
Now it remains, in each of the three cases, to compute the BF-velocities:

WBB =

e Case A
Only one BF-velocity remains. This velocity is directly solved from V - u = 0 (using,

15
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Figure 3.7: Interpolation for effective BB-velocities

as always, the apertures):

Y : Yoy
f—lui—l — Azul + Aj-—le—l i Ajv] A,zc_lll)k_l - AIZCU)[C N
hy hy hi,

0 (3.5)

Five of these velocities are already known: They are either effective BB-velocities or
velocities through closed walls (with aperture values of zero).

Case B

There are two BF-velocities. This is in fact a 2D-situation, since the only terms in the
third direction arise in the mass conservation equation, on the right-hand side. Hence
we get a lineair system Agr = bp, with z the two unknown BF-velocities. The first
equation is similar to case A.

The second equation is acquired from the precise tangential velocity at the wall: u -t =
0 (or another value). The wall velocity is extrapolated from an interior momentum
velocity and the desired boundary velocity (see figure 3.8).

The extrapolated velocities are not located at the same point, but the tangential vector
is constant along the entire wall in the B-cell since the apertures contain just that
amount of information.

Let us work out such an example in 2D: Suppose the two unknown velocities are at the
left () and lower (v) side of the B-cell with co-ordinates (i, j, k). Then we start with

A hyuiy + A’;_lhzvj_l = AT hoju; + Aghzvj (3.6)
uwts +vwty = 0 (3.7)

The right-hand side of (3.6) consists of previously computed effective BB-velocities or
BX-velocities (in 3D, two terms with w should be added there). Now the velocities at
the wall uy and vy must be expressed in the two desired BF-velocities up and vp (in

16
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Figure 3.8: second equation: tangential velocity at the wall

(3.6): u;—) and v;_;) and two momentum velocities, u;_ and v;_s :
uw = a1Ui-2 + apup, vw = Bvj_2 + Baup.
By extrapolation, it follows that

thzli

_ _Fohz | _ _Fohy |
Fyh | 521"

h = Fyhy | j21

) =

anday=1—, (o=1-70.
Consequently, we get the following system:

AL 1hy A?—lhl up | _ Afhyu; + A¥hzv; (3.8)
alz ,Bgty UB —aytzu;_g — .Bltyvj—2 )
Case C

In this pure three-dimensional variant, we have three BF-velocities in a B-cell. The
method is almost the same as in case B; now we have a second tangential vector u,
giving the third equation, similar to the second. This lineair system Acz = bc with
z = (up,vp,wp)T is also explicitly solved.

An important demand is not discussed yet: the matrices Ag and A¢c must be non-singular.

Take a look at the general form of Ag:

A A
A= [ izl Tagslie
aoly ,Bgty
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Here I; and I (the subscripts denote left and down, respectively) are special indicator
functions which determine on which side the unknown BF-velocity is located:

= 1 © up=u;_
Il_{—l Y ug = u;

Since @) < 0, a2 > 1. Therefore, the upper row of the matrix is globally determined by
the signs of I; and I, and the lower row by the tangential vector t. One can image that the
vector (I, I,)T determines, in a crude way, the (negative) normal of the boundary, causing
the two rows of matrix Ap to never being dependent (see figure 3.9).

The same argument also holds in the three-dimensional case C: the first row is globally
orthogonal to each of the other rows, which roughly describe the two tangential vectors ¢ and
2

(1.1)

S
A\

n \\(tx,ty)

(x e, Bt).)

Figure 3.9: rows of the matriz with I = I; = 1

Once these boundary velocities have been computed, they are used in the right-hand side

of the pressure Poisson equation (the part DPu™) and in the fluxes through B-cell faces:
F, = Azhyh,up, and so on.
The method as described above does also hold for staircase geometries: in that case, the
effective BB-velocities are always zero, as expected, and the BF-velocities are treated like
case A: mass conservation forces them to become zero, like the numerical BF-velocities. BB-
velocities are only used for the fluxes, which should indeed be zero.

3.3.4 Free surface

Near the free surface, the boundary conditions (2.7) and (2.8) must be discretized. Remember
that FF-, FS- and SS-labels are considered momentum velocities. Therefore a pressure must
be defined in an S-cell, and the discretization molecules of these velocities involve surrounding
SE- and EE-velocities.

We first discuss these velocities:

e EE-velocities. At first, EE-velocities which are not surrounded by at least one SS-
velocity are far away from the fluid: they are set to zero. The other EE-velocities are
computed using the discrete simplified version of (2.7): the Cartesian orientation of the
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surface is determined (z, y or z) and dependent of the configuration of neighbouring
SS-velocities, some equations of
ou Ow ov  Ou ow v
— _=0’— —=0,—— -—=0. 3-
Bz+3z 31;+3y 3y+3z (319)
are used.
However, one (or more) of the velocities used here can be SE, so they should be known
first.

e SE-velocities. As we have seen, these velocities appear not only in momentum equations,
but may also be needed to compute EE-velocities.
A way to obtain such an SE-velocity is demanding V-u = 0 in the corresponding S- cell.
Discretizing mass conservation uses six velocities; the SE-velocity must be solved from
the other five, which can be FS, SS and SE. In the latter case, with apparently more
than one unknown, some other decisions have to be made, such as setting individual
derivatives like % to zero.

The determination of the free-surface velocities is more extensively treated in [6].

Now the pressure needs to be determined. In E-cells the pressure is simply set to its
reference (atmospherical) value pg.
In S-cells, a pressure in the centre of the cell is needed. Therefore we use a local height
function to interpolate the internal pressure pr in the neighbouring F-cell and the pressure
on the surface ps, where py = pg — 2yH. Here the term 2;1%",{1 is neglected.
The formule for the interpolation is (see also figure 3.10:)

h
ps+(n—1)pr =nps, where n= 5 (3.10)

Now all measures have been taken to solve the Poisson equation, except for the combina-
tion of the former cases: where the free surface meets the solid boundary.

3.3.5 Free surface near the solid boundary

The most difficult situation is the combination of the free surface and solid boundary.

At first, it should be noticed that using the solid boundary conditions (i.e. interpolating
momentum velocities towards the wall) is not always handy: for example, if an amount
of fluid rushes towards the solid boundary, it is not slowed down until it reaches the wall.
Therefore, the velocities of this surface approaching the boundary should not be affected by
the solid boundary conditions until, say, the last interior cell is filled.

Thus, the boundary velocities also depend on the fractions F;/F} of the concerning cells.
Secondly, the handling of B;-cells is rather difficult. Since no pressure is defined in these cells
and a similar treatment of the computation of SE- and EE-velocities in the interior fails due
to the nearness of the solid wall, some ad hoc measurements had to be made. Further on in
this chapter, the consequences for the flux moving algorithm are discussed.

In micro-gravity circumstances, the movement at the wall is mainly determined by the contact
angle between the fluid and the wall. Here smooth and staircase walls lead clearly to different
results.
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Figure 3.10: Pressure locations at free surface and in the neighbouring cells

3.3.6 Recapitulation

As an intermediate summary of the flow of the computation, a short description, as im-
plemented in the computer program, follows. The indicated subroutines are described in
Appendix A.

1.

2.

Set all internal velocities to zero. (INIT)

Compute effective boundary velocities out of the internal velocities of the previous time
step. The BB-velocities are directly computed from tangentially orientated velocities in
the interior; the remaining FB velocities are obtained from lineair systems. (EFFBC)

Compute the temporary vector field u™ + §tR". Here R" contains all convective and
diffusive terms and forces (body forces and external forces). u" is the internal, numerical
velocity field of the previous time step. Convective terms are computed using apertures,
diffusive terms are not. (TILDE)

. Compute the left-hand side coefficients of the pressure Poisson equation. Here the

apertures are used. (COEFL)

. Compute the right-hand side of the pressure Poisson equation: the divergence of the

newest vector fields. In the case of internal cells, this is the temporary vector field
constructed in TILDE. Near the solid boundary, part of these velocities (D?) are the
flux velocities. (COEFR)

Solve the pressure Poisson equation in each F- cell. After that, a pressure gradient is
added to the temporary internal velocities. (SOLVEP)
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7. Move the fluid using the Donor-Acceptor algorithm (see the following section). All veloc-
ities make sense with respect to direction and size (this was just the aim of introducing
effective velocities). The fluxes, therefore, are obtained from them in a straightforward
way.(VFCONYV)

3.4 Adjusted Donor-Acceptor algorithm

Once all velocities are known, the fluid has to be moved. After all changes described above
(and for other reasons), the adjusted Donor-Acceptor algorithm as described in [7] needs
again some adjustments.

Firstly, the rules now hold for By-cells as well: Effective BF- and BB-velocities lead
directly to fluxes.

3.4.1 Restricted fluxes

It is dangerous to move plain fluxes near the free surface. Especially the SE-velocities (com-
puted from V - u = 0) and fluxes between partly empty cells in general are often too large.
[4] suggested the following statement for moving fluxes near the free surface:

OF = MIN (Fap | u | 6t+ CF,Fphz)
where F is the relative amount of fluid in the cell (0 < F < 1) and

CF =MAX (1 - Fap | u |8t — (1 — Fp)hg, 0)

Here the subscripts A and D denote acceptor and donor cells, respectively. AD must be
replaced by A or D, depending on the surface orientation.
For example, taking AD = A, the total flux is more restricted by the fluid amount of the
donor cell in the case of fuller acceptor cells; if the acceptor cell is full, the maximum flux is
transported, independent of Fp.
In general, AD = A is more useful when the fluid is transported mostly normal to itself;
otherwise, AD = D is used.

In our case, taking into account the values of F, near boundaries, the statement is replaced
by

FAD FAD_FAD 2 = o
§F = MIN —F%Iulét+MAX —"—Fw—’|u|5t—(F,, + BV 0] i B0y
b b

Despite this, it turned out that it was necessary to take extra measures to prevent the
surface region of being ’sprayed’ in a too large space. (This phenomenon, the creation of
numerical droplets and bubbles, is a well-known disadvantage of the VOF-method and it is
sometimes called ’jetsam’ and 'flotsam’; see also [8].) These measures involve the use of a
local height function at the free surface; the new ’height’ is determined in a local row in one
of the three main (z, y, or z) directions (see figure 3.11). Thus, the fluid in that column (in
the figure, it is actually a row, since the surface is orientated vertically) is summed up from
the local 'bottom’ and the new height is computed.
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Figure 3.11: The new ’height’ is determined in the local row

This local height function is also defined near the solid boundary; it therefore depends
also on the cell space Fy.
In Chapter 4, an example of the impact of these measures is shown.

3.4.2 Bubble filling

A lot of problems occur where the free surface meets the solid boundary. This is partly due to
the labeling: S-cells differ only from F-cells in having an empty neighbour; at walls, however,
this condition is sometimes too severe, thus creating too many F-cells there with F; < F}
(see figure 3.12). The removal of these bubbles, which can be seen as the collapsement of
entrapped air, should therefore be considered.

One option is to change those cells in S- cells, thus using the fact that empty cells are not
found there, and conservation of mass can not be demanded. However, preventing an ‘overfill’
of these cells, while the extra fluid can not be drained away, is almost impossible.

Figure 3.12: Fluid splashing against a wall
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Another option, which does not change the labeling, is: Demand in such an F- cell, which
is supposed to be filled (if a fluid gets away from the wall, it does so by moving the free
surface along the wall; wall holes are not supposed to bubble up spontaneously), that
V- u*t! = L. instead of V- u™*t! = 0, where L is chosen such that the specified cell contains
more fluid after moving the fluxes.

By substituting equation (3.2) in this modified divergence equation, as always, we get

V.Vptl= V. %(u" +6tR* — L) (3.11)
A choice for L is 1
= —EMIN (aFy, (Fy — Fy)) (3.12)

The minus sign denotes a netto increase of fluid in the cell. Furthermore, Lét is limited by
a- Fy (where o is a positive parameter less than 1) to avoid conflicts with the CFL-condition.
The division by 6t is evident, since the movement of fluxes in a cell is defined by

_AF; AFy AF, )
Az Ay oz

where Fy, F, and F, are fluxes, defined by F; = udt and so on.
Therefore,

F;tew g Fsold & (

Au  Av  Aw
Frew — Fold (__ L _) . 6t
3 2y Azr Ay bz
Normally , the difference between F;**" and Fs‘”d is zero. To increase F;, a term between
the parentheses should be added. An L of size f;(Fb — F;) just makes the new Fy exactly

equal to Fp.

This technique is also handy when two surfaces in the interior meet: the collision takes place
in a few time steps when the distance of the two surfaces is less than one cell. Again, the
other way around (the creation of a gap) does not occur spontaneously.

Of course, this method is not always necessary or even desired, but can be useful in a difficult
computation of a wildly sloshing fluid, such as the rotating cilinder discussed in subsection
4.5.1. Moreover, the bubbles cause a lot of secondary information to be less exactly computed
(the force upon the wall, for example).

3.5 Determining time steps

An important feature of a simulation is the possibility of adjusting time steps: during calm
intervals, a larger time step can be permitted; in difficult and unstable situations, a reduced
time step is needed.
The tool to achieve this variation in time steps is the Courant-Friedrichs-Levy number (CFL
number), defined as:

CFL=MAX<IUI'6t |v| -6t |w|-6t>.

hg " My vl
Here hz, hy and h, denote distances between the two cell centra between which the velocity
is defined.
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Numerical analysis shows that the CFL number, in any cell, must not exceed 1. This demand
can in the Donor-Acceptor algorithm be seen as the impossibility of fluxes (u - t) moving
further than one cell. Therefore, a variant of the definition with each velocity multiplied by
the edge aperture (E%, for example) is also possible.

The CFL-condition is implemented in the following way: If the CFL number in any cell ex-
ceeds a certain maximum CFLmax (usually less than 1.0), the time step is immediately, for
the next time cycle, halved (instead of repeating the current time step, which is awkward
because of the resetting of all variables).

On the other hand, if the CFL number of all cells stays smaller than a certain limiter
CFL,ip < %CFLmax for a certain amount of cycles, the time step is doubled.

3.6 Forces and changing coordinate systems

As the coordinate system of the geometry O, stays the same during the simulation, we must
keep track of the relation with respect to the inertial coordinate system O; since some param-
eters are not changed by rotation (like the gravitation) ; moreover, the total transformation
is needed for visualization purposes.

A relative position (z,y, 2)7 is related to the inertial position (z’,’, 2)T by

-4 Fi, fo f3 —tz z
Yy V\_| f1 f2, f3, -4 Yy
2! 1, FagulFo Tty z
14 0 0 0 1 1

where fy, f2, f3 are the unit vectors of Oy relative to O;, and (tx,ty,tz)T is the distance
between the two origins (the translation vector).

The matrix above changes due to a rotation vector wg # 0 or due to some translation; the
translation is only important for visualization purposes, but rotation influences the simulation
directly.

Therefore, the following algorithm has been implemented:

ALGORITHM to keep track of a changing coordinate system

DO (each time when w, changes) OR
(each time step, if the body translation or gravitation is defined in 0;):

1. Determine 8 =| wy | (T — T,) where T, was the last time this procedure has been exe-
cuted. 8 is the angle in the plane orthogonal to wgy which the system rotates with.

2. Compute w; = (f1 f2 f3) wy. This is the rotation vector in the inertial system.
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3. Determine a third coordinate system O, given by three unit vectors uz,uy,u., where

_ @)

U, = IU:T

u, and ug are then easily constructed, for example by (see also {3]) u, = 1%::_2}1 and
Up = g Xl

. The total additional rotation of Oy with respect to O; is now:
R(6) = (Ry;z) 'R:(0) Ry

where R, means rotation around the z-axis, and R, ; is the matrix

Note that (R, ;)~! = (Ry,z)7 since the u’s are orthonormal.

. The new unit vectors f; are now simply

fi" = R(O)f:¢, i=1--3.

. Now translation components are included. If the prescribed translation (obtained by
integrating q) is supposed to be in the inertial system, multiplication with the new unit
vectors is needed first.

An extra translation is included here if the rotation axis, described by wgy, does not
intersect the origin. Normally, this is taken into account by pre- and postmultiplying
with translation matrices, but the total impact is rather trivial. Indeed, the following
holds:

Tzy: = (20, Y0,20)" + R(6)(—z0, —yo, —20)T

where (g, y0,20)T is the center of rotation (or, in fact, an arbitrary point which w is
bound to intersect).

. The two types of translation described in 6) form the fourth column in the transfor-
mation matrix, which can be stored for postprocessing purposes. The simulation can
continue; the new unit vectors were already computed in 5).

. If forces such as gravitation are supposed to be defined in the inertial system, then these
vectors should be recomputed as well. Note that if the unit vectors are transformed by
a certain rotation vector w, the gravity vector is rotated by —w, i.e. the new gravity
vector is

Gnew = (R(g))_l Gold
where R(#) is the matrix defined in step 4).
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END DO

Although this algorithm is called every time step in some cases (inertial gravity, for ex-
ample), it hardly influences the computation time. The simulation continues within the same
coordinate system; only some external forces change.
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Chapter 4

Results

We now present some results of simulations performed with the program ComFlo. These
results are new in the sense that they could not have been done with the old version from
August 1997; so most results show improvements in the fields of forces, boundary velocities

and fluxes.

Liquid percentage ; old and new method
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Figure 4.1: amount of liquid during a simulation

4.1 Mass conservation

Fluid loss in 3D-dambreak

It should be noted that, in non-staircase geometries, the loss of fluid can be quite high
using the old method (in which mass conservation in B-cells did not hold). This is mainly
because of an overfill of cells near the boundary (if the fluxes towards B-cells are moved, it
concerns the B-cells itself: they will sometimes get an Fs > Fp. If not, the F-cells next to

those boundary cells suffer of fluid loss).

In staircase geometries, nevertheless, these problems do not occur since the B-cells contain

no fluid.
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The following graph (4.1) shows a typical fluid loss of a standard problem: a sphere was partly
filled with liquid and then rotated. The walls were fairly smooth, although the smoothness
does not directly influence the fluid loss as long as it is not a staircase geometry. The
computation was done on a 20° grid and lasted some 300 cycles. Other simulations show
a similar loss, at least with the current CFL-limiters of 0.4 for CFLyq5x, see also section
3.5. In general, higher CFL-limiters make it more difficult to adjust the free surface; this fact
directly influences the fluid loss in the old method.

4.2 Flux moving algorithm

We will now give some examples of the progress that has been made in the flux moving
algorithm.

Figure 4.2: spinning disk: t = 0

4.2.1 Spinning disk

First the well-known testcase of the spinning disk is performed. The disk (see figure 4.2; note
that the disk is drawn using an isosurface of the F; function; hence the nonperfect shape
at t = 0), with radius 0.3m and height 0.2m, is spinned using an angular velocity vector
w = (1,1,0)7 and the velocity field w x . This is easily done by overruling the computed
velocities by velocities following from this motion, i.e.

u=z2 vVv=-z W=Y—=z
So this is not a standard simulation: the velocities are prescribed a priori. The angular
velocity is | w |= v/2s7!. Hence for one full rotation v/27 s are needed. This is simulated in

200 time cycles.
These parameters were also used by [11], to compare another interface tracking method with
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Figure 4.3: spinning disk, old: t = V2m /2 Figure 4.4: spinning disk, new: t = /2w /2

VOF.

The other four figures show the the disk halfway the simulation (4.3, 4.4) and at the end
(4.5, 4.6). The problem, apart from keeping the sharp corners (which is almost impossible)
is to hold the disk together, and in the right shape. The normal Donor-Acceptor method is
known for its bad results here. However, using the local height function mentioned in section
3.4, a lot of improvements can be made. This is especially important because the numerical
model is less able to deal with lots of small particles mainly due to the failure in computing
orientations there.

It is evident that both methods have problems preserving the original shape, but standard
VOF is much less able to keep the fluid together.

It is also clear that the normal Donor-Acceptor method is pure symmetric, despite the stan-
dard order of z—, y— and z— loops. The local height function, however, seems to be partly
dependent of this order. The main problem here, using standard VOF, is the fact that fluid
tends to get behind the moving disk: like a comet, volumes of fluid accompany themselves
with a tail. In the near future, improvements should be made to prevent these fluid particles
from falling behind.

The simulations were done on a 40 x 40 x 40 grid and both lasted some twenty minutes on
a workstation; the extra actions involved with the newer method are hardly detectable in
computing time.

4.2.2 Boundary collision

When two surfaces (two free surfaces or a free surface and a solid boundary) are bound to
collide, mass conservation prevents a real 'melting’ together at cell level due to the labeling
(see also section 3.4), causing a lot of partly empty cells not on the surface. By changing the
demands for the divergence in these cases, this problem is mainly removed from our list, as
shows the following example of a rather normal sloshing problem.

Here a dambreak in a 2D-cylinder (a disk) is used. The radius is 0.5m, and initially the
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Figure 4.5: spinning disk, old: t = \/2n Figure 4.6: spinning disk, new: t = /2w

area T > 0.0 is filled with fluid of viscosity v = 0.01. At ¢t = 0s, the dam is removed and the
fluid moves downward due to a gravitational force of g = 5m s~2.

In figures 4.7 and 4.8, the dambreak is simulated in a staircase geometry; in figures 4.9 and
4.10, a smooth geometry is used.

The grid is very coarse: there are only ten cells in each direction. In the old situations, air is
entrapped near the walls. Obviously, this strongly influences the forces upon these walls and
computations of contact angles.

The progress as shown in the new situations is evident: in the old method, bubbles along
the wall occur, and, in the staircase geometry, even in the interior. In the latter case, mass
conservation in the cell containing that bubble can be recognized (the arrows represent the
real velocities, without having manipulated them).

The method works also for smooth geometries, which contain several nonempty B-cells.
Although one may argue that this is a somewhat crude method to simulate escaping bubbles,
the simulation is positively influenced (extra, never-ending fluid transport, from one hole to
the other and back, is prevented) while postprocessing results show less 'white noise’.

All these velocity plots are produced by Matlab; the boundaries of the geometry and the free
surface are drawn using level lines; this explains the diagonal lines in the figures representing
staircase geometries.

4.3 Effective boundary fluxes

The influence of the new velocities near the boundary is directly visible in most velocity
plots. As an example, a flow through a pipe, with a slope of 0.3, was simulated. The velocities
are shown per component, on the places where they are computed.

The first figure, figure 4.11 shows the old method: all velocities are the old, numerical ones.
Because this is a problem without free surfaces, the flux moving algorithm was turned off as
usual in situations without free surfaces (if not, since mass conservation does not hold near
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Figure 4.7: staircase geometry; new flur mov-
ing method
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Figure 4.9: smooth geometry; new fluz mov-
ing method
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Figure 4.8: staircase geometry; old flur mov-
ing method
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Figure 4.10: smooth geometry; old fluz mov-
ing method

the boundary, a lot of problems would occur). Note that, in this old method, in a lot of

B-cells small recirculation areas can be found.

Figure 4.12 shows the new method, with effective velocities. The velocities are zero in various
B-cells with closed apertures. In other B-cells, they are plotted in the middle of the cell faces,
but they should of course be regarded as situated between the wall and the cell edge. Note
that all boundary velocities now have the same direction.

It should be mentioned that a similar figure like 4.11 can still be produced using the numer-
ical velocities which are available at the same time step; the goal of these figures is just to
empbhasize the difference between numerical and effective velocities.

This simulation was done on a 40 x 30 x 1 grid; the viscosity was 0.01. The computation did
not last longer than a quarter of an hour on a common workstation.
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Figure 4.11: velocities in the old method Figure 4.12: velocities in the new method

4.4 Flow through a pipe

We consider the motion of fluid in a 2D-cylinder, with inflow at the bottom and outflow at the
top. The velocity field along horizontal lines through the pipe will reach a parabolical profile,
according to the formula of Poisseuille-Hagen, even if we start with a uniform inflow profile.
Using a uniform inflow velocity, the maximum velocity (in the middle) should be 1.5 u;n.

The physical dimensions are 1m x 8 m. The goal is to compare the influence of different
boundary cells: along both the vertical walls of the pipe, cells with, for example, F, = 1
(staircase geometry), Fy = 1 (which are F-cells) and 0 < Fy < 3 (Bj-cells) are placed.

We keep the inflow flux constant at 1m3/s. This means that in each case the amount of
I-cells under cells with F, = 1 is measured, and the right value of the inflow velocity of these
cells is taken to obtain that total flux.

The grid is in the three cases approximately 15 x 60. A good method to compare the results
is by checking the maximum at the top of the parabola, since the area under it is always the
same. The desired parabola is analytically described as w(y) = 1.5— 6y? (the pipe is situated
in the y, z plane).

The maximum velocity, in the middle, should converge to 1.5u;y, in this case 1.5. This con-
vergence is, using this coarse grid, rather slow. However, as we will see later on, these results
improve when taking finer grids. In figure 4.15, the evolution of the velocity in a horizontal
cross section is shown.

First we keep the resolution approximately fixed at 15 x 60 cells. This means that the amount
of F-cells is constant, but the cell apertures of the B-cells along the pipe are not.

For several values of F, the maximum velocity after 10 seconds is measured:
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Fb=00: 1.4760
Fb=0.2: 1.4850
Fb=0.25: 1.4880
Fb=10.33: 14910
Fb=0.4: 1.4943

These values differ not too much, and are slightly improving when taking ’larger’ cells (with
higher values of F,). In this case, the presence of extra cells, although having the same
number of momentum equations, obviously improves the result, in the sense that if the most
extremely situated momentum velocities are further from the wall, the parabola gets a better
shape.

Now we do a grid refinement study. For different B-cells on both sides, the grid sizes differ.
The physical dimensions, as defined in the input file ("ymaz’) and the inflow velocity must be
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Figure 4.16: rotating cylinder

Figure 4.15: cross section of velocity through a
pipe at z = Tm

tuned to obtain the same circumstances. The simulations are shown in the following table,
together with the maximum velocity in the middle wy,qz.

grid F, ymaz Win Uy qx
10x30 1 05 1 1.4597
11x30 1/2 0.55 10/9 1.4297

12x30  1/3 05622 10.66/10 1.4828
12x30 1/5 05769 10.4/10 1.4739
20x60 1 05 1 1.4850
21x60 1/2 0.525  20/19  1.4571
22x60 1/3 0.5324 20.66/20 1.4959
22x60 1/5 0.5392 204  1.4922
40x120 1 05 1 1.4934
41x120 1/2 0.5125 40/39  1.4774
42x120 1/3 0.5164 40.66/40 1.4975
42x120 1/5 0.5198 40.4/40  1.4956

In figure 4.13 the results are shown for the three main grid sizes: grid 1 (10 x 30), grid 2
(20 x 60) and grid 3 (40 x 120). Figure 4.14 shows the results of two simulations (staircase
and Fy = 1/3) on the coarsest grid, together with the exact solution.

Note that the velocity remains positive when approaching the wall, since the effective (flux-)
velocities are used. However, they are positioned in the middle of the cell. Therefore, and
due to interpolation, differences near the wall occur.

The following conclusion can be drawn: B-cells do not dramatically influence the global
solution, but local differences due to interpolation of velocities and positions of momentum
velocities in relation to the wall can occur.
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4.5 Demonstrations

Now two demonstrations follow, giving an indication of the possibilities, computationally as
well as in the postprocessing field, of ComFlo.

t=12.0s

t=12.0s

Figure 4.17: Snapshots of rotating cylinder; left: v = 1072, right: v = 1076

4.5.1 Rotating cylinder

A first test is the simulation of fluid in a rotating cylinder. [5] described a simulation in which
the gravity was orthogonal to the rotation vector, i.e. the gravity had the same direction as
the longitudinal axis of the cylinder. In that case, a steady-state solution was reached, which
could also analytically be computed by comparing the gravitational and rotational forces.
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Now, we take the gravity orthogonal to the longitudinal axis, like a washing machine (see
figure 4.16). Initially, the lower half of the cylinder is filled with liquid.

For this simulation, a 30 x 30 x 1 grid was taken, since the problem is two-dimensional.
Physically, the radius is 0.5m. It is very difficult to obtain a solution analytically, mainly
because that solution cannot be steady-state. However, the configuration after each revolution
is fairly similar.

The simulation time was twenty seconds while the rotation vector was set to (0,0,n)7, so
each revolution is two seconds. In a first simulation, the viscosity was 0.01; thereafter, the
computation was repeated with v = 107¢. Smaller viscosity numbers decrease the number of
drops, as shows figure 4.17, where the left-hand side contain figures of the v = 0.01 simulation.

Particles were released in the fluid at ¢ = 0. Surprisingly, particles starting near the wall
seem to change between two tracks: a periodicity of 4s can be detected. Figures 4.18 and
4.19 show the track of a particle starting 0.1 m above the lowest point of the cylinder. The
right figure shows the trajectory when compensated for the rotation !. The positions at the
end of certain periods are also shown.

particle starting at (0,-0.4) same particle,inO

01 ) \ 1 -0.2
track [
|

s =2k I >-0.25

*t2k+1l /

-o‘ﬂ

nt 1 ~0.35;
-0.4t 3 | :
0.4 04539 0.1 0.2 0.3
X
Figure 4.18: track of particle in Oy Figure 4.19: track of particle in O;

4.5.2 Marching cube

To express the new visualization properties, a simulation was made of a cube which rolls over
one of its edges which is, at that moment, at ground level. The angular velocity each time is
%7(, meaning that every two seconds one quarter of a turn in a certain direction is made. The
movement is described as: two rolls to the west, one to the south, and again one to the west.

If we denote the vertices of the cube by the letters A till H (with ABCD the ground

plane), the movement is:

"The movement in O; is obtained by premultiplying the position (:{3) by the matrix (‘:’:((;'3 ‘cz‘s'('fr’;;))
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Time Rotation axis | w
0-—-2s AD (0,%,0)
2—4s EH (0, %,0)
4—-6s FE (%,0,0)

| 6 —8s BF | (0,0,—7%)

The rotation axis and w are described in the coordinate system Oy, i.e. without taking
the movements into account.
The viscosity of the fluid was ¥ = 107%,the same as water. The computation was performed
on a 26 x 26 x 26 grid. Nearly 5900 time cycles were needed to complete the eight seconds; it
lasted a few hours on a moderate workstation. The unit vectors in the transformation matrix
were slightly altered; after eight seconds, they should again be the same as the standard
(inertial) unit vectors. However, they have to be recomputed each cycle according to the
algorithm in section 3.6. The difference, in the Euclidean norm, is, nevertheless, less than
10~3. The following snapshots (figure 4.20) indicate the movement of the box.
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Figure 4.20: Snapshots of the marching cube
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Chapter 5

Conclusions

In the previous chapters we have shown the features and possibilities of the simulation of
free-surface flow in 3D geometries. The solid boundary, previously described with staircase
geometries, has been extended towards ’smooth’ walls: Apertures in combination with ef-
fective velocities near the boundary fulfill the demands of mass conservation and adequate
velocities. Together with the possibility of creating arbitrary complex geometries (see [7]), a
lot of industrial problems can be handled.

Furthermore on the postprocessing front at lot of improvements have been made. All post-
processing actions, except for AVS, have been combined in a sophisticated MATLAB menu
system. Three-dimensional information can be processed with the aid of many state-of-the-
art possibilities of AVS, in combination with extensive treatments of forces and movements.

Although a lot has been accomplished now (spring 1998) still a lot can be done. The
schedule for the near future is:

» Dynamical interaction: the moving fluid in the geometry excerts forces on the geometry
wall. This directly influences the motion of the geometry itself, thus causing a feedback
process.

o Moving shape of geometries: Due to the forces as described above, the geometry itself
can also change; take for example the pulsing of blood through arteries.

e Local grid refinement, making it possible to pay attention to interesting parts of the
flow domain, in first instance near the boundary of §2.

s Better treatment of the movement of the free surface by making full use of orientation
characteristics. Recently, new surface tracking methods (involving normal computation
and flux quantifications) have been proposed, some of them also in 3D (see, for example,

[8))-

» Extension to a real two-fase flow: The aim is to solve the Navier-Stokes equation in the
whole geometry, using different fluid characteristics and a more continuous transition
of velocities over the interface.
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Appendix A

Program description

The numerical model has been implemented in a FORTRAN program: ComPFlo. This ap-
pendix gives more detailed information about the calling sequence and the several variables
and subroutines. This information holds for the summer of 1998; many developments continue
to adjust the program structure.

A.1 Calling sequence

The following scheme indicates the order in which the various subroutines are called. The
main division is between the initialization and the loop, until the end of the simulation. The
loop involves postprocessing routines; they are shown in italics and are not necéssary in the
actual computation. All choices concerning these aspects can be controlled by setting the
right parameters in the input file Comflo.in.

Initialization SETPAR GRID
BNDLAB BNDDEF

TIOLAB
SETFLD AUTOSV / SURDEF
SURLAB
BC I0BC
VELBC
begin LOOP  INIT
EFFBC
TILDE BDYFRC TRAFOS
SOLVEP COEFL
COEFR
PRESBC
PRESIT SLAG
VELBC
VFCONV SURLAB
BC I0BC
VELBC
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DTADJ
PRNT
MATLAB
CcOoM
FILLBX
FLUXBX
FRCBX
MNTR INTERP
STREAM INTERP
AUTOSV
end LOOP

A.2 Common block variables

The globally used variables are defined within the common blocks structures in Fortran. All

but a few uninteresting are listed here with, in the important cases, short descriptions of the
variables involved.

o /APERT/
The volume and edge apertures.
AX(I,J,K) Edge aperture between cell (i, 7, k) and cell (i + 1, j,k)
AY(I,J,K) Edge aperture between cell (7, j, k) and cell (3,7 + 1,k)
AZ(I,J,K) Edge aperture between cell (7, j, k) and cell (3,7, k + 1)
FB(I,J,K) Volume aperture w.r.t. the geometry of cell (¢, j, k).
FS(I,J,K), FSN(I,J,K) Volume apertures w.r.t. the free surface of cell (7, , k), at new
and old time level, respectively.

s /CMPTR/
Characteristics of the platform the program runs on .

s /COEFP/
The coefficients in the pressure Poisson equation.
DIV(I,J,K) The right-hand side of the equation in cell (z, j, k)
CC(I,J,K) Coefficient of p; ;& in left-hand side.
CXL(I,J,K),CXR(I,J,K) Coefficients of p;+;x in left-hand side.
CYL(I,J,K),CYR(I,J,K) Coefficients of p; j+1x in left-hand side.
CZL(I,J,K),CZR(I,J,K) Coefficients of p; i+ in left-hand side.

s /COSYS/
Contains variables which keep track of the changing coordinate system.
F1,F2,F3 unit vectors of the rotated coordinate system
SHISYS(i) translation vector of the coordinate system
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e /FEAB/

Extra variables used for Adams-Bashforth time integration.

UNN(I,J,K), VNN(I,J,K), WNN(I,J,K) These are the old velocities in cell (3, j, k).
COEF1,COEF2 These coefficients describe in what way the velocities at the ’intermediate’
time level are defined: WN = COEF1 W + COEF2 WNN.

The combination (COEF1,COEF2) = (1,0) defines forward Euler, the combination (1.5, —0.5)
Adams-Bashforth.

/FILLAR/
Contains variables for filling degrees in boxes (postprocessing).

/FLUID/

Characteristics of the fluid.

NU Kinematic viscosity (v)
SIGMA Surface tension parameter
THETA Contact angle

RHO Density

/JFLUXAR/

Contains variables for fluxes through planes (postprocessing) and fluid transport.
XFLUX(I,J,K), YFLUX(I,J,K), ZFLUX(I,J,K) Fluxin each direction leaving cell (i, , k),
as used in VFCONYV,

/FORCE/

Characteristics of the external and body forces.

AMPLX, AMPLY, AMPLZ Amplitude of the oscillation used in the subroutine BDYFRC
FREQX, FREQY, FREQZ Frequencies of this oscillation.

GRAVX, GRAVY, GRAVZ Gravitational acceleration in each direction.

X0, YO, Z0 Center of rotation

OMET (1) The rotation vector w in the moving coordinate system.

/FRCAR/
Contains variables for forces upon the geometry (postprocessing).

/GENOUT/
Contains infomation about the frequency of postprocessing writing actions.

/GRDSTR/
Characteristics of an exponentially stretched grid.
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¢ /GRIDAR/
Positioning and distances of the cartesian grid.
IMAX, JMAX, KMAX Number of cells in the three directions

X(I), Y(J), Z(K) Coordinates of grid lines; cell (¢, j, k) lies between
z(i — 1),z(i),y(j — 1),y(5), 2(k — 1) and z(k).
DXP(I),DYP(J),DZP(K) Sizes of each cell: DXP(I)=X(I)-X(I-1)
DXU(I),DYV(J),DZW(K) Distances between cell centres:

DXU(I) = (DXP(I) + DXP(I+1))=*0.5

/LABELS/
Cell and velocity labeling.

PLABEL(I,J,K) Cell label based on the geometry only.

PLABFS(I,J,K), PLABFSN(I,J,K) Cell label based on the free surface, at new and old
time levels, respectively.

ULABEL(I,J,K), ULABFS(I,J,K) Velocity labels for u based on the geometry and free
surface, respectively, between cells (7, j, k) and (i + 1, j, k).

VLABEL(I,J,K), VLABFS(I,J,K) Velocity labels for v based on the geometry and free
surface, respectively, between cells (, j, k) and (3,5 + 1,k) .

WLABEL(I,J,K), WLABFS(I,J,K) Velocity labels for w based on the geometry and free
surface, respectively, between cells (i, j, k) and (,5,k + 1) .

/LDSV/
Contains information about the autosaving option.

/MNTRAR/
Contains variables for monitor points, monitor lines and monitor circles: the specified
places where velocities and pressure are written to file (postprocessing).

/NUMER/
Numerical parameters.
EPS Allowed error in pressure Poisson SOR-iteration process.
OMSTART Relaxation factor in SOR-iteration process at t =0
OMEGA Relaxation factor (adjusted to improve convergence).
ITER, ITMAX Amount of SOR-iterations in a time cycle; slow convergence occurs when
ITER exceeds ITMAX.
NOM Counter for amount of time steps with constant OMEGA.
ITTOT Cumulative number of iterations.
ALPHA Upwind parameter: ALPHA= 1: full upwind .

e /PHYS/
These are the variables characterizing the physics of the system.

U(I,J,K),UN(I,J,K) Velocity u between cells (z,7,k) and (¢ + 1, j,k) at new and old
time level, respectively.
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v(I,J,K),VN(I,J,K) Velocity v between cells (¢, j, k) and (¢,7 + 1, k) at new and old
time level, respectively.

W(I,J,K),WN(I,J,K) Velocity w between cells (7, 7, k) and (7, 7,k + 1) at new and old
time level, respectively.

P(I,J,K) Pressure p in cell (3,7, k) at new time level.

/SPACE/
Information about the geometry size and kind of flow domain.

DOMAIN Type of domain the fluid is set in ( cube, cylinder, etc. or a user-specified
domain)

XMIN, XMAX Mesh size in x-direction: XMIN=X(0), XMAX=X(IMAX)

YMIN, YMAX Mesh size in y-direction: YMIN=Y(0), YMAX=Y(IMAX)

ZMIN, ZMAX Mesh size in z-direction: ZMIN=Z(0), ZMAX=Z(IMAX)

/STRMAR/
Contains variables for streamlines (postprocessing).

/TIME/

Variables about the discrete time.

T, TMAX Current and maximum simulation time, respectively.

DT Current time step dt.

CYCLE Current time cycle.

CFLON Toggle for variable time steps.

CFL Current CFL-number

CFLMIN Low reference CFL-number: if CFL stays under CFLMIN, DT can be doubled.
CFLMAX High reference CFL-number: if CFL jumps above CFLMAX, DT must be halved.
CFLCNT Counter for number of cycles with low CFL-numbers

A.3 Subroutines

e AUTOSV

In: T, DT,CYCLE,DTSAVE, NRSAVE,U,V,W,P,FS and all other necessary variables.
Out: File auto.sav

Description: At equal time intervals (every DTSAVE simulation seconds), the whole state
of the computation is saved, which can be restarted after a crash. Moreover, since this
routine is called after the regular computation, it can be used to continue after TMAX.

AVS

In: FB, FS, IMAX, JMAX, KMAX,U, V, W, P, DTAVS, NRAVS, T, DT
Out: Files cfavs####.fld and cfavs###.dat
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Description: At equal time intervals {after every AVSDT seconds), files for visualizing
(3D) data in AVS are created.

BC

In: AX, AY, AZ, FB, IMAX, JMAX, KMAX,

DXP, DYP, DZP, U, ULABEL,V, VLABEL, W, WLABEL
Out: U, V, W
Description: The four solid boundary velocities, namely BB,FB,SB and EB are com-
puted using the apertures and the boundary conditions (no-slip or free-slip). The veloc-
ity labels define the precise computation of these velocities. Finally, the routines IOBC
and VELBC are called to determine the free surface and in- and outflow velocities as
well (see section 3.3.4).
Note that boundary velocities use internal velocities from the previous time step; in
addition, the amount of fluid is taken into account.

BDYFRC

In: AMPLX, AMPLY, AMPLZ, FREQX, FREQY, FREQZ, DOMAIN, GRAV, T

Out: DQDT, OMET, DOMEDT, GRAV

Description: This routine is called from TILDE in order to determine the virtual body
force, described by %‘f (DQDT), w (OMET) and "’3—“;’ (DOMEDT). It is also possible to prescribe
or adjust the external body force F (GRAV).

If necessary, the subroutine TRAFOS is called to compute new unit vectors.

BNDDEF

In: DOMAIN, ILOC, JLOC, KLOC, NRINTP

Out: AX, AY, AZ, FB

Description: For each cell this subroutine is called from BNDLAB to compute the
apertures in the case that DOMAIN # 0, i.e. if only a standard geometry is needed.
The cell is divided into (NRINTP)? points (where each cell wall gets (NRINPT)? points)
and the fraction of the points in the cell or cell wall that belong to the interior of the
geometry is exactly the value of the volume and edge apertures, respectively.

BNDLAB

In: DOMAIN, IMAX, JMAX, KMAX

Out: AX, AY, AZ, PLABEL, ULABEL, VLABEL, WLABEL

Description: First, either BNDDETF is called or an input file (geodata.dat) is read to
obtain the apertures. Second, using these apertures, the cells are labeled F,B and X.
Third, the geometry-based velocity labels are set. Fourth, these labels are adjusted to
involve free slip and in- and outflow velocity labels.

Fifth, the labels for effective (flux-) velocities, in combination with labels for B-cells are
determined.
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e COEFL

In: AX,AY,AZ, IMAX, JMAX, KMAX, DXP, DYP, DZP, DXU, DYV, DZW,

PLABFS, ULABFS, VLABFS, WLABFS

Out: CC, CXL, CXR, CYL, CYR, CZL, CZR

Description: The coefficients (namely one central and six neighbour coefficients (city
block distanced)) of the matrix on the left-hand side of the Poisson equation are com-
puted in F-cells every time cycle.

These coefficients are computed using the cell distances and the apertures.

COEFR

In: AX, AY, AZ, IMAX, JMAX, KMAX, DXP, DYP, DZP, PLABFS, U, V, W, DT
Out: DIV

Description: The right-hand side of the Poisson equation in F-cells is computed every
time cycle. Here the apertures are also taken into account. In appropriate cases, the
right-hand side (a divergence) is adjusted in order to increase the fluid amount in the
cell.

DTADJ

In: CFLMIN, CFLMAX, DT, U, V, W, DXU, DYV, DzZw

Out: DT , file dthist.dat

Description: Each time step the CFL-value (see section 3.5) is computed. If this value
is small enough ( < CFLMIN) a few consecutive cycles, the time step is doubled. On
the other hand, if it is larger than CFLMAX, the time step is immediately halved.

All information about the changing time steps is written to the file dthist.dat.

EFFBC

In: AX, AY, AZ, FB, FS, IMAX, JMAX, KMAX, PLABEL, PLABFS,

DXP, DYP, DZP, UNN, VNN, WNN, ULAB2, VLAB2, WLAB2, PLAB2
Out: U, V, W
Description: First, the effective BB-velocities are computed. Second, for each B-cell
a lineair system is solved to determine the normal (BF-) velocities. All velocities are
acquired from internal velocities of the previous time step.

FILLBX

In: DXP, DYP, DZP, FB, FS, DTFILL,NRFILL, FCOORD1, NFILLB

Out: files fill##.dat

Description: This subroutine produces during the computation every DTFILL seconds
information about the filling degree of NFILLB boxes specified previously in SETPAR.
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o FLUXBX

In: DXP,DYP,DZP, XFLUX,YFLUX,ZFLUX,NRFLUX,DTFLUX,NRFLUX,ORIENT

Out: files flux##.dat

Description: Here the value of the fluxes through planes previously specified in SET-
PAR is written to file every DTFLUX seconds.

FRCBX

In: DXpP, DYP, DZP,FB,FS,P, NFRCB,AX,AY,AZ, NRFRC, DTFRC

Out: files frc##.dat

Description: Here the forces on the wall in boxes specified in SETPAR are written to
file every DTFRC simulation seconds.

GRID

In: IMAX, JMAX, KMAX, XCONC, YCONC, ZCONC, XSTR, YSTR, ZSTR

Qut: X, Y, Z, DXp, DYP, DZP, DXU, DYV, DZW

Description: A uniform or stretched grid is created. In the latter case, the distances
are acquired using a concentration point ( XCONC, YCONC, ZCONC) en stretching factors
like XSTR.

INIT

In: COEF1, COEF2, CYCLE, FS, IMAX, JMAX, KMAX, U, V, W

Out: CYCLE, FSN, U,UN,UNN, V,VN,VNN, W,WN,WNN

Description: This routine begins a new time cycle. Here the cycle is increased by one,
U,V,W are saved in UNN,VNN,WNN and reset; and UN, VN and WN are computed according
to the time integration coefficients COEF1 and COEF2.

After FS is copied to FSN, the subroutine EFFBC is called to compute the effective
boundary velocities.

INTERP

In: I,J,K, XPT, YPT, ZPT, DXP,DYP,DZP,DXU,DYV,DZW

Out: PI, UI, VI, WI

Description: The pressure and velocities are computed at coordinates
(XPT,YPT,ZPT) in cell (i,5,k). This is done by interpolating neighbouring values
using the location of the point in the cell.
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IOBC

In: IMAX,JMAX,KMAX, ULABEL,VLABEL,WLABEL
Out: P, U, V, W
Description: Boundary conditions with respect to in- and outflow cells are set.

IOLAB

In: IMAX,JMAX ,KMAX,PLABEL

Out: PLABEL

Description: In- and outflow cells are labeled by changing boundary cells, i.e. cells with
PLABEL=2.

LIQPCT

In: DXP, DYP, DZP, IMAX,JMAX,KMAX, FB, FS
Out: LIQUID, VOLUME
Description: Computes the amount of liquid and writes the liquid percentage to screen.

MATLAB

In: FB, FS, IMAX,JMAX,KMAX, X,Y,Z, U,V,W,P, NRMATL,DTMATL, T, DT

Out: files cfmat####.m

Description: Every DTMATL seconds files are created to visualize the geometry, the free
surface, the velocity field and the pressure in certain planes in Matlab.

MNTR

In: U,V,W,P,NMNTRP, NMNTRL, NMNTRC, NRMNTR, ,DTMNTR

Out: files mntrp##.dat, mntrl##.dat, mntrc##.dat

Description: in mpoints.dat, monitor points and monitor lines are defined. This
routine writes the pressure and velocities on those positions, as computed by INTERP
to the specified files every MPDT simulation seconds.

PRESBC

In: 1IMAX,JMAX,KMAX, PLABEL, PLABFS, SIGMA, THETA
Out: P,CXL,CXR,CYL,CYR,CZL,CZR,CC

Description: Here the free surface condition is applied to S-cells; See section 3.3.4 for
further information.

At the end the coefficients of the pressure Poisson equation are scaled by the central
coefficient.
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¢ PRESIT

In: IMAX,JMAX,KMAX, PLABFS, PLABFSN, EPS, OMSTRT, OMEGA,

CYCLE, ITER, ITMAX, NOM
Out: P
Description: This routine solves the pressure Poisson equation using SOR. Starting with
OMSTRT, the relaxation parameter w (OMEGA) is, when possible, changed to obtain the
highest convergence ratio. The routine SLAG is called for every individual SOR-sweep
while a certain error (DELTA) exceeds EPS and the number of iterations ITER stays less
than ITMAX. If the second guard is not longer the case, the program terminates because
of an apparent non-convergence.

o PRNT

In: IMAX,JMAX,KMAX, U,UN,V,VN,W,WN,PLABEL, PLABFS,DTPRNT,NRPRNT, T,DT
Out: screen information, file comflo.out, file iter.dat

Description: This subroutine handles the more general output to screen and files, which
is done every DTPRNT seconds. First, information like time, iterations and changes in
velocities and pressure is printed. The file iter.dat shows the relation between timesteps
and total amount of SOR-iterations versus the simulation time.

¢ SETFLD

In: IMAX,JMAX,KMAX, LOADQ

Out: U,V,W, P

Description: Here the state of the fluid is initialized. If LOADQ equals one (in case
of a restart or a continuation) the routine AUTOSYV is called to obtain the necessary
information and a call to SURLAB sets the labeling. At this point all data to continue
has been acquired.

Otherwise, in an ordinary startup, SURDEF and SURLAB are called to set the initial
liquid configuration and labels. Also the velocities are initialized (usually to zero) and
the atmospheric pressure is defined in the whole grid. At last BC is called to obtain
the initial boundary conditions.

¢ SETPAR

In: file comflo.in, file mpoints.dat
Out: XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,IMAX,JMAX,KMAX,TMAX,DT,
CYCLE, SIGMA,THETA, NU,DOMAIN,AMPLX, AMPLY, AMPLZ,FREQX,FREQY, FREQZ,GRAV,
ALPHA ,EPS,0MSTRT,OMEGA, ITMAX,NOM,CFLON, CFLMIN,CFLMAX
and all other postprocessing information (more than 50 variables)
Description: All variables given above are read or initialized. Moreover, all informa-
tion about the postprocessing (frequency of writing, location of boxes, planes, lines and
points) is read. For more information see the input files.
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e SLAG

In:IMAX, JMAX,KMAX,DIV,CXL,CXR,CYL,CYR,CZL,CZR,ITER,OMEGA,PLABFS,P
DELTA,ITER,P

Out: DELTA, ITER, P

Description: Here one SOR-sweep is executed using a red-black ordening. The relax-
ation factor is OMEGA. An adjusted pressure field P is returned, together with the norm
DELTA of the difference with the previous P.

e SOLVEP

In: IMAX,JMAX,KMAX,ULABFS,VLABFS,WLABFS,U,V,W,P,DT,DXU,DYV,DZW

Out: U,V,W,P

Description: This is the main routine to solve the pressure and obtain new velocities
as described in Chapter 3. First, COEFL and COEFR are called; then the pressure
Poisson equation is solved by calling PRESBC and PRESIT. The new momentum
velocities are computed according to formula (3.4).

e STREAM

In:IMAX, JMAX ,KMAX,DTSTRM,NRSTRM, NPARTP ,NPARTL,NPARTC,DT

Out: files partp##.dat, partl##.dat, partc##.dat

Description: This routine produces files containing streamlines. Every cycle, the velocity
of each particle (or set of particles, they may initially be set in a circle or on a line)
is computed by INTERP and the position of the particle is computed using forward
Euler. The files are adjusted every DTSTRM simulation seconds.

e SURDEF

In: DOMAIN,FB, IMAX,JMAX,KMAX,X,Y,Z
QOut: FS
Description: The initial fluid configuration, described by FS, is defined.

e SURLAB

In: IMAX,JMAX,KMAX, PLABEL, PLABFS, FS, ULABEL,VLABEL,WLABEL

Out: ULABFS, VLABFS, WLABFS, PLABFS, PLABFSN

Description: Here the free-surface labels (F, S, and E and the various velocity labels)
are set at every time step (since the fluid configuration is time-dependent).
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e TILDE

In: IMAX,JMAX,KMAX, X,DXP,DXU,Y,DYP,DYV,Z,DZP,DZW,
GRAV,DQDT,DOMETDT, OMET,DT,UN, VN, WN,ULABFS, VLABFS,WLABFS

Out: U,V,W

Description: Here the term u™ + §tR" as described in section 3.3.1 is computed. Since

R" contains also all internal, external and body forces, the routine BDYFRC is called

to obtain these forces.

VELBC

In: IMAX,JMAX,KMAX,FS, DXP,DXU,DYP,DYV,DZP,DZW,U,V,W,
ULABFS,VLABFS,WLABFS

Qut: U,V,W

Description: In this routine the free-surface velocities EE and SE are computed using
the free-surface labels and the discretized free-surface boundary conditions.

VFCONV

In: IMAX,JMAX,KMAX, FB,FS,FSN,AX,AY,AZ,DXP,DYP,DZP,
DT,PLABEL,PLABFS,ULABFS,VLABFS,WLABFS,U,V,W

Qut: FS, XFLUX,YFLUX,ZFLUX

Description: Here the donor-acceptor algorithm is performed. First the fluxes between

F-, S- and E-cells are computed. In these cells the values of F; are recomputed using

those fluxes. Since after that the labeling is obsolete, SURLAB is called to set the

new labels. Finally, a call to the routine BC updates the boundary velocities.
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Appendix B

The input file and postprocessing
using Matlab

In the following sections we will discuss the main input file, called Comflo.in. Here all the
characteristics, numerically and physically, are set. Moreover, information about postpro-
cessing must be set in this file. Most of the information produced by the program can be
processed using a sophisticated menu system in Matlab.

B.1 Input file

Here an example of the input file is shown:

dim* cray

3 0

domain xmin Xmax ymin ymax zmin zZmax slip*
18 -0.5 0.5 -0.5 0.5 -0.5 0.5 0
object xmin Xmax ymin ymax zmin zZmax slip*
0 -0.07 0.07 -0.06 0.06 -0.05 0.05 0

1 0.0 0.0 0.0 0.0 0.0 0.0

rho* nu sigma  theta

1.0 1.0E-2 0.0 90.0

imax jmax kmax xc yc zc sXx sy sz

40 40 120 0.0 0.0 0.0 1.0 1.0 1.0
eps omega itmax alpha orded4* feabl feab2 nrintp exactx
1.0E-5 1.3 6000 1.0 0 1.0 0.0 3 0

dt tmax cfl cflmin cflmax

0.01 10.0 1 0.1 0.4



0.0 -0.0 -0.0 0 0

amplx freqx amply freqy amplz freqz u0=* vO* wO*
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
omex omey omez tup* tdown* x0 yo z0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

load nsave

0 1

npavs tbavs* zipavs npmatl tbmatl# nprnt ntcom
10 0.0 0 10 0.0 40 0

avs pathname:
/ciwill/homel/users/csg623/afstu2/comflo/data/
matlab pathname:

data/

1 40
x1 XT yl yr zl zr
-0.5 0.5 -0.5 0.5 -0.5 0.5

1 20
x1 XT yl yIr zl zr
-0.5 0.5 -0.5 0.5 -0.5 0.5

1 40
x1 Xr yl yr zl zr
=0.5 0.5 -0.5 0.5 0.0 0.0

npartp npartl npartc ntpart

0 0 0 10

xpt ypt zpt tstrt <- points
x1l Xr yl yr zl zr tstrt <- lines
xc yc zc radius orient tstrt <- circles

0 3 0 10

xpt ypt zpt <- points
x1l XT yl yIr zl zr <- lines
.0 .0 -0.6 0.6 -3.0 -3.0

.0 .0 -0.6 0.6 0.0 0.0

.0 .0 -0.6 0.6 3.0 3.0

xc yc¢ zc radius orient tstrt <- circles
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In the first lines, the physical sizes, the grid, the fluid characteristics and the configurations
of liquid and geometry are determined. The grid can be exponentially stretched using a
concentration point (xc,yc,zc) and stretching factors sx,sy,sz.
Then numerical parmeters are set: discretization methods in space (upwind, central), and
in time (Forward Euler, Adams-Bashforth). For the pressure Poisson iteration, the number
of iterations, the relaxation parameter omega and the allowed error eps can be adjusted.
Further, CFL checks can be toggled using cf1, and, if cf1 equals one, the limits for doubling
and halving the time step are set.
Hereafter, all forces can be determined: gravitation and oscillation, the rotation axis
(omex, omey, omez) and the rotation centre (x0,y0,2z0). The oscillation and gravitation
can be regarded in the inertial coordinate system or in the moving coordinate system by
toggling ginrt and finrt.
Autosave options are controlled by load and nsave.
Now the writing frequency of Matlab files (npavs), AVS files (npmat) and standard information
(nprnt) is defined.
The rest of the input file is dedicated to secondary data: fillboxes, forceboxes, fluxplanes,
streamlines (of individual particles, or particles grouped on lines or circles) and monitor
points (or lines, or circles). More details are found in (7).

B.2 Matlab menu system

i File Window Help

|
. POSTPROCESSING
enter directory for general data A 4 i
§ _fcwil1/home users/cspe2 Yafstuz/comfla.
enter directory for snapshot data
I fcivil1/nome lusers/csg623/afstuz/comflo/data

2
— e ST

fil , ]; flu l force ]

_ monitor (points) l monitor (lines) J penitor {circles) J

stream (points) J stream (lines) l stream (circles)

a
3
:

|
centre of mass ] ime Step analy;slsgl . Itegdon‘éna};sls " l

:

snapshot ]

EXIT [ ]

Figure B.1: Matlab main menu

The results of the postprocessing tasks as set in the input file can be viewed using the
Matlab menu system. The powerful command uicontrol enables the creation of several
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menus, toggles, radio buttons and so on.
The main menu is divided into several submenus (see figure B.1).

Each of these submenus handles one postprocessing aspect. The simple point-and-click

system easily enables beginning users to process all information. Plots of most common
combinations of variables can be drawn and printed. Moreover, all variables are available for
standard use in Matlab (in the main Matlab window).
A special submenu is the snapshot menu: here the analogons of the AVS datafiles can be
viewed. Instead of the AVS files, which contain all important variables on certain time levels,
these files contain these variables in the three orthogonal planes which intersect the centre of
the geometry. Possible plots which can be drawn are quiver plots of velocities in combination
with fluid configurations, or coloured plots of pressure levels. The snapshot submenu is shown
in figure B.2.

.F 4 g 3 == % & = '. -1

. | =liol]

File Window Help I :

SNAPSHOT 4

i g - .
|

cfmat0001.dat

v yz-plane J cimat0002.dat ~ shading J i

v xz-plane I velocity (quiver) J < colorbar J }

v xy~-plane J ~ hor. veloclty {pcolor}|{ <~ grid J )

v ver. velocity (pcolor)

v geometry J <+ abs. velodity {pcolor} [ pressure {pcolor) I
v free surface J plot now J < pressure (contour} '
normal -J 4 g J J hold l -J zoom I pdntﬂ clearJ

BACK ; 2|

Figure B.2: Matlab snapshot submenu
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Appendix C

Postprocessing using AVS

AVS, an abbreviation of Advanced Visualization System is a package for visualization of large
amounts of (3D-) data. Together with MATLAB, which is mainly used for processing derived
(2D-) data, AVS handles all postprocessing actions of ComFlo.

In the following sections, the interface between ComFlo and AVS is explained.

The goals which we would like to reach are:

1. To get a first impression of the fluid configuration, together with pressures and velocities,
as soon as new data has been produced, i.e. during the simulation.

2. To be aware of the position (rotation and translation) of the geometry with respect to
the starting position, for every data file.

3. To produce a movie, i.e. to obtain a sequence of images, eventually stored in one file,
of each desired part of the simulation.

C.1 ComFlo module

The three goals are met by using a standard AVS-network, combined with a special module
written for this purpose, the ComFlo module.
This module, unlike normal modules, directly influences the entire network; it can be con-
sidered as a ’master’ module. The network itself is not static; it may be changed, saved and
loaded by any user, although a few modules of the network may not be removed. In figure
C.1 an example of such a network is shown.

The modules "Read field” (for reading the fluid) and ” Write Image” (for writing the scene
to an *.AVS image) are expected to be found in each network.

A module consists of an initialization part (which is not relevant here) and a computational
part, which is executed each time an input or a parameter of a module is changed. In the
computational part, the value of each parameter can be obtained and changed. A parameter
can appear on the dahboard (the left control window) in several forms, constrained by the
class to which it belongs (a boolean parameter, for example, can be represented with a toggle
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read feld -

—— ] L
! statistics

Figure C.1: Ezample of an AVS-network

switch (on/off) or a ’oneshot’ push button (default is "off’, pushing the button turns it 'on’
just once).).

The ComFlo module contains several parameters guiding the movie production process; each
function is implemented in the computational part of the module. Some of the parameters
influence the whole network in the sense that they can change parameters of other modules.
This is accomplished relatively easy with the so-called Command Language Interpreter.

C.2 The Command Language Interpreter

Although all modules are written in Fortran or C, nearly all actions in AVS can be described
in a macro language, the Command Language Interpreter (CLI).

To execute AVS in this CLI-mode, type

unix-prompt > avs -cli

Now the window in which AVS is started is used as CLI-editing window. For example, reading
a network is achieved by typing

cli > net_read comf.net

Another possibility is creating a menu system, which enables the user to execute some
basic commands. The menu code can be placed in the network (*.net) file. For example:

menu "background color"” -pulldown
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-add "black" ‘'geom_set_background O. !

0 0.0 0.0
-add "grey" ‘'geom_set_background 0.5 0.5 0.5
-add "white" "geom_set_background 1.0 1.0 1.0

adds a pulldown menu consisting of three items, enabling the user to choose a scene back-
ground color.

In a module, CLI commands can be used with the FORTRAN-routine AVScommand(..)
which executes a parameter string as a CLI command. Unfortunately, when used in the
computational part of a module, the module does not wait for all the consequences of that
CLI-call having been finished; instead, it continues with the next statement (which may be
another CLI-call). The best way to avoid problems with the order in which the CLI commands
are executed, is:

Construct a (temporary) file containing all desired CLI-commands. Then make one call to
the CLI using AVScommand, telling the CLI to run that file as a CLI-script.

C.3 The Geometry Viewer

The geometry Viewer converts the 3D-data field to an image, which is displayed in the Ge-
ometry Viewer Window (GVW). The coordinate system in the GVW can be obtained from
the ComFlo coordinate system by a rotation of 90 degrees clockwise around the z-axis.
Coordinates range from -5 to 5 by default, making scaling often necessary.
A transformation is set by the CLI-command geom_set_matrix -mat <mat> , where <mat>
is a transposed regular 4 x 4 transformation matrix.
After each change which influences the GVW, the scene is refreshed by geom_refresh.
Once a transformation is executed, additional (concatened) transformations are acquired with
geom_concat_matrix <mat>. However, to prevent problems due to changing centres of ro-
tation, it is advised to compute the concatenated matrices elsewhere, and present the result
to AVS in one geom_set_matrix call.

sh "uncompress ./comflo/data/cfavs0001.dat "

parm_set ReFi:"Read Field Browser" ./comflo/data/cfavs0001.£f1d
parm_set WrIm:"Write Image Browser" ./comflo/data/cfim0001.x

sh "mv ./comflo/data/cfim0001.x ./comflo/data/cfim0001.AVS "

sh "convert ./comflo/data/cfim0001.AVS ./comflo/data/cfim0001.pnm "
sh "rm -f ./comflo/data/cfim0001.AVS "

sh "uncompress ./comflo/data/cfavs0002.dat "

parm_set ReFi:"Read Field Browser" ./comflo/data/cfavs0002.fld
parm_set WrIm:"Write Image Browser" ./comflo/data/cfim0002.x

sh "mv ./comflo/data/cfim0002.x ./comflo/data/cfim0002.AVS "

sh "convert ./comflo/data/cfim0002.AVS ./comflo/data/cfim0002.pnm "
sh "rm -f ./comflo/data/cfim0002.AVS "

ezample of a CLI-script
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C.4 Making a movie

The module ”ComFlo” supports the following features for making a movie (see also figure
C.2):

o compress As each movie frame needs one complete data set, this option saves storage
space by immediately compressing the data file when it is no longer necessary, i.e. when
another file is read in.

e begin frame The number of the first frame of the movie. All AVS-datafiles produced
by the program are of the form cfavs####.dat and cfavs####.fld, where #### represents
a number (with leading zeroes if necessary) from 0001 to 9999.

e end frame The last frame of the desired movie.
¢ movement Toggle for showing the moving geometry in the movie.

o show network This toggle shows / hides the network; the user can directly change
some additional parameters or change and save the network.

e start position This oneshot parameter saves the current position (rotation,scaling and
translation) of the geometry in the scene (set by using the mouse, for example) in a
4 x 4 matrix. The movement of the movie is concatenated with this position. If this
parameter has not been used, the movie starts with the normal ComPFlo position (z-axis
to the right, z-axis to above), which is the AVS-position after rotating —7% around the
z- axis. Moreover, standard AVS scaling bounds the z- and y— values by +5.

e translation factor This parameter adjusts the given translation values in order to
enable reasonable sizes of the geometry.

¢ try movie While the whole movie making process can take several hours for hundreds of
large datafiles, this option is very handy to get an impression of the used area and view
angles. When this parameter button is pushed, the currently displayed scene is moved
according to the transformation parameters for each frame. Thus, the difference with
the real "’MOVIE’ parameter is: no new datafiles are read and no images are written.

e MOVIE. The actual push button for creating the movie frames. Make sure to push
this button only when all precautions (see above) have been made. After the datafiles
have been written to *.AVS images, the images are automatically converted to * PNM
files. If the process has finished, an FLI-movie is made by

unix-prompt> pnm2fli If <filename>

where If is a list file which was also automatically created.

Finally, the ComFlo module creates a menu, in a separate window (similar to the menu
in the Data Viewer application), with the following options:

- set an isosurface level for the fluid.
- set an isosurface level for the geometry.
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- determine the fluid representation.

- determine which component colors the fluid.
- determine the background color.

- toggle perspective.

- save current parameters.

It should be noticed that these menu actions can also be accomplished by setting the right
parameters or by using the right CLI-commands.
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Figure C.2: dashboard of ComFlo module
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