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Summary

An important result from complex analysis, the Riemann mapping theorem, states that there
exists a conformal bijective mapping f : A→ B between any two simply connected open sets
A ⊂ C and B ⊂ C, both not equal to the whole complex-plane C. In the case where the upper
half-plane is conformally mapped onto an open set which is the inside of a simple polygon,
the mapping has the form of a Schwarz-Christoffel transformation (SCT).
The SCT will be discussed in detail, and will be used to define Jacobi elliptic functions.
Jacobi elliptic functions form a special set of elliptic functions in general. Elliptic functions
are doubly periodic meromorphic functions. Basic properties of elliptic functions will be
discussed.
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Chapter 1

Introduction

Elliptic functions are doubly periodic meromorphic functions. The Schwarz-Christoffel trans-
formation describes an expression in integral form, to map the upper half-plane conformally to
a domain in the shape of a bounded or unbounded polygon in the complex plane. Anthony Os-
bourne describes a way to define certain elliptic functions with use of the Schwarz-Christoffel
transformation, these elliptic functions are called jacobi elliptic function [6]. This paper takes
a closer look on this process and concepts.
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Chapter 2

The Schwarz-Christoffel

transformation

2.1 Useful Tools

The following results will be used throughout the text, and it will be assumed the reader is
familiar with them.

Lemma 2.1.1 (Schwarz Lemma). Let f : D → D be an analytic function from the open unit
disc into itself such that f(0) = 0. Then:

• |f(z)| ≤ |z| for all z ∈ D.

• If |f(z0)| = |z0| for some z0 ∈ D, z0 6= 0, then there exists some ϕ ∈ R such that:

f(z) = eiϕz.

Theorem 2.1.2 (Schwarz reflection principle). Let U+ be an open set in the upper half-plane,
where its boundary contains an open interval I of the real numbers. Let U− be the reflection
of U+ along the real axis.

If f(z) is a function on U+ ∪ I, analytic on U+, and continuous and real valued on I,
then f(z) has a unique analytic continuation F (z) defined on U− ∪ U+ ∪ I which satisfies
F (z) = f(z̄).

A direct consequence of Theorem 2.1.2 is given below.

Corollary 2.1.3 (Horizontal Schwarz reflection). Let V + be an open subset of {z ∈ C :
Re z ≥ 0}, where its boundary contains an open interval J of purely imaginary numbers. Let
V − be the reflection of V + along the imaginary axis.

If g is a function on V + ∪ J , analytic on V +, and continuous and real valued on J ,
then g(z) has a unique analytic continuation G(z) defined on V + ∪ V − ∪ J which satisfies
G(z) = g(−z̄).

Proofs of the above results can be found, for instance, in [3] or [5]. The following results
concerning logarithms will be useful.

Lemma 2.1.4. Let ϕ(z) be analytic and non-zero in the simply connected open set R. Then
a single-valued and analytic branch of logϕ(z) can be defined in R.
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Proof. It suffices to shows the existence of function g(z), analytic in R such that

eg(z) = ϕ(z). (2.1.1)

Since ϕ(z) 6= 0 in open set R, ϕ′/ϕ is analytic in R. Define h such that

h′(z) =
ϕ′(z)

ϕ(z)
.

For z0 ∈ R, select logϕ(z0) arbitrary. Define g(z) as

g(z) = h(z) − h(z0) + logϕ(z0),

which is analytic in R. Define d(z) as

d(z) = e−g(z)ϕ(z),

which has d(z0) = 1. Since

d′(z) =
ϕ′(z)

ϕ(z)
e−g(z)ϕ(z) + ϕ′(z)e−g(z),

d(z) = 1, and indeed g(z) satisfies (2.1.1).

2.2 Conformal transformations

A mapping f from a set D in the complex plane to a set D′ in the complex plane will be
denoted by:

w = f(z), z ∈ D;

i.e. f takes a point from D in the z-plane into a unique point w in the w-plane.
The inverse function theorem states that if f is analytic and f ′(a) 6= 0, then there exists an

open neighbourhood U of a and an open neighbourhood V of f(a) such that f is one-on-one
from U onto V (and f ′(z) 6= 0 for all z ∈ U).

Definition 2.2.1 (Conformal transformations). Let f be analytic on a set D. Then f is
called a conformal mapping on D if f ′(z) 6= 0 for all z ∈ D.

Lemma 2.2.2. Let f be a conformal mapping on an open connected set D. Let γ(t) and η(t)
be two differentiable curves mapping inside D, with:

z0 = γ(t0) = η(t1).

Then
arg(γ′(t0)) − arg(η′(t1)) = arg((f ◦ γ)′(t0)) − arg((f ◦ η)′(t1)).

Proof. Note that (f ◦ γ)′(t0) = f ′(z0)γ
′(t0) and (f ◦ η)′(t1) = f ′(z0)η

′(t1). Hence

arg(γ′(t0)) − arg(η′(t1)) = arg(f ′(z0)(γ
′(t0)) − arg(f ′(z0)η

′(t1)).

which holds since f ′(z0) 6= 0.
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η

γ f ◦ η

f ◦ γ

θ

θ

f

Figure 2.1: A conformal transformation f is angle-preserving

This lemma has an important geometric interpretation. The angle θ between the tangent
vectors of two curves at an intersection point z0 remains the same after conformal transforma-
tion f , as shown in Fig. 2.1. Let A and B be open sets in C. An analytic function f : A→ B
is called an analytic isomorphism if f maps A one-to-one onto B and there exists an analytic
inverse f−1 on B. If A = B then f is called an automorphism.

Lemma 2.2.3. With D denoted as the open unit disc, let f : D → D be an analytic automor-
phism. Let p ∈ D with f(p) = 0. Then f must be of the form:

f(z) = eiϕ
p− z

1 − p̄z
, ϕ ∈ R.

Proof. Consider g(z) = p−z
1−p̄z , which is analytic inside the closed unit disc since |p| < 1. Now

observe

g(eiθ) =
p− eiθ

eiθ(e−iθ − p̄)
=

p− eiθ

−eiθ(p− eiθ)
, θ ∈ R.

Hence if |z| = 1 then |g(z)| = 1, which shows 1 is the maximum of |g(z)| in D by the maximum
modules principle.

Therefore |g(z)| ≤ 1 for |z| ≤ 1. Calculations show that g−1 = g, i.e. g is the inverse of
itself, and therefore is an analytic automorphism.

Consider h = f ◦g. Note that h(0) = 0 and that h is an analytic automorphism since f and
g are. Therefore by the Schwarz lemma |h(z)| ≤ |z| if |z| < 1. Also note that h−1 = g ◦ f−1

is also an analytic automorphism with h−1(0) = 0, hence |z| ≤ |h(z)|. Hence there exists a
z0 ∈ D, z0 6= 0 with |h(z0)| = |z0|. By the Schwarz lemma, h is of the form h(z) = eiϕz for
some ϕ ∈ R which proofs the lemma.

Given two open connected sets F and G, the question may arise if there exists a conformal
transformation which maps F onto G.
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f

D

Figure 2.2: By the Riemann mapping theorem there exists a conformal mapping from D onto
the inside of the unit disc.

Theorem 2.2.4 (Riemann mapping theorem). Let R be a simply connected open set which
is not the whole complex plane and let z0 ∈ R. Then there exists a unique injective conformal
mapping f : R→ D, mapping R onto D, the open unit disc, such that

f(z0) = 0, arg(f ′(z0)) = 0.

In particular, if D and D′ are simply connected open sets both not equal to the complex-
plane, then there exists an injective conformal mapping from D onto D′. A proof of the
Riemann mapping theorem can be found in [3] or [5].

Closely related to the Riemann mapping theorem is the Osgood-Carathéodory theorem,
wherefore the notion of a Jordan curve and a Jordan region will be introduced.

A Jordan curve is a closed curve, which has no multiple points. Hence, if γ : [a, b] → C is
a Jordan curve then for t0 < t1, γ(t0) = γ(t1) if and only if t0 = a and t1 = b. A region is a
Jordan region if it is the interior of a Jordan curve.

Theorem 2.2.5 (Osgood-Carathéodory theorem). Let D and E be two Jordan regions. Any
function f mapping D conformal and one-to-one onto E can be extended to a injective con-
tinuous map of the closure of D onto the closure of E.

The above results will be useful in presenting the Schwarz-Christoffel transformation. In
the following section, two examples of conformal mappings will be discussed in detail.

2.3 Two examples of conformal mappings

Example 2.3.1 (The triangle). Define the complex function f(z) by

f(z) =

∫ z

0
uα−1(u− 1)β−1 du, α, β ∈ R.

It will be assumed that α > 0, β > 0, and α + β < 1. As a complex-valued function the
integrand is in general multi-valued, since it is the product of the multi-valued functions uα−1

and (u − 1)β−1 with branch-points 0 and 1 respectively. Both factors can be interpreted
as single-valued functions by means of branch-cuts as shown in Fig. 2.3. Note that with
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1

0

Figure 2.3: Branch-cuts {−|a|i} and {1 − |a|i}, for a ∈ R.

the indicated choice of branch-cuts, the integrand is single-valued and analytic in the upper
half-plane.

Since f ′(z) = zα−1(z − 1)β−1, the function has a non-zero derivative for z not equal to 0
or 1, and therefore is conformal in the upper half-plane.

f(1)

0

f(∞)βπ

Figure 2.4: The image of f(x) as x→ ∞.

Note that f(0) = 0. Consider the behaviour for x ∈ R:

• For 0 < x < 1, f(x) can be rewritten as

eiπ(β−1)

∫ x

0
uα−1(1 − u)β−1 du.

The integrand is real, positive and finite. Therefore the integral is real and strictly
increasing. Hence the image f(x) will travel from 0 in a straight line to the finite point
f(1) in the complex plane, as x → 1. eiπ(β−1) indicates the direction, as shown in
Fig. 2.4.

• For x > 1 the integral can be rewritten as

f(x) = f(1) +

∫ x

1
uα−1(u− 1)β−1 du (u = 1/t)

= f(1) +

∫ 1

1/x
tβ−1(1 − t)1−α−β−1 dt.

The last integral is real and increases as x→ 0. Note that f(∞) is a finite point in the
complex plane (since α+ β < 1). Hence, the image f(x) will travel from f(1) to f(∞)
along a straight horizontal line as x increases from 1 to ∞, as shown in Fig. 2.4.

• For x < 0 the integral can be rewritten as
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f(x) = − eiπ(α+β−1)

∫ x

0
(−u)α−1(1 − u)β−1 du (u = 1 − 1/t)

= eiπ(α+β−1)

∫ 1

1
1−x

tα−1(1 − t)1−α−β−1 dt.

The last integral is real and increases as x → −∞. Since f(0) = 0, the image f(x)
travels along a straight line from 0 to f(−∞) as x decreases from 0 to −∞. eiπ(α+β−1)

indicates the direction of this straight line.

With the assumptions α, β > 0 and α + β < 1, the location of the limits f(∞) and f(−∞)
can be expressed in terms of the Beta-function. For real ζ > 0, η > 0 the Beta-function
B(ζ, η) is defined as:

B(ζ, η) =

∫ 1

0
tζ−1(1 − t)η−1dt.

Recall that B(ζ, η) = B(η, ζ) and that, with Γ as the Gamma-function:

B(ζ, η) =
Γ(ζ)Γ(η)

Γ(ζ + η)
, ζ > 0, η > 0, Γ(a)Γ(1 − a) =

π

sin(πa)
, 0 < a < 1.

Now observe

• Clearly f(1) = eiπ(β−1)B(α, β). f(1) is located in the lower half-plane since β ∈ (0, 1).

• With γ = 1 − α− β, the expression for f(∞) can be rewritten as:

f(∞) = eiπ(β−1)B(α, β) +B(γ, β)

=
1

π
Γ(α)Γ(β)Γ(γ)[sin(πα) + eiπ(β−1) sin(πγ)].

The last factor sin(πα) + eiπ(β−1) sin(πγ) is equal to

sinπα+ cos π(β − 1) sin πγ + i sin π(β − 1) sin πγ

= sinπ(1 − β) cos πγ − cos π(1 − β) sin πγ

+ cos π(β − 1) sin πγ + i sin π(β − 1) sin(πγ)

= sinπ(1 − β) cos πγ + i sin π(β − 1) sin(πγ)

= sin(πβ)e−iγπ .

Hence f(∞) = sin(πβ)e−iγπ 1
πΓ(α)Γ(β)Γ(γ).

• Finally, f(−∞) = eiπ(α+β−1)
∫ 1
0 t

α−1(1 − t)γ−1 dt, which can be rewritten as:

e−iγπB(α, γ) = sin(πβ)e−iγπ 1

π
Γ(α)Γ(β)Γ(γ).
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f(∞) = f(−∞)f(1) βπ γπ

απ

B(α, β) B(α, γ)

B(β, γ)

0

Figure 2.5: f maps the real line to a triangle, with vertices at 0, f(1), and f(∞).

This shows f(−∞) = f(∞), hence f maps the real line to a triangle, as shown in Fig. 2.5.
Note that the triangle has sides B(β, γ), B(α, γ), and B(α, β), with corresponding opposite

angles απ, βπ, and γπ, respectively. It follows from the formulas

B(β, γ) = Γ(α)Γ(β)Γ(γ)
sin(πα)

π
,

B(α, γ) = Γ(α)Γ(β)Γ(γ)
sin(πβ)

π
,

B(α, β) = Γ(α)Γ(β)Γ(γ)
sin(πγ)

π
,

that
sinαπ

B(β, γ)
=

sinβπ

B(α, γ)
=

sin γπ

B(α, β)
.

In other words, these identities stand for the so-called sine-rule for the triangle.
Points in the upper half-plane are mapped inside the triangle. Numerical approximations

show that horizontal lines in the upper half-plane which approach the real line are mapped
to expanding balloon-shaped curves inside the triangle as indicated in Fig. 2.6.
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−5 −4 −3 −2 −1 0 1

−5

−4

−3

−2

−1

0

1

Figure 2.6: Plot of f where α = 1/3 and β = 1/4. Horizontal lines hn with Im hn = 2n

have been plotted for n = −5,−4,−3, · · · , 8, 9, 10, where the smallest balloon-shaped curve
is the image of the horizontal line h10. The plot has been made with the Schwarz-Christoffel
toolbox for matlab.
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1 ρ

0

Figure 2.7: Branch-cuts for f(z)

Example 2.3.2 (The rectangle). For ρ > 1, define the complex function f(z) by:

f(z) =

∫ z

0
t(−1/2)(t− 1)(−1/2)(t− ρ)(−1/2) dt.

The integral has similarities with the integral from the previous example. The integrand
is multi-valued, but with branch-cuts as in Fig. 2.7, f is single-valued. The function f is
conformal in the upper half-plane and conformal on the real line for z 6= 0, 1, ρ.

Note that f(0) = 0, and that for real z the square roots are either positive or purely
imaginary with a positive imaginary part. Consider the behaviour for x ∈ R:

• For 0 < x < 1, there is one real, and two imaginary square roots. Therefore f(z) travels
from 0 to point −K on the negative real axis as x increases from 0 to 1, with

∫ 1

0

dt
√

t(1 − t)(ρ− t)
= K.

• For 1 < x < ρ, there is only one imaginary square root. Hence the image travels from
−K to −K − iK ′, as x increases from 1 to ρ, with

f(ρ) = −K − iK ′ = f(1) − i

∫ ρ

1

dt
√

t(t− 1)(ρ− t)
.

• For x > ρ, the integrand is positive, and f(x) will travel from −K − iK ′ into positive
horizontal direction, with length K. This can be seen from:

f(∞) − f(ρ) =

∫ ∞

ρ

dt
√

t(t− 1)(t− ρ)

(

t =
ρ− u

1 − u

)

=

∫ 1

0

du
√

u(1 − u)(ρ− u)
= K.

• For x < 0, there are three imaginary square roots, and f(x) will therefore be purely
imaginary with a negative imaginary part.

f(−∞) =

∫ 0

−∞

dt
√

t(t− 1)(t− ρ)

(

t =
ρ− u

1 − u

)

= − i

∫ ρ

1

du
√

u(u− 1)(ρ − u)
= −iK ′.
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f(∞) = f(−∞)f(ρ)

f(1)

π/2 π/2

π/2 π/2

K ′K ′

K

K 0

Figure 2.8: f maps the real line to a rectangle, with vertices at 0, f(1), f(ρ), and f(∞).

Hence the function f maps the real line to a rectangle as shown in Fig. 2.8. Points in the upper
half-plane are mapped inside the rectangle. Numerical approximations show that horizontal
lines in the upper half-plane which approach the real line are mapped to expanding balloon-
shaped curves inside the rectangle as indicated in Fig. 2.9.

2.4 Improper path integrals

Let h(t) be analytic inside a disc around 0, denoted by D. Let tα−1, α ∈ R
+ be single-valued

via branch-cut c for the branch-point 0. Then for z0 ∈ D\{{0} ∪ c}, the integral

i(z) =

∫ z

z0

tα−1h(t) dt

is well-defined and analytic as a function of z inD\{{0}∪c}. Moreover, the improper Riemann
integral

j(z) = lim
z0→0

∫ z

z0

tα−1h(t)dt

is well-defined and analytic as a function of z in D\{{0} ∪ c}, and continuous at z = 0.

Proof. i(z) is analytic in the simply connected open set D\{{0} ∪ c}. since the integrand is
analytic in D\{{0} ∪ c}.

Since h(t) is analytic inside the disc D, it can be written as a power series around 0, which
converges for all t inside D.

h(t) =

∞
∑

n=0

ant
n.

It remains to prove that

j(z) = lim
z0→0

∫ z

z0

tα−1h(t)dt

is well-defined and analytic in D\{{0} ∪ c}. Define

G(z) = zα
∞
∑

n=0

anz
n

n+ α
,
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−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 2.9: Plot of f , with ρ = 1.5. Horizontal lines hn with Im hn = 2n have been plotted
for n = −5,−4,−3, · · · , 8, 9, 10, where the smallest balloon-shaped curve is the image of the
horizontal line h10. The plot has been made with the Schwarz-Christoffel toolbox for matlab.
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which is an anti-derivative of zα−1h(z) in D\{{0} ∪ c} since

j(z) =

∫ z

z0

tα−1h(t) dt =

∫ z

z0

tα−1
∞
∑

n=0

ant
n dt

=

∞
∑

n=0

∫ z

z0

tα−1ant
n dt

=

∞
∑

n=0

anz
n+α

n+ α

= zα
∞
∑

n=0

anz
n

n+ α
.

Note that the power series in the definition of G(z) has the same radius of convergence as
h(z). Therefore G(z) is analytic in D\{{0} ∪ c}.

j(z) = lim
z0→0

∫ z

z0

tα−1h(t)dt

= lim
z0→0

(G(z) −G(z0))

= G(z),

where the last equality holds since

lim
z0→0

zα
0

anz
n
0

n+ α
= 0.

Hence G(z) is analytic in D\{{0} ∪ c} and continuous for z = 0, which proves the last
assertion.

If h(t) is analytic in the upper half-plane and z is a point outside the disc of convergence
around 0, then there exists a w inside D\{{0} ∪ c} such that

lim
z0→0

∫ z

z0

tα−1h(t) dt = lim
z0→0

∫ w

z0

tα−1h(t) dt +

∫ z

w
tα−1h(t) dt.

2.5 The main principle of the Schwarz-Christoffel transforma-

tion

By the Riemann mapping theorem, for every two simply open connected sets D and E both
not equal to the whole complex plane, there exists a conformal mapping from D onto E. Only
in certain cases the explicit form of the mapping is known.

In the case where the upper half-plane needs to be mapped conformally to the inside of a
polygon shaped region, the Schwarz-Christoffel transformation (SCT) is used. The SCT gives
an expression in integral form for the relevant conformal map. The two previous examples,
the triangle and the rectangle map, are both examples of Schwarz-Christoffel transformations.

The SCT is constructed by creating a map f which has piecewise constant arg(f ′) on the
real line, since then, by the following lemma, f maps the real line to straight lines.
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a

c

0

Figure 2.10: Branch-cut c = {z ∈ C : z = a− |ρ|i, ρ ∈ R}

Lemma 2.5.1 (function f with constant arg(f ′)). Let f be analytic on the real line and let
x0 ∈ R. If f ′(x) 6= 0 for x ∈ R and arg(f ′(x)) = constant for x ∈ R, then f maps the real
line to a straight line through f(x0) with slope arg(f ′(x)).

Proof. The proof is geometric. Interpret f ′(x0) as the tangent vector at f(x0) on the curve
{f(x) : x ∈ R}. Since the tangent vector is not zero and remains constant along the curve,
the curve must be a straight line.

2.6 An illustrative example

Let α ∈ R, −1 < α < 1. Define function f(z) by:

f(z) = (z − a)α. (2.6.1)

The function f(z) is in general multi-valued with a branch-point at a. Define the branch-cut
c as the straight line parallel to the imaginary axis, starting in point a going downwards to
infinity (Fig. 2.10). With branch-cut c, f(z) is single-valued:

f(z) = (z − a)α = |z − a|αeiαθ where − π/2 < θ < 3π/2. (2.6.2)

When referring to f(z), the single-valued definition in (2.6.2) is used. f is analytic for all
z 6= a. arg(f ′(z)) is piecewise-constant for z ∈ R:

arg(f ′(z)) =

{

0 for {z ∈ R : z > a}
α for {z ∈ R : z < a}

(2.6.3)

f will map (−∞, a) ⊂ R to a halfline with slope απ to the real axis, by Lemma 2.5.1. The
same arguments show that f maps (a,∞) ⊂ R to a halfline parallel to the real axis. Moreover,
the two halflines meet in f(a), and f(z) maps the upper half-plane to the region shown in
Fig. 2.11. This can be shown by varying θ and |z − a| in f(z) = |z − a|αeiθα:

• For θ = 0; f(z) can be rewritten to f(z) = |z − a|α where |z − a| takes values in
{r ∈ R : r > 0}. This shows the set (a,∞) ⊂ R will be mapped to {ω ∈ R : ω > 0}.
In Fig. 2.11 this is shown where L2 is mapped to L′

2

• For θ = π; f(z) can be rewritten top f(z) = |z − a|αeiθα where |z − a| takes values in
{r ∈ R : r > 0}. This shows the set (−∞, a) ⊂ R will be mapped to {reiα : r ∈ R :
r > 0}. In Fig. 2.11 this is shown where L1 is mapped to L′

1.
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0 0
A′

f(z) = (z − a)α

A

aL1 L2

L′

1

L′

2

απ

Figure 2.11: f(z) = (z − a)ϕ/π

• For 0 < θ < π; f(z) = |z − a|αeiθα, where |z − a| takes values in {r ∈ R : r > 0} and
0 < θ < π. In Fig. 2.11 this is shown where the lined upper half gets mapped to the
lined region.

For h(z) = f ′(z), arg(h(z)) for z ∈ R is a step-function, with an image set consisting of
two values. This process can be turned around; integration of a function g(z), where arg(g(z))
is a step function for z ∈ R, will lead to a function to which Lemma 2.5.1 can be applied.

A product of n functions of the form (z − a)α−1 will define a function whose argument is
a step-function (for the real domain) with an image set of n values. Integration will lead to
a function f with piecewise constant arg(f ′(z)) for z ∈ R. This will lead to the SCT.

2.7 The Schwarz Christoffel transformation

Definition 2.7.1. Let αr ∈ R, ar ∈ R with ar−1 < ar, for r = 1, 2, . . . , n. Define

g(z) =

n
∏

r=1

(z − ar)
αr . (2.7.1)

In general, g defines a multi-valued function with branch-points in {ar}. Note that g can
be made single-valued by writing g as the product of single-valued factors (z − ar)

αr :

g(z) =
n
∏

r=1

(z − ar)
αr =

n
∏

r=1

hr(z), (2.7.2)

where each hr(z) is interpreted as

hr(z) = (z − ar)
αr = |z − ar|

αreiαrθ where − π/2 < θ < 3π/2,

with branch-cuts {cr} as shown in Fig. 2.12.
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a1 a2 a3 a4

c1 c2 c3 c4

0

Figure 2.12: Branch-cuts cr = {z ∈ C : z = ar − |p|i, p ∈ R}

Lemma 2.7.2. The function in (2.7.2) is single-valued and analytic in the upper half-plane
{z ∈ C : Im z > 0}, and single-valued and analytic on the real line segments {x ∈ R : ar−1 <
x < ar}.

Proof. The function g is a product of hr’s. Each hr is analytic and single-valued in the upper
half-plane and on the real line segments {x ∈ R : ar−1 < x < an}. Therefore g analytic and
single-valued in the upper half-plane.

Integrating g will result in a function f with piecewise constant arg(f ′). This leads to the
Schwarz-Christoffel Transformation; see [3] and [6].

Definition 2.7.3 (Schwarz-Christoffel Transformation). Let ar ∈ R with ar−1 < ar, and
αr ∈ R, where 0 < αr ≤ 2, with r = 1, 2, . . . , n, and z0 ∈ C with Im z0 ≥ 0. With constants
K,C ∈ C, where K 6= 0, the SCT is defined as:

w = f(z) = K

∫ z

z0

n
∏

r=1

(u− ar)
αr−1 du+ C (2.7.3)

Since
∏n

r=1(u − ar)
αr−1 is defined as a single-valued function, which is analytic in the

upper half-plane (Lemma 2.7.2), the SCT is well defined in the upper half-plane and on the
real line segments {x ∈ R : ar−1 < x < an}. The points {an} are referred to as pre-vertices.

Theorem 2.7.4. Let P ⊂ C be a simply connected bounded open set, such that its boundary
is a simple polygon with n + 1 vertices at ω0, ω1, . . . , ωn, where each vertex ωi has an inner
angle of αiπ for i = 1, . . . n, see Fig. 2.13. A function f such that:

• f maps the real line continuous to the boundary of P,

• ωi = f(ai), i = 1, . . . , n, where a1 < a2 < · · · < an; and ω0 = f(∞) = f(−∞),

• f maps the upper half-plane {z : Im z > 0} one-to-one and conformally onto P,

must be of the form (2.7.3) and therefore is a SCT.
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ω = f(z)

z-plane

a1 a2 a3 a4 an

αnπ

α0π

α1π

α2π

α3π

α4π

ωn

ω0

ω1

ω2

ω3

ω4

Figure 2.13: Schwarz-Christoffel transformation

Since P is a simply connected open set with a Jordan curve as boundary, the Riemann
mapping theorem, together with the Osgood-Carathéodory theorem proves the existence of a
function f as claimed in the theorem. It remains to show that f has the form of (2.7.3). The
function log f ′ can be well defined as a single-valued analytic function in the upper half-plane,
since f ′(z) 6= 0 for z with Im z > 0 (Lemma 2.1.4).

Let f(z) be the function obtained via the Riemann mapping theorem and the Osgood-
Carathéodory theorem. Define function F (z) by:

F (z) = log f ′(z),

Lemma 2.7.5. The function F ′(z) = f ′′(z)/f ′(z) can be extended by analytic continuation
to a function which is analytic C\{a1, a2, . . . , an}.

Proof. f is conformal in the upper half-plane, and for all 0 < i < n maps the real open
intervals (ai, ai+1), (−∞, a1), and (an,∞) continuous to a straight line. By the Schwarz
Reflection principle, Theorem 2.1.2, it can be extended to a function f which is analytic on
the whole plane with the possible exception of points {a1, . . . , an}. Since f ′ 6= 0 in the upper
half-plane and for z in the lower half-plane f(z) = f(z̄), f ′ 6= 0 in the lower half-plane and
therefore F can be extended to the lower half-plane.

The extended function f maps the intervals (ai, ai+1), (−∞, a1), and (an,∞) one-to-one
onto straight lines, and therefore cannot have f ′ = 0. Therefore F = log f ′ can be defined an-
alytically on (ai, ai+1), (−∞, a1), and (an,∞). On these open intervals, arg f ′(z) = constant,
by Lemma 2.5.1.

Im F (z) = constant, z ∈ (ai, ai+1) ∪ (−∞, a1) ∪ (an,∞).

By differentiation:

Im F ′(z) = 0, z ∈ (ai, ai+1) ∪ (−∞, a1) ∪ (an,∞).

This shows that F ′ is analytic in the upper half-plane, lower half-plane, and the real line
segments (ai, ai+1), (−∞, a1), and (an,∞).
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Lemma 2.7.6. The function F ′ is rational, it has simple poles at the points ai with residue
αi − 1, and vanishes at ∞. Therefore it must be of the form

F ′(z) =

n
∑

k=1

αk − 1

z − ak
.

Proof. For 1 ≤ k ≤ n, let Im z ≥ 0, For |z − ak| < ǫ with ǫ > 0 sufficiently small define

h(z) = (f(z) − ωk)
1/αk .

Note that a branch of h can be chosen such that h is continuous for z in the upper half-plane. h
is clearly analytic for Im z > 0 and continuous and injective for Im z ≥ 0. Moreover h(ak) = 0.
As z increases on the real line across ak, arg(z−ak) increases with π, arg[f(z)−ωk] increases
by αkπ, hence arg h(z) increases by π. Therefore the straight line segment (ak − ǫ, ak + ǫ) is
mapped onto a straight line segment through 0. By the Schwarz reflection principle, theorem
2.1.2, h can be defined analyticly on the whole disc |z−ak| < ǫ, and there exists an expansion:

h(z) = c1(z − ak)[1 + c2(z − ak) + · · · ],

with c1 6= 0, hence f can be written as

f(z) − ωk = c̃1(z − ak)
αk [1 + c̃2(z − ak) + · · · ],

with c̃1 6= 0. Now F ′ can be written as

F ′ =
f ′′

f ′
=
αk − 1

z − ak
+A(z),

where A(z) is analytic. Since the above derivation holds for every ak,

F ′(z) −

n
∑

k=1

αk − 1

z − ak
(2.7.4)

is an entire function.

Now it remains to show that the function in (2.7.4) is bounded. To see this, consider with
α0 = n− 1 −

∑n
k=1 αk:

g(z) = (f(1/z) − ω0)
1/α0 ,

for |z| < ǫ, with ǫ sufficiently small. Now g is analytic for z with Im z < 0 and if g(0) = 0,
continuous for Im z ≤ 0. As before, g can be extended by the Schwarz reflection principle
and maps the entire disc conformally:

g(z) = d1z(1 + d2z + · · · ),

with d1 6= 0, hence

f(1/z) = ω0 + d̃1z
α0(1 + d̃2z + · · · ).

For |z| sufficiently large

f(z) = ω0 + d̃1z
−α0(1 + d̃2z

−1 + · · · ).
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Calculate f ′ and f ′′ to get

F ′(z) =
f ′′

f ′
=

−α0 − 1

z
+O(z−2), z → ∞. (2.7.5)

Since α0 = n− 1 −
∑n

k=1 αk,

n
∑

k=1

αk − 1

z − ak
=

∑n
k=1 ak − 1

z
+O(z−2) =

−α0 − 1

z
+O(z−2).

Hence, by (2.7.5),

F ′(z) −

n
∑

k=1

αk − 1

z − ak
= F ′(z) −

−α0 − 1

z
+O(z−2) = O(z−2), z → ∞.

Therefore the entire function in (2.7.4) is bounded, and vanishes as z → ∞. By Liouville’s
theorem F ′ has the form as stated in the lemma.

Proof of Theorem 2.7.4. Recall that f(z) denoted the function obtained via the Riemann
mapping theorem and the Osgood-Carathéodory theorem. By means of f(z) the function
F (z) = log f ′(z) was defined. Above it has been shown that

F ′(z) =
n
∑

k=1

αk − 1

z − ak
.

Integrating this identity gives:

F (z) = log
n
∏

k=1

(z − ak)
αk−1 +D,

which exists in the upper half-plane. Hence

f ′(z) = D̃
n
∏

k=1

(z − ak)
αk−1,

which leads to

f = K

∫ z

z0

n
∏

k=1

(u− ak)
αk−1 du+ C.

This completes the proof.

It can be proved that the theorem still holds when P is a simply open connected set with
an unbounded boundary, in the shape of a polygon, with a finite number of vertices. The
proof, which is variation of the case where the boundary of P is a finite polygon, can be found
in [3].

It can also be proved that any function of form (2.7.3) must map the upper half-plane to
a bounded or unbounded polygon, with vertices at f(ai) and inner angles αiπ (with possibly
an additional vertex at f(∞) with inner angle α0π). A proof of this statement can be found
in [6].
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There exists a variation on the SCT where instead of the upper half-plane, the unit disc
is conformally mapped to the inside of a bounded (or a unbounded) polygon. This is also
considered as a SCT, and the expression for such a SCT can be found in [3].

For a polygon with n vertices, the sum of the outer angles must be 2π. With α0π as the
inner angle at vertex f(∞), the following equation holds:

(

n+ 1 + α0 +
n
∑

k=1

αk

)

π = 2π.

Hence

α0 = n− 1 −

n
∑

k=1

αk.

The identity above shows that the choice of {αk : k > 0} determine if there is a vertex
at ω0, see Fig. 2.14. Note that the formula of the SCT (2.7.3) does not explicitly contain α0.

ω1 ω0 ω5

ω4

ω3

ω2

σ1

σ0

σ5

σ4

σ3

σ2

P Q

α1π α0π α5π

α4π

α3π

α2π

β1π

β0π

β5π

β4π

β3π

β2π

Figure 2.14: Two polygons P and Q. Polygon P has α0 = 1 and therefore has no vertex at
ω0. Polygon Q has β0 6= 1 and therefore has a vertex at σ0.

Both functions in Example 2.3.1 and Example 2.3.2 are SCT’s with α0 6= 1.

2.8 More examples of SCT’s

Example 2.8.1 (Rectangle transformation). For w ∈ C with Im w ≥ 0, and k ∈ R, 0 < k < 1,
and α = −1/2, define function f by:

f(w) = −

∫ w

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du (2.8.1)

The branch-cuts for f are chosen as in Fig. 2.12, so all the branch-cuts lie in the lower half-
plane. f has the form of a SCT, with pre-vertices 1,−1, 1/k, and −1/k. Hence f will map the
upper half-plane to a polygon P with vertices f(−1), f(1), f(1/k), and f(−1/k). Note that
by the choice of inner-angles, the image of f must be a polygon with the shape of a rectangle.

Consider the behaviour for x ∈ R, x > 0:
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0 0

z = f(w)

D0,0

D′ A′ B′ C′

−1/k −1 1 1/k K−K

B

CD f(∞) = iK′

A

Figure 2.15: SCT to Rectangle ABCD.

• For 0 < x < 1, note that f(x) is real and positive since the integrand in (2.8.1) is
negative. Hence for some K > 0:

f(1) = K.

• For 1 < x < 1/k, note that the integrand in (2.8.1) is strictly imaginary with negative
imaginary part. Hence for some K ′ > 0

f(1/k) = f(1) −

∫ 1/k

1
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du = K + iK ′.

• For 1/k < x, the integrand in (2.8.1) is real and positive. Note that

iK ′ = f(1/k) −

∫ 1

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du

(u = 1/kv)

= f(1/k) −

∫ ∞

1/k
(v − 1)α(v + 1)α(v − 1/k)α(v + 1/k)α dv.

This shows that
f(∞) = iK ′.

To calculate the location of f(−1) and f(−1/k) observe that for a > 0

f(a) = −

∫ a

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du (u = −v)

=

∫ −a

0
(−v − 1)α(−v + 1)α(−v − 1/k)α(−v + 1/k)α dv

=

∫ −a

0
(v − 1)α(v + 1)α(v − 1/k)α(v + 1/k)α dv.
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Here the last integrand has different branch-cuts than the original integrand of f(z), since
each factor of the integrand has been multiplied by (eiπ)α. Therefore the branch-cuts for the
last integrand all lie in the upper half-plane. Hence for x < 0, f(x) can be rewritten to:

f(x) =

∫ −x

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du, (2.8.2)

where the branch-cuts of the integrand lie in the upper half-plane.
Now consider the behaviour of f(x) for x ∈ R, x < 0:

• For −1 < x < 0, it follows from (2.8.2) that f(x) = −f(−x). Hence the integrand for
f(−x) in (2.8.2) is real and

f(−1) = −K.

• For −1/k < x < −1, note that the integrand of f(x) in (2.8.2) is strictly imaginary
with positive imaginary part. Therefore

f(−1/k) = −K + iK ′.

• For x < −1/k, the integrand of f(x) in (2.8.2) is real and positive. Note that

iK ′ = f(−1/k) −

∫ −1

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du

(u = 1/kv)

= f(−1/k) −

∫ −∞

−1/k
(v − 1)α(v + 1)α(v − 1/k)α(v + 1/k)α dv.

Hence,
f(−∞) = iK ′.

This shows f maps the upper half-plane to a rectangle, as shown in Fig. 2.15.

Example 2.8.2 (Bar transformation). Now a SCT f(z) will be determined which maps the
upper half-plane to a bar with vertices A = ai and 0 such that f(0) = 0, f(1) = A, as in
Fig. 2.16.

Note that this is a SCT mapping to an unbounded polygon. The SCT must have the
following form:

f(z) = K

∫ u=z

0
u−1/2(1 − u)−1/2 du+ C (u = sin2(t))

= K

∫ t=sin−1(z1/2)

0
(sin2(t))−1/2(cos2(t))−1/22 sin(t) cos(t) dt +C

= K̃

∫ t=sin−1(z1/2)

0
dt+ C

= K̃ sin−1(z1/2) +C.

The constants K̃, C need to be chosen such that f(0) = 0 and f(1) = A. C = 0 since
f(0) = 0. f(1) = K̃π/2 = A =⇒ K̃ = A2/π. For A = iπ/2 =⇒ K̃ = i. The SCT

f(z) = i sin−1(z1/2)
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0

z = f(w)

1

A

0

Figure 2.16: SCT to bar shaped region.

will map the upper half-plane to the bar in Fig. 2.16, where A = iπ/2. The inverse of function
f , denoted as g, will map the bar shaped region to the upper half-plane:

g(w) = sin2(iz).

2.9 Numerical approximations of the SCT

In the formula of the SCT, the values of the pre-vertices {ar} are responsible for the length
of the sides of polygon P. Finding the right set of pre-vertices {ar} for a given polygon P is
known as the parameter-problem.

In Appendix A, Mathematica source-code has been provided for a simple program; given
{ar, αr} for a SCT, the program numerically approximates the location of the vertices. Since
the Mathematica program can only draw the vertices for a SCT, given the inner-angles and
pre-vertices, finding the right set of pre-vertices for a given polygon is left as a problem for
the user.

The program has been used in an attempt to try find the set {ar, αr} for the SCT which
maps the upper half-plane to a polygon in the shape of Escher’s reptile, Fig. 2.17. The
pre-vertices had to be guessed.

It turns out to be difficult to guess the right set of pre-vertices for a polygon in the shape
of Escher’s reptile. The set of pre-vertices have not been found. The program does give some
insight in how the polygon depends on the values of {ar}. Increasing one ai ∈ {ar} can change
the resulting polygon severely on all sides.

Driscoll [1] made a matlab package which numerically approximates the needed {ar}.
With his package, the {ar} for a SCT which maps the the upper half-plane to a polygon in
the shape of Escher’s reptile have been found, see Fig. 4.3. The input and resulting {αr}, {ar}
can be found in Appendix B.



2.9. NUMERICAL APPROXIMATIONS OF THE SCT 25

Figure 2.17: Escher’s drawing of reptiles.
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Chapter 3

Jacobian Elliptic Functions

The Schwarz reflection principle in Theorem 2.1.2 and Corollary 2.1.3 will be used to define
Jacobian elliptic functions. For k ∈ R, 0 < k < 1, define f(w) by:

f(w) = −

∫ w

0
(u− 1)α(u+ 1)α(u− 1/k)α(u+ 1/k)α du, (3.0.1)

so that f maps the upper half-plane into the rectangle as in Fig. 3.1, with length 2K and
height K ′. The open set inside the rectangle is denoted by D0,0, as shown in the figure.

The translation of D0,0, by n 2K +miK ′, for n,m ∈ Z, is an open set denoted by Dn,m,
see Fig. 3.3. Since f is one-to-one and onto D0,0, the inverse g can be analytically defined

0 0

z = f(w)

D0,0

D′ A′ B′ C′

−1/k −1 1 1/k K−K

B

CD f(∞) = iK′

A

Figure 3.1: SCT to rectangle ABCD.

inside D0,0. Note that g can also be defined on the closure of D0,0, with the exception of the
point iK ′, since f(∞) = iK ′. Hence for z ∈ D0,0\{iK

′}:

g(z) = w ⇐⇒ z = f(w). (3.0.2)

Note that g meets all the requirements for the Schwarz reflection principle in Theorem 2.1.2
and Corollary 2.1.3. Via the Schwarz reflection principle in Theorem 2.1.2, g can be defined in

27
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D0,−1. When g0,−1 denotes the analytic continuation of g inside D0,−1, and when g0,0 denotes
the function g from (3.0.2), the following relation holds:

g0,−1(z) = g0,0(z̄), z ∈ D0,−1. (3.0.3)

Since g0,0(z) maps z ∈ D0,0 into the upper half-plane, it follows from (3.0.3) that g0,−1 maps
into the lower half-plane, see Fig. 3.2.

0

D0,0

D0,−1

Figure 3.2: D0,0 and D0,−1. The lined region is mapped to the upper half-plane, by g.

This process can be continued inductively. Let gn,m denote the analytic continuation of g
in Dn,m, for n,m ∈ Z, then for gn,m the following expression holds:

gn,m(z) =

{

g0,0(z − n2K −miK ′) if n+m ≡ 0 mod 2
g0,−1(z − n2K − (m+ 1)iK ′) if n+m ≡ 1 mod 2

The general expression for the function gn,m as above is a consequence of iteratively applying
the Schwarz reflection principle together with Corollary 2.1.3 to the function g0,0(z). This
process is tedious to describe. However, as an example, the derivation for g0,1 will be given.

Define g′0,0(z) by:
g′0,0(z) = g0,0(z + iK ′), z ∈ D0,−1.

Via the Schwarz reflection theorem, g′0,0 can be analytically extended to domain D0,0. Let
g′0,1 denote the analytic continuation of g′0,0 on domain D0,0, then:

g′0,1(z) = g′0,0(z̄), z ∈ D0,0,

hence,

g0,1(z) = g′0,1(z − iK ′)

= g′0,0(z̄ + iK ′)

= g0,0(z̄ + 2iK ′)

= g0,−1(z − 2iK ′), z ∈ D0,1.

Note that g(z) depends on the parameter k, since g is the inverse of f in (3.0.1) where a
constant k is used. Hence gk can be written instead of g, to emphasise the dependence of the
parameter k.

Definition 3.0.1 (Jacobian elliptic function). The Jacobian elliptic function sn(z, k) is the
analytic continuation of gk in the whole complex-plane, with the exception of countable many
points (where gk cannot be extended analytically).
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0

D0,0

D0,−1

D0,1

D0,−2

D0,2

D0,−3

D1,0

D1,−1

D1,1

D1,−2

D1,2

D1,−3

D−1,0

D−1,−1

D−1,1

D−1,−2

D−1,2

D−1,−3

D2,0

D2,−1
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D2,−3

D−2,0

D−2,−1

D−2,1

D−2,−2

D−2,2

D−2,−3

Figure 3.3: Schwarz reflection principle applied to g. The marked area’s will be mapped to
the upper half-plane.



30 CHAPTER 3. JACOBIAN ELLIPTIC FUNCTIONS

From the analytic continuation for g is can be seen that gk is periodic. Hence for sn:

sn(z + 2iK ′) = sn(z + 4K) = sn(z), z ∈ C,

so that sn is a doubly periodic function. Note that in the imaginary direction, 2iK ′ is the
smallest period, and in the real direction 4K is the smallest period.

Recall that sn defined on D0,0 and its boundary has a singular point at iK ′ and a zero at
0. Analytic continuation with the Schwarz reflection principle will therefore add zero’s and
singular points to the definition of sn on C.

Definition 3.0.2. The Jacobian elliptic functions cn and dn are defined as:

cn(z) = (1 − sn2(z))1/2 (3.0.4)

dn(k, z) = (1 − k2sn2(z))1/2 (3.0.5)

The branch-cut for both square-roots in the upper definition is (−∞, 1). Like sn, cn and
dn are doubly periodic, which will be proved later by Lemma 4.0.4.

On domain D0,0, the inverse of sn is f(w) from (3.0.1). If z = f(w), with f−1(z) as the
inverse of f(w), then

[

f−1
]′

(z) =
1

f ′(f−1(z))
.

Using the expression above and (3.0.1), the derivative of sn can be calculated:

sn′(z) = (1 − sn2(z))1/2(1 − k2sn2(z))1/2 = cn(z)dn(z).

With this expression, the derivatives of cn and dn can be calculated:

cn′(z) =
−sn(z)cn(z)dn(z)

(1 − sn2(z))1/2
= −sn(z)dn(z)

dn′(z) =
−k2sn(z)cn(z)dn(z)

(1 − k2sn2(z))1/2
= −k2sn(z)cn(z)



Chapter 4

Elliptic Functions in General

A lattice L in the complex plane is a subgroup of C, consisting of all points:

z1Z + z2Z, z1, z2 ∈ C\{0}, z1/z2 6∈ R.

Such a lattice is generated by the points z1 and z2, and denoted by L(z1, z2) or, simply, by
L. The lattice L(z1, z2) and a point a ∈ C give rise to a fundamental parallelogram Pa(L), or
just Pa, defined by:

a+ b1z1 + b2z2, 0 ≤ bi ≤ 1, a ∈ C.

z1

z2

Figure 4.1: Lattice L(z1, z2).

Definition 4.0.3 (Elliptic functions). A meromorphic function f(z) is called an elliptic
function if there exists a lattice L, such that:

f(z + l) = f(z),

for all z ∈ C and l ∈ L.

31
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An elliptic function f always has a finite number of poles inside any arbitrary fundamental
parallelogram Px. Therefore for an elliptic function f , there always exists a fundamental
parallelogram Py such that f doesn’t have pole in the boundary of Py. The boundary of Py

is denoted by ∂Py. Due to Liouville’s theorem, entire elliptic functions (analytic everywhere)
must be constant. So interesting elliptic functions must have at least one pole.

Lemma 4.0.4. Let f, g be elliptic functions with the lattice L(z1, z2), and let ψ be a mero-
morphic function. Then the following statements are true:

• af + bg, f · g and f/g are elliptic (with constants a, b ∈ C),

• ψ ◦ f is elliptic,

• f ′ is elliptic.

Proof. That af + bg, f · g, and f/g are elliptic follows directly from the definition. Let l ∈ L
and z ∈ C be chosen arbitrarly, then

f(z + l) = f(z), (4.0.1)

and

ψ(f(z + l)) = ψ(f(z)).

i.e. ψ ◦ f is elliptic. Both sides in (4.0.1) can be differentiated, which shows f ′ is elliptic.

In particular, elliptic functions, with respect to a lattice L, form a field.

Theorem 4.0.5. Let Pa be a fundamental parallelogram for the elliptic function f(z), such
that f has no poles on the boundary ∂Pa of Pa (so that all the poles of f(z) are inside ∂Pa).
Then the sum of the residues of f(z) in Pa is zero.

Proof. Observe that by Cauchy’s theorem

∫

∂P
f(z) dz = 2πi

∑

Resf.

Due to periodicity the integrals over opposite sides cancel and the result follows.

Hence an non-constant elliptic function has at least two poles (counting multiplicities)
inside Pa.

Theorem 4.0.6. Let Pa be a fundamental parallelogram for elliptic function f(z), such that
f has no poles on the boundary ∂Pa of Pa. Let {ai} be all poles and zeros of f(z) inside Pa,
with order mi at ai. Then

∑

mi = 0.

Moreover,
∑

miai = 0 mod L.
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Proof. For ai a zero or pole of order mi observe that:

Resai

f ′

f
= mi.

To see this, let f(z) have the expansion:

f(z) = (z − ai)
m(b0 + b1(z − ai) + · · · ), b0 6= 0,

around z = ai. Hence,

f ′(z) = m(z − ai)
m−1(b̃0 + b̃1(z − ai) + · · · ), b̃0 6= 0.

The statement follows from:

f ′(z)

f(z)
=
m(z − ai)

m−1

(z − ai)m
(c0 + c1(z − ai) + · · · ), c0 6= 0

=
m

z − ai
(c0 + c1(z − ai) + · · · ), c0 6= 0.

Since f ′/f is elliptic:

0 =

∫

∂Pa

f(z)′/f(z)dz = 2πi
∑

Resf ′/f = 2πi
∑

mi.

This proves the first statement of the theorem. For the second part consider the integral
∫

∂Pa

z
f ′(z)

f(z)
dz = 2πi

∑

miai,

which is valid since Resaizf
′(z)/f(z) = miai. Now consider the integral and integrate over

the indicated opposite sides:
∫ α+ω1

α
z
f ′(z)

f(z)
dz −

∫ α+ω1+ω2

α+ω2

z
f ′(z)

f(z)
dz.

With the substitution u = z − ω2 for the last integral, both integrals are taken from α to
α+ ω1:

∫ α+ω1

α
(−ω2 + z − z)

f ′(z)

f(z)
dz = −ω2

∫ α+ω1

α

f ′(u)

f(u)
du = 2πikω2,

for k ∈ Z, since the last integral can be interpreted as a path integral over ω2/z for some
closed path with a winding number denoted by k around 0, and therefore must be 2πikω2

by Cauchy’s theorem. Integration over the remaining opposite sides is done in the same way.
Hence,

2πi
∑

miai = 2πikω2 + 2πilω1, k, l ∈ Z,

which proves the theorem.

Definition 4.0.7 (Weierstrass function). Let L(z1, z2) be a lattice. The Weierstrass function,
corresponding to the lattice L(z1, z2), is defined as a series:

℘(z) =
1

z2
+
∑

w∈L′

(

1

(z − w)2
−

1

w2

)

,

where L′ defines the lattice L without the point 0.
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n

Figure 4.2: Annulus which contains lattice point of order n.

To show that the series converges uniformly on compact sets not including lattice points,
the following lemma will be used. Observe that for a fixed non-lattice point z, the difference

1
(z−w)2 − 1

w2 has the order of magnitude of 1/|w|3, which converges by the following lemma

[4].

Lemma 4.0.8. If λ > 2, then
∑

w∈L′

1

|w|λ
converges.

Proof. Consider all w ∈ L such that n − 1 ≤ |w| ≤ n (i.e. all w ∈ L in the corresponding
annulus), Fig. 4.2. Note that the annulus has area of π(2n − 1). Solutions of Gauss’s circle
problem show that in each annulus, the number of lattice points has order n, and therefore
there exists a a such that each annulus contains maximum an lattice points [7]. The partial
sum for |w| ≤ N can now be decomposed into a sum for w with n− 1 ≤ |w| ≤ n:

∑

|w|≤N

1

|w|λ
≤

N
∑

1

an

nλ
≤ a

N
∑

1

1

nλ−1
.

The last sum converges for N → ∞ if λ > 2.

For |z| < R with R > 0, the partial sum:

∑

w∈L′,|w|<R

(

1

(z − w)2
−

1

w2

)

,

defines a meromorphic function, with a double pole at each lattice point. Since for |z| < R,

∑

w∈L′,|w|≥R

(

1

(z − w)2
−

1

w2

)

,

converges by the previous lemma, ℘(z) defines a meromorphic function with a double pole at
each lattice point.
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Clearly ℘(z) = ℘(−z), because summing over lattice points is the same as summing over
their negatives. Furthermore,

℘′(z) =
−2

z3
+
∑

w∈L′

−2

(z −w)3
=
∑

w∈L

−2

(z − w)3
.

From the definition it follows directly that ℘′(z) is periodic, and that ℘′(−z) = −℘′(z).
From the definition of ℘ it cannot be directly seen that ℘ is periodic. Since ℘′(z+w1) = ℘′(w),
it follows that

℘(z +w1) = ℘(z) +C,

for some constant C. For z = −w1/2, ℘(w1/2) = ℘(−w1/2)+C, hence C = 0 since ℘ is even.
This shows that ℘ is periodic as well. The next theorem shows that any elliptic function
corresponding to the lattice L, can be written as a rational function of ℘ and ℘′, where both
℘ and ℘′ correspond to the lattice L. To see this the following lemma is useful.

Lemma 4.0.9. If the elliptic function f satisfies:

f(z) = f(−z),

and has a zero or pole of order m at some point u, then f also has a zero or pole of the same
order at −u.

Moreover, if u ≡ −u mod L, then f has a zero or pole of even order at u.

Proof. Since

f (k)(u) = (−1)kf (k)(−u),

indeed f has a zero or pole of the same order at −u, which proves the first statement.

If u ≡ −u mod L, then 2u ≡ 0 mod L. Note that there are only four points with this
property inside a fundamental parallelogram P0:

0,
w1

2
,
w2

2
,
w1 + w2

2
.

If f is even, f ′ is odd, and f ′(u) = −f ′(−u). Since u ≡ −u mod L and f ′ is periodic,
f ′(u) = 0. Hence f has a zero of order 2 or greater at u.

First assume u 6≡ 0 mod L, then

g(z) = ℘(z) − ℘(u)

has a zero of order 2 or greater. But by Theorem 4.0.6, the order of g(z) has to be 2, since ℘
has only one pole of order 2 inside a fundamental parallelogram.

Note that f/g is even and elliptic. If f(u)/g(u) 6= 0, then order of f at u = 2, if
f(u)/g(u) = 0 then f/g again has a zero of order 2 or greater at u and the process can be
repeated.

If u ≡ 0 mod L, the same arguments can be used with g = 1/℘, proofing f has a zero of
even order at u.

Theorem 4.0.10. The field of elliptic functions with respect to the lattice L, is generated by
℘ and ℘′.



36 CHAPTER 4. ELLIPTIC FUNCTIONS IN GENERAL

Proof. Let f be an elliptic function and let f(z) = o(z) + e(z), where the odd and even parts
o(z) and e(z) of f(z) are defined by

o(z) =
f(z) − f(−z)

2
, e(z) =

f(z) + f(−z)

2
.

Then e(z) and o(z) are elliptic since f(−z) is elliptic. It will suffice to prove that ℘ gen-
erates the field of even elliptic functions. Since the odd part always be written as o(z) =
o(z)℘′(z)/℘′(z), where o(z)℘′(z) is even.

To prove that if f is even, it can be written as a rational function of ℘, it will be shown
that a rational function of ℘ can be constructed with the same zero’s and poles as f .

Let ui, i = 1, 2, . . . , r be the set of points containing one representative from each class
(u,−u) mod L, where f has a zero or pole, other than the class of L itself. Let

mi =

{

orduif if 2ui 6≡ 0 mod L
1/2 orduif if 2ui ≡ 0 mod L

(4.0.2)

By Lemma 4.0.9, orduif is even if 2ui ≡ 0 mod L, hence mi ∈ Z. Lemma 4.0.9 also show
that for a ∈ C, a 6≡ 0 mod L, the function

℘(z) − ℘(a),

has a zero of order 2 at a if and only of 2a ≡ 0 mod L, and has distinct zeros of order 1 at
a and −a otherwise. For all z 6= 0 mod L, define h(z) by:

h(z) =
r
∏

i=1

(℘(z) − ℘(ui))
mi .

By construction, h(z) has the same order at z as f , for all z 6= 0 mod L. f and h cannot
have a zero or pole of different order at 0 mod L, since this would contradict with Theorem
4.0.6. This shows f/h is an elliptic function without zeros or poles, and must be constant by
Liouville’s theorem. Theferfore f(z) is a rational of ℘, which proves the theorem.
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APPENDIX A: Mathematica Source code

The following Mathematica source code has been used to numerically approximate the location
of the vertices of the image of a Schwarz Christoffel transformation. Variable a contains the
inner-angles of the polygon.

a = { 3π

5
, 3π

5
, 3π

5
, 3π

5
, 3π

5
};

d = {0, 3, 0.8, 0.3, 0.7};

f[u ,i ]:=Piecewise[{{(u-x[[i]])̂(a[[i]]/π-1),u¡x[[i]]},{Re[(u-x[[i]])̂(a[[i]]/π-1)],u¿x[[i]]},{0,u==x[[i]]}}];

K = 10;

h[u ]:=NIntegrate[K*Product[f[z,i],{i,1,Length[a]}],{z,0,u}];

hp[j ]:=NIntegrate[K*Product[f[z,i],{i,1,Length[a]}],{z,x[[j]],x[[j+1]]}];

hs[k ]:=Sum[hp[p],{p,1,k}];

CalcFirst[p ]:=A=Table[hp[i],{i,1,p}];

x = Table[Sum[d[[j]],{j,1,i}],{i,1,Length[a]}];

CalcFirst[Length[a]-1];

Cs[p ]:=Sum[A[[n]],{n,1,p}]; X[p ]:=Re[Cs[p]]; Y[p ]:=Im[Cs[p]];

MakeCoor[p ]:= Table[{X[i],Y[i]},{i,0,p}];

MakeCoor[4];

ListPlot[MakeCoor[Length[a]-1],PlotStyle → {Thick}, AspectRatio → Automatic]
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APPENDIX B: SCT to Escher’s reptile

To approximate the set’s {ar}, {παr} for the SCT which maps the real line to a polygon
in the shape of Escher’s reptile, the Schwarz-Christoffel toolbox for matlab version 241
have been used. This package is made by Toby Driscoll and can be found on the web.
http://www.math.udel.edu/~driscoll/software/SC/

With the following command’s from the toolbox, the list of {ar}, {παr} can be calculated:

• polygon(): To construct a polygon object: input: 1 dimensional vector containing com-
plex coordinates of desired polygon. output: 2 dimensional vector, containing vertices
and inner angles as rows.

• hplmap(): To construct generic Schwarz-Christoffel map object: input: polygon object
output: matlab generic Schwarz-Christoffel map object.

• plot(): Plot SCT: input: generic Schwarz-Christoffel map object. output: Plot of the
image of the SCT.

The following input created the polygon object, stored in variable p. The complex location
of the vertices have been measures from a digital picture (approximating the location of the
pixel in the middle of the vertex ) and are not accurate.

p = polygon([0+i*5.33 0.63+i*3.97 1.73+i*3.59 2.95+i*3.51 4.05+i*2.43 2.95+i*0.83 3.77+i*0.01 4.08+i*0.77 5.07+i*1.67
4.79+i*2.98 4.29+i*3.65 5.41+i*3.93 6.06+i*2.31 7.73+i*2.61 8.16+i*3.36 7.14+i*3.87 6.85+i*3.48 6.47+i*3.44 6.28+i*4.46
6.45+i*4.82 7.85+i*4.30 8.94+i*5.12 8.99+i*5.61 7.74+i*6.85 6.04+i*6.40 5.63+i*6.68 5.47+i*8.04 6.63+i*9.01 6.38+i*9.34
5.42+i*9.67 5.25+i*9.30 5.45+i*8.89 4.51+i*8.25 4.84+i*6.78 3.98+i*5.57 4.21+i*6.74 3.76+i*7.73 3.24+i*8.07 2.19+i*7.65
1.68+i*7.80 0.93+i*7.23 1.94+i*6.58 3.00+i*7.12 3.11+i*6.19 2.72+i*5.81 2.57+i*4.70 2.02+i*4.42 0.92+i*4.53 0+i*5.33])

The following input created the generic Schwarz-Christoffel map object stored in variable f .

f = hplmap(p)

A plot of the map object can be seen in Fig. 4.3. The list of resuling {ar}, {παr} are listed
below. Note that most ar have small distance to its neigbours. The next two pages contain
the lists of {ar} and {παr}.
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Figure 4.3: matlab output of the plot() commando
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a1 = −1.000000000000 a2 = 2.111369026161 · 10−1

a3 = 9.723481817987 · 10−1 a4 = 9.916906780873 · 10−1

a5 = 9.920882424490 · 10−1 a6 = 9.920898977561 · 10−1

a7 = 9.920899040471 · 10−1 a8 = 9.920899138244 · 10−1

a9 = 9.920901957994 · 10−1 a10 = 9.920946306244 · 10−1

a11 = 9.921571108651 · 10−1 a12 = 9.922711396164 · 10−1

a13 = 9.922763745565 · 10−1 a14 = 9.922764157620 · 10−1

a15 = 9.922764176722 · 10−1 a16 = 9.922764209670 · 10−1

a17 = 9.922764268741 · 10−1 a18 = 9.922765032143 · 10−1

a19 = 9.922815256005 · 10−1 a20 = 9.922871104032 · 10−1

a21 = 9.922900570658 · 10−1 a22 = 9.922902992817 · 10−1

a23 = 9.922903344673 · 10−1 a24 = 9.922907505051 · 10−1

a25 = 9.922944384657 · 10−1 a26 = 9.922985998787 · 10−1

a27 = 9.923001857948 · 10−1 a28 = 9.923001897838 · 10−1

a29 = 9.923001897925 · 10−1 a30 = 9.923001898363 · 10−1

a31 = 9.923001898446 · 10−1 a32 = 9.923001899441 · 10−1

a33 = 9.923001970151 · 10−1 a34 = 9.923010540415 · 10−1

a35 = 9.923631972537 · 10−1 a36 = 9.924150286796 · 10−1

a37 = 9.924166405449 · 10−1 a38 = 9.924167691190 · 10−1

a39 = 9.924168651228 · 10−1 a40 = 9.924168683213 · 10−1

a41 = 9.924168690765 · 10−1 a42 = 9.924168705866 · 10−1

a43 = 9.924169827729 · 10−1 a44 = 9.924261041648 · 10−1

a45 = 9.924561402988 · 10−1 a46 = 9.929732869941 · 10−1

a47 = 1.000000000000 a48 = ∞
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πα1 = 0.13409 πα2 = 0.74396
πα3 = 0.91497 πα4 = 1.22624
πα5 = 1.44463 πα6 = 0.55829
πα7 = 0.37328 πα8 = 1.14187
πα9 = 0.66783 πα10 = 0.86296
πα11 = 1.62609 πα12 = 1.45652
πα13 = 0.56488 πα14 = 0.72228
πα15 = 0.48188 πα16 = 0.55594
πα17 = 1.26309 πα18 = 1.47476
πα19 = 1.19905 πα20 = 1.47277
πα21 = 0.68150 πα22 = 0.73767
πα23 = 0.71635 πα24 = 0.66891
πα25 = 1.27309 πα26 = 1.27200
πα27 = 1.31560 πα28 = 0.51531
πα29 = 0.81176 πα30 = 0.53170
πα31 = 0.71844 πα32 = 1.45419
πα33 = 0.61998 πα34 = 1.26698
πα35 = 1.86510 πα36 = 0.80241
πα37 = 0.82012 πα38 = 0.69456
πα39 = 1.21217 πα40 = 0.70209
πα41 = 0.38888 πα42 = 0.66800
πα43 = 1.61250 πα44 = 1.29161
πα45 = 0.78862 πα46 = 1.30735
πα47 = 1.18162 πα48 = 1.19610


