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Chapter 1

Introduction

In this report we consider the turbulent flow and heat transfer in a channel with an array of
surface mounted cubical obstacles. The cubes are mounted in a regular pattern at one wall
of the channel. Turbulent flow in a part of this channel is shown in Figure 1.1.
This problem has served as a test case at the last three ERCOFTAC/IAHR/COST Work-
shops on Refined Turbulence Modelling. See [1], [3] and [4]. From this series of workshops it
illay be concluded that this particular test case provides a major challenge to current turbu-
lence models. At present, it poses a problem to which no turbulence model seems to have a
satisfactory answer.

Both the flow and the heat transfer have experimentally been investigated by Meinders et
al. [10], [11]. They have measured mean velocities and second-order moments of fluctuating
velocities in the two planes that bisect the cubical obstacles. So far, the temperature has
been measured at the surfaces of one heated cube only (by means of infrared thermography).

The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms
a generic example of a problem that occurs in many engineering applications, for instance in
the design of cooling devices. We have performed a numerical simulation of it without using
any turbulence models. This approach, called Direct Numerical Simulation (DNS). is the
most accurate - but also the most expensive - way of computing complex turbulent flows with
heat transfer, since all dynamically significant scales of motion are to be solved numerically
from the unsteady, incompressible Navier-Stokes equations and the energy equation.
In view of the computational complexity, our first concern is to reduce the computational
costs as far as we can get. This implies, among others, that the number of grid points has
to be kept as small as possible. Lowering this number pays off. For instance, a reduction
by a factor of two yields a saving of about one order of magnitude in both computing time
and memory (in three spatial dimensions). To use the lowest possible number of grid points,
spatial discretization methods for the Navier-Stokes equations need to be strained to their
limit. On non-uniform grids various ways exist to discretize convective and diffusive operators.
We propose to apply a 4th-order, finite-volume discretization method.
The objective of this study is two-fold. Firstly, we want to investigate how well our 4th-
order discretization method performs in case of a complex turbulent flow with heat transfer.
Thereto we will compare the results of the numerical simulation with the available experi-
mental data. So far, only the experimental data of Meinders et al [10], [11] are available to
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compare with. So. we also consider the turbulent flow and heat transfer in a channel with
flat walls. For this channel a number of simulations have been performed by several research

groups.
Secondly. we aim to add insight into the problem under consideration by discussing numer-
ical results that have not been measured yet. For instance the temperature has only been
measured at the surface of a cube, and not within the flow.

The report is organized as follows. The mathematical model is presented in Chapter 2. The
numerical approach is concisely described in Chapter 3. Numerical results are discussed in

Chapter 4.

Figure 1.1: Top- and side-view of a sub-channel unit. Both pictures show an instantaneous flow field
(taken from the DNS) at the plane that bisects the cubes.
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Chapter 2

Mathematical Model

2.1 Navier-Stokes equations
The motion of time fluid is governed l)y conservation laws for mass, momentum and energy.
\\e give these equations in conservation form for a Cartesian coordinate system. The partial
derivative of a quantity with respect to the ith coordinate is denoted as Furthermore
the summation convection holds for the repeated indices.

• conservation of mass
O,p + 01(pu1) = 0

• conservation of momentum

o1(pu) + 83(puu3) = pF + 0,ajj

F1 denotes time ith component of aim external force and a = (au) is the stress tensor,
which is given by

= P6ij + ji(ou + ô,u),

with öj the Kronecker symbol.

• conservation of energy

E(pE) + 91(pEu1) = pF1u1 + (ua3) — 9jq1

E = e + u1u2 is the total energy and qj denotes the heat flux. According to Fourier's
law, the heat flux is proportional to the temperature gradient

qi = —A8,T.

The equations above need to be completed by a pair of equations of state, which describe the
thermo-dynamics. For an ideal gas these are

p = pRT and e cOT,
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where R = — ce.. with c and c the specific heats at constant pressure and constant volume,
respectively. The specific heats are taken to be constant.
Then we can combine:

p
e = cT — —

p

\V not ice that h = e + = cT is the ent.halpy.

Incompressible formulation
\\c consider air under coiiditioiis for which it can be asslIIne(l to be incompressible. Yet. we

allow the density to depend on the temperature. In addition, we assume the viscosity A to
he constant. If we neglect all external forces. the continuity and momentum equations can

he written as:

div u = 0 (2.1)

+ (u gra(l) U = — grad p + ii div grad u (2.2)
c)t p

Here is ii = the kimmematic viscosity. \Ve can substitute E = e+ in the energy equation,
with e as explained above. Together with the relation for the stress tensor a it is possible to
rewrite the energy equation. After rearranging the terms and applying both the continuity
equation (2.1) and the momentum equation (2.2) we get for a constant value of the density

IT 1 . lop 1 D
---- +u grad T= — div (A grad T)+ —--- + — u gradp+ —,
cit PCp PCp at pp Pp

where D is the viscous dissipatioii:

2 2 , \ 2\ (On , 2 , 2
1

2

D = L2 -) + j-) + —) ) + - + + + + +

Both the pressure term and the viscous dissipation in the energy equation are neglected. We
treat the coefficient A as a constant. Under these assumptions the energy equation results
into

v-- + u grad T = div grad T. (2.3)

Here we have introduced the Prandtl number Pr =

Equations (2.1), (2.2) and (2.3) are rewritten in conservation form again, because in the
numerical model the equations are discretized using conservation cells. If these changes are
made and using div u = 0 again we get:

divu = 0

+ div(uu) = — div (p1) + ii div grad u (2.4)

+ div(u T) = div grad T
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I is the identity matrix and the divergence of a symmetric matrix is defined as:

( a1 a2 a3 \ ( div(a1 a2 a3)T

I idefi . T
div I a2

I = I
div(a2 b2 b3)

a3 b3 C3 ) \ div(a3 b3 c3)T

Equations (2.4) are made dimensionless by scaling them with a characteristic length L, a
characteristic velocity U and a characteristic temperature T. This leads to:

(livu = 0

+ div(uu1) = — div (p1) + div grad u (2.5)

+ div(u T) = div grad T
PrRe

This set of equations contains two parameters, the Prandtl number Pr and the Reynolds
number Re. The Reynolds iiumber measures the relative importance of the convective terms

compared to the diffusive terms. The Reynolds number is defined as Re =
V

Equations (2.5) are formulated as a conservation law, in which for any control volume Il with
boundary r applies:

fu.ndr = 0 (2.6)

fd1 = _fu(u.n)dF_fpI.ndI'+--f gradundi' (2.7)

fdc� = _fUTfldF+Pr'Ref gradTndr (2.8)

The direction normal to the wall is denoted as n. In the conservation law the solution is
allowed to be less smooth than the solution of Equations (2.5). So, for turbulent flows, the
integral formulation is prefered.

A channel with surface mounted cubical obstacles
Apart from boundary conditions, Equations (2.6), (2.7) and (2.8) are sufficient to describe
the flow and heat transfer in the channel with flat walls. But in the channel with surface
mounted cubical obstacles we need an additional equation which describes the heat transfer
in the heated obstacle.
The cubical elements consist of an internal copper core covered by a thin epoxy layer. A
schematic drawing of a composed element is shown in Figure 2.1. In the heated cube, the
temperature decay across the copper core is negligible compared to that in the epoxy layer
because of the high thermal conductivity of copper as compared to that of epoxy. This
implies that we may take a uniform copper temperature. The temperature in the epoxy layer
is obtained from the following version of the energy equation

PeCpe AedivgradTe, (2.9)
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T1opper core

e x Iaer

Figure 2.1: Schematic picture of a cubical obstacle

where A is the thermal conductivity of the epoxy, Pe the density of the epoxy and c the
specific heat of the epoxy. These are all considered as constants. Equation (2.9) (the heat
equation) is made dimensionless by scaling it with a characteristic length L. a characteristic
velocity U and a characteristic temperature T. After that the heat equation becomes

= Cj1f div grad Te,

or for any volume with boundary F

fôTedrl = Cdif f grad Te•ndF, (2.10)

e 1

with Cdjf = —.
PeCp, UL

2.2 Boundary conditions

Equations (2.6), (2.7), (2.8) and (2.10) must be complemented by boundary conditions. Both
test cases deal with a fully developed and symmetrical state, that is influences of the in- and
outlet can be neglected. This justifies to confine the flow domain to a sub-channel unit with
periodic boundary conditions in the streamwise and in the spanwise direction. At the solid
walls of the flow domain the velocity must satisfy the no-slip conditions for a viscous fluid:

u=0.
These guarantee that the normal component of the velocity is equal to zero (the fluid cannot
flow through the wall) and that the tangential component of the velocity is equal to zero (the
fluid sticks to the wall because of the viscosity).
The boundary conditions for the heat transfer differ for the two test cases.

A channel with flat walls

This test case deals with a fully developed and symmetrical thermal field. Therefore we have
also applied periodic boundary conditions to the streamwise and spanwise direction for the
temperature. The air temperature is prescribed at the solid channel walls: T = T0 and T =
at the lower and upper wall, respectively.
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A channel with surface mounted cubical obstacles
The air temperature is prescribed at the inlet as well as at the channel walls and at the
walls of the unheated cubes. Since just one cube in the array is heated we should not apply
periodic boundary conditions at both the spanwise boundaries and the streamwise boundaries.
Because of the high Reynolds number the air blows hard against the heated cube. So, the cube
will hardly heat the air in spanwise direction. Therefore we have still put periodic boundary
conditions in the spanwise direction. In time streamwise direction we have doubled the domain
for the heat transfer since only one cube is heated. \Ve have doubled the domain such that the
heated cube is located at the middle of the domain. \Ve have applied a Neumann condition at
the outlet. This means that only convective heat transfer is possible at the outlet. This will
not cause problems because the diffusive heat transfer is almost negligible compared to the
convective heat transfer. Yet, a Neumann condition at the outlet will not fit entirely with the
solution we look for. Therefore, non-physical waves may be reflected by the artificial outflow
boundary. To suppress them. we have applied a buffer zone. This implies that we have
enlarged the diffusion coefficient The Reynolds number influences the velocities also.
So, we have adapted the Prandtl number. This is done by decreasing the Prandtl number
linearly in a small area in front of the outlet.
To couple the air temperature with that of the heated cube we have computed the conduction
of heat through the epoxy layer of the cube simultaneously with the convection and diffusion
of heat in the air:

= + (0 (TITmb). (2.11)

(conduction) (convection) (radiation)

At tIme wall of the cube the condition
TeT

applies, with T the epoxy temperature, T the air temperature and Tamb the ambient tem-
perature. The radiation is modeled in terms of the average temperature on a face T1. Hence,
the radiation is constamit per face. E is the surface emissivity and a the Stefan-Boltzmann
constant. n denotes the outward unit normal (see Figure 2.2). Equation (2.11) is made
dimensionless by scaling it with a characteristic length L and a characteristic temperature T

aTe loT 4 ,-4= — c.j(Tj — iamb)' (2.12)
C/fl Cj0 cm

Ae

_____

Here. Clab = -i-- and Crad =
A

Figure 2.2: The normal n directs outwards
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Equation (2.12) holds for the five faces of the cube that are cooled by the air flow. At

the interface between the heated cubical obstacle and the channel wall a boundary condition
for the temperature Te is needed yet. The geometry of the interface between the heated
cubical obstacle and the channel wall is rather complex in the experimental setting. It con-
sists among others of screws. wires etc. We have disregarded all these elements. Instead.
we have simply continued the epoxy layer near the interface. In addition, we have assumed
that the temperature at the lower surface of the base plate equals the ambient temperature.
Tlieii we may obtain a boundary condition by performing a linear interpolation between the
epoxy temperature in the cube nearest to the upper surface of the base plate and the ambient
temperature at the lower surface of the base plate right under the cube (see Figure 2.3).

.1 cub
Tbc

wall

Tamb

Figure 2.3: The boundary condition Tb at the bottom of the cube is obtained by performing a linear
interpolation between the epoxy temperature Te in the cube and the ambient temperature Tomb at the
lower surface of the base plate right under the cube.

With the boundary conditions prescribed in this section, Equations (2.6), (2.7), (2.8) and
(2.10) are sufficient to describe the flow and heat transfer in both channels.
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Chapter 3

Numerical Model

3.1 Spatial discretization

For the spatial (lis(:retization the sub-channel unit is covered by a staggered, Cartesian grid
that can be stretched away from both the cubes and the channel walls. When a staggered
grid is used the pressure and temperature are placed in the middle of the cell and the velocity
normal to a cell face is placed in the middle of that cell face (see Figure 3.1). These cells are
used in the air as well as in the cubical obstacles. In the air we must discretize Equations (2.6).

V
i1k

Ui

y -

Z

i-I — Zk1
xi_I xi

Figure 3.1: Placement of variables. Temperature and pressure are placed in the middle of the cell,
the velocity normal to a cell face in the middle of that cell face.

(2.7) and (2.8). The discretization of Equations (2.6) and (2.7) has already been described in
[12). Here we will explain the discretization of Equation (2.8).
Define &r = — x_ , = — Y3—i and öZk = zk — Zk_t, then Equation (2.8)

f 11d1Z = _fuT.ndr+ 1

fçIt r PrRe r
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is discretized as

0Tik. -. 1 OT
OXi(JjàZk = (UTIe + PrRe

1 OT
+ (—cT,, + -——In)öxiSzk

PrRe Oy
lOT

+ (—wTId + —Id)öXiYjPrRe OzlOT
— (—uTI,+

PrRe Ox
1 OT

— (—vTI. +
PrRe dij

lOT
— (—wTI1, + --—I,,)5xMj

PrRe Oz

where c.n.d.w.s and u denote the midpoint of the east. north. dowii, west, south and up face
of the cell.
For the computation of uT on the surfaces of the cell the velocities u, v and w are available
but the temperature is defined in the cell center. The temperature is averaged over the two
neighbouring cells. For the computation of a central discretization is used. Then, we get:

= (
+ T1.3.k)u.k + ) 5YjZk

/ i 1 T1+Ik—TJk \
+ (

—(Ti,÷ + TI,J,k)vI,J.k + P7 !ó 15 ) &VjZk
2 !JJ+I+2 YJ /

+ (
+ Tj,J.k)wa,J,k + ) cxjöy (3.1)

/ T i \
— — i.j.k + i—1,j,k i—1,j,k +

) Yjzk
I 1 TI.,.k—T1,,_I.k \

— (
Aj,j.k + .L,j_1k)Lz.j_1,k + ! !5 J öXZk

2 l)+2 /
T 1 \

— 7 i.j.k + i,j,k—1 Wi.3.k_l + p
S2k+SXk_1 )

5x16y3

On non-uniform grids one would be tempted to tune the weights in the interpolation of T
at a cell face to the actual mesh sizes, but we think that it is important that the flux through
a surface of a control volume is computed independent of the control volume in which it is
considered. This can only be achieved when the weights are taken independent of the grid
location, and hence equal to the uniform weights. The advantage is that the coefficient matrix
of the discrete convective operator is skew-symmetric in this manner.
On uniform grids, the local truncation error of the numerical integration of the energy equation
over the control volume around T,3.k is of the order of (ox)5, (Oy)5 and (Oz)5. Per volume
that is (Ox)2, (Oy)2 and (Oz)2. To eliminate the leading term of the truncation error, the
energy equation is also integrated over a larger control volume around T,k which is three
times larger in every direction. Here, it may be noted that we can not blow up the 'original'
volumes by a factor two (in all directions) since our grid is not collocated. On a staggered grid,
three times larger volumes are the smallest ones possible for which the same discretization
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19Ti,.k I
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'tH

> .
k

Figure 3.2: The left. picture shows a control volume for the conservation of energy (in two spatial
(linlensions). The right picture shows a three-times larger control volume that is applied to eliminate
the leading term of the truncation error. The arrows denote the components of the discrete velocity
and the dots the components of the discrete temperature that are used to discretize the application of
the conservation law of the control volume.

rules can be aplied as for the 'original' volumes. The three times larger cell consists of x, y,
and z that satisfy (see Figure 3.2)

Xj_2 � x < Yi—2 Y � Y+i and Zi_2 � z �
Since the same integration rule can be applied for both the original control volume and the
three-times larger control volume, the leading term in the local truncation error of the latter
is 35 times the leading terni in the error iii the former on a uniform grid. Hence, the leading
terni may be eliminated by taking:

+ 35 (right-hand side of Equation (3.1))

+ (
+ T.j,k)uj+1,3,k + ) öY36Z,

+ ( + T1,3,k)v,+j,k + ' öX18Z
2 i+I+26'hi /

+ (
+ TI,j,k)w,3,k÷1 + II'J'Z, ) oxsy3

— (
—(T1, + T_3,,k)u2_2,,k + ) 6Y76Z

— (
—(T1, + T,_3,k)v,3_2,k +

) 5XjZIC

(
—(T1, + Ti,,,k_3)wi,k_2 + )

Here, the volume of a three-times larger cell around T,j,k is denoted by 5X5YjöZk
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Now, the leading term of the truncation error is of the order of (x)7, (6y3)7 and (zk)'. Per

volume the leading truncation error of will he of the order of (ox1)4. (8y)4. and (Ozk)4.
It is clear that this holds on a uniform grid. Yet. it turns out that this method is also more
accurate on a non-uniform grid [15]. [17].

A channel with surface mounted cubical obstacles
In a channel with cubical obstacles we must discretize the temperature in the heated cube
t.oo. Inside the heated cube the t.emj)erature Te is governed by the heat equation

f d1 = Cdii f grad T 'fl dF.

This equation is (liscretized as follows

OxiSYjOZk = CdiJ [ qJI8Y0Zk + jInOXiOZk + Id8X5Yj

J'Iw0Yj5Zk — jIs0Xi0Zk — LuOXOyj }.

i.e. just like Equation (2.8) is discretized. As before e, n, d, w, s and u denote the east, north,
down, west, south and up face of the cell. As in the discretization of Equation (2.8) we have
used a central discretization for the approximation of . Then we obtain an expression of
the form:

OXjOYjOZk = Cdii [ Co,jkTei+I)k + CnJkTejj+Ik + CdjjkTejjk+l + CwijkTei_I.).k+

Cs)kTejj_Ik + Cu.j,kTeI,J,k_l — CdiagjkTe,).k ]

Here
— OXiOZk — OyjSZk — OXIOYj

Co,Jk — (5y + 0Yj+i) — (Ox + 6x1+i) — (Ozk + OZk+1) '
— SXiOZk — OYJOZk — 5x1Oy

CwJk — (6y_ + 5y) CsJ.k
— + Sx) — (Ozk_j + Ozk)

and Cdjog = C0 + c, + Cd + cw + C +
\Ve only need to compute the temperature in the epoxy layer. This is a thin layer and it
is represented by a few grid points. A few is five grid points. Therefore it is not useful to
compute the epoxy temperature with the 4th-order discretization method.

3.2 Time discretization
In this section, we consider time-integration methods which are stable if the time step (at
least) satisfies:

• 20t < Re(Ox)2 and the CFL-condition c5t < '— (Equation (2.7))

• 20t < PrRe(Ox)2 and the CFL-condition Ot < '— (Equation (2.8))

• 25t < (Equation (2.10))
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Here. U7,- denotes the maximum velocity. For the flows considered in this report the time
step limitation is due to the CFL-condition. For example, for the flow in a channel with
surface mounted cubical obstacles at Re = 13.000 and Pr = 0.71 (x = 6 10—3, Umax =

3.86.cd,f = 6.13 iO: see Section 4.2.1 and 4.2.2) the time step lintitation öt < is about
two orders of magnitude stronger than 26t < PrRe(5x)2 and about four orders of magnitude
stronger than 2t < Cdf
The time-advancement of the convective and diffusive fluxes in the air flow is carrie(1 out by an
explicit one—leg method that is tuned I u get the largest possible interval of convect IVV stal)ilitv.
This is explained in [16] for Equation (2.7). Here. we will explain the one-leg method applied
to Equation (2.8). The pressure and the incompressibility constraint are t.reated implicitly in
time. The resulting discrete Poisson equation for the pressure is solved iteratively (with the
help of a modified incomplete Choleski Conjugate—Gradient method).
\Ve demiot.e the velocit and temperature at time t = nSt by u and T7, respectively. Starting
from time t = (ii + i — )ôt. we integrate the energy equation over one time step t using the
midpoint rule

T"7 T?4.J_
= f(T'3, u'3) (3.2)

Here, the right-hand side f denotes the spatial discretization of convective and diffusive terms,
as described in Section 3.1. Our aim is to determine fi such that the corresponding method
allows for the largest time step. \Ve concluded that convective stability domains puts the
most severe restriction on the time step. Thus, we look for stability domains which include
eigenvalues A = .r+iy, where the real part is negative and the absolute value of the imaginary
part y is much larger titan the absolute value of the real part. Here. 'much' can range from one
to two orders of magnitude. Time real eigenvalues are of the form 2Pr(öx)2 and the imaginary

cigenvalues of the form . Both the real part and the imaginary part of the eigenvalues
depend limmearly Ofl t. Hence. we can state our aim otherwise: We want to determine such
that the corresponding method possesses the largest region of convective stability.
The velocity and the temperature are defined on integer time levels only. We assume that the
velocity and temperature are known up to and including level n. Then, the velocity U' and
the temperature Tm can be solved from Equation (3.2) if the velocities and temperatures at
non-integer time levels in Equation (3.2) are approximated in terms of velocities and temper-
atures at integer levels. We approximate the off-step velocity u' by a linear extrapolation
of u amid u"1 and denote the result by

ii = (1 + 3)u' —

The off-step temperature T3 is approximated by

T=(1 +/3)T —fiT'.

The off-step temperature T'3 is approximated by a linear interpolation between T72
and T. Substituting these off-step approximations in Equation (3.2), we obtain the one-leg
scheme

(/3 + — 2flT + (3 — )T'' = f(T. ii). (3.3)
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Figure 3.3: The left picture shows the stability domain of the one-leg method for 3 = 0.05 and
.3 = 0.5. The horizontal axis corresponds with the real axis and the vertical axis with the imaginary
axis. The right. l)icture shows a blow up of the stability domains near the positive imaginary axis.

In Figure 3.3 the stability domain of the one-leg method is drawn for different values of /3.
We look for the one-leg method with the best linear stability properties. Figure 3.3 (left) shows
the stability domain of the one-leg method for /3 = 0.05 and /3 = 0.5 (Adamns-Bashforth). The
stability domain is pressed against the imaginary axis when /3 goes to zero. In the limit /3 = 0
the stability domain is equal to the interval [—i, i]. Since only purely imaginary eigenvalues are
allowed in this method, this method cannot be used to integrate a diffusive flux in time. We
mentioned earlier that we look for a method that possesses the largest region of convective
stability. That is. a method with a stability domain which includes eigenvalues with the
absolute imaginary part about one to two orders of magnitude larger then the real part.
Under these conditions, the one-leg method with /3 = 0.05 outperforms Adams-Bashforth.
Figure 3.3 (right) shows a blow up of the stability domain of both methods near the positive
imaginary axis. The points denoted by A and B lie on the line lxi : ii = 1: 20. The points
A and B lie near to the boundary of the stability domains /3 = 0.05 and /3 = 0.5, respectively.
.4 lies approximately two times as far form the origin as B. Thus, the time step of the one-leg
method with i3 = 0.05 can be enlarged by a factor of two compared to Adams-Bashforth. For
lxi : ii = 1: 10 this factor is about 1.5 and for lxi : ii = 1: 100 it is approximately 2.5.
The one-leg method for /3 = 0.05 is not stable if an eigenvalue exists with imaginary part
0.99, i.e if /--- = 0.99. As to be seen in Figure 3.3 the imaginary part may be 0.95 at most.
Therefore we need to adapt the CFL-condition. The one-leg method with /3 = 0.05 is stable
if the adapted CFL-condition holds: 5t <0.95-4—.

A channel with surface mounted cubical obstacles
In a channel with surface mounted cubical obstacles we have updated the temperature in the
heated cube explicitly by means of Euler's method:

= + öXyj5Zk [
coijkT+lk + Cwi.j.kTe-.ij_l,k + CTzijkTeg+ljk + Csj,j,kT_l,J,k

+ Cd$,,k1",,k_l — Cdiagjjk1'k ]
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3.3 Boundary conditions
A channel with flat walls
In both channels. we have taken the i-direction as the strearnwise direction, the y-direction
as the direction normal to the wall and the z-direction as the spanwise direction. The compu-
tational domain has nx x ny x nz cells, where i = 0 and i = iii correspond with the in— and
outlet. j = 0 and j = ny correspond with the solid walls and k = 0 and k = nz correspond
with the spanwise boundaries. For the 4th—order (liscretization method three ghost velocities
and temperatures are needed in every direction. \Ve thereby made use of mirror points in
the solid walls. The ineati of the value at the point in the domain and the value at its mirror
point is equal to the prescribed value at the wall. The (liscretized boundary conditions are
summarized below.

location variable
u v w T

(0. j. k)
(—1.j. k)
(2, j. k)

(nx + l.j, k)
(ns + 2, j, k)
(nx + 3.j. k)

tri.r,j.k
Ux_,j,j
un.r2.j.k

tLl,j,k

2.j,k
113.j,k

'n.r.j.k
V,iz_I,j,k
'nz—2.j,k

V1,j,k

'2.j.k
1'3.).k

11n.r.j.J

tt)n.r_1.j,k
U',lx_2.j,k

W1,j,k

W2,3,k

W3.j.k

Tn_I,.k
T1_2..k

T1,,k
T2,3,k

T3.j,k

Table 3.1: Ghost velocities and temperatures in the .r-direction. In this direction periodic conditions
are applied.

location variable
u v w T

(i,0,k) U,lk 0 —Wz,1.k 2T0 — T,lk
(i, —1, k) Uj,2,k —V,1,k —Wj,2,k 2T0 — T,2,k
(i, —2. k) —Uj,3,k Vj.2,k Wi,3,k 2T0 — T;,3,k
(i.ny.k) 0

(i,ny + 1. k) Vi,ny_1,k —Wi,ny,k 2T1 —

(i,ny + 2,k) i,ny—I.k V1,ny_2,k Wi,ny_1,k 2T1 — T1,_1,k
(i, fly + 3. k) Ui.ny_2k W1.ny_2.k 27'

Table 3.2: Ghost velocities and temperatures in the y-direction. No-slip conditions are imposed at
the boundaries j 0 and j = ny.

The discretization of the periodic boundary conditions in the z-direction proceeds similar to
the discretization of the periodic boundary conditions in the s-direction.

A channel with surface mounted cubical obstacles
We have confined the flow domain to a sub-channel unit of nx x fly x nz cells. For the heat
transfer we have doubled the domain in the streamwise direction, since only one cube in the
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array is heated. The discretization of the Dirichlet conditions and the periodic boundary
conditions is equal to the discretization in the flat walled channel. The inlet' from the
flow is located at i = 0. For the temperature. the inlet is located at i = —iix and the
outlet at i = nx. Near the iii- and outlet and close to the heated cube we have applied
the 2nd-order discretization method to the energy equation. We have applied the 2nd-order
method at the inlet because we have prescribed the temperature there. In turbulent flows
the temperature is everything but constant and therefore it is not necessary to compute the
temperature accurately at the inlet. At the outlet we have prescribed a Neumann condition.
This condition does not describe tIme physics in all details. Thus. at time outlet it is also not
iiecessarv to apply the 4th—order method. In the (Ilbe we have applied the 2nd—order method
0) compute T. The air temperature and the epoxy temperature are coupled with each other,
therefore we have applied the 2nd—order method to compute the air temperature at the cube.
Applying the 2ml—order method means t hat we need oniy one ghost point at the in— and outlet
and at the faces of the heated cube. At the iii- and outlet these are given by:

•T_711,k = 2T1 — T1 —iixjk Dirirhict condition at the inlet
= 2TC,L — T1 Dirichlet. condition at the face of the unheated cube at the

inlet.
• T?IZ.J,k = T1_,,1j,k Neumamimi condition at the outlet
• = 2Tcube — TI_1,3.k Dirichlet condition at the face of the unheated cube at the

outlet.

It will be clear that is the prescribed temperature at the inlet and that Tbe is the
prescribed temperature of the unheated cubes.
In Chapter 2 we have described two equations for a channel with cubical mounted obstacles
from which the boundary conditions are obtained for both T and Te at the faces of the heated
cube. At the five faces of the heated cube that are cooled by the air flow these two equations
were (at each time step):

aTe 1T 4

— C,b
- Crad(Tf - TaTnb)

TeT
The radiation is computed by means of the average temperature (T1) on a face; hence, it is
constant per face. So, we have two equations and two unknown quantities T and T. For
the approximation of and a central discretization is used, just like we did in the
preceding discretizations of . The temperatures in Equation (3.5) are averaged over the
two neighbouring cells. Then we get. for example at the downstream face of the heated cube
(i = i1):

TeI+lk — Tei.& — 1 T11±13k — T,13k " T4 T4 34
öx,1 + .5x,i+i — öx1 + óxi+i — Crad I — amb

( Te113 + Te,l)k ) ( + T1.k ) (3.5)

T11,,,k and are located in the cube, so T21,3,k is a ghost temperature. T1+1,3,k and
Teal+ijk are located in the air. Therefore, Tejl+ljk is a ghost temperature. See also Figure 3.4.
The ghost temperature TeIl+l)k is solved from Equation (3.4). If we apply Equation (3.5) to
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cube air

a-
.1

T

I'----
Figure 3.4: The coupling of the air temperature and the epoxy temperature. The air temperature is
depicted by dots and the epoxy temperature corresponds to the crosses.

eliminate T1k this leads to:

TeI+IJA. = T.,1
A•

+ (Tal+I.j.k — (Te 1+1 k + TeIk — T11+1.j,k))' Club

rad (hi1+1 + &rj) (Tj — 7wth)

After rearranging terms we get:

— Clab
—Tel+IJk

— Clab + 1
e11.2.k +

2
T Crad Clab I (Sxi+i + &ri) (T — Tamb) (3.6)zl+1,j,k —

_________

Clab+l Clab+l 2

Now it remains to solve from Equation (3.5):

= Teij&. + TeI+lJk — Til+I,j,k (3.7)

We vill prove that the above discretizations are stable i.e. that the discretization error does
not increase. Suppose that the error of Tetik on time t = nSt is and suppose that the
error of T,j,k on time t = n5t is Then the discretization error on time t = nSt of
Equation (3.6) becomes

___

12'

____ ____

un IIon I — ClQb —
I '1,j,k +

I Cj + ii €i1+1,j,k.
I

z1+1,j,k — IClab + ii
Note that Crad clob 1 '0x21+1 + Sx1) (T4 — T4 is constant, thus it causes neither an in-I amb)C,0b+l
crease nor a decrease in the error of the ghost temperature Te. The coefficient dab equals
approximately 9 (see Section 4.2.2). Therefore Ctpb—l > 0 and 2 > 0 and thus:Ctab+lClab

jil+1,j,kI < (Ciai_—1 2

)
max{'6z n

I}+
Clab + 1 Clab + 1

il,j,k1 ' Iz1+1,i,k

< i max{I,j,kl,Ei÷l,j,kI}

Hence, the discretization in Equation (3.6) is stable, but what about Equation (3.7). Well,
we have

k1,j,kI = ISiI.J.k + + (3.8)

< 3max{ I Fl

— °i1j,kI ' I°i1+1,i,kl ' Ii1+1,j,kI1 '
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thus the discretization error Jk may blow up with a factor three. Ghost temperatures in
the cube are computed to obtain the convective and diffusive flux close by the cube. In the
first section of this chapter we have discussed how we discretize these fluxes. We have used
the 2nd-order method in the neighbourhood of the cube. In one dimension, Equation (3.1)
can then be written as:

1 1 T1i+2—Ti+1= — —(T12 ± T11+i)n11±i +
cIt 2 PrRe jI+2 +

± + T1 )n11
— 1 T11 —

(3.9)
- PrRe xji +

T11 will not blow up the error in tile convective flux because u1 = 0. After rearranging terms
in Equation (3.9) the difftisive flux becomes

1

DO 1 Iirite + (Xjl+l +

In this flux we have a constant denominator. Therefore. we may restrict ourselves to the
discretization error E in the numerator:

II = — i1+I + ffl (3.10)

If we apply Relation (3.8) to ii±i. Equation (3.10) results into:

II = Ifil+2 — 3i1÷i + j1 + 1i+I
Here ii + 1 denotes the central term. Since its absolute coefficient ( 1—31 ) is equal to the
sum of the three other coefficients, we can keep the time-integration stable by choosing the
time-step small enough (öt < 0.95—, see Section 3.2). Then the discretization errors of the
ghost temperatures do not blow up the discretization errors of the diffusive and convective
fluxes and thus they do not increase tile error of tile air temperatures. Hence, the coupling
(3.6) and (3.7) is stable.

At the interface between the epoxy layer and the base plate we have obtained a boundary
condition for Te by performing a linear interpolation between the epoxy temperature in the
cube nearest to the wall and the ambient tenlperature Tomb at the lower surface of the base
plate right under the cube. If we define the thickness of the wall as d, we get for the boundary
condition Tea (see Figure 3.5):

(x_ +d)Tem + (x! —_) Tin= 2 2 2
eO.k xi + d

2

-d y11. y -

Figure 3.5: By performing a linear interpolation between T1 and Tomb we obtain Teo. Here y = —d
and y = 0 correspond to the lower surface and the upper-surface of the base plate, respectively.
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Chapter 4

Results

III this chapter two cases will be considered.

1. A channel with flat walls

2. A channel with surface mounted cubical obstacles

The second case uses an extended computer program of the first case. So, the first case is
considered to validate our simulation code.

4.1 A channel with flat walls
Before we discuss the results of this test case, we will demonstrate that the added nmimnerical
equations are implemented well.

4.1.1 Program verification

For this test case we added the following items to the existing DNS computer program:

• spatial discretization of the temperature

— discretization of the convective part

— discretization of the diffusive part

• time discretization of the temperature

• discretization of the boundary conditions of the temperature

By taking u = 0, we have tested the discretization of the diffusive part. Then, the time
discretization is also tested. With u = 0 the energy equation can be written as

= (4.1)

Here, ft is a source term, which can be added to the equation without problems. For some
exact functions which satisfy the equation we have determined the discretization error. In
selecting these exact solutions we have taken the various types of boundary conditions into
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account so that the discretized boundary conditions were also tested. \Ve have confined the
flow domain to a sub-channel unit of dimension 1 x 1 x 1.
The test functions are:

1. periodic boundary conditions:
T0(y.f) = cos(4iry) ed. c

ft = 0

2. y=0:TTo
T3(!j.t) = sin(iry) ect +To, c

ft = 0

3. ?J=0:=0 , y=l:T=Ti
T(!J.t) = cos(irq) e(t +T1112. c=

1 — PrRe

\Ve want the parameter c 1. Therefore we have set the Prandtl number to Pr = 1 and
we have varied the Reynolds number. We have choosen a stable time step öt and we let
the program run for n 8t = 1 second. We have tested both the 2nd-order and the 4th-
order discretization method on uniform grids. Theim the disretization error at a prescribed
point should depend linearly on y2 and Sy4, respectively. The error of the time-integration
method is t2. Therefore the error in the time-integration may be larger than the error in the
discretization of the diffusive part in the 4th-order method. The linear dependence on y4
may then be disturbed. We note that the discretization error also depends on the derivative
of the exact function T (Taylor series). Thus, with different functions we get different errors.
The errors are summarized in Tables 3.1, 3.2 and 3.3. The error plots are shown in Figure 4.1.

We got exactly the same discretization errors when TQ, T and T. depended on x or z. We

may conclude that the discretization of the diffusive part is well implemented and that the
error in the time-integration method does not dominate the error in the discretization of the
diffusive part.
Now it remains for us to test the discretization of the convective part. The test functions
must comply with the next version of the energy equation

1
+ div(u T) = PrRe div grad T + ft

If the results of the simulation of the channel with flat walls agree well with reference data,
we may conclude that the discretization of the convective part is also well implemented. We
will discuss the results in the next section.
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iiumber
of

Discretization error j coordinate
of the error

cells 2nd-order 4th-order TJk — T0(. 1)

16 x 15 x 16 1.19463 10 2.25961 10 8

16 x 19 x 16 7.48985 i0 9.18813 10 10

16 25 16 4.34392 i0 3.16608 10 13

16 x 35 x 16 2.22236 i0 8.42381 10 18

16 x 45 x 16 1.34590 iO_: 3.11087 10 23

16 x 55 x 16 9.01488 10 1.40063 10' 28

16 x 75 x 16 4.85059 i0 4.07022 10 38

Table 4.1: Discretizatioii errors IT — T at different grids, where T0 = cos(47ry)edt.

number
of

cells

Discret ization error j coordinate
of the error

T,jk — T0(, 1)2nd-order 4th-order
16 x 15 x 16
16 x 19 x 16
16 x 25 x 16
16 x 35 x 16

16 x 45 x 16
16 x 55 x 16

16 x 75 x 16

5.95627 10
3.70890 i0
2.14084 i0
1.09177 i0
6.60331 i0
4.41998 iO
2.37677 10

4.65807 iO
1.84198 i04
6.22335 iO
1.63401 i0
6.00215 10—6
2.69569 10—6

7.82413 i0

8

10

13

18

23
28

38

Table -1.2: Discretization errors IT — T3I at different grids, where T3 = sin(ry) eC + T0.

number
of

cells

discretization error j coordinate
of the error

T3k — 1)2nd-order 4th- order
16 x 15 x 16
16 x 19 x 16
16 x 25 x 16
16 x 35 x 16
16 x 45 x 16
16 x 55 x 16
16 x 75 x 16

5.99580 iO
3.73235 i0
2.15389 i0
1.09825 i0
6.64209 iO
4.44579 iO
2.39057 iO

4.69745 10
1.88502 iO
6.54287 i0
L82039 iO
7.18647 10_6
3.50760 106
1.22859 10_6

8

10

13

18

23
28

38

Table 4.3: Discretization errors IT — T.)I at different grids, where T, = cos(iry) ect + T1y2.
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001 —
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function 2, 4th-order method.::
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dy4

function 3, 2nd-order method. function 3, 4th-order method.

Figure 4.1: Discretization errors as functions of 6y2 (2nd-order) and öy4 (4th-order).
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4.1.2 Simulation
To validate our simulation code we have computed the velocity and the temperature of a
fully developed flow in a channel with flat walls first. We have confined the flow domain to a
sub-channel unit of dimension 27r x 1 x ir. The height of the channel is 1. The sub-channel
unit is covered by a 64 x 64 x 32 staggered grid that is stretched away from both the channel
walls. The first grid point away from a wall is located at 4 i0. At both channel walls we
have put the temperature equal to T0 = T1 = 0. The Reynolds number is equal to Re = 5, 600
(based on the channel width and the bulk velocity) and the Prandtl number is Pr = 0.71. At
this Reynolds and Prandtl number a number of simulations have been performed by a several
research groups: see e.g. [2]. [7]. [8] an(l [9}.
\\e have distinguished two areas in the turbulent boundary layer:

• An inner layer where turbulent mixture is the dominant phenomenon.

• A laminar siiblayer close to the channel wall where turbulent friction is negligible as
coulj)ared to the skin—friction at tile channel wall

In Figures 4.2 and 4.3 iiiean velocity and temperature profiles are depicted as functions of
the logarithmic distance to tile wall, so that the laminair sublayer is shown much larger than
it is in reality. The profiles are made dimensionless with the friction velocity and friction
temperature, respectively

DNS 2nd—order 64x64x32
DNS 4th—order 64x64x32
Kim & Mom (1988)
Kuroda et al (1993)

a Glbert & Kleiser (1993)
10 20 50 100 200

ONS 2nd—order 64x64x32
ONS 4th—order 64x64x32
Kuroda et al (1993)
Kaders law (1979)

Figure 4.2: Comparison of the mean streamwise
velocity u+ as function of y+ in a channel with flat
walls. The dashed lines represent the law of the
wall and the log law. The markers represent DNS-
results that are taken from both the ERCOFTAC
Database and the Japanese DNS Data Base of
Turbulent Transport Phenomena.

25

Figure 4.3: Comparison of the mean tempera-
ture T+ in a plane channel. The dashed lines rep-
resent the law of the wall and the log law. Here, it
may be noted that Kaders data provides the best
fit through a large number of experiments (per-
formed at a large range of Reynolds numbers).
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-
- DNS 2nd—order 64x64x32

— DNS 4th—order 64x64x32
A Kim & Mom (1988)

Kuroda et al (1993)
Gilbert & Kleiser (1993)

3.-

2 5L

2L

0
0

OSD

Figure 4.4: Comparison of 11r,ns in a fully devel-
oped channel.

Figure 4.5: Comparison of Trms in a fully devel-
oped channel,

sionless mean temperature T+ = is also plotted versus = uRe y. The mean velocity
profile is measured to compare it with those of other DNS's. Here it may be stressed that the
grids used by the DNS's that we compare with have typically about 128 grid points, that is
16 times more grid points than our grid has. Nevertheless, the agreement is excellent. Fig-
tire 4.3 displays a comparison of the teniperature profiles Here too the agreement is excellent.
As shown in the figure, the agreement between the computed results and Kader's formula
[6] (which is based on a large number of experimental results) is also good. Thus, we may
conclude that a 64 x 64 x 32 grid suffices to perform this DNS.
With Reynolds decomposition, the instantaneous quantities in a turbulent flow can be con-
sidered as the superposition of a mean, an average over a period which is much larger than
the time scales of the turbulent fluctuations, and a fluctuating part:

The averages of the fluctuating parts are zero u' = = 0.
In Figures 4.4 and 4.5 Urms and Trtns are plotted versus y (linear scale) to compare with
those of other DNS's. Urms and Tr,ns are solved from Equations (4.2) and (4.3):

Ums = = — ()2

Trms.T2_(T)2
In Figures 4.1 to 4.4 both the 2nd- and 4th-order results are shown. As can be seen, the
results of the 2nd-order discretization method agree less with the reference data than those
of the 4th-order method (except for the mean velocity profile; in the mean velocity profile no
difference can be noticed). Therefore, we will use the fourth-order discretization to simulate
the flow and heat transfer in the channel with the surface mounted cubes.
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Then, the dimensionless mean velocity u+ = is plotted versus = urRe y. The dimnen-

u = + u'
T=T+T'

(4.2)

(4.3)



4.2 A channel with surface mounted cubical obstacles

In this section the computational domain is considered first. Next. all the values of the pa-
rameters and the prescribed boundary conditions are given. Then the results of the velocities
are discussed and the last part of this section concerns the results of the heat transfer.

4.2.1 Computational domain and grid

A matrix of 25 x 10 cul)es (each of size H3) is mounted at one wall of the channel as sketched
in Figure 4.2.1. The 1)itch of the cubes equals 4H. both in the streamwise and in the spanwise
direction. The height of the channel is 3.4H. The flow domain is confined to a sub—channel
imijit of diineiisioii 4H x 3.4H x 4H.

4H

Figure 4.6: Three-dimensional view (upper plot) and side view (lower plot) of the channel with cubical
mounted obstacles. In the lower figure is the middle cube the heated cube.

The sub-channel unit is covered by a i003 staggered grid that is stretched away from both
the cubes and the channel walls. The first grid point away from a cube (or a wall) is located
at 0.006H. A cube is represented by 40 grid points in each direction. The grid is continued
inside the heated cube. Therefore, the epoxy layer is represented by 5 grid points only.
For the heat transfer we have doubled the domain in the streamwise direction. The inlet is
taken 4H upstream from the heated cube. The coordinate system originates from the channel
wall at the centre of the windward face of the cube.
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4.2.2 Parameters and boundary conditions

The parameters used in this simulation are:

Characteristic temperature T = 290.1 K (ambient temparature)
Characteristic velocity U 3.86 rn/s (bulk velocity)
Characteristic length L = 51 i0 m (channel height)

Reynolds number Re = = 13, 000/
Prandtl iiumber Pr = = 0.71

=
= 6.13 i0

Club = = 9.0d

€aTL
rad = A

= 0.28

Thermal conductivity epoxy Ae = 0.237 W/mK
Thermal conductivity air A = 0.0262 W/inK

Thermal diffusivity epoxy ae = e = 1.206 i0 rn2/s
PeCe

Thermal diffusivity air a = —-- = 0.18 i04 rn2/s
PCp

Surface emissivity
Stefaii-Boltzmann constant 5.67 10_8 W/in2K4
Thickness lower channel wall d 8 i0 in
Copper temperature T0 348 K
Ambient temperature Tamb 290.1 K

All these constants are taken from the Ph.D-thesis of Meinders [10].
At 4H downstream (measured from the windward face of the heated cube) the normal deriva-
tive of the temperature is set to zero. In addition, in a buffer zone (of length O.4H) the Prandtl
number is decreased from 0.71 to 0.2 to suppress non-physical waves which may be reflected
by the artificial outflow boundary.
A substantial difficulty appears in the coupling of air temperature with that of the heated
cube; the diffusivity of air is approximately two orders of magnitude larger than that of epoxy.
Consequently, the (diffusive) time scales in the air and in the epoxy layer differ significantly.
Air reacts much faster upon temperature changes than epoxy does and it takes much longer
to reach an equilibrium state in the epoxy layer than in the air. To shorten the time needed
to reach an equilibrium the diffusivity in the epoxy layer is increased initially. It starts from
a value that is slightly lower than the diffusivity of air and is then gradually decreased till it
reaches its given value.
At 4H upstream from the heated cube the air temperature is put equal to T = 17.1°C. The
surface temperature of the unheated cube upstream and that of the flat wall of the channel
are also set to the ambient temperature. At the lower channel wall and at the surface of the
windward face of the unheated cube downstream we have taken T = 21°C to model the warm
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up of the channel wall by the heated cube roughly.
To start with, we have taken the temperatures on a cube face from the Ph.D.-thesis of Mein-
ders [101 to compute the radiation. After a while we have computed the radiation by means of
the average measured temperature on a face. These average temperatures will be compared
with the average temperatures on a cube face from the Ph.D.-thesis of Meinders [10] later on
in this chapter.

4.2.3 Flow

In the preceding section on the channel with flat walls we have concluded that the Xavier
Stokes equations. the energy equation and the matching boundary coIi(litions are well iinple—
inented. To obtain velocities in the channel with cul)ical mounted obstacles we only needed
no—slip and periodic boundary conditions i.e. the same boundary conditions as in the channel
with flat walls. This is not the case for the temperature. We have applied an extra equa-
tion (Equation (2.10)) and different boundary conditions (in streaniwise (lirection and at the
cube). Therefore we first discuss the velocity results.

An iiistantaneous flow field at two l)laies through the centre of the cubes is shown in Fig-
tire 1.1. This field resulted from the i003 DNS. In both pictures the flow is directed from left
to right. The flow is characterized by the presence of distinct vortex structures in the vicinity
of the obstacles. The vorticity w is defined as the rotation of the instantaneous velocity field
of a fluid element:

(3) = V x U

It may I)e noted that large structures of recirculating flow behind the obstacles are not present
in any of the snapshots of this flow. These regions can only be observed if the flow is averaged
over a long period in time.
The statistics of the flow have been averaged over 540 seconds (40 shedding cycles). First-
and second-order statistics of the velocity field obtained from the i003 DNS at the cross sec-

:Yj' (

Figure 4.7: A comparison of first-order statistics (left picture) and second-order statistics (right picture)
of the DNS with experimental data. Shown are the mean streamwise velocity i (left picture) and tilu'
(right picture) in the plane parallel to the streamwise direction that bisects the cubes. The Continuous lines
correspond to the DNS; the experimental data is depicted by the dots.
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tion of the channel that bisects a cube are compared to the available experimental dat.a in
Figure 4.7. The profiles of the mean streamwise velocity and the mean-square of the fluctu-
ating streamwise velocity are in good agreement with the experiments, except in the front
of a cube, where some discrepancies between the mean-squares of the fluctuating streamwise
velocities exist. So, in conclusion. the i003 simulation reproduces the turbulent fluctuations
reasonably well.

4.2.4 Heat transfer

At the cube-surface

Meinders et al. [10]. [11] have measured the temperature at the surfaces of the heated cube by
meamis of infrared thermography. At. each face flier have measured the surface temperature
at a grid of 302 points. Liquid crystals were used to correct for the spatial image degradation
of time infrared camera they used. In addition, they have compute(l the local (adiabatic) heat
tramisfer coefficient

— sur face
,--, ,,-,
-Lsurface — 1amb

where the air temperature and its gradient are to be evaluated at the surface of the heated
cube. Meinders et al. have computed the numerator of the heat transfer coefficient hod by
writing it as the difference of the conductive and radiative heat fluxes at the surface, see Eq.
(2.11). The radiative heat fluxes were calculated from the averaged temperature per face, the
surface enlissivity and the view factors of the faces. The conductive heat flux at the outer
surface of the epoxy layer has been computed from the temperature distribution inside the
heated cube. For that the Laplace equation was solved numerically on a 30 grid, where the
temperature at the grid points on the faces was taken from the experiment.

experiment simulation
face cond qcoriv grad Tf

W/rn2 W/in2 U'/rn2 °C
cond conv grad T1

W/m2 W/m2 W/m2 °C
windward

top
leeward
side I
side II

2976 2762 214.4 51.50
2592 2364 227.9 53.35
2084 1821 262.6 57.95
2676 2445 230.6 53.74
2597 2363 234.3 54.23

2775 2581 193.6 48.44
2687 2486 201.3 49.51
1717 1466 251.0 56.18
2505 2295 210.1 50.73
2505 2295 210.1 50.73

Table 4.4: Averaged heat fluxes and temperatures per cube face. A comparison of numerical results
with experimental data.

Average temperatures and heat fluxes per face of the heated cube are compared in Table
4.4. Here, qc,d denotes the conductive heat flux through epoxy layer, cv represents the
convective heat flux, and grad stands for the radiative heat flux. The average temperature
per face is denoted by Tj. All quantities are given in the same physical dimensions as in
the experiment. As can be seen the average surface temperatures of the simulation are lower
than in the experiment. The largest difference occurs at the top face of the cube. There,
the computed average surface temperature is approximately 7% lower than the measured
temperature. The average temperatures at two side faces (side I and side II) of the cube
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should be equal by symmetry. The same applies to the fluxes at the two side faces. The
experimental results do not satisfy the symmetry perfectly, due to errors in the measurements.
The difference between the experimental results at the two side faces gives an idea of the
magnitude of the error in the experiment.
The integral of the total heat flux (cond conv + grad) over the five faces of the cube is
2.67W according to the measurements and 2.74W in the numerical simulation. The total
power dissipated in the cube during the experiment was 2.96W. Thus. the loss through the
base at. which the cube is lnounte(l (2.96 — 2.671V) is approximately four times the difference
between the total heat flux in the experiment and in the numerical simulation.
The time-averaged temperatures along some paths at the surface of the heated cube are
compared to those of the experiment in Figure 4.8. A number of measuring-points lie on the
iiitersection of two paths. At these points two data-points are available. Both are shown in
Figure 4.8 to illustrate the uncertainty in the experimental data. Given this uncertainty, we
may conclude that the experimentally and numerically obtained mean temperature agree.
Yet. at the edges the iiumerical simulation predicts a temperature that is (much) lower than
the measured temperature. The difference may become a.s large as five degrees Celcius, which
is about 10%. This (relative) difference blows up if we look at the heat. transfer coefficient had
(see Figure 4.9). Indeed, the deiioiniiiator in the right-hand side of Eq. (4.4) may differ 20%
(or even iiiore) if the surface temperature differs 10%. The amplification of the difference
between the measurements and the numerical simulation can be observed at the corners
denoted by B and C in Figure 4.9.
In addition, it may be noted that the experimental results are somewhat questionable near
the edges, because they do not satisfy the symmetry condition. This is illustrated in Figure
4.10. In this figure, we have encircled three pairs of data-points. Each couple is connected by
a straight line. The slope of these line segments should be zero by symmetry. Obviously. this
condition is not satisfied by the encircled experimental data-points. i.e. near the coriiers A, B,
C and D. The middle-most picture in the left column of Figure 4.8 shows the corresponding.
measured temperatures along the path ABCD are almost symmetrical. The difference between
the temperature at two symmetric locations stays within one degree Celsius.
Near the base plate the surface temperature is predicted well. Yet, the heat transfer coefficient
differs significantly from the measurements. This difference is a consequence of the simple
model that we have used to describe the temperature of the base plate. In the simulation we
have put the base plate at a uniform temperature of 21°C (except at the interface between
the base plate and the cube), that is at the ambient temperature plus four degrees.
The had-profiles at the line BC on the windward face display wiggles. These wiggles are likely
due to the fact that the temperature gradient in the epoxy layer is not fully resolved (with
only 5 grid points in the epoxy layer).
The distinct spatial gradients in the heat transfer coefficient at the surface of the heated cube
are related to the complex flow patterns near the cube. Obviously, the heat transfer at the
windward face is large compared to that at the other faces. At the leeward face, the heat
transfer coefficient is low because a large fraction of the heat is detained in the recirculation
bubbles in the wake of the cube. Heat convected away from the cube recirculates in the wake
and thus causes an increase of the temperature at the rear side of the cube, which in its turn
suppresses the transfer of heat from the rear side. This phenomenon can also be observed
at a smaller scale. For example, the distance between the corner B and the location of the
maxima of the heat transfer coefficient at the path AB in the pictures in the left-hand column

31



Figure 4.8: The mean temperature along different paths at the surface of the heated cube. The
markers denote the experimental data by Meinders et al. Note that at three points along BC and DA
(left-hand column) and at three points along AB and CD (right-hand column) two data-points are
available. Both are shown.
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Figure 4.9: The mean heat transfer coefficient had along different paths at the surface of the heated
cube. The markers denote the experimental data by Meinders et al.
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Figure 4.10: The convective heat flux along the path ABCDA. Three pairs of data-points are encircled
to illustrate the asymmetry in the experimental data.

of Figure 4.9 is equal to the recirculat ion length along AB. In other words, the dip in the heat
transfer at the side face near the corner B is caused by au eddy that reduces the removal of
heat from this part of the surface. The same holds for path CD on the other side.

In the flow

Figure 4.11: First-order statistics (left picture) and second-order statistics (right picture) of the temper-
ature in the flow. Shown are the mean temperature T (left picture) and T'T' in the plane that bisects the
cubes. The geometry is drawn to scale. In the left picture the difference between the temperature and the
ambient temperature is shown. The continuous lines represent T; T corresponds to the dashed lines.
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Figure 4.11 and 4.12 depicts the mean and mean-square of the fluctuating temperature at
four locations at/past the heated cube. Here, we have performed two computations. In
addition to one described so far a temperature T is computed from the energy equation (2.8).
The temperature T satisfies the boundary conditions that are imposed on T, except for
the faces of the heated cube. There, T is set equal to the averaged (in space and time)
computed face teunperature T (see Table 4.4). At the surface of the heated cube the difference
between T and T can be as large as 10 to 15 degrees. In the flow these differences disappear



Figure 4.12: The mean temperature 7 at half cube height. The vertical corresponds to the spanwise
direction. The continuous lines depicts T; T is depicted by the dashed lines. The left-hand cube is
heated. The geometry is drawn to scale. Shown is the difference between the temperature and the ambient
temperature.

rapidly. Figure 4.11 and 4.12 show that this holds for the mean temperature (Fig 4.11
left picture and Fig 4.12) as well as for the mean-square fluctuating temperature (Fig 4.11
right picture). Therefore, we may conclude that the temperature distribution in the flow is
relatively insensitive to variations of the surface temperature of the heated cube.
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Chapter 5

Conclusions

111 this report we have discussed the results of a 4th-order discretization method for computing
the flow and heat transfer in a channel with surface mounted cubical obstacles. The results
can be summarised as follows.

• For a channel with flat walls the results of the second-order discretisation method agree
less with the reference data than those of the fourth-order method on the same compu-
tational grid. With the fourth-order method a 64 x 64 x 32 grid suffices to perform a
DNS at Re = 5,600 (based on channel height and bulk velocity).

• The turbulent flow profiles in the channel with the surface mounted cubical obstacles
agree well with the available experimental data.

• The time-averaged surface temperatures also agree with the measurements, except for
the edges of the cube where differences up to 10% exist. Differences between the mea-
sured and computed heat transfer coefficient are due to an amplification of the differ-
ences in the surface temperature, and to an asymmetry in the experimental data.

• The complex flow structures around the cubes yield strong variations in the local heat
transfer coefficient.

• The temperature in the flow is relatively insensitive to variations of the surface temper-
attire of the cubes.
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Appendix A

Program Description

The numerical model in Chapter 3 has been implemented in a Fortran77 program. This
appendix gives more information about time calling sequence, the subroutines, several variables
used in the DNS-program and the in- an(l output files.

A.1 Calling sequence

The subroutines and functions are called in the following order:

setup OPENIN
RD PARS

VERIFY
RDGRID
RDBCS
RDFLD
BNDCDO BNDCDU

BNDCDV
BNDCDW

RDMNS
CELLS
RDGEOM
RDTCUB
CLOSIN
OPNOUT
PSOLVEO POISSN

PRECON
PDROPO ICCGP2

BNDCDS
time integration INTGRT BNDCDU

BNDCDV
B N DCDW

U CELL

VCELL
WCELL
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CNSTRNT PSOLVE ICCGP2
BNDCDP
PDROP
BNDCDU
B N DC DV

BNDCDW
MAXDIV
M AS F LW

INTTMP TCELL
BNDCTC
TCUBSO
BNDCTC
BNDCDU
BNDCDV
BNDCDW
BNDCT

MEANS MNXM
MNYM
MNZM

WRTFLD
TWALL
GRADT
WRTCUB
BULK ENERGY

post-processing WRTMNS
CLSOUT

The setup subroutines are executed once, while the integration in time is repeated until the
maximum simulation time is expired. The individual subroutines/functions are discussed in
the following section.

A.2 Subroutines

In this section a short description of the subroutines and functions is given.

BNDCDO : Initializes boundary and ghost velocities.
BNDCDU Computes boundary and ghost u-velocities.
BNDCDV : Computes boundary and ghost v-velocities.
BNDCDW : Computes boundary and ghost w-velocities.
BNDCDP : Computes boundary and ghost pressures.
BNDCDS : Computes boundary and ghost pressure drops.
BNDCT2 : Computes boundary and ghost temperatures.
BNDCTC Computes virtual cube-temperatures.
BULK Computes bulk quantities, such as the kinetic energy,

output to bulk.dat.
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CELLS : Defines the sizes of the control volumes.
CLOSIN : Closes the input files.
CLSOUT : Closes the output files.
CNSTRNT Satisfies the constraint div u = 0.

ENERGY : Computates the kinetic energy (function).
GRADT Computes the average temperature gradients at the cube.

output to dtdnti.dat, dtdntj.dat and dtdntk.dat
ICCGP2 : Computes the conjugate gradient iteration.
INTGRT : Integrates the convective and diffusive terms in time.
INTTMP : Integrates the energy equation in time.
MASFLW : Computes the mass flow, output to maxdiv.dat.
MAXDIV : Computes the inaxiniuni of dlv u. output to maxdiv.dat.
MEANS : Computes and updates the averages.
MNXM : Computes and updates the averages at x = Sm.

MNYM : Computes and updates the averages at Y = Ym.

MNZM : Computes and updates the averages at 2 = z.
OPENIN : Opens the input files.
OPNOUT Opeims the output files.
PDROP Computes the pressure drop.
PDROPO Initializes the computation of the pressure drop.
POISSN : Discretizes div grad p.
PRECON : Computes preconditioner yz-periodic poisson.
PSOLVE Poisson solver.
PSOLVEO Initializes the poisson solver.
RDBCS : Reads the bouiidary conditions from input file bndconds.
RDFLD : Reads the velocity, pressure and temperature from file fld.dat and

tmp.dat.
RDGEOM Reads the surfaces of the cells from input file geometry.dat.
RDGRID Reads the coordinates of the grid-lines from input file grid.dat.
RDMNS Reads the time-averages from files mnx##.dat, mny##.dat and

mnz# # .dat.
RDPARS : Reads the parameters from input file parameters.
RDTCUB Reads the temperature in the cube from file cub.dat.
TCELL2 : Discretizes the convective and difusive flux through t-cells.
TCUBSO : Computes the cube temperature.
TWALL : Computes the average wall temperatures at the cube,

output to twalli.dat, twallj.dat and twallk.dat.
UCELL : Discretizes the convective and difusive flux through u-cells.
VCELL : Discretizes the convective and difusive flux through v-cells.
WCELL : Discretizes the convective and difusive flux through w-cells.
VERIFY : Verifies the values of the parameters.
WRTCUB : Writes the cube temperature to file cub.dat.
WRTFLD Writes the velocity and pressure to file fld.dat and the temperature to

file tmp.dat.
WRTMNS : Writes the averages to files mnx##.dat, mny##.dat and mnz##.dat.
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A.3 Common block variables

Globally used variables are defined within common blocks. Here. the most important variables
are given in alphabetical order.

• /BNDCONDS/
TXO, TX1 Temperature boundary conditions at the walls in i-direction,

are not defined when periodic boundary conditions are used.
TYO, TY1 Temperature boundary conditions at the walls in y-direction.

are not. (lefihle(l when periodic boundary conditions are used.
TZO, TZ1 Temperature l)oulldary conditions at the walls iii z—direction.

are not defined when periodic boundary conditions are used.
TXOGIV, TX1GIV declares if TXO and TX1 are Dirichiet or Neumann conditions.
TXOGIV, TX1GIV declares if TYO and TY1 are Dirichiet or Neumann conditions.
TXOGIV, TX1GIV declares if TZO and TZ1 are Dirichlet or Neumann conditions.
TIO, Til (averaged) Temperatures at the walls of the heated cube in

i—direction, used in the computation of the radiation.
TJO, TJ1 (averaged) Temperatures at the walls of the heated cube in

j—direction. used in the computation of the radiation.
TKO, TK1 (averaged) Temperatures at the walls of the heated cul)e in

k-direction, used in the computation of the radiation.
TCO, TI N Copper temperature and ambient/inlet temperature.

• /CUBES/
CL, CR, CDIF Cjab.Crad.Cdjf
TCUBE(I,J,K) Cube temperature at new time level at position (i,j, k)
TCEX(I,J,K) Cube temperature at old time level at position (i.j. k)
CO(I,J,K), CW(I,J,K) c0 and c. at position (i.j.k)
CN(I,J,K), CS(IJ,K) c, and c at position (i.j.k)
CU(I.J,K), CD(I,J,K) c and d at position (i.j.k)
CDIAG(I,J,K) Cdiug at position (i.j.k)

• /DIMENSIONS/
NX Number of cells in i-direction.
NY Number of cells in y-direction.
NZ Number of cells in z-direction.

• /FINITEVOL/
ORDER Order of the spatial discretization.
X(I), Y(J), Z(K) x-, y- and z-coordinates of the grid points.
DX(i), DX3(I) Grid size x(i) — x(i — 1) and large grid size x(i + 1) — x(i — 2).
DY(J), DY3(J) Grid size y(j) — y(j — 1) and large grid size y(j + 1) — y(j — 2).
DZ(K), DZ3(K) Grid size z(k) — z(k — 1) and large grid size z(k + 1) — z(k — 2).

• /PRANDTL/
PR Prandtl number.
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• /PRESSURE/
P(I,J,K) Pressure at new time level at. position (i,j, k).
PEX(I,JK,N) Pressure at old time level ii at position (i,j, k).

• /REYNOLDS/
RE Reynolds number.

• /TEMPERATURE/
T(I,J,K) Temperature at new time level at location (i,j, k).
TEX(I,J,K) Temperature at old time level at location (i.j. k).

• /TIMEINTGRT/
TIME Present time.
DT Time-step.
BETA [3.

• /VELOCITY/
U(I,J,K), UEX(I,J,K) u-velocity at new and previous time-level at position (i.j, k).
V(I,J,K), VEX(I,J,K) v-velocity at new and previous time-level at position (i,j. k).
W(I,J,K), WEX(I,JK) w- velocity at new and previous time-level at position (i,j,k).
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Appendix B
I

List of symbols

c specific heat of air at constant pressure
Cp specific heat of epoxy at constant pressure
d width of the channel wall
h adiabatic heat transfer coefficient
p(x. y. z, t) pressure
Pr Prandtl iiumber
Re Reynolds number
t time
T(x,y,z,t) air temperature
Tainb ambient temperature
T0 copper temperature
Te(x,y,z.t) epoxy temperature
T, inlet temperature
Tj average temperature on a cube face

u(x.y.z.t)
u = v(x. y. z. t) velocity

w(x, y, z, t) )

x = y position
z)

13 coefficient in one-leg method
surface emissivity
thermal conductivity of air
thermal conductivity of epoxy

p dynamic viscosity
LI kinematic viscosity
p density
a Stefan-Boltzmann constant
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