
Genetic algorithms in
multiobjective design
optimisation

Simone De Kleermaeker

0.05 0
0

0.04

0.03

-1,6 —14 —12 —1 _O8 -06 —0.4 -0.2

CI = 1.317, Cd = 0.02657

0.04

0

0 0.2 0.4 06 06

CI = 0.6787, Cd = 0.01083

0.04

0.
0

-u.
0 02 0.4 06 0.6

.'tGron1ngevP
oeek

- c u'de I JIfOIDIn I RSksncntrw

.: GrQrIngen ,—"'

Department of
M athematks

Pareto front with: o Euler
x Navier—Stokes

0
00

00
2

O
001 000

Genetic algorithms in
multiobjective design
optimisation

Simone De Kleermaeker

Master's thesis

I 4. 'I. iuiwtki I Rskanc.ntn

irDnIflQefl

28 NOV. 2000

University of Groningen
Department of Mathematics
P.O. Box 800
9700 AV Groningen October 2000

Contents

1 Introduction 7

2 Design Optimisation
2.1 Single and multiple objective optimisation
2.2 Multiobjective optimisation
2.3 Some optimisation algorithms
2.4 Design optimisation
2.5 The choice

3 Genetic Algorithms
3.1 Key aspects of genetic algorithms
3.2 Basic ingredients of GAs for multiobjective optimisation

3.2.1 Tuning the simple genetic algorithm
3.2.2 Improvements to a simple genetic algorithm

4 Implementations of optimisation algorithms
4.1 Gradient-based optimisation algorithms .

4.2 Implementations of multiobjective GA
4.2.1 A Genetic algorithm in Matlab
4.2.2 A genetic algorithm library
4.2.3 Strength Pareto Evolutionary Algorithm

4.3 TSPspea
4.3.1 Traveling Salesman Problem
4.3.2 The algorithm

5 Validations of SPEA
5.1 Validation of TSPspea

5.1.1 Results
5.2 Validation of FPspea

5.2.1 Implementation of the analytical test functions
5.2.2 Results
5.2.3 Conclusions

6 Strategies for genetic algorithms
6.1 Results

6.1.1 Test function 1, using floating point coding
6.1.2 Test function 5, using binary coding 41

1

9
9

10

12

13

13

15
• . . 15

16

17

18

21
• . . 21

22
• • . 22

23
23

24
24
24

27
27
27
28
30
31

36

37
38

38

6.2 Another influential part of a genetic algorithm 43
6.3 Conclusions 43
6.4 Further investigations 43

6.4.1 Recommendations 44

7 Design optimisation for the Runge-Kutta method 45
7.1 Introduction to the problem 45

7.1.1 Objectives 46
7.2 Implementation 46
7.3 Results 47

7.3.1 fl's fixed at one 47
7.3.2 fl's fixed at one and removed from the chromosome 49
7.3.3 fl's variable 50

7.4 Conclusions 51

8 Airfoil design optimisation 53
8.1 Introduction to the problem 53
8.2 Implementation 54
8.3 Euler versus Navier-Stokes 55
8.4 Results using the Euler equations 55

8.4.1 Combined airfoil geometry 56
8.4.2 Another combined airfoil geometry 56
8.4.3 The GA airfoil geometry 57
8.4.4 Conclusions 59

8.5 Results using the Navier-Stokes equations 60
8.5.1 The GA airfoil geometry 60

8.6 Multidisciplinary design optimisation 61

9 Conclusions and recommendations 63
9.1 Conclusions 63

9.1.1 FPspea 63
9.1.2 Determining strategies for GAs 63
9.1.3 Design optimisation problems 64

9.2 Recommendations 64

A Test functions 65

B Program Description 71
B.! Calling sequence 71
B.2 Classes 72
B.3 Structure 73

B.3.1 Initialisation of Population 73
B.3.2 Update of external set 73
B.3.3 Selection 74
B.3.4 Recombination 74
B.3.5 Mutation 74
B.3.6 Update of external set 75

2

—.———'

B.3.7 Output . 75
B.4 Special routines 76
B.5 Input files 77

B.5.1 Input files for FPspea 77
B.5.2 Input files for HITASK 77

B.6 Output files 78
B.6.1 Output files of FPspea 78
B.6.2 Output files of HITASK 78

3

4

Abstract

Optimisation is a challenge for computerized multidisciplinary design. With multidisciplinary
design optmisation there are several objectives to optimise, originating from different disciplines.
Therefore no obvious method to splice the multiple objectives into a single objective exists.
Multiobjective optimisation is a method that can deal with multiple objectives.

The genetic algorithm is a global optimisation method, which is inspired by natural evolution.
It uses a population of solutions that evolves to better solutions with help of recombination and
mutation. A genetic algorithm can cope with a design space that is, for example, discontinous
or convex. That and the global character of the genetic algorithm make it a suitable algorithm
to solve multiobjective optimisation problems.

In this report an introduction to optimisation problems and genetic algorithms is given.
Furthermore, the results are shown of two multiobjective optimisation problems: parameter
choice in time integration methods and airfoil design.

5

6

Chapter 1

Introduction

The global subject of this report is multidisciplinary design optimisation. Such optimisation
deals with several objectives, which originate from different disciplines. The objectives repre-
sent the properties of the design to be optimised. For example, when designing a wing, the
aerodynamic lift should be maximised, the structural mass should be minimised and the volume
of the wing should be able to contain a certain minimal amount of fuel. These objectives origi-
nate from different disciplines. This example illustrates the need for multiobjective optimisation
when dealing with multidisciplinary design optimisation. Design optimisation in general can be
performed in different ways. A single objective (SO) can be formulated, which is to be optimised
in a single objective optimisation (SOO). Also several, or multiple, objectives can be formulated.
There are different ways to deal with multiple objectives. The different objectives can be spliced
into one single objective, for instance by a weighted sum of the objectives (multiple objective
optimisation). This however has the disadvantage that the relative importance of the different
objectives is fixed a priori by the values of the weighting factors. With multidisciplinary design
it is preferable to optimise the different objectives simultaneously in the optimisation, and to
decide about the importance of each of the objectives after the optimisation. This is achieved
by multiobjective optimisation (MOO), which will be the main subject of the report.

This study tries to find an answer to the question: Can a genetic algorithm be used to solve
a MOO problem and how well does such an algorithm perform on a MOO problem.

Multidisciplinary design optimisation (MDO) leads to multiobjective optimisation (MOO)
if the objectives can not obviously be gathered in a single objective with a multiple objective
optimisation. In the aerodynamic multiobjective design optimisation the objectives may be
discontinuous, therefore the distribution of the objectives can be quite unexpected and the
resulting aerodynamic optimisation problem can be very difficult. In this situation, a global
search algorithm is indispensable. More detailed information on design optimisation is presented
in chapter 2.

In a literature survey on Multiobjective Design Optimisation [13] some design optimisation
methods have been examined. With the purpose of this research project in mind, the optimi-
sation methods are judged. It concentrates on multiobjective aerodynamic design optimisation
and especially airfoil shape optimisation. Some methods are introduced in chapter 2. For more
information on these methods the reader is referred to [13].

Beforehand the expectation existed that the genetic algorithm (GA) would be one of the

7

optimisation algorithms fit for aerodynamic MOO. GAs are a specific type of evolutionary
algorithms (EAs). The idea behind EAs is based on natural evolution. The GA handles a
population of solutions, i.e. instead of one point in the search space, a whole population of points,
or individuals, is examined. The GA is a global search algorithm. All the possible solutions
have to be coded into genes. Chromosomes, which are composed of these genes, represent the
individuals of the population. This population has to evolve to several optima in the search space
in the process of the GA. To make the population evolve, recombination operators are created.
With these operators parents can be selected from the population who can mate to produce
children who can replace some of the old individuals in the new population. The objectives
determine the fitness of an individual which influences the probability of an individual to be
selected as parent. A GA should be tuned in its coding and genetic operators for each problem
it is applied to. More detailed information on the genetic algorithm can be found in chapter 3.

Different implementations of optimisation algorithms in general and genetic algorithms in
particular are discussed in chapter 4. The optimisation algorithms of Matlab are looked at and
implementations of several GAs are discussed.

Any algorithm should be validated to learn what can be expected from this algorithm. The
test functions should be chosen carefully. They should test all aspects of the algorithm and all
possible difficulties that may rise from the type of optimisation problem the algorithm will have
to optimise. In Chapter 5 a genetic algorithm is validated.

When the algorithm works properly, some testing is required to find the right settings for the
parameters of the algorithm. With a genetic algorithm such parameters could be, for example,
the size of the population and the number of generations. In chapter 6 some test functions are
presented and discussed.

Once validated and tuned, the genetic algorithm can be used for real optimisation problems.
A constrained multiobjective optimisation problem searching for the optimal parameter values
for a Runge Kutta time discretisation scheme is presented in chapter 7.

In chapter 8 multiobjective design optimisation of the aerodynamic properties of an airfoil
is presented. CFD calculations are used for the evaluation of these aerodynamic properties.
This optimisation makes use of the parallel properties of a genetic algorithm. In this chapter
also some suggestions are made on how to continue with multidisciplinary design optimisation
problems.

Finally, conclusions and recommendations are given in chapter 9.

8

Chapter 2

Design Optimisation

When designing a product, numerical simulations can help with the search for the best design
in the space of all possible designs. During this process, not only the requirements should
be met, but also some of the properties of the product should be optimised. Optimisation
algorithms can be used to do the latter job. The properties that are to be optimised should
be formulated in objectives and the requirements should be formulated as constraints, which
most optimisation algorithms can handle. The fitness of a solution can be calculated using the
objectives. Each objective supplies an separate fitness value for a solution. The task is to find
an optimisation algorithm which is the best to use in a specific design optimisation problem.
There are many different optimisation algorithms. Many articles deal with comparing different
algorithms (see [13] and [17]). When searching for the ideal optimisation algorithm, the "No free
lunch" theorem will come up: There simply is no such thing as the ideal optimisation algorithm
for all optimisation problems. With each new problem it should be checked which algorithm is
best to use. There is however an algorithm that in many cases will come to the desired result.
This is the genetic algorithm (GA). A GA can be very inefficient when used in an inappropriate
optimisation problem, but in time it will often lead to the right answers. Advantage of the GA
is that no knowledge is needed of the design space in which the optimal solution is searched
for. The design space is the feasible region, i.e. with solutions which satisfy the constraints,
within the parameter space. The design space can, for example, be convex or discontinuous, the
functions that are to be optimised do not have to be smooth. A GA can cope with all these
things. The GA is further discussed in chapter 3.

So in design optimisation problems one or more objectives have to be optimised. This can
be achieved in different ways. If there is only one objective to optimise, the optimisation is
called single objective optimisation (SOO). A problem with more than one objective to optimise
can be treated as a multiple objective optimisation problem or as a multiobjective optimisation
(MOO). A multiple objective optimisation problem is a problem in which all the objectives are
combined into a single objective, for example by a weighted sum. With MOO the different
objectives are all optimised simultaneously.

2.1 Single and multiple objective optimisation

In SOO the solution of the optimisation is the best value (maximum or minimum) of the as-
sumed well-defined objective, i.e. a cost function or utility. There are different optimisation
strategies to find such a optimum. Some examples are: parametric optimisation, unconstrained

9

global
optimum

Figure 2.1: A gradient based method will not find the global optimum from many initial points.

or constrained optimisation and least squares optimisation. Often SOO algorithms are gradient-
based methods (GM). This works for optimisation problems with only one local and therefore
one global optimum. But if there are local optima which are different from the global optimum
a gradient-based optimisation method could get stuck in a local optimum and thus will not find
the global optimum. An example of such an objective is given in figure 2.1.

With multiple objective optimisation, the solution of the optimisation problem still lies in
the optimum of one objective. Examples of multiple objective optimisation are weighed sum
methods and the multiple fi concept [16]. This last method is a concept for formulating a MOO

as a SOO and hence makes it into a multiple objective optimisation.

2.2 Multiobjective optimisation
The simultaneous optimisation of multiple, possibly competing, objectives deviates from single
objective optimisation because there is no single, perfect solution. Instead, multiobjective op-
timisation problems tend to be characterised by a family of alternative solutions which must
be considered equivalent in the absence of information concerning the relevance of each objec-
tive relative to the others. Multiple solutions arise even in the simplest non-trivial case of two
competing objectives, where both are unimodal and convex functions of the decision variables
[6].

Thus for MOO a different definition of optimality is needed, one that respects the integrity
of all the separate objectives. The concept of Pareto optimality helps defining such optimal
solutions in a rational way.

10

local
optimum

Definition 2.2.1 Pareto Optimality A solution is called non-dominated if there is no solution
which is better on at least one objective and no worse on all the other objectives.

f2
P4

.P2

P1

P3
.P5

fl

Figure 2.2: Pareto optimality.

So an individual is non-dominated if all the other solutions have at least one objective for
which the solution is worse. In figure 2.2 the fitness values of some solutions of a minimisation
problem have been plotted. Solution P1 dominates the solution P2. P1 is dominated by solution
P3 and is equivalent to the solutions P3 and P4.

All Pareto optimal points found by the optimisation plotted in the objectives space together
form the Pareto front. The real Pareto front is the front of analytical non-dominated points of
the optimisation problem. The Pareto front is the front as it is reached with the optimisation,
and is formed by just the non-dominated points found with that optimisation. From this front
a single non-dominated solution can eventually be chosen as the optimal solution, representing
the best design. By searching for the entire Pareto front in the optimisation instead for the one
optimal solution that will in the end become the design used, the moment of decision making
is postponed until after the optimisation. This is useful because of several reasons, e.g. before
the optimisation it is not known what the shape of the Pareto front will be and were it will be
positioned in the objectives space. After the optimisation this information is known and a final
decision can be made.

Ranking based on the definition of Pareto optimality of a set of solutions works as follows:
First assign all the non-dominated solutions rank 1, then remove them from the set. The non-
dominated solutions from this smaller set are assigned rank 2. Continue this procedure until
there are no more individuals left in the set. In figure 2.2 solution P5 is assigned rank 1, solutions
P1, P3 and P4 are assigned rank 2 and solution P2 has rank 3.

For most optimisation algorithms it is necessary to keep track of the dominated solutions,
the solutions with rank> 1, to find better solutions (see chapter 3). Therefor a rank is assigned
to them as well. The Pareto front is visualised by a plot in the objective space of the objectives
of all the individuals of the set of all solutions with rank 1. From this Pareto front, it is up to
the designer to choose the best design. This could be done with the use of yet another objective
or based on experiences of the designer.

11

2.3 Some optimisation algorithms

Once a good method of comparing the fitness values of designs with each other is established,
the search for a suitable optimisation algorithm can begin. Some optimisation algorithms will
be mentioned here, with a short explanation of the working of these algorithms.

Random search is a simple method. It explores the search space by randomly selecting
solutions and evaluating their fitness. This strategy is rarely used by itself in optimisation
problems. In testing however it can be useful to compare other algorithms with random search.
Any optimisation algorithm should at least perform better than random search, otherwise the
trouble of implementing this algorithm can be saved by using random search.

In gradient-based methods the design is updated iteratively in the direction of the steepest
ascent from the initial design (the hill climbing strategy). This only works well if the initial
point lies in the neighbourhood of a global optimum, provided that the gradient is well defined.
Therefore, the design optimisation should be started with various initial points to determine if
a consistent optimum can be obtained with reasonable assurance that this is a global optimum.

Simulated annealing (SA) is an algorithm based on the analogy between the simulation of
the annealing of solids and the problem of solving large combinatorial optimisation problems.
Basically, in this method, a design is replaced if a randomly disturbed version of this design is
better. So far this strategy is still hill climbing and could end up with local extrema as easily as
GM does. But SA also accepts a poorer design with certain probability related to the Boltzman
distribution under the specified annealing schedule. This probability declines with time. In the
analogy the probability to stay in a particular solution depends directly on the energy of the
system and on its temperature. This probability is formally given by Gibbs' law: p = e,
where E stands for the energy, k is the Boltzman constant and T is the temperature. With SA,
the energy is given by the difference of the fitness function between the new and old solution
and the decrease of the temperature is related to the increasing of the number of generations

f(y)—f(z)
passed. So the new solution is retained with probability: p = e kt where t stands for
the time passed. Therefore, there is a corresponding chance for the design to get out of a local
extreme in favour of finding a better, more global one.

These optimisation techniques are difficult to extend to the true multiobjective case, because
they were not designed with multiple solutions in mind. In practice, multiobjective problems
have to be re-formulated as single objective problems prior to optimisation leading to the pro-
duction of a single solution per run of the optimiser [6].

Evolutionary algorithms are well-suited to multiobjective optimisation. Like simulated an-
nealing algorithms they are based on nature. Multiple individuals can search for multiple so-
lutions in parallel. The ability to handle complex problems, involving features such as dis-
continuities, multi-modality, disjunct feasible spaces and noisy function evaluations, reinforces
the potential effectiveness of EAs in multiobjective search and optimisation. This is perhaps a
problem area where Evolutionary Computation really distinguishes itself from its competitors
[6].

The genetic algorithm is an evolutionary algorithm. The algorithm starts with a random
population of designs, the individuals. With reproduction mechanisms this population evolves
generation after generation to a final population that contains individuals with improved fitness
values. This algorithm is further described in chapter 3.

Hybrid algorithms are combinations mostly of a global search algorithm and local optimisa-
tion algorithms. This works well, especially if some knowledge on the search space is present.

12

In that case the hybrid algorithm exploits the global perspective of, for example, a GA and the
convergence of the problem-specific technique, for example the hill climbing technique.

2.4 Design optimisation
Design optimisation problems often deal with multidisciplinary objectives. For example, when
designing a wing the lift produced by this wing as well as the strength of the wing should be
considered. These are two objectives from two different disciplines for which it is not obvious
how to splice them into a single objective with weights to get a multiple objective optimisation
problem. Hence an algorithm for MOO should be used. This leads to multidisciplinary multiob-
jective optimisation (MDMOO). Because of this multiobjective character of MDMOO, this type
of problems need optimisation algorithms that are developed with multiple solutions in mind,
as is discussed in section 2.2.

In design optimisation involving CFD analysis, the objectives depend on CFD results. Con-
sequently, the objectives are computationally expensive to evaluate. In the case of GAs, the
computational costs are proportional to the number of individuals and the number of genera-
tions.

When dealing with a design optimisation problem, constraints may provide restrictions to
the search space. There are many ways to handle constraints. In chapter 7 an example is given
of an optimisation problem with a single constraint, the Runge-Kutta problem.

2.5 The choice

Three properties of the GA make the GA a suitable algorithm for multidisciplinary design
optimisation. These properties are its ability of finding a Pareto front, the way it can handle
MDMOO with constraints and its flexibility in the type of search space in which it can operate.
Papers on this subject (see [13]) suggest the same choice and show that a GA is well capable of
handling MOO.

An optimisation run with a GA needs population size x number of generations objective eval-
uations. This number of evaluations for a specific optimisation problem to get near the Pareto
front could get large. When, for example, CFD calculations are necessary for the calculation
of the fitness of the individuals optimisation runs can get computationally expensive and time
consuming. However, the parallelisation possibilities of GAs may bring some improvement in
this respect.

13

14

Chapter 3

Genetic Algorithms

3.1 Key aspects of genetic algorithms
GAs are directly derived from the working of natural evolution. First some terminology derived
from biology used in evolutionary computation is introduced. A population consists of a number
of individuals. A chromosome is the set of all the genes of a specific individual. Chromosomes
are often used as a synonym for individuals. The genes code the characteristics of an individual.
A gene is made up of several alleles and these alleles are the design parameters of the design
represented by the individual. The gene pooi is the set of all alleles present in a population.
The diversity of the individuals in the population is directly determined by the size of the gene
pool.

gene 1 gene p
Chromosome A: a1 a2 a3 a4 a5 ... am_i am, a, E (gene pool)2

gene 2

Figure 3.1: A chromosome is an array of m alleles.

The GA deals with one generation of a population at a time. Designing a chromosome in
such a way that all possible designs can be represented by its alleles, is the first, but certainly
not the most straightforward part of developing a GA. Secondly the objectives expressing the
desired properties of the design must be defined. Finally the set of reproduction operators that
work on the alleles and genes of the individual must be determined.

With the objectives the fitness value per objective of an individual, i.e. a chromosome
consisting of alleles, can be calculated. With these fitness values the rank of an individual with
respect to the current population can be determined.

fitnessi Pareto
objectives optimality

Chromosome = ... rank
fitness,,,

In a GA a random initial population is generated and the fitness values and rank of the
individuals are calculated. The evolution consists of a fixed number of generations. The first step
of each generation consists in selecting individuals to be parents in the reproduction procedures.
A selection procedure can have criteria based on, for example, the fitness values or the rank of

15

an individual. For reproduction different types of recombination and mutation operators can be
used. After reproduction the fitness values of the new individuals, the children, are evaluated.
Depending on the fitness values of parents and children it is decided which parents and children
will go into the next generation.

The selection mechanism compares the individuals in the population with each other. For
SOO and multiple objective optimisation comparing individuals on their fitness is a straight-
forward job. With MOO this comparison is done with the help of ranking based on some kind
of definition of optimality, e.g. the frequently used Pareto optimality mentioned in section 2.2.
The selection mechanism selects parents from the population and determines which individuals
should be recombined with each other. There are many different selection methods to use. The
roulette wheel selection is a commonly used selection method. With this method each individual
is selected as a parent with a chance related to the fitness or rank of the individual (see [13]).
Other selection methods will be mentioned later in this chapter.

Recombination is a key operator for natural evolution. The most common form of recombi-
nation is one-point crossover. In a crossover, two chromosomes are each cut at one point and
the parts are spliced.

parent A al a2 a3 a4 a5 child 1 ai a2 b3 b4 b5
crossovercrossover point

parent B b1 b3 b4 b5 child2 b1 t a3 a4 a5

Figure 3.2: Crossover.

There are many variations on this one-point crossover, some of which are mentioned later on
in this chapter. The effect of recombination is very important because it allows characteristics
from two different parents to be combined.

Mutation is an other way to get new chromosomes. It is composed of randomly changing the
value of one or more alleles. It is not a very common operator in natural evolution, but still
a very powerful operator. Mutation has two important roles in simple GAs. One is to provide
the capability to effectively refine sub-optimal solutions. Another is to maintain population
diversity by re-introducing in the population the alleles lost by the repeated application of
crossover. With mutation the population diversity can be very well preserved. Because of the
random introduction of new alleles the refining capabilities of a mutation operator may not be
very good for every class of problems. In that case a mutation operator could be more effective
when the frequency of the mutation decreases with the increasing number of evolved generations.
This way, individuals which have evolved towards good solutions do not loose their favourable
properties through mutation.

3.2 Basic ingredients of GAs for multiobjective optimisation

The main aspects of a simple GA are the coding of the individuals, a selection method, a
crossover and mutation operator and a ranking procedure. All these aspects should be more
or less adapted to the specific optimisation problem. Some examples of different methods and
operators are listed in the next subsection.

16

3.2.1 Thning the simple genetic algorithm
1. Coding: The user should select the smallest alphabet for coding that permits a natural

expression of the problem [10]. The most common types of coding are binary coding of
the alleles and floating point coding of the alleles. But any type of coding with a specific
alphabet can be used if this will work better with the optimisation problem.

Binary coding is more or less derived from natures alleles, which can have only four dif-
ferent values (G,T,C and A). Binary chromosomes are generally longer than floating point
chromosomes, because genes, which are groups of several alleles, are used to represent
one parameter (see figure 3.4). These genes are translated into floating points using de-
code functions. With the floating point coding used in this report one allele represents
one parameter. Because binary chromosomes are long, building blocks are more likely to
arise with this coding. Building blocks are alleles close to each other, likely to still lie
close together after crossover (see figure 3.3). These groups of alleles can represent certain
favourable properties of the design. The building block hypothesis states that the exis-

parent A 110001001110111011 child 1 11001111029!0 111

crossover
crer Building block

parent B 00101111090 111 child 2 001001001110111011

Building block

Figure 3.3: Building blocks.

tence of these blocks in a chromosome does indeed lead to better performance [10]. The
bitwise recombination operators are designed for binary chromosomes and not for floating
point chromosomes. By assigning different number of alleles for different parameters, the
chance on crossover and mutation can be influenced per variable, because longer genes
have bigger chance to hold the allele that is selected for mutation or crossover point then
smaller genes.

With floating point parameters the floating point representation is intuitively closer to
the problem space. Therefore it is easier to design meaningful recombination operators
and other operators incorporating problem specific constraints. Simple analyses seem to
suggest that enhanced scheme processing is obtained by using alphabets of low cardinality.
Empirical findings however show that real, or floating point, coding has worked well in
a number of practical problems. This means that the type of coding appropriate for an
optimisation depends on the problem at hand.

property 2

floating point coding: 0.1 0.7

property 1 property 3
gene 2

decoding
binary coding (of property 2): 001 —+ 0.6 0.1 0.7

gene 1 gene 3

Figure 3.4: Floating point and binary coding.

2. Selection: The roulette wheel selection was already mentioned in section 3.1. Besides

17

the fitness values and the rank of individuals, selection decisions can also be made on
the basis of constraint violations [18]. The two-branch tournament does not require the
non-dominated ranking approach nor additional fitness manipulations. It is organised
so that designs compete on one or two objectives. As the name implies the selection
procedure is divided into two branches, both branches select half of the parents needed
for recombination. In one branch of the tournament the selection is based on the first
objective; the other branch evaluates individuals on the second objective. Each branch
can select at most one copy of an individual as a parent ([3],[13]). The binary tournament
selection is another selection method which will be used in chapter 4 and explained in
detail in appendix B.

branch 1: select strings x1 and x2 —÷ fi (xi) <fi (X2)? —* x1 survives, x2 discarded
else —3 x2 survives, x1 discarded

branch 2: select strings x1 and x2 — 12(xl) <f2(x2)? — x1 survives, x2 discarded
else —3 x2 survives, x1 discarded

Repeat until enough parents are selected.

Figure 3.5: Scheme of two-branch selection.

3. Crossover: As mentioned before, one-point crossover uses one crossover site (see figure
3.2). A multi-point crossover is a variation of this operator and uses multiple crossover
sites. Another alternative to the standard one point crossover is the extended intermediate
crossover (EIR) [20].

4. Mutation: This is an operator that consists in randomly changing part of the chromosome.
There are many ways to do this. When using binary coding, mutation can be performed
on a bit or word level, i.e., directly on the bits of the binary coding or on the integer
number in the interval [0, 2 — 1], n being the number of bits adopted for each variable.
In the latter case, the mutation operates on whole genes instead of alleles.

5. Ranking: With non-dominated sorting [7] the individuals are assigned a rank equal to the
number of individuals which dominate it. This rank is easy to adjust when individuals
enter or leave the population. Pareto ranking is used most often. With this method
non-dominated solutions within the feasible region in the objectives space give the Pareto-
optimal set. This ranking is described in more detail in section 2.2.

3.2.2 Improvements to a simple genetic algorithm

A simple GA needs a lot of generations (order 100) or a large population (order 100) to get in the
neighbourhood of the real Pareto front. Therefore, the efficiency of the GA should be improved
(item 1). A GA is efficient if the there are not many generations necessary for a population to
converge towards the real Pareto front. The premature convergence of the population to part
of the Pareto front or local optima is called genetic drift. This causes a loss of diversity of the
gene pool and is a bad influence to the distribution of the points on the found Pareto front, so
it should be avoided (item 2). The individuals of a population which are non-dominated could
be used to spread the good properties they hold through the elitism mechanism (item 3).The
GA could be combined with other optimisation methods to get the best of both methods (item

18

4). A good way to deal with constraints should be found (item 5). And the parallel properties
of the GA should be exploited (item 6).

Some points of attention on improvements to a simple genetic algorithm are listed below.

1. Efficiency: The two-branch tournament GA mentioned in subsection 3.2.1 makes efficient
use of the GAs population-based search. The computational effort of generating an ap-
proximation to the Pareto front becomes comparable to that of traditional approaches.
Using the selection operator instead of the object function to perform multiobjective de-
sign is the significant difference of this approach. ARange GA [1] is a new genetic search
algorithm which adapts the searching range according to the optimisation situation and
makes it possible to obtain highly accurate results effectively.

2. Actions against genetic drift: Fitness sharing [7] lets individuals that are similar to one
another mutually decrease each other's fitness by competing for the same resources. In
tournament slot sharing [15] the genotypic distance between the individuals influences its
probability to enter a tournament in the same way as with the roulette wheel selection. A
replacement rule for reproduction procedures can be set: parents are replaced only when
the rank of one of their offspring is no worse than the best rank of the parents. In the
algorithm TSPspea mentioned in chapter 4 this fitness sharing is implemented in the form
of a clustering function (see appendix B). In the distributed GA (DGA) [5] a subdivision of
the population into semi-isolated subpopulations (demes) is used. This helps to maintain
diversity of the gene pool. To avoid the premature convergence of a population on an
island, an agent can be added to supervise the operation of the parallel GA.

3. Elitism mechanism: Another method to improve the convergence rate of the algorithms is
the elitism mechanism. This mechanism can consist of keeping a separate subpopulation
with copies of the best individuals from the population. This elite group can be placed in
the next generation, randomly replacing children. Another form of this mechanism is to
copy all the individuals from the old generation which would be non-dominated in the new
generation to the new one. Or an assigned percentage of parents can be selected from this
elite group to take part of the reproduction procedures. In chapter 4 the non-dominated
set in the algorithm TSPspea functions as a group of elite-individuals.

4. Hybrid schemes: The most favourable capabilities of GAs might be favourably exploited
through a proper hybrid scheme, combining them with an optimisation technique of differ-
ent nature, so that the good features of both methods can be utilised. This optimisation
technique should be more efficient in locally improving the fitness values then a GA. For
example, a gradient-based optimisation routine, such as the hill climbing strategy, could
function as such a refinement of the GA.

5. Constraint handling: One way to think of constraints is as high-priority or hard objectives,
which must be jointly satisfied before the optimisation of the remaining, soft objectives
take place. Each solution that does not satisfy a constraint is rejected. An example of
such constraint handling is given in chapter 7. Another way is to combine the constraints
with the objectives through a penalty function. The penalty functions give a positive con-
tribution to the fitness value when the constraints are satisfied and a negative contribution
when the constraints are violated. Similar penalty functions can be combined with the
rank of an individual.

19

1

6. Parallelisation: The GA is a highly parallelisable process. Nearly all operations on the
individuals of one generation are implicitly parallel. A parallel implementation based on
the master-slave principle can be used: the master calculates the genetic operations and
the slaves compute the fitness values. The amount of communication necessary is rather
small. An example of such a parallel implementation is presented in chapter 8. The GA
is well suited for implementation on a network of workstations.

Some algorithms which exploit this possibility to maintain diversity of genes in the popu-
lation, but were not used in this report, are the distributed GA, the island model and the
stepping stones model. With the distributed GA (DGA), mentioned earlier with item 2,
the only communication required between processors with this algorithm, involves migra-
tion from one neighbouring deme to another, at intervals of several generations. Similar
are the island model and the stepping stones model [11]. In the island model all the demes
are connected with each other, in the stepping stones model every deme is only connected
with two neighbours (the demes lie in a circle). Migration can only take place between
demes that are connected with each other.

In chapter 4 several optimisation algorithms will be discussed. Some of the improvements
mentioned here are incorporated in those optimisation algorithms. The algorithm TSPspea,
which is used with optimisation problems in chapter 5, 6, 7 and 8 also uses some of these
improvements (see appendix B).

20

Chapter 4

Implementations of optimisation
algorithms

With the theoretical knowledge on optimisation algorithms gathered in chapter 2 and 3 in
mind some implementations of optimisation algorithms will be evaluated. The optimisation
algorithms of Matlab can give a feeling for optimisation problems and methods to solve these
problems. Through the Internet some existing GAs can be found, which can be altered to fit
the optimisation problem at hand.

4.1 Gradient-based optimisation algorithms
The search for a suitable optimisation algorithm was first started by evaluating the optimisation
toolbox from Matlab. In this toolbox a multiobjective optimisation algorithm is present as well,
which makes use of a gradient based method. An optimisation method should guide the search
towards the optimal solution. In case of multiobjective optimisation the method should guide
the search towards the Pareto front.

There are several SOO algorithms in the Matlab optimisation toolbox: constrained and
unconstrained, linear and nonlinear programming algorithms. These algorithms were tested
with the function: minxERy = a * sin() + c * x, to see if they were able to get out of local
minima. If a method gets stuck in local minima this means that the true optimal solution will
not be found. Some of the methods got stuck in local minima (FMinBnd, FMinSearch) and
some were able to look a bit further (FMinCon, FMiniMax, FMinUnc). The Goal Attainment
method of Gembicki[9] implemented in the function fgoalattain from this toolbox is a MOO
algorithm. In this constrained nonlinear minimisation method the objectives (F,) are formulated
as design goals (F). The problem formulation allows the objectives to be under- or over-
achieved enabling the designer to be relatively imprecise about the initial design goals. The
relative degree of under- or over-achievement of the goals is controlled by a vector of weighting
coefficients, w = {w1, W2, ..., wm}, and is expressed as a standard optimisation problem using
the following formulation:

minimise y, with f the design space, such that F,(x) — wy � F, j = 1, ..,m
'yE 1Z,X E Il

It was found that the results of an optimisation with this method are strongly dependant

21

on the initial point. The method can get stuck in the first local optimum it encounters when
using a different initial point. So beforehand it is impossible to tell how close the result of the
optimisation will be to the global minimum. Therefore, it is not a very good method.

4.2 Implementations of multiobjective GA

The next step is to optimise a multiobjective problem with a genetic algorithm. Thus an im-
plementation of a Multiobjective Genetic Algorithm (MOGA) is needed. Time can be saved by
using an existing implementation of a GA, instead of implementing a new algorithm. Alterna-
tively there are many implementations of simple GAs available on the Internet. The problem is
to find the implementation that works best for the optimisation problem to be solved. Because
suitable implementations of MOGAs are not easy to find on the Internet, an attempt is made
to turn a simple GA in a MOGA.

4.2.1 A Genetic algorithm in Matlab

The first choice was trying to extend the SOGA genetic .m, implemented in Matlab, to a MOGA.
To make genetic .m a MOGA the following principles had to be built in the SOGA:

• Ranking: Non-dominated sorting was used as can be found in papers of Fonseca and
Flemming [7]. This ranking principle also influences the selection method which takes
place in the reproduction part of the algorithm.

• Selection: The roulette-wheel selection was chosen.

• Elitism: The determination of the best individuals of the population so far and the preser-
vation of these individuals in a separate group, the elite group. This method can be found
in the PhD thesis of Zitzler ([21]).

• Clustering: A method to select and delete individuals which show little genetic diversity,
because they are close to other individuals in the objective space. This method can also
be found in [21].

• Distance: A way to determine the distance between two individuals in the objective space.

See chapter 3 for more information on these principles. Genetic . m uses a binary representation
of the individuals. To calculate the objectives the binary string has to be decoded to floating
points.

In [21] some analytical test functions are used. In chapter 5 these functions are listed and
in appendix A a background on these functions is given. These functions were used to test the
extended version of genetic .m. This algorithm gave some unsatisfactory results. It cannot find
a uniform distribution of points on the Pareto front. Furthermore it shows different points in
the Pareto set with the same value for one objective but a different value for the other objective,
see figure 4.1. This is in contradiction with the definition of Pareto optimality, since some of the
points from this Pareto front are clearly dominated. An extended version of genetic .m might
be able to give good results, but the implementation is not flawless. It can be concluded that
there is too much risk and effort in extending this SOGA to a MOGA.

22

non-doninated points toi,id 10 testlunction I with genetic.m

31 I

3 I
CO

26

'1 x we non-n*Iwed pofle
Ioisid alte(geneMiois

I 0 02 03 00 01 OS 07—I
Figure 4.1: The results from test function 1 where x represents the Pareto set found by
genetic .m

4.2.2 A genetic algorithm library

The next attempt concerned a GA software library developed at MIT [8]. This library, GAlib,
is also based on single objective genetic algorithms. The possibilities of changing this SOGA
library to a MOGA library were thoroughly investigated. It turned out there is no easy way to
preserve the multiple fitness values. Furthermore, because of the structure of this library and
the close relation between all functions, all changes made to this library, have effect on many
other parts of the library. Extending GAlib to a MOGA library will therefore be very difficult
and time consuming.

4.2.3 Strength Pareto Evolutionary Algorithm
In another search on the Internet for a MOGA, a program skeleton for a multiobjective genetic
algorithm was found. This MOGA is called Strength Pareto Evolutionary Algorithm (SPEA).
With help from E. Zitzler, the author of this algorithm, this skeleton was filled to a MOGA,
called TSPspea. This is an algorithm meant to optimise a two-objective traveling salesman
problem.

SPEA uses a mixture of established and new techniques in order to approximate the Pareto-
optimal set [21]. Similarly to other MOGAs, it

• stores those individuals externally that represent an non-dominated front among all solu-
tions considered so far;

• uses the concept of Pareto dominance in order to assign scalar fitness values to individuals;
and

• performs clustering to reduce the number of individuals externally stored without destroy-
ing the characteristics of the Pareto front.

SPEA is unique in four respects:

• It combines the above three techniques into a single algorithm;

23

• The fitness of a population member is determined only from the individuals stored in the
external set; whether individuals in the population dominate each other is irrelevant;

• All individuals in the external set participate in selection;

• A new Pareto-based niching method is provided in order to preserve diversity in the pop-
ulation. A niching method like fitness sharing helps to maintain diversity of the genes in
the population.

First an initial population and an empty external set are generated. Then the external set
(P) is updated. P is filled with the non-dominated points from the current population (P) and
points that are no longer non-dominated are removed from P. A clustering method keeps the
number of individuals in this set small. Next the fitness values of the individuals of P and t'
are calculated. This is followed by selection and recombination, after which the external set is
again updated to the new current population, and so forth. The algorithm stops when a fixed
number of generations, determined by the user, have evolved.

More information on SPEA can be found in [21].

4.3 TSPspea

The TSPspea is an algorithm orientated on a two-objective traveling sales man problem (TSP).
To get familiar with the algorithm and to validate the code, first some traveling salesman
problems are optimised. The results are listed in chapter 5.

4.3.1 Traveling Salesman Problem

The traveling salesman problem is a single objective optimisation problem (SOP). It is defined
by a number 1 of cities and an 1 x 1 matrix C = (cj,j) which gives for each ordered pair (i,j) of
cities the distance Cj,3 from city i to city j. The optimisation goal is to find the shortest route for
which each city is entered and left exactly once. This can be turned in a multiobjective problem
(MOP) by adding an arbitrary number of distance matrices. Formally, given 1 cities and a set
{C1, C2, ..., Ck} of I x I matrices with C,, = (ct), minimise f(ir) = (fi(ir),f2(ir) fk(lr)) with

1—1

:.(' — 'c Ij,7rj — iL, C,j),w(j+l); -r C(j),.(l)
j=1

and where ir is a permutation over the set {1, ..., l}. Altogether, three problem instances were
considered with 100, 250 and 500 cities, each having two objectives. The distance matrices were
generated at random, with the number of cities as seed. A random number in the interval [1,100]
was assigned to each c.

4.3.2 The algorithm

TSPspea is a MOO that is designed to optimise a TSP which has been made into a multiobjective
problem. TSPspea works according to the same principles as SPEA, but because the algorithm
is orientated on the TSP some operators are specific for TSPspea. An evolution can be described
in 7 steps.

24

1. Two pseudo random distance matrices of size N x N, with N the number of cities, are
generated. It uses N as a seed, so each run with N cities uses the same distance matrices.
Because of this the results of different runs with the same number of cities can be compared.

2. A pseudo random initial population of individuals which represent feasible solutions is
generated. Each individual is a permutation of all town numbers and represents a route
to pass all the cities in both distance matrices exactly once.

3. All the non-dominated points so far are put in the external set called NondominatedSet.
The two objectives are calculated for each individual, i.e. the total distances of the route
for both distance matrices.

4. For selection at most MaxParetoSize non-dominated individuals from the Nondominat-
edSet are put in the ParetoSet using a clustering method. The set MatingPool is filled
with parents selected from the union of the population and the ParetoSet. As selection
method binary tournament selection is used. Two individuals from the union set of the
ParetoSet and the current generation are selected for a tournament. The winner from this
rank-based tournament will become a parent.

5. The new population will be filled with the new children if crossover has occurred or with
the original parents from the set MatingPool if crossover did not take place.

6. This new population is subjected to mutation and so the new generation of individuals is
formed which can evolve starting again at step 3.

7. The algorithm stops after an user-determined number of generations.

The output consists of a file with the initial population, a file with all individuals of all the
generations and a file with the NondominatedSet. The individuals in this set are the non-
dominated individuals from all generations.

25

26

Chapter 5

Validations of SPEA

5.1 Validation of TSPspea
Before TSPspea can be changed to be used on other optimisation problems the algorithm has to
be validated. As test problems the TSP for 100, 250 and 500 cities are optimised. Each problem
is optimised several times with different seeds. This seed determines all the pseudo random
numbers used in the evolution of the population, except for the generation of the distance
matrices where the number of cities is used as a seed. This means the results of runs with
different seed can be compared. Running the same problem with several seeds shows whether
the problem is very sensitive to the seed. If all seeds render similar Pareto fronts, this is not the
case. A problem which is very sensitive to the seed should always be optimised several times
with different seeds to make sure the resulting Pareto front lies close to the real Pareto front.

The test problems are carried out using the following parameter settings:

Number of generations T 500
Population size N equal to 1 (number of cities)
Crossover rate Pc 0.8
Mutation rate Pm : 0.1

A population size of . N is used with an external set size of N.

5.1.1 Results

Figure 5.1 contains the results for all 3 problems. All optimisations of the three problems result
in good Pareto fronts. This means that the results are similar to the results in [21] on the TSPs
and thus the TSPspea used is validated. An extra plot of some more Pareto fronts found for the
TSP with 250 cities using different seeds, shows that the optimisation of the TSP highly depends
on the seed used. This means that TSPs have to be optimised several times with different seed
to make sure that the real Pareto front, as it can be found in [21], is reached.

This validated TSPspea can be adapted to make it applicable to other kind of problems which
require other chromosomes and reproduction operators.

27

3200

3000

2800
0

p2600
Is

2400

2.3

0

0

100 cities x 1o4 250 cities, 5 runs

t w
2000 2500 3000 3500 4000

distance for first TSP

2.5

2.4
C0

(I)

0
2.2

C.,
C
IS

. 21V

4
x 10 500 cities

2 2.1 2.2 2.3
distance for first TSP

4500

2.4 2.5
4

x 10

Figure 5.1: TSP for 100, 250 and 500 cities.
results rendered with different seeds.

1.3

a-
U)I-

J1
09V

1.2

1.1

0.9

1._.

a-1.2

. 09V

1 1.1

distance for first TSP

1
50 cities, 2 very different results

o.a —
7000

1.2
4

x 10

8000 9000 10000 11000 12000

distance for first TSP

The different symbols (+, . ,D, *,) represent the

5.2 Validation of FPspea
FPspea, floating point Spea, is an altered version of TSPspea. It uses floating point coding
for the chromosomes. Six analytical test functions are used to validate FPspea. These test
functions are mentioned in [211 and in the work of Deb [4]. Each test function emphasises a
different property which could give a MOGA difficulties to properly reach the Pareto front. By
using a specific test function as optimisation problem, a MOGA can be tested on its ability to
deal with that specific difficulty. Background on these test functions and properties is given in
Appendix A. All test functions used are structured in the same manner and consist of three
functions f1,g,h [4]:

= (fl(x1),f2(x))
= g(x2,..x).h(fI(xI),g(x2,...,xfl))

x =

The function f' is a function of the first decision variable only, g is a function of the remaining
n—i variables and h is a function of f and g. The test functions differ in these three functions as

28

+?tb •*

+

+
D

Minimise
subject to
where

t(x)
12(x)

well as in the number of variables n and in the values the variables may take. For these analytical
test functions, the analytical Pareto optimal solutions can be calculated, so the position and
shape of the real Pareto front is known for these test functions.

Test function t1 has a convex Pareto-optimal front:

fi(xi) = x1

g(x2,...xn) = 1+i>'_2x,
h(fi,g) = 1—%/

where n = 30 and x1 E [0,1].
Test function t2 is the non-convex counterpart to t1:

fi(xi) = Xi
g(x2,...xn) = 1+-i>_2x1
h(fi,g) =

where n = 30 and x E [0,1].
Test function t3 represents the discreteness features: its Pareto-optimal front consists of

several non-contiguous convex parts:

fi(xi) = X1

g(x2,...xn) 1+2xj
h(fi,g) = i—Ji—sin(i0irfi)

where n = 30 and x1 E [0, 1].
Test function t4 contains 21 local Pareto-optimal sets and therefore tests for the EAs

ability to deal with multi-modality:

fi(xi) =
= 1 + 10(n —1) + E2(x? —10 cos(4irx))

h(fi,g) = i—V
wheren=10,xlE[0,1]andx2,...,xE[—5,5].

Test function t5 describes a deceptive problem and distinguishes itself from the other test
functions in that x1 represents a binary string:

fi(xi) = 1--u(xi)
= 2v(u(x))

h(fi,g) = *
where u(x) gives the number of ones in the bit vector x1 (unitation),

I 2+u(x1) if u(xj<5
v(u(x1)) =

1 if u(x) = 5

Test function to includes two difficulties caused by the non-uniformity of the objective space:
Firstly, the Pareto-optimal solutions are non-uniformly distributed along the global Pareto front
(the front is biased for solutions were fi(xi) is near one); secondly, near the Pareto-optimal
front the density of the solutions is minimal and away from the front the density of solution is
high:

29

fi(xi) = 1 — e_' (6irxj)
= l+9(=2i)0.25

h(fi,g) = 1_(.)2

where n = 10, x2 [0, 1].

All test problems are carried out using the following parameter settings:

Number of generations T : 250
Population size N : 100
Crossover rate Pc (one-point) : 0.8
Mutation rate Pm (per bit) : 0.01

5.2.1 Implementation of the analytical test functions

A solution in TSPspea is represented by a permutation chromosome. This is a permutation of all
city numbers in the sequence the cities are visited by the salesman. For the optimisation of an-
alytical functions different chromosomes are needed and therefore the recombination operators,
which work on chromosome level, have to be adjusted to these new chromosomes. Two different
chromosome types are used: the floating point chromosome and the binary chromosome.

Floating point chromosome

For optimisation problems with objectives that are functions of floating point numbers, a floating
point chromosome is needed. The floating point chromosome needs recombination operators
different from operators for the permutation chromosome. This chromosome consists of an
array of floating points. With mutation and crossover the sequence of the alleles is no longer
of importance. The crossover operator now simply selects a crossover site and performs a one-
point crossover on that point between the two parents. The mutation selects a mutation site
and gives the concerning allele a new floating point from the correct interval. Pm represents
the probability of mutation to occur per individual. Pm, as mentioned earlier in this section,
represents the probability of mutation to occur per allele of a arbitrary chromosome. With Pm
fixed, Pm depends on the length of the chromosome and the value of Pm.

Binary chromosome

The objectives of test function 5 are functions of binary input. Thus test function 5 requires
individuals represented by a binary chromosome. Some other optimisation problems, which have
objectives that are functions of floating points, still evolve better using binary chromosomes
as representation of the solutions. The reason for this could be that binary recombination
operators work better on this specific problem. To optimise these functions BitSpea, a SPEA
based on binary chromosomes, is needed. This SPEA also needs adjusted bit-level recombination
operators to operate on the binary chromosome.

Furthermore a decode function is needed to translate a chromosome consisting of bits into
a chromosome with floating point alleles for the test functions that have objectives that need
floating points as input. The recombination operators still work on the binary chromosome with
this test functions. Next to the probability of mutation to occur per individual Pm, with binary
coding there is also Pmb1L, which represents the probability of mutation to occur per allele of a

30

chromosome that is already selected to be mutated. Unless mentioned otherwise P is set to
0.01, just as Pm

This decode function takes per variable a fixed number of binary alleles which represent the
range of this variable. These sets of binary alleles can be seen as the genes of the chromosome.

5.2.2 Results

Per test function the results are discussed. The results are compared with the results in [21].
These results give a hint to how close FPspea can get to the real Pareto front. In [21] the same
test functions are used with a SPEA that most likely differs from FPspea. Therefore, the results
in [21] should be similar but do not have to be exactly the same.

Test function 1

Floating point and binary coding give the same results and they are similar to the results shown

in [21] and to the real front (figure 5.2).

lg—— -

100

0S

' .1.
I.'.

0 II 02 01 04 01 OS 07 II 001
Figure 5.2: The Pareto front of test function 1.

Test function 2

Floating point: With this test function the influence of mutation on the performance of
FPspea is revealed.

When Pm is set to 0.1, it takes FPspea 600 generations to get near the Pareto front
instead of the 250 generations used in [21] (figure 5.3). Pm set to 0.01 gives worse results.
This means that mutation is indeed a necessary part of the genetic algorithm. Next is an
optimisation with more-point mutation. This different type of mutation mutates 4 alleles
at random positions each time mutation occurs. This optimisation does not give good
results (as shown in figure 5.3), which is a sign that much mutation will not speed up
the convergence towards the Pareto front. When Pm is set to 0.3 (i.e. Pm6 = 0.01 by
approximation) the optimisation gives the same results as can be found in [21] and lies
very close to the real front (figure 5.4a). With Pm set to 0.5, the results do not improve
much (figure 5.3).

31

Conclusion: Mutation speeds up the algorithm. With a lower value for Pm it takes more
generations to get the same results. Too much mutation, as used in more-point mutation,
will lead to pure random search and thus will slow down the algorithm. Therefore Pm
should not be set too high. Pm set to 0.3 gives the best results. A more extensive study
on the influence of Pm and other parameters of a genetic algorithm is presented in chapter
6.

II

I'

(.4
0

if
0I

0I

01

0 CI 02 03 04 00 08 01 58 00 I

Figure 5.3: Test function 2.

• Binary: Test function 2 ran with binary representation of the chromosome gives almost
exactly the same results as when the test is ran with floating point coding with Pm set to
0.3 (figure 5.4a).

01 02 03 04 01 08 07 0$ 0 I

(a) The results from function 2.

Figure 5.4: Test function 2 (a) and 3 (b).

32

.0
— 0.&.

•o

8

• rest with a rsxe-point ,mAatjon
o reslit alter 600 generations with P07-0 1

resul alter 250 generations with Pw0
0 result aSter 250 generations with P51-0.5

12

00

.o0

0' xftoatitgpointcong

02

1.
'5 0 ltoating poll cog

binary cong
08

'C

Is

102

0'(02 I'S 04 01 O'l 07 00 00—l
(b) The results from function 3.

Test function 3

Floating point and binary coding give the same results, which are similar to the results shown
in [21] and to the real front of this function. With this function Pm was set to 0.3, the value
that turned out to work best for test function 2. This value also results in a good optimisation
of test function 3 (figure 5.4b). The resulting Pareto front looks a bit different than the Pareto
fronts of the previous optimised test functions. This is caused by the discrete features of this
test function, as is mentioned at the begining of section 5.2.

Test function 4

Floating point: The results of this test function look just like the real Pareto-front(figure
5.5a). The results in [21] lie further away from the real front. The differences in the results
can be explained by possible small differences between the algorithms used, originated,
for example, by using different types of coding of the individuals. The Pareto front found
seems totally independent of the seed used, because each run with different seeds results
in a Pareto front which is in the same location. This total independence of the seed is a
sign that this optimisation problem might suffice with significant less generations to get
close to the real Pareto front. Lowering the number of generations shows that for this test
function 20 generations are sufficient to get a good result (figure 5.5b). However, with
only 20 generations in the evolution the evolution is still sensitive to the seed (figure 5.5d).
When using an evolution of 30 generations this problem is solved and the optimisation
results in a Pareto front that is no longer sensitive to the seed (figure 5.5c). This is still a
much shorter evolution than the 250 generations used in [21].

(a) more rtms with 250 generatiOns (b) less generations

05 0S 5ogen
+4Ogen

02 0405051— t — I
(c) 30 generations with different seed (d) 20 generations with different seed

oe 25

106

'II.
0.2 04 01 06 I 0 02 04 06 OS — I— I 1

Figure 5.5: Test function 4, floating point coding.

• Binary: The results from the optimisation with a binary chromosome do not directly lead
to the desired Pareto front. Varying Pm and Pmbt reveals no results from which any logic
can be derived (figure 5.6a). This is caused by the high sensitivity of this problem to the
seed used as shown in figure 5.6b. With these optimisations Pm is set to 1 and Pmbj is set

33

to 0.01, the same values as used in [21], but the seeds differ per optimisation. The resulting
fronts differ greatly from each other. Among the resulting fronts is a front that is very
similar to the one shown in [21]. This means that this test function has to be optimised
several times with different seeds to find a Pareto front close to the real Pareto front. The
best fronts resulting from the optimisations with binary and floating point coding are both
plotted in figure 5.7a.

CI 02 03 04 01 01 07 00 001
(a) Test function 4.

2 4 S $ II 02 4 0$ 0$ 3$ 3$ 24

oecIe I

(b) Test function 5, binary coding.

Figure 5.7: Test function 4 and 5.

34

(a) different values for d P (b) more runs witfI, P = 0.1
m m,bt

02 04 0.6 06
objective 1 objective I

Figure 5.6: Test function 4, binary coding.

• asycooing .Ui4wIc3eresosml2Il
O floating — codng. sinW in the theadcat t,Ool

2 5

0 S

31

02.

Test function 5

• Binary: This test function is only optimised with a binary chromosome because it has
binary objectives. The results were satisfactory and look just like the real front (figure
5.7b).

Test function 6

• Floating point: After 250 generations the Pareto front found by FPspea is not even
close to the real Pareto front and thus gives results worse than shown in [21]. After 500
generations the resulting front is significantly better, so more generations will most likely
result in an even better front (figure 5.8a).

3,

V

32
Th tifterent symbols represent
optknisatione with the sane settings,

result after 250 generations eepl icr the seed aed.
0 result atter 500 generations

21

L.

::

•. e.

°°C13

1,

°
°

I—. o4t,

1 &ee I

(a) Test function 6 with above 250 (b) Many runs with different seeds of test
generations and below 500 generations. function 6.

Figure 5.8: Test function 6 with floating point (a) and with binary coding (b).

• Binary: Binary coding results in a better Pareto front, but still the results are not as good
as the results in [21]. The real front has one end in (0,1) and the other end in (1,0), but it
has about the same shape as the front found in this optimisation. More runs with different
seeds yield about the same results, so this function does not seem to be very dependent
on its initial population (figure 5.8b). An attempt to reach the same Pareto front found
in [21] is made by giving the population 1500 generations to evolve. BitSpea now finds
a Pareto-front similar to the front shown in [21], but with many more Pareto optimal
solutions on it. This is to be expected because with an evolution of 1500 generations the
set of non-dominated individuals has a lot more time to grow (figure 5.9a).

The influence of Pm&t is not very obvious with this function but figure 5.9a shows that
Pmbit set to 0.0025 gives the best results. This setting still does not give the same results
as shown in [21]. It must be concluded that FPspea can not optimise test function 6 to the
fullest with the given parameter settings. With more generations in the evolution however
the optimisation does get close the real Pareto front with both binary and floating point
coding (see figure 5.9b).

35

'4

i 2

O.
0I

02

02 03 04 04 OS 07 OS OS1
(b) Test function 6 with 1500 generations

and binary coding.

Figure 5.9: Test function 6 using binary coding.

5.2.3 Conclusions

Problems encountered with the algorithm were small. The population size should not be chosen
too small and the algorithm should be given enough time (i.e. generations) to evolve to the
Pareto front.

With the binary chromosomes, initial problems were the result from a low mutation rate
Pm. The power of mutation is hereby demonstrated, because with a higher Pm, the results are
better then with a lower Pm. Fm set too high, on the other hand, will lead to random search,
so some experiments may be needed do determine the correct value for Pm. The results can
differ significantly dependent on the coding used for the chromosome. This shows that with
each optimisation problem several codings should be tested, to see which works best with this
specific problem.

Most test functions are highly dependant on the initial population. Because the initial pop-
ulation is determined by the seed used, an optimisation should always be run several times with
different seeds.

The optimisation of test function 6 with FPspea is the only optimisation which does not
give a totally satisfying result. The optimisation of test function 4 with floating point coding
however gives a much better results then shown in [21]. These differences may be due to small
differences in the algorithms used.

Overall, the genetic algorithm works well and can be adapted for other optimisation problems.

36

-U

I
$

• P .00001
n'rn

+ P0,4,,—000l
o P,,,-O.O0l5
star P,,, = 00025

o - 0.0075

S." 0.

*

*

OS

Os

07

0.05

Os

.4

as

02

0I

'S

03 04 01 OS 07 05 011
(a) Test function 6 with different values

for Pmj,jt.

Chapter 6

Strategies for genetic algorithms

Chapter 3 shows that a genetic algorithm has many parameters. When looking at all these
possibilities the question arises whether there may be some general strategies with respect to
some of these parameters applicable to the different types of optimisation problems. To examine
this the analytical functions 1 and 5 as mentioned in chapter 5 will be used as test functions.
The parameters used in these tests are:

• population size (pop),

• size of the Pareto set as used in the SPEA, expressed as part of the population size (ps),

• chance of the event of mutation to take place (Pm),

• chance of the event of crossover to take place (Pa),

• the number of generations in an evolution (yen).

The influences of the variables Pm and gen on some of the test functions are already shown
in chapter 5.

Both test functions are optimised with the following values for the parameters:

pop 10, 100, 200
ps 1/10, 1/4, 2/3
Pm 0.1 and0.5
P 0.5 and 0.8

The choice to use either binary or floating point coding is based on the results found in chapter
5. The coding which suits the specific test function best in that chapter is used.

The results of all the tests are judged for the influences of the parameters in terms of:

• the time needed for SPEA to evolve,

• the distribution of solutions found on the Pareto front,

• the distance of the found Pareto front to the real Pareto front.

These considerations to determine the strategies for the test functions do not suite all practical
applications. Different problems need different strategies, but the test results shown in this
chapter can be used to determine a strategy for the optimisation problem at hand.

37

6.1 Results

With the mutation and crossover parameters Pm and P set to specific values, the population
size, Pareto size and number of generations are varied with both test functions. The right
combination of gen, ps and pop needed for the different values of Pm and P is determined, by
first determining the best values for gen and ps for the different values of pop. From these four
settings the best achieving is selected as the advised strategy for the specific test function.

6.1.1 Test function 1, using floating point coding

The computation time needed for the different evolutions differs per number of generations, size
of the populations and slightly per size of the Pareto sets. It is not significantly influenced by

the settings of Pm and P. With different settings on SGI-02-R5000 workstations the evolutions
took approximately:

pop
10

10

10

gen time (sec.)
10

100
1000

1

2

20

100
100
100

10

100
1000

2

30
360

200
200
200

10

100
1000

3

40
1140

The results are shown in figures 6.1 and 6.2. When the different Pareto set sizes do not
influence the reached fronts, the fronts found with the different sizes for the Pareto set cover
each other.

The conclusion for the optimisations with different settings for Pm and Pc are the same: The
evolution needs 1000 generations for all three different population sizes to get close enough to
the real Pareto front. The evolutions with pop = 100 result in Pareto fronts with a lot more
non-dominated points then the evolutions with pop = 10. The Pareto fronts of an evolution
with pop set to 200 and 100 differ in the same manner. The different sizes for the Pareto set do
not influence the results a great deal.

For all settings of Pm and P the fronts that are found after 1000 generations with ps set to
1/4 of pop for the 3 different population sizes are plotted in the last plot of the corresponding
figures (6.1 a and b and 6.2 a and b).

Looking at these last plots, the followings remarks can be made:

• With Pm set to 0.1 the same conclusions apply to both Pc set to 0.5 and 0.8 (figure 6.1 a
and b): There is no difference visible between the fronts reached with pop = 100 and pop
= 200 . However, the time needed for an evolution of 1000 generations with pop = 100

takes about 6 minutes. The same evolution with pop = 200 takes about 19 minutes. The
evolution with pop = 10 results in a front that is less good than the fronts of the other
two optimisations.

38

1

• With Pm set to 0.5 the same conclusions apply to both P set to 0.5 and 0.8 (figure 6.2 a
and b): The results from the optimisation with pop = 200 are only slightly better than the
results of the evolution with pop = 100, but this evolution takes up much more time. The
evolution with pop = 10 results in a Pareto front that lays slightly higher than the other
two Pareto front, but this may be judged to be close enough to the optimal solutions. The
evolution of this population for 1000 generations only takes half a minute.

Conclusion: Test function 1 needs the following settings for all values of Pm and P:
pop = 100, ps 1/4 and yen = 1000. But if time is limited a population size of 10 with a Pareto
set size of 2 will give satisfactory results when Pm is set to 0.5.

Legend for the figures 6.1, 6.2, 6.4 and 6.5:

25

IS

0$

o 02 01 00 0$ 5 0

(b) Pm set to 0.1 and

Figure 6.1: Test function 1

39

.. 50

'P

p$.. 50
35I a.

2
0

::'o. :

I 0

040Ooi,

10).). l (0) 0 ()

3

S

25

0

0.
0 00

IS...
0 02 04 OS 0$

,. 2
02 04 OS 05

0. 50)0). I (0) O I)

(a) Pm set to 0.1 and

05

0

P set to 0.5

12

0I
05

04

02

02 04 04 05

Pc set to 0.8

.. to '. I _to — l
o a.

• 4at. •

3 3 . U
a

• 2

2 2 • IS
6 66

6
1 .,.., Os

1 02 01 06 o. I 2 02 04 00 00 8 02 04 06 00 2 02 04 06 0$

0.10) t e) — 0() 000U4 10 () l00$d 0(.)
31 l Ot

3 Il

:

_ _::__

05—-

_02 _

0 02 04 06 04 0 02 04 06 06 1 0 02 04 06 04 0 02 04 OS OS

(a) Pm set to 0.5 and P set to 0.5 (b) Pm set to 0.5 and P set to 0.8

Figure 6.2: Test function 1

Now the best results from the optimisation with the different settings of Pm and P have to
be compared. This is done in figure 6.3. For all optimisations pop is set to 100, ps is set to 1/4
and yen to 1000.

Legend for the figures 6.3 and 6.6:

Pc

Pm0.1 Pm0.5
=0.5 x *

Pc =0.8 0 •

.l t P.... P b. 06S I

00
0

V00.
07 5.3o

0

S
01

0 e 03 0

Figure 6.3: Test function 1 with different values for Pm and P

Pm set to 0.5 leads to better results than Pm set to 0.1. The value off P is not of great
influence on the results. With Pm set to 0.1 however, P set to 0.8 gives better results, so this
setting is chosen. As mentioned earlier, with Pm set to 0.5 a smaller population size (pop = 10)

can be sufficient. This makes the evolution much faster.
The strategy for test function 1 is: Pm set to 0.5, Pc set to 0.8, pop set to 100, ps set to 1/4

and yen set to 1000. It is remarked that with pop set to 10 and ps set to 1/4 the evolution is

40

much faster and the results can still be sufficient.

6.1.2 Test function 5, using binary coding
In BitSpea the chance on mutation per bit (pm) is set to 0.01. The computation time needed
for the evolutions with different settings on SGI-02-R5000 workstations is approximated by:

gen time (sec.) ps
10

10

10

10

100
1000

1

2

30

100
100
100

10

100
1000

2

30
300

Oö-
200
200
200
200

10

100
1000
1000
1000

5

50
500
850

1300

1/10
1/25
2/3

With an optimisation with population size of 200 individuals the different sizes of the Pareto
set influence the time needed for the evolution. The larger the Pareto set gets, the more indi-
viduals there are to be compared each generation. This takes extra time.

The conclusion for the optimisations with different settings for Pm and P are the same: A
population of 10 individuals needs 1000 generations to get close to the real Pareto front. The
populations with 100 or 200 individuals get close to the real Pareto front after 100 generations.
The front found after 100 generations is just a bit less wide than the one found after 1000
generations but it lies in the same position in the objective space. The different sizes for the
Pareto set hardly influence the results.

For all settings of Pm and P, for all three population sizes the best fronts are plotted in the
last plot of the appropriate figures (6.4 a and b and 6.5 a and b). All fronts are reached using
a Pareto size set to 1/4 of the population size. The population of 10 individuals is given 1000
generations to evolve, the other two population sizes 100 generations.

With all settings of Pm and Pc the same conclusions apply: The resulting fronts are almost
equally positioned. The Pareto front resulting from the optimisation of 200 individuals is a bit
wider than the fronts resulting from the other two optimisations. The front resulting from the
optimisation of 100 individuals results in a front that is wider than the front resulting from the
optimisation of 10 individuals. The optimisation with 200 individuals tcd Pmakes significant
longer than the other two optimisations.

Conclusion: Test function 5 needs the following settings:
pop = 100, ps = 1/4 and gen = 100, for all values of Pm and P.

41

0. 10 0 °° 10 — ,

____________ __________________

i:)
. 0

S
152

25 i 10

. to . .
2 * a

S 00 •. • *0 ••
is •S• *0* 5

1.1
•5• *00 5ê.

. :... . ,. 0. .I0)l5.l00(0)()

- V
0

to to II
10

0

• a
$

0

• 0

:
(a) Pm set to 0.1 and Pc set to 0.5 (b) Pm set to 0.1 and P set to 0.8

Figure 6.4: Pareto fronts found for test function 5 with different values of Pm and P
poS$.IO po 100 plpU$.lO p0000 100

O 5 at - C 5- 2

35 s

3
iS

0

I5
25 •

tO 3 to

. , :

$. t0)). 100)0) 2u0)) • po 1010). 100)0) ()t IC 3 V 14

tO 12

10 10
10 10

• I
I . S

• S

:. •USU5SUS:ISSIISISSo

(a) Pm set to 0.5 and P set to 0.5 (b) Pm set to 0.5 and P set to 0.8

Figure 6.5: Pareto fronts found for test function 5 with different values of Pm and P

Now the best values for Pm and P are determined by comparing the results from the opti-
misations with the different values of Pm and P. This are the optimisations with pop = 100, ps

= 1/4 and yen = 100 and the Pareto fronts are shown in figure 6.6. Pm set to 0.5 gives the best
results. The optimisation gives equal results for both values of P.

The strategy for test function 5 is: Pm set to 0.5, Pc set to 0.5 or 0.8, pop set to 100, p8 set
to 25 and yen set to 100.

42

-U

d.1 S e.. P.nlo *tx $o,SC ..Th 114.fl Pn, wd P S

.
35 .

3 .

25

S

.
Is S. .

3 4 5 5 7 $ 5 10 II 12

Figure 6.6: Test function 5 with different values for Pm and P

6.2 Another influential part of a genetic algorithm

When a genetic algorithm is used to solve an optimisation problem an appropriate chromo-
some has to be designed. This is certainly not the most straightforward part of using a genetic
algorithm. The type of alphabet that will be used, binary or floating point etc., has to be deter-
mined. Furthermore, it has to be decided what information has to be put in the chromosome.
The length of the chromosome has effect on the result of the optimisation. This is seen with
the optimisation problem dealt with in chapter 7, were the problem is optimised several times
using different chromosomes. From the results of these optimisations conclusions can be made
on this issue.

6.3 Conclusions

It turns out that it is possible to define strategies for both test functions. These strategies are not
the same, as was expected. Some parameters, such as population size, have much more influence
on the results than other parameters, such as the size of the Pareto set. A relationship between
the population size and the number of generations becomes visible. A large population will need
more than 10 generations to evolve properly. The time needed for the evolution depends very
clearly on the population size and the number of generations used. The strategy for the other
parameters is not very dependent on the settings used for Pm and P.

6.4 Further investigations

GAs are still under development. There are many things yet to investigate, among which the
working of the GA in MOO problems.

The tests run in this chapter show that general strategies can be formed. The strategies can
be extended using more parameters on more test functions.

43

6.4.1 Recommendations

With a multiobjective optimisation problem it is important to make sure that the resulting
non-dominated front, the Pareto front, meets with the following properties:

1. The distance of the resulting non-dominated front to the real Pareto front should be small.

2. A good (in most cases uniform) distribution along the Pareto front of the non-dominated
points found is desirable.

3. The spread of the obtained non-dominated front should be large, i.e., for each objective a
wide range of values should be covered by the non-dominated solutions.

This means that genetic drift should be stopped and methods to improve the convergence
rate should be found without losing the global search aspect of the genetic algorithm.

For this purpose some mechanisms, as mentioned in chapter 3 and [13] could be implemented
in a genetic algorithm. The most important mechanisms are: fitness sharing, elitism, hybrid
methods and deme forming. The influences of the different types of implementations of these
mechanisms for the different test functions should be investigated. In this way, more extensive
strategies for the different types of optimisation problems may be formulated.

Furthermore, the different recombination and selection operators and ranking mechanisms
could be tested for codings and test functions. This may also lead to some general strategic
conclusions.

To get a complete picture of which strategies are to be used with the different types of test
functions, more types of test functions should be tested.

44

Chapter 7

Design optimisation for the
Runge-Kutta method

In this chapter the coefficients of a Runge-Kutta method are optimised using SPEA.

7.1 Introduction to the problem
At National Aerospace Laboratory (NLR) the flow solver Hexadap was developed. Hexadap
solves 3D Euler equations on hexahedron grids using a Discontinuous Galerkin (DG) finite
element method (for more information on this method see [19]). This method can be considered
as a mixture of an upwind finite volume method and a finite element method [12].

To numerically solve the 1-dimensional convection equation, + c = 0, it has to be
discretised in time and space. DG discretisation makes use of the average value of the solution
in the cells of the grid (i) as well as a linear variation of this value (u). So the solution in a

IL iOz1hspecific cell can be written as a vector (). Given a wave w9(x) = e ' (0 � 9 � ir), it can be

discretised on a uniform mesh with mesh width h. Let wO,h denote the discretised wave. Define
the 2 x 2 matrix Lh(9) by LhwO,h = Lh(O)w8,h, with L = c and Lh is the discretised L. The
eigenvalues of Lh (0) determine the stability properties of the discretisation. Lh (0) is influenced
by the CFL-number (f). The differential equation to be solved is the following:

y'=Lhy, yEli?, (7.1)

with Lh the differential operator. The time discretisation of 7.1 is done with a Runge-Kutta
(RK) method. For RK5 as used in Hexadap Lh is split up in a convective and a diffusive part,

=
y÷i=V5.y',V5Ell?xR (7.2)

With V5 recursively defined by:

(V0 =1
Vt I — ,. CFL((L + /3L)Vj_1 + (1 — fl)L) (7.3)

V5 will be reffered to as the RK-matrix. The RK-matrix, like Lh, depends on 0. The
parameters in 7.3 determine how the artificial dissipation of the numerical sheme is calculated.
With /9 = 1 the dissipation at stage i is recalculated and with = 0 the dissipation of the

45

previous stage (i — 1) is used. For other values of fi the dissipation is a weighted average of the
dissipation of the previous and present stage.

7.1.1 Objectives

The purpose of this optimisation is to improve the rate of convergence of the solving of the Euler
equations. Two means are used for this goal:
Damping: In general holds that the more damping the faster irregularities disappear from the
solution. High damping can be generated by minimising

f(IA1(9)i + 1A2(O)I) dO, where A2 are the eigenvalues of the RK-matrix V5. (7.4)

The absolute value of the eigenvalues of an RK-matrix are plotted in figure 7.1 for 0 E [0, lr].
CFL-number: The larger the CFL-number the larger time steps can be taken.

Figure 7.1: The eigenvalues for a RK5 time-integration

The multiobjective optimisation problem involved with Hexadap is the following: at the same
time

• minimise integral 7.4 and

• maximise the CFL-number.

Do this under the constraint

• IAi,2(O)I � 1 V 0 E [0, lr].

7.2 Implementation

To be able to deal with this problem, some changes to the implementation of SPEA are necessary.
The chromosome needed for this optimisation problem consists of ten floating points, represent-
ing the CFL-number and the nine coefficients for the Runge-Kutta method, a and fl ..fl.
The CFL number has a range of [0.8,2.8], unless mentioned otherwise, the &s and fl's lie in the
interval [0,1], except a5 which is always kept at one.

To be able the calculate the Runge-Kutta matrices, some matrix calculations like addition
and multiplication of matrices had to be built into FPspea.

46

7.3 Results

The values for a2 can easily be changed in the Runge-Kutta scheme in Hexadap after an op-
timisation to see the results, but it is not easy to change the values of the fl's. Therefore the
optimisation problem will be approached in two ways.

1. Keep the fl's fixed at one, which is the value the fl's currently have in Hexadap. This
approach gives the opportunity to easily show the improvements of a new scheme to
Hexadap. With the fl's fixed at one, these 'variables' can be put in the chromosome, or
they could be left out altogether. This last option shortens the length of the chromosome
and will influence the recombination operators.

2. Let the fl's vary between 0 and 1, just like aj..a4.

The results coming from this different optimisation approaches are discussed in this section.
The parameter settings for all runs were:

Crossover rate Pc : 0.8
Mutation rate Pm : 0.1
ParetoSet of size : Population size

The other parameters differ per optimisation and are mentioned in the text.

7.3.1 3's fixed at one.
The optimisation is started with the fl's fixed at one but still using them as alleles in the
chromosome. The results of three optimisation runs with different parameter settings are shown
in figure 7.2. On the x-axis the value of the integral 7.4 is plotted and on the y-axis minus the
CFL-number is plotted.

-0l

-' xpopiOOgen25O ° °
•poplOOQenl500

-2 pop2OOen25O—
—14

—II
C..

-I1•

—22

-24 . . .

-20

02 02 04 05 05 01 05 05
obectIve1

Figure 7.2: Keeping the fl's in the chromosome and fixed at one, for 3 different optimisations

To see how close the front of non-dominated points resulting an evolution of 100 individuals
for 100 generations (x) lies to the real Pareto front this population has also been evolved for
1500 generations (*). The non-dominated points found by the last optimisation lie a bit lower,
which means that to get close the real Pareto front, more than 250 generations are necessary.

47

To investigate the influences of the population size, a population of 200 individuals has been
evolved for 100 generations (.). The population size does not influence the results a lot, as can
be seen in this same plot.

In Hexadap three different sets of parameters are already used, namely the following chro-
mosomes: [1, , , 1, 1, 1, 1,1], [1, , , , , 1, 1,1, 1, 1] and [1.1, , , , , 1, 1,1,1, 1]. The
fitness values for these sets have been calculated and are plotted with (o) in the same plot 7.2.
It is obvious that the individuals found by the GA are much better with respect to the objectives
then the old sets of parameters used in Hexadap. Three solutions from these resulting Pareto
fronts, are tested in Hexadap. One solution with a very high CFL-number, one solution with a
very small value for integral 7.4 and one solution with average values for both objectives. All
three perform great with respect to the goal of this optimisation, improving the convergence
rate of the solving of the convection equation.

Transonic NACAOO12

250 500 750 1000

Figure 7.3: Comparing the results of the different scheme's in Hexadap, with on the y axis the
residual of the solution.

Figure 7.3 shows the amount of work two different Runge-Kutta schemes need to do to get to
a specific size of the residual of the solution. If the residue is zero, the solution is stationary. The
optimised RK5 scheme in figure 7.3 refers to the optimised design with CFL-number 2.39069.
For a1 ... a the optimised RK5 scheme has the values 0.0791451 0.163551 0.283663 0.500858
and 1 respectively. The fl's all have the value 1. The original scheme in figure 7.3 refers to the
scheme as it was used so far in Hexadap. This scheme has a CFL-number of 1.1 and a ... a5

have the values , , , and 1 respectively. The fl's all have value 1.
The additional information revealed by figure 7.3 helps to choose one specific solution from

the Pareto front as the solution of the optimisation. A reduction of four orders in the residuals
is desirable, this means a residue level of approximately i0 should be reached. The optimised
scheme needs 185 cycles to get to this level, the original scheme needs 300 cycles. A cycle is a
working-unit so a speed up of the convergence rate of 300/185 is accomplished with the opti-
mised scheme. The original scheme in Hexadap has been replaced by the optimised scheme. The
design with very large CFL-number is selected because as it turns out the large CFL-number
helps better to improve the convergence rate then the improved damping with Hexadap. This
is probably caused by the multi-grid algorithm used in Hexadap.

48

This selection of a solution from the Pareto front is an example of how knowledge on the
shape of the Pareto front can help in deciding which solution is the ultimate design. Before
optimising it was not known how large the CFL-number could get while keeping a good fitness
value for the first objective.

Figure 7.4: Optimisation without fl's in the chromosome.

In figure 7.4 the stability regions of both schemes are presented. This demonstrates the
improvements made by the new scheme. The 'circles' drawn in the stability regions are the
eigenvalues of the RK-matrix with CFL set to one. With the new scheme a larger CFL-number
can be used with the eigenvalues still in the stability region. This means that a larger time-step
can be used and still the solution remains stable.

7.3.2 fl's fixed at one and removed from the chromosome

Next the fl's will be altogether left out of the chromosome. Now the chromosome consists of
only 5 alleles. The non-dominated points found with three optimisations with this chromosome
are shown in the left plot of figure 7.5.

Again there is not much difference between the fronts reached with population size 100 and
200. The front found after 1500 generations is much wider and lies a bit lower than the front
found after 250 generations, both using 100 individuals.

As can be seen in the right plot in figure 7.5, this optimisation with the fl's fixed at one in
the chromosome results in a lower and therefore better Pareto front than the optimisation with
the fl's fixed at one but left out of the chromosome. Thus an optimisation with the fl's included
in the chromosome gives better results.

The settings for the recombination operators give an explanation for this result. With the
fl's fixed at one in the chromosome, about fifty percent of the mutation and crossover are likely
to occur on the part of the chromosome that holds the fl's. In that event the chromosome does

49

Stability region with the old scheme.
Stability region with the new scheme.

Figure 7.5: The results without fl's in the chromosome and comparing the two different ap-
proaches.

not change because these alleles are fixed at one. Therefore the actual chance on mutation
and crossover on the chromosome is reduced with the optimisation of the larger chromosome.
This optimisation leads to better results then the optimisation with the shorter chromosome
where the fl's are left out of the chromosome. Therefore the chances on mutation and crossover
apparently are set to high for the optimisation with the shorter chromosome. It can be concluded
that the optimal values for the chances on mutation and crossover depends on the length of the
chromosome.

7.3.3 /3's variable

In the final optimisation the fl's are put back into the chromosome and can vary between 0 and
1, just like The results of some optimisations using this chromosome are shown in the
left plot of figure 7.6.

SI 010 02 0 01 0 04 040 00
obtNe 1

Optimisations with the fl's varying
between 0 and 1.

0

-Ii O
+ bes hoed I. pop 100 gin 1500
.wthOobeti$. popI00genlSCO

-IS obetasvaflab4e. pop200gin 1500

4:

\
-24

-20

05 1
Comparing the different approaches.

Three optimisations without fl's in the
chromosome.

1
Comparing the results with and without

the fl's in the chromosome.

o pop 100 gin 250
pop 100 gin 1500

• pop 200 gen 250
opop200 gin 1500

—Il

—t I 0

I

Figure 7.6: The results with variable /3's and all three approaches compared.

50

With this large chromosome the optimisation using 200 individuals in the population gives a
better result then the optimisation using only 100 individuals. This can be explained by the fact
that the gene pool is a lot bigger now that the fl's can also vary between 0 and 1. Apparently
a larger gene pooi needs a larger population to give a good representation of all the possible
genetic material. Thus an other optimisation is ran with 200 individuals in the population and
1500 generations in the evolution.

The results of the optimisations with the fl's fixed at one or left out the chromosome give
better results than the optimisation with the fl's variable, as can be seen in the right plot in
figure 7.6. In this figure the best fronts reached for all three optimisations are shown. The
optimisation with the fl's in the chromosome, but kept fixed at one gives the best results.

7.4 Conclusions

The optimisation of the parameters for the Runge-Kutta method in the flow solver Hexadap
was a success. If some knowledge on possible good values is known before the optimisation, this
can help the optimisation. In this case it was known that keeping the fl's at one is a parameter
setting used often with the Runge-Kutta method. The optimisation using this knowledge gave
the best results. A shorter chromosome without these fl's gave worse results, while in the
calculations the fl's were ascribed the value one. The settings for the recombination operators
give an explanation for this result. Apparently, the chance on the events of mutation and
crossover to happen are set too high for the optimisation with the shorter chromosome, as is
explained in section 7.3.2. However, both optimisations with the fl's fixed at one, with and
without these /3's in the chromosome, gave better results than the optimisation with variable
fl's in the chromosome. Therefore keeping the fl's fixed at one, and therefore making use of that
foreknowledge, always give a better result than letting the values for the fl's vary.

Some great results were accomplished and these optimisations give reason to use a genetic
algorithm more often with problems like this. Every method which makes use of some kind of
parameter setting and for which some objectives can describe properties of an optimal working
method, the parameter settings can be optimised. For example, the parameter settings of a
genetic algorithm itself can be optimised using a genetic algorithm. That way the parameters
as mentioned in chapter 6 and other parameters of the genetic algorithm can be optimised for
a specific class of optimisation problems.

51

52

Chapter 8

Airfoil design optimisation

8.1 Introduction to the problem
Design optimisation of an airfoil is a multidisciplinary design optimisation problem if the different
objectives come from different disciplines. In this chapter an airfoil design will be optimised
using two objectives which determine the fitness of the airfoil in terms of aerodynamics. This
is a single disciplinary multiobjective design optimisation problem. The difference between
single- and multidisciplinary problems is that unlike objectives coming from several disciplines,
the objectives coming from one discipline could possibly be reasonably spliced in one objective,
turning the problem into a single objective problem. In section 8.6 suggestions are made how this
single disciplinary multiobjective design optimisation can be used for solving a multidisciplinary
optimisation.

The optimisation problem consists of the following objectives:

1. Maximise the lift coefficient C1 of the airfoil.

2. Minimise the drag coefficient Cd of the airfoil.

The constraints of this problem are:

1. The airfoil must have a non negative thickness.

2. The upper and lower half of the airfoil should meet at the trailing edge of the airfoil.

The first constraint ensures a physically correct shape of the airfoil without intersecting upper
and lower half. The second constraint ensures a physical correct shape of the tail of the airfoil.

To calculate the necessary coefficients, i.e. the lift coefficient C1 and the drag coefficient
Cd, the 2-D RANS flow solver Hitask, which is developed at NLR, is used. Because of the
time necessary for the calculation with Hitask of these coefficients, the run is distributed over
as many computers as there are individuals in the population. So with each generation each
computer computes the coefficients for one individual. This way each generation takes as long
as the longest computation time necessary for one individual from the population. Solving the
Navier-Stokes equations on a coarse grid of 128 cells using 20 multi-grid cycles takes about
30 minutes. Some extra time is needed each generation to distribute the calculations over the
computers, read in the results and let the current population evolve to the next generation,
which together is less than 5 minutes.

53

8.2 Implementation
For these optimisations some changes to the implementation of SPEA had to be made. The
chromosome, in this case, consists of ten parameters which define the airfoil shape through the
parameterisation of the upper and lower half of the airfoil. This is called the GA-airfoil and will
be used to create the final airfoil which the individual represents. The parameterisation is the
following:

Zupper X1'2 and Ziower = . X''12, with X [0,1] (8.1)

This means that there are five free parameters for the upper half and five free parameters for the
lower half. This sixth parameter for both halves is used to satisfy the second constraint. The
ten parameters in the chromosome are the parameters which can be altered by mutation and/or
crossover. In Matlab intervals for these parameters were determined to reduce the search space
and ensure proper airfoils, with a thickness of about 0.1 unit.

a [0.08,0.12},a2, a3 E [—0.12,0],a4, a5 [—0.12,0.12]

and b1 E [—0.12,0.08],b2, b3 E [0,0.12],b4, b5 [—0.12, 0.12]

The geometry belonging to the parameters of an individual is calculated with Spea. Only airfoils
that meet the first constraint and thus are considered feasible, are allowed. If either initialisa-
tion, mutation or crossover has supplied an infeasible design, this chromosome is replaced by a
randomly generated new chromosome, until a chromosome which represents a feasible design is
generated. The GA-airfoil, which is determined by the alleles and parametrisation (8.1) is used
in two different ways to create the final airfoil that is represented by an individual. One way
is to combine the GA-airfoil with the airfoil of the existing RAE2822 airfoil (RAE2822). This
combination is called the Hitask-airfoil. This combination will look more or less, depending on
which combination was chosen, like RAE2822. So this combination ensures a profile that is not
too different from an existing, good, airfoil. The combination used is defined by

a * ZRAE2822 + fi * ZGA_air foil = ZHitask_airfoil. (8.2)

In the right plot of figure 8.1 RAE2822 (-.-), an GA-airfoil (- -) generated with parametrisation
(8.1) and the Hitask-airfoil (-), the combination of the first two airfoils using (8.2) with a set to
0.95 and fi set to 0.1, are shown.

The parameter a determines the influence of RAE2822, fi determines the influence of the
GA-airfoil. Because the GA-airfoil can be both bigger and smaller than RAE2822, a + fi must
be larger than 1. This way, on the average, the Hitask-airfoil will be just as wide as RAE2822.
a will always be chosen smaller than 1 because the GA-airfoil has a positive thickness, so the
addition of the two airfoils would otherwise lead to a thicker Hitask-airfoil. With a set to a
high value, for example 0.95, and thus the fi set to a low value, for example 0.1, the resulting
Hitask-airfoil will look a lot like RAE2822. With a set a bit lower on 0.7 and fi set a bit higher
to 0.4 the resulting Hitask-airfoil looks less like RAE2822 and the GA-airfoil will have more
influence on the Hitask-airfoil.

The second way is to simply use the GA-airfoil as it is generated by FPspea as Hitask-airfoil.
With the airfoils determined in either way, the individuals are distributed over just as many

workstations. On each workstation Hitask is started with as input the airfoil belonging to that
individual.

54

A final check on the feasibility of an airfoil is given by Hitask. If Hitask for what ever reason
can not generate a grid around an airfoil, C, and Cd of that individual are set to a very low and
high value, respectively.

A time-limit is set for all the Hitask calculations. If a Hitask calculation is not finished in time
this could have several reasons. For example the machine on which the calculation is performed
may have been slowed down by a nightly backup process. The coefficients of the individuals
of which C, and Cd are not calculated within the time-limit are set to the average value of the
coefficients of that generation.

After the Hitask calculations have finished, Spea reads in C, and Cd, the results from Hitask,
which are kept close to the design variables responsible for these results. This way the objectives
depending on these coefficients can be calculated everywhere in the algorithm between the
calculation of the coefficients and the recombination of the individuals.

The mutation and crossover operators have been kept simple, i.e. one-point crossover and
one-point mutation. The mutation probability Pm is set to 0.3 in all the optimisation runs
and the crossover probability Pc is set to 0.8. The chromosome is not checked for its feasibility
after mutation and crossover routines. The recombination operators do not often produce an
infeasible design and checking this possibility would take up a lot of extra time.

If necessary it is possible to make a restart with an existing population. With a restart this
population is read in FPspea after which the evolution can continue.

8.3 Euler versus Navier-Stokes

Hitask has the option to solve either the inviscid Euler equations to calculate C, and Cd of an
airfoil or the viscous Navier Stokes equations.

The Euler equations and Navier-Stokes equations give different solutions. The Euler equations
do not acknowledge the existence of the boundary layer. A boundary layer makes an airfoil
thicker and thus produces more drag. The Euler equations do not include the drag produced
by shear stress on the surface of the airfoil, only the drag produced by air pressure is taken into
account.

The boundary layer also influences the lift coefficient. Therefore, the Euler equations will
return a lower drag coefficient than the Navier-Stokes equations. This effect is shown in figure
8.8.

With all optimisations in this chapter a quite coarse grid is used to speed up the calculations.
Using this type of grid it will take Hitask between five and ten minutes to solve the Euler
equations and to calculate C, and Cd for an airfoil. Using the Navier-Stokes equations to do the
same will take Hitask around thirty minutes.

In the first optimisations the Euler equations will be solved to calculate the C, and Cd. Later
on the more accurate and more expensive Navier-Stokes equations will be solved.

8.4 Results using the Euler equations
First the Euler equations are used to calculate the lift and drag coefficients. Three different
kinds of airfoils were used as input for the Hitask calculations:

1. A combined airfoil using 8.2 with a set to 0.95 and set to 0.4. This combination ensures
smooth airfoils and therefore no troubles are to be expected with the grid generation from
Hitask with these optimisations (section 8.4.1).

55

2. A combined airfoil using 8.2 with a set to 0.7 and fi set to 0.4. This combination with
quite a bit influence of the GA-airfoil may result in very realistic and good airfoils (section
8.4.2).

3. The GA-airfoil as it is calculated by the parametrisation (8.1). These airfoils have all
the freedom within the intervals of (8.1), so with these airfoils the strength of the genetic
algorithm can be fully exploited (section 8.4.3).

Apart from the parameters mentioned earlier in the chapter the parameter settings differ per
optimisation and are specified in the text.

8.4.1 Combined airfoil geometry

With the first optimisations the combination of airfoils 8.2 was used with a set to 0.95 and fi
set to 0.1. The results of the optimisation using 70 individuals after 50 generations are shown in
figure 8.1. A lot of non-dominated points are found which are well distributed over the Pareto
front. The front lies a bit lower then the star which represents the fitness values of RAE2822,
thus the non-dominated points achieve better results on the given objectives. In the right plot
of figure 8.1, an airfoil represented by an individual in the Pareto front is shown. The used
Hitask-airfoil has some nice properties also seen in other airfoils. This means that the genetic
algorithm is capable of finding good and meaningful airfoils, which have good fitness values.

o 015 oC,ectNes ci RAE2822
x Parelo front

0016-

00l5-
N

1013

0012

00u
-01 -CU -0$ -075 -07 -CU -Cl

- Hitask-airfoil from the Pareto front (-)The Pareto front found after 50
plotted together with RAE2822 (-.-) andgenerations, using 70 individuals,

the GA-airfoil (- -).

Figure 8.1: Solving the Euler equations using 0.95 * RAE2822 + 0.1 * GA-airfoil as combination
for the Hitask-airfoil

8.4.2 Another combined airfoil geometry

A combination with more influence of the GA-airfoil, but still using RAE2822 as a basis to
form realistic airfoils gives the genetic algorithm enough freedom to evolve towards the Pareto
front and gives the Hitask-airfoils enough properties of RAE2822 to ensure useful solutions.
The combination 8.2 is used with a set to 0.7 and fi set to 0.4. In figure 8.2 the front as it
reached after 23 generations is plotted on the left side and the front as it is reached after 58

56

x

generations is plotted on the right side. It seems that this optimisation problem with influence
of RAE2822 does not need more than 23 generations to get close to the Pareto front, because of
the little difference in the position of these two fronts. When 23 generations are enough to get
close to the real Pareto front, this optimisation can be run in reasonable time using the, much
more expensive, Navier-Stokes equations, which is done in section 8.5. This section the Euler
equations are used in Hitask.

This second combination gives a better result than the first combination, as can be seen in

figure 8.7.

'I.

obec1iv.e ol RAE2822
003 xPWSIOfr4

0
II

cfo03

0011 0018 •

00l 001

— s——. — __

-13 -2 -II -i -o, os -øi -08 -05 -Cl -0.3
— C1 13 I2 _II 1 -00 01, .07 -08 -01 -01 -0)

Pareto front found after 23 generations. Pareto front found after 58 generations.

Figure 8.2: Optimisation using the second combination.

Figure 8.3 shows two airfoils from the Pareto front reached after 58 generations. The airfoil

on the left has about the same C, as RAE2822. The airfoil on the right has about the same Cd
as RAE2822.

N N

Airfoil with same C, as RAE2822. Airfoil with same Cd as RAE2822.

Figure 8.3: Two airfoils as result of an optimisation using the second combination.

8.4.3 The GA airfoil geometry
An optimisation using no combination but just the GA-airfoil as it is formed with parametrisa-
tion (8.1) gives a much wider Pareto front (see figure 8.4). The front also lies a bit lower than

57

• ot4ecve3 04 RAE2e22
x Pazotofvon4

x x

the Pareto fronts of both optimisations of the combined airfoils (see figure 8.7).

or

006

0bscves o RAE2822
x Pare$otvo.1

001

- • .14 -12 -06 -04 -02

Figure 8.4: The Pareto front (x) plotted together with the fitness values of RAE2822 (*).

Figure 8.5 shows some airfoils belonging to individuals from the Pareto set. It starts with an
individual with a high C1 and Cd and ends with an individual with a low C1 and Cd. Figure 8.6
shows the pressure profiles belonging to the airfoils from figure 8.5 respectively.

CI • I I4. Cd .001071 a_I 0I4aCd.Og7 Cl .O54l3 Cd00034072 Cl .04l72Cd.O279fl00 00 00

N O N O N

::

;.0. ••• I 0606 06O$
Cl .085512 Cd.0004t Cl .078727 Cd.00046807 cl.02eI.Cd—O785 Cl .021317. Cd .0S24e

N006 NO06 NO

Os
I OIOS

Figure 8.5: Airfoils of 8 individuals from the Pareto front.

58

8.4.4 Conclusions

In figure 8.7 the Pareto fronts as they are reached using the different types of airfoils are plotted.
The GA-airfoil without influences of RAE2822 results in the best Pareto front. The first com-
bination, with high influence of RAE2822 gives the worst results and the second combination of
airfoils results in a front in between. From these results can be concluded that with this optimi-
sation problem, i.e. with these objectives, there is no reason to use a combination of RAE2822
and the GA-airfoil. With all optimisations using the Navier-Stokes equations the GA-airfoil will
be used, without combining it with RAE2822. With a different optimisation with different or
more objectives a combination described above may be useful. Such a combination can ensure
that certain desired properties of the airfoil used to combine the GA-airfoil with are present in
the population.

-,
—C,

Figure 8.7: Pareto front of the first combination after 50 generations (x), the second combina-
tion after 58 generations (.) and the GA-airfoil after 35 generations (o).

2

—1

a., ,.ct.oo,on a • 1.014*. a • 0 oo157 0.051413. Cd.0 0034972

—I

0 02 04 o. OS

a • 0.76121,04 • 0046167

02 04 00 05

a • 0.15613, Cd • 0.0010641

02 04 04 05

0.0 22I, Cd • 00625763

00

0 02 04 05 OS 1 0 02 04 00 05

Figure 8.6: Pressure profiles for the airfoils from figure 8.5 respectively.

005

005

001

C!

000

00I

ctiecWes 04 RAE2822
O I iit co,T4)slaI,on. 50 9snerioI'

second conibmation, 58 generatios
o GA-airfoil, 35 generations

0

0
S

%
0

59

8.5 Results using the Navier-Stokes equations

8.5.1 The GA airfoil geometry
The Pareto front found with the optimisation using the Navier-Stokes equations are shown
in figure 8.8 On the left the front of this optimisation (x) is shown together with the front
reached with random search (.). This front is created by plotting the initial population from
this optimisation, which equals a random search with 70 tries.

On the right the resulting front of this optimisation (x) is shown together with the front
found using the Euler equations (o). The differences in the position of the two Pareto fronts are
explained in section 8.3.

0O

0O
RAE2e O0S 0m th

• . 9snst_ol
004

03

•
S - S

Pareto front found after 80 generations Pareto fronts found with Euler (o) and
(x) and using random search (.). Navier-Stokes (x).

Figure 8.8: Some Pareto fronts found using the GA-airfoil.

Among the solutions there is a solution with CIGA = 1.16 * CIRAE and CdGA = 0.84 * CdRAE,

which is a significant improvement to fitness values of RAE2822. C, and Cd from this airfoil are
0.8229 and 0.0123 respectively. The airfoil is shown in figure 8.9.

Figure 8.9: An airfoil from the Pareto set with better C, and Cd then RAE2822.

60

o using the Eujec quaticns
using the Navier-S*okes equioM

0
0o

0

00 00

Figure 8.10 shows some airfoils belonging to individuals from the Pareto set. It starts with
an individual with a high C, and Cd and ends with an individual with a low C, and Cd. Figure
8.11 shows the pressure profiles belonging to the airfoils from figure 8.10 respectively.

8.6 Multidisciplinary design optimisation

The single disciplinary multiobjective optimisation performed in this chapter can be extended to
a multidisciplinary multiobjective design optimisation problem by adding one or more objectives
which originate from a discipline different than aerodynamics. For example an objective from a
different discipline is the volume of the airfoil, which is a measurement for the amount of fuel
that can be stored in the airfoil. Another example is an objective on the strength of the airfoil.

Another way to involve other disciplines and/or choosing the final design from the Pareto
front is to use them for the post-optimisation decision making. With the optimisation a Pareto
front is found. From this front a single solution has to be selected as the best design. In making
this decision, other objective(s) can be used to determine which of the non-dominated points of
the Pareto set is the best. This objective again can come from a different discipline.

61

N

ci .13116.Cd-0 0066773ci.14431.Cd.0001104
00

000

-000

.00
0 02 04 00 OS

x

ci .0 oeoesl, ca • 0 ol00lo

N

004

000

-000

02 04 OS 0$
x

ci —067113. Cd • 0010526

N

ci • 0005664. Cd • 00001260

N

004

000

-000

SI

0 02 54 05 OS
x

N 0

02 04 00 00

CI —0665565. Cd • 00073565

0 02 04 00 00
'C

02 00 00 OS
'C

Figure 8.10: 7 airfoils from the Pareto set.

$1

-OS

443.Cd.000l1O0

'S

OS

—00

CI.I 3115. C4.O 000673

02 04 50 05

14023. COI00IS

— 0324. C

00

'5

05

-01

05

—05

-00

—. •S 02 04 OS OS

d.c 51573. cd_C oi

02 04 00 SI I

0 02 04 00 05 I 0 02 04 00 00 I

Figure 8.11: Pressure profiles of the airfoils shown in figure 8.10 respectively.

In a previous optimisation of an airfoil design at the NLR, a single objective genetic algorithm
was used ([14]). The objective in that article consists of multiple objectives, including two
objectives concerning the lift and drag coefficients of the airfoil. These objectives are spliced
using appropriate weighting coefficients. The lift coefficient of the airfoil is kept fixed. Because a
different flow solver was probably used with the optimisations in [14], the drag coefficients of the
optimal airfoil can not be compared with the values found with the optimisation in this report.
For the optimisation done in this chapter this article can therefore not be used as comparison of
a single and multiobjective genetic algorithm. However, if the optimisations in this chapter are
extended to a multidisciplinary design optimisation, [14] may be used to compare the results of
a multiobjective to a single objective optimisation of an airfoil.

62

Chapter 9

Conclusions and recommendations

9.1 Conclusions

This report contains optimisations of a multiobjective design problems. This was done with
FPspea, an extended version of SPEA which is a multiobjective genetic algorithm. GAs will
not be the best algorithm to solve all optimisation problems, as is stated in the "No free lunch"
theorem. However, because of its global search properties, its ability to find multiple solutions
and its parallelisability, a GA will generally achieve good results with multiobjective optimisa-
tion problems.
Overall the results of the optimisations using FPspea as an optimisation algorithm were promis-
ing.

9.1.1 FPspea
No great difficulties were encountered with the use of FPspea. Although the fine tuning of some
parameters of a GA can improve the results, a GA can give good results with roughly estimated
values for those parameters. There are some points of attention:

• Pm is a powerful parameter. Set too high it will lead to random search. Set too low it will
slow down the convergence rate considerably.

• The result of an optimisation can depend highly on the type of coding used. Several
codings should therefore be tested.

• The result of an optimisation can be dependent of the seed used. An optimisation should
therefore always be run several times with different seeds. This gives a clue on the distance
between the discrete and the real Pareto front. The design problems in this report were
optimised at least 5 times with different seeds.

• The elitism mechanism is an important mechanism that should always be present in a
multiobjective GA.

9.1.2 Determining strategies for GAs

In chapter 6 an attempt was made to determine a strategy for GAs for specific type of opti-
misation problems. It can be concluded that it is possible to determine useful strategies for
classes of optimisation problems. Several parameters were looked at of which some influence the

63

results more than others. The optimal value of some parameters depend on the value of other
parameters. More specific conclusions can be found at the end of chapter 6. Furthermore it is
shown in chapter 7 that the optimal values of the chance on mutation and crossover depend on
the length of the chromosome.

9.1.3 Design optimisation problems

In real problems the results of optimisations with FPspea were satisfactory. With the optimisa-
tion of the parameters of a Runge-Kutta method (chapter 7) it was shown that foreknowledge
on the design can be useful. It was demonstrated that the optimal chance for mutation and
crossover to occur depends on the length of the chromosome. Furthermore is was shown that
FPspea can handle constraints well. The resulting design performs significantly better on the
objectives of the optimisation problem and makes the Runge-Kutta method considerably faster.

With the optimisation of an airfoil (chapter 8) it was shown that FPspea is very well paral-
lelisable. This property ensures that FPspea can very well be used for aerodynamic optimisation
problems, were the fitness calculations with CFD-calculations can be very expensive. The re-
sulting airfoil performs significantly better on the objectives than the RAE-2822 airfoil.

9.2 Recommendations

For the determinations of general strategies for GAs only the tip of the iceberg was dealt with
in this report. A lot of work is still to be done on this subject. A general strategy should be
determined for more test functions. More parameters should be taken into account. Special
attention should be given to genetic drift, the convergence rate and the global aspects of the
GA. The influences of the different recombination, mutation and ranking methods can also be
examined. More specific recommendations are given at the end of chapter 6.
The optimisations on the design problems in chapter 7 can be extended to other optimisation
problems involving parameter settings of a method or algorithm.
The optimisation of an airfoil design as performed in chapter 8 can be extended to multidisci-
plinary design optimisation as is stated at the end of that chapter.

64

Appendix A

Test functions

Before an algorithm can be tested first a good set of test functions should be determined. In
this report the test functions formulated in [21] are used. These test functions are based on
a paper written by Deb [4]. In this paper Deb describes the properties test functions should
have and presents a formulation for a general two-objective optimisation problem. With this
formulation problems having specific features can be created. The next section contains parts
from this paper and gives some background to the test functions used in this report.

Two-objective test functions

Primarily, there are two tasks that a multiobjective GA should do well in solving multiobjective
optimisation problems:

1. Guide the search towards the global Pareto-optimal region.

2. Maintain population diversity in the current non-dominated front.

The optimisation goal for a Multiobjective Optimisation Problem (MOP) may be reformulated
in a more general fashion based on three objectives:

1. The distance of the resulting non-dominated front to the Pareto-optimal front should be
minimised.

2. A good (in most cases uniform) distribution of the solutions found is desirable.

3. The spread of the obtained non-dominated front should be maximised, i.e., for each ob-
jective a wide range of values should be covered by the non-dominated solutions.

Convergence to the real Pareto-optimal front may not happen because of various reasons:

1. Multi-modality.

2. Deception.

3. Isolated optimum.

4. Collateral noise.

65

There is a difference between the difficulties caused by multi-modality and by deception. For
deception to take place, it is necessary to have at least two optima in the search space (a true
attractor and a deceptive attractor), but almost the entire search space favours the deceptive
(non-global) optimum, whereas multi-modality may cause difficulty to a GA, merely because of
the sheer number of different optima where a GA can get stuck to.

The following features of a multiobjective optimisation problem may cause multiobjective
GAs to have difficulty in maintaining diverse Pareto-optimal solutions:

1. Convexity or non-convexity in the Pareto-optimal front,

2. Discontinuity in the Pareto-optimal front, and

3. Non-uniform distribution of solutions in the Pareto-optimal front.

Now we present a more generic two-objective optimisation problem which is constructed from
single objective optimisation problems. Let us consider the following N-variable two-objective
problem:

Minimizefi(±") = fl(X1,Z2,...,Xm),

Minimizef2(x) = g(xm+1, .-., XN)h(fl(Z1, ..., Xm), g(Zm+1, ..., ZN)).

The function f' is a function of m (< N) variables (x, = (x1, ...,xm)) and the function f2
is a function of all N variables. The function g is a function of (N — M) variables (xjj =
(Xm+i, ..., xx)), which do not appear in the function fi. The function h is a function of fi and
g function values directly. We avoid complications by choosing f and g functions which only
take positive values (or f1 > 0 and g > 0) in the search space.

By choosing appropriate functions for 1' g, and h, multiobjective problems having specific
features can be created. This construction allows a controlled way to introduce such difficulties
in test problems:

1. Convexity or discontinuity in the Pareto-optimal front can be affected by choosing an
appropriate h function. This function tests an algorithm's ability to handle different types
of the Pareto-optimal front.

2. Convergence to the true Pareto-optimal front can be affected by using a difficult (multi-
modal, deceptive, isolated or others) g function, as already demonstrated in the previous
section. This function tests an algorithm's ability to handle difficulties lateral to the
Pareto-optimal front.

3. Diversity in the Pareto-optimal front can be affected by choosing an appropriate (non-
linear or multidimensional) f function. This function tests an algorithm's ability to
handle difficulties along the Pareto-optimal front.

In this paper three tables with different types of function with examples and their effect are
given for f, g and h. The Equations (Eqn) mentioned in the tables are listed after the tables.

66

Table 1: Effect of function f on the test problem.
Function fi(xi,...,xm)(> 0)

Controls search space along the Pareto-optimal front
Type Example Effect

Fl-I Single-variable
(m = 1)

and linear

öj + CiXi (öj, c1 > 0) Uniform representation of
solutions in the

Pareto-optimal front. Most
of the Pareto-optimal

region_is_likely_to_be_found.

F 1-Il Multi-variable
(m> 1)

and linear

öj + E1cjx1(ö, Cj > 0) Non-uniform representation
of Pareto-optimal front.

Some Pareto-optimal regions
are not likely to be found.

Fl-Ill Non-linear
(any in)

Eqn A.8 for m = 1 or,
1 — e(4') sin4 (5irr)

where r =

Same as above.

F1-IV Multi-modal Eqn A.1 with g(x2) replaced
by fi(xi) or other

standard multi-modal test
problems (such as Rastri-

gin's_function,_see Table_2)

Same as above. Solutions at
global optimum of Ii and

corresponding function values
are difficult to find.

Fl-V Deceptive f' = E!f(L), where
f is same as g defined

in Eqn A.2

Same as above. Solutions
at true optimum of fi are

difficult to find.

67

Table 2: Effect of function g on the test problem.
Function g(xm+1,...,xN)(> 0), say n = N — m

Controls search space lateral to the Pareto-optimal front
Type Example Effect

G-I Uni-modal, single ög + c2x2 (S, c2 > 0) No bias for any region
variable (n = 1), , or Eqn A.7 with '' = 1 in the search space.

and linear
G-II Uni-modal

and nonlinear
Eqn A.7 with 'y 1, With 'y> 1 bias towards the

Pareto-optimal region and
with -y < 1, bias against the

Pareto-optimal_region.
G-III Multi-modal Rastrigin: 1 + lOn+

Em+i{X — l0cos(2irx1)}
x1 E [—30,30]

Schwefel:
1 + (6.5ir)2n—

E,_m+iXiSifl(viii)
x2 [—512,511]

Griewangk:

2 + ELm+i0
Hm+iCOS()
x_€_[—512,511]

Many (61& — 1) local and
global Pareto-optimal

fronts
Many (872 — 1) local and

one global Pareto-optimal
fronts

Many (163 — 1) local and

one global Pareto-optimal
fronts

G-IV Deceptive Eqn A.2 Many (2 — 1) deceptive
attractors and one global

attractor

G-V Multi-modal, g(u(12)) = Many (Hm+i [()
+2] —

deceptive
{

2 + : 2) deceptive attractors and

where e = tu(12) — 1/21 2 global attractors

Table 3: Effect of function h on the test problem.
Function h(fi,g)(> 0)

Controls shape of the Pareto-optimal front
Type Example Effect

H-I Monotonically nondecreas- Eqn A.3 or Eqn A.4 Convex
ing in g and convex on Ii with a � 1 Pareto-optimal front

H-I! Monotonically Eqn A.4 with a> 1 Non-convex
nondecreasing in g Pareto-optimal

and non-convex on Ii front
H-ITT Convexity in fi as a Eqn A.4 along Mixed convex and non-

function of g with Eqn A.5 convex shapes for local and
global Pareto-optimal fronts

H-TV Non-monotonic Eqn A.6 Discontinuous
periodic in f' Pareto-optimal front

68

g(x2) = 2.0— exp { (00042)
}

—0.8 exp
{....

(x2_0.6)2}
(A.1)

(lt — f 2 + u(l2), if u(1) <Li,
A 2gu ,jj

— j 1, if u(12) = is

h(f1,g) = -. (A.3)

h(f1,g) = 1' (Y' iffi � (A.4)

0, otherwise

a = 0.25 + 3
75g(x2)_—

(A.5)
—

h(f1,g) = 1 — (L!) — i-!sin(2irqfi) (A.6)

/ 'c'N mm \
— i I 1 £.I=44Xj LJi=m+lXi
— mzn m 9max — 9772271) 1 EN max EN mm

\ i=m+2s i=m+lXi

The Pareto-optimal region occurs when g takes the value 9mmn The parameter 'y controls the
biasness in the search space. If -y < 1, the density of solutions away from the Pareto-optimal
front is larger.

f1(xi) = 1 — e_4x1sin4(51rx1), 0 x � 1 (A.8)

The above function has five minima for different values of x1. The Pareto-optimal front is
non-convex

The multiobjective function is defined over I bits, which is a concatenation of N substrings of
variable size i such that E1l = 1, where u(ii) is the unitation of the first substring of length
L. Unitation is the number of l's in the substring. Note that minimum and maximum values
of unitation of a substring of length I is zero and I, respectively.
The parameter q is the number of discontinuous regions in an unit interval of Ii.

The functions mentioned in the third column in each table are representative functions which
will produce the desired effect mentioned in the respective fourth column. However, other
functions of similar type (mentioned in the second column) can also be chosen in each case.
While testing an algorithm for its ability to overcome a particular feature of a test problem,
the complexity of the corresponding function (fi, g, or h) should be varied and and the other
two functions should be fixed at its easiest complexity level. For example, while testing an
algorithm for its ability to find the global Pareto-optimal front in a multi-modal multiobjective
problem, a multi-modal g function (G-III) and Ii fixed as in Fl-I and h as in H-I could be
used. Similarly, using g function as G-I, h function as H-I, and by first choosing f' function as
Fl-I test a multiobjective optimisers capability to distribute solutions along the Pareto-optimal
front. By only changing the f' function to Fl-Ill (even with m = 1), the same optimiser can be
tested for its ability to find distributed solutions in the Pareto-optimal front. This is because
with a nonlinear function for fi function, there is a bias against finding some subregions in the

69

Pareto-optimal front. It will then be a test for a multiobjective optimisers ability to find those
adverse regions in the Pareto-optimal front.

Some interesting combinations of these three functions will also produce significantly difficult
test problems. For example, if a deceptive fi (F1-V) and a deceptive g function (G-IV) are used,
it is likely that a multiobjective GA with a small population size will get attracted to deceptive
attractors of both functions. In such a case, that GA will not find the global Pareto-optimal
front. On the other hand, since not all function values of Ii are likely to be found, some region
in the Pareto-optimal front will be undiscovered. The G-V function for g has a massively multi-
modal landscape along with deception. This function introduces a number of different solutions
having the same global optimal g function value. Corresponding to each of these globally opti-
mal solutions for g function, there is one global Pareto-optimal front. In fact, in Ii — 12 space,
all global Pareto-optimal fronts are the same, but solutions differ drastically. The sheer number
of local Pareto-optimal fronts and deception in such a problem should cause enough difficulty
to any multiobjective GA to converge to one of the global Pareto-optimal fronts. An interesting
challenge in this problem would be to find all (or as many as possible) different globally optimal
solutions for the g function.

Along with any such combination of three functionals, parameter interactions can be intro-
duced to create even more difficult problems.

70

Appendix B

Program Description

B.1 Calling sequence

In the main file FPSpea.cpp the calling sequence of the methods is represented by

initialisation Population initRandom
updateParetoSet

HITASK remoteROH
readlnput
select
mate2
mutate

HITASK remoteROH
readlnput

Population updateParetoSet

where the output methods are omitted and HITASK methods are only performed when CFD-
calculations are necessary to determine the fitness of individuals. In this next figure FPspea
without CFD-calculations is represented schematic:

Initialisation:

1 Initialisation of Population

2 Update of external set

- Non-dominated individuals are marked

The evolution, repeated until termination
criterium is satisfied:

3 Selection

- Clustering

- Ranking

4 Recombination

5 Mutation
6 Update of external set

71

evolution spea
Population

mating pool P'

B.2 Classes

SPEA, Strength Pareto Evolutionary Algorithm, is an C++ algorithm. The structure of this
algorithm exists of classes and subclasses. SPEA is built of the following classes:

SPEA
The class that takes care of selection (i.e. the filling of matingPool with parents) and
assigns a fitness to all individuals in the method selection() with use of the method
Populat ion—*updateParetoSet.

POPULATION

Container class that manages Individuals. Most of the functionality, like mating, clus-
tering, etc., is already implemented such that subclasses only have to provide the ac-
tual container. In this class the Population control is handled. paretoSet is updated
in updateparetosetO, individuals which show to few genetic diversity are filtered in
avelinkCluster() and the mating is handled in mate2O. individuals is a property of
the subclass VECPOPULATION, which is a vector of the object Individual.

INDIVIDUAL

Class that defines the interface of individuals used with multiobjective optimisation
EAs. Once an a fitness value has been calculated, the value is stored in order to avoid fur-
ther (possible expensive) calculations. Properties of this class are: the vector of booleans
validObj, the vector of doubles objective, the double fitness, the enum Distance,
the constant nrOfObjectives that is in an input variable and the adres of RandomNr
randomNr. FPIND is a subclass of this class. In FPIND the actual methods are filled, like
getObjectiveO, dominates() and covers 0. These methods determine the fitness val-
ues of individuals and ranking method. The properties of this subclass are the constant
nrOf Allele that is set to proper value in FPIND, the double maxDist and the object
chromosome of the class FPCHR0M0s0ME.

CHROMOSOME

Base class that defines the interface of any kind of chromosome class. The propery of
CHROMOSOME is the adres of RandomNr randomNr. FPCHROMOSOME is a subclass of
this class for use with floating point problems. In this subclass the fpCrossover0,
fpMutation() and other methods on chromosome level are defined. The properties of
this subclass are the vector oplossing and the constant length, which is the length of
oplossing.

RANDOMNR

Instances of this base class generate uniformly distributed pseudo-random numbers.

TIKEAFExEPTI0N

Common base class of all exceptions that might be thrown from within the framework.

72

B.3 Structure
What was called the fitness values of an individual in the report, are the objectives of an indi-
vidual in SPEA. What was called the rank of an individual in the report, is the fitness of an
individual in SPEA. The objectives of the report are objective functions in SPEA.

Some objects are:
• P stands for Population, an object of the subclass VECPOPULATION,
• PS stands for paretoSet, an object of the subclass VECPOPULATION,
• matingPool is an object of the subclass VECPOPULATION,
• I, stands for individual, an object of the class INDIvIDuAL,
• FPI stands for floatingPointlndividual, an object of the class FPIND,
• C stands for chromosome, an object of the class CHROMOSOME and
• FPC stands for floatingPointChromosome, an object of the class FPCHR0M0S0ME.

B .3.1 Initialisation of Population

Population: : initRandom()
The seed used for initialisation of the initial Population only depends on the number of individ-
uals in that Population.
length is a property of P, which is the number of I in the vector individuals, a property of
VecPopulation. length is an input variable (see section B.5.l). In initRandom() length Is are
initialised.

Individual—*FPInd-+Chromosome--3 FPChrom: :fill()
The initialisation of I is done by the method fillO of FFt'. This method fills the vector
oplossing, which is a property of FFt', with random floating point values.

SPEA: :writeToFile()

After initialisation, the I from the initial P are written to file. When an I is written to file, first
the objectives of I are written down followed by the alleles of I.

B.3.2 Update of external set

Population—)updateParetoSet() : :nondominatedPoints()

The dominated I are deleted and a new PS is created with the non-dominated I.

Population—+updateParetoSetO-—*nondominatedPointsO—*FPInd: : dominates()
In this method the boolean bigger is set to a value which determines whether the optimi-
sation concerns a minimisation or a maximisation. Individual: :dominates() is called,
that calculates whether an individual is dominated by or dominates another individual.
The method Individual: :getObjective() is called.

Individual—*dominates0—*getObj ect ive 0
This method registers in validObj, a vector of booleans and a prop-
erty of Individual, which objectives are already calculated. The method

FPInd—*subGetObjective() is called, that calculates the objectives of I and stores
those values in objective, a vecor of doubles and a property of Individual.

FPInd—+subGetObjective 0
The objectives of FPI are calculated. This is where the objective functions of
the optimisation problem are stated.

73

Population—updateParetoSetQ: :deleteCovered()
The covered I are deleted from the P9.

Population—+updateParetoSetO—* deleteCoveredO—3FPInd: : covers()

In this method the boolean bigger is set to a values which determines whether the op-
timisation concerns a minimisation or a maximisation. Individual: : covers() is called,
to determine whether an individual is covered by or covers another individual.

Individual—+dominates() —getObjective()
See earlier in this section.

B.3.3 Selection

SPEA—+selectO—*Population: :updateParetoSet()
See earlier.

SPEA--+selectO-4paretoSet: :aveLinkCluster()
The P9 is reduced to the maximum size maxSize, which is an input variable (see section B.5.1),
by deleting the I that are closest to each other in the objective space.

aveLinkCluster 0 —+FPInd: : distance 0
With help of the double maxDist and the enum Distance, the type of distance to be
calculated, the distance between two I is calculated. maxDist is a property of FPInd,
Distance is a property of Individual. If the distance in the objective space is to be
calculated, Individual: : getObjective is called. (See earlier).

SPEA: :select()
Determines the fitness of the individuals using md: : covers 0. The fitness is stored in the
double fitness, that is a property of Individual. With the use of a binary tournament selection
Is are selected as parents from the united set of the P and the P9, based on the fitness of the
I. Fill mat ingPool with the selected I.

B.3.4 Recombination

matingPool: :mate2()
Fills the new P with the children. Determines with randomNr.uniformOMax() two I from P9
to become parents.

FPInd: :mateWith()
Determines with randomNr.flipP() whether crossover will take place. In case of crossover
FPChromosome: :fpCrossover0 is called.

FPChromosome: :fpCrossover()
Here the double CrossoverPoint is determined with randomNr .uniformOMax() and
two children, which are object of the class INDIVIDUAL, are created by performing
some kind of crossover on the parents.

B.3.5 Mutation

Population: :mutate()

For all length I FPInd: :mutate() is called.
FPInd: :mutate()
Determines whether mutation will take place with randomNr . flipP 0. In case of mutation
FPChromosome: :fpMutation() is called on.

74

FPChromosome: : fpMutation()
Here the double mutationPoint is determined with randomNr.uniformOMax() and
for that allele a new value within appropriate range is determined.

After mutation the I from the current generation can be optionally added to file with
SPEA: :writeToFileO, see earlier this section.

B.3.6 Update of external set

See subsection B.3.2.

B.3.7 Output
After the evolution the Is from the nondominatedSet, an object of class VECPOPULATION, are
written to file with SPEA: :writeToFileO, see earlier this section.

75

B.4 Special routines
Special features build in to FPspea for the use of HITASK or just because they are handy are
mentioned here:

• Restart
It is possible to use the restart option. Instead of randomly initialising the initial Population,
the final Population from a previous optimisation run is used as initial Population.

For HITASK:

• Dividing the CFD-calculations.
runonhosts and remoteROH are two scripts to divide the CFD-calculations on several
machines. remoteROH starts the runonhosts script on a remote workstation. runonhosts
divides the CFD-calculations. Each individual is put in its own directory where the output
files of HITASK are put. The output of HITASK relevant for the GA, the lift and drag
coefficients, are put in the file lift—drag, out.

• Read in of lift- and drag coefficients.
From the file lift-drag .out the coefficients are read in by Population:: readlnput 0.
The files input . * and notsucc . * make sure that the file lift-drag, out is complete
before the data is read in.

76

B.5 Input files

B.5.1 Input files for FPspea

The making of the C++-files is managed by the file Makefile. This file also contains the input
of FPspea. This input consists of 7 numbers:

• nrOf Allele: the number of variables in the chromosome that determine the design an
individual represents;

• nr0fObjectives: the number of objectives that determine the optimisation problem;
• nr0fGenerat ions: the number of generations in the evolution;
• popSize: the number of individuals in the Population;
• parSetSize: the maximum number of individuals in the Pareto Set;
• seed: determining the values the random operators will produce and
• tag: a label used to distinguish the different optimisation runs.

B.5.2 Input files for HITASK

HTin.fiow:

Standard NS

BluntTE Adaption Gridgen MGcycl

0 0 2 20

ICL CLtar Alpha Re Mach Xtru Xtrl Tint
0 0.0 2.0 6.5e6 0.73 0.03 0.03 293

HTin.geo with 20 points defining the geometry:

chromsome 00

1.0000000 0. 0000000E+00

0.9283040 -3.12038 17E—02

0.7995878 -6.0426737E-02

0.6840497 -6. 9139503E-02

0.5672981 -6. 9465846E-02

0.4497361 -6. 5533056E—02

0.3321484 —5. 8949766E-02

0.2162440 -4. 9512387E-02

8.587025 1E—02 —3. 2279204E-02

1. 8769074E—02 —1. 5227628E—02
0.0000000E+00 0.0000000E+00

1 . 0045659E—02 1 . 1286175E—02

6. 9320090E-02 2.898934 1E—02

0.1710089 4.3436321E-02

0.2858523 5.2223864E—02

0.4266098 5.6043352E—02

0.5448967 5.4033723E-02

0.6861172 4. 5474425E—02

0.8247163 3.0249940E-02

0.9295525 1. 3783389E-02

1.0000000 0.0000000E+00

77

B.6 Output files

B.6.1 Output files of FPspea

• pOp*2..pOp
This file contains the initial Population with *2 individuals. After all, the random initial-
ising of the Population uses the number of individuals in the Population (*) as seed.

• objA*1PopS*2psS*3. *4
This file contains all the individuals of all generations of an optimisation run with *1 alleles
in a chromosome, maximal *3 individuals in the paretoSet and tag *4. It is optional to
create this very large output file.

• psA*1popS*2psS*3 . *4

This file contains the individuals of the final nondominatedSet.

B.6.2 Output files of HITASK

• HTout.table
This file contains the lift-, drag-, and moment coefficient (C1, Cd and Cm) of the airfoil.

• Hlout.cp.table
This file contains the pressure profile belonging to the airfoil.

• grid.dump
This file is created if HITASK cannot calculate the flow around an airfoil. This could be
caused by properties of the geometry or by, for example, another process on a computer
which slows down HITASK. If this file is created, the individual gets an average value for
the coefficients C1 and Cd.

78

Bibliography

[1] Arakawa, Masao; Hagiwara, Ichiro; Nalcayama, Hirotalca; Yamalcawa, Hiroshi (1998),
Multiobjective Optimization Using Adaptive Range Genetic Algorithms with Data Envel-
opment Anlysis, AIAA

[2] Atkinson Kendall E. (1989), An Introduction to Numerical Analysis, Wiley

[3] Crossley, William A.; Cook, Andrea M.; Fanjoy, David W. (1999), Using the Two-Branch
Tournament Genetic Algorithm for Multiobjective Design, AIAA Journal, Vol. 37, no. 2

[4] Deb Kanpur, Kalyanmoy (1999), Multi-Objective Genetic Algorithms: Problem Difficul-
ties and Construction of Test Problems, Evolutionary Computation, vol. 7, no. 3

[5] Doorly, D.J.; Peiró, J. (1998), Distributed Evolutionary Computational Methods for Mul-
tiobjective and Multidisciplinary Optimization, AIAA paper A98-39756

[6] Fonseca, Carlos M.; Fleming, Peter J. (1995), An Overview of Evolutionary Algorithms
in Multiobjective Optimization, Evolutionary Computation, vol. 3, no. 1, p. 1-16

[7] Fonseca, Carlos M.; Fleming, Peter J. (1998), Multiobjective optimization and Multiple
Constraint Handling with Evolutionary Algorithms-Part I: A Unified Formulation, IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 28,
no. 1

[8] GAlib, ftp://lancet.mit.edu/pub/ga

[9] Gembicki, F.W. (1989), Vector Optimization for Control with Performance and Param-
eter Sensitivity Indices., Ph.D. Dissertation, Case Western Reserve Univ., Cleveland,
OH

[10] Goldberg, David E. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company, Inc.

[11] Hue, Xavier (1997), Genetic algorithms for optimisation, Edinburgh Parallel Computing

Centre, The University of Edinburgh

[12] intranet/hexdap

[13] Dc Kleermaeker, Simone (2000), Multiobjective Design Optimisation and Genetic Algo-
rithms: A Literature Survey, NLR memorandum IW-2000-020, Amsterdam

79

[14] Kuiper, H.; van der Wees, A.J.; Hendriks, C.F.W.; Labrujère (1995), Application of
genetic algorithms to the design of airfoil pressure distributions, NLR report TP95342L,
Amsterdam

[15] Mäkinen, R.A.E.; Neittaanmäki, P.; Sefrioui, M.; Toivanen, J. (1997), Parallel Genetic
Solution for Multiobjective MDO, Parallel CFD'96, pp. 352-459. Elsevier, Finland

[16] Miura, Hirokazu; Chargin, Miaden K. (1996), A Flexible Formulation for Multi-objective
Design Problems, AIAA AIAA-96-4121-CP, p. 1187-1192

[17] Sobieszczanski-Sobieski, Jaroslaw; Haftka, raphael T. (1996), Multidisciplinary Aerospace
Design Optimization: Survey of Recent Developments, AIAA paper no. 96-0330

[18] Surry, Patrick D.; Radcliffe, Nicholas J. (1997), The COMOGA method: constrained
optimisation by multi-objective genetic algorithms, Control and Cybernetics, vol. 26, No.3,
p. 391-412

[19] v/d Vegt, J.J.W.; van der Ven, H. (1998) Discontinuous Galerkin finite element method
with anisotropic local grid refinement for inviscid compressible flows, J. Copmut Phys

[20] Vicini, Alessandro; Quagliarell, Domenico (1997), Inverse and Direct Airfoil Design Using
a Multiobjective genetic algorithm, AIAA Journal, vol. 35, no. 9

[21] Zitzler, Eckart (1999), Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications, Ph.D. Dissertation, TIK, Zurich

I

4

'ft

80

