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Chapter 1

Introduction

Direct Numerical Simulation of the flow around an object is one of the most challenging
applications of Computation Fluid Dynamics. For these simulations a very efficient and
robust finite volume discretization method of the Navier-Stokes equations has been developed
at the University of Groningen over the years.
In the original version of the method the equations are discretized with a finite volume scheme
on a regular grid. This discretization has the disadvantage that refinement in a desired region
of the computational domain also alters the grid outside this region, as grid lines are continued
to the boundary of the computational domain. Through this inefficient behaviour, regular
grids are a major restriction. Local mesh refinement can be the solution to this problem.

In this Master's thesis the development of a general applicable local mesh refinement method
is described. First, the discretization of the Navier-Stokes equations on regular grids will be
explained. Then local mesh refinement will be introduced and in particular the discretization
at the boundary of the refinement. The main property of the discretization is energy conser-
vation. We will examine if it is possible to conserve mass, momentum and energy also at the
boundary of the refinement.
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Chapter 2

Mathematical Model

The motion of the fluid is governed by conservation laws for mass and momentum. We give
these equations in conservation form for a Cartesian co-ordinate system. We will assume that
the flow can be considered as incompressible and scale the density p to one. Then for every
domain 1 with boundary F and an outward directed normal vector n the following equations
should hold:

• conservation of mass (continuity equation)

[undF=O, (2.1)
Jr

• conservation of momentum (Navier-Stokes equations)

fud1l= _f u(u.n)dF_fpI.ndr+fvgrad u.ndF+fFd1, (2.2)

where u = (u, v, w)T denotes the velocity, t the time, p the pressure, ii the kinematic viscosity
and F the external force.
Equations (2.1) and (2.2) will be discretized using the finite volume technique. However,
we will mention the conservation laws in differential form, because the different terms will
sometimes be referred to in this form.

div u o, (2.3a)

+ div(uuT) = —div (p1) + div(v grad u) + F, (2.3b)

Here I is the identity matrix and the divergence of a symmetric matrix is defined as

/ a1 a2 a3 \ / div(ai a2 a3)T

div ( a2 b2 b3 :=
(

div(a2 b2 b3)T
a3 b3 C3 \ div(a3 b3 c3)T
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Chapter 3

Numerical Model

3.1 Spatial discretization

The two conservation laws are discretized on a stretched and totally staggered Cartesian grid
using a finite volume discretization. Although the discretization is three dimensional, it is
explained for the two-dimensional case. See Figure 3.1 for the placement and numbering of
the variables.

3.1.1 Pressure equation

h3

Figure 3.1: Placement of variables in cell (i,j)

We will start with the discretization of the law of conservation of mass (2.1). For the domain
f with boundary 1' we will take the cell as drawn in Figure 3.1 and we will call this cell a
p-cell. If the eastern, northern, western and southern boundaries are denoted by E, N, W
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lj p13 tLii Pi lj tLj4 lj

vu_i vi+lj_1

and S respectively, the pressure equation can be written as

fE fN
— Judy — fvdx =

These four mass fluxes will be denoted as ü,, v7,,, ü1_13 and zi13_1 respectively. We will
discretize these integrals with the midpoint rule, so = u23h, but for the moment this is
not important to know, since the bar notation enables us to use mass fluxes without telling
how they are discretized.

3.1.2 Momentum equation

We recall the momentum equation in the x-direction without the external force term,

fudcl = _fu(u.n)dr'_JP.ndf+fvgradu.ndl', (3.1)

with P = (PIP, 0, 0)T in three space dimensions. For the control volume f we will use the
boldfaced rectangle (u-cell) in Figure 3.2.
The discretization of the volume integral is given by

Judd =

hz.+hz.+1with d, = 2 the volume of the u-cell.

Ljj+1

vii vi+li

3Ljj _i

h1

Figure 3.2: Control volume for discretization in x-direction
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Convection

Now we look at the discretization of

f u(u n) dl',

which is the convective part of Equation (3.1). It is important to understand the meaning
of this term: it describes the way the horizontal velocity (in fact horizontal momentum) u is
transported by the vector field u. This vector field contains u as component as well, but we
should treat both u's as different factors.
Again we denote the four boundaries with E, N, W and S and approximate the integrals:

fu(u.n)dr tiii+Ui+lif d
fN

liii + Ui Ij U + Ui3_l
J u.ndy+ J

= uji ++1
dy +

fN —

tz,., + u1_i, f u, + u_1 I
, udy— i vdx.

2 Jw 2 is
The left integrals are mass fluxes. For the pressure equation we already defined how to
compute mass fluxes, but these fluxes are defined at other boundaries. But there is an extra
demand that these fluxes have to satisfy: the coefficient of u, has to be zero. This is necessary
if energy is conserved, which will be discussed later. The coefficient of u3 equals

fEfN fy_ fvdx. (3.2)

One way to let this equal zero is

I d
—

_______

JUY_
fNvdx = f7 +ti+1j

I uij+ui_ijudy =
JW

Tvdx — 7jj_1+3j+1j—1

is — 2

If we substitute this in Equation (3.2) we get

iij + Üi+lj
+ + 3ij+1 — + — + k,—i

2 2 2 2
Üjflj + Vi4.lj — ij — Vi+ljl

+
?hij + Vi — tlj —

(3 3)
2 2

In this last expression we recognize half the sum of the divergence of the p-cells (i,j) and
(i + 1,j) and therefore the expression equals zero.
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The discretization finally results in

ui+lj + ü+l
+

tLij+1 jj + —

2 2 2 2
Uz_ Uj + U1_i3 — tL23_l Vij_1 + L'ji7

(3 4)
2 2 2 2

Diffusion

The diffusion term

/ vgradu.ndF
Jr

is split into four parts:

r c a I on I On I' OnI vgradu.ndf= I v—dy+ I v—dx— I v—dy—i v—dx.
Jr JE Ox iN 011 Jw Ox is OY

The derivative are approximated by central differences:

I tL1J — Ujj [ Uji — n7 f Uj — I U13 — U1j_i

JE h1÷, dY+JNv (h +h+1),2dxJVv h1
dY_J5v (h

Next, the integrals are approximated by the midpoint rule:

h
nz+i3 — uj h1 + h2÷1 u231 —

v +v -' h 2 2
's Yj+1

— ui_13 + h11 — u23_i

______

— v
2 1i -'-h 2xi " Vi Yj—i

Pressure gradient

The last term in the Navier-Stokes equation is the integral over the pressure. This is also a
boundary integral, so

P . ndF +
h, +h,1

0 — +
h1, +h,+1 = hp+1 —

Upwind

The discretization of the convective term was a central discretization. For upwind discretiza-
tion we introduce an upwind parameter a. We take a between 0 and 1. When a equals zero
the discretization is central and when a equals one an upwind discretization is used. The
upwind discretization comes in as artificial diffusion, so we have to replace all v's by v + Va.
We will only discuss the change of the first term. The coefficient of ui3, consisting of a
convective and a diffusive part, is replaced by

_______

—

______

A ,
xi

with Va = Utui+ij+ttijlhixs+i.
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Remarks

Some approximations in the discretization may look somewhat arbitrary, but this is certainly
not the case. If Expression (3.4) is written in matrix notation, like

C(ü, t3)u,

it is easily seen that the coefficient matrix C is skew-symmetric. Furthermore, after rearrang-
ing (3.5) to

__.i.z__

__________

V h1+1Uhi+h1 h+h31,+1Uii+1+
h

V + ' hy;+hy3_1 Ui,_l —

V +
h,+h21

+ +
h,+h11

)u3+1 j+1 hx y,+ V3—i

it may be noticed that the diffusion matrix (with a minus sign) is symmetric and weakly
diagonally dominant. This implies that its eigenvalues are all real and positive. Later we will
see that these properties of the convection and diffusion are necessary for energy conservation.
The discretization in the y- and z-direction is done in the same manner. The discretization
is easily extended to three dimensions.

3.2 Time discretization

We will now consider the time discretization of the system

fu.ndr = 0, (3.6)

= f_u(u.n)dF+fvgradlL.ndr_fpI.ndr. (3.7)

If R(u) is substituted for the convective and diffusive terms, Equation (3.7) can be written
as df I

— I udfI=R(u)— j pI.ndl'.dtjfl Jr
After applying the divergence operator we find

j fu nd[' = div(R(u)) — divf p1. nd['.

The left hand side equals zero (Equation (3.6)) and the last term is a Laplace operator
(div. divT). If an explicit time integration method is used, R is evaluated at a new time
step, so the div(R(u)) term can be evaluated in advance. The resulting equation is a Poisson
equation for the pressure.
We can follow the same recipe for the spatial discretized equations. The divergence operator is
the one defined on p-cells, the fr-, pIn dl' operator is defined on u-, v- and w-cells. Analytically,
these operators are adjoins (div and —grad respectively) and we will show that this property
also holds after discretization. This result will be used later to prove energy conservation.
\\e will take a small grid and construct the divergence operator (see Figure 3.3).
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The divergence of u is given by

+ +

h1 h2

0-

Figuie 3.3: Grid consisting of four cells

h2

h1

Then

11 ui 1
—h2 I I U I

h1 Ii Vi I
h2 i L V2 ]

—h1 h1 P1

_.divTp = —h2 h2 P2
h1 —h1 J3

—h1

and this is exactly the way the pressure gradient was defined in the previous section. So the
"div=-grad" property also holds in the discretized case.

3.3 Energy conservation

There seems to be some freedom in defining the momentum fluxes, but there is an additional
equation we should satisfy. Therefore we will introduce the energy of the flow, which is the
integral of p jul2. After discretization we will denote this as the inner product ((1lu, u)),
where the density is omitted and contains the local grid size. If we denote the convective
term with C(ü)u, the diffusive term as Du and the pressure term as Mp, then the spatial
discretized Navier-Stokes equations and continuity equation can be written as

1lu=Cu—Du+Mp, M0u=O.

We can now write the equation for the change of energy as

d d d
= ((1lu,u)) + ((1u, u))
= ((Cu, u)) — ((Du, ii)) + ((Mp, u)) + ((u, Cu)) — ((u, Du)) + ((u, Mp))
= (((C + Ct)u, u)) - (((D + D*)u, u)) + ((p, Mu)) + ((M0up)).
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Since we have discretized in such a way that the matrix C is skew-symmetric, the convective
term is zero. The diffusive term is negative, since the symmetric matrix D is positive definite.
Analytically, both pressure terms are zero, since M is the —gradient operator and therefore
MS is the divergence. The divergence of the velocity is zero because of mass conservation.
Since the discrete gradient operator is chosen such that it is minus the divergence operator,
this property also holds after discretization in our case.
So the discretized system has the same properties as the analytical system: convection and
pressure do not change the kinetic energy and diffusion is always dissipative. Besides this,
the kinetic energy in simulations can also never increase. This is a big advantage, since it
implies that the simulation cannot 'explode'; the velocity field may have some wiggles if the
grid is too coarse, but these wiggles can never grow large.
The required condition for energy conservation for the convection is a skew-symmetric matrix.
This is easily achieved by taking the weights for the mean velocity at the cell boundary.
Besides, the central coefficient (the diagonal of the matrix) has to be zero. This means that
both p-cells wherein the u-, v- or w-cell is contained have to be divergence free.
The pressure conserves energy if the gradient equals minus the transpose of the divergence.
These divergence and gradient operators should of course be consistently used in the momen-
tum equations.
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Chapter 4

Local Mesh Refinement

Figure 4.1: Grid without local refinement (1653 cells).

Figure 4.2: Grid with local refinement (947 cells).

The purpose of local mesh refinement is to refine only parts of the computational domain
where more accuracy is needed. An example of this is a channel flow around a cube. If, in
this case, is refined around the cube, a whole '+'-shaped area is refined, as is illustrated in
Figure 4.1. With local mesh refinement, on the contrary, only within a rectangle is refined
(Figure 4.2). Huge amounts of grid cells can be saved with local mesh refinement.
One problem that occurs with local mesh refinement is the storage of the new variables. There
are a few solutions to this problem, all with advantages and disadvantages. We will discuss
two ways of storage.

• All new variables are stored together in a new array. The refined cells are numbered
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and this number is an index for the array with the refined variables. This method has
a few advantages. It is flexible: it is no problem if more than one area is refined and
multiple levels of refinement are possible. The major disadvantage of this method is its
inefficiency. The refined variables will be addressed indirectly and if-statements within
ioops, to determine whether a cell and its neighbours are refined, are unavoidable.

• If the area that is refined is limited to a rectangle, it is possible to use a new 'regular'
array, which has the same indices as the normal cells. The biggest disadvantage of this
method is its inflexibility; only one rectangular area can be refined. But this approach
is very efficient. Indirect addressing could easily cause problems on supercomputers and
this is avoided now.

The choice seems to be between efficiency on the one side and flexibility on the other. Since
the main purpose of the local mesh refinement is simulating turbulent flow around objects,
one rectangular refined area is not a limitation. Furthermore, it is important that the program
runs efficiently on supercomputers. Therefore, the second variant is chosen.
In general it is possible to refine only in one direction or in two or three. This is not easy to
catch in a general formulation, and refinement is always done in two directions. The third
direction is Fourier transformed for the flow around objects and can therefore not be refined.
In Figure 4.3 the names and numbering of the new variables is defined.

NW NEvii V13

__ ____ ____

4

__

NW XE
NE U' NE
i—i3 • zJ • - - ii

W N
iJ

W EPjj w Ptj c
z—ij . - • - ii • • . I)

SW S SEZj ii ii

SW S SESE u' wS. Pzi u• 13 - I) • I)

1/3—1

NW NEVu_i Vu_i Vj_1

xi_i xi

Figure 4.3: Names of variables in a refined cell.

The discretization within the refined area is no problem, since the mesh is just as 'normal'.
The same holds for the area outside the refinement. The difficulty is the boundary of the
refinement. We will only describe the discretization at the right/eastern boundary of the
refinement. The discretization at the other boundaries is obtained by means of mirroring or
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rotating. Furthermore, in the examples we will only refine iii one direction, which is analogous
to strong stretching if only refinement at one boundary is considered. With this the problem
is reduced to writing down the discretization of the grid in Figure 4.4. The encircled velocity
vectors are missing one or two neighbours. More specifically, the encircled vertical velocities
are missing an eastern neighbour for defining a mean velocity at the eastern boundary of a
v-cell. The horizontal velocities are missing one northern/southern vertical velocity for the
mass flux through the northern/southern u-cell and furthermore an eastern horizontal velocity
for the mean velocity and mass flux at the eastern boundary of the u-cell. How we will solve
this will be discussed in detail later. In the next chapter we will first focus on the pressure
equation.

£ A

- ..

I

. E -:

D

) -
-

• E

D
. • E )

4

Figure 4.4: Boundary of refinement (vectors are velocities, pressure is defined at dots).
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Chapter 5

Discretization at Boundary of
Refinement

5.1 Mass conservation at refinement boundary

Looking at Figure 4.4 one may notice that two of the three pressures of the small cells are
missing an eastern neighbour. This problem is easily avoided if the pressure in the big cell is
assumed constant in its whole p-cell. Then all three 'small' pressures share the same eastern
neighbour. We will work this idea out for a simple test case. We will choose boundary
conditions for a uniform flow in the y-direction, see Figure 5.1.

v=1 v=1

ttO -
- U2

tvl

u=O P1. -

v=1 v=1

Figure 5.1: Simple test case for pressure.

The discrete Laplace operator is constructed as div•ft' .djvT with omega the diagonal matrix
containing the u- and v-cell sizes. If the width and height of the unrefined cell both equal
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one, then
1 Ui

—idivu=
1

U3

1 1

—1
Vi

— — — V2

and div I- divT =

—
3

1
1 _1

1 3 3—1 1 1_j
—1 3

1 _! — 3 1 —1

— 3 1 —1

10 1

3 ,, 3
19 1

(5.1)
3 3 3

1 1 1
3 3 3 i

The resulting matrix is weakly diagonally dominant and symmetric, so positive-definite as it
should be (of course it is singular, 1 is an eigenvector). The right hand side of the Poisson
equation, containing the boundary conditions, equals [ —1 0 1 0 JT Now the solution of
the equation div ft' divTp = [ —1 0 1 0 ]T can be computed and yields

3 3
P1 Ui —

r 9
0 U2 — 0 lvii

= 3 ' — 3 ' I 1= 9U3 LV2J
J4 0 U4 0

where u is computed by —11' divTp. We may notice two things: each p-cell is divergence
free and, more noticeable, 10% of the fluid particles detour.
This defect can be explained as follows. The analytic solution is a pressure field that is linear
in the vertical direction. Our solution is linear, but with a wrong coefficient. If we look at the
_diVT matrix, we notice that the three pressure gradients at n1, u2 and u3 are different if the
pressures P1, P2 and p3 differ, which is the case with linear p. So the three pressure gradients
will differ and if they differ, they cannot all equal zero as it should be in this example. Instead,
two vortices are formed that are invisible for the unrefined cell, but they strongly disturb the
flow through the refined cells (see Figure 5.2).
This problem can easily be solved by averaging the three pressure gradients at Ui, U2 and u3:

! I 1 i u
9 9 9
I I I_

divu= 1

U3
—1

Vi

3 3 3
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With this divergence matrix u1, u2 and u3 have to be equal afterwards and therefore must all
be zero. One disadvantage of this method is that its fill deviates from the standard five-points
scheme that is common to discrete Laplace operators, since

28 26 1 1

9 9 9 3
26 55 26 1

div 1 divT =
9 9 9 3

— — — 1

Furthermore, the diagonally dominance of the matrix is disturbed; in the 3x3 upper left block
1/9 is added with respect to Equation (5.1).
But there is an even bigger problem. By averaging the mass flux we introduced a new defect.
This will again be shown by an example. This time we take u linear (in y-direction) and v
zero, see Figure 5.3.

u=2

u=1

v=O

A

v=O

v=O

v=O

Figure 5.3: Second test case for pressure.

Now we started with a divergence free vector field. Of course, p = constant should be a
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Figure 5.2: Two vortices are formed at the refinement boundary.

(5.2)

P3.
= 0

P2.

- tL3 = 3

.P4

-. U! = 1
P1.



solution of the Poisson equation. However, the divergence yields

1
! 1 1 1

1

—— 9 9 9 —

.i. 1 1
2

+ = .i (5.3)
0

2 1 1 1 0
— — — 0

where the first part originates from the boundary conditions and the second part is div u. So
Equation (2.1) is not satisfied in this case and thus the situation of Figure 5.3 cannot occur.
The Poisson equation changes the values of v and v2 to —1/3. This may not seem that bad
in this example, but at bigger grids it will spoil other velocities as well (pr, and p3 differ
and this will also influence the other neighbours).

We will propose a divergence operator that does not have the disadvantages of the former
operators. For this divergence operator we will use a larger grid, because the relations will be
clearer then. Unfortunately, the matrices will be much larger too and therefore the derivation
may look more more difficult than it is. In Figure 5.4 the new grid is drawn.

The column of cells in the middle of the grid is not refined, but cut into three pieces. Instead
of one pressure, these cells get three. As usual we start defining div u =

1
U1

—1 1

u2

—1 1

U3

1 —1 1

tL4

—1 1

tL5

—1

1 1 1
U7

U8

V1

v2J V3

3 3 V5
—1 1

—1 —1
V6

V7

Again, f is the diagonal matrix containing the sizes of the u- and v-cells, which yields
1 1 1 1] . Now we can compute the discrete Laplace
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5 2 _! 1 _ 1
9 9 ? ?99 ? ? I

— 1 1 59 2 —
—?1 I 9 9

—3 i_ I_I 9

— I — —
— — — 1 1 1

2 —1

— — — —1 2

Next, we will define two new pressures, 158 = (p' +p8 +p9) and 15 = (io +pii + p12), SO
the mean pressures of the two coarse cells that were cut into three pieces. These definitions
are added in the third and fourth row from below of the matrix. At the same time, the sums
of the equations for P7, P8, p9 and Plo, P11, P12 are added:

5 2 2 _1 I —
9 I99 I I I

I I I
1 1 1 — — —

_I _! 1 _1 5 2 2
3 ?1 9 9_ I 1 9 9

1 1 1 1 1— — — — — — 1 1 1

1 1 1

3 3 3

operator, yielding

• 10

_3.i -3
19T
— T —

10- T

I
3

3
1

3

1

3

1

3

1

3

1

3

1

3

3
-3

-3 -3-3 -3
-3-3

10
3

3
1

3
1

3

1 1 —
3 3 3

1

3

1

3
—1

1

(sum)

3

—1 (sum)

— — —
— — —

1 (def.)
(def.)

1 1 1

3 3 3
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Now P8 and j are used to sweep the equations for P13, P14 and the two new 'sum-equations':

—3

-3-3-3 -3
10

3 3

The equations forp7, P8, P9, plo, P11 and P12 are now swept with 738, 73 and the sum-equations.
The equations are multiplied by 3 afterwards:

12 _
19

3
3

—3

3

1

1

1

1

5 2 2 1 1

? ? ?

? ?
9 9 9 9 9 9

1

111
3 3 3

1

3
—1

• _.i _1. _1
? ? ?
? ? ?

1 1
— 9 9 9 9

3 3 3

2

9

3 —1

—1 3

1 1 1

— — —
1

1

I 2 —1 f—

1 —1 2 f—

3

3
1

3
1

3

12 _
12 _

10
3

3
2 1 1

f
— ,1_

3 3 3 —

1

3 3 3

1

3

1

1

3

I

1

—1

—1

—1

—1

3 —1

—1

—1

—1

—1 3

4—

4—

4-

4-
4—

4-1

1 1 1

1 1 1

— — —
1

1

—1
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Finally, we throw away the definitions of 758 and 73i 1 and rearrange the equations:

1 —1 2

The last four equations are just 'normal' equations, as we had before. The third and fourth
equation from below, that were formed as the sum of others, have become equations for P8 and
. The equations for P1,• ,P6 are normal too, but they all have an 'own' eastern neighbour,

instead of two shared neighbours (one could say that P1,... ,P6 do not know that their eastern
neighbour is not refined). The other six equations in the middle form a connection between
pr,.. . ,P12 and 738, 7311. We will later see that this form eases the implementation of the
Poisson solver as well. However, a few questions have still to be answered.

• What is the general form of the coupling equations?

• What happens to the right hand side of the Poisson equation after performing these
row operations?

• Does this system handle the former examples well?

The first question is the easiest. The coefficients of the coupling equations are dimensionless
and therefore always the same. To answer the second question we will follow the previous
procedure again and now focus on the right hand side. We start adding two definitions. The
right hand side of these equations are zero. The equations of the sum that are added next
have the same right hand side as they would have got if we had treated the cells as being
normal. Adding the definitions of 138 and 1511 has no consequence for the right hand side. We
only have to look at the equations for P1,. . . ,p6. Let us call the right hand sides of these
equations r1,... ,r6 respectively. Furthermore, define r8 and u as the 'normal' right hand
sides of the whole cells. Of course, the relations r7 + r8 + rg = 8 and r10 + r11 + r12 =
should hold for consistency, which makes the equations for 738 and 73ii regular. The right hand
sides of the equations for j3 and 73ii we eventually get, are 3r — 8 etc. To answer the last
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—3

—3
19
3

—3

1

3
—3
19
3

—3

3

—3
19
3

—3

3

—3
19
3

—3

—3
10

1

3
1

3
1

2

—
1

—

1

—

2

—
1

1

1

——

1

1

1

1

1

—1

—1

—1

—1

—1

—1
1

—
1

—
1— 3 —1 —1

1 1 1
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question we will first eliminate the coupling equations from the system, resulting in

—36—3 1 r
';;:!4 -!

—1

-1 -1

With this operation the right hand sides of the refined cells have changed. For example, the
right hand side of the equation for Pi equals r1 + T7 — r8. For the example of Figure 5.3 this
should be zero. In this case r1 and g are both zero, so r7 should be zero. Therefore is seems
logical to define r7 = r8 = = r8 and r10 = r12 =
For simplicity the grid is now reduced to the one of Figure 5.1. The accompanying discrete
Poisson matrix simplifies to

28 _26 1 _1
9 9 9 3

26 55 26 1

9 9 9 3
1 26 28 1

9 9 9 3
1 1 1

3 1

This is the same matrix as in Equation (5.2). The right hand side has to be computed
differently compared to Equation (5.3). The first test case with uniform velocity is now also
no problem, since the matrix is the same as Equation (5.2).

5.2 Poisson solver

The local refinement will lessen the efficiency of the used Poisson solver. On a grid without
refinement it is possible to reach all grid nodes with one (nested) loop, but with mesh refine-
ment this is not that easy. One could cut the grid in five pieces or use if-statements within
the loop. The first approach makes the source code less surveyable and the second is not
efficient, especially not on supercomputers. It is very important that the Poisson solver is
efficient, since most simulation time consists of the pressure solve. To avoid these difficulties a
multilevel method is used. We will show that, when using this technique, the pressure is only
solved on the grid without the refinement and within the refinement; ioops over the whole
grid are avoided. The multi grid technique, on which the solver is based, will be explained
shortly; many literature can be found that explains it in detail. Let us take the equation
Ax b. The error in the approximation of x can be Fourier analyzed and will consist of high
and low frequency components. The high frequency component is a local disturbance (noise)
and this component of the error can easily be removed. More difficult are the low frequency
components. Relative to the grid, these components are smooth and therefore well approxi-
mated on a coarser grid. The multi grid method takes care of these last components by the
following procedure. First remove the high frequency components by means of smoothing.
Call the true solution x and the approximation y. Furthermore define the error e = x — y
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and the residue r = b — Ay. Then Ae = Ax — Ay = b — Ay = r. This is an equation for the
error, its right hand side can be computed. Since the solution of this equation will be smooth,
this equation can be solved on a coarser grid. After e has been solved on the coarser grid, e
can be approximated on the whole grid. This approximation introduces new high frequency
components in the error of x, but after correcting x with e these can be removed again by
smoothing.
In the case of local mesh refinement we want to eliminate the refinement nodes, such that the
grid becomes regular. Outside the refinement the grid is not coarsened, so the error e will be
representable without smoothing. As smoother Gauss-Seidel iteration is used. The following
algorithm describes how the Poisson equation is solved.

• Iterate a few times with Gauss-Seidel on the refined part of the grid. If the coupling
pressures are computed first, no further exception has to be made for the boundary of
the refinement.

• Compute the residue on the whole grid.

• For each refined cell compute the sum of the nine accompanying residues. This sum is
part of the right hand side of the equation on the regular grid.

• Solve the equation on the regular grid. Any method that can be used for solving Poisson
equations on grids without refinement can be used for this equation.

• Approximate the solved error on the refined nodes with linear interpolation.

• Correct y with e.

• Repeat the first step (smoothing).

If the error is still too large after these steps, the process can be repeated. However, in practice
this appears to be unnecessary. The number of smoothing iterations could be adjusted each
time step or fixed. In out experience five iterations suffice to get a large decrease of the residue.
Solving the regular grid equation takes approximately the same time as solving the Poisson
equation on the grid without refinement. Altogether, this is a very efficient and surveyable
method. The only extra work for eight new unknown pressures consists of ten Gauss-Seidel
iterations and computation of the residue. Furthermore, no large exceptions has to be made
for the boundary and this algorithm is easily extended to two levels.
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Figure 5.4: Grid used for deriving the Poisson matrix.
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5.3 Convection at boundary of refinement

In this section we will discuss the transport by convection of fluid at the boundary of the
refinement. As we have seen before, the convective term in the Navier Stokes equations
should conserve energy after discretization. So we will try to use the freedom in the 'missing'
velocities to globally preserve energy. We start with the x-direction, so the discretization of
div(uu). In Figure 5.5 a part of the grid is drawn. The three u-cells of U4, U5 and u6 are
drawn in boldface.

V4 V8

4,
tL4+tL7U4+Ü7

J1 =
2 2

U5 + U7 U5 + U7
f2

2 2

+ U7 6 +13=
2 2

4Vi0

- U3

V3

- - 13

7____
12 - tL7 • -

-
U2 U5

V2 V6

- U1 - U
Vi V5 4V9

Figure 5.5: Discretization of convection in u-cells.

We will only pay attention at the right halves of these u-cells, since the other halve is regular.
The variables v6 and V7 are virtual velocities and are still to be determined. Writing down the
exact expressions for energy is quite a large job and therefore we will use the skew-symmetry
rule that guarantees energy conservation. The three eastern boundaries of the u-cells of U4,
n5 and u6 are together the western boundary of n4. Thus the sum of the momentum fluxes
through these boundaries, denoted as f, 12 and f, is the flux through the western boundary
of the u-cell of U4. Possible formulas for Ii, 12 and f with correct skew-symmetry properties
are

Because then, for example, u7 depends on u4 with coefficient — and u4 depends on U
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with minus the same coefficient. The momentum fluxes of the u-cell of U7 now becomes

U7+U8tL7+U8 U7+U7NV8+V1O U7+U7SV5+V9
2 2

+
2 2

f3f2f1
2 2

with U7N and u7S the northern and southern neighbour of Ui'. The central coefficient equals

U7 + u
+

V8 + V — U4 + tL7 — U5 + U7 — 1L6 + U7 — V5 + 1)9

4 4 4 4 4 4

U8+VlO+V8—U6—U5—U4 V5V9
—o

4

as one could already have seen in advance by looking at Figure 5.5. The balance of U4 becomes

U4 + fl7 U4 + U7
+

U4 + 1h5 1)2 + V6 — U4 + tL U4 + U1 tL4 + U4S V1 + V5

2 2 2 2 2 2 2 2

with central coefficient

U4 +
+

V + V6 — tL4 + Ui — V + V5 —
4 4 4 4 —

U4+V2—tLl—V1

_____________

4 4

=0

We can choose v6 such that 136 makes the expression zero:

1
U7 + V6 — 1L4 — V5 = 0.

By examining the central coefficient of u we get an implicit definition of v:

1
U7 + V8 — U6 V7 = 0.

The central coefficient of U5 will become

U7 + 1)7 — —

4

but this will also be zero, since U7 + v8 — U6 — U5 — U4 — V5 = 0. The definitions of 6 and V7
can also be expressed in words: split the p-cell in the middle of Figure 5.5 into three pieces
(along the dashed lines) and choose v6 and V7 such that each part is divergence free.
One could wonder whether other solutions for v6 and 1)7 exist with energy conservation.
Indeed, this is the case if we assume the mass flux through the face with U7 to have three
different values. Looking at Ii, 12 and f one could observe that the coefficient of U7 should
contain the whole mass flux through the face with 147 (divided by 4). So this mass flux can
be split into three parts,

144 + 147 144 + AU7 U + U7 U5 + f4147 U6 + 147 U6 + (1— A — p)U7Ii
2 2

,12
2 2 2 2

with A and p some parameters.
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Figure 5.6: Discretization of convection in v-cells.

Next, we will look at the discretization of div(vu) in v-cells. See Figure 5.6 for the numbering.
The discretization of the momentum fluxes of the v-cell of v11 is the hardest part. Normally,
one would expect the central coefficient

1

+U12+vl4 —U1O—1L9—fl8—U7—U6—U5--V8).

But if

V3 + V10 6 + U7fi=
2 2'

V4 + V11 U7 + U5
f2

2 2'
V5 + V12 8 + U913=

2 2'
then i5 and ü10 will not occur iii the central coefficient of v11. One could think of averaging

'This notation will be used more frequently in the future and is not be defined explicitly anymore.
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the mass flux, such that

V3 + yb 1L5 + i6 + U7
fi

2 3
V4+VHU5+tL6 +U7'+U8+Ug+U10

f2
2 6

1)5 + V12 U8 + U9 + U
= 2 3

However, in this case the central coefficient of v3, 1)4 and v5 will not vanish. Two ways to
avoid this problem are presented, one that repairs the western flux of vu and one that repairs
f and 15.
The following discretization will preserve energy:

Vu + vilE üll + l2
+

Vt! + V14 Vt! + 1)14 — V13 + 6 Ü9 + 1110 —

2 2 2 2 2 2

1)1! + V4 U7 + 118 1)9 + V2 U5 + 116 ii + V8 Vii + 1)8
2 2 2 2 — 2 2'

with v10 = v8 and V12 = 14 It takes the eastern fluxes of the v-cell of v2, V4 and 6, SO
not of 1)3, v4 and 1)5 as one would expect. The choice of and v12 then follows because of
symmetry. If v11 has v6 as neighbour, then 6 should have v11 as neighbour. Otherwise, v11
does not see 1)5, so v12 cannot equal v11.
The other solution is

Vfl+V11EU11+U12 V11 +V!4 V12+V5U8+U9
2 2

+
2

mN—
2 2

V11+V4117+U8 V10+V3116+u7 V1l+V8
2 2 — 2 2 — 2

ms,

with io = v12 = vu and the mass fluxes ms and m such that the central coefficient equals
zero:

1_ — — 1_ms = ii + v11 — —

1 1my = —üi2+ü9+i8+tiii.

The v-cells of 7)3, v4 and v5 will always have a zero central coefficient, since Vi0 and v12 do
not occur on the diagonal of V3, v4 and 1)5. Since the resulting coefficient matrix is skew-
symmetric, the energy is conserved with one of the choices above.
Altogether we have found definitions for the missing velocities, in x- and y-direction, that
guarantee energy conservation of the convective terms. Unfortunately, an example (Figure
5.7) shows that the discretization is not even first order, independent of the precise discretiza-
tion used. The horizontal momentum flux at the left side of the grid equals

1 1. +2• 2. + 3 . 3. = 4
and at the right side

2.2 = 4.

So whatever discretization is used at the boundary, the situation of Figure 5.7 can never
remain. The problem with this case is that the us vary too much at the boundary of the
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refinement. The situation that u is constant within one refined cell and u is globally linear
could occur, see Figure 5.8.
We may expect that if the boundary is located in a region where the velocity and pressure
is smooth, so do not vary much within a refined cell, the discretization will satisfy. To study
this, some 2D simulations of the flow around a cube were done, see Figure 5.9. The coarse grid
consisted of 100 x 100 cells, uniform in flow direction and in the other direction refinement
near the channel boundaries. The Reynolds number was 200 based on the height of the
obstacle. The dashed rectangle denotes the local refinement. Four positions of the eastern
boundary of the refinement were used, denoted as A, B, C and D. Unfortunately, it appeared
that vertical velocity at the eastern boundary was not smooth. Instead, the same vortices
we have seen before are formed, see Figure 5.2. These vortices exist at the whole eastern
boundary and vortices close to each other are rotating in the same direction. Therefore, the
horizontal velocity components of these vortices cancel out and the horizontal velocity of the
flow is not disturbed. One could wonder why only the eastern boundary suffers from this
phenomenon. To start with the western boundary, it is noticed that convection and diffusion
is not dominant. Only the pressure 'sees' an obstacle and sends this information upstream.
The smooth transition at the western boundary is an indication that the pressure is handled
well. At the northern and southern boundary convection is important, especially at the right
part where the flow is turbulent. The difference is that the flow velocity along the boundary
is large and the flow through the boundary small at the northern and southern boundary.
This is opposite to the eastern boundary, where the flow velocity through the boundary is
dominant. Apparently, under these circumstances vortices originate.
The magnitude of the wiggles were measured at a few moments in time when they were clearly
visible. The wiggle was nieasured by taking three successive v2's, with v2 the last vertical
velocity within the refinement and calculating v1 — 2v2 + v3. It appeared that there was no
clear relation between £ and the magnitude of the wiggles, see Figure 5.10. However, the
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Figure 5.8: Constant horizontal velocity within refined cells.
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Figure 5.9: Channel flow around cube within refinement.

length of the area that is disturbed by the refinement boundary becomes larger for bigger £
and this makes the transition clearer visible for large £.
Further research shows that the wiggles are caused by the jump in the horizontal mesh
sizes. If a grid without local mesh refinement is discontinuous in the same way as it is with
refinement (for example Figure 5.11), the wiggles also will occur. These wiggles are caused
by an imperfection of the discretization of the n (and v) term. If we look back at Figure
3.2 we may notice that the northern and southern boundary of the control volumes are not in
the middle of the horizontal velocities. In spite of this we took the mean velocities U,j+uij+1
and u,2+L,3_1 respectively. Dropping these weights will spoil energy conservation and cause
even bigger problems therefore.
To study the consequences we will discretize the equation

9v t3v— = C—
at Ox
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Figure 5.10: Magnitude of the wiggles for different positions of the eastern refinement bound-
ary at various time steps.

with c a constant horizontal velocity. We used the grid drawn in Figure 5.11.

x=0

Figure 5.11: Grid with discontinuous grid sizes.

The finite volume discretization will become

(VO+Vl VOW+VO=
2 — 2

Vl+V2 VO+Vi=
2 — 2

v2+v3 vi+v2
=

2 2
V3+V4 V+V3

=
2 — 2

C
= (v1 — vow),

C
=

C
=

C
= (v4 — v2).

A C 0

1
dt1
dt

3dv2
dt

3dv3
dt
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Next, we take v linear, for example v = ax, and substitute this:

ij = a( + ) = ac, (5.4a)

= — = ac, (5.4b)

= — = ac, (5.4c)

3 = — = 3ac. (5.4d)

All time derivatives should equal ac, but we notice that this does not hold for v1 and V2, so
the velocities next to grid discontinuity. With this discretization v1 will increase and V2 will
decrease. This is exactly the wiggle that often appears in the solution. The spatial discretized
system is of the form

= Cv.
dt

The matrix C cannot easily be modified without spoiling its properties, but one could change
the diagonal matrix ft Looking at Equations (5.4b) and (5.4c) one could suggest taking

3dv1 3
= ac,

5dv2 5
= ac.

This sum of the cell sizes is preserved (2 + 2 = + ), but now the solution is exact for linear
v. In general the new can be defined as half the distance between both neighbouring v2.
What are the consequences of changing f? First take a look at its former definition. It is
the discretization of

[vd1,
Jn

with f the v-cell of v. This already defines the matrix 11 and therefore it is not very proper to
redefine it. Indeed, if we look at the second dimension we notice that the v term is divided
by the new volume too, but this is certainly wrong. The discretization of this term should
not explicitly depend on distances in the s-direction. But the ti contains the old width of the
v-cell and this is divided by the new width and these distances will not cancel out anymore.
This can only be justified by saying that the new matrix 1 is part of the time integration.
The new values of will make it more accurate. Steady state solutions are not modified
since then the whole 1Zv term equals zero. If the old volume is used for the y-direction
and the new volume for the s-direction, the central coefficient will not vanish (the convection
matrix has a non-zero diagonal) and energy is not conserved. The precise consequences of
taking the 'wrong' area are not yet worked out, but the flow around the obstacle showed great
improvement.
There possible is another solution that can only be used at the boundary of the refinement.
The grid for this method is obtained by joining the last two columns of cells before the
refinement boundary. The vertical velocities of the middle column (so v', vc and vs) are tiot
moved to the middle of the new cells, see Figure 5.12 and (5.13).
The new grid has the advantage that the eastern as well as the western boundary of the v-cells
are exactly in between the surrounding v1's. A disadvantage is that the vertical boundaries
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of the u-cells are not centered anymore. The exact consequences of this choice are not yet
known and further study is necessary. However, first results show great improvement.
Yet another solution is to modify the whole discretization, so the matrix C. One could think
of taking a u-cell with all boundaries in the middle of two neighbouring u's. This approach
will be explained in the next chapter.
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Chapter 6

Future Work

Skew-symmetry of the convection matrix has appeared to be a very important property. One
of its consequences is that the mean velocity at the boundary of a u-cell is the mean of the two
neighbouring velocities. Physically, this can only be the right choice if the boundary of the
u-cell is exactly in the middle of both velocities. Therefore will will propose a modification of
the former discretization that has the boundaries of the u-cells in the middle. We will need
a larger part of the grid to derive the discretization, see Figure 6.1.
Two different ways to discretize the convective term on the control volume of Figure 6.1 will
be given. Both have in common that only the mass flux through the boundaries is modified,
the mean velocity is left unchanged.

Averaged mass fluxes

We will first discuss the mass flux of the eastern boundary (fornierly Again, the
mass flux is constructed as the average of the fluxes through boundaries containing and
u÷1 (horizontal averaging). These fluxes are the half of u,41 + 2ü23 + ui and ui1 +
2ü1+13 + üii respectively (vertical averaging). So the mass flux becomes

11 1+ 2u + u31) + + 2u1+1 + u1131)).

For computing the mass flux through the northern boundary we notice that it is exactly
in between and u. Next, these fluxes are exactly in between boundaries containing
vertical velocities. So this mass flux becomes

11 1
+ ii+ij+i + + fii3) + (t3 + 7+i, + v3i + i-i-1j—1)).

The western and southern boundary can be computed analogously, yielding

+ 2i1_1 + u11) + (u11 + 2u + u1_i))

and 11 1
+ ii+lj + —i + +i—) + (v3_1 + Vi+iji + Vij2 + V+1J_2))

respectively.
Obviously, the skew-symmetry of the convection matrix is preserved with the new mass fluxes,
if the diagonal equals zero. This property has to be verified, but rearranging shows that the
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central coefficient contains the mass fluxes of cells (i, j) and (i + 1, j) with a factor and the
mass fluxes of cells (i,j + 1), (i + 1,j + 1), (i,j — 1) and (i + 1,j — 1) with a factor and
equals zero therefore.

Weighted mass fluxes

Another possible discretization is obtained if the mass fluxes of the original discretization are
corrected for 'missing' or 'extra' parts. We will introduce two dimensionless parameters A
and :

The mass flux through the eastern boundary is now given by

1 — +
+

Üij+l + Üi+lj+t
/ 2 2

The mass flux through the northern boundary is the linear interpolation of Vu +2V1+Ii and

2
vij+1 + v+l+l

+ 1 —
+

1.'
2

"
2

The western boundary is analogue to the eastern boundary, yielding

1—A +u2_
+

/ 2 2

and for the southern boundary
+

+ 1 — A
z;1 + Vi+lj_l

2 / 2

Again, we should examine the central coefficient. As we had before, the central coefficient is
a combination of the mass flows of the concerning p-cells: of cells (i,j + 1) and (i + 1,j + 1)
and of cells (i, j) and (i + 1, j). The mass flows of cells (i, — 1) and (i + 1 j — 1) do not
occur, but this is determined by the particular way of stretching used in the example.

Discussion

Both discretizations have the property that horizontal momentum that is linear in the y-
direction and transported by a uniform vertical velocity field is an exact solution of the
discretized equations. If both u and v are linear, the discretization will not be exact on
non-uniform grids, due to the fact that the velocities are not in the middle of their cell.
The discretization with the averaged mass fluxes has the property that it 'average very much',
even on a uniform grid. Therefore, we may expect less accurate results on uniform or smoothly
stretched grids. Another disadvantage is that the stencil is larger than it was. Therefore
exceptions has to be made at boundaries.
The second discretization has the pleasant property that it reduces to the original discretiza-
tion at uniform grids. On non-uniform grids the stencil will also be larger, but now no
exceptions have to be made near boundaries.
Both methods show great improvement, but further research is necessary to study the differ-
ences with the former discretization.
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Chapter 7

Conclusions

In this thesis we derived a discretization at the boundary of local mesh refinement that
conserves mass, momentum as well as kinetic energy.
The mass equation appears to be correctly discretized and does not cause any trouble. The
accompanying Poisson equation for the pressure is efficiently solved. Therefore, the time
gained by saving grid cells is not lost due to the irregularity of the grid making local grid
refinement a powerful tool.
Expressions for the 'missing' velocities of the discrete momentum equations are given, such
that momentum and energy are conserved. In combination with one dimensional refinement
this functions well. With two dimensional refinement the discontinuity of the grid cells causes
wiggles in the solution. In fact, one cannot blame the local mesh refinement, a regular grid
with a jump in the cell sizes would suffer from the same problem. To solve these problems a
few possible solutions that change the discretization locally or globally are given. These new
discretizations show great improvement, but are still not perfect yet. Further investigation
has to be done in this area.
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