
WORDT
NIET UITGELEENrJ

Reuse of preconditioners in
implicit variable time-step
methods

Jawad Al-Temimi

Mathematics

Master's Thesis

Reuse of preconditioners in
implicit variable time-step
methods

Jawad Al-Temimi

University of Groningen
Informatica
Postbus 800

Rijksunjve,sjtejt GroningenBibI,othk Wiskunde & Infornjç
Postbus 800

9700 AV Groningen
'ef. 050 - 3634001

9700 AV Groningen April 19, 2005

Contents
1 Introduction 2

2 Problem Description 2
2.1 Model Problem 2

2.2 Space Discretization of the Problem . . 3

2.3 Time Discretization 5

2.4 The variable time-step algorithm . . . 6

3 Various rewritings of the linear system and results 7
3.1 Introduction 7

3.2 Method 1 8

3.3 Method 2 11

3.4 Method 3 13

3.5 Method 4 14

3.6 Condition numbers and iteration counts 16

4 Discussion and Conclusion 18

1

1 Introduction
In this report we study the reuse of a LU-decomposition in an implicit method
for time-integration with a variable time step. The model problem is a parabolic
equation and the 9-method is used for the time-integration. The discretization
of this problem leads in every time step to a system of the form Ax = f.

In general, the work required to compute the LU-decomposition is 0(n3) and the
work to backsolve with computed LU factors is 0(n2). Though these amounts
are for full matrices, also for sparse matrices the factorization and solve is expen-
sive. In any case, it is efficient to reuse the LU-decomposition as much as possible.

If L\t is constant, the system will not change and we can solve Ax = f easily by
using the preconditioner or LU factorization of A. If it will take various values,
the diagonal of the matrix will change. We will study several rewritings of the
system in order to be able to reuse the preconditioner of previous time steps.

2 Problem Description
In this section we will describe the continuous model problem and its discretiza-
tion. For the discretization we follow the method of lines approach, hence we first
descretize in space and next apply a suitable method to the resulting system of
ODE's. In one case we apply the 9-method

2.1 Model Problem
We want to solve the following parabolic equation in two dimensions

ut=u+u+g(x,y,t), O<x,y<1, t>O
subject to the initial and boundary conditions

u(x,y,O)=f(x,y), for O<x,y<1

u(O,y,t) = fL(y,t) = 0, u(1,y,t) = fR(Y,t) = 0

u(x, 0, t) = fB(x, t) = sin((fi exp(—0.lt) + f2)t) sin(irx), for x = 0, 1

u(x,l,t) = fT(x,t) = 0, and g(x,y,t) = 0, for t>0

2

2.2 Space Discretization of the Problem
For the space discretization we use a cartesian grid with meshsize

h=—1--- x=ih,y3=jh, 1i,j�NN+1'

On this grid we use the following approximations

021t(x2, y3, t)
U÷1,,(t)—2U1,(t)+U1_i,(t)

Ox2 — h2

y3, t) U,,i(t)—2U, (t)-i-U,,_1(t)-
where U2,3(t) = U(x, yj, t)

This results use a system of ODE's

— F •(U,t) = HU1,3 +g,3(t),dt — 2,3

where g3(t) = g(xi, y3, t), and the difference operator H is implicitly defined by

— h +
U1,3÷1(t)—2U, (t)+U1,_1(t)

HU1 2(t) —
U1i,,(t)—2U, (t)+U1_1,3(t

h
Hence we have the following system

— U1,3 (t)—2t4, (t)+U_1,, (t) Ui,j+i (t)—2U;, (t)+U,_i (t)
dt — h1

Along the boundaries we have

= U2,,(t)—2U1,3(t) + U1,÷i(t)—2Ui,(t)+Ui,_i(t) + (Ubot) + gi,3(t))
dt h2 h2

— —2UN,3(t)+UN_l,j(t) + UNi+1(t)—2UNg(t)+UNi_1(t) + (Uitt) + 9N,j(t))
dt — h2

= (Ji,j(t)—2U,i (t)+U1_1,1(t) U1,(t)—2U1,1 (t) (Ui(t)
—F gi,1 (t))dt h2 h2

•j=N,i=1,2,...,N:
= U+l,N(t)2U,N(t)+Ui_1,N(t) —2U,N(t)+U1,N_1(t) + (Ut.N1(t) + g;,p,r(t))

dt + h2

Where

U0,,(t) = U(x0,y,t) = fL(Yj,t), UN+1J(t) = U(XN+l,yj,t) = fR(yj,t),

U2,0(t) = U(x,yo,t) = fB(x,t), and U,N+1(t) = U(x2,yN+1,t) =
fT(xI, t),

3

where i = 1, 2,.. . , N, j = 1, 2,... , N, and t> 0

For the implementation it is convenient to define

G,3=g, for

G1, g1,3(t) +
Uo(t) = g1,,(t) + for j = 2,3,. . . , N

GN,3 = gN,3(t) + UN+,(t) = gN,3(t) + ftt), for j = 2,3,. . . , N — 1

C2,i = g,1(t) + Ui,o2(t) = g,i(t) + 1B,t), for i = 2,3,. . . , N — 1

G,N = g,N(t) + = g,N(t) + 1T,t), for i = 2,3,. . . , N — 1

and

C1,1 = g1,(t) + [fB(x1, t) + fL(Y1, t)]

G1,N = g1,N(t) + [fT(xl,t) + fL(yN,t)1

GN,1 = gN,1(t) + [fB(xN, t) + fR(Y1, t)]

CN,N = gN,N(t) + [fT(xN, t) + fR(YN, t)]

By using this C instead of g we can solve the same problem using homogeneous
Dirichiet boundary conditions. In the following we write the system in matrix
vector notation.
First define the following matrices

—41 0... 0 LI 0... 0

L=(0 T
:: .

where I is the identity matrix of order N. Furthermore, we define the vectors

U1 U1,j

U2 U2,j

U3 U3,j

UN_i UN_1,
UN UN,3

4

and likewise
C1(t) G1,,(t)
G2(t) G2,3(t)
G3(t) C3 .(t)

G(t) = . ,G,(t) '
GN_1(t) GN_1,2(t)
GN(t) GN,,(t)

Herewith the system of ordinary differential equation can be written as

=fiu+c (2.1)

U(O) = F1 (2.2)

2.3 Time Discretization
We can apply any suitable time-step method to (2.1). We choose the 9-method
which yields

= O(uiU' + G(t')) + (1 — O)(11U + G(t')),

where Lt denotes the current time step.
This is in fact a reuse of the form

A1U' = + V (2.3)

where

= —I — OH,

P= -i+(i-O)k
V = 9G(t') + (1 — O)C(t')

For 9 = we have a second order account discretization. For other values of
9 E [0, 1] it is first order only. For the analysis it is convenient to rewrite the
system to be solved.
Define

2 2

a
=

F = —h2H, f+i = -(PU + V), A1 = aI + F (2.4)

then (2.3) is equal to
A TTfl+l —

— Jn+1

5

F

2.4 The variable time-step algorithm
In this section we will sketch an algorithm to control the step size Lt in our time
integration problem.

Algorithm 1.

Choose Lt =

(a) We will take two steps (algorithm 2.) to solve (2.3) from t till t + 2it, First
we begin from t to t + t, Second from t + tXt to t + 2t with step size At,
we have the initial state then we will compute U,

(b) We compute fni, f, f÷i and D, where D = where

f = iIu + g(t), [Dt3 approximates local truncation error].

(c) If not <DLt3 <E/.t, where e is the global error, then we will compute

new it, by ' The new value of At has to be not more than
two time the old value if we want to avoid rapid changes in tt.

(d) If Lt not decreased, then increase t by two times the old value of At.

(e) go to (a).

Algorithm 2.

Step: (Perform one time step).

(a) Compute A1 from (2.4).

(b) Solve A1U'' = fn+i from (2.5).

We assume that we have a good preconditioner PA for A, so the equation
AU = f can be solved easily. The goal is to find a way to solve the equation
A+iU' = fn+1 without constructing a new preconditioner for the matrix AM4,
but rewrite the equation such that we can reuse PA. A+iU44 = fn+1 is solved
in four ways to be described in the next section.

The result of this algorithm Figure 1 is the solution of parabolic equation (two
dimension) using Crank-Nicolson method (0 =) with variable time-stepping,
for two time values (top) and of a specific point in space (bottom left), time-step
during integration (bottom right).

6

0.4

0.2

0

-02

—04

-0.6

Solii T- 6.3

0 50 100 150 200
T

250

Figure 1: solution of the model problem
variable time-stepping, for two time values
(bottom left), time-step during integration

0 50 100 150
I

20

200250

using Crank-Nicolson (9 =) with
(top) and of a specific point in space
(bottom right)

3 Various rewritings of the linear system and
results

For convenience we define the systems By = g and Ax = f which are equivalent
to A+iU1 = f+i and AU = In, respectively. We will discuss four ways
to solve the linear system By = g without constructing a preconditioner for B,
but by rewriting B to an expression such that we can reuse the preconditioner
of A. In this report we will take as preconditioner of A the inverse of A. The
application of this preconditioner means that we have to solve a system with A.
For that we use the LLT factorization of A.

3.1 Introduction
We need to know how we can find the eigenvalues for our matrices and also
the condition numbers because the convergence depends on the condition num-
ber. First we state an important theorem (Gerschgorin theorem) to locate the
eigenvalues of the matrix A:

Theorem 1. (Gerschgorin's circle theorem) Let A be a square complex matrix.
Around every element a12 on the diagonal of the matrix, we can draw a circle
with radius the sum of the absolute value of the other elements on the same

7

Sdution at T- 136.3

row E3 a3I. The interior of such circles are called Gerschgorin discs. Every
eigenvalue of A lies in one of these Geschgorin di.scs.

Theorem 2. The eigenvalues of a real symmetric matrix are real.

Corollary 1. The eigenvalues of the matrix F defined in (. 4) are real and on
the interval 0 � A <8.

Definition 1. If V is a vector space over C, the spectrum of a linear mapping
T: V —* V is the set

o(T) = {A E C: I T — Al
I

is not invertible},

where I denotes the identity mapping. If V is finite dimensional, the spectrum
of T is precisely the set of its eigenvalues. For infinite dimensional space this is
not generally true, although it is true that each eigenvalue of T belong to ci(T).
The spectral radius of T is

p(T) = sup{A : A E a(T)}.

In the following we rewrite the linear system By = g such that the preconditioner
of A can be employed and analyse it. The first is simply preconditioning by A.
The second is a rewriting of the system. The third is the second with A as
preconditioner. In the fourth method we try to minimize the condition number
using a free parameter.

Lemma 1. Let h(A) be a rational function. Suppose A is an eigenvalue of F then
h(A) is an eigenvalue of h(F).

Proof:
Suppose U*FU = A, where U is the matrix of all eigenvectors of F, and A is a
diagonal matrix with the eigenvalues of F on the diagonal. Then U*(h(F))U =
h(U*FU) = h(A). Hence h(diag(A1, A2,..., As)) = diag(h(Ai), h(A2),.. . , h(A)),
giving the eigenvalues of h(F) on the diagonal.

3.2 Method 1
We will use the preconditioner of A to solve the equation By = , so we have to
solve

(aI + F)'[bI + F]y = , where = (al + F)'g
We can rewrite this system in the following way:

hi(F)y =

8

where

hi(F)=(aI+F)'[bI+F]
Using Lemma 1 the eigenvalues of h1 (F) are:

h1(A) =(a+A)'[b+AJ (3.1)

where A is an eigenvalue of F.
In Figure 3 we have drawn h1 (A) on the interval [0,8] where the eigenvalues
according to Corollary 1 are located. It seems that h1(A) is decreasing function
for a < b, and increasing function for a> b.

a=O.l.b—O.2 a..O.I.b.O.06

0.6
04 1

) 2 4 6 8 0 2 4 6 8
a=1,b=2 a.lb.0.5

040;8
a=10b—20 a—10b—5

0768 168
(e) (e)

Figure 2: Plots of h1(A) for various values of a and b

This property is convenient to get an impression of the condition number is(h1 (F))
which is bounded by:

,c(h1(F)) ki(a,b), where Ici(a,b) = (3.2)
mlno<A<8 Ihi(A)I

In order to show that indeed h1 (A) is monotonous, we consider the first derivative
of hi(A):

h' 1A' — (a+A)—(b+A) — (a—b)
1k 1 — (a+A)2 — (a-I-)2

Since we take positive time-steps, a and b are positive. Then we have two cases:

9

• if a < b, then h (A) 0, we conclude that h1 (A) is a decreasing function,
and condition number is bounded by:

< h(O) — b(a+8)
h1 F

— h1(8) — a(b+8)

• if a> b, then h (A) � 0, and the condition number will be bounded by:

, , < hi(8) — a(b+8)
icihiiFjj

— h1(0) — b(a+8)
The upperbound ki(a, b) is also a good approximation since, for the standard
discretization employed, we know that the extremal eigenvalues of F tend to 0
and 8 when the mesh is refined.
In Figure 4, k1 the estimate of the condition number of h1 (F), is depicted for
some values of a and b < 2a. We bound b in a since usually in adaptive
time-step algorithms one allows only a change by a factor 2.

1.0.1 a.0.1

0.05 0.06 0.07 0.08 0.09 0.1 0,1 012 014 016 0.18 02

1

a—b a=10

(b) (b)

Figure 3: The estimated condition number k1 (a, b) for some values of a, � b <
2a

The estimated condition numbers for b = 2a and b = (the end points in the
graphs of Figure 4) are:

a a+16 a+8
ki(a, & = a + 8

E [1,2] and K1(a, 2a)
= a + 4

[1,2] (3.5)

10

3.3 Method 2
In this section we will try to rewrite the equation By = g such that precondition-
ing with A-' has more effect. We will consider the rewriting in this section and
we will study the preconditioned version in the next section. We will rewrite B
in an expression of A as follows:

B=()[A—F]+F=()A+F—()F= (A+F-F)
Define C = (— 1)F, then

By = ()(A + C)y = g

Multiplying the left- and right-hand side by (I — CA') yields the second system
we will study:

()(A—CA1C)y=2
where

(I — CA')g
Again the system matrix can be expressed in F:

()(A — CA'C) = ()[(aI + F) — (— 1)F(aI + F)'(— 1)F]

So we can rewrite the above system as follows:

h2(F)y =

where we can rewrite h2(F) to

h2(F) = ()[(aI + F) — (— 1)F(aI + F)'(— 1)F]

= ()(aI + F)'[(aI + F)2 — F2(— 1)2]

= ()(aI + F)'[a2 + 2aF + F2 — F2 + F2 - F2]

= ()(aI +

(al +

So using Lemma 1, the eigenvalues of the matrix h2(F) are given by:

h2(A) = (a +
))_l[(2b — a)A2 ± 2b2A + ab21

(3.6)

where A is an eigenvalue of F.
Figure 5 shows h2(A) for some values of a = 0.1, 1, 10 and b = 2a and b = , and
we see that for these cases h2(A) is an increasing function.
We can also show that h2(A) is in general a monotonic increasing function by
considering the derivative:

11

..0.1bO2 a.O.1b.0.05

8
a=lb=2 a—lb—O.5

68 0' 2463
a1O.b=20 a.l0,b.5

a 02468
(e) (e)

Figure 4: Plots of h2(A) for various values of a and b

h' f\\ — b(a+)[2A(2b—a)+2b2]—b[(2b—a)A2+2b2A+ab21 —

2k 1 — b2(a+A)2 (a+A)2

We consider in our experiments only cases where (2 —) � 0, which makes the
counter positive for al). � 0. Hence, since the denominator is positive, we have

Hence h2(A) is increasing function. So h2(8) is the maximum of h2(F), and h2(0)
is the minimum:

h "8' — (8_iI(2a)(8)2+2(8)th2l — 64(2—)+16b+ab — 64(2—)+b(a+16)
2k 1 — a + b J — (a+8) — (o+8)

h2(0) = (a)'[ç] = b

An estimate of the condition number is now given by:

' b'—
h2(8) — 64(2—)+b(a+16) — 64(2—f) a+16

ic2a, j— — — + 3.7
h2(0) b(a+8) b(a+8) a+8

In Figure 6, k2 the estimated condition number depicted for some values of a and
b with <b < 2a.
For b = , 2a we have:

a a+16 48 a+16
ic2(a,

& = a + 8
E [1,2] and K2(a, 2a) = a(a +8) + a +8 e [1, oo) (3.8)

Note that k2(a,) = ki(a,) and that k2(a, 2a)ki(a, 2a). So no advantage with
this approach is expected, it is only a starting part for method 3.

12

a..O.1 a.1 a.1O

005 01 0Th 02 51l52 '5W15
(b) (b) (b)

Figure 5: The estimated condition number k2(a, b) for some values of a, � b �
2a

3.4 Method 3
We will study in this section the system of the previous section with precondi-
tioner A:

A-'()(A — CA'C)y = A'2
Hence, up to a factor, the system matrix is of the form (I — (A—'C)2). So for
(A-'C) small we will have a condition number close to 1. Again we write the
system matrix as a function of F.
Clearly:

h3(F) = (al + F)-'h2(F)

h3(F) = (al +

So using Lemma 1, the eigenvalues of h3(F) are given by:

h3(A) = (a +
A)_2[2b — a)A2 + 2b2A + ab2]

(39)

where A is an eigenvalue of F.
In Figure 7, h3(A) is drawn for some values of a, b = 2a, and b = , and we see
that this function is decreasing.
We can show that h3(A) is in general a monotonic decreasing function by consid-
ering the derivative:

h' — b(a+A)2 [2A(2b—a)+2b2] —[2b(a+A)I [(2b—a)A2+2b2A+ab2j
3k 1 —

— —A(2a2—4ab+2b2) — —2A(a2—2ab+b2) — —2A(a—b)2
— b(a-f. A)3 — b(a+A)3 — b(a+A)3

Hence, for the considered values of a, b and A (all being positive) h'3(A) <0, and
therefore h3(A) is a decreasing function. So h3(0) is the maximum of h3(F) and
h3(8) is the minimum:

13

h "8' — 8_2[(2b—t1)(8)2+2b2(8)+(th2l — 64(2—)+16b--ab— a + I
L b — (a+8)2

h3(0) = (a)_2[] = b

a.0.1.b.02 a—O.l.b—0.06
0[

2 0.6

18 04

6 8
.—1.b—2 a—1.b.0.5

02468
a—l0.b—20 a—1Ob—5

(e) (•)

Figure 6: Plots of h3(7t) for various values of a and b

An estimate of the condition number is now given by:

b — h3(0) —

— b(a+8)2
3k3(a,

— h3(8) — 64(2-)+16b+ab — 64a(2 —) + l6ab + a2b (.10)
(a+8)

We see in Figure 8 the estimated condition number depicted for some values of
a and b with � b � 2a.
For b = 2a we have:

a (a+8)2 (a+8)2 4
E[1,00) and

(3.11)
Note that k3(a, 2a) <ki(a, 2a).

3.5 Method 4
In this section we will study (using Mathematica) the following preconditioned
system:

14

a— a—l0

45 • 01245

4 0124

01235
3

0123
2.5

2 01225

1.5 0122

1

___ ______

05 1 15 2 5 10 15 20
(b) (b)

b+A (a—b)(b+A)
h4(A)= —

a+A a(8+a)

a=O.l
40

35

30

25

r20
15

10

005 01 015 02
(5)

+

Figure 7: The estimated condition number 1c3(a, b) for some values of a, � b �
2a

(A—' — yI)By =

where

= (A—' — 'yI)g

Again we can express the system matrix in F:

(A-' — 'yI)B = h4(F)

where

h4(F)=((aI+F)' —'yI)(bI+F)

The freedom 'y is chosen such that h4(A) is as constant as possible on the interval
[0, 8]. This leads to the requirement that h4(O) = h4(8) which results in 'y =

a(8±a) So h4(A) assumes the form:

(3.12)

In Figure 8, h4 (A) is shown and we see that there is only one internal extreme
which is a maximum for a> b and a minimum for a < b. The extreme is found
for A = —a + + a2 with value:

(—a+b+s/8a+a2)2
313

8a + a2

For a > b we can see that h4(0) is the minimum eigenvalue of h4(F), then the
condition number for a> b is bounded by:

ic(h4(F))�,c4(a,b)=
(-a+b+/8a+a2)2

(3.14)

15

b—a/2 b—2a

oe

__

03C0246
(0) (e)

Figure 8: h4(A) for various values of a, b 2a and b =

For a < b the estimated condition number is just the reciprocal of the one for
a>b.
In figure 9, k4 the estimated condition number is depicted for some values of a
and b in � b � 2a. Note that k4(a,) < k(a,) and that k4(a, b) < k1(a, b)

for a> 0 and <b < 2a.

3.6 Condition numbers and iteration counts
In this section, we compare condition numbers and iteration counts. We see in
Table 1 the estimated condition number for all methods for some values of a and
b. In Table 2 we find the iteration numbers of all methods using MATLAB's CG
to solve the system By = g. The initial guess is zero, g is a random vector, and
the iteration is stopped if the residual is less than 1.10—6.

We see the estimated condition number of Method 2 is always larger than that of
Method 1, as already derived in general in Section (3.3). This is expressed in the
number of iterations shown in Table 2. Method 3 gives condition numbers smaller
than those of Method 1 if a < b as noticed in Section (3.4). However, for a > b

it is much worse than that of Method 1 for a, b small, so it is not appropriate to
use it in that case.

The estimated condition number of Method 4 is smaller than that of Method 1,

16

a0,I a.0.1

0.05 0.06 007 0.08 0.09 0.1 0.1 012 0.14 0,16 018 02
a—I a.1

IC . 1.4

08 09 16l82
a—b a—10

Figure 9: The estimated condition number k4(a, b) for some values of a, � b �
2a

which is not surprising since Method 1 is a special case in the class of considered
methods to derive Method 4. Method 4 will be the one with the smallest condition
number in this class. We see that smaller condition numbers do not always result
in a smaller number of iterations. This might be due to the initial solution and
right-hand side.

a b k(hi(F)) [ic(h2(F)) ic(h3(F)) ic(h4(F))
El

0.1 0.2 1.9756 61.2469 1.3225 1.64

0.1 0.05 1.9877 1.9877 40.7516 1.7950
1 2 1.8000 7.2222 1.2462 1.25

1 0.5 1.8889 1.8889 4.7647 1.4705
10 20 1.2857 1.7111 1.0519 1.0212
10 5 1.4444 1.4444 1.2462 1.0897

Table 1: The condition number ic of h1(F), h2(F), h3(F) and h4(F) for a =
0.1,1,10 and <b�2a

17

fta
0.1

b yi(iter)
[y2(iter)] y3(iter) y4(iter)

0.2 5 25 5 7

0.1 0.05 4 4 16 7

1 2 6 15 5 5

1 0.5 6 6 12 6

10 20 5 7 4 3

10 5 6 6 5 4

Table 2: The iteration number for n = 10

4 Discussion and Conclusion
Method 4 shows that if we want to reduce the condition number then that can
be obtained by using a free parameter. It would be of interest to generalize
this idea. For example, the preconditioner of Method 3 is simply the product
A'(I — CA—') arid, since C is just a factor times F, it belongs to the class of
preconditioners of the form A—' — 'yA' FA'. Method 1 is in this class for 'y = 0,

the method with the smallest condition number in this class will be better than
both Methods 1 and 3.

It is doubtful whether the extra effort that is put in a preconditioner is payed
back in a sufficient decrease of the number of iterations. We see in Method 3 an
extra solve, which often dominates the cost, is necessary per iteration. We hope
that the number of iterations is reduced by a factor 2. This is in the cases where
it functions well, a < b clearly not the case.

Maybe an ideal method in the above mentioned class will do better. Method 4
gives a reduction of the condition numbers with hardly no extra costs, so this will
do better in general than Method 1. In practice we deal with an approximation
of the inverse of A due to an incomplete factorization. Then the optimization
process based on the inverse of A only leads to reasonable results if the incom-
plete factorization is accurate. In that case it does not make sense to consider
sophisticated approximation with more free parameters. So only simple forms
are relevant.

Our conclusion in this study is that computation time can be brought down
by doing something just slightly less trivial than just preconditioning with the
previous matrix. It remains however to be investigated whether this holds also if
we consider incomplete factorization.

18

References
[1] John C. Strikwerda, Finite Difference Schemes & Partial Differential Equa-

tions, University of Wisconsin-Madison, 1989.

[2] Anne Greenbaum, Iterative Methods for Solving Linear Systems, University
of Washington, Seattle, Washington, 1997.

[3] Kendall E. Atkinson, An Introduction to Numerical Analysis, University of
Iowa, 1988.

[4] Joel N. Franklin, Matrix Theory, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1968.

19

