University of Groningen Faculty of Mathematics and Physical Sciences Department Of
Computing Science

NIET

UITLEEN-

Introduction of a Development with
AT Reuse Model into the Development
method of HBB Automatisering

s
oo/
7
L]
]

Johan Bennink

begeleider: E. Dijkstra

augustus 1995

Riiksuniversiteit Groningen

E reck informatica | Rekencentrum

F 00
; AV Groningen

€71 a
-1

Introduction of a Development with
Reuse Model into the Development
method of HBB Automatisering

Johan Bennink

8 August 1995

Distribution: J. Bennink
R.G. Heller
M.R.S. de Boer
Archive HBB Automatisering (2 copies)
Rijksuniversiteit Groningen (15 Copies)

Commissioned by: HBB Automatisering
Author: J. Bennink
Date: 8 August 1995

Summary

In the research presented here the development method currently used by HBB Automatisering
is extended with Reuse of code. The current development method is very ad hoc and does
not produce any form of system documentation; design, implementation and testing are not
seen as separate phases. To prevent problems with the maintainability of the applications, the
development method will be modified using software engineering techniques. The introduction
of reuse of at the implementation (code) level is the first step in a series of projects that are
planned to improve the development method of HBB Automatisering.

The design phase is formalized by the introduction of design documents. These documents
give a description of the components that are part of the application to be developed. Each
document contains a full description of the component, a pseudo-code design and a test plan
for the component. The implementation phase uses the design documents as the basis of the
implementation. After the implementation is completed, the components are tested using the
test plan specified in the design document. All components are integrated by an appointed
(lead) developer. The lead developer makes sure that all requirements are met and that all
functionality is present.

Reusable components are stored in a software repository along with a set of attributes that
are used to identify, classify and describe the components. A tool is supplied to assist the
developer during the design phase with locating components and accessing the component
attributes.

An implementation of the model for the Visual FoxPro platform is described as well as an
evaluation of this implementation. The results of this evaluation are discussed and conclusions
about the usefulness of the model are drawn.

J. Bennink
Groningen, July 1995

Contents

1 Introduction 5
1.1 Motivation ww . w . & Fao gfe o0 80 wf B 5% o - an e et e o m 5
1.2 Contents of the Thesis 5

2 Background 6
2.1 Informal and Formal Reuse 6
2.2 ReuseChallenges 6

22.1 Managerial Challenes . « v oo oo v & ¢ 5 v 6 s m c B BO P et e s 6
222 Techulical Challenges u wd % 4o & a & - s p @ 84 « e © B8 - « . - 7
2.3 Using Reuseable Components 8
2-3:1 ATChiNING 5 o wme-i SgaEm < & me 5ol ot alkd - B a 8
28,2 Catdfgle. 34 s ois o b o hd ldin ATl s o'z s bus A0 Vet o 8
233 Locating e 8
2:3.4 Comprebending ; v« g g e 1 [nai ¢ EME o sabeovwdan odbld 9
2855 sRetfieval s wa s & bl clheiin £ B T e @ S A LA so AR il 9
24 Concluding Remarks, 9
24.1 Reuse-as We'seeilt . vu s e teboboeibost of 48 20 sk ald i o 9

3 Current Development Method 11
3.1 Requirements eg= 11
3.2 Design and Implementationt 12
3.3 Operation and Maintenance 12

4 Revised Development Method 14
4.1 Life Cycle Model Chamnges 5+ s s0«oae s by, . B8 14
4.2 The Software Repository 14

4.2.1 Repository Structure e 15

CONTENTS

422 Repository attributes . ., .., . sbaparss s sdpadnh ba = nniay
4.2.3 BRepository Browser « . -« s34 s pamssangnsnmpngmnme s
43 Design Phase .« . us candudb®oq.anatosssanensbis i =shs
4.3.1 The Desigi PTocess . ¢4 s« o5 5.+ o 5om =4 b4 A8 68 6 g Mg b
432 Design Validation: = + « « « « « ¢« v s v s rmsws s vamd s owrsnn am
4.3.3 The Design Document « . . . « s « o« « « « s & « o« o9& RIS LNy
44 Implementation Phase o , s 4 o ¢ cu a5 « 8 6.8 dgaws i dblhenl S5 «
4.4.1 The Implementation Process
45 Test Phase « n. neamam b saas ssddod s aossn o s
4.5.1 Software Component Testing . . « u ' « «v o & sial o kb o el l S
4.5.2 Application Testing oL,

Implementing the Revised Development Method for Visual FoxPro

5.1 The Sofftware RepositorF .« k #a s awd - « a'e? Be dia 40 465 05 8 E) BN
5.1.1 Repository Struetuse . . . ‘s ve o8 20 2§ 28 =4 b 2 pld il o oS
5.1.2 Repository Attributes . som o 3209+ smmams =5 7 o/p 88 50 my
5.1.3° Repository Biowser ruu wi ia B e sdus bd o4 %n s sasb ad 0B
5.1.4 Repository Components . » s 0 ¢ 82 5% ws mo=s 84 ws wi ng b8

52 DesignPhase , . vwv s vonvd 1310 @7y s ysanypepr nans e
5.2.1 The Design Document . o .. .4 : . ::c0cnsasnwas s snsss
5.22 The Pseudo-code Language v o v v v vt 0w oo v oo weenae
5.2.3 Specifying Reusable Components

5.3 Implementation Phase « o s o a na s bmashodn'dadudwsdsdiions ws
5.3.1 Using the Design Documents
5.3.2 Retrieval of Reusable Components

54 Tast Pliase & o8 wg sehé s oo cm ol nll 0 b ko dahab @b el i it

Evaluation of the Revised Development Method

6.1 Building a New Applicationt ernness
6.1.1] Dadigniphase .: . de:asmemand nung vabulobisbends s
6.1.2 Implementation Phase & o s s s s arame wd bapd ba o PP PFdEe
6.1.3 Building Eflott o« v v« : « v ¢ » « husnaidinsssnsiesat] i

6.2 Modifying an Existing Application . . . « ¢ « ouas ™ i aliatilSlE ST S
6.2.1 Modification Aspects P ——_ T
6:2.2 Modification BEort & « we 9 nele ana e pe—— Y P D

17
17
19
19
19
20
21
21
22
23
23

24
24
24
26
29
29
30
30
35
35
36
36
36
37

CONTENTS

7 Concluding Remarks
7.1 Conclusions . . . v« c o v e e e e e e e e e e e e e e e e e
7.2 Enhancements and Future Research

A Programming Standards
A.1 Name Conventions
A.2 Abbreviations

A.2.1 Abbreviation Rules

A.2.2 Creating New Abbreviations

A.3 Source-code Layout
A.3.1 Indentation
A3.2 Comments.

A.3.3 Comment Headers
B Design documents

C Repository Summary

44

48
48
49
50
50
50
51
51
52

54

64

Chapter 1

Introduction

1.1 Motivation

The research described in this thesis has been carried out in fulfillment of the requirements
for a Masters degree in Computer Science at the University of Groningen.

The goal of the research was the introduction of reuse techniques into a development method.
The development method of HBB Automatisering (HBB), a software company which I founded
with two fellow students, was used to investigate the possibilities of introducing reuse tech-
niques.

This current development method used at HBB is not a textbook example of the use of
software engineering techniques, but rather an accumulation of ad hoc techniques that form a
surprisingly successful development method. Creating good — in the sense of working properly
— applications is one thing, being able to provide long-term maintenance and support is
another.

HBB Automatisering realizes that a long-term commitment to their applications is crucial for
its clients. Therefore, several projects are foreseen — of which this is the first — to improve
the development method using software engineering techniques. Reuse of code was chosen
as the first project because the current development method is very much based on direct
implementation.

1.2 Contents of the Thesis

In chapter 2 a brief discussion of the background of software reuse is given. The next two
chapters, 3 and 4, describe the current and the revised development method respectively. The
discussion of the current development method is very short because it uses very little software
engineering techniques and is mainly based on ad hoc procedures. The implementation of
the revised development method for the Visual FoxPro platform is described in chapter 5.
An evaluation of the revised development method is given in chapter 6. For this evaluation
a prototype application was built and a modification of the prototype was made. Finally,
chapter 7 gives some concluding remarks and directions for future reseach.

Chapter 2

Background

Software reuse has attracted increasing attention over the past years and is now of major
interest. The term software reuse is applied to many techniques, methods, and processes. It is
the reapplication of all kinds of knowledge about one system to another similar system. The
aim of software reuse is to (i) increase the quality of the created systems and (ii) to reduce
the development and maintenance effort, both in time and cost. This chapter is intended to
give the reader a short introduction into the field of software reuse.

2.1 Informal and Formal Reuse

Informal reuse has been used for as long as computers have been around. It occurs when a
software component, not originally designed and implemented with reuse in mind, is reused.
Generally, in such a case, some modifications are required to adapt the component to the new
application. This form of reuse is also called code-grabbing or software salvaging.

Formal reuse is the (re)use of software components that have been specifically designed, built,
archived and catalogued for reuse.

2.2 Reuse Challenges

The challenges associated with implementing software reuse can be divided into two categories:
managerial and technical. What follows is a brief summary of some of the challenges; a detailed
discussion on this subject is beyond the scope of this thesis. A discussion on reuse challenges
and inhibiting factors can be found in Reed [16], Biggerstaff and Richter [4] and Tracz [20].

2.2.1 Managerial Challenges

The introduction of a reuse program into the development process can, in the long run, result
in a substantial reduction of the overall development costs. Introducing such new techniques
means a large investment of company resources. Developing a successful reuse program is a
nontrivial investment that does not have an early payoff. The organizational structure of most
companies precludes such capital investments regardless of the potential long-term payoff.

CHAPTER 2. BACKGROUND 7

A reuse program should therefore be initiated at a time that the company is not involved
in projects that are under deadline pressures. Furthermore, it should be a top-down effort.
Higher management has the influence and drive to follow through on long térm goals such as
improving the development process.

It should also be understood that initiating a reuse program can mean different things. It
could mean simply buying reusable component libraries trying to capitalize on high-quality
libraries. It could also mean initiating a reuse program to motivate developers to build reusable
components instead of starting from scratch with each new project. This would result in the
creation of a central repository that can be utilized and maintained company-wide. The goal
here would be to increase the productivity of the entire company in the long term. It is very
important to set realistic goals for the reuse program. Is it possible to reuse across projects?
How repeatable is the software process in general? These are just some of the questions that
need to be answered before realistic goals can be set and investments made.

For reuse to be successful developers must be encouraged to find and reuse existing components
rather than write new components from scratch. This attitude must be promoted by the
higher management or it will not be successful. Measuring productivity will be different when
employing reuse techniques. Developers should not only be credited for finishing a projéct on
time, but also for how many components were reused. This could be achived by tightening
the requirements for component size and maintainability of the component. Both criteria
are greatly influenced by an increase in the amount of reuse. If development for reuse is
not a separate discipline developers should also be credited for how many new — reusable
— components they write. Developers could even be credited each time that their reusable
components are reused.

2.2.2 Technical Challenges

Depending on the size of a software repository it may be impossible for a developer to know
the details of all components that are available for reuse. To overcome this problem it should
be possible to somehow locate reusable components. Furthermore, enough information on
the components should be available to understand how the components work and how they
are to be used. Preferably there should be a way to share information about the use of the
components. Developers must be encouraged to find and reuse components, this will involve
supplying several techniques and tools to aid the developer.

The use of reusable components will only be beneficial if the components are of a guaranteed
quality. Quality is not limited to defect-free code, but also includes the existence of design
information, testplans, documentation, checklists and examples of how to use the components.
Standards should be defined to obtain a consistent layout of this information across the entire
repository.

Change management is another important challenge. Modifying th sttucture of interface of a
library after it has been released will in most cases cause great difficulties for the users of the
library. Whereas exstensions of a library generally do not form a problem. Using a library is
equivalent to using a programming language. Most programmers do not welcome changes in
a programming language!

CHAPTER 2. BACKGROUND 8

2.3 Using Reuseable Components

Development of reusable components does not involve any new techniques. The techniques and
tools used for traditional application development can be maintained although standardization
is very important. The techniques and tools for using reusable components however are much
less known. Before a reusable component is available for reuse it will have to be archived in
some form. Information about the component will have to be catalogued and there will have
to be a tool that enables a developer to locate and understand the component. How reusable
components are reused depends on the way that the components are stored.

The aspects of reusing a component discussed here depend heavily on the number of reusable
components in the repository. For small repositories locating a component will in most cases
be as simple as going through a list of all components, whereas for large repositories examining
all components might be a time consuming task.

2.3.1 Archiving

Traditionally, archiving is performed on the basis of source files and libraries. Hierarchical
directories add a mechanism for efficient access and navigation. Because one of the primary
challenges associated with software reuse is change management, some archiving methods use
a version control system to help maintain reusable components.

Software repositories add a higher level of support for accessing components and change man-
agement than the traditional archiving methods. The essénce of software repositories is to
provide a standard, integrated way of managing all types of software engineering data, whereas
traditional archiving methods are mostly restricted to the source-code.

2.3.2 Cataloging

Cataloging involves creating a database of information about the reusable components in the
repository. One way to catalog components is by classification based on a set of attributes.
The attributes used in the classification should accurately describe the reusable component.
Such techniques are only suitable for components that have been specifically developed for
reuse.

2.3.3 Locating

Depending on the way the components are catalogued there are several ways of locating the
components available to the developer. Information retrieval systems for example offer tech-
niques for querying, such as boolean expressions and proximity matching. If a catalogue is
used based on a classification mechanism then searching for reusable components involves pro-
viding values for one or more classification attributes which may match one or more reusable
components.

CHAPTER 2. BACKGROUND 9

2.3.4 Comprehending

To decide whether a reusable component provides the needed functionality, the developer
should be aided by tools that provide information about the reusable components such as
functionality, dependencies and any other information required to allow a reusable component
to be selected.

An example of such a tools is the class browser. The class browser allows a developer to inspect
the properties and methods of classes. Some class browsers can even give information about
the procedures and methods called from a specific niethod, or a list of procedures calling the
method.

Of course, these tools rely on the presence of some form of documentation. Without good
documentation a developer will have a hard time comprehending the component. In fact, it
can be argued that undocumented components are not suitable for reuse.

2.3.5 Retrieval

How a reusable component is retrieved depends heavily on how the components are archived
and whether the relation between the repository and the reused component should be kept
intact. If the component is stored as a source file it can be retrieved by simply copying, or
referencing the source file. If a version control system is used retrieval may involve a ‘check
out.” Even more difficult means of retrieval may be necessary if the components are stored in
a repository. A software repository however, often provides the benefit of tracking who has
(re)used a given reusable component.

2.4 Concluding Remarks

The opening paragraph of this chapter mentioned that software reuse is the reapplication of all
kinds of knowledge about one system to another similar system. The main topic of discussion
in this chapter — apart from a short excursion into the subject of managerial challenges —
has been the reuse of code. Biggerstaff and Richter [4] note that the payoff for code reuse
quickly reaches a ceiling, and they are supported by several other authors such as Horowitz
and Munson (8] and Neighbors [13].

So why is reuse of code the main topic of this chapter, and in fact of the entire thesis? In
section 1.1 the most important reason was already given. The current development method
used at HBB is very implementation oriented. Maintenance and support for the applications
developed using this development method will become more and more difficult, and costly.
HBB would therefore like to change the development method to be able to give guarantees to
customers about support. To make the transition as smoothly as possible the techniques are
introduced one at a time, starting with the Design and Implementation phase.

2.4.1 Reuse as we see it

The use of definitions for terms such as component differs somewhat from other literature.
Therefore it is important to discuss some of the definitions used in this thesis.

CHAPTER 2. BACKGROUND 10

Development for Reuse During application development the resources are directed to
solving the problems at hand, ie. developing the application within the available time, and for
the agreed amount. Whereas Development for Reuse depends on higher initial costs, both in
time and money, that will be 'repayed’ in future projects. This strategy is in conflict with the
project goals of application development. Therefore Development for Reuse will be considered
a separate discipline.

Development with Reuse This is what the research is about. Currently reuse is achieved
in the form of code grabbing, ie. cutting existing code from previous pro jects and pasting the
code into a piece of a new project. However, the purpose of this research is to increase the
quality and maintainability of the applications, not the introduction of reuse techniques on its
own.

Component The terin component is used to denote both application components, made
specifically for one application, and reusable components. Furthermore, a component usually
denotes a procedure of function. In this thesis the term component is used to denote procedures,
functions, modules, and even sub-systems. Especially when the term component is used to
denote a reusable component this extended definition applies.

Chapter 3

Current Development Method

The current development method does not use explicit life cycle phases. In fact, application
development is conducted by ad hoc design based on the functional specification followed by
immediate implementation and testing of the software components. A full description of the
current development method is presented in Bennink [2].

To help visualize the development method we will first introduce a software life cycle, shown
in figure 3.1, that represents the current development method used at HBB.

Requirements

Design and Implementation

3

Operation and Maintenance

Figure 3.1: Software life cycle representation of the current development method.

Application development is carried out in the form of projects. Each project uses the life cycle
model to divide the application development into phases. Each phase contains tasks which
bave to be performed and deliverables which have to be produced.

3.1 Requirements

The Requirements phase is used to obtain an understanding of the problem of the customer.
This is achieved by conducting interviews with the management and the future users. These
requirements are used to create a functional specification and a global decomposition. The
deliverables for the Requirements phase are:

11

CHAPTER 3. CURRENT DEVELOPMENT METHOD 12

Requirements Specification Document The Requirements Specification (RS) document
is the receptacle for all requirements — both functional and non-functional — gathered during
the interviews with the customer and the future users. The requirements might be contradic-
tory, redundant, disordered, ambiguous, possibly even incorrect and perhaps — but hopefully
not — incomplete. The requirements can be stated in natural language or any other technique
for representing the requirements, provided it is understandable for the customer.

Functional Specification Document The Functional Specification (FS) document is stated
in natural language and contains an adequate statement of needs that are all demonstrable.

The specification should be clear enough — and sufficiently detailed — to allow the customer

to understand it, and allow the developers to proceed from its definitions. Moreover, the FS

should be unambiguous and consistent.

Global Decomposition The functional specification is used to divide the specified subsys-
tems — each containing several soft ware components — among the developers. Each developer
is allotted an equal share of the subsystems that have to be implemented. This division of
labour is based on implementation effort, not on design decisions. Therefore the global de-
composition is not seen as part of the design phase.

3.2 Design and Implementation

In this phase each developer is working on the software components that were allotted to him
during the global decomposition. From the functional specification of the software compo-
nent the developer starts implementing based on the first possible design solution, or partial
solution, of the component that comes to mind’. Any unresolved parts of the solution are
designed and implemented in a similar fashion. After completion of a software component the
developer tests the validity of the implementation against the FS and RS documents.

For each project a Lead developer is appointed. The lead developer is responsible for collecting
and compiling the finished software components to a complete application. As a consequence,
a prototype of the application developed so far can be shown to the customer for testing
very soon after implemenation has started. The implementation phase is concluded with the
acceptance of the application by the customer.

Due to the implicit nature of the Design and Implementation phase it is not possible to describe
this phase in more detail.

3.3 Operation and Maintenance

This phase is not really part of the application development process. It is a phase that takes
place after the application has been developed and is officially delivered to the customer.
The ‘Maintenance’ part involves correctional maintenance only, it does not involve adding
functionality. Functional enhancements are added in a new — separate — project with it’s

1Please note, this is how application development is currently conducted, not necessarily how it should be
done.

CHAPTER 3. CURRENT DEVELOPMENT METHOD 13

own life cycle based on improvement suggestions. The deliverables for the Operation and
Maintenance phase are:

Improvement suggestions Improvement suggestions resulting from the use of the appli-
cation by the customer which lead to follow-up projects.

User Error reports Basically error reports are classified by HBB into two categories: ‘do
it for a future release’ or ‘do it now.’ The ‘do it now’ changes get done right away, because
delay is — for some reason — unacceptable. The modified application is sent to the customer
right away. The less urgent ones are gathered first, and are fixed after some period of time.

Chapter 4

Revised Development Method

Reuse can be conducted across the entire software development process. To prevent the intro-
duction of too many changes at once the current investigation is limited to reuse of source-code.
The changes made in the development method will only effect the Design and Implementation
phase since it is the only phase involving the creation of source-code.

4.1 Life Cycle Model Changes

To emphasize the changes made in the Design and Implementation phase, the life cycle will
be modified. Design and Implementation will be viewed as two separate phases in the new
situation and Testing will be added as a separate phase. The revised life cycle is shown in
figure 4.1.

Figure 4.1 might give the impression that the Design, Implementation and Test phases are car-
ried out one after the other. In fact these phases are carried out independently for each software
component. After the component is tested it is integrated into the application developed so
far, which is why this method is called incremental integration. The software components do
‘not go through the phases simultaneously, but proceed at their own pace, ultimately — on
completion and integration of the last component — resulting in the finished application.

Since the Requirements and Operation and Maintenance phases remain unchanged they will
not be discussed here. Before discussing the phases that will be modified, the next section
introduces a software repository.

4.2 The Software Repository

For reuse to take place during application development, there must be a collection of reusable
components, and developers should be aware of their presence. Two kinds of reuse can be
distinguished: sharing of newly-written code within a project and reuse of previously-written
code on new projects. Similar guidelines apply to both kinds of reuse. The latter kind of reuse
is accomplished by a global repository. To enable reuse of the first kind, a local repository
— with the same structure as the global repository — is used to store the components made
specifically for one project. By using the same hierarchy -as the global repository it should be

14

CHAPTER 4. REVISED DEVELOPMENT METHOD 15

Requirements

e

Design

9

Implementation

1

Testing

Operation and Maintenance

Figure 4.1: Software life cycle of the revised development method.

possible to classify these specific components for reuse, possibly incorporating them — after
some generalization — into the global repository. In this model, Development for Reuse is
considered a separate discipline from Development with Reuse. Evaluating and generalizing
components is a resource intensive process. In many cases application development is under
severe pressure of company resources. Development for Reuse should therefore be conducted
at a time that the company is not involved in projects that are under deadline pressures, or
by a part of the company that is not influenced by deadlines.

The current discussion is only concerned with the global repository; a local repository could
however be maintained in much the same way as the global repository. In fact, it might be
preferred to do so because this reduces the effort needed to turn application specific components
into reusable components. Besides distinguishing between global and local repositories it might
be a good idea to create repositories, or distinguish between components in one repository, for
specific problem domains.

Reusable components can be stored in many different ways. A software repository does not
only contain the reusable components themselves, but also stores information on the com-
ponents such as keywords, documentation, testcases, checklists and examples of how to use
the component. This information allows a developer to search for a component, and access
information on the component in ofder to comprehend its functionality.

4.2.1 Repository Structure

The repository can be structured in several ways. Burton et al. [5] describe an integrated envi-
ronment for software reuse based on their reusable software library (RSL), a relational database

CHAPTER 4. REVISED DEVELOPMENT METHOD 16

approach. Arnold and Stepoway [1] present additional background information regarding the
desirable properties of a repository for reusable software. The emphasis of their approach is
on customization and the mapping of retrieval information into an information retrieval (IR)
database. Another IR approach is described by Frakes and Nejmeh [10]. Their paper focuses
on the reuse library built by using CATALOG, an IR system developed at AT&T. The paper
concludes with some trends in IR research and development likely to improve IR systems as
tools for reuse and includes the formats of the module and function prologs as well. Prieto-
Diaz and Jones [15] propose a different strategy based on a faceted classification scheme. The
Asset Management Program (AMP) consists of several groups of people that work together
to create, maintain, and manage the Asset Library. The paper describes the organizational
structure and the classification scheme.

The repository structure chosen for this method is based on the RSL approach from Burton
et al. [5]. The first classification mechanism is a repository identification code to specify the
category of the component and its hierarchical relationship to other components. To keep the
tree structure shallow — and the identification code tractable for use in the design phase — the
tree hierarchy is defined using three hierarchical levels. Although more levels are not prohibited
it is strongly recommended to keep the tree structure shallow. The second mechanism permits
descriptive keywords to be associated with the components. Unlike the RSL approach there is
no limitation to the number of keywords. A controlled vocabulary as proposed by Prieto-Diaz
and Freeman [14] to prevent duplicate and ambiguous keywords will be used.

The hierarchical levels are obtained from a distinction of application components. The repos-
itory will be limited to one implementation language, the hierarchical levels are based on that
language. Each implementation language uses a separate repository. The tree structure with
three levels is not required for all repository components. The three levels of the repository
hierarchy are:

Global Component Level The global component level categorizes components based on
the application components distinguished in the implementation language. An example of
such a categorization for Visual FoxPro (VFP) would be the distinction between menus, forms,
reports, labels, (auxiliary) procedures and form controls.

Detailed Component Level This level is a more detailed categorization of the global
component level categories. For example, the global component category controls could be
categorized into: descriptive labels, textboxes, buttons, listboxes, checkboxes, optionboxes,
and grids. One could also distinguish between the type of variable that is returned, or the
type of operation performed by the component. For this research the first categorization is
chosen because it more closely resembles the current practice.

Functional Component Level At the functional component level the categorization is
based on functionality. For example, textbox controls might be distinguish categories for:
personal data, address data, product data, identification codes, etc. Every level below this
functional component level is considered a functional component level as well.

CHAPTER 4. REVISED DEVELOPMENT METHOD 17

4.2.2 Repository attributes

The component information stored in the repository is gathered during the component design
from the design document (see section 4.3.3.) Depending on the component type not all
information is used. The component information stored in the repository is shown in table 4.1.
The components 1, 2 and 3 are used to identify a component. Attributes 4 to 8 are used to
classify components, the other attributes are descriptive.

The reusable component code is stored in a format usable by the implementation language
and is determined by the archiving method. A single file can be used to store the component
code, or multiple components can be grouped into one library file. Depending on the language
a special type of library file can be used, or the code could even be stored in a database.

Reusable components go through a life cycle of their own. The repository may contain several
versions of the same component. Usually the new versions will be bug-fixes, or enhancements
of the quality, efficiency or functionality. It is allowed to use older versions of components
provided that the components are not marked ‘Disabled’. Components marked ‘Disabled’
have bugs, or use unsupported features and their reuse is therefore prohibited. The next
(maintenance) release of an application using the ‘Disabled’ component will be forced to use
another component, i.e. will not compile without specifying a replacement component.

Components marked ‘Obsolete’ should no longer be used. They do not present any problems,
but newer — better — components have been developed to replace these components. Better
in the sense that the new components are of a better quality, are more efficient, or more generic.
The (re)use of ‘Obsolete’ components for new projects should be strongly discouraged, if not
prohibited. Reuse of these components in existing projects should not be prohibited, although
some form of discouragement could incite developers to use a replacement component.

A status description is stored in the repository to aid the developer. It contains the reason for
the component’s status, and possibly a reference to a replacement component.

Although it is possible — and for large projects it may be essential — to use the repository for
the (local) application repository as well, the model presented here does not use a repository
for (local) application components. The design documents from the local components should
provide adequate information to enable reuse within the project.

4.2.3 Repository Browser

The Repository Browser is an application that allows a developer to search for components
in the repository using on-line querying. A repository with thousands of useful components
of which a developer is not aware that they are at his/her disposal is useless. A developer
should always have some global knowledge of the components found in the repository, however,
as the number of components in the repository grows it may not be humanly possible to
know of all components that are available. The repository browser can be used to search for
reusable components or to access component information without knowledge of the underlying
hierarchy of the repository. The repository browser could serve as a maintenance tool too,
allowing component attributes to be changed, such as Component status.

Although the repository browser can assist a developer in locating a component it is not a
replacement for a thorough knowlegde of the repository. Without prior knowledge of the
available components using the repository will be a very time-consuming process. The repos-

CHAPTER 4. REVISED DEVELOPMENT METHOD 18

p—

L =z IS A B ~ N VU)

10.
11.
12.
13.
14.
15.
16.
1.

. Repository identification code. This is a code specifying the complete hierarchy path
of the component.

. The name of the software component.

. A version number.

. The base class.

. A number of keywords that identify the component based on its functionality.

. The author of the software componeént.

. The component type.

o Function. A function. This type is added mainly for backward compatibility

with older, existing, libraries.

¢ Class. An OO class definition.

o Datastructure. A description of a datastructure. In most cases a database
structure description.

o Documentation. This can be a programming standard, component description,
or usage description, or any other kind of relevant documentation.

o File. Any other file. A complete description of the use, and structure is given
in the description attribute.

o Method/Event. This type is used to denote the method/event code of classes.

. Component status. The status of a component is retained in this attribute. Possible
status values are:

o Enabled. This component can be reused without restrictions.

¢ Obsolete. Reuse of this component should be discouraged.

¢ Disabled. Reuse of this component is prohibited. Any application currently
using the component should be modified, preferably with the next release.

. Status description.

A description of the parameters.

A description of the — optional — return value.
The properties.

A list of methods/events.

A brief textual description of the functionality:
The component code, or a reference to its location.
References to documentation and checklists.

An example of the use of this component.

Table 4.1: Component attributes stored in the repository.

CHAPTER 4. REVISED DEVELOPMENT METHOD 19

itory browser merely supplements this knowledge by displaying detailed information on the
components.

4.3 Design Phase

The design phase is performed individually for each function stated in the Functional Spec-
ification (FS) document. Several solutions should be proposed, of which one is chosen for
implementation in the next phase.

4.3.1 The Design Process

To sucessfully introduce reuse it is necessary to eliminate ad hoc design. The design process
should be modified in such a way that the developers design solution is captured in some form
or another

To formalize the design process a developer is required to use a design document (see sec-
tion 4.3.3) for each software component. Each new — auxiliary — component that the de-
veloper uses during the software component design should be specified in a separate design
document. The use of reusable components does not require a separate design document
because a design and implementation of the reusable component is already present. The ef-
fect hoped for is that a developer will invest time in trying to find and specify a reusable
component instead of creating new — ad hoc — components during the design process. How-
ever, it is not a requirement that the design contains at least a minimum number of reusable
components. This would seriously interfere with the prime objective of the design phase, i.e.
designing a solution to the functions stated in the Functional Specification (FS) document and
the requirements from the Requirements Specification (RS) document.

The appointed Lead Developer should be given the authority to enforce the correct use of
the design documents. When design documents are misused by developers the lead developer
should be authorized to reject the design. Enforcing correct use of the design documents could
be made part of the design validation.

4.3.2 Design Validation

Validation of the design is very important. Undetected errors that are carried forward to the
implementation phase and remain undetected until the test phase can be very expensive to
correct. They may require a complete redesign and reimplementation of parts of the applica-
tion.

After the developer has designed the software component, the FS and RS documents are used
to validate the design. Each functional requirement should be met by a part in the design.
Moreover, for each part in the design there should be a motivation in the FS and/or RS
document. This prevents the design solution from being overcomplete. Besides validating the
design using the Functional Specification and Requirements Specification documents the lead
developer inspects the design documents to see whether they are used correctly. Misuse of the
design documents does not necessarily mean that the design is wtong, but it may lead to a
degradation of the maintainability of the resulting application.

CHAPTER 4. REVISED DEVELOPMENT METHOD 20

4.3.3 The Design Document

The design document is used to retain vital design information about the software component.
This information is retained in free-form natural language format, which allows the developer
to describe the functionality and choices of the component in detail. The design document is
divided into two sections: Component Attributes and Component Design.

Component Attributes Each software component is described by several attributes, shown
in table 4.2. A distinction is made between a function and a class definition. Although this
distinction is introduced sather early in the design process it should not lead to any problems.
Moreover, by forcing the developer to think about this distinction early in the design process,
the resulting implementation will not comprise large sets of separate — but related — functions
that should have been turned into a class.

Attribute F/C | Description

Name F,C | The name of the software component.

Version F,C | A version number.

Base class C The base class.

Keywords F,C | Several keywords that identify the component based on its
functionality.

Author F,C | The author.

Parameters | F A description of the parameters.

Properties C The properties.

Methods C A list of methods.

Events C A list of (re)defined events.

Return value | F A description of the — optional — return value.

Description | F,C | A brief textual description of the functionality.

Table 4.2: Software component attributes. F and C denote the use of the attribute for a
Function or Class respectively.

If the component is turned into a reusable component using Development for Reuse, then
the component attributes can be used to fill the corresponding repository attributes. As was
mentioned earlier, Development for Reuse is considered a separate discipline because of the
conflict of interests with regular application development.

Component Design There are several design methods and notations, some more suitable
for specific purposes than others. The notations considered for use during the component
design are listed in table 4.3, an extensive discussion of design notations is given by Macro [11],
Charette [6] and Sommerville [17).

For the proposed development with reuse method the pseudo-code notation is chosen. Most
developers are familiar with pseudo-code, and resistance against the use of pseudo-code is low
because it allows the developer to think in terms of an implementation. However, this is alos
one of the major drawbacks of this notation. Developers should be educated not to mistake
the use of pseudo-code as a sign that implementation is imminent. Unlike Macro [11] this
method does not restrict the use of pseudo-code to the level immediately ‘above’ (i.e. before)
implementation.

CHAPTER 4. REVISED DEVELOPMENT METHOD 21

Jackson System Development (JSD)

CCITT Structured Design Language (SDL)
Petrinets

Design Structure Diagrams (BSI 6224)

Structured Analysis and Design Technique (SADT)
Structured Data Flow charts

Structure charts

Pseudo-code

Table 4.3: Different design notations.

The pseudo-code language syntax should provide a higher degree of abstraction than an imple-
mentation language. The help with the acceptance of the model the major program control-
flow structures should at least be present in the pseudo-code language. Currently, the de-
velopers are very implementation oriented, switching to a notation with a formal nature will
probably meat much resistence amongst the developers.

Reusable components used in the design can be specified using the repository identification
code, component name and version number of the component. Using this approach the reusable
components specified in the design are clearly distinguishable from the other pseudo-code.

The component design also contains the pre- and postconditions of the component, and if any,
the assumptions, simplifications and limitations in the design of the component. A test plan
describing the tests and their required outcome to test the correctness of the implementation
of the component is also included.

4.4 Implementation Phase

After the design phase is completed and one of the suggested solutions is chosen, the developer
can proceed with the implementation.

4.4.1 The Implementation Process

The implementation of the software components is carried out on the basis of the design
document. The pseudo-code designs from the design documents are implemented in the im-
plementation language. Although this is mainly a creative process carried out by the developer
the design document should serve as a blueprint during this process. le. no design alterations
are allowed in this phase. Furthermore, the defined programming standards (see appendix A)
should be followed to guarantee consistency with other application code.

The method used to integrate the reusable components specified in the design depends heavily
on the implementation language, but almost all languages provide some mechanism to include
additional code. Languages such as Pascal use include files, more modern languages such as
Visual FoxPro use external (compiled) modules, or units. Languages like C use external decla-
rations, and the reusable components are added during the linking process. Checklists supplied

CHAPTER 4. REVISED DEVELOPMENT METHOD 22

with the reusable components should be used to check for correct use of the components.

However simple this may sound, the implementation of a design can be very difficult. We
will not discuss the pitfalls of implementing designs here since it is beyond the scope of this
investigation. A brief discussion of implementation pitfalls is given by Charette [6].

4.5 Test Phase

Component testing is concerned with inspecting or executing a component with the intent of
finding errors. Testing and debugging are sometimes considered the same thing. This is not
true, they are related but different. Testing is used to detect the presence of errors while the
object of debugging is to locate the position of an error and correct it.

Testing can be conducted by the author of the component (author testing), or by another
developer (adversary testing) using static or dynamic methods. To test the application to-be
a different testing method is used, called integration testing.

Static testing Static testing is a disciplined review and analysis of the application design and
code. It is useful for finding logic errors in an application, as well as questionable programming
practices. Static testing includes manual code inspections, structured walk-throughs, static
path analysis and other techniques that don’t require the application to be executed.

Dynamic testing Dynamic testing is the execution of the code under controlled conditions
to observe the results. A well-defined test plan is usually a necessity when using dynamic
testing as the tests are derived from the specification, and are checking for particular results.

Both static and dynamic testing can be undertaken from either a white-box or black-box
perspective. Black-box testing does not use any of the internal design knowledge of the com-
ponent, but relies on what the external behaviour of the component should be. Inputs are
specified, and outputs are observed. White-box testing is based on the internal logic of the
component.

Integration testing Somewhere during the development of the application the modules
will have to be assembled to form the complete application. One approach is to wait until all
modules have been tested, and then combine them into the application and test the application
in its entirety. Another strategy is to produce the application in increments of tested units.
Modules are integrated and tested in small sets. Once the modules are correct]y integrated
new modules are added, and tested in combination. Testing is completed when the last module
is integrated and tested.

The test phase presented here uses all three testing methods. Testing is conducted at two
levels in the development process; at the software component level and at the application level.
Application development proceeds in an incremental way by adding software components to a
prepared framework. This framework is considered the application to-be until the last software
component is integrated.

After all application components have been integrated one more set of tests is used, the
acceptance or certification test. If the tests are passed, the application is officially complete.

CHAPTER 4. REVISED DEVELOPMENT METHOD 23

Due to the use of actual data throughout the implementation and test phase the acceptance
test is — in most cases — a formality. The acceptance test should show that the application
meets all requirements stated in the RS and FS document. The specification for this test is
prepared during the design or implementation phase.

4.5.1 Software Component Testing

Software component testing is carried out by the implementor of the component. First a
static test is performed — in the form of code reading — to determine the correctness of the
implementation using the RS and FS documents. If no errors are detected a dynamic test is
performed using the tests specified in the design document. For large components, such as
modules or sub-systems!, code inspections will be used.

4.5.2 Application Testing

Application testing is conducted by the lead developer. This type of test is also called in-
tegration test. The lead developer is responsible for integration of the developed software
components and for testing their validity. At this level the testing process is only involved
with finding errors in the implementation, not correcting them. The lead developer conducts a
black-box test of the application modules. Any errors found by the lead developer are reported
to the implementor of the component containing the error. When the developer of the com-
ponent is convinced of the correctness of his implementation a white-box test is performed.
Although this could be considered debugging the aim of this test is not to fix the problem,
but to locate it. Once the problem is located the approriate developer is instructed to fix it.

The lead developer is responsible for making sure that all functions specified in the FS docu-
ment are implemented correctly and that the requirements stated in the RS document are all
met.

1Please note, the defimition of a software component used in this thesis differs from definitions found elsewere
in the literature. A software component can be a procedure, a module and even a sub-system.

Chapter 5

Implementing the Revised
Development Method for Visual
FoxPro

During the implementation of the revised development model — from January to June 1995
—_ Visual FoxPro was only available as a Beta version. Visual FoxPro was chosen, instead of
the previous version (FoxPro v2.6a), because of the new powerful features. Visual FoxPro has
an active data-dictionary and is fully object oriented. The latter simplifies the introduction of
the proposed reuse techniques.

The revised development method is described in the order of the life cycle phases. Since the
Requirements, and Operation and Maintenance phases are not changed by this investigation
they will not be described, see section 3.1 and section 3.3 for a discussion of these phases. The
first section of this chapter describes the software repository.

5.1 The Software Repository

In this section the implementation of the software repository will be described. The structure
of the repository hierarchy and the repository browser will be described and the techniques
used to create complex functional components. The components supplied with this first im-
plementation of the development method will be listed as well as the concepts used in their
implementation.

5.1.1 Repository Structure

Although this discussion of the repository structure is restricted to the Visual FoxPro platform
it should be possible to adopt it to other platforms. The repository hierarchy is constructed
from the different language components. For Visual FoxPro this leads to a repository hierarchy
with categories as shown in figure 5.1.

The repository hierarchy levels are implemented using MS-DOS directories. The implementa-
tion of the libraries depends on the library category, table 5.1 gives a list of library categories
and the type of library stored in that category for the Visual FoxPro implementation.

24

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO

25

[RPS]

|

| [| ’ !
[IMG] [DBF] [DOC] [FRX] [LBX] [SCX]

VCX] [1IB]]

[TXT}ACED]

[(EDT H{FRM |
SPN
IMG
LOPG H{ CNT |

Figure 5.1: Base repository hierarchy.

IMG

DBF

DOC

FRX
LBX
MNX
PRG
SCX

VCX
LIB

Images

Databases

Documentation

Reports
Labels
Menus
Procedures
Forms

Classes
Libraries

BMP/ICO/CUR images and pictures used for button and image
controls.

DBC/DBF databases and tables. The tables stored here are used
as templates. For example tables with lookup values are stored
here.

ASCII, Latex or WordPerfect documentation describing program-
ming standards and other conventions.

FRX report files.

LBX label files.

MNX menu files.

PRG procedure files.

SCX form files. This category is used to store standard dialogs
only. Template forms should be stored in the VCX\FRM category.

"VCX library files. Mainly form controls.

FLL/DLL/OCX 3rd party libraries.

Table 5.1: Visual FoxPro library categories and their contents.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 26

RPSID C(100) | Repository identification code.
COMPNM C(20) | Component name.
VERSNR N(6,3) | Version number.

BASECLASS C(20) | Baseclass.
KEYWORDS Memo | Keywords.

AUTHOR C(8) Author.

COMPTP N(@3) Component type.

COMPSTAT N(3) Component status.

DESC Memo | Component functionality description.
STATDESC Memo | Status description.

PARDESC Memo | Parameter description.

RETVALDESC | Memo | Return values description.
PROPDESC Memo | Properties description.

CDDESC Memo | Method/Event code description.

COMPCD Memo | Component code, or a reference to the code.
REFERENCE | Memo | References to other documentation for the component.
EXAMPLE Memo | An example of the use of the component.

Table 5.2: Repository database attributes.

Visual FoxPro 3.0 does not support the use of classes in reports, labels and menu’s. These
categories are therefore used mainly for storing templates and should unfortunately be reused
with code-grabbing.

5.1.2 Repository Attributes

This section describes syntax of the attributes used to identify, classify and describe the repos-
itory components. The current database structure of the repository is shown in table 5.2.

Memo fields are used extensively because they allow free-form input. The format used in
the repository can be adjusted very quickly, without affecting the database structure. Af-
ter the evaluation phase a more complex database scheme could be made to make database
maintenance easier.

Repository Identification Code The repository identification code uses a similar syntax
as MS-DOS directories. The code consists of the global, detailed and functional component
levels. The first two are single levels, the functional component level can comprise several
sub-levels. The hierarchy levels should use descriptive names, preferably created using the
abbreviation rules (see section A.2.) The syntax for the repository identification code is:

< Global > \ < Detailed > \ < Functional >

Component Name Component names should be descriptive. Component names are cre-
ated using the abbreviation rules. The methods and events of classes use the classname as
part of the component name. The syntax of the component name is:

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 27

[< ClassName > .] < Name >

Version Number The version number consists of a major and minor version number, and
a revision level. Both major and minor version numbers have two digits, the revision level has
one digit. The syntax is:

" < Major > . < Minor >< Revision >

New components start with version number 1.000, first release, no updates and no revisions or
interim releases. The major version number changes when the component is changed dramati-
cally, smaller changes are reflected by the minor version number. Small bug-fixes are reflected
by the revision level code. After a maximum of nine revisions the minor version number is
changed and the revision level is set to zero. After a maximum of 99 minor releases the major
version number is increased and the minor version number is set to double zero.

Baseclass This field is used for classes to store the baseclass of the component.

Keywords Keywords should be listed as a comma separated list. The order in which the
keywords are listed is not significant.

Author The name of the author. Author names are coded, the author codes should use the
abbreviation rules also. Currently three author are defined:

BFER Marc de Boer
BNK Johan Bennink
HLR Ron Heller

Component Type The component type is coded as shown below. Checklists, Design Docu-
ments, etc are referenced using the Documentation References field, and cannot be entered
or accessed separately. The documentation component type is used to enable the inclusion of
programming standards, and other conventions.

1 Function

Class
Data-structure
Documentatjon
File (general)
Method /Event

DOk N

Component Status The component status is coded as:
1 Enabled

2 Obsolete
3 Disabled

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 28

Component Functionality Description A detailed description of the functionality of the
component. It is not necessary to describe the parameters and return values for functions, or
the properties and methods/events of classes.

Status Description A short description explaining the reason for the component status.
Enabled components do not have a status description. To add a reference to a replacement
component REPLACEMENT =< RPSID >\ < COMPNM > {< VERSNR >} should
be added as the first line of the description.

Parameter Description Parameters are listed as:

< Parameter >:< Description >

Parameter names should be created using the abbreviation rules. The description should be
short and descriptive. Possible values for parameters should be listed as:

< Value > — < Value — description >

Return-value Description This field is used for return values of functions only. Changes
made in reference variables should be described in the Parameter Description field. The
first line of the description should be TY PE =< Variable — type > to denote the variable
type of the return value. Variable types are codes as shown in table A.2 in appendix A.

Properties Description Properties are listed as:

< Propertyname > [#][P] =< Description >

Properties added to the current class are marked using a star (*.) Protected properties are
marked with the option letter P. New Property names should be created using the abbreviation
rules. The property description should be short but descriptive. Possible values for properties
should be listed as:

< Value > — < Value — description >
Methods/Events Description Methods and Events should be listed as:

< Method/Event > — < Description >

Methods/events that are defined within a single class should be described here. Methods/events
that are defined in several classes should be described in a separate repository entry.

Component Code This field either holds the component code, or a reference to a file
containing the code. Visual classes for instance hold a reference to a class library. A reference
is entered as FILE =< path + filename >.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 29

Documentation References This field contains a comma separated list of files containing
additional documentation on the component. This documentation includes design documents,
checklists and test reports. References to project documentation from other projects should
be used carefully. The contents of such documentation is modified over time and the reference
could become invalid. This field may also contain a SEE ALSO: directive on the first line
followed by a comma delimited list of other, related, components in the repository.

Example This field holds an example of the use of the component, or a reference to an
example file or program. References are entered as FILE =< path + filename >.

5.1.3 Repository Browser

The first implementation of the repository browser is restricted to the repository database
— containing the component information — and a very simple browser form. During the
evaluation of the development method the need for a production repository browser application
will be investigated. If needed a repository browser application will be provided in the future.

The repository consists of only one database (see tablelmpDBFStruc.) For the current imple-
mentation this is sufficient, a production repository browser could require a more elaborate
database to allow complex search features. The reports supplied with the first implementation
give listings of the repository contents sorted on specific repository attributes.

o Complete listing with all attributes sorted on RPSID+COMPNM+VERSNR.

¢ A summary listing with a description of the functionality and properties/methods or
parameters/return value descriptions for classes and functions respectively.

e Listing of Keywords and the components using them.

5.1.4 Repository Components

The components developed for the initial repository are listed in appendix C. In this section
some of the concepts used in the development of these components are discussed.

Encapsulating the base-classes The Visual FoxPro (VFP) base classes are encapsulated
to enable default values for components to be modified very easily. New classes are derived
from the VFP classes with hbb added as prefix to their name. Specific properties can be set
in these classes to introduce company defaults such as colours or fonts used by HBB. This
approach could also be used to create customer defaults, i.e. classes based on the HBB classes
with specific alterations to the customer defaults. The hbb prefix would then be replaced with
an appropriate three letter identification for the customer.

The encapsulating classes should be used to derive other new classes from instead of the VFP
base classes. For customers with their own set of encapsulating classes, their classes should be
used during the application development instead of the HBB classes.

Functional Data Containers Functional data containers (FDC) are visual container classes
situated in the VCX\CNT category. An FDC is built using other reusable components and

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 30

can contain other FDC’s. This container-in-container technique allows components of unlim-
ited complexity to be built without losing the flexibility of using the components separately.
The FDC’s are building blocks of known quality that can be used to quickly build a form. In
figure 5.2 an example of the use of FDC’s is given. The containers form a layer over the smaller
containers or objects used in their creation.

The number of layers shown in this example will — in most cases — be too high. In most
cases the initial implementaion of a container component will be using normal components
(non container components) only. After some time, when parts of the component are usable
on their own they can be places in a separate container and the intial container component
can be updated. Ultimately the FDC from figure 5.2 might evolve.

This example also shows an example of the encapsulation of Visual FoxPro base classes
(Layer 1) which are used to add company defaults. Layer 0 and Layer 1 components are
not considered functional data containers (FDC), only components based on a container class
are considered FDC’s.

5.2 Design Phase

In the design phase the design process is formalized by forcing the developer to use a de-
sign document during the software component design. Although most modern application
development platforms support visual creation of menus, forms, reports and labels it is not
recommended to use these tools in the design phase unless strict rules on how far the visual
design is to proceed are set up. Otherwise, a developer might be tempted to start the imple-
mentation before a design using the design documents is completed. The current development
method used at HBB does not use any rules to regulate the design process and the problems
associated with ad hoc design (see section 1.1) were the main reason for starting this research.

5.2.1 The Design Document

The design document contents varies depending on the type of software component. Each of
the design documents distinguished for the Visual FoxPro platform is described below.

The attributes used in the design documents are similar to the properties used in Visual Fox-
Pro. The benefit of this similarity is that the solution is oriented towards an implementation,
but without being one. This will be especially important during the initial introduction of
the reuse model. The current developement method is very implementation oriented, the ac-
ceptance threshold for the reuse model will be lower if the developer is allowed to gradually
adjust to the new approach. A risk of this type of design documents is that the developers
stick to their implementation oriented development, but call it a design phase. It is therefore
essential to evaluate the design documents after a trial period, and if necessary adjust the doc-
uments. The documents supplied should be considered draft versions anyway, the documents
will probably need adjustments after the trial period to streamline their use. The syntax of
the attributes is similar to the syntax used in the software repository (see section 5.1.2.) The
design documents supplied with the initial version of the reuse model are listed in appendix B.

Menu Design In (Visual) FoxPro menus are mainly used to set up the menu, and perform
application initialization. Although application initialization is performed by the menu, it is

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO

31

Layer 4: Container component

Naam || Nm ssenv || TsnVsl Voorl | V1tr
Voornaam|| VoorNm Roepnaam|| RoepNm Aanhef || Ttl
Gesl|| Gst|||| Bs{|Bs|||| Nat|} Nat

Gebdat|| GbtDat

Gebplaats|| GbtPlts

|

Naam || Nm

Y

Y

Label

|

hbbLabel hbbTextBox

|

TextBox

Layer 3: Container components

Layer 2: NmLbl and NmTxt components

Layer 1: HBB base class components

Layer 0: Visual FoxPro base classes

Figure 5.2: An example of the use of Functional data containers to create layers of containers.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 32

preferred to gather all the initialization code in a separate procedure which is called from the
menu. Menus are designed using a menu design document, where the developer is required
to specify the attributes shown in table 5.3 for each (sub)menu.

MenuName A menu for this entry. All entries with the same MenuName appear in
the same menu. At least one entry should have the name ‘Menu Bar’, which
is the top-most menu.

Prompt The menu prompt text.
Message A short description of the menu purpose.
Type The type of menu/option. This can be:

e Command. A function call, or a piece of code, specified in the action
attribute.

e Submenu. The submenu name is specified in the action attribute.
The submenu definition should be specified elsewhere in the menu
definition form.

Action For type ‘Command’ the function — or code — that should be executed.
For type ‘Submenu’ the MenuName of the submenu is specified here.

Table 5.3: Menu attributes.

Each menu consists of a menu bar with submenus. Each submenu contains zero or more menu
bars or other submenus.

Form Design All (data-entry) forms are designed using the form design document. The
form layout is sketched on squared paper. The form is described by the attributes of table 5.4.
The fields specified in the form sketch are described by the attributes of table 5.5. This
approach is very similar to the ad hoc design of forms as it is currently used. Instead of using
the visual designers of (Visual) FoxPro a form sketch is made on paper. Hopefully this helps
the developers adjust to the more formal approach smoothly.

Report and Label Design Reports and labels are designed in the same way as forms. The
report and label design documents consist of two parts: a visual layout sketch, and a list with
attributes for each field specified in the report or label. Both reports and labels use the same
attribute lists, but the layout sketch is different. This sketch should also define the papersize,
and for labels the label size. The attributes used in these documents are shown in table 5.6.

Code Design Besides the visual design aspects of the design phase the software components
use pseudo-code design. The code design document used for the pseudo-code design varies
with the type of software component. Methods and events of classes, database field validation
and trigger code, and procedure/function code are specified using the attributes shown in
table 5.7. The designs of classes are specified using the attributes from table 5.8, the code
design of methods and events is specified using the attributes of table 5.7. For visual classes,

such as container components, a layout sketch similar to the form sketch should be supplied
as well.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 33

Name A unique name to identify the form.

BaseClass The form is based on a form class.

Tables The databases/tables used in the form.

Type Forms can be either:

e Modal. A modal form remains active until it is closed. Most dialogs
are modal.

o Modeless. Modeless forms can coexist with other modeless forms, i.e.
multiple modeless forms can be active at the same time.

Properties Other property values.

Methods Any methods and their functionality used in the form. The actual method
code design should be specified using a code design document.

Description A description of the functionality of this form.

Limitations A list of assumptions, simplifications and limitations made during the de-
sign of the form.

Test cases Test cases — and their outcome — required to test the implementation of
the form.

Table 5.4: Form attributes.

Name A unique name to identify the field. Different fields should at least be
unique within the form.

BaseClass The baseclass of this field.

ControlSource | The source of this field. This attribute denotes the table column that the
field is bound to.

InputMask An input picture used for entering into the field using a specific format.

Properties Other properties.

Methods Any methods and their functionality used by this field. The actual method
code design should be specified using a code design document. A reference
to the code design document should be given here also.

Description A description of the use of this field.

Extra Any other options for the field should be described in free-form notation

here.

Table 5.5: Form field attributes.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 34

ControlSource | The source of this field. This attribute denotes the table column that the
field is bound to. It is also possible to specify a calculation to be used as
the source of the field (a calculated field), i.e. the sum of all values of a
table column for example.

FormatMask A format picture used for formatting the data of the field.

Description A description of the use of this field.

Extra Any other options for the field — such as whether repeated values are
printed — should be described in free-form notation here. If specific options
are used regularly they could be included as separate attributes in the
future.

Table 5.6: Report and label field attributes.

Name The name of the software component. For class methods and events the
name should be preceded by the classname as: < ClassName > . <
Name >

Parameters A description of the parameters of the software component. Parameters
of the predefined methods and events should also be specified explicitly to
enhance readability.

Return value A description of the — optional — return value of the software component.
Again, return values of predefined methods and events should be specified
too.

Description A brief textual description of the functionality of the software component.

Pseudo-code The pseudo-code implementation of the software component.

Limitations A list of assumptions, simplifications and limitations made during the de-
sign of the component.

Test cases Test cases — and their outcome — required to test the implementation of
the components.

Table 5.7: Attributes for software components.

Name The name of the class.

BaseClass The baseclass for this class.

Properties A list of properties of the class definition with a short textual description

of their functionality, and/or possible values.

Methods/Events | A list of methods and events supplied with the class. The code design

should be specified using the attributes shown in Table 5.7.

Description A brief textual description of the functionality of the class.

Limitations A list of assumptions, simplifications and limitations made during the

design of the component.

Test cases Test cases — and their outcome — required to test the implementation

of the components.

Table 5.8: Attributes for classes.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 35

5.2.2 The Pseudo-code Language

The proposed pseudo-code language is an abstraction of the Visual FoxPro language. The
main language characteristics such as structured programming commands, general variable
manipulations and a small subset of the commands for manipulating databases and records
are maintained. The pseudo-code language also supports the use of pre- and postconditions.
The exact syntax of the pseudo-code language is kept fuzzy. Formalizing the language syntax
will only be necessary if developers misuse the pseudo-code syntax, i.e. produce very imple-
mentation oriented pseudo-code designs. The appointed lead developer could be instructed to
make sure no misuse occurs.

5.2.3 Specifying Reusable Components

Menus, reports and labels are treated different from forms. Forms support the use of object
oriented classes. Reuse is achieved by specifying a reusable component in the BaseClass
attribute of a form field. The properties and methods attributes in the form field design
documents should be left blank. For Menus the reusable components are specified in the
MenuName attribute, all other attributes should be left blank since they will be ‘inherited’
from the reusable component. Visual FoxPro does not support object orientation in menus,
which means that reuse is achieved by code-grabbing for the time being. Hopefully the next
release of Visual FoxPro will support object orientation in menus, and reports and labels as
well. Reports and labels use the ControlSource attribute to specify the reusable component,
again, all other attributes should be left blank. Reusable components are specified using
their repository identification code, component name and version number. The syntax for
the component reference is: RPS\<repository ID code>\<Component name>{Version} The
component reference always begins with RPS\ to differentiate between pathnames used to
denote files, and component references. For example, assume we are reusing a Functional
Data container (FDC) that will display personal data of clients in a client data-entry form.
In the form layout sketch the location of the FDC is shown, the container component itself is
specified in the field-list of the form design document (see figure 5.3.) The BaseClass attribute
is used to specify the reusable component, i.e. RPS\VCX\CNT\PERS\FullPers{1.000}.

{l Field description |
Name cntFullPers ’
BaseClass RPS\VCX\CNT\PERS\FullPers{1.000}

ControlSource

InputMask

 Description This container is a combination of three other containers, cntNm,

cntVltr and cntTsnVsl. Together they form a container with a persons
full name.

Properties _

Alias | PERS

Methods/Events

| | |

Figure 5.3: Example of a form field attribute entry.

Specifying reusable components in pseudo-code is achieved in a similar way. The component

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 36

reference is used as the name of the function and uses the same syntax as a normal function
call, or variable reference. For example, assume we want to reuse a component that foriats
a date in a given format. The pseudo-code call to the component — in this case a non-visual
function — might look like :

dFormattedDate = RPS\PRG\FMT\DAT\FormatDate{1.000}(Date(), "DD/MON/YEAR")

Although a developer should have an adequate knowledge of the components in the repository,
it may not be possible for him to know all the components in full detail because of the size of
the repository. Therefore the developer is assisted by a repository browser (see section 5.1.3.)
Using the repository browser it is possible to call up detailed information about components
using only global knowledge of the available components in the repository.

5.3 Implementation Phase

In the implementation phase the selected design solutions are implemented. The process of
translating the designs into the implementation language is mainly a creative process. As was
mentioned in section 4.4.1 a discussion of the implementation process is beyond the scope of
this investigation, we limit the discussion about the implementation phase to the introduction
of reuse techniques in this phase.

5.3.1 Using the Design Documents

The design documents are used as the basis of the actual implementation of the application
components. The forms, menus, reports, labels and other parts of the application are described
in detail by the design documents. The implementation of menus is very straightforward. The
menu design document uses a similar layout as the Visual FoxPro (VFP) menu designer. For
the visual implementation of reports and labels the layout sketches of the design documents
are used. The fields in the report are implemented using the field attribute lists. During the
implementation of a form, the form layout sketch is used to create the visual layout of the
form. The form fields are created using the field attribute lists of the design document.

5.3.2 Retrieval of Reusable Components

Retrieval of reusable components used in menus, reports and labels is, unfortunately, only
possible through code grabbing. Visual FoxPro does not support the use of classes in menus,
reports and labels. Hopefully this support will be added in a future version of Visual FoxPro.
Forms and non-visual application code does support the use of classes. The following discussion
is mainly concerned with the retrieval of objects for the implementation of forms, although
reuse of non-visual classes is possible for some other application components.

Depending on the type of field (the baseclass) specified in the form design document the class
library containing the reusable component is opened, and the component is dragged (drag-
and-drop) onto the form. Visual FoxPro takes care of instantiating the class and inserting the
object into the form.

CHAPTER 5. REVISED DEVELOPMENT METHOD FOR VISUAL FOXPRO 37

Reusable components specified in the pseudo-code design (i.e. non-visual components) are
reused by opening and closing the class library manually in the initialization and finalization
code of the form respectively. A class can be instantiated using the CREATEOBJECT func-
tion, i.e. < Variable >= CREATEOBJECT(” < BaseClass > "), where. < BaseClass >
denotes the reusable component to be instantiated and < Variable > is the variable used to
reference the instantiated object.

The reusable components are clearly marked in the pseudo-code design (see secti.c'm 5.2.3.)
Since the library path is part of the component identification finding the class library containing
the specified reusable component is no problem. After the component is inserted, either using
the visual designer, or by the developer in a code snippet, the checklists of the reusable
components should be used to check for correct use of the component. In some cases a reused
component relies on the presence of other library components. The checklist entries of the
reusable components indicate which dependencies exist, and which other things have to be
checked to be able to successfully (re)use the component.

5.4 Test Phase

The formal test strategy as described in section 4.5 is introduced into the development method.
However, the test phase is very dependent on the test plans, and test cases stated in the design
documents and on the checklists of the repository components. The current repository does
not have enough test cases to adequately use and evaluate the test phase.

Software component testing is carried out by the implementor of the component. The Lead
Developer is reponsible for integrating the components into the application to-be.

Chapter 6

Evaluation of the Revised
Development Method

To test the reuse model presented in this thesis it will first be used to create a new proto-
type application, and second to modify an existing application. Since Visual FoxPro differs
substantially from FoxPro v2.6a the modification will be of the prototype developed with the
reuse model and not of an existing HBB application.

The initial repository consists of just over 100 components (see appendix C for a summary.) A
full production repository would probably require more components in order to be of any long
term use. However, there is no point in building reusable components when they are never
used. Once the model is being used at HBB new components will be developed on demand.
The size of the repository is sufficient to evaluate the usefulness of the model.

6.1 Building a New Application

The new application is a prototype Telemarketing application and is based on an existing mod-
ule developed for the Relatiebeheer application. The Relatiebeheer application was developed
for a direct-mail company to manage client/product data. The Telemarketing application is
used to call prospects based on the information from the Relatiebeheer database. Prospects
that have not become customer after a certain period of time will be called to ask for the rea-
son they did not become customer (i.e. prospects are possible clients, who have not returned
their offer/contract.)

After defining the requirements, and completing the functional specification, the development
proceeded with the design phase. The Requirements, and Operation and Maintenance phases
will not be discussed since they are not modified by this model.

6.1.1 Design phase

The current development method used at HBB does not use an explicit design phase. Therefore
the revised development model does not only introduce reuse, it introduces an entirely new
design phase. For this evaluation we will concentrate on the reuse introduced in this phase,
and not on the design phase itself.

38

CHAPTER 6. EVALUATION OF THE REVISED DEVELOPMENT METHOD 39

In the first part of the design process the design documents were used to describe the appli-
cation components using descriptions of their functionality. Sketches were made to define the
visual layout of forms, reports and labels. This part of the design, although new, was very
intuitive to use. The next step in the design process was detailing the application components
described in the design documents using pseudo-code. This was done using the code design
documents.

Locating Components During the first part of the design process reusable components
such as buttons, containers, etc. were specified. In the pseudo-code design non-visual reusable
components were used such as support functions for conversion of data.

Locating reusable components was very easy because of the clear repository structure, and a
thorough knowledge of the available components. Component details such as method parame-
ters or allowed property values could be inspected using the repository browser. Although the
design documents and the repository browser are implemented separately, it seems that they
could be integrated. This would allow the design documents to be filled in using an automated
entry form which uses the repository browser to access component details.

Although the size of the repository still allowed browsing through all components, a production
repository — with many more components — will probably necessitate a filter mechanism to
restrict the number of components to a reasonable number.

Functional Data Containers The use of Functional data containers (FDC) seems very
promising. During the prototype design only a few FDC’s were available. Nevertheless, spec-
ifying a complete data-entry container for personal data with a standardized user-interface
(look-and-feel) makes rapid application development very easy. Although the experience from
this prototype indicates an advantage of the use of FDC’s, it will depend on the stability of
the problem domain whether FDC’s will work all the time. Currently HBB builds applications
for a reasonably stable domain (processing client/product data) which would greatly benefit
from Functional data containers.

Even though the Functional data containers (FDC) seem useful, providing containers such
as show in figure 5.2 will be very inefficient. When the smaller containers of the layers 2
and 3 are never used there is no point in creating them. As with reusable components in
general, Functional data containers will probably start out as a simple container with all
objects included into layer 4. On demand this FDC could be split up to use components of
layer 3 complexity, and so on.

Ad hoc Design The introduction of design documents greatly reduced ad hoc design. For
instance, during the design of a class only the functionality of the methods and events is
described; their implementation is described in a separate document. Using the design docu-
ments the design process proceeds in a layered fashion where every following layer adds more
detail to the design until the point is reached where implementation can start.

The transition from ad hoc design to using the design documents was not very hard. It took
some getting used to but after completing a few documents they became second nature. This
easy transition was achieved because the notation used in the design documents is very similar
to the notation used by Visual FoxPro. This allows the developer to hold on to his way of
thinking without actually performing ad hoc design.

CHAPTER 6. EVALUATION OF THE REVISED DEVELOPMENT METHOD 40

Design Documents It was already mentioned that the design documents supplied should be
regarded as draft versions. During the use of the documents this became apparent. The design
documents required a lot of repetitive work, such as entering project and author information
and supplying the descriptions of reusable components. As was mentioned earlier this problem
could be overcome by integrating the design documents with the repository browser somehow.
Apart from this minor inconvenience using the design documents was very intuitive.

Local Reuse During the application development reuse withing the project seems very
easy. Local reuse was not included in this research because it would mean that development
Jor reuse would have to be incorporated as well. Developing reusable components during the
development of an application leads to a conflict of interest because valuable resources have
to be spend developing components that can be reused in subsequent projects. Even though
local reuse was not incorporated in this research it might be worth investigating.

Designing components using the design documents was very intuitive. The extra work involved
in using the documents did not prove to be a problem. Locating reusable components did
not interfere with the actual design process and specifying reusable components using the
component reference was simple.

6.1.2 Implementation phase

Not all repository components have been implemented. In some cases only an empty compo-
nent was available. Testing the runtime behaviour of the application was therefore not always
possible.

The sketch of forms, reports and labels included with the design documents was used to
create the visual layout of the application component. Using the sketches did not cause any
problems. Placing controls (buttons, checkboxes, etc) onto the form using the Visual FoxPro
form designer was very easy. The library was located using a part of the component reference,
the repository identification code. The repository identification code is a relative directory
path which enables the developer to locate and open the library file containing the reusable
component. After opening the library, reuse consists of a drag-and-drop of the required control
onto the form. Visual FoxPro takes care of adding the required code to the form, and the
project manager includes the library in the project automatically.

Reuse of other, non-visual, components involved including the library containing the compo-
nent in the project manually. The library was opened in the initialization part of the form,
menu or program file and a statement to close the library was added to the finalization part
of the component. Calling the reusable component is no different than using other classes, or
functions.

After an application component ws completed the checklists of the reusable components used
in the application component were used to check for correct usage of the reusable component.
Although the checklists were still rather short their use to prevent common mistakes proved
very helpful.

The use of naming conventions (appendix A) made checking for correct variable types of
return values very easy. Only untyped variables required a closer look, other variables could
be checked instantly using the variable-type prefix.

CHAPTER 6. EVALUATION OF THE REVISED DEVELOPMENT METHOD 41

6.1.3 Building Effort

The introduction of a design phase obviously affected the building effort. Although the use of
the design documents was somewhat time-consuming, they prevented ad hoc design which was
one of the reasons for starting this research. Resistance against using the design documents
was low, except for the repetitive work involved. The solution to this small problem might be
the integration of the design documents with the repository browser. This would enable the
use of repository information in the design documents.

Locating components in both the design and implementation phase was very straightforward.
A reasonable knowledge of the repository was enough to find the appropriate component in the
design phase. In the implementation phase, the form designers of Visual FoxPro allowed an
easy selection of the libraries, mainly because the repository identification code was identical
to the directory structure. For reuse of non-visual components simple procedures were used
to automate their reuse, and keep the application consistent.

Apart from using repository components and introducing a design phase, the use of the pro-
gramming standards has resulted in better readable code. This increase in code readability,
and consistency ultimately reduces the maintenance costs, and increases the possibility of
being able to give long term support.

It is difficult to compare the development time and effort of the Telemarketing prototype with
existing application developed using the current (ad hoc) development method. Due to the
lack of documentation it is not possible to calculate the development effort of these existing
applications. The development effort of the prototype is shown in table 6.1.

Type of Development Divided over

Component time Design | Implementation
RS Document 2.00 X X
FS Document 4.00 X X
Tables (5) 1.00 X X
Menus (1) 0.30 0.20 0.10
Forms (5) 25.00 || 15.00 10.00
Reports (1) 0.45 0.25 0.20
Integration 2.00 X 2.00

[Total | 35.15 hours =

Table 6.1: Development effort for the Telemarketing prototype in hours and minutes.

The ratio of reuse vs. new code was approximately 34:66. Although it must be said that this
was due to the fact that one very complex component was (re)used in multiple forms. But
even a ratio of 25:75 would not have been that bad.

6.2 Modifying an Existing Application

Besides using the revised development method for new applications, a modification of an ex-
isting application was performed to evaluate the method. For this modification the prototype

CHAPTER 6. EVALUATION OF THE REVISED DEVELOPMENT METHOD 42

Telemarketing module was used. During the initial development of the Telemarketing pro-
totype an existing (reusable) component was used that was developed for the Relatiebeheer
application. The Relatiebeheer application is used by data-typists, the data-entry components
were therefore oriented towards fast entry of data without having to look at the screen all the
time. The Telemarketeers do not need fast entry of data. They have to ask the prospects some
questions and give them the possible answers. Therefore they would like to see a data-entry
form that shows them the possible answers which allows them to guide the prospect through
the questions-and-answers of the form. The modification of the Telemarketing application
consisted of a modification of those aspects of the data-entry forms of the prototype.

6.2.1 Modification Aspects

The presence of documentation, other than the source-code, is very important. It is often
very hard to see what design decisions were made based on the source-code. The revised
development method uses design documents to supply this documentation. The application
design described in the design documents is used to make the modifications instead of using
the source-code. The result of such modifications are new versions of the design documents
with a modified design which can be reimplemented. Reuse of components during the design
of these modifications is not different from reuse during the original design.

Design phase Reuse of components may not be any different, the redesign of existing com-
ponents is. During the redesign of a component care should be taken not to change the pre-
and postconditions of the component. Such changes would probably require changes in the
components that use the modified component. However, these aspects are not due to reuse,
but can be attributed to good design practices in general.

Modifying the existing design documents proved to be very straightforward. The level of
abstraction in the design documents allowed the developer to make modifications without
thinking about the consequences to the current implementation. The resulting design is in
most cases a ’cleaner’ solution because no attempt is made to recover existing (source-)code.
The modification consisted mainly of replacing of some controls with other types of controls,
preserving the other parts of the container component as much as possible. The result was a
new component with, for the Telemarketeers, a more user-friendly interface.

We do not discuss changes in the reusable components since the model presented here considers
development for reuse a separate discipline. Changes in pre- and postconditions would require
changes in other parts of the application during redesign of components. Changes in reusable
components might require changes in several applications. Again, many of the problems
related to these changes can be prevented with good design practices (such as achieving low
coupling [18]).

Implementation phase During the implementation phase the new design documents were
used to implement the modified design. In some cases this may involve a complete reimple-
mentation of a component. In this case much of the existing component could be salvaged.
Furthermore, reuse during the modification of existing applications components was not dif-
ferent from reuse during the initial implementation of the component either.

Whether parts of the original implementation are reused, or a complete reimplementation of

CHAPTER 6. EVALUATION OF THE REVISED DEVELOPMENT METHOD 43

the component is performed, it will be necessary to use the checklists of all the repository
components used in order to detect possible mistakes in the use of reusable components.

6.2.2 Modification Effort

Redesign of components is more difficult than the initial design, this is however not due to
the development model. Redesign must take into account the existing dependencies to other
components. Only a loosely coupled design can help reduce the problems related to these
dependencies. Reimplementation of components will also require more work than the original
implementation. The amount of extra work needed depends on the level of coupling in the
original design. A high level of coupling will require more code to be rewritten. Whereas a low
level of coupling will require very little changes outside the redesigned component, i.e. changes
remain local.

For the modification of the Telemarketing prototype changes were local to one data-entry form.
Overall redesign was somewhat harder than the initial design. This can be attributed to the
fact that modifications have to fit within the existing design, which inevitably takes some extra
time. This is also true for the reimplementation. Especially when (large) parts of the existing
implementation are reused, care should be taken not to introduce errors. A major benefit of
the use of the design documents is the visibility of the modifications. By comparing the old
design documents with the new documents the changes are visible without having to look ate
the implementation. Comprehending the designs is, due to the higher abstraction level of the
design documents, much easier than comprehending the implementation.

Again, as with the original implementation, it is difficult to compare the development time
and effort between the current and proposed development method for modifications because
no measurements are available of the current development method. The modification effort of
the prototype is shown in table 6.2.

Type of Modification || Divided over

Component | time Design | Implementation

Forms (1) 2.30 1.45 0.45

Integration 0.15 X 0.15
[Total [2.45 hours ’ |

Table 6.2: Modification effort for the Telemarketing prototype in hours and minutes.

For this modification one complex component was replaced with a new component. All other
parts of the data-entry form remained unchanged. Therefore the ratio of reuse vs. new code
looks very negative, 20:80. If we consider the unchanged code as reused code, which is in fact
true since we used code grabbing, the ratio looks much better 64:36.

Chapter 7

Concluding Remarks

7.1 Conclusions

The models presented here introduced reuse techniques into the development method used
at HBB Automatisering. An implementation was given for the Visual FoxPro language, and
an evaluation of the model showed the model was usable. Furthermore, the development
method was formalized in several places providing vital information for maintenance and future
extension of the applications.

It is very difficult to compare the current method and the method proposed in this thesis
because the current method does not allow any measurements of time and cost effectiveness.
The proposed development method is, due to the introduction of a explicit design phase, more
time consuming. Depending on the number of reusable components used, and their complexity
some time saving is achieved because less new code is introduced. The major benefits of
the proposed method are for modifications of existing applications. Due to the existance of
the design documents modifications are much easier. With the current development method
modifications are made directly in the source-code, which, especially when the application was
developed some time ago, is not be that simple.

The model can also be used as a starting point to introduce other changes into the development
method used at HBB Automatisering. I do not claim that the model is perfect, many areas of
research are still left uncharted, but it does improve the quality of the applications developed
and make them more maintainable.

7.2 Enhancements and Future Research

Some of the areas of further research that might improve the model are given in this last
section. Research will be necessary to investigate the necessity of the features mentioned here.
The enhancements and future research suggested in this section are listed in random order.

Local Repositories At the end of section 4.2.2 it was already mentioned that the repository
could be used for local components too. The benefits of storing newly-written components in
a local repository should be investigated. A local repository could increase the probability

44

CHAPTER 7. CONCLUDING REMARKS 45

of reuse, and make the process of classification for insertion into the global repository much
simpler.

Visual Designers The benefits of the Visual designers supplied with most modern visual
development platforms are not used. Instead of using a form layout sketch the Visual designer
of Visual FoxPro could be used to create the layout. The benefits of this approach are that
the form could be used to give the customer an idea of how the application will look like in
the form of an empty prototype. Furthermore, forms do not have to be sketched first, but are
created directly. However, some safeguard has to be introduced to prevent the developer from
continuing in the Visual designer when he should use the design document. Eventhough the
Visual designer is used, and some implementation is generated the development process is still
in the design phase.

Borland Delphi Implementation HBB is currently using Borland Delphi as a develop-
ment language as well. An implementation of the model for Borland Delphi would enable the
use of knowledge obtained during this research for that platform as well. This would also be
a major test of the adaptability of the model.

Requirements Phase Currently the Requirements phase is not modified. Further study
will be necessary to find out whether a more formal approach in the Requirements phase could
result in more reuse in the Design phase.

Bibliography

[1) Susan P. Arnold and Stephen L. Stepoway. The reuse system: Cataloging and retrieval
of reusable software. In Software Reuse: Emerging Technology [19], pages 138-141.

[2] J. Bennink. HBB automatisering; current development method. Internal project report,
1995.

[3) Ted J. Biggerstaff and Alan J. Perlis. Software Reusability; Concepts and Models, volume 1
of Frontier Series. ACM Press, 1989.

[4]) Ted J. Biggerstaff and Charles Richter. Reusability framework, assessment, and directions,
chapter 1. Volume 1 of Frontier Series [3], 1989.

[5] Bruce A. Burton et al. The reusable software library. In Software Reuse: Emerging
Technology [19].

[6] Robert N. Charette. Software Engineering Environments; Concepts and technology.
McGraw-Hill Book Company, 1986.

[7) Richard J. St. Dennis. Reusable ada (r) software guidelines. In Software Reuse: Emerging
Technology [19], pages 257-264.

[8] Horowitz Ellis and B. Munson John. An ezpansive view of reusable software, chapter 2.
Volume 1 of Frontier Series (3], 1989.

[9] Gerhard Fisher, Andreas C. Lemke, and Christian Rathke. From design to redesign. In
Software Reuse: Emerging Technology [19], pages 282-289.

[10]) W.B. Frakes and B.A. Nejmeh. An information system for software reuse. In Software
Reuse: Emerging Technology [19], pages 142-151.

[11] Allen Macro. Software Engineering; Concepts and Management. Practical Software En-
gineering Series. Prentice Hall International (UK) Ltd, 1st edition, 1990.

[12] Microsoft. Microsoft Visual FozPro 3.0 Developers Guide (Beta 2), 1994.

[13] James M. Neighbors. Draco: A method for engineering reusable software systems, section
12.7.1. Volume 1 of Frontier Series [3], 1989.

[14] Ruben Prieto-Diaz and Peter Freeman. Classifying software for reusability. In Software
Reusablility, pages 106-116. Computer Society Press of the IEEE, 1987.

[15] Ruben Prieto-Diaz and Gerald A. Jones. Breathing new life into old software. In Software
Reuse: Emerging Technology [19], pages 152-160.

46

BIBLIOGRAPHY 47

[16] David R. Reed. Tools for software reuse. Object Magazine, pages 63—67, February 1995.

(17] 1. Sommerville. Software Engineering. International Computer Science Series. Addison-
Wesley Publishing Company, 1982.

(18] I. Sommerville. Software Engineering, pages 53-54. In International Computer Science
Series [17], 1982.

[19] Will Tracz. Software Reuse: Emerging Technology. Computer Society Press of the IEEE,
1988.

[20] Will Tracz. Software reuse: Motivators and inhibitors. In Software Reuse: Emerging
Technology [19], pages 62-67.

Appendix A

Programming Standards

Most of the standards are adopted from the current standards used at HBB [2]. The standards
are all concerned with the source-code. A consistent use of name conventions, abbreviations
and source-code layout is a first step in creating readable and maintainable applications and
components.

A.1 Name Conventions

The name conventions used are adopted from the suggested coding convention by Microsoft[12]
—known as the hungarian coding convention— with some minor modifications. Only conven-
tions for variable and object names are covered in this section.

In the following we denote both database fields and memory variables as variables. Variable
names are created using (combinations of) abbreviations and can be combined with a sequence
number. Although variable names should be as descriptive as possible, their length should not
be excessive, the preferable length is 3 to 15 letters! (although Visual FoxPro v3.0 supports
variable names of up to 254 significant characters.) The use of single letter variable names
should be avoided unless they do not present any risk of misinterpretation.

We will use type-coding for some variables using two prefix letters, the first letter denotes the
variable scope (table A.1) and the second letter is used to denote the variable type (table A.2).
The scope prefix is recommended but not required. In some cases explicit scoping does not
apply. For example, in the main program of a standalone application, there is no difference
in visibility for variables scoped as PUBLIC or PRIVATE. The type prefix is always relevant
and is always required.

Arrays are allowed to use different variable types in their rows and columns. A separate
variable type for array variables was added to prevent any confusion about the actual type
of the data stored in an array. FoxPro allows variables to change their type at runtime. By
using the variable type as part of the variable name this might lead to confusion. The use of
this feature is therefore limited to variables that are type-coded using the added variable type
‘Untyped’.

Database fieldnames are used in uppercase letters. Since the scope of a fieldname is not

!Please note that on the MS-DOS platform filenames can only be 8 characters long (excl. an extension.)

48

APPENDIX-A. PROGRAMMING STANDARDS 49

a | Array 1 | Logical
b | Double m | Memo
¢ | Character n | Numeric
1 | Local d | Date o | Object
g | Public (global) f | Float t | DateTime
p | Private g | General u | Untyped
t | Parameter y | Currency
Table A.1: Variable Scope. Table A.2: Variable Types.

bound to the program execution database fieldnames do not use a scope prefix. The type of

database fields normally never changes, it is therefore not necessary to use a variable type in
the fieldname.

FoxPro uses a special notation for memory variables that contain copies of database fields.
These variables are referenced by preceding them by an m. code. Since these variables are
copies of database fields these memory variables do not use scope- and type-coding either. All
other memory variables use the coding conventions.

Additionally the following naming convention is used for classes. The name of the class is
prefixed by the type of the baseclass of the new class definition. Table A.3 lists the baseclasses
defined by Visual FoxPro.

| Prefix | BaseClass | Prefix | BaseClass
chk CheckBox img Image
cbo ComboBox 1bl Label
cmd CommandButton lin Line
cmg CommandGroup Ist ListBox
cot Container ole OLE
ctl Control opt OptionButton
<User-defined> | Custom opg OptionGroup
edt EditBox pag Page
frm Form pef PageFrame
fpg FormPage shp Shape
frs FormSet §pn Spinner
grd Grid txt TextBox
gre Column tmr Timer
grh Header tbr ToolBar

Table A.3: Visual FoxPro BaseClasses and their prefix code.

A.2 Abbreviations

The use of abbreviations enables the component and variable names to be more descriptive
without turning into small pieces of prose.

APPENDIX A. PROGRAMMING STANDARDS 50

A.2.1 Abbreviation Rules

If the original word can be deduced from it’s abbreviated form then the abbreviation is said
to be ‘understandable’. Sometimes it may not be possible to create an abbreviation this way,
there should be an alternative for these cases. The length of abbreviations should not be
too long. The rules presented here assume a length of 3 to 8 letters unless it is otherwise not
possible to create an abbreviation. The rules for creating abbreviations are shown in table A 4.
The rules should be tried in order until an acceptable abbreviation is created.

1. Is it possible to create an abbreviation for the word using existing abbreviation?
If 50, use that abbreviation. Abbreviations for compound words should always be
created from the words that make up the compound word.

2. Try to create an abbreviation using the first letter of each syllable in the word to be
abbreviated.

3. Try to create an abbreviation using several letters of the syllables in the word to be
abbreviated.

4. Try to use complete syllables to create an abbreviation.

5. If it is not possible to create an abbreviation then the developer is free to create an
abbreviation from other letters, syllables or words. It is still preferable to keep the
abbreviation as logical as possible.

Table A.4: Steps for creating abbreviations.

A.2.2 Creating New Abbreviations

New abbreviations should be created using the abbreviation rules. The newly created abbre-
viation should be registered with the abbreviation list owner (ALO). The ALO is responsible
for maintaining and distributing the abbreviation list. He decides whether a new abbreviation
is accepted or not. He is free to change the new abbreviation, or it’s meaning, before it is
registered.

The use of new, unregistered, abbreviations is limited. Developers are responsible for keeping
track of where they use the new abbreviation. If the ALO decides to change the unregistered
abbreviation, the developer will have to modify each instance used so far. There is no limitation
on the use of registered abbreviations. Registered abbreviations never change. The meaning
of abbreviations can only be extended as long as it does not lead to confusion.

A.3 Source-code Layout

The source layout rules apply to all source-code from program files and the PowerTools. There
are rules for indentation of the source-code, and for the use of comments.

APPENDIX A. PROGRAMMING STANDARDS

[HAVING <filterconfition>]

[UNION [ALL) <SELECT <command>]
[ORDER BY <order_item> [ASC | DESC]
[, ... 1]

FUNCTION <function-name> IF <expl>
[PARAMETERS <parameter-list>] <statements>
[<statements>] [ELSE
[RETURN [<expr>]] <statements>]
ENDIF
POR <mem-var>=<expNi1> TO <expN2> [STEP <expE3>] DO WHILE <expl>
<statements> <statements>
[LoOP] [LooP)
[EXIT) (EXIT)
ENDFOR ENDDO
SELECT [ALL | DISTINCT] DO CASE
[<alias>.])<select item> [AS <column name>] CASE <expLi1>
[, So <statements>
FROM <table> [<local alias>] [CASE <explL2>
[, e 1 <statemants>
INTO <destination> 000ad)
[VHERE <joincondition> [OTHERWISE]
[axp ...] <statements>]
[AND | OR <filtercondition> ...]] ENDCASE
[GROUP BY <group column>
[s Al

Table A.5: Indentation rules for language constructs.

A.3.1 Indentation

51

The source-code is indented using three spaces. The rules for indentation of several program

structures is shown in table A.5. Some of these rules are very dependent on the FoxPro

language.

A.3.2 Comments

The use of comments in the source-code is essential for any form of maintainability, although
it is not the only technique. The rules for placing comments are:

1. Each program, function and class is documented using a comment header. (See sec-

tion A.3.3)

2. Source-code within functions that performs a significant task should be commented with

a description of the task.

3. Comments placed on the same line as source-code are not clearly distinguishable from

the code and are therefore not used. This means that the comment option of FoxPro

using a ‘&&’ is not used.

4. FoxPro uses a ‘“*’ symbol to denote the start of comments on a separate line, ie. lines
P

containing no code. To enhance readability all descriptive comments should use a ‘**’

followed by one space as in:

se Calculate the expected profit on the invested capital.

APPENDIX A. PROGRAMMING STANDARDS 52

1fProfit=pfCapital ¢ pflnterest

5. To indicate that a comment describes a crucial (design) limitation, or an assumption a
“*I’ code is used as in:

¢! This relies on the fact that the InputMask property is set to
s! 99/AAA/9999.
1cMonth=UPPER(SUBSTR(THEIS.Value,4,3))

6. To add temporary comments — used mostly during development — or to denote tem-
porary solutions or bug workarounds a ‘*?’ code should be used.

¢? The following code is skipped until the DE works properly.
«IF NOT USED(’EMP’)

¢« USE EMP Ik O

sENDIF

7. Application code that is commented out for some reason uses a ‘*’ code as in the above
example.

8. Comments added at a later date, as for bug-fixes, should include an author code and the
date of insertion in the format as shown in:

e BNE-20/11/1994: The code belov vas added to fix a bug occuring when a user
¢¢ did not select any list-entry and chose the Exit button immediately.
IF 1lnSelected>0

ENDIF

A.3.3 Comment Headers

Each program, function and class is documented using a comment header. The entries in the
header depend on the type of the component. In table A.6 all comment header entries are
shown in order of appearance. The first column denotes for which type of code the entry is
included in the header.

APPENDIX A. PROGRAMMING STANDARDS

-
Q

o Bia - B, -]

b e > T O0O00O00000000000000OT N >0 d>»
o

Name : <Function name>
Base class : <Parent class>
From library : <Library name>
Type : <Program | Punction | Class>
Version : <Version number>
Based on : <Function name>.<Version number>
Date : <Creation date of this version>
Author : <Kame of the author>
Parameters

<Parameteri1> <Parameterl description>
Properties

<Property name> <Property description>
Methods 3

<Method name> <Method description>

Parameters

<Parameteri1> <Parameterl description>

Return value : <Return value type>
Events 3

<Event name> <Event description>

Parameters

<Parameteri> <Parameterl description>
Return value : <Return value type>

Return value : <Return value type>

Description

<Description text>

Keyvords

<Comma delimited keyvword list>

Example 3
<Example text>

Table A.6:

Comment header layout.

Included for all types.
Included for functions.
Included for OO classes.

O™ >

included for programs and modules.

53

Appendix B

Design documents

This appendix shows the design documents that are used for the initial version of the reuse
model. After a trial period these documents will be evaluated, and if necessary, modifications
will be made.

54

Project Preliminary Software
Component design document
Author for classes.

Version

Based on
version

Name

BaseClass

Description

Project

Author

Version

Based on
version

Name

BaseClass

Preliminary form design
document.

Tables

Type

Modeless

Description

Field description

Name

BaseClass

ControlSource

InputMask

=~ e —

Description

!
|

Field description

Name

BaseClass

ControlSource

InputMask

Descript

e

ion

Code Design Document 58

Project Preliminary Software
' Component design document

Author for procedures and

. functions.
Version
Based on
version _
Name

Return value

Menu Design Document

60

Project

Author

Preliminary menu
i design document.

Version

Based on version

| Name

Message

Action

Project

Preliminary report design

Author

document.

Version

Based on
version

Name

Description

Field description

ControlSource

FormatMask

Description

Extra

Field description

ControlSource

FormatMask

Description

Extra

Project

Preliminary label design

Author

document.

Version

Based on
version

Name

Description

Field description

ControlSource

FormatMask

Description

Extra

Field description

ControlSource

FormatMask

Description

Extra

Project

Preliminary Checklist

Author

document.

Version

Based on
version

Name

Description

Checklist

Appendix C

Repository Summary

This appendix lists a few components that are part of the initial repository developed for this
project. Once the repository is used in real projects the number of components will steadily
grow. The components supplied are just a basic set, necessary to test the concepts of the reuse
model. Currently the components in the repository are distributed as follows:

[NrOf. | Type of component)

47 | Controls
24 | Containers (Funtional data containers)
25 | Encapsulating classes

4 | (Programming) standards

8 | Support functions
4 | Dialog forms

64

APPENDIX C. REPOSITORY SUMMARY

65

| Repository Identification Code

Componentname Component type
Versionnumber Author
Description 7
Parameter /Property description Return value/Method code description
Keywords References to (other) documentation
| PRG\CLSSUPP
AddAlias Function
Version 1.000 Author BNK

as well.

This procedure adds an alias to the object’s ControlSource and/or Alias property using the
Alias property from its parent. Extensive checks are done to make sure that the object has a
ControlSource, a parent, the parent has an Alias property etc. Aliases are only overwritten if the
parent object wants to force alias overwriting. It is not added as a method to a class because it
would require the method to be added to at least two classes. This way maintenance is simpler

oObject : The object used to add an alias to.

Function, Alias, Container objects

[SCX\SPLASH

About

Version 1.000

Author BNK

This is a special type of splash screen. This screen is used to display a dialog box with information
about the application similar to the FullSplash screen (je. it display the same information.) This
dialog however can be called from a special ”About...” menu option.

Template form, About dialog, Application infor-
mation, Application version, Copyright informa-
tion, License information

SEE ALSO: FullSplash

APPENDIX C. REPOSITORY SUMMARY 66

[DBF

RESOURCE Datastructure

Version 1.000 Author BNK

This table is used by an application to store variable-constants and lookup data. It can be used
for storing user authorization, printer information and any other application data that needs to
be stored in a way that allows easy modification of and additions to the data. The application
using a specific resource should know which fields to use, and to what type to convert the fields.
All fields are stored as character strings.
STRUCTURE.:

ResNm : C(15) The resource name.
Resltem1 : C(10) Resource value/key.
Resltem2 : C(10) Resource value/key.
Resltem3 : C(15) Resource value/key.
Resltem4 : C(15) Resource value/key.
Resltem5 : C(40) Resource value/key.
Resltem6 : C(80) Resource value/key.
Resltem7 : C(200) Resource value/key.
ResItem8 : M Resource value/key.
SysRes : L Denotes the type of resource. SysRec=.T. resources are not part of the application
resources, but are system resources, and should not be modified.

ResDesc : M A description of the functionality of the resource.

Table, Resources

WCX\TXT\PERS
txtNm Baseclass hbbTextBox
Version 1.000 Author BNK

This field is used to enter a last-/surname. The first letters of each name is converted to
UPPERcase, the rest to LOWERcase, additional spaces are removed.

BNF syntax:

txtNm = [<Woord>[<Scheiding><Woord>]*]

Woord = <Hoofdletter>[<Letters>]

HoofdLetter = 'A’..’Z’

Letters = <Letter>{<Letters>]

Letter = ’a’.."2’

Scheiding = */’|" |-’

ControlSource = NM FldFmt()* - Convert all characters from the field
into LOWERCcase, except for the first letters of
words/names and strip extra spaces.

Datafield, Personal data, Naam

APPENDIX C. REPOSITORY SUMMARY

67

[VCX\CMD\PERS

c¢cmdGst

Baseclass hbbCommandButton ;

Version 1.000

Author BNK

the button shows a picture of the gender.

This is a three-state button. Depending on the value of the ControlSource (identical to txtGst)

Picture = Used to hold the Gender bitmap.
Initialisation is performed in the Init clause,
changes are mdae using the Click event.

Init() - Initialize the Picture property. If the
ControlSource field currently has a value other
than 0,1,2,M,V,? the field is initialized to 2 or
? depending on the fieldtype, which should be
either numerical, or character.

Click() - Depending on the current contents of
the field the picture is updated in sequence. The
component can use both numerical, and char-
acter fields. The field values are translated to
bitmaps using the following scheme:

0,M = Male bitmap

1,V = Female bitmap

2,7 = Unknown gender bitmap

CommandButton, Personal data, Geslacht

CHECKLIST:

* Make sure that the bitmaps are included into
the project. The bitmaps are:

Male : PIC\GENERAL\MALE.BMP

Female : PIC\GENERAL\FEMALE.BMP
Unknown: PIC\GENERAL\GENDER.BMP

[VCX\TXT\PERS

txtGst

Baseclass hbbTextBox

Version 1.000

Author BNK

converted to UPPERcase.

This field is used to enter the gender of a person. The field is validated using (M) to denote
male, and (V) to denote Female. If the gender is unknown (?) can be entered. Field values are

ControlSource = GST

FldFmt()* - Return the field in UPPERcase.
Valid() - Check is the field contents is "M”,”V”
or ”?” (see Description).

Datafield, Personal data, Geslacht

APPENDIX C. REPOSITORY SUMMARY 68

| VCX\CMD\TBL y
cmdTbiNew Baseclass hbbCommandButton
Version 1.000 Author BNK
This button is used to set a form in the New state (fsNew.) The New state can only be set if
the current state of the form is fsReadOnly or fsQuery. If the form is already in the fsNew state
nothing happens, for the fsReadOnly and fsQuery state all fields are enabled and a new, empty,
record is created.

Valid() - Check to

see whether the form /container is in the fsRead-
Only or fsQuery state and set fsNew state for the
current active form/container. The New button
is disabled. All fields are enabled, and a new,
empty, record is created. If the form/container
was in fsNew or fsEdit state nothing happens. If
the valid method is overwritten a test for these
states after calling the original valid can be used
to process these respective states.

Button, Table, State, New

CHECKLIST:
* Make sure that the Form class used has a State
property, and that the fs-constants are defined.

[VCX\HBB

hbbTextBox

Baseclass TextBox

Version 1.000

Author BNK

HBB TextBox class.

BackColor = Blue

ForeColor = Yellow

DisabledBackColor = Blue

DisabledForeColor = Gray

SelectedBackColor = Red

Selected ForeColor = Yellow

Name = txt...

Width = AutoSize to the ControlSource field
(mostly from a table). If an InputMask is set
the length of the InputMask has precedence.
InputMask = If blank, use the length of the Con-
trolSource to create an appropriate InputMask.
MaxLength = Set to the length of the Control-
Source. Do this first to save duplicate code, the
Width and InputMask property use this length.

Valid() - THIS.Value=THIS.FidFmt()
FldFmt()* - Return the field value in a forma
appropriate for that field. :
Proper()* - Return the field value in a Mixed
case format. (PROPER)

Upper()* - Return the field value in UPPER-
case. (UPPER)

Lower()* - Return the field value in LOWER-
case. (LOWER)

StripSpaces()* - Return the field value with ex-
tra spaces removed. (ALLTRIM)

HBB baseclass, TextBox

CHECKLIST:
* Check to see if the Width, InputMask, and
MaxLength properties are set correctly.

APPENDIX C. REPOSITORY SUMMARY

69

{ VCX\CMG\BUTTONS

cmgTblEditBtn

Baseclass hbbCommandGroup

Version 1.000

Author BNK

state of the form. The first button is used to

record data. The last button is used to exit
changes.

This component supplies four buttons, of which two have double functions dépend.ing on the -

locate records. The third button is used to start editing during New and Edit state to Save the

add new records, the second to Query the table and

the form, and to abort the data entry, ie. discard

oNew : cmdTblNew

oQuery : cmdTblQuery
oEditSave : emdTblEditSave
oExitAbort : emdTblExitAbort

denote

mation the other buttons are enabled/disabled.
The form state is also taken into account. The but-
tons are enabled/disabled using the following states

SetButton()* - This function takes one parameter to

the button currently pressed (ie. "NEW”, ”QUER\j”,
"EDIT/SAVE”, "EXIT/ABORT”). From this infor-

scheme:

State New Query Edit Save Exit Abort
fsReadOnly + + + - + =
fsNew - = = + — +
fsEdit s = s + - +
fsQuery + = + = = +

oNew.Valid() - First call the original valid, then call
cmgTblEditBtn.SetButtons("NEW™)

oQuery.Valid() - First call the original valid, then call
cmgTblEditBtn.SetButtons("QUERY™)
oEditSave.Valid() - First call the original valid, then
call cmgTblEditBtn.SetButtons("Edit/SAVE™)
oExitAbort.Valid() - First call the original valid, then
call cmgTblEditBtn.SetButtons("EXIT/ABORT”)

CommandGroup, Table, Editing, But-
tons, State

[VCX\TXT\ADS

txtPstCd

Baseclass hbbTextBox

Version 1.000

Author BNK

This field contains a ZIP code as "9999AA’ (dutch format). All letters are converted to UPPER-
case, on-screen a space should be shown between the '9999’ and the ’AA’.
Perhaps validation using a PTT postcode table could be realized.

ControlSource = PSTCD
InputMask = 79999 AA”
FormatMask = "R”

FldFmt()* - Convert letters to uppercase. Do not
store the extra space, it is for input convenience only!
Most of this should be taken care of by the InputMask
property!

Datafield, Address data, Postcode

APPENDIX C. REPOSITORY SUMMARY 70
[VCX\HBB =
hbbContainer Baseclass Container
Version 1.000 Author BNK

This component is used to create FDC’s, it can contain other components. The component has
added intelligence for handling aliasses in the components within the container.

Name = cnt... Init() - (pseudocode follows)

Alias* = This property is used to store an alias *+ By default we call this procedure.

that can be used by the AddAlias() function to =AddAlias2All()

add an alias to the ControlSource or Alias prop-
erty of a control.

ForceAlias* = Should existing aliasses be over-
written.

& State* = fsReadOnly. The state of the con-
tainer, initially fsReadOnly. A container can
be in an fsNew, fsEdit, fsReadOnly or fsQuery
state. The fsNew state indicates that the data in
the container is new, not saved in the table yet.
The fsEdit state is used to indicate that the data
in the container is currently being edited, or at
least editing is activated. fsReadOnly indicates
that the data is currently not being edited, but
the data is present! in the table. The fsQuery
state is used to indicate that the conmtainer is
currently in Query mode. The data entered will
be used to find (a) matching record(s).

HBB baseclass, Container, Alias, State CHECKLIST:

* Is a SET PROCEDURE TO ... ADDITIVE
with the AddAlias function in it present some-
where in the project.

* Make sure that all data fields associated
with the container’s main table are set to
READONLY (ie. the controls ReadOpnly prop-
erty;.T.)

* Make sure that the fsNew, fsEdit, fsReadOnly
and fsQuery states are defined using # DEFINE

statements.

